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 

Abstract— SQL Injection Attacks are one of the most common 

methods behind data security breaches. Previous research has 

attempted to produce viable detection solutions in order to filter 

SQL Injection Attacks from regular queries. Unfortunately it has 

proven to be a challenging problem with many solutions suffering 

from disadvantages such as being unable to process in real time 

as a preventative solution, a lack of adaptability to differing types 

of attack and the requirement for access to difficult-to-obtain 

information about the source application. This paper presents a 

novel solution of classifying SQL queries purely on the features 

of the initial query string. A Gap-Weighted String Subsequence 

Kernel algorithm is implemented to identify subsequences of 

shared characters between query strings for the output of a 

similarity metric. Finally a Support Vector Machine is trained on 

the similarity metrics between known query strings which are 

then used to classify unknown test queries. By gathering all 

feature data from the query strings, additional information from 

the source application is not required. The probabilistic nature of 

the learned models allows the solution to adapt to new threats 

whilst in operation. The proposed solution is evaluated using a 

number of test datasets derived from the Amnesia testbed 

datasets. The demonstration software achieved 97.07% accuracy 

for Select type queries and 92.48% accuracy for Insert type 

queries. This limited success rate is due to unsanitised quotation 

marks within legitimate inputs confusing the feature extraction. 

Using a test dataset that denies legitimate queries the use of 

unsanitised quotation marks, the Select and Insert query 

accuracy rose.  

 
Index Terms—Intrusion Detection, SQL injection attacks, data 

mining, String Subsequence Kernel, Support Vector Machine, 

Supervised Learning 

I. INTRODUCTION 

QL Injection Attacks (SQLIAs) involve the crafting of 

user inputs in order to perform actions beyond the 

intended function of a web application (Su and Wassermann, 

2006). By the identification of the input fields associated with 

the dynamic generation of queries (Lee et al., 2012; Tajpour et 

al., 2012), the adversary can probe the database data values, 

the layout of the database (known as the database Schema), 

perform remote procedures and escalate their privilege on the 

Database Management System (Halfond et al., 2006; 

Balzarotti et al., 2008). Databases often contain significant 

quantities of confidential information. As a result it can prove 

to be lucrative for malicious users of web applications to 

 
 

create queries to resolve data they are not authorized to view 

or alter. SQL Injections are one of the most serious threats to 

web applications. It is ranked number one in the Open Web 

Application Security Project (OWASP) Top Ten Application 

Security Risks in 2013 (Williams and Wichers, 2013). This is 

due to as many as 98% of web applications having at least one 

security vulnerability resulting in an increase in SQL injection 

attacks by ten percent (Trustwave, 2015). 

 Our solution to the SQLIA problem is the implementation 

of Machine Learning methods capable of detecting malicious 

queries based on information from the structure of the query 

strings learned from a training set of queries produced during 

runtime. This structural information is extracted using a Gap 

Weighted String Subsequence Kernel (GWSSK) function 

(Lodhi et al., 2002). This function computes the similarity of 

unknown query strings to preselected training query strings. A 

Support Vector Machine (SVM) classifier uses these similarity 

measurements to determine if the unknown query is normal or 

malicious by determining a decision boundary which 

maximizes the distance between the two classes (Cortes and 

Vapnik, 1995). Our method is a form of black box method 

(Halfond et al., 2006). 

This method does not require the re-engineering of SQL-

dependent web applications or the full disclosure of their 

source code. This is a flaw of many previous methods 

(Halfond et al., 2006). There are also some solutions that are 

easily circumvented by attackers constructing novel attacks 

(Shahriar et al., 2013). As our method uses a probabilistic 

classifier in the form of the SVM classifier, unknown queries 

with query structures which deviate from the training dataset 

are still likely to be determined as malicious due to the 

extracted similarity information. Our solution does have two 

clear limitations. Our method must be placed between the web 

application and the database. This introduces hardware 

overhead required to operate the detection and prevention 

solution (Moosa et al., 2010; Zhang et al., 2011; Pinzón et al., 

2013). Additionally, the detection algorithms are never going 

to have perfect detection accuracy and therefore issues related 

to false negatives which can inflict database damage and false 

positives that can prevent normal operation of a database must 

be mitigated (Makiov et al., 2014). 

Our key contribution is the demonstration of the viability of 

the GWSSK and SVM algorithms in the high-performance 

classification of SQL query strings during real-time operation 
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of a database application. This is shown through classification 

accuracy and time complexity experiments on a dataset of 

SQL queries exhibiting a wide-range of normal and malicious 

features. The novel GWSSK method in the automatic 

extraction of informative features of SQL queries allows for 

the elimination of biases produced by manually created 

features potentially improving the accuracy of the SQLIA 

classification task. 

The rest of this paper is structured as follows. In Section 2, 

the descriptions of related works are presented. In Section 3, 

the framework of the proposed solution is discussed and the 

contribution of this paper is clarified. In Section 4, the feature 

extraction at the core of this solution is defined as the main 

contribution of this research. In Section 5, the experimental 

results of the demonstration software for the proposed method 

are evaluated. These results are then discussed in chapter 6. 

The final conclusions and proposals of future work are 

provided within chapter 7.  

II. RELATED WORKS 

Research into securing web applications from SQL 

Injection Attacks has proposed two differing approaches 

(Halfond et al., 2006). The first approach involves the 

rewriting of application source code within the web 

application and possibly, stored procedures within the 

database to conduct sufficient input validation. The correct 

application of these techniques can render a web application 

secure to injection commands but it comes with a major 

disadvantage. Completed web applications require 

redevelopment to incorporate the defensive procedures. 

However, this is the best way to protect a system from attacks 

if the system is currently in development and not yet complete. 

The costs associated with the changing of software vastly 

increase later into the development cycle. 

NoTamper is a black-box testing method designed to 

determine vulnerabilities in the server-side code. This allows 

vulnerabilities to be patched although with a severe cost if 

vulnerabilities are not detected (Bisht et al., 2010a). 

AMNESIA is another vulnerability exploration method that 

combines a static analysis of the web application code with 

runtime monitoring (Halfond and Orso, 2005). SQLGuard was 

proposed as method of analyzing query parse trees both before 

and after user-input inclusion. This allows the execution of the 

user-input to be explored (Buehrer at al., 2005). CANDID is 

another source code analysis method that retrofits the source 

code with additional candidate queries. The runtime queries 

can then be compared to these to determine any illegal 

executions (Bisht et al., 2010b). 

The second approach involves the deployment of additional 

software designed to screen the queries generated by a web 

application before their execution on the database. These 

software solutions utilize a wide range of techniques and are 

often significantly less expensive to deploy into an active 

system. Unfortunately, they often suffer from the disadvantage 

of not being a complete solution to the problem. Many 

solutions are unable to detect every type of SQL Injection 

Attack leaving an avenue for attackers to exploit. They can 

also be prone to false positive and false negative events where 

the detection algorithms identify legitimate queries as 

malicious and block them or allowing malicious queries 

through resulting in a security breach. 

SQLProb is a proxy-based architecture to prevent SQL 

Injection Attacks (Liu et al., 2009). The solution defines a list 

of queries produced by a web application. It processes all 

possible queries produced by the typical operation of the web 

application. These queries are then collected by the proxy 

software to produce a sample set of SQL queries from the web 

application. The proxy filter then detects inbound queries and 

intercepts them. An enhanced Needleman-Wunsch algorithm 

(Needleman and Wunsch, 1970) originally designed for the 

alignment of string-based genetic data is used to determine the 

user input within the full query string. The algorithm 

determines what substring(s) within the query string to remove 

to gain the closest comparison to the sample queries. This 

removed data is the input string(s) within the query string. 

Upon the determination of the user input, the query string is 

then used to generate a parse tree. A depth-first-search is then 

conducted to identify the leaf nodes. If a non-leaf node is 

discovered that has descendent leaf nodes that are only 

sourced from the user input then the query string that 

generated the parse tree is malicious. The malicious queries 

are then rejected by the proxy software leaving only normal 

queries to be relayed to the database. 

A novel method using the Data-Mining of database logs 

was proposed to detect SQLIAs (Kim and Lee, 2014). The 

database log files were used to identify queries executing on 

the database. This file contains information on the query string 

and the operations performed by the query execution. The 

solution first generates a query tree (Buehrer et al., 2005). 

These query trees were used to generate feature vectors using 

feature extraction. A set of rules defined by the solution 

developers transform the string and numerical data from the 

query tree into a multidimensional numerical vector array. A 

training dataset of these feature vectors containing samples of 

normal and malicious queries was used to train a SVM to 

generate a decision rule for the testing of future queries. 

Kernel functions were then used to allow the solution to 

determine a non-linear decision rule. Newly logged queries are 

transformed into query trees from their associated log, 

composed into feature vectors and compared by the SVM to 

the decision rule obtained during the training phase. This 

solution produced very high accuracy of 99.9% for select and 

insert queries and 99.6% for stored procedures. The primary 

disadvantage is that this solution can only be used for attack 

detection and not prevention. This is due to the simple fact 

that the query logs that the testing criteria are determined from 

are only produced when a query is executed. 

The combination of static and dynamic analysis techniques 

were used as the basis of a preventative solution (Lee et al., 

2011). In this approach, the source code of a web application 

is inspected to identify the possible SQL queries. The queries 

are collected prior to the insertion of user input creating a 

control query. The solution then dynamically monitors for 

queries being generated at runtime. These queries are then 
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processed by an attribute removal algorithm that removes all 

data from the query that is contained within quotes as these 

attributes will have no basis on the syntactic form of the 

query. This reduced query is then compared using an XOR 

logic operation to the control query gathered during the static 

analysis. If this operation returns a result indicating that the 

two queries are different, the user input must have some form 

of injection input and it is discarded. This approach is accurate 

and has very low time complexity as the XOR operation is 

extremely light on processing. Unfortunately it requires a 

static analysis which must be accomplished by either the 

analysis of the web application source code or through the use 

of a proxy server between the user and the web server. 

A framework, using a machine learning approach, 

implements an Intrusion Detection System that learns the 

patterns of query strings (Valeur et al., 2005). It uses a 

supervised learning training dataset to produce training 

models. First the strings are parsed into syntactic trees for 

feature extraction. Feature vectors are used to produce a model 

of the parse trees of typical legitimate queries. Then the 

training set queries are compared to these models and an 

anomaly score is determined based on how much the training 

set queries differ from the models. The solution is then able to 

operate in a detection phase by intercepting new query strings, 

extracting their features and comparing them to the models to 

determine the queries anomaly score. If this score is greater 

than the maximum anomaly score from the training phase, the 

query is classified as an attack query and logged. The 

approach proved to be capable of detecting queries that 

deviated from the normal template due to the injection of 

commands with a high rate of confidence. This approach is, 

however, dependent on being supplied with a complete set of 

legitimate queries during the training phase. Failure to do so 

will result in false positives as legitimate queries not used for 

training will have an increased anomaly score. It does mean 

that the training set need only describe legitimate queries as all 

those that differ from these queries are rejected as having high 

anomaly scores. DoubleGuard is an intrusion detection system 

that implements multitier detection. It models the network 

behavior between the front-end web application and the back-

end database as well as any intermediate servers. This allows 

the determination of attacks in the event an attacker bypasses 

segments of the pipeline (Le et al., 2011). 

