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Abbreviations List 

100SS  100 minute steady state ride 

ACC  Acetyl CoA carboxylase 

ADP  Adenosine diphosphate 

AMPK  AMP-activated protein kinase 

AU  Arbitrary unit 

βHB  βeta-hydroxybutyrate concentration 

BIOPS  Biopsy preservation solution 

BM  Body mass 

CHO  Carbohydrate 

CI  Mitochondrial complex I 

CII  Mitochondrial complex II  

CIII  Mitochondrial complex III 

CIV  Mitochondrial complex IV 

CV  Mitochondrial complex V 

CPT1a  Carnitine palmitoyltransferase-1 

CS  Citrate synthase 

DM  Dry mass 

DTT  Dithiothreitol 

EGTA  Ethylene glycol-bis (β-aminoethyl ether)-N,N,N’,N’-tetraacetic acid 

EI  Energy intake 

ETF  Electron-transferring flavoprotein (leak state respiration) 

ETFp  Electron-transferring flavoprotein (ADP stimulated oxidative phosphorylation) 

ETS  Electron transport system (respiratory capacity during uncoupled state) 

FA  Fatty acid 

FAT/CD36 Fatty acid translocase / CD36 

GAPDH Glyceraldehyde 3-phosphate dehydrogenase 

HDL  High density lipoprotein 
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HR  Heart rate 

LDL  Low density lipoprotein 

mTOR  Mammalian target of rapamycin  

OXPHOS Oxidative phosphorylation 

PDH  Pyruvate dehydrogenase 

PPO  Peak power output 

PO   Power output 

RER  Respiratory exchange ratio 

RPE  Rate of perceived exertion 

RPS6   S6 ribosomal protein 

SUIT  Substrate-uncoupler-inhibitor titration 

TT  Time-trial 

V̇O2peak  Peak oxygen uptake 

V̇CO2  Volume of carbon dioxide produced 

V̇O2  Volume of oxygen consumed 
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Abstract  

 

High-fat, low-carbohydrate (CHO) diets increase whole-body rates of fat oxidation and down-

regulate CHO metabolism. We measured substrate utilization and skeletal muscle mitochondrial 

respiration to determine if  these adaptations are driven by high-fat or low-CHO availability. In a 

randomized crossover design, eight male cyclists consumed five days of a high-CHO diet (HCHO, 

> 70% energy intake (EI)), followed by five days of either an isoenergetic high-fat (HFAT, > 65% 

EI) or high-protein diet (HPRO, > 65% EI) with CHO intake ‘clamped’ at < 20% EI. During the 

intervention, participants undertook daily exercise training. On day six, participants consumed a 

high-CHO diet, prior to undertaking 100 min of submaximal steady state cycling plus a ~30 min 

time trial. Following five days of HFAT, skeletal muscle mitochondrial respiration supported by 

octanoylcarnitine and pyruvate as well as uncoupled respiration was decreased at rest, and rates of 

whole-body fat oxidation were higher during exercise compared to HPRO. Following one day of 

HCHO intake, mitochondrial respiration returned to baseline values in HFAT while rates of 

substrate oxidation returned towards baseline in both conditions. These findings demonstrate that 

high dietary fat rather than low-CHO intake contributes to reductions in mitochondrial respiration 

and increases in whole-body rates of fat oxidation following a high-fat, low-CHO diet. 

 

Key words: Carbohydrate oxidation, substrate oxidation rates, mitochondrial adaptations, cycling 
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High-fat, low-carbohydrate (CHO) diets have increased in popularity over the past two decades 

with regards to their efficacy for improving both metabolic health profiles [1] and athletic 

performance [2, 3]. Short-term (1-3 week) ingestion of a high-fat, low-CHO diet when compared 

with an isoenergetic high-CHO diet for the same duration increases rates of whole-body and 

muscle fat utilization and decreases the rate of muscle glycogenolysis during submaximal exercise 

[2, 4-6]. Such metabolic perturbations are robust and persist in the face of high-CHO availability 

from both endogenous and exogenous sources [4, 7, 8]. Impaired glycogenolysis as a consequence 

of high-fat, low-CHO diets has been explained by decreased pyruvate dehydrogenase (PDH) 

activation [5], suggesting impaired metabolic flexibility in skeletal muscle. A range of alterations 

in the activities of regulatory enzymes and/or signaling proteins in the pathways underlying 

skeletal muscle fat and CHO metabolism are likely to explain the changes observed with 

adaptation to a high-fat diet. However, to date it has not been possible to determine whether such 

adaptations are driven by high-fat or low-CHO availability as the protocols used in previous 

studies involved changes to both macronutrients simultaneously [2, 4, 5, 7]. Therefore, in order to 

elucidate the underlying mechanisms driving changes in metabolic flexibility, high-fat dietary 

intake must be compared to an isoenergetic diet, where CHO intake is clamped in both dietary 

interventions. Few studies have determined changes to skeletal muscle in well-trained humans 

following a high-fat diet and to date, no study has assessed mitochondrial respiration in this 

population to determine if  this could explain changes in metabolic flexibility.  

 

Therefore, the current investigation aimed to determine whether the metabolic perturbations 

induced by a high-fat diet are a result of high-fat or low-CHO availability. Well-trained humans 

were fed five days of either a high-fat diet or an isoenergetic high-protein diet (~65% energy intake 

(EI)) with CHO intake ‘clamped’ to < 20% of total daily EI (2.6 g·kg-1 body mass). We utilized 

whole-body expired gas measures together with assessment of skeletal muscle substrates, 

mitochondrial respiration and signaling proteins with putative roles in substrate metabolism in an 

effort to identify mechanisms underlying changes in the patterns of substrate oxidation observed 

following a high-fat diet. We hypothesized that whole body rates of fat oxidation would be greater 

following high-fat compared to a high-protein diet due to high-fat rather than low-CHO availability 

driving the shifts in fuel utilization and skeletal muscle mitochondrial respiration.  
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Materials and Methods 

Ethical Approval 

This study conformed to the standards set by the Declaration of Helsinki and was approved by the 

Human Research Ethics Committee of Australian Catholic University and registered with the 

Australian New Zealand Clinical Trials Registry (ACTRN12616000433404). Participants 

completed a medical history questionnaire to ensure they were free from illness and injury before 

commencing the study and were informed of all experimental procedures and possible risks prior 

to providing their written, informed consent.  

Overview of study design 

Eight well-trained male cyclists with a history of endurance training and riding > 200 kmˑweek-1 

were recruited for this study. Participant characteristics were: age, 25 ± 4 (SD) y; body mass (BM), 

77.3 ± 7.0 kg; V̇O2peak, 64.0 ± 3.5 mLˑkgˑmin-1; peak power output (PPO), 380 ± 36 W. An 

overview of the study design is shown in Figure 1. Each participant completed two experimental 

conditions in a block randomized, crossover design while undertaking supervised training. There 

was a ~14 day wash out period between conditions. It was not possible to blind participants to the 

dietary interventions. However, the principal researchers completing the data collection and 

performance measures were blinded to the order of experimental trials. 

