
Kifayat, K, Shi, Q, Askwith, RJ and McWhirter, PR

 SQL Injection Attack Classification through the Feature Extraction of SQL
Query strings using a Gap-Weighted String Subsequence Kernel

http://researchonline.ljmu.ac.uk/id/eprint/8112/

Article

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Kifayat, K, Shi, Q, Askwith, RJ and McWhirter, PR (2018) SQL Injection
Attack Classification through the Feature Extraction of SQL Query strings
using a Gap-Weighted String Subsequence Kernel. Journal of Information
Security and Applications, 40. pp. 199-216. ISSN 2214-2126

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

 1



Abstract— SQL Injection Attacks are one of the most common

methods behind data security breaches. Previous research has

attempted to produce viable detection solutions in order to filter

SQL Injection Attacks from regular queries. Unfortunately it has

proven to be a challenging problem with many solutions suffering

from disadvantages such as being unable to process in real time

as a preventative solution, a lack of adaptability to differing types

of attack and the requirement for access to difficult-to-obtain

information about the source application. This paper presents a

novel solution of classifying SQL queries purely on the features

of the initial query string. A Gap-Weighted String Subsequence

Kernel algorithm is implemented to identify subsequences of

shared characters between query strings for the output of a

similarity metric. Finally a Support Vector Machine is trained on

the similarity metrics between known query strings which are

then used to classify unknown test queries. By gathering all

feature data from the query strings, additional information from

the source application is not required. The probabilistic nature of

the learned models allows the solution to adapt to new threats

whilst in operation. The proposed solution is evaluated using a

number of test datasets derived from the Amnesia testbed

datasets. The demonstration software achieved 97.07% accuracy

for Select type queries and 92.48% accuracy for Insert type

queries. This limited success rate is due to unsanitised quotation

marks within legitimate inputs confusing the feature extraction.

Using a test dataset that denies legitimate queries the use of

unsanitised quotation marks, the Select and Insert query

accuracy rose.

Index Terms—Intrusion Detection, SQL injection attacks, data

mining, String Subsequence Kernel, Support Vector Machine,

Supervised Learning

I. INTRODUCTION

QL Injection Attacks (SQLIAs) involve the crafting of

user inputs in order to perform actions beyond the

intended function of a web application (Su and Wassermann,

2006). By the identification of the input fields associated with

the dynamic generation of queries (Lee et al., 2012; Tajpour et

al., 2012), the adversary can probe the database data values,

the layout of the database (known as the database Schema),

perform remote procedures and escalate their privilege on the

Database Management System (Halfond et al., 2006;

Balzarotti et al., 2008). Databases often contain significant

quantities of confidential information. As a result it can prove

to be lucrative for malicious users of web applications to

create queries to resolve data they are not authorized to view

or alter. SQL Injections are one of the most serious threats to

web applications. It is ranked number one in the Open Web

Application Security Project (OWASP) Top Ten Application

Security Risks in 2013 (Williams and Wichers, 2013). This is

due to as many as 98% of web applications having at least one

security vulnerability resulting in an increase in SQL injection

attacks by ten percent (Trustwave, 2015).

 Our solution to the SQLIA problem is the implementation

of Machine Learning methods capable of detecting malicious

queries based on information from the structure of the query

strings learned from a training set of queries produced during

runtime. This structural information is extracted using a Gap

Weighted String Subsequence Kernel (GWSSK) function

(Lodhi et al., 2002). This function computes the similarity of

unknown query strings to preselected training query strings. A

Support Vector Machine (SVM) classifier uses these similarity

measurements to determine if the unknown query is normal or

malicious by determining a decision boundary which

maximizes the distance between the two classes (Cortes and

Vapnik, 1995). Our method is a form of black box method

(Halfond et al., 2006).

This method does not require the re-engineering of SQL-

dependent web applications or the full disclosure of their

source code. This is a flaw of many previous methods

(Halfond et al., 2006). There are also some solutions that are

easily circumvented by attackers constructing novel attacks

(Shahriar et al., 2013). As our method uses a probabilistic

classifier in the form of the SVM classifier, unknown queries

with query structures which deviate from the training dataset

are still likely to be determined as malicious due to the

extracted similarity information. Our solution does have two

clear limitations. Our method must be placed between the web

application and the database. This introduces hardware

overhead required to operate the detection and prevention

solution (Moosa et al., 2010; Zhang et al., 2011; Pinzón et al.,

2013). Additionally, the detection algorithms are never going

to have perfect detection accuracy and therefore issues related

to false negatives which can inflict database damage and false

positives that can prevent normal operation of a database must

be mitigated (Makiov et al., 2014).

Our key contribution is the demonstration of the viability of

the GWSSK and SVM algorithms in the high-performance

classification of SQL query strings during real-time operation

SQL Injection Attack Classification through the

Feature Extraction of SQL Query strings using a

Gap-Weighted String Subsequence Kernel

Paul R. McWhirter, Kashif Kifayat, Qi Shi, Bob Askwith

S

 2

of a database application. This is shown through classification

accuracy and time complexity experiments on a dataset of

SQL queries exhibiting a wide-range of normal and malicious

features. The novel GWSSK method in the automatic

extraction of informative features of SQL queries allows for

the elimination of biases produced by manually created

features potentially improving the accuracy of the SQLIA

classification task.

The rest of this paper is structured as follows. In Section 2,

the descriptions of related works are presented. In Section 3,

the framework of the proposed solution is discussed and the

contribution of this paper is clarified. In Section 4, the feature

extraction at the core of this solution is defined as the main

contribution of this research. In Section 5, the experimental

results of the demonstration software for the proposed method

are evaluated. These results are then discussed in chapter 6.

The final conclusions and proposals of future work are

provided within chapter 7.

II. RELATED WORKS

Research into securing web applications from SQL

Injection Attacks has proposed two differing approaches

(Halfond et al., 2006). The first approach involves the

rewriting of application source code within the web

application and possibly, stored procedures within the

database to conduct sufficient input validation. The correct

application of these techniques can render a web application

secure to injection commands but it comes with a major

disadvantage. Completed web applications require

redevelopment to incorporate the defensive procedures.

However, this is the best way to protect a system from attacks

if the system is currently in development and not yet complete.

The costs associated with the changing of software vastly

increase later into the development cycle.

NoTamper is a black-box testing method designed to

determine vulnerabilities in the server-side code. This allows

vulnerabilities to be patched although with a severe cost if

vulnerabilities are not detected (Bisht et al., 2010a).

AMNESIA is another vulnerability exploration method that

combines a static analysis of the web application code with

runtime monitoring (Halfond and Orso, 2005). SQLGuard was

proposed as method of analyzing query parse trees both before

and after user-input inclusion. This allows the execution of the

user-input to be explored (Buehrer at al., 2005). CANDID is

another source code analysis method that retrofits the source

code with additional candidate queries. The runtime queries

can then be compared to these to determine any illegal

executions (Bisht et al., 2010b).

The second approach involves the deployment of additional

software designed to screen the queries generated by a web

application before their execution on the database. These

software solutions utilize a wide range of techniques and are

often significantly less expensive to deploy into an active

system. Unfortunately, they often suffer from the disadvantage

of not being a complete solution to the problem. Many

solutions are unable to detect every type of SQL Injection

Attack leaving an avenue for attackers to exploit. They can

also be prone to false positive and false negative events where

the detection algorithms identify legitimate queries as

malicious and block them or allowing malicious queries

through resulting in a security breach.

SQLProb is a proxy-based architecture to prevent SQL

Injection Attacks (Liu et al., 2009). The solution defines a list

of queries produced by a web application. It processes all

possible queries produced by the typical operation of the web

application. These queries are then collected by the proxy

software to produce a sample set of SQL queries from the web

application. The proxy filter then detects inbound queries and

intercepts them. An enhanced Needleman-Wunsch algorithm

(Needleman and Wunsch, 1970) originally designed for the

alignment of string-based genetic data is used to determine the

user input within the full query string. The algorithm

determines what substring(s) within the query string to remove

to gain the closest comparison to the sample queries. This

removed data is the input string(s) within the query string.

Upon the determination of the user input, the query string is

then used to generate a parse tree. A depth-first-search is then

conducted to identify the leaf nodes. If a non-leaf node is

discovered that has descendent leaf nodes that are only

sourced from the user input then the query string that

generated the parse tree is malicious. The malicious queries

are then rejected by the proxy software leaving only normal

queries to be relayed to the database.

A novel method using the Data-Mining of database logs

was proposed to detect SQLIAs (Kim and Lee, 2014). The

database log files were used to identify queries executing on

the database. This file contains information on the query string

and the operations performed by the query execution. The

solution first generates a query tree (Buehrer et al., 2005).

These query trees were used to generate feature vectors using

feature extraction. A set of rules defined by the solution

developers transform the string and numerical data from the

query tree into a multidimensional numerical vector array. A

training dataset of these feature vectors containing samples of

normal and malicious queries was used to train a SVM to

generate a decision rule for the testing of future queries.

Kernel functions were then used to allow the solution to

determine a non-linear decision rule. Newly logged queries are

transformed into query trees from their associated log,

composed into feature vectors and compared by the SVM to

the decision rule obtained during the training phase. This

solution produced very high accuracy of 99.9% for select and

insert queries and 99.6% for stored procedures. The primary

disadvantage is that this solution can only be used for attack

detection and not prevention. This is due to the simple fact

that the query logs that the testing criteria are determined from

are only produced when a query is executed.

The combination of static and dynamic analysis techniques

were used as the basis of a preventative solution (Lee et al.,

2011). In this approach, the source code of a web application

is inspected to identify the possible SQL queries. The queries

are collected prior to the insertion of user input creating a

control query. The solution then dynamically monitors for

queries being generated at runtime. These queries are then

 3

processed by an attribute removal algorithm that removes all

data from the query that is contained within quotes as these

attributes will have no basis on the syntactic form of the

query. This reduced query is then compared using an XOR

logic operation to the control query gathered during the static

analysis. If this operation returns a result indicating that the

two queries are different, the user input must have some form

of injection input and it is discarded. This approach is accurate

and has very low time complexity as the XOR operation is

extremely light on processing. Unfortunately it requires a

static analysis which must be accomplished by either the

analysis of the web application source code or through the use

of a proxy server between the user and the web server.