Machine learning solutions have become a popular method 

for SQL injection attack detection as they allow a probabilistic 

representation of the problem to be deployed. This strengthens 

the methods against novel attacks. A neural network solution 

trained on normal and malicious HTTP requests can be used to 

classify these requests although the solution required separate 

instances for each website on shared hosts (Moosa et al., 

2010). SQLiGoT represents SQL queries as a collection of 

token graphs and uses SVMs to detect attacks at the database 

firewall layer (Kar et al., 2016). This solution does not require 

multiple instances and is capable of protecting multiple web 

applications simultaneously. Multiagent systems have been 

used to produce an intrusion detection system to detect SQL 

Injection attacks. idMAS-SQL is an architecture that employs 

a number of algorithms to classify suspicious queries through 

the use of Machine Learning classifiers including SVM and 

artificial neural networks (Pinzón et al., 2013). 

Our framework also employs machine learning for 

classifying query requests but through the use of string kernels 

(Lodhi et al., 2002), we replace the manual engineering of 

attack features present in other works and instead allow our 

machine learning system to determine its own solution based 

on a training set of known queries. 

III. SQLIA DETECTION FRAMEWORK 

Whilst Machine Learning solutions have previously been 

developed for the classification of SQLIAs, they are all 

dependent on features carefully designed for the task. This 

design task, named Feature Engineering, is a powerful method 

for crafting highly informative mathematical representations 

of the query data and is almost ubiquitous in Machine 

Learning tasks. Despite its wide usage, this method can 

introduce biases into the solution due to the manual 

intervention such a task requires. Our method replaces this 

manual design with a novel string kernel approach which 

automatically converts the input string data into a high-

dimensional mathematical form. This form would be 

impossible to utilize directly and therefore the dimensionality 

is reduced through the computation of similarity with 

landmark training strings. The classifier may then use this 

automated representation to maximize the performance for the 

given classification task, in this case the detection of SQLIAs. 

This eliminates any potential bias introduced by human-

engineered measurements. 

3.1. Design Concepts 

The first phase of the operation of the SQLIA detection 

framework is the collection of SQL statements from the web 

application. This can be accomplished by routing outbound 

messages containing the query statements to software utilizing 

the proposed solution positioned on either the same web 

server, or an additional proxy server. 

These queries are then subjected to a binary classification 

approach where the class label of the intercepted queries is 

predicted and actions performed dependent on this prediction, 

either by rejecting a malicious query or relaying a legitimate 

query to the back-end database. The prediction is performed 

by using learning models produced by the identification of 

discovered patterns within a set of pre-classified training data. 

In this framework, a Gap-Weighted String Subsequence 

Kernel function is used to compute the similarity between 

data. Feature Vectors generated from this similarity 

computation between each string from the set of training 

queries are then used to solve the binary classification problem 

by the identification of patterns in the feature vectors produced 

by the different classes of query statement. In order to place 

query statements into a form ready for the string kernel, a data 

pre-processing phase is performed were the strings are 

manipulated into forms that emphasize the important SQL 

features within the strings. 

The SVM uses a Kernel Matrix 𝑄𝑖𝑗 to perform a training 
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phase utilizing the training dataset feature vectors to generate 

a classification model by determining a decision rule that 

separates the two classes of feature vectors within a 

multidimensional feature space. Upon the production of this 

classification model, the SVM is ready to operate in a testing 

(or detecting) phase. The testing phase is able to use the 

classification model produced within the training phase to 

predict a class for an unknown feature vector produced from a 

new query statement intercepted by the solution. 

3.2. Design Architecture 

Like many Black Box solutions, this solution requires the 

introduction of specially crafted input to build up a set of 

query strings based on the input (Halfond et al., 2006). These 

query strings are then used as the basis of the production of 

decision rules to identify legitimate and attack queries. To 

accomplish this, a set of input features is produced. This set is 

composed of input strings of both normal and malicious intent. 

These inputs are then introduced to the web application by 

identification of the input fields. A string comparison 

algorithm will identify the total number of queries generated 

by the web application and link the associated input fields to 

each query template. The rest of this solution then operates on 

each individual query and new threads must be activated in 

order to process the additional queries. 

For each individual query, a set of query strings is 

constructed to determine the morphology of the query within 

the application code. Each field that was identified to be 

associated with the query in the previous section is supplied 

with either normal or malicious input. If any field is supplied 

with malicious input, the query produced from this input is 

classified as malicious. Approximately equal numbers of 

normal and malicious queries must be constructed. The input 

generator algorithm produces a set of queries based on the 

inputs from an input features set containing examples of the 

different forms of injection commands. Each query in this set 

has been classified based on the input used to generate them as 

either normal or malicious. This set of queries is the training 

set as it will be responsible for the creation of the decision 

rules for the classification of future queries during runtime 

operation. This process is equivalent to the static analysis from 

the related solutions but without the requirement of source 

code access. 

The next algorithm is designed to reduce the size of the 

complete set of possible SQL queries for a web application by 

manipulating the features of the query strings. This allows 

multiple similar strings to produce the same ‘feature string’ 

which is used for classification. The main difficulty of Black 

Box methods is describing the completeness of a query system 

with a sufficient set of allowed queries. This algorithm is 

capable of reducing the size of the complete set of possible 

queries. Therefore, the training set can be of smaller size and 

yet still be an acceptable sample set of the complete query set. 

It is important that the training set be an accepTable sample 

set to assist the machine learning algorithms in producing a 

satisfactory model. During normal operation of a web 

application the queries generated will contain differing 

attribute data values in order for users to access the data they 

require. As a result, this solution uses a modified version of 

the attribute removal algorithm introduced by a related 

solution (Lee et al., 2011). This algorithm removes substrings 

from the input data that have no effect on the syntactic 

structure of the query string. These must be removed or it is 

possible that different data values may influence the 

classification of the string which is unwanted. This algorithm 

reduces the query string into a form that emphasizes the 

syntactic features of the query. This algorithm is called the 

Feature Manipulation Algorithm within the proposed solution. 

The reduced query strings from the training set must then 

undergo a process called feature extraction. This process will 

convert the queries into mathematical feature vectors that can 

be used to produce mathematical decision boundaries for the 

production of training rules. Feature extraction was used in 

previous research using string to numerical conversion rules 

(Kim and Lee, 2014). In this solution a much more powerful 

algorithm is deployed. The Gap-Weighted String Subsequence 

Kernel Function is a multidimensional algorithm that can 

compute the similarity between two strings by identifying the 

occurrence of short sequences of characters of varying scales. 

It has been shown to be effective for text classification (Lodhi 

et al., 2002; Homoliak, 2012). This allows the computation of 

similarity within a feature space of dimensionality ∑ Σ𝑘
𝑝
𝑘=1  

where 𝛴 is the alphabet of the query strings and 𝑝 is the 

maximum length of subsequence used for the evaluation. It is 

referred to as a String Kernel as it is a kernel function that 

operates on argument strings instead of vectors already in 

mathematical form. Each reduced query string within the 

training set has its similarity value calculated with every query 

‘feature manipulated string’ within the training set including 

its own string to produce the feature vector for the query. This 

feature vector is a numerical vector of 𝑛 dimensionality and 

each value is the string compared with strings {1, … , 𝑛} from 

the training set. This represents the large feature space within 

a 𝑛 dimension operational space. When this calculation is 

performed for every query, a total of 𝑛 feature vectors are 

generated. These feature vectors can be lined up into rows to 

produce a 𝑛 × 𝑛 matrix. This is named a kernel matrix and is 

the input accepted by the SVM during the training phase. 

 
Fig. 1. A two dimensional feature space containing four vectors (two 

classed negatively, and two positively) and their associated margins. 
 

The solution then makes use of supervised machine learning 

to utilize the pre-classified training set of feature vectors to 

generate a decision boundary. The SVM was chosen for this 
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function as it is a powerful but efficient binary classifier 

(Cortes and Vapnik, 1995). Consider Figure 1 representing a 

simple two dimensional feature space containing four feature 

vectors, two positively classified and two negatively 

classified. 

Within Figure 1 there are a number of important vectors. 

The vectors 𝒙− and 𝒙+ indicate the locations of two support 

vectors, one classified negatively and one positively. The 

vector 𝒖 is an unclassified test vector. Finally, the 𝒘 vector is 

a vector normal to the separating hyperplane that describes 

this hyperplane. The two side lines represent the best fitting 

margins separating the negative support vectors and the single 

positive support vector. As the top right hand corner positive 

vector does not lie on or within the margin of the separating 

hyperplane, it is not a support vector whereas the other three 

vectors are. 

If the vector 𝒖 lies upon the positive side of the separating 

hyperplane, the inner product between 𝒘 and 𝒖 is greater than 

an undefined constant 𝑐, 𝒘 ∙ 𝒖 ≥ 𝑐. This can be converted to 

Equation 1 by defining a new constant 𝑏 where 𝑐 =  −𝑏. This 

equation becomes the first decision rule defined by the 

hyperplane.  

 

If 𝒘 ∙ 𝒖 + 𝑏 ≥ 0 then 𝒖 is a positive classified vector.     (1) 

 

This can be expanded for the vectors placed on the margins 

and outside producing equations 2 and 3.  

 

𝒘 ∙ 𝒙+ + 𝑏 ≥ 1  where 𝒙+ is a positive sample.                (2) 

 

𝒘 ∙ 𝒙− + 𝑏 ≤ −1  where 𝒙− is a negative sample.              (3) 

 

An additional variable can be introduced to simplify the 

Equations 2 and 3 into a single decision rule. Name this new 

variable 𝑦𝑖  such that 𝑦𝑖 = +1 for positive samples and 

𝑦𝑖 =  −1 for negative samples. This produces the new 

decision rule shown in Equation 4. 

 

𝒚𝒊(𝒙𝒊 ∙ 𝒘 + 𝑏)  ≥ 1     for both 𝒙+ and 𝒙−. 

𝒚𝒊(𝒙𝒊 ∙ 𝒘 + 𝑏) − 1 ≥ 0                  (4) 

 

For 𝒙𝒊 in the ‘gutter’, the limit of the margin, Equation 4 is 

equal to zero. The width of the margins can be defined as 

shown in Equation 5. 

 

(𝒙+ − 𝒙−) ∙
𝒘

||𝑤||
. 

𝒘

||𝑤||
 is the unit vector of 𝒘.                   (5) 

 

The margin can be defined independently of the individual 

vectors resulting in Equation six. 

 

WIDTH = (𝒙+ − 𝒙−) ∙
𝒘

||𝑤||
= 

2

||𝑤||
                                   (6) 

 

The best decision boundary will maximize the size of these 

margins so therefore we must maximize 2/||𝑤|| which is 

equivalent to maximizing 1/||𝑤|| which can then be 

determined as minimizing ||𝑤||. For mathematical 

convenience this is formed into Equation 7. 

 

𝑀𝐼𝑁 [
1

2
||𝑤||2]                                              (7) 

 

This operation can be accomplished through the use of 

Lagrange Multipliers. 

 

𝐿 =  
1

2
||𝑤||2 − ∑𝛼𝑖[𝒚𝒊(𝒙𝒊 ∙ 𝒘 + 𝑏) − 1]             (8) 

 

The derivatives of L must be calculated and set to zero. 

 
𝛿𝐿

𝛿𝑤
= 𝒘− ∑𝛼𝑖𝑦𝑖𝑥𝑖 = 0  

 

∴ 𝒘 =  ∑𝛼𝑖𝑦𝑖𝑥𝑖  where 𝛼𝑖 gives weighting to the training 

vector 𝒙𝑖.                       (9) 

 
𝛿𝐿

𝛿𝑏
= − ∑𝛼𝑖𝑦𝑖 = 0           ∴ ∑𝛼𝑖𝑦𝑖 = 0        (10) 

 

Using Equation 8 and substituting in Equations 9 and 10 

results in the production of Equation 11. 