Preliminary testing  

Each participant completed an incremental test to volitional fatigue on an electronically braked 

cycle ergometer (Lode Excalibur Sport, Groningen, Netherlands) to determine V̇O2peak and PPO 

[9].  During the maximal test and all subsequent experimental trials, expired gas was collected 

every 30 s via open-circuit spirometry (TrueOne 2400; Parvo Medics, Sandy, UT) and the 

instantaneous rates of O2 consumption (V̇O2) and CO2 production (V̇CO2) were used to calculate 

the respiratory exchange ratio (RER). Before each test, gas analyzers were calibrated with 

commercially available gases (16% O2, 4% CO2) and volume flow was calibrated using a 3 L 

syringe. An individual’s V̇O2peak was determined as the highest 30-s average. These data were 

used to calculate the work rate corresponding to 63% and 80% of PPO for the two experimental 

rides.  
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Experimental trials 

Participants followed a ‘controlled’ high-CHO diet (72% EI), 10 gˑkg-1 BM [HCHO]) for five days 

prior to an experimental trial (see Table 1). Participants reported to the lab on the 5th day after an 

overnight fast and a resting blood sample (6 mL) was collected from an antecubital vein. 

Participants were then provided a standardized breakfast (2 gˑkg-1 BM CHO). Two hours following 

breakfast, participants were weighed and a second blood sample was collected before they 

completed a 20 min continuous ride at 63% PPO. Expired gas and measures of heart rate (HR) and 

rating of perceived exertion (RPE) were collected during the last 5 min of the ride [10].  Water 

was consumed ad libitum and upon completion of the ride, a third blood sample was collected 

prior to participants leaving the lab for the final (5th) day of the HCHO diet.   

The following morning, participants reported to the lab overnight fasted and a cannula (22G; 

Terumo, Tokyo, Japan) was inserted into an antecubital vein and a resting blood sample (6 mL) 

was collected. A resting muscle biopsy was then taken from the vastus lateralis using the 

percutaneous biopsy technique with suction applied [11]. Participants then repeated the 20 min 

continuous ride at 63% PPO in the fasted state, before commencing a high-intensity interval 

session (HIIT) (8 x 5 min at 80% PPO), as previously described [12]. The purpose of this interval 

session was to reduce muscle glycogen stores in both conditions prior to the dietary intervention.  

Diet and Training Intervention 

Participants commenced five days of either a high-fat (HFAT) or a high-protein (HPRO) diet. The 

HFAT and HPRO diets comprised 67% EI from fat or protein and 19% EI from CHO (Table 1). 

Protein was provided as an alternative macronutrient to meet energy requirements, while CHO 

was ‘clamped’. Total EI was 0.22 MJˑkg-1 BM. The HFAT diet was comprised of ~55% saturated 

and 45% unsaturated (mono and polyunsaturated) fats. Fiber intake was matched for both diets. 

All meals, snacks and energy-containing fluids were provided to participants in pre-prepared 

packages, with diets individualized for food preference. Participants completed a daily food 

checklist to maximize compliance and recorded all fluid (water) consumed on a daily basis during 

both trials. Caffeine ingestion was not permitted 24 h prior to an experimental trial and participants 

refrained from alcohol during the intervention period. During this time, participants followed a 

prescribed training program described previously [2] that closely matched each individual’s 

habitual road cycle training volume. Training was matched for each experimental treatment and 
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participants were instructed to ride at a rating of perceived exertion (RPE) that corresponded to 

11-13 [10] during each on-road session. Participants reported to the lab on day 4 and completed 

the same HIIT session as on day 1. On the morning of day 6, participants reported to the lab in a 

fasted state and a resting blood sample (6 mL) and muscle biopsy were collected before they 

completed a 20 min ride at 63% PPO. Participants were then provided with 1 day of a high-CHO 

diet (10 gˑkg-1 BM CHO) (Table 1). 

 

Performance ride 

After an overnight fast participants reported to the laboratory to complete a performance ride 

consisting of 100 min steady state (100SS) cycling at 63% PPO, followed by a 7 kJˑkg-1 BM time 

trial (TT). On arrival at the laboratory, a cannula was inserted into an antecubital vein and a fasted 

blood sample (10 mL) was collected. A muscle biopsy was then taken 2-3 cm distal from the 

previous incision. Participants then consumed breakfast (2 gˑkg-1 BM CHO) and rested for 120 

min. Immediately prior to exercise participants were weighed and a second blood sample was 

collected. During exercise blood samples (10 mL) and measures of RPE and HR were collected 

every 20 min, with expired gas collected at 15, 35, 55, 75, and 95 min. Participants were provided 

with CHO in the form of isotonic gels (SiS GO Isotonic Gel; Blackburn, UK) and a 6% CHO 

solution (933 mL fluid, 2 gels total) every 20 min throughout the ride at a rate of 60 gˑh-1 and water 

was consumed ad libitum during each trial. Immediately upon completion of the 100SS ride, a 

further muscle biopsy was taken. Participants then voided their bladder and had a 3 min rest prior 

to commencing the TT. Participants were instructed to complete the TT as fast as possible with 

visual feedback of cadence and verbal feedback of elapsed work as a percentage of the total work 

(every 10%). Participants were only provided the results of their TT performance upon study 

completion. Blood samples were collected immediately before and after the TT. 

 

Rates of substrate oxidation and total energy expenditure 

Whole body rates of CHO and fat oxidation (gˑmin-1) were calculated from respiratory gas samples 

collected during rides using the non-protein RER equations [13] which are based on the 

assumption that VȮ2 and VCȮ2 accurately reflect tissue O2 consumption and CO2 production:  
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CHO oxidation (gˑmin-1) = 4.585 V̇CO2 (Lˑmin-1) - 3.226 V̇O2 (Lˑmin-1) 

Fat oxidation (gˑmin-1) = 1.695 V̇O2 (Lˑmin-1) - 1.701 V̇CO2 (Lˑmin-1).  

 

Rates of CHO and fatty acid oxidation (μmol·kg·min-1) were calculated by converting the rates of 

oxidation (gˑkg·min-1) to their molar equivalent. It was assumed that 6 moles of O2 is consumed 

and 6 moles of CO2 is produced for each mole of CHO (180 g) oxidized and that the molecular 

mass of human triacylglycerol is 855.3 g·mol-l. The molar rates of triacylglycerol oxidation were 

multiplied by 3 because each molecule contains 3 moles fatty acid.  

 

Blood sampling and analyses 

Blood samples (6-10 mL) were collected into vacutainers containing EDTA and immediately 

analyzed for blood lactate (YSI 2900 STAT Plus, Yellow Springs, OH, USA) and total cholesterol, 

high density lipoproteins (HDL), low density lipoproteins (LDL) and triglycerides (Cobas b 101, 

Roche Diagnostics Ltd, Basel, Switzerland). The remaining sample was then centrifuged at 1,500 

g for 10 min at 4 °C, and aliquots of plasma were stored at -80 °C for later analysis of FFA (Wako 

Pure Chemical Industries, Ltd, Osaka, Japan), glycerol (Sigma-Aldrich, Ltd, Australia), insulin 

(R-Biopharm – Laboratory Diagnostics Pty Ltd, NSW, Australia), βeta-hydroxybutyrate (βHB) 

(Sigma-Aldrich, Ltd, Australia) and glucose (Melbourne Pathology, Vic, Australia) concentration. 