A framework, using a machine learning approach,

implements an Intrusion Detection System that learns the

patterns of query strings (Valeur et al., 2005). It uses a

supervised learning training dataset to produce training

models. First the strings are parsed into syntactic trees for

feature extraction. Feature vectors are used to produce a model

of the parse trees of typical legitimate queries. Then the

training set queries are compared to these models and an

anomaly score is determined based on how much the training

set queries differ from the models. The solution is then able to

operate in a detection phase by intercepting new query strings,

extracting their features and comparing them to the models to

determine the queries anomaly score. If this score is greater

than the maximum anomaly score from the training phase, the

query is classified as an attack query and logged. The

approach proved to be capable of detecting queries that

deviated from the normal template due to the injection of

commands with a high rate of confidence. This approach is,

however, dependent on being supplied with a complete set of

legitimate queries during the training phase. Failure to do so

will result in false positives as legitimate queries not used for

training will have an increased anomaly score. It does mean

that the training set need only describe legitimate queries as all

those that differ from these queries are rejected as having high

anomaly scores. DoubleGuard is an intrusion detection system

that implements multitier detection. It models the network

behavior between the front-end web application and the back-

end database as well as any intermediate servers. This allows

the determination of attacks in the event an attacker bypasses

segments of the pipeline (Le et al., 2011).

Machine learning solutions have become a popular method

for SQL injection attack detection as they allow a probabilistic

representation of the problem to be deployed. This strengthens

the methods against novel attacks. A neural network solution

trained on normal and malicious HTTP requests can be used to

classify these requests although the solution required separate

instances for each website on shared hosts (Moosa et al.,

2010). SQLiGoT represents SQL queries as a collection of

token graphs and uses SVMs to detect attacks at the database

firewall layer (Kar et al., 2016). This solution does not require

multiple instances and is capable of protecting multiple web

applications simultaneously. Multiagent systems have been

used to produce an intrusion detection system to detect SQL

Injection attacks. idMAS-SQL is an architecture that employs

a number of algorithms to classify suspicious queries through

the use of Machine Learning classifiers including SVM and

artificial neural networks (Pinzón et al., 2013).

Our framework also employs machine learning for

classifying query requests but through the use of string kernels

(Lodhi et al., 2002), we replace the manual engineering of

attack features present in other works and instead allow our

machine learning system to determine its own solution based

on a training set of known queries.

III. SQLIA DETECTION FRAMEWORK

Whilst Machine Learning solutions have previously been

developed for the classification of SQLIAs, they are all

dependent on features carefully designed for the task. This

design task, named Feature Engineering, is a powerful method

for crafting highly informative mathematical representations

of the query data and is almost ubiquitous in Machine

Learning tasks. Despite its wide usage, this method can

introduce biases into the solution due to the manual

intervention such a task requires. Our method replaces this

manual design with a novel string kernel approach which

automatically converts the input string data into a high-

dimensional mathematical form. This form would be

impossible to utilize directly and therefore the dimensionality

is reduced through the computation of similarity with

landmark training strings. The classifier may then use this

automated representation to maximize the performance for the

given classification task, in this case the detection of SQLIAs.

This eliminates any potential bias introduced by human-

engineered measurements.

3.1. Design Concepts

The first phase of the operation of the SQLIA detection

framework is the collection of SQL statements from the web

application. This can be accomplished by routing outbound

messages containing the query statements to software utilizing

the proposed solution positioned on either the same web

server, or an additional proxy server.

These queries are then subjected to a binary classification

approach where the class label of the intercepted queries is

predicted and actions performed dependent on this prediction,

either by rejecting a malicious query or relaying a legitimate

query to the back-end database. The prediction is performed

by using learning models produced by the identification of

discovered patterns within a set of pre-classified training data.

In this framework, a Gap-Weighted String Subsequence

Kernel function is used to compute the similarity between

data. Feature Vectors generated from this similarity

computation between each string from the set of training

queries are then used to solve the binary classification problem

by the identification of patterns in the feature vectors produced

by the different classes of query statement. In order to place

query statements into a form ready for the string kernel, a data

pre-processing phase is performed were the strings are

manipulated into forms that emphasize the important SQL

features within the strings.

The SVM uses a Kernel Matrix 𝑄𝑖𝑗 to perform a training

 4

phase utilizing the training dataset feature vectors to generate

a classification model by determining a decision rule that

separates the two classes of feature vectors within a

multidimensional feature space. Upon the production of this

classification model, the SVM is ready to operate in a testing

(or detecting) phase. The testing phase is able to use the

classification model produced within the training phase to

predict a class for an unknown feature vector produced from a

new query statement intercepted by the solution.

3.2. Design Architecture

Like many Black Box solutions, this solution requires the

introduction of specially crafted input to build up a set of

query strings based on the input (Halfond et al., 2006). These

query strings are then used as the basis of the production of

decision rules to identify legitimate and attack queries. To

accomplish this, a set of input features is produced. This set is

composed of input strings of both normal and malicious intent.

These inputs are then introduced to the web application by

identification of the input fields. A string comparison

algorithm will identify the total number of queries generated

by the web application and link the associated input fields to

each query template. The rest of this solution then operates on

each individual query and new threads must be activated in

order to process the additional queries.

For each individual query, a set of query strings is

constructed to determine the morphology of the query within

the application code. Each field that was identified to be

associated with the query in the previous section is supplied

with either normal or malicious input. If any field is supplied

with malicious input, the query produced from this input is

classified as malicious. Approximately equal numbers of

normal and malicious queries must be constructed. The input

generator algorithm produces a set of queries based on the

inputs from an input features set containing examples of the

different forms of injection commands. Each query in this set

has been classified based on the input used to generate them as

either normal or malicious. This set of queries is the training

set as it will be responsible for the creation of the decision

rules for the classification of future queries during runtime

operation. This process is equivalent to the static analysis from

the related solutions but without the requirement of source

code access.

The next algorithm is designed to reduce the size of the

complete set of possible SQL queries for a web application by

manipulating the features of the query strings. This allows

multiple similar strings to produce the same ‘feature string’

which is used for classification. The main difficulty of Black

Box methods is describing the completeness of a query system

with a sufficient set of allowed queries. This algorithm is

capable of reducing the size of the complete set of possible

queries. Therefore, the training set can be of smaller size and

yet still be an acceptable sample set of the complete query set.

It is important that the training set be an accepTable sample

set to assist the machine learning algorithms in producing a

satisfactory model. During normal operation of a web

application the queries generated will contain differing

attribute data values in order for users to access the data they

require. As a result, this solution uses a modified version of

the attribute removal algorithm introduced by a related

solution (Lee et al., 2011). This algorithm removes substrings

from the input data that have no effect on the syntactic

structure of the query string. These must be removed or it is

possible that different data values may influence the

classification of the string which is unwanted. This algorithm

reduces the query string into a form that emphasizes the

syntactic features of the query. This algorithm is called the

Feature Manipulation Algorithm within the proposed solution.

The reduced query strings from the training set must then

undergo a process called feature extraction. This process will

convert the queries into mathematical feature vectors that can

be used to produce mathematical decision boundaries for the

production of training rules. Feature extraction was used in

previous research using string to numerical conversion rules

(Kim and Lee, 2014). In this solution a much more powerful

algorithm is deployed. The Gap-Weighted String Subsequence

Kernel Function is a multidimensional algorithm that can

compute the similarity between two strings by identifying the

occurrence of short sequences of characters of varying scales.

It has been shown to be effective for text classification (Lodhi

et al., 2002; Homoliak, 2012). This allows the computation of

similarity within a feature space of dimensionality ∑ Σ𝑘
𝑝
𝑘=1

where 𝛴 is the alphabet of the query strings and 𝑝 is the

maximum length of subsequence used for the evaluation. It is

referred to as a String Kernel as it is a kernel function that

operates on argument strings instead of vectors already in

mathematical form. Each reduced query string within the

training set has its similarity value calculated with every query

‘feature manipulated string’ within the training set including

its own string to produce the feature vector for the query. This

feature vector is a numerical vector of 𝑛 dimensionality and

each value is the string compared with strings {1, … , 𝑛} from

the training set. This represents the large feature space within

a 𝑛 dimension operational space. When this calculation is

performed for every query, a total of 𝑛 feature vectors are

generated. These feature vectors can be lined up into rows to

produce a 𝑛 × 𝑛 matrix. This is named a kernel matrix and is

the input accepted by the SVM during the training phase.

Fig. 1. A two dimensional feature space containing four vectors (two

classed negatively, and two positively) and their associated margins.

The solution then makes use of supervised machine learning

to utilize the pre-classified training set of feature vectors to

generate a decision boundary. The SVM was chosen for this

 5

function as it is a powerful but efficient binary classifier

(Cortes and Vapnik, 1995). Consider Figure 1 representing a

simple two dimensional feature space containing four feature

vectors, two positively classified and two negatively

classified.

Within Figure 1 there are a number of important vectors.

The vectors 𝒙− and 𝒙+ indicate the locations of two support

vectors, one classified negatively and one positively. The

vector 𝒖 is an unclassified test vector. Finally, the 𝒘 vector is

a vector normal to the separating hyperplane that describes

this hyperplane. The two side lines represent the best fitting

margins separating the negative support vectors and the single

positive support vector. As the top right hand corner positive

vector does not lie on or within the margin of the separating

hyperplane, it is not a support vector whereas the other three

vectors are.

If the vector 𝒖 lies upon the positive side of the separating

hyperplane, the inner product between 𝒘 and 𝒖 is greater than

an undefined constant 𝑐, 𝒘 ∙ 𝒖 ≥ 𝑐. This can be converted to

Equation 1 by defining a new constant 𝑏 where 𝑐 = −𝑏. This

equation becomes the first decision rule defined by the

hyperplane.

If 𝒘 ∙ 𝒖 + 𝑏 ≥ 0 then 𝒖 is a positive classified vector. (1)

This can be expanded for the vectors placed on the margins

and outside producing equations 2 and 3.

𝒘 ∙ 𝒙+ + 𝑏 ≥ 1 where 𝒙+ is a positive sample. (2)

𝒘 ∙ 𝒙− + 𝑏 ≤ −1 where 𝒙− is a negative sample. (3)

An additional variable can be introduced to simplify the

Equations 2 and 3 into a single decision rule. Name this new

variable 𝑦𝑖 such that 𝑦𝑖 = +1 for positive samples and

𝑦𝑖 = −1 for negative samples. This produces the new

decision rule shown in Equation 4.

𝒚𝒊(𝒙𝒊 ∙ 𝒘 + 𝑏) ≥ 1 for both 𝒙+ and 𝒙−.