 

𝐿 =  
1

2
(∑ 𝛼𝑖𝑦𝑖𝒙𝑖𝑖 )(∑ 𝛼𝑗𝑦𝑗𝒙𝑗𝑗 ) − ∑ 𝛼𝑖𝑦𝑖𝒙𝑖 ∙ (∑ 𝛼𝑗𝑦𝑗𝑥𝑗𝑗 )𝑖 −

 ∑𝛼𝑖𝑦𝑖𝑏 + ∑𝛼𝑖  

𝐿 =  ∑𝛼𝑖 − 
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝑖 ∙ 𝒙𝑗𝑗𝑖   

Maximize 𝛼                                 (11) 

 

This leads to the new decision rule ∑𝛼𝑖𝑦𝑖𝒙𝑖 ∙ 𝒖 + 𝑏 ≥ 0 

then u is positive. 

This Hard Margin Support Vector Machine is very 

inflexible. It can only create decision rules where the vectors 

are never allowed to violate the margin boundaries. This can 

lead to hyperplane overfitting and therefore an overfitting 

decision rule if any of the support vectors are outliers. A better 

approach is to use a Soft Margin Support Vector Machine. 

This approach allows vectors to violate the margins at an 

associated penalty cost. This can result in a superior decision 

rule due to better generalization of the models despite the 

possible incorrect classification of feature vectors in extreme 

cases. As any vector that manipulates the decision boundary is 

a support vector, any vectors that violate the margins are also 

support vectors. 

A new cost parameter 𝐶 is introduced. This parameter 

identifies the cost associated with the violation of the margin 

by a support vector 𝒙𝑖 by 𝜉𝑖. This modifies Equation 7 from 

the Hard Margin Support Vector Machine into Equation 12. 

 

 
1

2
𝒘𝑇

𝑤,𝑏,𝜉
𝑀𝐼𝑁 𝒘+ 𝐶 ∑ 𝜉𝑖

𝑙
𝑖=1                    

Subject to 𝑦𝑖(𝒘
𝑇𝜙(𝒙𝑖) + 𝑏)  ≥ 1 − 𝜉𝑖 where 𝜉𝑖  ≥ 0.    (12) 

 

This solution makes use of this Soft Margin Support Vector 

Machine as it allows the use of the cost parameter to produce 

better fitting models without overfitting during the training 

phase. The SVM optimization function is convex meaning that 

it will not always optimize to the global minima for the model. 

The SVM implementation used in this proposed solution also 
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deploys a grid optimization algorithm in order to determine 

the optimum value of the cost parameter. The model produced 

by the training set will then be used as the basis of classifying 

new queries based on the decision rule produced during the 

testing phase. This is accomplished by assigning either a +1 or 

-1 to the test queries 𝑦𝑖  value. Support Vector Machines are 

natively linear classifier but as the query feature vectors are 

likely not linearly separable. Kernel Functions allow feature 

vectors that are not linearly separable to be separated within 

higher dimensional space by mapping the feature vectors 

using a kernel function shown in Equation 13. 

Let ϕ(𝒙) be a transformation of space where 𝒙 ∈  ℝ𝑑, 

ϕ(𝒙) ∈  ℝ𝑓 and 𝑓 > 𝑑 where 𝑓 and 𝑑 are integers. 

We want to maximize ϕ(𝒙𝑖) ∙ ϕ(𝒙𝑗) and ϕ(𝒙𝑖) ∙ ϕ(𝒖) 

where 𝒙𝑖 and 𝒙𝑗 are the feature vectors of training set points 𝑖 

and 𝑗 1 ≤ 𝑖, 𝑗 ≤ 𝑛 where 𝑛 is the total number of training set 

points. Finally, 𝒖 is the feature vector of a test query. 

 

Propose a Kernel Function: 

𝐾(𝒙𝑖 , 𝒙𝑗) =  ϕ(𝒙𝑖) ∙ ϕ(𝒙𝑗)                            (13) 

 

The algorithm is capable of using the decision rules 

determined from this operation to classify unclassified query 

string feature vectors based on their position relative to the 

decision boundary within the feature space. The SVM 

determines a decision boundary between the normal and 

malicious query feature vectors such that the margin between 

both is maximized. This decision boundary is used to create a 

model that contains the decision rules for future classification. 

The production of this model signifies the end of the training 

phase and the solution now operates during web application 

runtime. 

During runtime, real world user input is used to generate 

queries. These queries are intercepted by the solution and are 

processed by the Feature Manipulation Algorithm that extracts 

attribute data that is not of importance to the string syntactic 

form. It is then processed by the Gap-Weighted Subsequence 

Kernel Function that generates a feature vector for the new 

test query string by computing the similarity value of the test 

query with every query string in the training set. This feature 

vector is put into a kernel matrix form producing a 1 × 𝑛 

matrix (a row vector created by a transpose of the feature 

vector). This matrix is then introduced to the SVM running in 

testing mode. The SVM uses the model generated during the 

training phase to classify the test query. The query is then 

logged to file and if the SVM classifies the query as malicious 

it is rejected. If the query is classified as normal it is then 

relayed as normal to the back-end database. Figure 26 on the 

last page of the paper demonstrates the operation of the 

SQLIA detection framework as well as path of data flow 

throughout the solution. 

IV. FEATURE EXTRACTION 

SQL queries intercepted by the solution can have a large 

range of accepTable user input. This user input is of great 

importance in defining the semantics of a query string but has 

no effect on the syntactic form of the query. Different types of 

SQL Injection attacks exhibit the same primary characteristic; 

the injected input alters the syntactic form of the query. The 

string kernel function is unable to differentiate between user 

input used to define attribute values and actual SQL 

commands isolated from the attributes that alter the function 

of the query. As a result, the attribute values must be removed 

from the strings before similarity evaluation. In a previous 

solution, the attribute values were removed in order to 

compare the syntactic form of testing query strings to the 

query template extracted by static analysis of the web 

application source code (Lee et al., 2011). The Feature 

Manipulation Algorithm present in this solution is an 

extension of this original design. 

Another reason to remove unneeded substrings from the 

query string before testing is due to the operation of the Gap-

Weighted String Subsequence Kernel function. The total set of 

characters used between two strings is defined as the alphabet 

𝛴. The time complexity of this function is dependent on this 

alphabet 𝛴 for the two strings undergoing the comparison. The 

Feature Manipulation Algorithm can remove the attribute 

values that are unneeded for the learning process and 

potentially reduce this alphabet to the reduced alphabet 𝜎 

where 𝜎 ⊆  Σ. This reduced alphabet allows the faster 

computation of the similarity between the two attribute-

removed strings. The string is read in by the function. All 

double quotation marks are converted to single quotation 

marks as these SQL operators are interchangeable. This 

simplifies the next operation, reduces the size of the alphabet 

and reduces the number of training inputs required to produce 

a full set of training queries of satisfactory sample size to the 

complete query set. The algorithm then iterates through the 

characters. Attribute values are removed by identifying 

quotations and removing characters after the quotation marks 

until the next quotation mark is discovered. This prevents 

substrings that do not affect the syntactic form of the query 

from being included in the string kernel function. 

Additionally, numerical data not located within the removed 

quoted text is identified and converted into the numerical 

placeholder ‘1’. This prevents differing numerical data from 

altering the feature set of the strings. It also simplifies the size 

of the alphabet and the number of training inputs required. 

Finally, all characters after the comment operator are 

removed. This compensates for the ability of comment 

operators to result in ‘uneven sets’ of quotation marks 

disrupting the attribute removal. 

These operations performed in string space have a powerful 

effect on the feature vectors of the query strings. By removing 

string elements that do not contain syntactic information, the 

feature vectors of queries demonstrating similar construction 

are clustered within the feature space allowing for improved 

operation of the SVM classifier. A similar operation could be 

accomplished by making use of an unsupervised clustering 

algorithm on the feature vectors of the query strings and then 

moving the vectors towards the cluster centroid but at an 

increased processing requirement. The correct clustering of 

similar syntactic query strings cannot be guaranteed using 

unsupervised learning as prior to feature manipulation the 

feature vectors of similar query strings can be spread over a 
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large area within the feature space. Figure 2 demonstrates the 

feature vector clustering effect within the feature space.  

 
Fig. 2. A demonstration of the clustering of the feature vectors of similar 

query strings in the feature space after the processing of the Feature 

Manipulation Algorithm performing all operations in string space. 

 

The Feature Manipulation Algorithm returns strings with 

their attribute values removed and with important features 

enhanced. Feature extraction must be performed on the strings 

to transform them into numerical feature vectors. Feature 

extraction uses rules to convert properties of the strings into 

multidimensional vectors where each dimension relates to a 

specific property of a string. The SVM requires every output 

string from the Feature Manipulation Algorithm to be 

transformed into feature vectors in order to generate models. 

Given an input query string, new features must be computed 

depending on the Euclidean distance proximity to ‘landmarks 

- 𝜄’ within the input space. Equation 14 demonstrates how the 

features are constructed. 

 

𝑓𝑛 = 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥, 𝜄𝑛) where 𝑥 is the input string.      (14) 

 

Appropriate ‘landmarks’ must be chosen to produce a set of 

features that can appropriately separate the legitimate and 

malicious manipulated query strings within the feature space, 

a space of dimensionality equal to the number of features 

produced by the ‘landmark’ comparisons. An acceptable 

method of assigning ‘landmark’ strings is by selecting each 

query string within the training set. This is the method utilized 

in this proposed solution and is the reason why the feature 

vectors have the same dimensionality as the number of query 

strings within the training set. Kernel Functions allow 

classified input vectors that are not linearly separable to be 

differentiated within higher dimensional space by mapping the 

inner products between the input vectors using a kernel 

function. String Kernel Functions are an alternative to explicit 

feature extraction as they allow the direct computation of the 

similarity between two strings. String Kernel Functions are 

defined as the inner products between the features of two 

argument strings. There are a number of String Kernel 

Functions that extract specific string features and use them to 

calculate the similarity value.  

The String Subsequence Kernel was published in the 

Journal of Machine Learning in 2002 (Lodhi et al., 2002; 

Rouso and Shawe-Taylor, 2005). It was used as part of a novel 

approach to classifying text documents. These kernel 

functions use sequence alignment techniques developed for 

string-based genetic sequence research as an alternative to 

feature extraction. They consider strings as a collection of 

symbol sequences. The Subsequence Kernel is based on the 

identification of a set of sub-sequences within input strings. 

This allows the calculation of the similarity between two 

strings by defining a length of substring to identify and 

producing a multidimensional feature extraction identifying 

the presence of each possible combination of the alphabet 𝛴 of 

the string over the maximum subsequence length 𝑝 and the 

total dimensionality of the string vectors is given by Equation 

15. 

 

𝐷𝐼𝑀(𝐺𝑊𝑆𝑆𝐾) =  ∑ Σ𝑘
𝑝
𝑘=0                           (15) 

 

The String Subsequence Kernel can be defined through its 

mapping of k-length substrings between two input strings. The 

value of this operation will be non-zero if any given string 

subsequence occurs in both input strings even if it is not 

contiguous in either of them. All possible characters forming 

these k-length substrings are collected into an alphabet which 

is a subset of the complete possible set of characters. Define Σ 

as a finite alphabet of characters that can be used to construct 

any string. A string is a sequence of characters from Σ 

including the empty sequence. For two strings 𝑠, 𝑡, |𝑠| is the 

length of string 𝑠 = 𝑠1, … , 𝑠|𝑠| and |𝑡| is the length of string 𝑡 

= 𝑡1, … , 𝑡|𝑡|. The string 𝑠𝑡 is defined as the concatenation of 

the two strings 𝑠 and 𝑡. Further, string 𝑠[𝑖: 𝑗] is a substring 

𝑠𝑖 … 𝑠𝑗 of 𝑠. 