 

Mitochondrial respiration analyses 

Vastus lateralis muscle biopsies were excised and 10-20 mg was immediately placed into 3 mL of 

ice-cold biopsy preservation solution (BIOPS) [2.77 mM CaK2 ethylene glycol-bis(β-aminoethyl 

ether)-N,N,N’,N’-tetraacetic acid (EGTA), 7.23 mM K2EGTA, 5.77 mM Na2ATP, 6.56 mM 

MgCl2·6 H2O, 20 mM taurine, 15 mM Na2Phosphocreatine, 20 mM imidazole, 0.5 mM 

dithiothreitol (DTT), 50 mM MES hydrate; pH 7.1]. Muscle fibers were mechanically separated 

in ice-cold BIOPS to maximize fiber surface area and transferred into ice-cold BIOPS 

supplemented with saponin (50 μg·mL-1) for 30 min with agitation to permeabilize the sarcolemma 

and allow diffusion of substrates. Fibers were then washed 3 times via agitation in ice-cold MiR05 

respiration medium (20 mM 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid (HEPES), 0.5 



10 
 

mM EGTA, 10 mM KH2PO4, 3 mM MgCl2·6H2O, 60 mM lactobionic acid, 20 mM taurine, 110 

mM D-sucrose, 1 g·L-1 bovine serum albumin (BSA); pH 7.1). Fiber bundles were divided and 

weighed on a microbalance (1.5-3 mg each) for respirometry analysis in duplicate. All respiration 

analyses were commenced within 1 h of sampling.  

Electron transport system (ETS) and oxidative phosphorylation (OXPHOS) respiration were 

measured by the Oxygraph O2k high resolution respirometer (Oroboros Instruments, Innsbruck, 

Austria) via a substrate-uncoupler-inhibitor titration (SUIT) protocol at 37 °C in MIR05 respiration 

medium with magnetic stirring at 750 rpm. Briefly, after fibers were added and O2 was injected to 

the respiration chamber (maintained between 300 and 500 pmol), the sequential addition SUIT 

protocol commenced with titrations of malate (2 mM final concentration) and octanoylcarnitine 

(0.2 mM) to determine leak electron-transferring flavoprotein (ETF) respiration. OXPHOS ETF 

(ETFp) respiration was assessed by addition of adenosine diphosphate (ADP; 5 mM), complex I 

(CI) substrate pyruvate (5 mM) and complex II  (CII) substrate succinate (10 mM). Cytochrome c 

(10 μM) was added to confirm mitochondrial membrane integrity, and titrations of carbonyl 

cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP; 0.025 μM) were added to determine 

uncoupled respiratory flux. Complex-specific respiration was inhibited by the addition of rotenone 

(1 μM) and antimycin A (5 μM) to CI and complex III  (CIII), respectively. Finally, complex IV  

(CIV) capacity was measured during oxidation of N,N,N',N'-Tetramethyl-p-phenylenediamine 

dihydrochloride (TMPD; 0.5 mM) with ascorbate (2 mM). O2 flux due to auto-oxidation of these 

chemicals was determined after inhibition of complex IV (CIV) with sodium azide (15 mM) then 

subtracted from the raw CIV O2 flux. Chamber O2 concentration was maintained between 300 and 

450 μmolˑL-1. Mass-specific O2 flux was determined from steady-state flux normalized to tissue 

wet weight and adjusted for instrumental background and residual O2 consumption. 

 

Muscle glycogen concentration 

Muscle glycogen concentration was determined as described previously [14]. In brief, ~20 mg of 

muscle was freeze-dried and powdered, with all visible connective tissue removed under a 

microscope. Glycogen was then extracted from the freeze-dried sample and glycogen 

concentration was determined via enzymatic analysis [15].  
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Citrate synthase activity 

Whole skeletal muscle lysates were prepared at a concentration of 2 mgˑmL-1 and 5 μL of sample 

was loaded onto a 96-well microtiter plate with 40 μL of 3 mM acetyl CoA, and 25 μL of 1 mM 

5,5’-dithiobis [2-nitrobenzoic acid] (DTNB) in 165 μL of 100 mM Tris buffer (pH 8.3). 

Subsequently, 15 μL of 10 mM oxaloacetic acid was added to each well and immediately analyzed 

using a SpectraMax Paradigm plate reader (Molecular Devices, Sunnyvale, CA). Absorbance was 

read at 412 nm and was recorded every 15 s for 3 min after 30 s of linear agitation. Maximal 

activity was recorded with citrate synthase activity reported in molˑhˑkg-1 protein. 

Protein analyses 

For generation of whole skeletal muscle lysates, ~40 mg of skeletal muscle was homogenized in 

buffer containing 50 mM Tris·HCl, pH 7.5, 1 mM EDTA, 1 mM EGTA, 10% glycerol, 1% Triton 

X-100, 50 mM sodium fluoride, 5 mM sodium pyrophosphate, 1 mM DTT, 10 μg/mL trypsin 

inhibitor, 2 μgˑmL-1 aprotinin, 1 mM benzamidine, and 1 mM phenylmethylsulfonyl fluoride. 

Samples were spun at 16,000 g for 30 min at 4°C and supernatant was collected. After 

determination of protein concentration via bicinchoninic acid protein assay (Pierce, Rockford, IL), 

lysates were resuspended in Laemmli sample buffer and 10 µg protein of each sample was loaded 

into 4–20% Mini-PROTEAN TGX Stain-Free Gels (Bio-Rad Laboratories, California, USA). For 

OXPHOS antibody cocktail, 8.5 µg protein from unboiled lysates were loaded into 12% 

polyacrylamide gels. Following electrophoresis, gels were activated according to the 

manufacturer's instructions (Chemidoc; Bio-Rad Laboratories, Gladesville, Australia) and 

transferred to polyvinylidine fluoride (PVDF) membranes. After transfer, a Stain-Free image was 

obtained for protein loading normalization before rinsing membranes briefly in distilled water, 

blocking for 1 h with 5% nonfat milk, washing three times (5 min each wash) with 10 mM 

Tris·HCl, 100 mM NaCl, and 0.02% Tween 20 solution (TBST) and incubating with primary 

antibody diluted in TBST (1:1,000) overnight at 4°C on a shaker. Membranes were incubated for 

1 h the next day with a secondary antibody diluted in TBST (1:2,000) and proteins were detected 

via enhanced chemiluminescence (Amersham Biosciences, Buckinghamshire, UK; Pierce 
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Biotechnology) and quantified by densitometry (Chemidoc; Bio-Rad Laboratories). Time points 

and both diets for each subject were run on the same gel.  

Antibodies against fatty acid translocase (FAT/CD36) (no. 14347), Carnitine palmitoyltransferase-

1 (CPT1A) (no. 12252), AMP-activated protein kinase (AMPKα) (no. 2532), phospho-

AMPKThr172 (no. 2531), Acetyl CoA Carboxylase  (ACC) (no.3662), phospho-ACCSer79 (no.3661), 

mammalian target of rapamycin (mTOR) (no. 2972), phospho-mTORSer2448 (no. 2971), S6 

Ribosomal Protein RPS6 (no. 2217), phospho-RPS6Ser235/236 (no. 2211), Citrate Synthase (no. 