𝒚𝒊(𝒙𝒊 ∙ 𝒘 + 𝑏) − 1 ≥ 0 (4)

For 𝒙𝒊 in the ‘gutter’, the limit of the margin, Equation 4 is

equal to zero. The width of the margins can be defined as

shown in Equation 5.

(𝒙+ − 𝒙−) ∙
𝒘

||𝑤||
.

𝒘

||𝑤||
 is the unit vector of 𝒘. (5)

The margin can be defined independently of the individual

vectors resulting in Equation six.

WIDTH = (𝒙+ − 𝒙−) ∙
𝒘

||𝑤||
=

2

||𝑤||
 (6)

The best decision boundary will maximize the size of these

margins so therefore we must maximize 2/||𝑤|| which is

equivalent to maximizing 1/||𝑤|| which can then be

determined as minimizing ||𝑤||. For mathematical

convenience this is formed into Equation 7.

𝑀𝐼𝑁 [
1

2
||𝑤||2] (7)

This operation can be accomplished through the use of

Lagrange Multipliers.

𝐿 =
1

2
||𝑤||2 − ∑𝛼𝑖[𝒚𝒊(𝒙𝒊 ∙ 𝒘 + 𝑏) − 1] (8)

The derivatives of L must be calculated and set to zero.

𝛿𝐿

𝛿𝑤
= 𝒘− ∑𝛼𝑖𝑦𝑖𝑥𝑖 = 0

∴ 𝒘 = ∑𝛼𝑖𝑦𝑖𝑥𝑖 where 𝛼𝑖 gives weighting to the training

vector 𝒙𝑖. (9)

𝛿𝐿

𝛿𝑏
= − ∑𝛼𝑖𝑦𝑖 = 0 ∴ ∑𝛼𝑖𝑦𝑖 = 0 (10)

Using Equation 8 and substituting in Equations 9 and 10

results in the production of Equation 11.

𝐿 =
1

2
(∑ 𝛼𝑖𝑦𝑖𝒙𝑖𝑖)(∑ 𝛼𝑗𝑦𝑗𝒙𝑗𝑗) − ∑ 𝛼𝑖𝑦𝑖𝒙𝑖 ∙ (∑ 𝛼𝑗𝑦𝑗𝑥𝑗𝑗)𝑖 −

 ∑𝛼𝑖𝑦𝑖𝑏 + ∑𝛼𝑖

𝐿 = ∑𝛼𝑖 −
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝑖 ∙ 𝒙𝑗𝑗𝑖

Maximize 𝛼 (11)

This leads to the new decision rule ∑𝛼𝑖𝑦𝑖𝒙𝑖 ∙ 𝒖 + 𝑏 ≥ 0

then u is positive.

This Hard Margin Support Vector Machine is very

inflexible. It can only create decision rules where the vectors

are never allowed to violate the margin boundaries. This can

lead to hyperplane overfitting and therefore an overfitting

decision rule if any of the support vectors are outliers. A better

approach is to use a Soft Margin Support Vector Machine.

This approach allows vectors to violate the margins at an

associated penalty cost. This can result in a superior decision

rule due to better generalization of the models despite the

possible incorrect classification of feature vectors in extreme

cases. As any vector that manipulates the decision boundary is

a support vector, any vectors that violate the margins are also

support vectors.

A new cost parameter 𝐶 is introduced. This parameter

identifies the cost associated with the violation of the margin

by a support vector 𝒙𝑖 by 𝜉𝑖. This modifies Equation 7 from

the Hard Margin Support Vector Machine into Equation 12.

1

2
𝒘𝑇

𝑤,𝑏,𝜉
𝑀𝐼𝑁 𝒘+ 𝐶 ∑ 𝜉𝑖

𝑙
𝑖=1

Subject to 𝑦𝑖(𝒘
𝑇𝜙(𝒙𝑖) + 𝑏) ≥ 1 − 𝜉𝑖 where 𝜉𝑖 ≥ 0. (12)

This solution makes use of this Soft Margin Support Vector

Machine as it allows the use of the cost parameter to produce

better fitting models without overfitting during the training

phase. The SVM optimization function is convex meaning that

it will not always optimize to the global minima for the model.

The SVM implementation used in this proposed solution also

 6

deploys a grid optimization algorithm in order to determine

the optimum value of the cost parameter. The model produced

by the training set will then be used as the basis of classifying

new queries based on the decision rule produced during the

testing phase. This is accomplished by assigning either a +1 or

-1 to the test queries 𝑦𝑖 value. Support Vector Machines are

natively linear classifier but as the query feature vectors are

likely not linearly separable. Kernel Functions allow feature

vectors that are not linearly separable to be separated within

higher dimensional space by mapping the feature vectors

using a kernel function shown in Equation 13.

Let ϕ(𝒙) be a transformation of space where 𝒙 ∈ ℝ𝑑,

ϕ(𝒙) ∈ ℝ𝑓 and 𝑓 > 𝑑 where 𝑓 and 𝑑 are integers.

We want to maximize ϕ(𝒙𝑖) ∙ ϕ(𝒙𝑗) and ϕ(𝒙𝑖) ∙ ϕ(𝒖)

where 𝒙𝑖 and 𝒙𝑗 are the feature vectors of training set points 𝑖

and 𝑗 1 ≤ 𝑖, 𝑗 ≤ 𝑛 where 𝑛 is the total number of training set

points. Finally, 𝒖 is the feature vector of a test query.

Propose a Kernel Function:

𝐾(𝒙𝑖 , 𝒙𝑗) = ϕ(𝒙𝑖) ∙ ϕ(𝒙𝑗) (13)

The algorithm is capable of using the decision rules

determined from this operation to classify unclassified query

string feature vectors based on their position relative to the

decision boundary within the feature space. The SVM

determines a decision boundary between the normal and

malicious query feature vectors such that the margin between

both is maximized. This decision boundary is used to create a

model that contains the decision rules for future classification.

The production of this model signifies the end of the training

phase and the solution now operates during web application

runtime.

During runtime, real world user input is used to generate

queries. These queries are intercepted by the solution and are

processed by the Feature Manipulation Algorithm that extracts

attribute data that is not of importance to the string syntactic

form. It is then processed by the Gap-Weighted Subsequence

Kernel Function that generates a feature vector for the new

test query string by computing the similarity value of the test

query with every query string in the training set. This feature

vector is put into a kernel matrix form producing a 1 × 𝑛

matrix (a row vector created by a transpose of the feature

vector). This matrix is then introduced to the SVM running in

testing mode. The SVM uses the model generated during the

training phase to classify the test query. The query is then

logged to file and if the SVM classifies the query as malicious

it is rejected. If the query is classified as normal it is then

relayed as normal to the back-end database. Figure 26 on the

last page of the paper demonstrates the operation of the

SQLIA detection framework as well as path of data flow

throughout the solution.

IV. FEATURE EXTRACTION

SQL queries intercepted by the solution can have a large

range of accepTable user input. This user input is of great

importance in defining the semantics of a query string but has

no effect on the syntactic form of the query. Different types of

SQL Injection attacks exhibit the same primary characteristic;

the injected input alters the syntactic form of the query. The

string kernel function is unable to differentiate between user

input used to define attribute values and actual SQL

commands isolated from the attributes that alter the function

of the query. As a result, the attribute values must be removed

from the strings before similarity evaluation. In a previous

solution, the attribute values were removed in order to

compare the syntactic form of testing query strings to the

query template extracted by static analysis of the web

application source code (Lee et al., 2011). The Feature

Manipulation Algorithm present in this solution is an

extension of this original design.

Another reason to remove unneeded substrings from the

query string before testing is due to the operation of the Gap-

Weighted String Subsequence Kernel function. The total set of

characters used between two strings is defined as the alphabet

𝛴. The time complexity of this function is dependent on this

alphabet 𝛴 for the two strings undergoing the comparison. The

Feature Manipulation Algorithm can remove the attribute

values that are unneeded for the learning process and

potentially reduce this alphabet to the reduced alphabet 𝜎

where 𝜎 ⊆ Σ. This reduced alphabet allows the faster

computation of the similarity between the two attribute-

removed strings. The string is read in by the function. All

double quotation marks are converted to single quotation

marks as these SQL operators are interchangeable. This

simplifies the next operation, reduces the size of the alphabet

and reduces the number of training inputs required to produce

a full set of training queries of satisfactory sample size to the

complete query set. The algorithm then iterates through the

characters. Attribute values are removed by identifying

quotations and removing characters after the quotation marks

until the next quotation mark is discovered. This prevents

substrings that do not affect the syntactic form of the query

from being included in the string kernel function.

Additionally, numerical data not located within the removed

quoted text is identified and converted into the numerical

placeholder ‘1’. This prevents differing numerical data from

altering the feature set of the strings. It also simplifies the size

of the alphabet and the number of training inputs required.

Finally, all characters after the comment operator are

removed. This compensates for the ability of comment

operators to result in ‘uneven sets’ of quotation marks

disrupting the attribute removal.

These operations performed in string space have a powerful

effect on the feature vectors of the query strings. By removing

string elements that do not contain syntactic information, the

feature vectors of queries demonstrating similar construction

are clustered within the feature space allowing for improved

operation of the SVM classifier. A similar operation could be

accomplished by making use of an unsupervised clustering

algorithm on the feature vectors of the query strings and then

moving the vectors towards the cluster centroid but at an

increased processing requirement. The correct clustering of

similar syntactic query strings cannot be guaranteed using

unsupervised learning as prior to feature manipulation the

feature vectors of similar query strings can be spread over a

 7

large area within the feature space. Figure 2 demonstrates the

feature vector clustering effect within the feature space.

Fig. 2. A demonstration of the clustering of the feature vectors of similar

query strings in the feature space after the processing of the Feature

Manipulation Algorithm performing all operations in string space.

The Feature Manipulation Algorithm returns strings with

their attribute values removed and with important features

enhanced. Feature extraction must be performed on the strings

to transform them into numerical feature vectors. Feature

extraction uses rules to convert properties of the strings into

multidimensional vectors where each dimension relates to a

specific property of a string. The SVM requires every output

string from the Feature Manipulation Algorithm to be

transformed into feature vectors in order to generate models.

Given an input query string, new features must be computed

depending on the Euclidean distance proximity to ‘landmarks

- 𝜄’ within the input space. Equation 14 demonstrates how the

features are constructed.