  We therefore can define 𝑢 as a subsequence of 𝑠 if there 

exists indices: 

𝑖 = (𝑖1, … , 𝑖|𝑢|) with 1 ≤  𝑖1  < ⋯  <  𝑖|𝑢|  ≤ |𝑠| such that 

𝑢𝑗 = 𝑠𝑖𝑗  for 𝑗 = 1,… , |𝑢|, 𝑢 = 𝑠[𝑖] 

The length of 𝑖 in 𝑠 is 𝑖|𝑢| − 𝑖1 + 1 

Σ𝑛 is the set of all finite strings of length 𝑛 and Σ∗ is the set 

of all possible strings. This leads to Equation 16. 

 

Σ∗ = ⋃ Σ𝑛∞
𝑛=0                   (16) 

 

  Every possible subsequence of a string can be defined 

within a feature space of the dimensionality of the alphabet set 

to the power of the maximum size of subsequence. The 

dimensions of this feature space is given by 𝐹𝑛 = ℝ
Σ𝑛 . 

  Feature mapping 𝜙 for a string 𝑠 is given by defining the 𝑢 

coordinate 𝜙𝑢(𝑠) for each 𝑢 ∈  Σ𝑛. The value of this 
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coordinate is given by 𝜙𝑢(𝑠) =  ∑ 𝜆𝑙(𝑖)𝑖:𝑢=𝑠[𝑖]  for some 𝜆 ≤ 1. 

The variable 𝜆 is called the gap decay factor and determines 

the cost penalty due to non-contiguous substrings. These 

coordinates measure the number of sub-sequences in the string 

𝑠 weighting them according to their lengths. 

  The Inner Product of the feature vectors for the string 𝑠 
and 𝑡 give a sum over all common sub-sequences weighted 

according to their frequency of occurrence and lengths. This 

inner product is given by Equation 17. 

 

𝐾𝑛(𝑠, 𝑡) =  ∑ 〈𝜙𝑢(𝑠) ∙ 𝜙𝑢(𝑡)〉

𝑢∈Σ𝑛

= ∑ ∑ 𝜆𝑙(𝑖)

𝑖:𝑢=𝑠[𝑖]𝑢∈Σ𝑛

∑ 𝜆𝑙(𝑗)

𝑗:𝑢=𝑡[𝑗]

 

= ∑ ∑ ∑ 𝜆𝑙(𝑖)+ 𝑙(𝑗)

𝑗:𝑢=𝑡[𝑗]𝑖:𝑢=𝑠[𝑖]𝑢∈Σ𝑛

 

                       (17) 

 

The direct computation involves 𝑂(|Σ|𝑛) time and space 

complexity. This Equation can be used to define a recursive 

calculation for the kernel shown in Equation 18. 

 

𝐾𝑖
′(𝑠, 𝑡) =  ∑ ∑ ∑ 𝜆|𝑠|+|𝑡|− 𝑖𝑖− 𝑗𝑖+2𝑗:𝑢=𝑡[𝑗]𝑖:𝑢=𝑠[𝑖]𝑢∈Σ𝑖   

where 𝑖 = 1,… , 𝑛 − 1                (18) 

 

Equation 18 is then calculated from 1 to 𝑛 − 1 as shown in 

Equation 19 to 22. Equation 23 then uses this recursive 

calculation to compute the full subsequence kernel. 

 

   𝐾′0(𝑠, 𝑡) =  1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠, 𝑡,             (19) 

   𝐾′𝑖(𝑠, 𝑡) =  0, 𝑖𝑓 min(|𝑠|, |𝑡|) < 𝑖,          (20) 

   𝐾𝑖(𝑠, 𝑡) =  0, 𝑖𝑓 min(|𝑠|, |𝑡|) < 𝑖,              (21) 

𝐾′𝑖(𝑠𝑥, 𝑡) = 𝜆𝐾′𝑖(𝑠, 𝑡) + ∑ 𝐾′𝑖−1(𝑠, 𝑡[1: 𝑗 − 1])𝜆
|𝑡|−𝑗+2,

𝑗:𝑡𝑗=𝑥

 

𝑖 = 1,… , 𝑛 − 1,        (22)

     

𝐾𝑛(𝑠𝑥, 𝑡) = 𝐾𝑛(𝑠, 𝑡) + ∑ 𝐾′𝑛−1(𝑠, 𝑡[1: 𝑗 − 1])𝜆
2.

𝑗:𝑡𝑗=𝑥

 

                       (23)

  

This method penalizes the length of the strings as they grow 

through the use of the gap decay factor. It is important once 

this calculation has been performed to normalize the final 

similarity value. This is important as the length of two strings 

should be independent of the similarity value. Equation 24 

shows how this is performed through the introduction of a new 

embedding factor. 

 

𝐾(𝑠, 𝑡) =  〈𝜙̂(𝑠) ∙ 𝜙̂(𝑡)〉 = 〈
𝜙(𝑠)

||𝜙(𝑠)||
∙
𝜙(𝑡)

||𝜙(𝑡)||
〉 

= 
1

‖𝜙(𝑠)‖‖𝜙(𝑡)‖
〈𝜙(𝑠) ∙ 𝜙(𝑡)〉 

=
𝐾(𝑠,𝑡)

√𝐾(𝑠,𝑠)𝐾(𝑡,𝑡)
       (24) 

 

Each string kernel will form different string vectors with 

different dimensions and for this string kernel we consider a 

vector with an associated space named ‘gap-weighted string 

subsequence space. Each dimension in this string space is 

formed by one of the different string combinations determined 

by Equation 15. Consider a complete alphabet 𝛴 = 2000, the 

maximum subsequence length is 𝑝 =  𝛴. This produces a 

string vector of approximate dimensionality 106602. However, 

almost every string will contain a small subset of these 

substrings resulting in sparse string vectors with most 

dimensions evaluating to zero. The reduced alphabet, 

determined by the identification of the alphabet used by the 

query strings, string vectors will be of significantly reduced 

dimensionality of approximately 1036. These string vectors 

will still retain significant sparsity. It is within this space that 

the Gap-Weighted String Subsequence Kernel will compute 

the Euclidean distance between the input strings with identical 

string vectors returning one, dropping to zero as the distance 

between the string vectors increases towards infinity. This 

action allows the description of the impossible-to-produce 

multidimensional vector of string 𝑥 as a lower dimensional 

feature vector 𝒇 shown in Equation 25. 

 

𝒇 =  𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥, 𝜄𝑖)   where 𝑖 ∈ {1, … , 𝑛}, 𝒇 ∈ ℝ𝑛       (25) 

 

Co-occurrences of combinations of the substrings between 

the two strings result in a higher similarity evaluation. This 

entire calculation is accomplished without requiring the 

explicit definition of the two multidimensional string vectors. 

The Gap-Weighted Subsequence Kernel is similar to the 

Subsequence Kernel but it also takes gaps between each 

multidimensional feature into consideration. A gap penalty 

named the gap decay factor 𝜆 ∈ {0, … ,1} is used to define the 

reduction in similarity evaluation due to non-contiguity 

between the co-occurrences of multidimensional features 

within the two input query strings. 

Consider the two strings ‘the car parked’ and ‘at the tree’. 

The alphabet of these two strings is a set of all the characters 

within them including the space character. This alphabet is 

displayed in Equation 26. 

 

Σ =  {𝑎, 𝑐, 𝑒, ℎ, 𝑘, 𝑝, 𝑟, 𝑡, _} 
Where _ represents the space character.             (26) 

 

It is possible to determine the full set of 𝑘 =  {1, … , 𝑛} 
substrings possible from this alphabet. For 𝑘 =  1 the set is 

the same as the alphabet. For 𝑘 =  2 the set of possible 

substrings is shown in Figure 3. 
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There are Σ2 possible combinations: 

{
 
 
 
 

 
 
 
 
(𝑎, 𝑎) (𝑎, 𝑐)(𝑎, 𝑒)(𝑎, ℎ)(𝑎, 𝑘)(𝑎, 𝑝)(𝑎, 𝑟)(𝑎, 𝑡) (𝑎, _)

(𝑐, 𝑎) (𝑐, 𝑐)(𝑐, 𝑒)(𝑐, ℎ)(𝑐, 𝑘)(𝑐, 𝑝)(𝑐, 𝑟)(𝑐, 𝑡) (𝑐, _)

(𝑒, 𝑎) (𝑒, 𝑐)(𝑒, 𝑒)(𝑒, ℎ)(𝑒, 𝑘)(𝑒, 𝑝)(𝑒, 𝑟)(𝑒, 𝑡) (𝑒, _)

(ℎ, 𝑎) (ℎ, 𝑐)(ℎ, 𝑒)(ℎ, ℎ)(ℎ, 𝑘)(ℎ, 𝑝)(ℎ, 𝑟)(ℎ, 𝑡) (ℎ, _)

(𝑘, 𝑎) (𝑘, 𝑐)(𝑘, 𝑒)(𝑘, ℎ)(𝑘, 𝑘)(𝑘, 𝑝)(𝑘, 𝑟)(𝑘, 𝑡) (𝑘, _)

(𝑝, 𝑎) (𝑝, 𝑐)(𝑝, 𝑒)(𝑝, ℎ)(𝑝, 𝑘)(𝑝, 𝑝)(𝑝, 𝑟)(𝑝, 𝑡) (𝑝, _)

(𝑟, 𝑎) (𝑟, 𝑐)(𝑟, 𝑒)(𝑟, ℎ)(𝑟, 𝑘)(𝑟, 𝑝)(𝑟, 𝑟)(𝑟, 𝑡) (𝑟, _)

(𝑡, 𝑎) (𝑡, 𝑐)(𝑡, 𝑒)(𝑡, ℎ)(𝑡, 𝑘)(𝑡, 𝑝)(𝑡, 𝑟)(𝑡, 𝑡) (𝑡, _)

(_, 𝑎) (_, 𝑐)(_, 𝑒)(_, ℎ)(_, 𝑘)(_, 𝑝)(_, 𝑟)(_, 𝑡) (_, _) }
 
 
 
 

 
 
 
 

 

Fig. 3. The different possible features of strings utilizing the alphabet of 

Equation 25. 
 

For a given value of 𝑘, the Gap-Weighted Subsequence 

Kernel can compute the similarity between two strings based 

on the co-occurrence of 𝑘-length substrings by using a 

dynamic programming approach. This approach also has the 

advantage of calculating all the similarities for scales between 

1 and 𝑘 without any additional processing overhead. This 

results in the production of a set of real valued numbers 

{𝐾(1), … , 𝐾(𝑝)} where 𝐾(𝑘) is the computed similarity 

between two input strings over 𝑘-length substrings and 𝑝 is 

the maximum length of substrings to be computed. This set of 

numbers must be used to determine a single similarity value 

that will be used in the kernel matrix 𝑄𝑖𝑗 . These requirements 

mean that the Gap-Weighted Subsequence Kernel must use a 

total of 𝑝 + 2 input variables where 𝑝 is the maximum length 

of substrings to be used in the similarity evaluation. These 

variables are the maximum substring length 𝑝, the gap decay 

factor 𝜆 which is used to determine how heavily substrings are 

penalized for not being contiguous within the two input strings 

and a set of coefficients that determine the weighting of the 

specific scale similarity evaluations {𝐾(1), … , 𝐾(𝑝)} when 

they are used as part of a summation to generate the similarity 

value used for 𝐾(𝑥𝑖 , 𝑥𝑗) within 𝑄𝑖𝑗 . This normalised 

summation is shown in Equation 27. This calculation is 

performed for every 𝑥𝑖 and 𝑥𝑗 string within the training set to 

create the 𝑄𝑖𝑗  kernel matrix and for a test query 𝑢 with each 

training set string 𝑥𝑖 to create a ‘relative similarity’ feature 

vector for the purpose of the classification of 𝑢. 