14309), Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (no. 2118) were purchased from 

Cell Signaling Technology (Danvers, MA) and total OXPHOS (no. 110411) purchased from 

Abcam (Cambridge, UK). Volume density of each target band was normalized to total protein 

loaded into each lane using Stain-Free technology (Bio-Rad Laboratories), excluding OXPHOS 

cocktail which was normalized to GAPDH imaged from the same membrane following the 

addition of stripping buffer (Thermo Fisher Scientific) to the OXPHOS membrane and re-probing 

for GAPDH. Following protein loading normalization, each phosphoprotein was then normalized 

to its respective total protein. 

Statistics 

Statistical analysis was undertaken using SPSS (Version 20 for Windows, SPSS Inc, Chicago, IL). 

Data from the two experimental conditions were analyzed using a linear mixed model (treatment 

× time) and subsequent post hoc comparisons were completed within the linear mixed model based 

on least significant difference. Separate analysis was completed to compare day five of high-CHO 

diet to 100SS (fed) and day one of HFAT or HPRO to five days post-diet (fasted). Normality was 

visually assessed using the linear model residuals. Differences in TT performance between trials 

were compared using a Student’s paired t-test.  Statistical significance was considered at P < 0.05. 

All data are represented as mean ± SD. 

 

Results  
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All participants complied with the prescribed dietary (Table 1) and training intervention for both 

conditions. No difference was reported across the 5-day intervention periods for distance covered 

or RPE during training for either diet (HFAT, 222 ± 23 km, 13 ± 0.5; HPRO, 196 ± 29 km, 13 ± 

0.7 respectively).   

 

Muscle glycogen concentrations  

There was a significant main effect of time for muscle glycogen concentration (P < 0.001) (Figure 

2). Muscle glycogen was reduced in both HFAT and HPRO conditions pre- to post-diet (P < 

0.001). Following one day of high-CHO diet, muscle glycogen increased by ~45% in both HFAT 

and HPRO conditions (P < 0.001) but was not restored back to pre-diet values in HFAT (P < 

0.001). Following 100SS, muscle glycogen was reduced in both HFAT and HPRO conditions (526 

± 86 to 411 ± 62 mmol·kg-1 dry mass (DM), P=0.033; 637 ± 87 to 420 ± 92 mmol·kg-1 DM, P < 

0.001, respectively); however, no difference in the percentage change from pre- to post-exercise 

was measured between conditions. 

 

Rates of substrate oxidation 

There was a significant interaction effect for RER and rates of CHO and fat oxidation (all P = 

0.001) (Figure 3A, B, C) after five days of either HFAT or HPRO diet. RER was reduced pre- to 

post-diet for both HFAT and HPRO (0.90 ± 0.02 to 0.79 ± 0.02; 0.90 ± 0.03 to 0.86 ± 0.02, P ≤ 

0.001 respectively) and was lower post-diet in HFAT compared to HPRO (P < 0.001).  Rates of 

fat oxidation increased after five days of HFAT and HPRO and were greater in HFAT compared 

to HPRO post-diet (55 ± 7 vs. 36 ± 6 μmol·kg·min-1, P < 0.001). Concomitantly, rates of CHO 

oxidation were reduced pre- to post-diet in both conditions and were lower in HFAT than HPRO 

post-diet (106 ± 20 μmol·kg·min-1 vs. 169 ± 17 μmol·kg·min-1, P < 0.001). Following one day of 

high-CHO diet, RER values returned to baseline in the HPRO trial during the first 20 min of 

100SS, but remained lower than baseline in the HFAT trial (HFAT 0.93 ± 0.02 to 0.90 ± 0.03, P 

= 0.002). RER was lower in HFAT compared to HPRO during the first 40 min of 100SS (P < 

0.04). Following one day of high-CHO diet, rates of CHO oxidation were lower than baseline 

during 100SS following HFAT (P < 0.001) and were significantly lower during 100SS in HFAT 
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compared to HPRO (213 ± 35 vs. 241 ± 31 μmol·kg·min-1, P = 0.025, respectively). Rates of CHO 

oxidation declined throughout 100SS in HPRO (from 241 ± 31 to 215 ± 26 μmol·kg·min-1, P < 

0.001), but remained stable in HFAT (~208 μmol·kg·min-1). Despite one day of high-CHO diet, 

rates of fat oxidation remained elevated above baseline in the HFAT trial during the first 20 min 

of 100SS (P = 0.002) but returned to baseline in HPRO. During the first 20 min of 100SS, rates of 

fat oxidation were significantly higher in HFAT than HPRO (0.53 ± 0.11 vs. 0.38 ± 0.18 

μmol·kg·min-1, P = 0.010) and remained higher than HPRO after 40 and 80 min of exercise. Rates 

of fat oxidation increased during 100SS in both HFAT and HPRO (P < 0.05).   

 

Blood metabolites pre- and post-diet  

There was a main effect of time for FFA concentration (P < 0.001) pre- to post-diet. FFA 

concentration was greater following exercise post-diet compared to pre-diet in both HFAT (0.31 

mM to 0.58 mM, P < 0.001) and HPRO (0.33 to 0.56 mM, P < 0.001). There was a significant 

main effect of time (P = 0.013) and condition (P = 0.048) for LDL cholesterol. LDL cholesterol 

increased pre- to post-diet in HFAT (2.44 ± 0.63 to 2.93 ± 0.75 mM) and was higher than HPRO 

post-diet (2.93 ± 0.75 vs 2.55 ± 0.71, P = 0.025). There was a significant interaction for HDL 

cholesterol and triglycerides (P = 0.010, 0.042, respectively) between HFAT and HPRO. HDL 

cholesterol increased (1.01 ± 0.20 to 1.30 ± 0.23 mM, P < 0.001) pre-to post-diet to be greater than 

HPRO (1.08 ± 0.20 mM), while triglycerides decreased (1.26 ± 0.46 to 0.69 ± 0.36 mM, P = 0.001) 

to be lower than HPRO (1.06 ± 0.45 mM). No difference in total cholesterol was measured between 

conditions from pre- to post-diet. 

 

Blood metabolites during the performance ride   

There was a significant interaction for plasma glycerol concentration between HFAT and HPRO 

(P = 0.035; Figure 4A). Glycerol concentration increased significantly from rest after 60 min of 

exercise in HFAT and remained elevated until after the TT. Glycerol concentrations were 

significantly higher in HFAT than HPRO after 40 min of 100SS. There was a significant effect of 

time for plasma FFA (P < 0.001), although no differences were observed between diets (Figure 

4B). FFA concentrations decreased 2 h following CHO breakfast in both conditions and were 
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elevated from resting values after 60 min of 100SS until completion of the TT. Plasma βHB 

concentrations increased following CHO breakfast and remained stable during 100SS in both 

conditions until after the TT (Figure 4C). There was a main effect of time for blood lactate, blood 

glucose and plasma insulin concentrations (P < 0.001) during 100SS, but no differences between 

diets (Figure 4D-F). Blood glucose concentration decreased following CHO breakfast in both diets 

but following 40 min of exercise, glucose concentrations had increased back to resting values. 