𝑓𝑛 = 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥, 𝜄𝑛) where 𝑥 is the input string. (14)

Appropriate ‘landmarks’ must be chosen to produce a set of

features that can appropriately separate the legitimate and

malicious manipulated query strings within the feature space,

a space of dimensionality equal to the number of features

produced by the ‘landmark’ comparisons. An acceptable

method of assigning ‘landmark’ strings is by selecting each

query string within the training set. This is the method utilized

in this proposed solution and is the reason why the feature

vectors have the same dimensionality as the number of query

strings within the training set. Kernel Functions allow

classified input vectors that are not linearly separable to be

differentiated within higher dimensional space by mapping the

inner products between the input vectors using a kernel

function. String Kernel Functions are an alternative to explicit

feature extraction as they allow the direct computation of the

similarity between two strings. String Kernel Functions are

defined as the inner products between the features of two

argument strings. There are a number of String Kernel

Functions that extract specific string features and use them to

calculate the similarity value.

The String Subsequence Kernel was published in the

Journal of Machine Learning in 2002 (Lodhi et al., 2002;

Rouso and Shawe-Taylor, 2005). It was used as part of a novel

approach to classifying text documents. These kernel

functions use sequence alignment techniques developed for

string-based genetic sequence research as an alternative to

feature extraction. They consider strings as a collection of

symbol sequences. The Subsequence Kernel is based on the

identification of a set of sub-sequences within input strings.

This allows the calculation of the similarity between two

strings by defining a length of substring to identify and

producing a multidimensional feature extraction identifying

the presence of each possible combination of the alphabet 𝛴 of

the string over the maximum subsequence length 𝑝 and the

total dimensionality of the string vectors is given by Equation

15.

𝐷𝐼𝑀(𝐺𝑊𝑆𝑆𝐾) = ∑ Σ𝑘
𝑝
𝑘=0 (15)

The String Subsequence Kernel can be defined through its

mapping of k-length substrings between two input strings. The

value of this operation will be non-zero if any given string

subsequence occurs in both input strings even if it is not

contiguous in either of them. All possible characters forming

these k-length substrings are collected into an alphabet which

is a subset of the complete possible set of characters. Define Σ

as a finite alphabet of characters that can be used to construct

any string. A string is a sequence of characters from Σ

including the empty sequence. For two strings 𝑠, 𝑡, |𝑠| is the

length of string 𝑠 = 𝑠1, … , 𝑠|𝑠| and |𝑡| is the length of string 𝑡

= 𝑡1, … , 𝑡|𝑡|. The string 𝑠𝑡 is defined as the concatenation of

the two strings 𝑠 and 𝑡. Further, string 𝑠[𝑖: 𝑗] is a substring

𝑠𝑖 … 𝑠𝑗 of 𝑠.

 We therefore can define 𝑢 as a subsequence of 𝑠 if there

exists indices:

𝑖 = (𝑖1, … , 𝑖|𝑢|) with 1 ≤ 𝑖1 < ⋯ < 𝑖|𝑢| ≤ |𝑠| such that

𝑢𝑗 = 𝑠𝑖𝑗 for 𝑗 = 1,… , |𝑢|, 𝑢 = 𝑠[𝑖]

The length of 𝑖 in 𝑠 is 𝑖|𝑢| − 𝑖1 + 1

Σ𝑛 is the set of all finite strings of length 𝑛 and Σ∗ is the set

of all possible strings. This leads to Equation 16.

Σ∗ = ⋃ Σ𝑛∞
𝑛=0 (16)

 Every possible subsequence of a string can be defined

within a feature space of the dimensionality of the alphabet set

to the power of the maximum size of subsequence. The

dimensions of this feature space is given by 𝐹𝑛 = ℝ
Σ𝑛 .

 Feature mapping 𝜙 for a string 𝑠 is given by defining the 𝑢

coordinate 𝜙𝑢(𝑠) for each 𝑢 ∈ Σ𝑛. The value of this

 8

coordinate is given by 𝜙𝑢(𝑠) = ∑ 𝜆𝑙(𝑖)𝑖:𝑢=𝑠[𝑖] for some 𝜆 ≤ 1.

The variable 𝜆 is called the gap decay factor and determines

the cost penalty due to non-contiguous substrings. These

coordinates measure the number of sub-sequences in the string

𝑠 weighting them according to their lengths.

 The Inner Product of the feature vectors for the string 𝑠
and 𝑡 give a sum over all common sub-sequences weighted

according to their frequency of occurrence and lengths. This

inner product is given by Equation 17.

𝐾𝑛(𝑠, 𝑡) = ∑ 〈𝜙𝑢(𝑠) ∙ 𝜙𝑢(𝑡)〉

𝑢∈Σ𝑛

= ∑ ∑ 𝜆𝑙(𝑖)

𝑖:𝑢=𝑠[𝑖]𝑢∈Σ𝑛

∑ 𝜆𝑙(𝑗)

𝑗:𝑢=𝑡[𝑗]

= ∑ ∑ ∑ 𝜆𝑙(𝑖)+ 𝑙(𝑗)

𝑗:𝑢=𝑡[𝑗]𝑖:𝑢=𝑠[𝑖]𝑢∈Σ𝑛

 (17)

The direct computation involves 𝑂(|Σ|𝑛) time and space

complexity. This Equation can be used to define a recursive

calculation for the kernel shown in Equation 18.

𝐾𝑖
′(𝑠, 𝑡) = ∑ ∑ ∑ 𝜆|𝑠|+|𝑡|− 𝑖𝑖− 𝑗𝑖+2𝑗:𝑢=𝑡[𝑗]𝑖:𝑢=𝑠[𝑖]𝑢∈Σ𝑖

where 𝑖 = 1,… , 𝑛 − 1 (18)

Equation 18 is then calculated from 1 to 𝑛 − 1 as shown in

Equation 19 to 22. Equation 23 then uses this recursive

calculation to compute the full subsequence kernel.

 𝐾′0(𝑠, 𝑡) = 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠, 𝑡, (19)

 𝐾′𝑖(𝑠, 𝑡) = 0, 𝑖𝑓 min(|𝑠|, |𝑡|) < 𝑖, (20)

 𝐾𝑖(𝑠, 𝑡) = 0, 𝑖𝑓 min(|𝑠|, |𝑡|) < 𝑖, (21)

𝐾′𝑖(𝑠𝑥, 𝑡) = 𝜆𝐾′𝑖(𝑠, 𝑡) + ∑ 𝐾′𝑖−1(𝑠, 𝑡[1: 𝑗 − 1])𝜆
|𝑡|−𝑗+2,

𝑗:𝑡𝑗=𝑥

𝑖 = 1,… , 𝑛 − 1, (22)

𝐾𝑛(𝑠𝑥, 𝑡) = 𝐾𝑛(𝑠, 𝑡) + ∑ 𝐾′𝑛−1(𝑠, 𝑡[1: 𝑗 − 1])𝜆
2.

𝑗:𝑡𝑗=𝑥

 (23)

This method penalizes the length of the strings as they grow

through the use of the gap decay factor. It is important once

this calculation has been performed to normalize the final

similarity value. This is important as the length of two strings

should be independent of the similarity value. Equation 24

shows how this is performed through the introduction of a new

embedding factor.

𝐾(𝑠, 𝑡) = 〈𝜙̂(𝑠) ∙ 𝜙̂(𝑡)〉 = 〈
𝜙(𝑠)

||𝜙(𝑠)||
∙
𝜙(𝑡)

||𝜙(𝑡)||
〉

=
1

‖𝜙(𝑠)‖‖𝜙(𝑡)‖
〈𝜙(𝑠) ∙ 𝜙(𝑡)〉

=
𝐾(𝑠,𝑡)

√𝐾(𝑠,𝑠)𝐾(𝑡,𝑡)
 (24)

Each string kernel will form different string vectors with

different dimensions and for this string kernel we consider a

vector with an associated space named ‘gap-weighted string

subsequence space. Each dimension in this string space is

formed by one of the different string combinations determined

by Equation 15. Consider a complete alphabet 𝛴 = 2000, the

maximum subsequence length is 𝑝 = 𝛴. This produces a

string vector of approximate dimensionality 106602. However,

almost every string will contain a small subset of these

substrings resulting in sparse string vectors with most

dimensions evaluating to zero. The reduced alphabet,

determined by the identification of the alphabet used by the

query strings, string vectors will be of significantly reduced

dimensionality of approximately 1036. These string vectors

will still retain significant sparsity. It is within this space that

the Gap-Weighted String Subsequence Kernel will compute

the Euclidean distance between the input strings with identical

string vectors returning one, dropping to zero as the distance

between the string vectors increases towards infinity. This

action allows the description of the impossible-to-produce

multidimensional vector of string 𝑥 as a lower dimensional

feature vector 𝒇 shown in Equation 25.

𝒇 = 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥, 𝜄𝑖) where 𝑖 ∈ {1, … , 𝑛}, 𝒇 ∈ ℝ𝑛 (25)

Co-occurrences of combinations of the substrings between

the two strings result in a higher similarity evaluation. This

entire calculation is accomplished without requiring the

explicit definition of the two multidimensional string vectors.

The Gap-Weighted Subsequence Kernel is similar to the

Subsequence Kernel but it also takes gaps between each

multidimensional feature into consideration. A gap penalty

named the gap decay factor 𝜆 ∈ {0, … ,1} is used to define the

reduction in similarity evaluation due to non-contiguity

between the co-occurrences of multidimensional features

within the two input query strings.

Consider the two strings ‘the car parked’ and ‘at the tree’.

The alphabet of these two strings is a set of all the characters

within them including the space character. This alphabet is

displayed in Equation 26.

Σ = {𝑎, 𝑐, 𝑒, ℎ, 𝑘, 𝑝, 𝑟, 𝑡, _}
Where _ represents the space character. (26)

It is possible to determine the full set of 𝑘 = {1, … , 𝑛}
substrings possible from this alphabet. For 𝑘 = 1 the set is

the same as the alphabet. For 𝑘 = 2 the set of possible

substrings is shown in Figure 3.