 

𝐾(𝑥𝑖 , 𝑥𝑗) =  
1

∑ 𝐶𝐾[𝑞]
𝑝
𝑞=1

∑ 𝐶𝐾[𝑞]𝐾[𝑞]
𝑝
𝑞=1           (27) 

Where 𝑝 is the maximum subsequence size and 𝐶𝐾[𝑞]  is the 

weighting coefficient of 𝐾[𝑞]. 
 

The Kernel Matrix is written into a data file in a format that 

the SVM library can read demonstrated in Figure 4. 

 

𝑦1       0: 1         1: 𝐾(𝑥1, 𝑥1)         2: 𝐾(𝑥1, 𝑥2)          𝑗: 𝐾(𝑥1, 𝑥𝑗) 

𝑦2       0: 2         1: 𝐾(𝑥2, 𝑥1)         2: 𝐾(𝑥2, 𝑥2)          𝑗: 𝐾(𝑥2, 𝑥𝑗)      

𝑦𝑖        0: 𝑖           1: 𝐾(𝑥𝑖 , 𝑥1)         2: 𝐾(𝑥𝑖 , 𝑥2)           𝑗: 𝐾(𝑥𝑖 , 𝑥𝑗)           

 ⋮           ⋮                      ⋮                              ⋮                              ⋮  
Fig. 4. The data file of the training phase Kernel Matrix in the LibSVM 

format. 

 

It is therefore possible to enter any numerical value to act as 

the coefficient for the similarity value of a particular 

subsequence length. This allows solutions to be created that 

can scale the contribution of subsequence lengths based on 

their ability to produce a superior classification model. The 

strength of using a Gap-Weighted String Subsequence Kernel 

is the ability to compute similarity based on multidimensional 

features of query strings without the explicit generation of 

these multidimensional feature vectors. The program simply 

iterates through the set of possible combinations for an 

alphabet of all the characters within the two strings up to a 

given maximum scale length cumulatively summing the 

contributions as it continues. These multidimensional feature 

vectors could never be explicitly evaluated for larger scale 

lengths due to the spatial complexity of such an operation. The 

memory requirements to store such a large quantity of data 

would overwhelm any system seeking to make use of this 

solution. Therefore this string kernel allows the processing of 

these feature vectors without ever storing them in memory. 

V. EXPERIMENTS 

Using the proposed method, a proof-of-concept, fully self-

contained C#.NET software capable of generating Select and 

Insert queries was produced. The software would attempt to 

classify the generated queries based on models it had created 

by training on queries generated by passing specially crafted 

user input through the Select and Insert query generators. At 

no point was the detection component allowed access to the 

component containing the unsanitised query template code as 

this would pollute the objectives of the demonstration 

software. A SVM capable of utilizing pre-computed kernel 

inputs was sourced. LibSVM is a library for SVMs and is 

widely used. This library is equipped with an ‘SVC’ Support 

Vector Classification module (Chang and Len, 2007). The 

LibSVM library is written in Java and therefore a translated 

library for the .NET languages was required for the C#.NET 

platform. A library named SVM was utilized. Developed by 

Matthew Johnson, it is a clean .NET conversion of the 

LibSVM Java version 2.89. Figure 5 displays a screenshot of 

the Graphical User Interface of this demonstration software. 

 

Fig. 5. The Graphical User Interface of the demonstration software. 
 

The evaluation of the proposed solution was conducted on a 
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machine operating an Intel i7-4770k processor clocked at 4.4 

Ghz with 8 Gb of RAM running Windows 7 Professional 64-

Bit with Service Pack One installed. As the demonstration 

software is completely self-contained, no messages are sent 

over the network and therefore there are no network related 

time delays. The input feature set data was produced manually 

and contained values that identified a set of user inputs 

containing regular input and injection commands combined 

with a class indicator showing if the input is malicious or 

legitimate. 

5.1. Evaluation conditions 

The Amnesia testbed dataset was obtained from the 

Amnesia authors (Halfond and Orso, 2005). This dataset 

contains a number of attack queries for seven different web 

applications. These queries were used to construct two testing 

datasets, one containing Select queries in the syntactic form of 

the demonstration software select query and one containing 

insert queries, again in the syntactic form of the demonstration 

software insert example query. The Select query dataset 

contains 232 queries, 116 normal and 116 malicious. These 

queries feature multiple potential types of SQL Injection 

Attack and normal queries that attempt to confuse the 

algorithm by appearing similar to the injection attacks as well 

as more regular examples. The Insert query dataset follows the 

same approach but only has 170 queries, 85 normal and 85 

malicious, due to a number of types of SQL Injection Attack 

not being possible without piggy-back type attacks on this 

form of query string. 

Each dataset was tested by computing the peak accuracy, 

training time and testing time for the 𝑝 = 1 subsequence 

length which is equivalent to the linear string kernel approach. 

This gives the ground state accuracy and processing overhead 

of the Feature Manipulation Algorithm combined with the 

SVM. The two length subsequence size was then used to 

generate a full set of detection accuracy and processing time 

data based on the combinations of possible coefficients 

weighting the kernel function scale lengths. This was repeated 

for the three length subsequence size with the length one 

coefficient locked to one. This set of data was used to 

determine the effect on the detection accuracy, the rate of false 

positive and false negative events and the processing time by 

the different relative weightings of the feature scales. The 

maximum subsequence size was then increased incrementally 

by one with the coefficients locked at one to determine the 

changes to accuracy and processing time by using larger 

feature scales. These two tests show the relative change in 

detection accuracy, the rate of false positive and false negative 

events, the model training time and the query string processing 

time by using the Gap-Weighted String Subsequence Kernel 

instead of a simple linear string kernel. 

The Evaluation focused on three major indicators of 

performance. The detection accuracy, given by the occurrence 

of true positive, true negative, false positive and false negative 

events used to compute the precision and recall for each 

testing dataset and finally the F-Measure harmonic mean. The 

time complexity indicating the amount of processing time 

required for the evaluation of each query and the spatial 

complexity identifying the amount of memory required for 

processing these datasets. 

The Precision is the ratio of detected SQL Injection Attacks 

to the total number of queries classified as SQL Injection 

Attacks. It is an indication of a bias of the SVM model 

towards producing false positive results. The more false 

positive events the model generates the lower the value of the 

Precision. No false positive events result in a Precision value 

of one. Equation 28 shows the Precision. 

 

                     𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
               (28) 

 

The Recall is the ratio of detected SQL Injection Attacks to 

the total number of actual SQL Injection Attack queries within 

the testing dataset. It is an indication of a bias of the SVM 

model towards producing false negative results. The more 

false negative events the model generates the lower the value 

of the Recall. No false negative events result in a Recall value 

of one. Equation 29 shows the Recall. 

 

                    𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
               (29) 

 

The Precision and Recall together can be then used to 

generate the F-measure of the testing dataset. This value is a 

harmonic mean of the Precision and the Recall and is an 

excellent mechanism for describing the actual detection 

accuracy of the SVM classification. The F-Measure is given 

by Equation 30. 

 

                    𝐹1 =  
2 ×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
             (30) 

 

The time complexity is an important consideration in the 

operation of this solution. Using the Stopwatch function, 

specific regions of code have their operation time recorded. 

The first stopwatch records the complete processing time per 

test query and records it into the log file alongside any 

relevant query information. Further stopwatches were 

implemented to display processing time information into the 

program user interface. The complete processing time for the 

test dataset is displayed alongside the average processing time 

per query determined by the previous result divided by the 

number of queries within the testing dataset. A final stopwatch 

was added to determine the training time for the SVM. 

5.2. Detection accuracy 

The first test set required the input generator to use the 

feature dataset to generate a full training dataset using the 

Select query. The 23 entries within the feature dataset created 

86 Select queries of which 46 were legitimate queries and 40 

were malicious SQL Injection Attacks. These queries were 

then used for training a model for the ground-state 𝑝 = 1 case. 

This reflects the operation of the Feature Manipulation 

Algorithm and the SVM operating with a linear string kernel. 

This linear string kernel counts the co-occurrence of 

characters within the two strings undergoing comparison. This 
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trained model took 2037 milliseconds to train. The Amnesia 

dataset derived Select query dataset was then classified using 

this model. There were 232 total queries of which 116 were 

normal queries and 116 were malicious queries. 114 of the 

malicious queries were successfully identified leaving 2 false 

negatives. The classification of the normal queries was less 

successful with only 57 correctly classified leaving 59 false 

positives. This gave the ground state a precision of 65.9% and 

a recall of 98.3%. The F-measure detection accuracy was 

78.9%.  

The same test was then performed for the Insert query. As 

the Insert query within the demonstration software featured 

four user input locations, the 23 feature dataset entries created 

132 training set queries of which 80 were normal queries and 

52 were SQL Injection Attacks. A new model was trained 

using this dataset and took 6563 milliseconds to train. The 

Amnesia testbed derived Insert query dataset was then 

classified using this model. There were 170 total queries of 

which 85 were normal queries and 85 were malicious queries. 

All 85 malicious queries were successfully classified leaving 

zero false negatives. However, only 45 normal queries were 

correctly classified leaving 40 false positives. This gave the 

ground state a precision of 68% and a recall of 100%. The F1 

detection accuracy was 81%. 

The difficulties detecting the normal queries were due to 

unsanitised quotation marks within the normal queries. These 

queries contained SQL code but not in a position where they 

would produce injection commands when concatenated into 

the query strings. However, the presence of quotation marks in 

the string still caused overly detailed feature manipulated 

strings to be introduced to the string kernel algorithm resulting 

in confusion. As most regular user input into query strings 

does not use quotation characters, a second set of Select and 

Insert test queries were produced that mirror the first testing 

set but the normal queries lack quotation mark input. The 

𝑝 = 1 test used above was then applied to these two new 

datasets named Select-Fix and Insert-Fix. The Select-Fix 

dataset when tested on the previously trained model resulted in 

a ground state detection accuracy of 99.1%. Using the 

previous model on the Insert-Fix dataset resulted in a ground 

state accuracy of 100%. 

Next all four test datasets (Select, Insert, Select-Fix, Insert-

Fix) were used to generate surfaces for the 𝑝 = 2 state. In this 

state there are three additional variables, the gap decay factor 

and the coefficients for length one and length two features. 

The gap decay factor can take values between zero and one. It 

was found that this variable made very little difference to 

detection accuracy so long as it was kept under 0.5. The 

detection accuracy begins to drop to the linear string kernel 

state if the gap decay factor is set higher than this value. 

Therefore the value of the gap decay factor was set to 0.0001 

and remains so for the rest of the evaluation. 

The coefficients for the scaled features can be of any value 

but as it is the proportionality between the coefficients that 

determines the relative weighting of features, values between 

plus one and minus one with a gap of 0.2 were used to 

generate 121 possible combinations. The SVM was retrained 

generating 121 different models for these possible 

combinations and the four datasets were applied to these 

models to determine their detection accuracy for the 𝑝 = 2 

state. 