Plasma insulin concentrations increased in both conditions after breakfast and remained elevated 

2 h after ingestion. After onset of exercise, insulin concentrations were reduced in both conditions 

and were similar to pre-breakfast values throughout 100SS. Following 100SS, participants 

ingested a CHO drink which increased insulin concentrations in both conditions, but this increase 

was abolished following the onset of the TT. Blood lactate concentrations remained stable 

throughout 100SS in both conditions and were higher post TT compared to rest in HFAT (3.1 ± 

1.1 mM) and HPRO (3.1 ± 1.0 mM). 

   

TT Performance    

There was no difference in TT performance between diet conditions (30:59 ± 2:55 vs. 30:10 ±2:70 

min:sec for HFAT and HPRO, respectively). Mean PO during the TT were 299 ± 34 W and 304 ± 

35 W (P = 0.41) and HR averaged 168 ± 9 bpm and 166 ± 7 b.min-1 in HFAT and HPRO, 

respectively. A significant reduction in BM was observed pre- to post-exercise (P < 0.04) for both 

HFAT (-0.86 ± 0.79 kg) and HPRO (-0.61 ± 0.83 kg), although there were no differences between 

conditions. No difference in RPE was reported between conditions during 100SS although RPE 

increased throughout the exercise in both HFAT and HPRO (from 11 ± 1 to 14 ± 1, P < 0.001).    

 

Skeletal muscle mitochondrial respiration 

Based on differences in whole-body substrate oxidation rates pre- to post-diet and during 

prolonged exercise between HFAT and HPRO (Figure 3), we next tested if  skeletal muscle 

mitochondrial substrate utilization was contributing to this outcome using a sequential addition 

SUIT protocol. Absolute O2k respiration measures taken from permeabilized skeletal muscle fiber 

bundles analyzed in duplicate from each participant at each time point and under each diet are 
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reported in Table 2. To portray the effects of diet and exercise on mitochondrial respiration, 

percentage change data are represented in Figure 5. Although HFAT and HPRO absolute O2k 

values were not significantly different following either diet (Table 2), there was a significant 

interaction in percentage change of CI + ETFp respiration following HFAT and HPRO (P = 0.042; 

Figure 5A). The diet-induced reduction in CI + ETFp respiration following the addition of 

octanoylcarnitine and pyruvate was significantly greater following HFAT compared to HPRO. 

Despite no differences in absolute O2k values, percentage change of ETS uncoupled respiration 

(Figure 5A; ETS CI + CII + ETF; ETS CII) was significantly reduced following HFAT but not 

HPRO. Absolute and percentage change ETS CII uncoupled respiration remained unchanged 

following one day of high-CHO diet in HPRO but percentage change was significantly increased 

in HFAT compared to HPRO (P = 0.032, Figure 5B). ETFp respiration was significantly reduced 

following 100SS in HFAT but not HPRO (Figure 5C). Percentage change of post-exercise CI + 

ETFp, CI + CII + ETFp, ETS CI + CII + ETF, and ETS CII respiration was significantly reduced 

in both HFAT and HPRO (Figure 5C) despite no differences in absolute O2k values. The reduction 

in percentage change of CI + ETFp and CI + CII + ETFp respiration was greater in HFAT than 

HPRO following 100SS (P = 0.024, 0.019, respectively). There were no significant differences in 

skeletal muscle CS activity across time or between diets (~ 20 mol·h·kg-1) (Figure 5D).   

 

Immunoblot analyses 

Total protein contents of citrate synthase (Figure 5E) and OXPHOS complexes I-V (Figure 6A-F) 

were not different between HFAT and HPRO at any time point during intervention. OXPHOS 

complex III showed a trend towards a main effect for time (P = 0.073) with a decrease from pre- 

to post HFAT diet. There was a significant interaction for FAT/CD36 protein content (P < 0.001) 

from pre-diet to after one day of high-CHO diet (Figure 7A). FAT/CD36 protein content was 

higher pre- and post-diet and pre- and post-100SS in HFAT compared to HPRO. There were no 

differences in total CPT1a from pre- to post high-CHO diet in either HFAT or HPRO (Figure 7B). 

No main effects were found for AMPK Thr172 phosphorylation levels relative to total AMPK, 

although a trend towards a main effect of time was observed (P = 0.06) with an increase following 

HFAT (Figure 7C). There was an effect of time for ACC Ser79 phosphorylation relative to total 

ACC (P = 0.015). ACC Ser79 relative to total ACC was greater in HFAT following 100SS 
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compared to post HFAT (Figure 7D). There were no differences in mTOR Ser2448 

phosphorylation relative to total mTOR pre-diet compared to after one day of high-CHO (Figure 

7E). There was a significant effect of time for RPS6 Ser235/236 phosphorylation relative to total 

RPS6 (P < 0.05). RPS6 Ser235/236 phosphorylation increased following 100SS in HPRO 

compared to pre- and post-diet (Figure 7F).  RPS6 Ser235/236 phosphorylation was also higher 

post-exercise in HPRO compared to HFAT (P = 0.034). 

 

Discussion 

This is the first study to manipulate dietary fat and protein content while simultaneously 

‘clamping’ dietary CHO intake during a short-term period of intense exercise training in well-

trained humans. Such an experimental design is essential in an effort to pinpoint potential 

mechanisms underlying the high rates of fat oxidation reported following short-term adaptation to 

fat-rich diets, which persist even after one day of glycogen restoration with high-CHO intake [2, 

7] and/or high exogenous CHO availability [4, 5, 7]. The results of the present study provide novel 

insights into the mechanisms governing patterns of substrate oxidation in response to diet-exercise 

interactions. We report that compared to an isoenergetic high-protein diet, five days’ adaptation to 

a high-fat diet results in greater whole-body rates of fat oxidation during submaximal cycling and 

impairments in mitochondrial respiration. 

 

A series of independent studies over the past two decades [2, 4, 5, 7, 8] have compared 

high-fat versus high-CHO diets and shown that short-term (< 7 days) high-fat diets result in peak 

rates of whole-body fat oxidation of ~ 1 g·min-1 (~ 50 umol·kg·min-1), values that are typically 

two-fold greater than after isoenergetic high-CHO diets [2, 7]. The rates of fat oxidation in the 

present investigation (1.2 g·min-1) after an identical period of a fat-rich diet were similar to those 

reported previously. However, the first novel finding from the present study was that rates of fat 

oxidation were 33% greater than after five days of a low-CHO, HPRO diet (0.8 g·min-1). We report 

an increase in post-exercise plasma FFA concentration from pre-diet interventions in HFAT and 

HPRO, which likely contributed to the increased rates of fat oxidation after both conditions. 

However, the higher rates of fat oxidation in HFAT compared to HPRO are likely associated with 

altered rates of whole body lipolysis and subsequent storage of triglycerides [6, 16, 17]. Previous 
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work has shown higher rates of whole-body lipolysis, determined by elevated glycerol 

concentration, and this increase was associated with elevated intramuscular triglyceride (IMTG) 

concentration following fat-adaptation [6, 18]. Limited muscle biopsy sample did not permit 

IMTG measurements in the current study. It is also known that low-CHO availability reduces 

circulating insulin concentrations which could increase rates of whole-body fat oxidation. 