 9

There are Σ2 possible combinations:

{

(𝑎, 𝑎) (𝑎, 𝑐)(𝑎, 𝑒)(𝑎, ℎ)(𝑎, 𝑘)(𝑎, 𝑝)(𝑎, 𝑟)(𝑎, 𝑡) (𝑎, _)

(𝑐, 𝑎) (𝑐, 𝑐)(𝑐, 𝑒)(𝑐, ℎ)(𝑐, 𝑘)(𝑐, 𝑝)(𝑐, 𝑟)(𝑐, 𝑡) (𝑐, _)

(𝑒, 𝑎) (𝑒, 𝑐)(𝑒, 𝑒)(𝑒, ℎ)(𝑒, 𝑘)(𝑒, 𝑝)(𝑒, 𝑟)(𝑒, 𝑡) (𝑒, _)

(ℎ, 𝑎) (ℎ, 𝑐)(ℎ, 𝑒)(ℎ, ℎ)(ℎ, 𝑘)(ℎ, 𝑝)(ℎ, 𝑟)(ℎ, 𝑡) (ℎ, _)

(𝑘, 𝑎) (𝑘, 𝑐)(𝑘, 𝑒)(𝑘, ℎ)(𝑘, 𝑘)(𝑘, 𝑝)(𝑘, 𝑟)(𝑘, 𝑡) (𝑘, _)

(𝑝, 𝑎) (𝑝, 𝑐)(𝑝, 𝑒)(𝑝, ℎ)(𝑝, 𝑘)(𝑝, 𝑝)(𝑝, 𝑟)(𝑝, 𝑡) (𝑝, _)

(𝑟, 𝑎) (𝑟, 𝑐)(𝑟, 𝑒)(𝑟, ℎ)(𝑟, 𝑘)(𝑟, 𝑝)(𝑟, 𝑟)(𝑟, 𝑡) (𝑟, _)

(𝑡, 𝑎) (𝑡, 𝑐)(𝑡, 𝑒)(𝑡, ℎ)(𝑡, 𝑘)(𝑡, 𝑝)(𝑡, 𝑟)(𝑡, 𝑡) (𝑡, _)

(_, 𝑎) (_, 𝑐)(_, 𝑒)(_, ℎ)(_, 𝑘)(_, 𝑝)(_, 𝑟)(_, 𝑡) (_, _) }

Fig. 3. The different possible features of strings utilizing the alphabet of

Equation 25.

For a given value of 𝑘, the Gap-Weighted Subsequence

Kernel can compute the similarity between two strings based

on the co-occurrence of 𝑘-length substrings by using a

dynamic programming approach. This approach also has the

advantage of calculating all the similarities for scales between

1 and 𝑘 without any additional processing overhead. This

results in the production of a set of real valued numbers

{𝐾(1), … , 𝐾(𝑝)} where 𝐾(𝑘) is the computed similarity

between two input strings over 𝑘-length substrings and 𝑝 is

the maximum length of substrings to be computed. This set of

numbers must be used to determine a single similarity value

that will be used in the kernel matrix 𝑄𝑖𝑗 . These requirements

mean that the Gap-Weighted Subsequence Kernel must use a

total of 𝑝 + 2 input variables where 𝑝 is the maximum length

of substrings to be used in the similarity evaluation. These

variables are the maximum substring length 𝑝, the gap decay

factor 𝜆 which is used to determine how heavily substrings are

penalized for not being contiguous within the two input strings

and a set of coefficients that determine the weighting of the

specific scale similarity evaluations {𝐾(1), … , 𝐾(𝑝)} when

they are used as part of a summation to generate the similarity

value used for 𝐾(𝑥𝑖 , 𝑥𝑗) within 𝑄𝑖𝑗 . This normalised

summation is shown in Equation 27. This calculation is

performed for every 𝑥𝑖 and 𝑥𝑗 string within the training set to

create the 𝑄𝑖𝑗 kernel matrix and for a test query 𝑢 with each

training set string 𝑥𝑖 to create a ‘relative similarity’ feature

vector for the purpose of the classification of 𝑢.

𝐾(𝑥𝑖 , 𝑥𝑗) =
1

∑ 𝐶𝐾[𝑞]
𝑝
𝑞=1

∑ 𝐶𝐾[𝑞]𝐾[𝑞]
𝑝
𝑞=1 (27)

Where 𝑝 is the maximum subsequence size and 𝐶𝐾[𝑞] is the

weighting coefficient of 𝐾[𝑞].

The Kernel Matrix is written into a data file in a format that

the SVM library can read demonstrated in Figure 4.

𝑦1 0: 1 1: 𝐾(𝑥1, 𝑥1) 2: 𝐾(𝑥1, 𝑥2) 𝑗: 𝐾(𝑥1, 𝑥𝑗)

𝑦2 0: 2 1: 𝐾(𝑥2, 𝑥1) 2: 𝐾(𝑥2, 𝑥2) 𝑗: 𝐾(𝑥2, 𝑥𝑗)

𝑦𝑖 0: 𝑖 1: 𝐾(𝑥𝑖 , 𝑥1) 2: 𝐾(𝑥𝑖 , 𝑥2) 𝑗: 𝐾(𝑥𝑖 , 𝑥𝑗)

 ⋮ ⋮ ⋮ ⋮ ⋮
Fig. 4. The data file of the training phase Kernel Matrix in the LibSVM

format.

It is therefore possible to enter any numerical value to act as

the coefficient for the similarity value of a particular

subsequence length. This allows solutions to be created that

can scale the contribution of subsequence lengths based on

their ability to produce a superior classification model. The

strength of using a Gap-Weighted String Subsequence Kernel

is the ability to compute similarity based on multidimensional

features of query strings without the explicit generation of

these multidimensional feature vectors. The program simply

iterates through the set of possible combinations for an

alphabet of all the characters within the two strings up to a

given maximum scale length cumulatively summing the

contributions as it continues. These multidimensional feature

vectors could never be explicitly evaluated for larger scale

lengths due to the spatial complexity of such an operation. The

memory requirements to store such a large quantity of data

would overwhelm any system seeking to make use of this

solution. Therefore this string kernel allows the processing of

these feature vectors without ever storing them in memory.

V. EXPERIMENTS

Using the proposed method, a proof-of-concept, fully self-

contained C#.NET software capable of generating Select and

Insert queries was produced. The software would attempt to

classify the generated queries based on models it had created

by training on queries generated by passing specially crafted

user input through the Select and Insert query generators. At

no point was the detection component allowed access to the

component containing the unsanitised query template code as

this would pollute the objectives of the demonstration

software. A SVM capable of utilizing pre-computed kernel

inputs was sourced. LibSVM is a library for SVMs and is

widely used. This library is equipped with an ‘SVC’ Support

Vector Classification module (Chang and Len, 2007). The

LibSVM library is written in Java and therefore a translated

library for the .NET languages was required for the C#.NET

platform. A library named SVM was utilized. Developed by

Matthew Johnson, it is a clean .NET conversion of the

LibSVM Java version 2.89. Figure 5 displays a screenshot of

the Graphical User Interface of this demonstration software.

Fig. 5. The Graphical User Interface of the demonstration software.

The evaluation of the proposed solution was conducted on a

 10

machine operating an Intel i7-4770k processor clocked at 4.4

Ghz with 8 Gb of RAM running Windows 7 Professional 64-

Bit with Service Pack One installed. As the demonstration

software is completely self-contained, no messages are sent

over the network and therefore there are no network related

time delays. The input feature set data was produced manually

and contained values that identified a set of user inputs

containing regular input and injection commands combined

with a class indicator showing if the input is malicious or

legitimate.

5.1. Evaluation conditions

The Amnesia testbed dataset was obtained from the

Amnesia authors (Halfond and Orso, 2005). This dataset

contains a number of attack queries for seven different web

applications. These queries were used to construct two testing

datasets, one containing Select queries in the syntactic form of

the demonstration software select query and one containing

insert queries, again in the syntactic form of the demonstration

software insert example query. The Select query dataset

contains 232 queries, 116 normal and 116 malicious. These

queries feature multiple potential types of SQL Injection

Attack and normal queries that attempt to confuse the

algorithm by appearing similar to the injection attacks as well

as more regular examples. The Insert query dataset follows the

same approach but only has 170 queries, 85 normal and 85

malicious, due to a number of types of SQL Injection Attack

not being possible without piggy-back type attacks on this

form of query string.

Each dataset was tested by computing the peak accuracy,

training time and testing time for the 𝑝 = 1 subsequence

length which is equivalent to the linear string kernel approach.

This gives the ground state accuracy and processing overhead

of the Feature Manipulation Algorithm combined with the

SVM. The two length subsequence size was then used to

generate a full set of detection accuracy and processing time

data based on the combinations of possible coefficients

weighting the kernel function scale lengths. This was repeated

for the three length subsequence size with the length one

coefficient locked to one. This set of data was used to

determine the effect on the detection accuracy, the rate of false

positive and false negative events and the processing time by

the different relative weightings of the feature scales. The

maximum subsequence size was then increased incrementally

by one with the coefficients locked at one to determine the

changes to accuracy and processing time by using larger

feature scales. These two tests show the relative change in

detection accuracy, the rate of false positive and false negative

events, the model training time and the query string processing

time by using the Gap-Weighted String Subsequence Kernel

instead of a simple linear string kernel.

The Evaluation focused on three major indicators of

performance. The detection accuracy, given by the occurrence

of true positive, true negative, false positive and false negative

events used to compute the precision and recall for each

testing dataset and finally the F-Measure harmonic mean. The

time complexity indicating the amount of processing time

required for the evaluation of each query and the spatial

complexity identifying the amount of memory required for

processing these datasets.

The Precision is the ratio of detected SQL Injection Attacks

to the total number of queries classified as SQL Injection

Attacks. It is an indication of a bias of the SVM model

towards producing false positive results. The more false

positive events the model generates the lower the value of the

Precision. No false positive events result in a Precision value

of one. Equation 28 shows the Precision.

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (28)

The Recall is the ratio of detected SQL Injection Attacks to

the total number of actual SQL Injection Attack queries within

the testing dataset. It is an indication of a bias of the SVM

model towards producing false negative results. The more

false negative events the model generates the lower the value

of the Recall. No false negative events result in a Recall value

of one. Equation 29 shows the Recall.

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (29)

The Precision and Recall together can be then used to

generate the F-measure of the testing dataset. This value is a

harmonic mean of the Precision and the Recall and is an

excellent mechanism for describing the actual detection

accuracy of the SVM classification. The F-Measure is given

by Equation 30.

 𝐹1 =
2 ×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (30)

The time complexity is an important consideration in the

operation of this solution. Using the Stopwatch function,

specific regions of code have their operation time recorded.

The first stopwatch records the complete processing time per

test query and records it into the log file alongside any

relevant query information. Further stopwatches were

implemented to display processing time information into the

program user interface. The complete processing time for the

test dataset is displayed alongside the average processing time

per query determined by the previous result divided by the

number of queries within the testing dataset. A final stopwatch

was added to determine the training time for the SVM.