The Select dataset resulted in a peak accuracy of 98.3% 

with the coefficient of scale one features at 0.4 and scale two 

features at 1.0. The surface plot of this evaluation showing the 

change in detection accuracy against the range of possible 

coefficient values is shown in Figure 6. The plot clearly shows 

that the strongest peaks of accuracy occur as the coefficients 

are similar in value and the largest troughs occur when they 

are opposite in value. This is due to the constructive 

interaction of both scale sizes when summing to produce the 

similarity evaluation. The model is able to train on features of 

both sizes as they both contribute strongly to the similarity 

evaluation. When both coefficients are opposite in value the 

features neutralize leaving the SVM with very little useful 

information to train on resulting in a heavy loss of accuracy. 

The accuracy seems to vary diagonally across the plot from 

peaks to troughs and to peaks again. This is because it is not 

the value of the coefficients that are important but only their 

relative proportionality. For the Select dataset, adding two-

length sub-sequences to the similarity evaluation results in a 

substantial jump in detection accuracy. 

 

Fig. 6. The p = 2 state detection accuracy surface plots of the Select test 
dataset. 
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Fig. 7. The 𝑝 =  3 state detection accuracy surface plots of the Select test 

dataset. 

 

The analysis was then extended to the 𝑝 = 3 state. As 

positive values for the coefficient of one length sub-sequences 

proved to provide a boost in detection accuracy for the 𝑝 = 2 

evaluation, this coefficient was locked to one and the 

coefficients for the two and three length sub-sequences were 

varied next. This did not contribute to the peak accuracy of the 

Select dataset compared with the previous result of 98.3%. 

However, this set of coefficients was limited by the locked 

coefficient for the one length sub-sequences and a high 

accuracy was still maintained. Figure 7 demonstrates this 

𝑝 = 3 experiment and the same shape of surface can be seen 

as the positive values of the two and three length feature 

coefficients result in a peak over the ground state accuracy and 

the negative values result in decay to the ground state 

accuracy as the higher dimensional features similarity 

evaluations cancel each other out. These experiments prove 

that there exist solutions to the gap-weighted subsequence 

kernel that enhance the accuracy of the Select queries over the 

linear string kernel. 

This analysis was then performed on the Select-Fix dataset. 

As the linear string kernel accuracy was much higher on this 

dataset, the multidimensional feature extraction did not 

produce quite so obvious a set of peaks. However, there 

existed multiple solutions to the gap-weighted subsequence 

kernel in the 𝑝 = 2 state that resulted in an accuracy of 100% 

compared to the ground states 99.1%. The 𝑝 = 3 state was a 

similar shape also showing the presence of 100% detection 

accuracy solutions. The surface plots of these two analyses 

can be seen in Figures 8 and 9. 

 

Fig. 8. The p = 2 state detection accuracy of the Select-Fix test dataset. 

 

Fig. 9. The p = 3 state detection accuracy of the Select-Fix test dataset. 

 

Next, the Insert dataset was subjected to the 𝑝 = 2 test. The 

Insert dataset resulted in a peak accuracy of 88.4% with the 

coefficient of scale one features at minus 0.2 and scale two 

features at minus 0.8. The surface plot of this evaluation 

showing the change in detection accuracy against the range of 

possible coefficient values is shown in Figure 10. The Insert 

queries did not benefit from the multidimensional feature 

extraction to the same degree as the Select queries did. 

However, solutions existed that improved over the linear 

string kernel detection accuracy. 

 

Fig. 10. The p = 2 state detection accuracy of the Insert test dataset. 
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Fig. 11. The p = 2 state detection accuracy of the Insert-Fix test dataset. 

 

As the Insert-Fix dataset had already achieved an accuracy 

of 100% in the ground state linear state model, using higher 

dimensional feature extraction was not going to improve the 

model. In fact, as can be seen in Figure 11, the 𝑝 = 2 state 

resulted in multiple solutions that have a loss of accuracy from 

the linear ground state. This demonstrates that the proposed 

solution in its current form is best for simple Insert-Fix queries 

when using a linear string kernel. As for the original Insert 

dataset without quotation marks restricted, the higher 

dimensional feature extraction does produce solutions with 

higher detection accuracy. However, as discussed above, 

superior accuracy may not be the best solution if the rate of 

false negatives increases. Unfortunately for the solutions with 

88.4% accuracy and others with 86.4% accuracy have resulted 

in false negative events compared with the ground state with 

zero events. The result data does however show solutions with 

a mild boost in accuracy over the ground state from 81% to 

84.1% whilst still maintaining zero false negative events. 

Therefore, despite the confusion caused by the poorer 

multidimensional feature extraction, higher dimensional 

solutions do exist that improve upon the ground state albeit at 

a much less impressive level as the solutions for the Select 

type queries. The strength of the multidimensional feature 

extraction is dependent on the accuracy of the linear string 

kernel. Poorer models using this kernel allow for more 

improvement when using higher dimensional features. 

The previous experiment shows that there are solutions for 

the 𝑝 = 2 and 𝑝 = 3 states that improve on the ground state 

detection accuracy without introducing new false negative 

events. The Select type query classification is greatly 

strengthened by the higher dimensional feature extraction. The 

Insert type queries do not gain as much of an accuracy 

increase but still reduced the number of false positives by a 

small amount. Meanwhile the datasets that removed quotation 

marks in the legitimate input showed that the Select-Fix 

dataset obtained a small increase reducing the false negative 

rate to zero. Unfortunately the already perfect classification of 

the Insert-Fix set was thrown off by the higher dimensional 

features resulting in the generation of false negatives. 

Therefore, the multidimensional feature extraction boosted 

three of the four sets but resulted in a loss of accuracy for the 

fourth. 

The largest increases in detection accuracy occurred when 

the coefficients shared signs. In these solutions the higher 

dimensional features constructively interact to generate 

similarity values that reflect these features and as a result 

assist in the classification of the query strings. It would be 

computationally extremely difficult to probe the full set of 

coefficient combinations for higher subsequence sizes. 

Therefore, to test these higher subsequence lengths, the 

coefficients will be set to one so they are constructively 

interacting. This is not necessarily the best case and in the 

previous experiment it was seen that whilst all the coefficients 

shared the same sign, they didn’t necessarily share the same 

value for maximum detection accuracy. However, this solution 

should be sufficient to determine the enhancement to detection 

accuracy produced by using larger scale features. 

For this experiment, each dataset was tested with the 

following conditions. The gap decay factor was set to 0.0001 

as it was in the previous experiment. The maximum 

subsequence length was tested for every integer value from 

one to ten. All the coefficients of the scale one to ten features 

was set to one. The first dataset tested was the full Select 

dataset. The detection accuracy of the dataset quickly rises 

when higher dimensional features are used in the similarity 

evaluations. However, the accuracy quickly peaks at 𝑝 = 2 

and 𝑝 = 3 with a massive decrease in false positives without 

an increase in false negatives. Unfortunately, extending to 

higher dimensional features then causes the rate of false 

negatives to increase decreasing the detection accuracy. This 

experiment cannot guarantee that there are not solutions at 

these higher subsequence lengths that will further increase 

accuracy but it appears that superior results are being derived 

from features of length two or three characters in size. This is 

likely due to the SQL commands and injection statements 

being short substrings of this length. Figure 12 shows a plot of 

detection accuracy against maximum subsequence length 

showing the rapid peak at 𝑝 = 2 and 𝑝 = 3 before detection 

accuracy decreases at higher subsequence lengths. 

 

Fig. 12. A plot of detection accuracy against maximum subsequence length 

for the Select dataset. 

 

This analysis was then applied to the Select-Fix dataset. The 
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results show that the detection accuracy decreases as higher 

subsequence lengths are used for classification. This is largely 

because the rate of false negatives increases similar to the 

regular Select dataset at higher subsequence lengths but as the 

normal queries lack confusing quotation mark input there are 

no false positives present for any subsequence scale. However, 

as was seen from experiment one applied to this dataset, there 

are solutions at the 𝑝 = 2 scale that increase the detection 

accuracy from the ground state, only the feature scales do not 

have the same proportionality. Figure 13 shows the detection 

accuracy verses maximum subsequence length for this Select-

Fix dataset.  
 

Fig. 13. A plot of detection accuracy against maximum subsequence length 

for the Select-Fix dataset. 

 

Next the experiment was applied to the Insert Dataset. In 

the first experiment, this dataset had proven to be a lot less 

accurate when extended into higher dimensional features than 

the Select dataset. Therefore this experiment was not expected 

to achieve as strong an increase in detection accuracy as the 

Select type queries. However, the first major result is that the 

detection accuracy rises like the Select-type queries but 

instead peak at a higher value of subsequence length, 

specifically 𝑝 = 5 to 𝑝 = 7. Again, this is likely due to the 

primary features of the Insert-type queries being of larger 

length as instead of individual commands forming conditional 

statements, the Insert query contains a large bracket region 

containing the values to be entered into the database separated 

by commas. Despite this increase in accuracy, it comes with 

the cost of an increase in false negative events counteracting 

the large decrease of false positive events. As previously 

stated, false positive events are preferable to false negatives as 

the disruption to a service can be much greater if attack 

queries get through. This is especially of note since most 

normal legitimate queries will not be as hard to differentiate 

from malicious queries as this admittedly unusually difficult 

test dataset. The first experiment did indicate that there were 

higher dimensional solutions that could minimize this false 

negative rate by changing the proportionality of the 

coefficients. Therefore there are likely solutions that can 

maintain this accuracy but with a substantially reduced false 

negative rate. Figure 14 demonstrates the detection accuracy 

against maximum subsequence length clearly showing the 

peak at 𝑝 = 5. 

 

Fig. 14. A plot of detection accuracy against maximum subsequence length 

for the Insert dataset. 

 

Finally, the experiment was carried out on the Insert-Fix 

dataset. The linear string kernel model of this dataset was of 

perfect detection accuracy. Combined with the first 

experiment showing that 𝑝 = 2 and 𝑝 = 3 caused a loss of 

detection accuracy similar to the Select-Fix dataset by an 

increase in false negative events with maintenance of the zero 

false positive events of this dataset, the Insert-Fix dataset was 

likely to suffer from the same issues. This was found to be true 

as the detection accuracy does drop from the ground state 

accuracy as higher subsequence length features are used in the 

feature extraction process. 

The Gap-Weighted Subsequence Kernel is successful in 

reducing false positive events in confusing legitimate query 

strings by incorporating higher dimensional features into the 

similarity evaluation. Unfortunately this can be at a cost of an 

increase in the rate of false negative events unless an ideal 

combination of coefficients can be determined. Therefore it is 

recommended that higher subsequence lengths be used on 

complicated query strings that are difficult to differentiate 

from malicious strings but for simpler queries it is superior to 

limit multidimensional feature extraction to features of scales 

no longer than the individual SQL commands. This is due to 

the Feature Manipulation Algorithm alone being successful in 

the successful identification of all legitimate query strings 

allowing all unusual strings to be immediately rejected. These 

results indicate that the best combination of coefficients is 

likely to be found for values of maximum subsequence length 

that relate to the length of substrings within the query strings. 

It is worth attempting to train a model using these 

subsequence lengths unless the ground state detection 

accuracy is already perfect in which case the detection 

accuracy is already at the desire level and higher 

dimensionality will likely result in an increase in false 

negatives. Figure 15 demonstrates how the detection accuracy 

of the Insert-Fix dataset varies with maximum subsequence 

length. 
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Fig. 15. A plot of detection accuracy against maximum subsequence length 

for the Insert-Fix dataset. 