Although CHO intake was identical in both dietary conditions, it is likely that a proportion of 

protein in HPRO was converted to glucose via gluconeogenesis [19], which may explain slightly 

higher muscle glycogen concentrations post-diet in HPRO compared to HFAT. Higher availability 

of muscle glycogen likely contributes to lower rates of whole-body fat oxidation in HPRO 

compared to HFAT. Accordingly, the higher rates of fat oxidation measured after HFAT are likely 

driven by higher fat rather than higher CHO availability. 

 

Despite CHO intake being ‘clamped’ in both dietary conditions, rates of CHO oxidation 

were lower following five days HFAT compared to HPRO. Rates of CHO oxidation were reduced 

by 50% (3 g·min -1 to 1.5 g·min-1) following HFAT compared to a 25% decline (2.3 g·min-1) 

following HPRO. The greater oxidation of CHO-based fuels may be explained by the slightly 

higher muscle glycogen concentration post-diet in HPRO compared to HFAT, which has 

previously been shown to increase reliance on CHO-based fuels during subsequent exercise [20]. 

Without a protein tracer in the current study, we are unable to detect the proportion of protein that 

is being converted to glucose. Following a 6-day high-fat diet (63% EI from fat), Peters [21] 

observed a decrease in the active form of the rate limiting enzyme in CHO metabolism, pyruvate 

dehydrogenase (PDH), and consequently a reduction in rates of CHO oxidation during exercise, 

which was not observed following a moderate CHO diet (52% EI CHO). Therefore, a decrease in 

PDH activity may contribute towards the observed reduction in whole-body rates of CHO 

oxidation in the present study [5]; however, limitations in muscle biopsy sample did not permit 

assessment of PDH activity. 

 

To further determine potential mechanisms for reduced CHO oxidation, we assessed 

skeletal muscle mitochondrial respiration to measure dietary effects on substrate flux and 

utilization. We found that respiration supported by octanoylcarnitine and pyruvate (CI + ETFp) 
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was significantly reduced after five days of HFAT, but not HPRO, when CIII and/or CIV are 

operating at or near maximal activity. In our interpretations of mitochondrial respiration data 

obtained using the Oroboros O2k SUIT protocol, it is important to note that supra-physiological 

mitochondrial substrate concentrations and a sequential addition protocol are used. Therefore, 

interpretations of substrate-specific effects on respiration must be made with caution because this 

protocol does not allow us to pinpoint whether the addition of a particular substrate alone or any 

previously added substrate in the protocol are responsible for the effect. Nonetheless, it was 

surprising that FFA (i.e. octanoylcarnitine)-driven mitochondrial respiration (ETF leak) was not 

subsequently increased with HFAT. Decreased respiration observed following the addition of 

octanoylcarnitine and pyruvate is in line with previous studies reporting high-fat diets reduce the 

amount of PDH (in its active form [PDHa]) and PDHa activity at rest but not after a moderate 

CHO diet [21]. Alterations in PDH activity have further been identified as a mechanism underlying 

regulation of metabolic flexibility in isolated rodent skeletal muscle mitochondria in response to 

altered substrate availability induced by high-fat feeding [22]. In addition, the reduction in 

respiration after five days of HFAT persisted after uncoupling (ETS CI + CII + ETF and ETS CII), 

suggesting that the functional reductions in respiration occurred either at the level of CI/CII or 

downstream at CIII/CIV but not at CV (ATP-synthase). In line with the observed reductions in 

uncoupled respiration, Skovbro [23] observed that ETFp and uncoupled respiration were decreased 

following a longer high-fat feeding period (i.e. 16 days; 55-60% fat) compared to a moderate CHO 

diet (i.e. 55-60% CHO) [23]. The mitochondrial effects of HFAT in the present study may have 

been more pronounced following a longer dietary intervention period. Additionally, the type of the 

dietary fat intake has previously shown to affect mitochondrial function and morphology [24]. 

Lionetti [24] has shown that high saturated fat intake was associated with greater mitochondrial 

dysfunction compared to unsaturated fat in rodents. The current study provided a 65% fat diet, 

which was made up of 55% saturated fat, and whether the reductions in mitochondrial respiration 

would be observed with a different dietary fat composition requires further investigation. As no 

changes in mitochondrial respiration were observed following five days of HPRO, this suggests 

that the primary driver of these skeletal muscle adaptations is high dietary fat availability. Based 

on the evidence in the present study, the biochemical explanation of why HFAT results in increased 

whole body fat oxidation despite reduced skeletal muscle mitochondrial respiration is inconclusive 

and warrants future investigation of mitochondria in other tissues. Given that potential HFAT-
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induced changes in the delivery and transport of fatty acids across sarcolemma are removed in the 

ex vivo analysis of mitochondrial respiration, these additional variables may also contribute to the 

observed increases in fat oxidation at the whole body level.  

 

Although we observed changes in respiration following the addition of octanoylcarnitine 

and pyruvate and uncoupled respiration with HFAT, we detected no differences in skeletal muscle 

protein content of the five mitochondrial OXPHOS complexes after either dietary condition. 

Additionally, neither citrate synthase protein content nor maximal activity was changed. Given 

that changes in complex I and citrate synthase activity have strong associations with mitochondrial 

content (i.e. volume and/or density), this suggests that content is not affected by either short-term 

HFAT or HPRO availability [25]. Instead, we speculate that changes in enzyme activities 

regulating mitochondrial substrate flux likely contribute towards the reduced respiration observed 

after short-term adaptation to HFAT.  

 

To determine alternative enzymes and signaling pathways impacted by the HFAT and 

HPRO, we measured putative transporters with roles in skeletal muscle FA uptake, and two energy 

sensing metabolic signaling pathways, AMPK and mTOR. There was a 12% increase in 

FAT/CD36 protein observed following HFAT, suggesting potential increased capacity for 

sarcolemmal and/or mitochondrial membrane FA uptake, although this increase in FAT/CD36 did 

not reach statistical significance. No change in mitochondrial CPT1 was observed following five 

days of HFAT or HPRO. These findings are in agreement with previous work which reported that 

a high-fat diet together with an intensive training program resulted in significantly greater (i.e. 

17% increase) protein abundance of FAT/CD36 without change in gene expression of CPT1 [16]. 

Low CHO diets together with periods of endurance training have previously been shown to 

increase AMPK activation and signaling to its downstream substrate ACC [26]. However, no 

significant change was reported in AMPK Thr172 phosphorylation relative to total AMPK, or its 

substrate ACC Ser79 phosphorylation relative to total ACC following the dietary interventions. 

No differences post-diet were found in mTOR Ser2448 phosphorylation relative to total mTOR 

and phosphorylation of its substrate RPS6 Ser235/236 relative to total RPS6 in HFAT or HPRO. 

Together these findings suggest that FA transporter abundance and activation of these energy-
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sensing pathways were unaffected by the two diet interventions, perhaps as a result of the high 

training status of the cyclists and the ability to cope with the demand of the dietary overload. 