5.2. Detection accuracy

The first test set required the input generator to use the

feature dataset to generate a full training dataset using the

Select query. The 23 entries within the feature dataset created

86 Select queries of which 46 were legitimate queries and 40

were malicious SQL Injection Attacks. These queries were

then used for training a model for the ground-state 𝑝 = 1 case.

This reflects the operation of the Feature Manipulation

Algorithm and the SVM operating with a linear string kernel.

This linear string kernel counts the co-occurrence of

characters within the two strings undergoing comparison. This

 11

trained model took 2037 milliseconds to train. The Amnesia

dataset derived Select query dataset was then classified using

this model. There were 232 total queries of which 116 were

normal queries and 116 were malicious queries. 114 of the

malicious queries were successfully identified leaving 2 false

negatives. The classification of the normal queries was less

successful with only 57 correctly classified leaving 59 false

positives. This gave the ground state a precision of 65.9% and

a recall of 98.3%. The F-measure detection accuracy was

78.9%.

The same test was then performed for the Insert query. As

the Insert query within the demonstration software featured

four user input locations, the 23 feature dataset entries created

132 training set queries of which 80 were normal queries and

52 were SQL Injection Attacks. A new model was trained

using this dataset and took 6563 milliseconds to train. The

Amnesia testbed derived Insert query dataset was then

classified using this model. There were 170 total queries of

which 85 were normal queries and 85 were malicious queries.

All 85 malicious queries were successfully classified leaving

zero false negatives. However, only 45 normal queries were

correctly classified leaving 40 false positives. This gave the

ground state a precision of 68% and a recall of 100%. The F1

detection accuracy was 81%.

The difficulties detecting the normal queries were due to

unsanitised quotation marks within the normal queries. These

queries contained SQL code but not in a position where they

would produce injection commands when concatenated into

the query strings. However, the presence of quotation marks in

the string still caused overly detailed feature manipulated

strings to be introduced to the string kernel algorithm resulting

in confusion. As most regular user input into query strings

does not use quotation characters, a second set of Select and

Insert test queries were produced that mirror the first testing

set but the normal queries lack quotation mark input. The

𝑝 = 1 test used above was then applied to these two new

datasets named Select-Fix and Insert-Fix. The Select-Fix

dataset when tested on the previously trained model resulted in

a ground state detection accuracy of 99.1%. Using the

previous model on the Insert-Fix dataset resulted in a ground

state accuracy of 100%.

Next all four test datasets (Select, Insert, Select-Fix, Insert-

Fix) were used to generate surfaces for the 𝑝 = 2 state. In this

state there are three additional variables, the gap decay factor

and the coefficients for length one and length two features.

The gap decay factor can take values between zero and one. It

was found that this variable made very little difference to

detection accuracy so long as it was kept under 0.5. The

detection accuracy begins to drop to the linear string kernel

state if the gap decay factor is set higher than this value.

Therefore the value of the gap decay factor was set to 0.0001

and remains so for the rest of the evaluation.

The coefficients for the scaled features can be of any value

but as it is the proportionality between the coefficients that

determines the relative weighting of features, values between

plus one and minus one with a gap of 0.2 were used to

generate 121 possible combinations. The SVM was retrained

generating 121 different models for these possible

combinations and the four datasets were applied to these

models to determine their detection accuracy for the 𝑝 = 2

state.

The Select dataset resulted in a peak accuracy of 98.3%

with the coefficient of scale one features at 0.4 and scale two

features at 1.0. The surface plot of this evaluation showing the

change in detection accuracy against the range of possible

coefficient values is shown in Figure 6. The plot clearly shows

that the strongest peaks of accuracy occur as the coefficients

are similar in value and the largest troughs occur when they

are opposite in value. This is due to the constructive

interaction of both scale sizes when summing to produce the

similarity evaluation. The model is able to train on features of

both sizes as they both contribute strongly to the similarity

evaluation. When both coefficients are opposite in value the

features neutralize leaving the SVM with very little useful

information to train on resulting in a heavy loss of accuracy.

The accuracy seems to vary diagonally across the plot from

peaks to troughs and to peaks again. This is because it is not

the value of the coefficients that are important but only their

relative proportionality. For the Select dataset, adding two-

length sub-sequences to the similarity evaluation results in a

substantial jump in detection accuracy.

Fig. 6. The p = 2 state detection accuracy surface plots of the Select test
dataset.

 12

Fig. 7. The 𝑝 = 3 state detection accuracy surface plots of the Select test

dataset.

The analysis was then extended to the 𝑝 = 3 state. As

positive values for the coefficient of one length sub-sequences

proved to provide a boost in detection accuracy for the 𝑝 = 2

evaluation, this coefficient was locked to one and the

coefficients for the two and three length sub-sequences were

varied next. This did not contribute to the peak accuracy of the

Select dataset compared with the previous result of 98.3%.

However, this set of coefficients was limited by the locked

coefficient for the one length sub-sequences and a high

accuracy was still maintained. Figure 7 demonstrates this

𝑝 = 3 experiment and the same shape of surface can be seen

as the positive values of the two and three length feature

coefficients result in a peak over the ground state accuracy and

the negative values result in decay to the ground state

accuracy as the higher dimensional features similarity

evaluations cancel each other out. These experiments prove

that there exist solutions to the gap-weighted subsequence

kernel that enhance the accuracy of the Select queries over the

linear string kernel.

This analysis was then performed on the Select-Fix dataset.

As the linear string kernel accuracy was much higher on this

dataset, the multidimensional feature extraction did not

produce quite so obvious a set of peaks. However, there

existed multiple solutions to the gap-weighted subsequence

kernel in the 𝑝 = 2 state that resulted in an accuracy of 100%

compared to the ground states 99.1%. The 𝑝 = 3 state was a

similar shape also showing the presence of 100% detection

accuracy solutions. The surface plots of these two analyses

can be seen in Figures 8 and 9.

Fig. 8. The p = 2 state detection accuracy of the Select-Fix test dataset.

Fig. 9. The p = 3 state detection accuracy of the Select-Fix test dataset.

Next, the Insert dataset was subjected to the 𝑝 = 2 test. The

Insert dataset resulted in a peak accuracy of 88.4% with the

coefficient of scale one features at minus 0.2 and scale two

features at minus 0.8. The surface plot of this evaluation

showing the change in detection accuracy against the range of

possible coefficient values is shown in Figure 10. The Insert

queries did not benefit from the multidimensional feature

extraction to the same degree as the Select queries did.

However, solutions existed that improved over the linear

string kernel detection accuracy.

Fig. 10. The p = 2 state detection accuracy of the Insert test dataset.

 13

Fig. 11. The p = 2 state detection accuracy of the Insert-Fix test dataset.

As the Insert-Fix dataset had already achieved an accuracy

of 100% in the ground state linear state model, using higher

dimensional feature extraction was not going to improve the

model. In fact, as can be seen in Figure 11, the 𝑝 = 2 state

resulted in multiple solutions that have a loss of accuracy from

the linear ground state. This demonstrates that the proposed

solution in its current form is best for simple Insert-Fix queries

when using a linear string kernel. As for the original Insert

dataset without quotation marks restricted, the higher

dimensional feature extraction does produce solutions with

higher detection accuracy. However, as discussed above,

superior accuracy may not be the best solution if the rate of

false negatives increases. Unfortunately for the solutions with

88.4% accuracy and others with 86.4% accuracy have resulted

in false negative events compared with the ground state with

zero events. The result data does however show solutions with

a mild boost in accuracy over the ground state from 81% to

84.1% whilst still maintaining zero false negative events.

Therefore, despite the confusion caused by the poorer

multidimensional feature extraction, higher dimensional

solutions do exist that improve upon the ground state albeit at

a much less impressive level as the solutions for the Select

type queries. The strength of the multidimensional feature

extraction is dependent on the accuracy of the linear string

kernel. Poorer models using this kernel allow for more

improvement when using higher dimensional features.

The previous experiment shows that there are solutions for

the 𝑝 = 2 and 𝑝 = 3 states that improve on the ground state

detection accuracy without introducing new false negative

events. The Select type query classification is greatly

strengthened by the higher dimensional feature extraction. The

Insert type queries do not gain as much of an accuracy

increase but still reduced the number of false positives by a

small amount. Meanwhile the datasets that removed quotation

marks in the legitimate input showed that the Select-Fix

dataset obtained a small increase reducing the false negative

rate to zero. Unfortunately the already perfect classification of

the Insert-Fix set was thrown off by the higher dimensional

features resulting in the generation of false negatives.

Therefore, the multidimensional feature extraction boosted

three of the four sets but resulted in a loss of accuracy for the

fourth.

The largest increases in detection accuracy occurred when

the coefficients shared signs. In these solutions the higher

dimensional features constructively interact to generate

similarity values that reflect these features and as a result

assist in the classification of the query strings. It would be

computationally extremely difficult to probe the full set of

coefficient combinations for higher subsequence sizes.

Therefore, to test these higher subsequence lengths, the

coefficients will be set to one so they are constructively

interacting. This is not necessarily the best case and in the

previous experiment it was seen that whilst all the coefficients

shared the same sign, they didn’t necessarily share the same

value for maximum detection accuracy. However, this solution

should be sufficient to determine the enhancement to detection

accuracy produced by using larger scale features.

For this experiment, each dataset was tested with the

following conditions. The gap decay factor was set to 0.0001

as it was in the previous experiment. The maximum

subsequence length was tested for every integer value from

one to ten. All the coefficients of the scale one to ten features

was set to one. The first dataset tested was the full Select

dataset. The detection accuracy of the dataset quickly rises

when higher dimensional features are used in the similarity

evaluations. However, the accuracy quickly peaks at 𝑝 = 2

and 𝑝 = 3 with a massive decrease in false positives without

an increase in false negatives. Unfortunately, extending to

higher dimensional features then causes the rate of false

negatives to increase decreasing the detection accuracy. This

experiment cannot guarantee that there are not solutions at

these higher subsequence lengths that will further increase

accuracy but it appears that superior results are being derived

from features of length two or three characters in size. This is

likely due to the SQL commands and injection statements

being short substrings of this length. Figure 12 shows a plot of

detection accuracy against maximum subsequence length

showing the rapid peak at 𝑝 = 2 and 𝑝 = 3 before detection

accuracy decreases at higher subsequence lengths.

Fig. 12. A plot of detection accuracy against maximum subsequence length

for the Select dataset.