 

5.3. Time complexity 

The two experiments discussed above were also used to 

generate data on the training time for the models used, the 

processing time for the whole Select and Insert datasets and 

the average processing time for each individual query in these 

sets. This is important for the successful operation of the 

proposed solution as it must be able to operate in real time in 

order to classify queries with little delay to the users of the 

defended service. 

The Select and Insert training set produced a linear string 

kernel model with an associated training time. Then for the 

Select linear string kernel model, the Select and Select-Fix 

testing datasets were evaluated and for the Insert linear string 

kernel model, the Insert and Insert-Fix testing datasets were 

evaluated. The Select model had a training time of 2037.18 

milliseconds. The Select test dataset of 232 query strings 

required 2443.973 milliseconds to process which produces an 

average processing time of 10.534 milliseconds per query. The 

Select-Fix test dataset of 232 query strings similar to the 

original dataset with the quotation marks changed to question 

mark placeholders took 2423.539 milliseconds to process with 

an average processing time of 10.446 milliseconds per query. 

The Insert model had a training time of 6563.565 

milliseconds. The Insert test dataset of 170 query strings 

required 3891.915 milliseconds to process which produces an 

average processing time of 22.894 milliseconds per query. The 

Insert-Fix test dataset of 170 query strings similar to the 

original dataset with the quotation marks changed to question 

mark placeholders took 3767.71 milliseconds to process with 

an average processing time of 22.163 milliseconds per query. 

The datasets with the quotation marks removed from the 

legitimate queries tended to process slightly faster due to the 

shorter query strings produced by the Feature Manipulation 

Algorithm. The Insert query model took just under three times 

longer to generate due to the larger set of training queries 

produced by the increased number of inputs into the Insert 

example query string. As a result, the operation time will be 

impacted heavily by query strings with a larger number of 

inputs although it is possible that the training set generator can 

be further refined to reduce the number of training queries 

required for a reliable sample size training dataset. The 

dimensionality of the feature vectors is always equal to the 

number of training queries. Despite these limitations, this 

experiment shows that for the linear string kernel models, the 

training and processing time are acceptable for runtime as the 

training is only required on the initialization of the 

demonstration software. 

 

Fig. 16. A surface plot showing the training time of multiple p = 2 Select 

query models in milliseconds varying with the coefficient values associated 
with the model feature extractions. 

 

The processing time required for higher dimension features 

was then measured by using the same experiments used for the 

detection accuracy. The different models trained for the 𝑝 = 2 

and 𝑝 = 3 states were used to determine how the training and 

query processing time were influenced by the maximum 

subsequence length and the coefficients used for each trained 

model. Figure 16 shows the training time of the Select query 

models against the different coefficient combinations for the 

𝑝 = 2 state. The surface is flat with a large diagonal ridge. 

The training time is constant being independent of the 

coefficients of the different feature scales (except for the 

destructively interacting case which will be discussed shortly). 

This makes sense as these coefficients merely scale the results 

of the Gap-Weighted Subsequence Kernel algorithm and do 

not influence the number of calculations required. The 

increase in the maximum subsequence length does increase 

the training time required as it increases the number of 

multidimensional features the string kernel algorithm must 

iterate through. The next experiment will attempt to determine 

this relationship between maximum subsequence length, the 

training time and the query processing time. 

The ridge appears to occur for values of the coefficients that 

destructively interact. This rapid increase in training time 

coincides with locations of poorest accuracy due to this 

interaction. Therefore it is likely that the SVM is being starved 

of important feature data by this interaction resulting in a 

poorer model. Specifically, it is likely the grid algorithm 

designed to determine the cost parameter that results in this 

increase as the feature vectors are likely heavily 

indistinguishable within the feature space. For the 𝑝 = 3 state 

the same pattern is seen where the model training time is 
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independent of the coefficient values apart from the 

destructively interacting combinations where it substantially 

increases. The 𝑝 = 3 state training time has risen again by 

about the same amount as the difference between the ground 

state and the 𝑝 = 2 state possibly indicating that the training 

time varies linearly with the maximum subsequence length. 

The second experiment discussed shortly identifies this 

relationship. Figure 17 shows the surface plot produced by 

these 𝑝 = 3 state model training times. 

 

Fig. 17. A surface plot showing the training time of multiple p = 3 Select 

query models in milliseconds varying with the coefficient values. 

 

The Insert query also exhibited the same features as the 

Select query with a ridge where the coefficients destructively 

interact with a flat constant training time for the other 

combinations. The training time again rises with the maximum 

subsequence length at a faster rate due to the increased size of 

the Insert training set. Figure 18 displays the surface produced 

by the training of the Insert-type query set. The amount of 

extra time required to generate the destructively interacting 

models seems to be roughly 1500 milliseconds independent of 

the training time of the other models indicating that they are 

independent of the maximum subsequence length and 

reinforcing the conclusion that the cost parameter grid 

algorithm component of the SVM is likely responsible. 
 

Fig. 18. A surface plot showing the training time of multiple p = 2 Insert 

query models in milliseconds varying with the coefficient values associated 

with the model feature extractions. 

 

This experiment also recorded the processing time per 

query for the Select and Insert datasets based on the models 

produced using the different combinations of the similarity 

evaluation coefficients. Figure 19 demonstrates the surface 

plot produced by the Select dataset trained in the 𝑝 = 2 state. 

When operating in the testing phase the processing time seems 

to mirror the training phase operation times. The processing 

time is again independent of the string kernel coefficients with 

some limited variation due to background operations of the 

operating system. However, in this situation the destructively 

interacting models process the Select dataset substantially 

faster than the normal models. This shorter processing time is 

a result of faster classification by the SVM as the feature 

manipulation and string kernel algorithms have the same 

workload with these coefficients as with any other 

combination. The reason behind this is not entirely understood 

and likely due to the SVM rejecting the model and simply 

applying a global malicious classification to every query 

within the Select dataset. 

 

Fig. 19. A surface plot showing the per-query testing time in milliseconds of 

the Select dataset classified by multiple p = 2 Select query models varying 
with the coefficient values associated with the feature extractions. 

 

Fig. 20. A surface plot showing the per-query testing time in milliseconds of 
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the Select dataset classified by multiple p = 3 Select query models varying 
with the coefficient values. 

 

Similar results are seen for the Select dataset operating 

within the  𝑝 = 3 state where again the processing time is 

independent of the coefficients except for the coefficients that 

result in poor models where the processing time is more rapid. 

Additionally, as with the training times, the processing time 

per query appears to increase linearly with the maximum 

subsequence length. Figure 20 demonstrates the surface plot 

produced by the per query processing times of the 𝑝 = 3 state.  

Perhaps unsurprisingly, when the per query processing time 

of the Insert dataset is compared with the coefficients used to 

train the models, the same features are again seen reinforcing 

that the processing time is not only just independent of the 

coefficients but also independent of the type of query string 

and merely only to the length of the string. Figure 21 

demonstrates the surface produced by this comparison for the 

Insert dataset. 
 

Fig. 21. A surface plot showing the per-query testing time in milliseconds of 

the Insert dataset classified by multiple p = 2 Insert query models varying 
with the coefficient values associated with the feature extractions. 

 

The first experiment showed that the training and testing 

processing times were independent of the coefficients of the 

string kernel algorithm. Therefore the training time and 

processing time results from the second experiment, where the 

coefficients were locked to one and the maximum 

subsequence length was increased incrementally from one to 

ten, are perfect for the determination of this relationship. 

Ten models were generated for the Select training set and 

another ten models were generated for the Insert training set. 

Each model had a maximum subsequence length of one to ten. 

The coefficients of the different scales of the similarity 

evaluations were set to one. The training time of these ten 

models was compared to the maximum subsequence length of 

each model to generate a plot of the relationship. An equation 

is then generated to determine the best fit of the points. This 

equation describes the relationship between the subsequence 

length and the training time and also describes the overhead 

required by other components of the program as well as the 

amount of time the additional iterations of higher dimensional 

features requires. 

 

Fig. 22. A plot of model training time against the maximum subsequence 

length for the Select training dataset. 

Applying this experiment to the Select training dataset 

produced the graph shown in Figure 22. As indicated by 

results from experiment one, the plot produced an almost 

perfect linear trend indicating that the relationship between 

maximum subsequence length and training time is linear. The 

linear relationship also produced an associated equation with 

important implications to the Select query training. The 

gradient of the equation indicates that for every additional 

extension to the maximum subsequence length, the model 

training time increases by 839.93 milliseconds. The intercept 

of the equation also shows that 1183.9 milliseconds of the 

training time is independent of the subsequence length and is 

likely due to the size of the training dataset and the operational 

requirements of the SVM. 

Applying the same experiment to the Insert training dataset 

produced the graph shown in Figure 23. The Insert queries 

also follow this linear relationship except due to the increased 

size of the training dataset, both the gradient and the intercept 

of the linear trend are greater supporting the conclusion that it 

is related to the size of the training dataset and the length of 

the individual query strings within the training set queries as 

well as the operation of the SVM. The gradient of the equation 

indicates that for every additional extension to the maximum 

subsequence length, the model training time increases by 

2931.9 milliseconds. The intercept of the equation also shows 

that 3359.6 milliseconds of the training time must be 

independent of the subsequence length. 
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Fig. 23. A plot of model training time against the maximum subsequence 

length for the Insert training dataset. 

 

Each model set was also used to test the four Amnesia-

derived datasets. The Select and the Select-Fix datasets were 

classified using the Select models. Meanwhile, the Insert and 

Insert-Fix datasets were classified using the Insert models. 

Each classification had the associated per query processing 

time evaluated. By plotting these results in the same form as 

the training time results, it was possible to generate plots for 

each dataset showing how the processing time was affected by 

the increased maximum subsequence length. 
 

Fig. 24. A plot of the Select dataset and Select-Fix dataset processing times 

against the maximum subsequence length for the Select models. The top line 

is the Select dataset and the bottom is the Select-Fix dataset. 

 

Figure 24 demonstrates the processing time for the queries 

in the Select and Select-Fix datasets using the Select models 

over the varying maximum subsequence lengths. The query 

processing times also share a linear relationship with 

maximum subsequence length. This is due to string kernel 

algorithm generating the feature vectors of the test queries. 

Therefore the processing time also depends on the size of the 

training dataset and the dimensionality of the 

multidimensional feature extraction. The Select dataset queries 

on average required an extra 13.087 milliseconds of 

processing time for the computation of each additional 

subsequence length. The Select-Fix dataset requires slightly 

less extra time, 12.666 milliseconds, for higher subsequence 

lengths. This is likely due to the output strings from the 

feature manipulation algorithm being shorter due to the lack of 

quotation marks within the legitimate queries of this testing 

dataset. In the plots of training time against subsequence 

length, the intercept was clearly not zero and was due to the 

operation of other algorithms during the training phase of the 

SVM. However, in this testing case the intercepts of the two 

equations are likely a result of measurement errors and should 

be zero intercepts as the testing phase lacks the time 

requirements due to the production of decision rules. 

 

Fig. 25. A plot of the Insert dataset and Insert-Fix dataset processing times 

against the maximum subsequence length for the Insert models. The top line is 

the Insert dataset and the bottom is the Insert-Fix dataset. 

 

This experiment was also evaluated on the Insert and Insert-

Fix datasets. The results of this evaluation are displayed 

within Figure 25. The linear relationship also exists for the 

Insert queries again showing that these relationships are 

independent of the query type and only the length of the query 

strings and the scale of the multidimensional feature 

extraction. The increased size of the training dataset results in 

increased processing time due to the increased dimensionality 

of the feature vectors of the test query strings. The Insert 

dataset queries on average required an extra 33.418 

milliseconds of processing time for the computation of each 

additional subsequence length. The Select-Fix dataset requires 

slightly less extra time, 31.58 milliseconds, for higher 

subsequence lengths. This is likely due to the same feature 

manipulation algorithm string length situation as the Select-

Fix dataset query strings. 