Further investigation is required to uncover alternative protein signaling pathways associated with 

changes in substrate metabolism that may underpin the dietary effects on skeletal muscle 

mitochondrial respiration.  

 

After CHO restoration strategies (e.g. 1 day of high-CHO diet, a pre-exercise CHO-rich 

breakfast and CHO intake during exercise) muscle glycogen increased in both HFAT and HPRO, 

but did not reach pre-intervention values in HFAT. This may be a result of the brief (24 h) CHO 

restoration period compared to five days of high CHO intake prior to baseline measures. Rates of 

fat oxidation and CHO oxidation returned towards baseline values during 100 min SS cycling in 

both HFAT and HPRO, and were similar to the results seen in the pre-diet protocol. However, the 

CHO restoration and exercise feeding protocols involved aggressive strategies to promote high 

CHO availability from both exogenous and endogenous sources, compared with overnight fasted 

and water fed conditions on the pre-diet protocol. Therefore, rates of fat oxidation were higher and 

CHO oxidation lower than expected during the 100 min steady state protocol on day 7, particularly 

with HFAT.  Indeed, although the present study did not include a direct comparison to a chronic 

high-CHO diet as in our prior investigations [2, 4, 7], our results are consistent with previous 

observations that muscle adaptation during chronic periods of a low-CHO diet, especially in the 

case of the HFAT, is sufficiently robust to persist despite the restoration of CHO [2, 4, 7].  For 

example, CHO oxidation rates following HFAT or HPRO and CHO restoration in the current 

study, were lower than those reported in previous studies following a controlled (chronic high-

CHO) diet (200-220 umol·kg·min-1 vs. 250-300 umol·kg·min-1) [7]. Muscle glycogen utilization 

in the current study was ~100 mmol·kg DM lower than those previously reported with HFAT 

intervention [2] and was slightly higher in HPRO compared to HFAT. This difference may be 

related to higher pre-exercise muscle glycogen in HPRO. Overall, this reduced capacity for CHO 

oxidation in HFAT, despite the availability of exogenous and endogenous stores was previously 

associated with persistent downregulation of PDH activity [5].  

Whole body rates of fat oxidation after CHO restoration remained slightly higher after 

HFAT compared to HPRO, but this resulted in only a small difference in the total fat oxidized 
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during 100 min SS cycling (~ 15 g over 100 min).  No difference was measured for FFA 

concentrations between the two dietary conditions, although plasma glycerol concentrations were 

greater during exercise following HFAT compared to HPRO. The elevated glycerol concentration 

following HFAT indicates a greater rate of whole-body lipolysis which could be associated with 

greater IMTG utilization and/or liberation of FFA into the blood, contributing to the minor 

variation in rates of whole-body fat oxidation between HFAT and HPRO.  Corresponding to total 

fat utilization, there were only minor differences in total CHO oxidized between HFAT and HPRO 

(~ 30 g) during 100 min of exercise.  

 

Although one day of high CHO availability in the current study failed to fully reverse the 

differences in whole-body rates of substrate oxidation, it was sufficient to restore the decreased 

mitochondrial respiration (CI + ETFp) from HFAT, back to pre-diet values. This indicates that 

there may be an additional underlying mechanism regulating changes in substrate oxidation (i.e. 

downregulating CHO oxidation) and mitochondrial respiration. As the current study precluded 

investigation of a high-CHO trial due to the high number of biopsies that would have been 

required, we are unable to speculate whether differences in mitochondrial respiration would have 

been observed between the three dietary conditions. We also reported greater post-exercise 

reductions in CI + ETFp and CI + CII + ETFp respiration in HFAT than HPRO and this was not 

attributable to reductions to citrate synthase protein or activity. These effects of exercise following 

the HFAT may be attributable to mitochondrial adaptations at the cessation of exercise that impact 

ETC, including changes in signaling, mitochondrial membrane dynamics and/or buffering of 

reactive oxygen species. It should also be noted that there could have been damage to myofibers 

during separation and permeabilization. This could limit  the interpretation of the respiratory values 

prior to the addition of cytochrome C in the SUIT protocol since it occasionally increased O2 flux 

more than 10% above CI+CII+ETFp (Table 2). Despite this, we are confident that the data prior 

to the addition of cytochrome C is still meaningful since the effect was consistent across all trials. 

To determine the effect of potential shifts in substrate utilization on exercise performance, previous 

studies have included a cycling TT after a bout of steady state exercise, following the high-CHO 

intake.  Burke [2] reported similar TT performance between high-fat and high-CHO trials and in 

the present study we did not detect any difference in TT performance between HFAT and HPRO 
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after one day of CHO restoration; however, we cannot compare this performance to a high-CHO 

condition and therefore the shifts in substrate utilization require further investigation. 

 

In conclusion, the results of the present investigation demonstrate that whole-body rates of 

fat oxidation increase to a greater extent in trained humans following high dietary fat intake 

compared to a high-protein diet, with CHO ‘clamped’ at 20% of energy intake. High dietary fat 

also reduced mitochondrial respiration supported by octanoylcarnitine and pyruvate as well as 

uncoupled respiration. These reductions in mitochondrial 'function' may be compensatory, and not 

solely 'driving' fuel regulation under the conditions of our investigation. Further mechanistic 

investigation into potential underlying diet-induced differences in mitochondrial membrane 

dynamics, mitochondrial complex subunits and additional enzymes regulating mitochondrial 

substrate flux is warranted.  The acute but aggressive restoration of endogenous and exogenous 

CHO availability was unable to completely restore normal rates of substrate oxidation but was able 

to reverse the fat-induced disruption of mitochondrial respiration. Together these findings 

demonstrate the impact a high-fat diet has on metabolic flexibility and skeletal muscle 

mitochondrial respiration in trained cyclists.   
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Figure Legends 

Figure 1: An overview of the study design showing the five days high-CHO diet followed by five 

days high-fat or high-protein diet (D1 to D7) with one day of a high-CHO diet. CHO, carbohydrate; 

HIIT, high-intensity interval training; TT, time-trial.  

Figure 2: Resting muscle glycogen levels following five days high-CHO (Pre-diet D1), five days 

high-fat or high-protein (Post-diet D6), one day of a high-CHO diet (D7 Pre Ex) and following 

100 min SS cycling at 63% PPO (D7 Post Ex) (A) and muscle glycogen percent change from Pre-

diet (D1) to Post-diet (D6), from Post-diet (D6) to D7 Pre Ex and from D7 Pre Ex to D7 Post Ex 

(B) . Values are mean ± SD for n=6. a HFAT different to Pre-diet (D1) within condition; b HPRO 

different to Pre-diet (D1) within condition; c HFAT different to D7 Pre Ex and D7 Post Ex within 

condition; d HPRO different to D7 Pre Ex and D7 Post Ex within condition.  

Figure 3: RER (A) and rates of CHO (B) and fat oxidation (C) following five days high CHO 

(Baseline and Pre-diet D1), five days high-fat or high-protein (Post-diet D6) during 20 min cycling 

and following one day of a high-CHO diet (D720-100) during 100 min SS cycling at 63% PPO. 