This analysis was then applied to the Select-Fix dataset. The

 14

results show that the detection accuracy decreases as higher

subsequence lengths are used for classification. This is largely

because the rate of false negatives increases similar to the

regular Select dataset at higher subsequence lengths but as the

normal queries lack confusing quotation mark input there are

no false positives present for any subsequence scale. However,

as was seen from experiment one applied to this dataset, there

are solutions at the 𝑝 = 2 scale that increase the detection

accuracy from the ground state, only the feature scales do not

have the same proportionality. Figure 13 shows the detection

accuracy verses maximum subsequence length for this Select-

Fix dataset.

Fig. 13. A plot of detection accuracy against maximum subsequence length

for the Select-Fix dataset.

Next the experiment was applied to the Insert Dataset. In

the first experiment, this dataset had proven to be a lot less

accurate when extended into higher dimensional features than

the Select dataset. Therefore this experiment was not expected

to achieve as strong an increase in detection accuracy as the

Select type queries. However, the first major result is that the

detection accuracy rises like the Select-type queries but

instead peak at a higher value of subsequence length,

specifically 𝑝 = 5 to 𝑝 = 7. Again, this is likely due to the

primary features of the Insert-type queries being of larger

length as instead of individual commands forming conditional

statements, the Insert query contains a large bracket region

containing the values to be entered into the database separated

by commas. Despite this increase in accuracy, it comes with

the cost of an increase in false negative events counteracting

the large decrease of false positive events. As previously

stated, false positive events are preferable to false negatives as

the disruption to a service can be much greater if attack

queries get through. This is especially of note since most

normal legitimate queries will not be as hard to differentiate

from malicious queries as this admittedly unusually difficult

test dataset. The first experiment did indicate that there were

higher dimensional solutions that could minimize this false

negative rate by changing the proportionality of the

coefficients. Therefore there are likely solutions that can

maintain this accuracy but with a substantially reduced false

negative rate. Figure 14 demonstrates the detection accuracy

against maximum subsequence length clearly showing the

peak at 𝑝 = 5.

Fig. 14. A plot of detection accuracy against maximum subsequence length

for the Insert dataset.

Finally, the experiment was carried out on the Insert-Fix

dataset. The linear string kernel model of this dataset was of

perfect detection accuracy. Combined with the first

experiment showing that 𝑝 = 2 and 𝑝 = 3 caused a loss of

detection accuracy similar to the Select-Fix dataset by an

increase in false negative events with maintenance of the zero

false positive events of this dataset, the Insert-Fix dataset was

likely to suffer from the same issues. This was found to be true

as the detection accuracy does drop from the ground state

accuracy as higher subsequence length features are used in the

feature extraction process.

The Gap-Weighted Subsequence Kernel is successful in

reducing false positive events in confusing legitimate query

strings by incorporating higher dimensional features into the

similarity evaluation. Unfortunately this can be at a cost of an

increase in the rate of false negative events unless an ideal

combination of coefficients can be determined. Therefore it is

recommended that higher subsequence lengths be used on

complicated query strings that are difficult to differentiate

from malicious strings but for simpler queries it is superior to

limit multidimensional feature extraction to features of scales

no longer than the individual SQL commands. This is due to

the Feature Manipulation Algorithm alone being successful in

the successful identification of all legitimate query strings

allowing all unusual strings to be immediately rejected. These

results indicate that the best combination of coefficients is

likely to be found for values of maximum subsequence length

that relate to the length of substrings within the query strings.

It is worth attempting to train a model using these

subsequence lengths unless the ground state detection

accuracy is already perfect in which case the detection

accuracy is already at the desire level and higher

dimensionality will likely result in an increase in false

negatives. Figure 15 demonstrates how the detection accuracy

of the Insert-Fix dataset varies with maximum subsequence

length.

 15

Fig. 15. A plot of detection accuracy against maximum subsequence length

for the Insert-Fix dataset.

5.3. Time complexity

The two experiments discussed above were also used to

generate data on the training time for the models used, the

processing time for the whole Select and Insert datasets and

the average processing time for each individual query in these

sets. This is important for the successful operation of the

proposed solution as it must be able to operate in real time in

order to classify queries with little delay to the users of the

defended service.

The Select and Insert training set produced a linear string

kernel model with an associated training time. Then for the

Select linear string kernel model, the Select and Select-Fix

testing datasets were evaluated and for the Insert linear string

kernel model, the Insert and Insert-Fix testing datasets were

evaluated. The Select model had a training time of 2037.18

milliseconds. The Select test dataset of 232 query strings

required 2443.973 milliseconds to process which produces an

average processing time of 10.534 milliseconds per query. The

Select-Fix test dataset of 232 query strings similar to the

original dataset with the quotation marks changed to question

mark placeholders took 2423.539 milliseconds to process with

an average processing time of 10.446 milliseconds per query.

The Insert model had a training time of 6563.565

milliseconds. The Insert test dataset of 170 query strings

required 3891.915 milliseconds to process which produces an

average processing time of 22.894 milliseconds per query. The

Insert-Fix test dataset of 170 query strings similar to the

original dataset with the quotation marks changed to question

mark placeholders took 3767.71 milliseconds to process with

an average processing time of 22.163 milliseconds per query.

The datasets with the quotation marks removed from the

legitimate queries tended to process slightly faster due to the

shorter query strings produced by the Feature Manipulation

Algorithm. The Insert query model took just under three times

longer to generate due to the larger set of training queries

produced by the increased number of inputs into the Insert

example query string. As a result, the operation time will be

impacted heavily by query strings with a larger number of

inputs although it is possible that the training set generator can

be further refined to reduce the number of training queries

required for a reliable sample size training dataset. The

dimensionality of the feature vectors is always equal to the

number of training queries. Despite these limitations, this

experiment shows that for the linear string kernel models, the

training and processing time are acceptable for runtime as the

training is only required on the initialization of the

demonstration software.

Fig. 16. A surface plot showing the training time of multiple p = 2 Select

query models in milliseconds varying with the coefficient values associated
with the model feature extractions.

The processing time required for higher dimension features

was then measured by using the same experiments used for the

detection accuracy. The different models trained for the 𝑝 = 2

and 𝑝 = 3 states were used to determine how the training and

query processing time were influenced by the maximum

subsequence length and the coefficients used for each trained

model. Figure 16 shows the training time of the Select query

models against the different coefficient combinations for the

𝑝 = 2 state. The surface is flat with a large diagonal ridge.

The training time is constant being independent of the

coefficients of the different feature scales (except for the

destructively interacting case which will be discussed shortly).

This makes sense as these coefficients merely scale the results

of the Gap-Weighted Subsequence Kernel algorithm and do

not influence the number of calculations required. The

increase in the maximum subsequence length does increase

the training time required as it increases the number of

multidimensional features the string kernel algorithm must

iterate through. The next experiment will attempt to determine

this relationship between maximum subsequence length, the

training time and the query processing time.

The ridge appears to occur for values of the coefficients that

destructively interact. This rapid increase in training time

coincides with locations of poorest accuracy due to this

interaction. Therefore it is likely that the SVM is being starved

of important feature data by this interaction resulting in a

poorer model. Specifically, it is likely the grid algorithm

designed to determine the cost parameter that results in this

increase as the feature vectors are likely heavily

indistinguishable within the feature space. For the 𝑝 = 3 state

the same pattern is seen where the model training time is

 16

independent of the coefficient values apart from the

destructively interacting combinations where it substantially

increases. The 𝑝 = 3 state training time has risen again by

about the same amount as the difference between the ground

state and the 𝑝 = 2 state possibly indicating that the training

time varies linearly with the maximum subsequence length.

The second experiment discussed shortly identifies this

relationship. Figure 17 shows the surface plot produced by

these 𝑝 = 3 state model training times.

Fig. 17. A surface plot showing the training time of multiple p = 3 Select

query models in milliseconds varying with the coefficient values.

The Insert query also exhibited the same features as the

Select query with a ridge where the coefficients destructively

interact with a flat constant training time for the other

combinations. The training time again rises with the maximum

subsequence length at a faster rate due to the increased size of

the Insert training set. Figure 18 displays the surface produced

by the training of the Insert-type query set. The amount of

extra time required to generate the destructively interacting

models seems to be roughly 1500 milliseconds independent of

the training time of the other models indicating that they are

independent of the maximum subsequence length and

reinforcing the conclusion that the cost parameter grid

algorithm component of the SVM is likely responsible.

Fig. 18. A surface plot showing the training time of multiple p = 2 Insert

query models in milliseconds varying with the coefficient values associated

with the model feature extractions.

This experiment also recorded the processing time per

query for the Select and Insert datasets based on the models

produced using the different combinations of the similarity

evaluation coefficients. Figure 19 demonstrates the surface

plot produced by the Select dataset trained in the 𝑝 = 2 state.

When operating in the testing phase the processing time seems

to mirror the training phase operation times. The processing

time is again independent of the string kernel coefficients with

some limited variation due to background operations of the

operating system. However, in this situation the destructively

interacting models process the Select dataset substantially

faster than the normal models. This shorter processing time is

a result of faster classification by the SVM as the feature

manipulation and string kernel algorithms have the same

workload with these coefficients as with any other

combination. The reason behind this is not entirely understood

and likely due to the SVM rejecting the model and simply

applying a global malicious classification to every query

within the Select dataset.

Fig. 19. A surface plot showing the per-query testing time in milliseconds of

the Select dataset classified by multiple p = 2 Select query models varying
with the coefficient values associated with the feature extractions.

Fig. 20. A surface plot showing the per-query testing time in milliseconds of

 17

the Select dataset classified by multiple p = 3 Select query models varying
with the coefficient values.

Similar results are seen for the Select dataset operating

within the 𝑝 = 3 state where again the processing time is

independent of the coefficients except for the coefficients that

result in poor models where the processing time is more rapid.

Additionally, as with the training times, the processing time

per query appears to increase linearly with the maximum

subsequence length. Figure 20 demonstrates the surface plot

produced by the per query processing times of the 𝑝 = 3 state.

Perhaps unsurprisingly, when the per query processing time

of the Insert dataset is compared with the coefficients used to

train the models, the same features are again seen reinforcing

that the processing time is not only just independent of the

coefficients but also independent of the type of query string

and merely only to the length of the string. Figure 21

demonstrates the surface produced by this comparison for the

Insert dataset.

Fig. 21. A surface plot showing the per-query testing time in milliseconds of

the Insert dataset classified by multiple p = 2 Insert query models varying
with the coefficient values associated with the feature extractions.

The first experiment showed that the training and testing

processing times were independent of the coefficients of the

string kernel algorithm. Therefore the training time and

processing time results from the second experiment, where the

coefficients were locked to one and the maximum

subsequence length was increased incrementally from one to

ten, are perfect for the determination of this relationship.