The detection accuracy analysis concluded that the superior 

subsequence length for the Select queries was 𝑝 = 2 or 𝑝 = 3 

whereas for the Insert queries this peak in accuracy occurred 

at subsequence lengths of 𝑝 = 5 to 𝑝 = 7. The above 

equations combined with this information can be used to 

estimate the model training time and the individual query 

processing time for the Select and the Insert datasets. The 

Select query dataset training time ranges from 2863.76 

milliseconds to 3703.69 milliseconds and each test query takes 

approximately 22.6555 milliseconds to 35.9548 milliseconds 

on average to process. The Insert query dataset training time 

ranges from 18019.1 milliseconds to 23882.9 milliseconds and 

each test query takes approximately 144.873 milliseconds to 

217.956 milliseconds on average to process. Even the worst 



 19 

case of these calculations places the program firmly within 

real time operation with acceptable query delay times due to 

this solution as the training time only applies once during 

software initialization. The Select queries process significantly 

faster than the Insert queries, most likely due to the increased 

input trajectories of the Insert query and the larger associated 

training set. Queries with significantly more input fields may 

cause this solution difficulty in maintaining the real time 

operational requirement unless the input generator algorithm 

can be enhanced in the future. Longer query strings will also 

negatively affect the processing time however, generally the 

most complicated strings are due to injected input therefore 

the user that suffers the most from query response delay is an 

attacker. At the very least this might discourage the attacker 

from making the attempt if they must craft many attack 

queries. 

5.4. Spatial complexity 

The memory consumption of the software during use is also 

of importance as it must be capable of operating on the web 

server hosting a web application with minimal system impact. 

On start up the program required 16 Mb of memory. The Input 

Generator algorithm placed another 2.5 Mb of demand on the 

system memory resources. Training a model required 6.5 Mb 

of memory. This memory requirement was independent of the 

maximum subsequence used for the training phase. The testing 

of the 232 queries within the Amnesia-derived Select dataset 

required an additional 10 Mb of memory. The demonstration 

software had a peak memory draw of only 35 Mb when using 

the Select example query. The memory requirements of this 

solution border on negligible and therefore many instances can 

be run simultaneously to defend multiple web application 

queries on a single machine. 

Despite the scale of calculations being performed to 

determine the multidimensional feature set and compute the 

similarity values of these features, the software stores very 

little of the results of these calculations within memory. 

Therefore the requirements are kept minimal as the only 

values that are kept through the iteration through the full set of 

multidimensional features are the cumulative inner product 

similarity evaluations. More memory is required by larger 

training datasets as the feature vectors, stored in memory for 

each test query, are of larger dimensionality. Despite these 

requirements, the demonstration software still maintained the 

peak memory draw of 35 Mb when using the Insert example 

query training a model of high dimensionality to classify the 

Amnesia-derived Insert dataset. This is one of the strongest 

advantages of this proposed solution. Hundreds of thousands 

of potential features can be evaluated by the similarity 

algorithm and used to train models and test query strings but 

the string kernel algorithm does not require any of these 

features to be stored in memory. The algorithm simply iterates 

through the multidimensional feature space of hundreds of 

thousands of features yet generates a feature vector only two 

to three digits in dimensionality greatly limiting the pressure 

placed on the system resources of the server running software 

utilizing this method. 

VI. DISCUSSION 

The proposed solution runs on a web server as the web 

application sends generated queries to a source IP and port 

hosted by the solution. The solution is then able to test queries 

and then relay them to the back-end database server as well as 

pass the reply messages directly to the web application with 

minimal latency. In essence, the detection solution is 

transparent to the communications between the web 

application and the back-end database except for the outbound 

communications where they are delayed by a number of 

milliseconds for the classification process. 

The software was required to have high detection accuracy 

with a low rate of false positives and false negatives combined 

with a processing time rapid enough for real time operation. 

By using the Gap-Weighted String Subsequence Kernel 

algorithm to compute the inner product of multidimensional 

features, solutions were found that improved detection 

accuracy over a linear approach of simple features in the query 

strings. As the operation of this algorithm depended on the 

maximum subsequence length, the gap decay factor and a set 

of coefficients for features of length one character to the 

maximum subsequence length, these inputs were evaluated to 

determine the superior solution for detection accuracy. The 

models generated by the program were heavily influenced by 

the maximum subsequence length and its associated 

coefficients. However, the gap decay factor was not a major 

component in the accuracy of the generated models. 

In the process of classifying SQL Injection attacks, the 

solution with the highest detection accuracy may not be the 

best as, whilst the detection accuracy places no bias between 

false positives and false negatives, in reality false negatives 

are significantly less desirable than false positives. False 

positives result in service disruption whereas false negatives 

can result in service destruction. The solution is capable of 

identifying all the different types of SQL Injection Attack 

except for Stored Procedures as the query string cannot be 

intercepted at the web server. Despite this weakness, it might 

be substantially easier to update the code of a stored procedure 

to sanitize the inputs compared with the updating of third 

party software in the form of the web applications and 

therefore it might be acceptable to struggle to identify stored 

procedure attacks. 

Much of this difficulty in classifying the datasets was a 

result of unsanitised quotation marks within the testing 

datasets. These were introduced to test the maximum 

tolerances of the solution. Copies were produced of the Select 

and Insert datasets that extracted quotation marks from the 

legitimate queries as quotation marks are unlikely to be seen 

during normal operation of these queries. This allowed the 

proposed solution to achieve an accuracy of 100% on both test 

sets. Whilst this appears to be advantageous, the 

multidimensional feature extraction that this proposed method 

utilizes was only required for the Select queries as the Insert 

queries actually achieved 100% with the ground state 

accuracy. Additionally, for these testing datasets with high 

ground state accuracy, the multidimensional analysis on 

higher dimensional features could result in an inferior model 
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from the simple feature extraction. Therefore this solution, 

whilst competent on simple query strings, shows its true 

capability with complicated query strings which are hard to 

differentiate due to sharing similarities to attack strings during 

legitimate operation. 

The proposed solution’s processing time was also evaluated 

to determine if the real time operation condition was fulfilled. 

The time complexity of the solution obeys the equation 

𝑡 = 𝐼 × 𝑝 × 𝑁 where 𝐼 is a constant determined by the 

processing power of the available CPU, 𝑝 is the maximum 

subsequence length and 𝑁 = |𝑢| × |𝑢| × 𝑛 where |𝑢| is the 

average character length of the training set input strings and 𝑛 

is the total number of query strings within the training set. 

This relationship was predicted by the order of the Gap-

Weighted String Subsequence Kernel dynamic processing 

algorithm that exhibited a time complexity of the order 

𝑂(𝑝|𝑠||𝑡|) where 𝑝 is the maximum subsequence length, |𝑠| is 

the length of the first argument string and |𝑡| is the length of 

the second argument string. The processing time of the other 

algorithms is of negligible time compared to the string kernel 

algorithm and therefore do not contribute to the relationship. 

As the time complexity is heavily dependent on the number 

of training set queries, the size of this set must be limited to 

produce enough information about the query generation of the 

web application without being overly descriptive. The Feature 

Manipulation Algorithm shrinks the length of the testing 

strings reducing the processing time of the string kernel 

algorithm. Unfortunately, the Input Generator algorithm 

produces significantly larger training datasets with queries 

containing many input fields. These larger sets then result in 

substantially increased processing times. The Input Generator 

is therefore a target for further improvements by minimizing 

the training set it generates whilst still maintaining an 

acceptable sample dataset for the complete set of possible 

queries. 

VII. CONCLUSION AND FUTURE WORK 

 

Our proposed method has more success with complicated 

query strings compared to the simple strings. Fortunately, 

despite the weaknesses associated with simple attacks, most of 

these simple strings have already been identified and 

documented. A major danger is more sophisticated novel 

attacks that have yet to be encountered. However, these more 

sophisticated attacks tend to result in longer and more feature-

rich query strings and, as a result, are very quickly detected by 

the proposed solution. None of the complicated attack strings 

caused by more sophisticated attacks such as Inference attacks 

failed to be correctly classified and blocked by the 

demonstration software. The training set did not directly 

describe features within these sophisticated attacks, but the 

deviation from the legitimate strings was enough to warrant a 

malicious classification. This property of the solution allows it 

to be adaptable to attacks not explicitly described in the 

training set, both discovered and undiscovered. The difficulty 

is focused on the successful description of simple attacks 

within the training dataset. 

The successful identification of the ideal coefficients for 

weighting the features of the string kernel algorithm is 

extremely important. The number of possible coefficients for 

higher dimensional solutions rises exponentially making the 

discovery of the optimum set of coefficients non-trivial. As 

the superior solutions are limited to smaller maximum 

subsequence length, the coefficient combinations are not 

overly large in size during normal operation. The difficulty of 

this process can be managed through the realization that the 

values of the coefficients are not the important factor but 

instead the proportionality between the different coefficients is 

the mechanism that alters the accuracy of the trained models. 

As the demonstration software only showed a proof of 

concept of the design algorithms, the next milestone would be 

to deploy the solution as an actual defensive module for a web 

application and database server. This would require the 

implementation of the full Input Generator algorithm. This 

algorithm would be required to identify the possible input 

trajectories for a web application and determine how many 

different output queries are produced and how they are related 

to these inputs. The algorithm would then be able to open a 

number of new threaded operational modes for each query 

type to generate a series of models. 

Most of the time complexity of this proposed solution lies 

in the computation of the Gap-Weighted String Subsequence 

Kernel function. Additionally, there is evidence indicating that 

the models being produced by the SVM have a high variance 

which results in models that suffer from overfitting the 

training dataset. Both these weaknesses can be compensated 

by decoupling the number of ‘landmark’ strings from the 

number of the training set strings. Currently, this coupling 

results in an exponential increase in the number of kernel 

function operations and therefore training and per-query 

processing time, upon the increase of the training dataset size. 

If a fixed-length set of ‘landmark’ strings can be identified 

that result in accurate models, these strings could replace the 

training set strings in the computation of the feature vectors of 

the query strings.  

Additionally, this decoupling would allow for the increase 

in the training set size with impact only to the model training 

phase processing time and not the per-query processing time 

which is the more critical time-dependent component. 

Increasing the size of the training set is a well-documented 

method of reducing the variance of machine learning models. 

As a result, the solution could be made truly intelligent by the 

allowing it to incorporate new query strings previous models 

misclassified into a new training set to be trained into an 

improved model when processing power is available during 

downtime. 

Currently the proposed solution depends on 𝑝 + 2 variables. 

However, if the decoupling operation described above is 

successful, it may be possible to output the individual 

subsequence length kernel function evaluations 𝐾𝑞(𝑥𝑖 , 𝑥𝑗) as 

features instead of relying on a weighted sum of these values 

up to the maximum subsequence length. Limited testing of 

this method indicates that a set of parameters (related to the 
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old coefficients) might still be needed. This would reduce the 

number of inputs to just two variables, the maximum 

subsequence length and the gap decay factor. It would be ideal 

if the software could employ a form of optimization algorithm 

to identify the values of these two variables that minimize the 

error of the classification. A second optimization algorithm 

that can determine the parameter set that minimizes the 

classification error. If these two algorithms could be optimized 

simultaneously, the superior classification model could be 

generated automatically. It is of note that this optimization 

process would likely heavily influence the time required to 

train models but fortunately, would have no effect on the 

testing phase processing time. 
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