Values are mean ± SD. # HFAT different to HPRO at time point; e HFAT different to Baseline 

within condition; f HPRO different to Baseline within condition; a HFAT different to Pre-diet 

(D1); b HPRO different to Pre-diet (D1) within condition.   

Figure 4: Effect of five days high-fat diet or high-protein and one day of a high-CHO diet on 

plasma glycerol (A), FFA (B), βHB (C), blood glucose (D), plasma insulin (E) and blood lactate 

concentration (F) before and during 100 min cycling at 63% PPO. Values are mean ± SD. # HFAT 

different to HPRO at time point; g HFAT different to T=0 within condition; h HPRO different to 

T=0 within condition; $ different to all time points within each condition. 

Figure 5: Effect of five days high-fat or high-protein diet (A), one day of a high-CHO diet (B), 

100 min SS cycling at 63% PPO (C) on mitochondrial respiration using a sequential addition 

protocol. Respiratory states are supported by single or convergent electron input via complex I 

(CI), complex II  (CII) and/or electron transfer flavoprotein (ETF) under non-phosphorylating 

(Leak) conditions, state-3 oxidative phosphorylation in the presence of ADP (indicated by “p”), or 

with an uncoupler (FCCP) to assess maximal electron transport system (ETS) activity. Values are 

mean ± SD as a fold change from respective day indicated in each figure panel. Differences in 
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respiratory fluxes were not due to altered overall mitochondrial content as indicated by citrate 

synthase activity (D) or protein content (E). * O2 flux per mass different from Pre-Diet D1 (A); 

Post-Diet D6 (B); Pre-Ex D7 (C) of the respective high-fat or high-protein diet. # HFAT different 

to HPRO condition at time point. 

Figure 6: Skeletal muscle protein content (A-E) and representative images (F) of five OXPHOS 

complexes following five days high-CHO diet, five days high-fat or high-protein diet, one day of 

a high-CHO diet and following 100 min SS cycling at 63% PPO . Values are mean ±SD as a fold 

change relative to resting pre-diet D1 values.  

Figure 7: Skeletal muscle protein content and representative blots of fat (CD36, CPT1a) (A & B), 

fat/CHO (p- Thr172 AMPK/Total, p-Ser79 ACC/Total) (C & D) and protein regulatory signaling 

pathways (p-Ser2448 mTOR/Total, p-Ser235/236 RPS6/Total) (E & F) following five days high-

CHO, five days high-fat or high-protein diet, one day of a high-CHO diet and following 100 min 

SS cycling. Values are mean ± SD as a fold change relative to resting pre-diet D1 values. # HFAT 

different to HPRO at time point; i HFAT different to D7 Post Ex within condition, j HPRO 

different to D7 Post Ex within condition. 
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Tables 

Table 1: Macronutrient content of the high-carbohydrate (HCHO), high-fat (HFAT) and high-protein (HPRO) diets consumed. Total 

Energy Intake (TEI). 

 

  

  Energy  Carbohydrate Protein Fat 

  MJ MJ/kg Total (g) g/kg % TEI Total (g) g/kg %TEI Total (g) g/kg % TEI 

HCHO 17.0 ± 1.4 0.22 ± 0.0 769.4 ± 63.4 10.0 ± 0.1 73.0 ± 0.5 140.5 ± 11.8 1.8 ± 0.0 14.2 ± 0.4 58.2 ± 6.3 0.8 ± 0.0 12.8 ± 0.8 

HFAT 17.0 ± 1.5 0.22 ± 0.0 196.1 ± 19.7 2.5 ± 0.1 18.3 ± 0.7 138.7 ± 10.7 1.8 ± 0.1 13.7 ± 0.4 315.5 ± 26.8 4.1 ± 0.1 68.0 ± 0.6 

HPRO 17.0 ± 1.5 0.22 ± 0.0 200.3 ± 19.5 2.6 ± 0.1 18.5 ± 1.0 679.8 ± 66.7 8.8 ± 0.5 66.7 ± 0.9 69.3 ± 7.4 0.9 ±  0.1 14.8 ± 0.7 
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Table 2: Effects of five days high-fat or high-protein diet, one day of a high-CHO diet and 100 min SS cycling at 63% PPO on 
mitochondrial respiration. Respiratory states are supported by single or convergent electron input via complex I (CI), complex II  (CII) 
and/or electron transfer flavoprotein (ETF) under non-phosphorylating (Leak) conditions, state-3 oxidative phosphorylation in the 
presence of ADP (indicated by “p”), or with an uncoupler (FCCP) to assess maximal electron transport system (ETS) activity. Values 
are mean ± SD. a HFAT different to D7 Post Ex; b HPRO different to D7 Post Ex within condition;  c HFAT different to D6. 

  
O2k respiration measure; O2 flux per mass (pmol/s/mg)); mean ± SD) 

 ETF Leak ETFp CI + ETFp 
CI + CII + 

ETFp 
cyt-c test ETS CI + CII + 

ETF 
ETS CII 

Substrate/Uncoupler/ 
Inhibitor  
 

malate, 
octanoylcarnitine 

ADP pyruvate succinate cytochrome c FCCP Rotenone 

HFAT Pre-Diet (D1) 20.2 ± 5.9 43.8 ± 5.8 62.5 ± 11.2 
a
 116.8 ± 22.6

 a c
 136.6 ± 29.5 

a
 
c
 144.4 ± 32.2 

a
 
c
 92.5 ± 19.0

 a
 
c
 

HPRO Pre-Diet (D1) 17.5 ± 4.1 47.7 ± 5.6 66.1 ± 15.2 125.0 ± 31.2
 b
 147.1 ± 37.0

 b
 154.9 ± 37.3 

b
 100.6 ± 30.3

 b
 

HFAT Post-Diet (D6) 21.0 ± 4.9 42.8 ± 7.0 55.7 ± 13.5 103.5 ± 27.2
 a
 119.1 ± 39.2

 a
 124.0 ± 38.4 77.2 ± 30.5

 a
 

HPRO Post-Diet (D6) 19.1 ± 3.8 50.7 ± 4.5 68.4 ± 15.4 
b
 122.0 ± 26.9

 b
 140.3 ± 34.4

 b
 148.2 ± 37.2

 b
 91.3 ± 21.5

 b
 

HFAT D7 Pre Ex 24.6 ± 5.7 52.4 ± 7.2 64.3 ± 13.9
 a
 120.1 ± 29.0

 a
 141.1 ± 39.7 

a
 145.9 ± 38.8

 a
 92.9 ± 27.3

 a
 

HPRO D7 Pre Ex 18.7 ± 5.9 49.8 ± 12.8 64.8 ± 20.3 120.0 ± 36.9
 b
 142.9 ± 47.3

 b
 151.9 ± 51.0 

b
 97.3 ± 33.6

 b
 

HFAT D7 Post Ex 24.6 ± 4.9 44.7 ± 9.8 47.6 ± 13.8 84.0 ± 23.8 99.0 ± 26.7 108.1 ± 31.0 60.8 ± 20.5 

HPRO D7 Post Ex 21.7 ± 5.9 47.9 ± 11.3 56.8 ± 18.3 101.1 ± 30.2 105.4 ± 35.4 115.0 ± 37.4 65.4 ± 27.0 
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