Ten models were generated for the Select training set and

another ten models were generated for the Insert training set.

Each model had a maximum subsequence length of one to ten.

The coefficients of the different scales of the similarity

evaluations were set to one. The training time of these ten

models was compared to the maximum subsequence length of

each model to generate a plot of the relationship. An equation

is then generated to determine the best fit of the points. This

equation describes the relationship between the subsequence

length and the training time and also describes the overhead

required by other components of the program as well as the

amount of time the additional iterations of higher dimensional

features requires.

Fig. 22. A plot of model training time against the maximum subsequence

length for the Select training dataset.

Applying this experiment to the Select training dataset

produced the graph shown in Figure 22. As indicated by

results from experiment one, the plot produced an almost

perfect linear trend indicating that the relationship between

maximum subsequence length and training time is linear. The

linear relationship also produced an associated equation with

important implications to the Select query training. The

gradient of the equation indicates that for every additional

extension to the maximum subsequence length, the model

training time increases by 839.93 milliseconds. The intercept

of the equation also shows that 1183.9 milliseconds of the

training time is independent of the subsequence length and is

likely due to the size of the training dataset and the operational

requirements of the SVM.

Applying the same experiment to the Insert training dataset

produced the graph shown in Figure 23. The Insert queries

also follow this linear relationship except due to the increased

size of the training dataset, both the gradient and the intercept

of the linear trend are greater supporting the conclusion that it

is related to the size of the training dataset and the length of

the individual query strings within the training set queries as

well as the operation of the SVM. The gradient of the equation

indicates that for every additional extension to the maximum

subsequence length, the model training time increases by

2931.9 milliseconds. The intercept of the equation also shows

that 3359.6 milliseconds of the training time must be

independent of the subsequence length.

 18

Fig. 23. A plot of model training time against the maximum subsequence

length for the Insert training dataset.

Each model set was also used to test the four Amnesia-

derived datasets. The Select and the Select-Fix datasets were

classified using the Select models. Meanwhile, the Insert and

Insert-Fix datasets were classified using the Insert models.

Each classification had the associated per query processing

time evaluated. By plotting these results in the same form as

the training time results, it was possible to generate plots for

each dataset showing how the processing time was affected by

the increased maximum subsequence length.

Fig. 24. A plot of the Select dataset and Select-Fix dataset processing times

against the maximum subsequence length for the Select models. The top line

is the Select dataset and the bottom is the Select-Fix dataset.

Figure 24 demonstrates the processing time for the queries

in the Select and Select-Fix datasets using the Select models

over the varying maximum subsequence lengths. The query

processing times also share a linear relationship with

maximum subsequence length. This is due to string kernel

algorithm generating the feature vectors of the test queries.

Therefore the processing time also depends on the size of the

training dataset and the dimensionality of the

multidimensional feature extraction. The Select dataset queries

on average required an extra 13.087 milliseconds of

processing time for the computation of each additional

subsequence length. The Select-Fix dataset requires slightly

less extra time, 12.666 milliseconds, for higher subsequence

lengths. This is likely due to the output strings from the

feature manipulation algorithm being shorter due to the lack of

quotation marks within the legitimate queries of this testing

dataset. In the plots of training time against subsequence

length, the intercept was clearly not zero and was due to the

operation of other algorithms during the training phase of the

SVM. However, in this testing case the intercepts of the two

equations are likely a result of measurement errors and should

be zero intercepts as the testing phase lacks the time

requirements due to the production of decision rules.

Fig. 25. A plot of the Insert dataset and Insert-Fix dataset processing times

against the maximum subsequence length for the Insert models. The top line is

the Insert dataset and the bottom is the Insert-Fix dataset.

This experiment was also evaluated on the Insert and Insert-

Fix datasets. The results of this evaluation are displayed

within Figure 25. The linear relationship also exists for the

Insert queries again showing that these relationships are

independent of the query type and only the length of the query

strings and the scale of the multidimensional feature

extraction. The increased size of the training dataset results in

increased processing time due to the increased dimensionality

of the feature vectors of the test query strings. The Insert

dataset queries on average required an extra 33.418

milliseconds of processing time for the computation of each

additional subsequence length. The Select-Fix dataset requires

slightly less extra time, 31.58 milliseconds, for higher

subsequence lengths. This is likely due to the same feature

manipulation algorithm string length situation as the Select-

Fix dataset query strings.

The detection accuracy analysis concluded that the superior

subsequence length for the Select queries was 𝑝 = 2 or 𝑝 = 3

whereas for the Insert queries this peak in accuracy occurred

at subsequence lengths of 𝑝 = 5 to 𝑝 = 7. The above

equations combined with this information can be used to

estimate the model training time and the individual query

processing time for the Select and the Insert datasets. The

Select query dataset training time ranges from 2863.76

milliseconds to 3703.69 milliseconds and each test query takes

approximately 22.6555 milliseconds to 35.9548 milliseconds

on average to process. The Insert query dataset training time

ranges from 18019.1 milliseconds to 23882.9 milliseconds and

each test query takes approximately 144.873 milliseconds to

217.956 milliseconds on average to process. Even the worst

 19

case of these calculations places the program firmly within

real time operation with acceptable query delay times due to

this solution as the training time only applies once during

software initialization. The Select queries process significantly

faster than the Insert queries, most likely due to the increased

input trajectories of the Insert query and the larger associated

training set. Queries with significantly more input fields may

cause this solution difficulty in maintaining the real time

operational requirement unless the input generator algorithm

can be enhanced in the future. Longer query strings will also

negatively affect the processing time however, generally the

most complicated strings are due to injected input therefore

the user that suffers the most from query response delay is an

attacker. At the very least this might discourage the attacker

from making the attempt if they must craft many attack

queries.

5.4. Spatial complexity

The memory consumption of the software during use is also

of importance as it must be capable of operating on the web

server hosting a web application with minimal system impact.

On start up the program required 16 Mb of memory. The Input

Generator algorithm placed another 2.5 Mb of demand on the

system memory resources. Training a model required 6.5 Mb

of memory. This memory requirement was independent of the

maximum subsequence used for the training phase. The testing

of the 232 queries within the Amnesia-derived Select dataset

required an additional 10 Mb of memory. The demonstration

software had a peak memory draw of only 35 Mb when using

the Select example query. The memory requirements of this

solution border on negligible and therefore many instances can

be run simultaneously to defend multiple web application

queries on a single machine.

Despite the scale of calculations being performed to

determine the multidimensional feature set and compute the

similarity values of these features, the software stores very

little of the results of these calculations within memory.

Therefore the requirements are kept minimal as the only

values that are kept through the iteration through the full set of

multidimensional features are the cumulative inner product

similarity evaluations. More memory is required by larger

training datasets as the feature vectors, stored in memory for

each test query, are of larger dimensionality. Despite these

requirements, the demonstration software still maintained the

peak memory draw of 35 Mb when using the Insert example

query training a model of high dimensionality to classify the

Amnesia-derived Insert dataset. This is one of the strongest

advantages of this proposed solution. Hundreds of thousands

of potential features can be evaluated by the similarity

algorithm and used to train models and test query strings but

the string kernel algorithm does not require any of these

features to be stored in memory. The algorithm simply iterates

through the multidimensional feature space of hundreds of

thousands of features yet generates a feature vector only two

to three digits in dimensionality greatly limiting the pressure

placed on the system resources of the server running software

utilizing this method.

VI. DISCUSSION

The proposed solution runs on a web server as the web

application sends generated queries to a source IP and port

hosted by the solution. The solution is then able to test queries

and then relay them to the back-end database server as well as

pass the reply messages directly to the web application with

minimal latency. In essence, the detection solution is

transparent to the communications between the web

application and the back-end database except for the outbound

communications where they are delayed by a number of

milliseconds for the classification process.

The software was required to have high detection accuracy

with a low rate of false positives and false negatives combined

with a processing time rapid enough for real time operation.

By using the Gap-Weighted String Subsequence Kernel

algorithm to compute the inner product of multidimensional

features, solutions were found that improved detection

accuracy over a linear approach of simple features in the query

strings. As the operation of this algorithm depended on the

maximum subsequence length, the gap decay factor and a set

of coefficients for features of length one character to the

maximum subsequence length, these inputs were evaluated to

determine the superior solution for detection accuracy. The

models generated by the program were heavily influenced by

the maximum subsequence length and its associated

coefficients. However, the gap decay factor was not a major

component in the accuracy of the generated models.

In the process of classifying SQL Injection attacks, the

solution with the highest detection accuracy may not be the

best as, whilst the detection accuracy places no bias between

false positives and false negatives, in reality false negatives

are significantly less desirable than false positives. False

positives result in service disruption whereas false negatives

can result in service destruction. The solution is capable of

identifying all the different types of SQL Injection Attack

except for Stored Procedures as the query string cannot be

intercepted at the web server. Despite this weakness, it might

be substantially easier to update the code of a stored procedure

to sanitize the inputs compared with the updating of third

party software in the form of the web applications and

therefore it might be acceptable to struggle to identify stored

procedure attacks.

Much of this difficulty in classifying the datasets was a

result of unsanitised quotation marks within the testing

datasets. These were introduced to test the maximum

tolerances of the solution. Copies were produced of the Select

and Insert datasets that extracted quotation marks from the

legitimate queries as quotation marks are unlikely to be seen

during normal operation of these queries. This allowed the

proposed solution to achieve an accuracy of 100% on both test

sets. Whilst this appears to be advantageous, the

multidimensional feature extraction that this proposed method

utilizes was only required for the Select queries as the Insert

queries actually achieved 100% with the ground state

accuracy. Additionally, for these testing datasets with high

ground state accuracy, the multidimensional analysis on

higher dimensional features could result in an inferior model

 20

from the simple feature extraction. Therefore this solution,

whilst competent on simple query strings, shows its true

capability with complicated query strings which are hard to

differentiate due to sharing similarities to attack strings during

legitimate operation.

The proposed solution’s processing time was also evaluated

to determine if the real time operation condition was fulfilled.

The time complexity of the solution obeys the equation

𝑡 = 𝐼 × 𝑝 × 𝑁 where 𝐼 is a constant determined by the

processing power of the available CPU, 𝑝 is the maximum

subsequence length and 𝑁 = |𝑢| × |𝑢| × 𝑛 where |𝑢| is the

average character length of the training set input strings and 𝑛

is the total number of query strings within the training set.

This relationship was predicted by the order of the Gap-

Weighted String Subsequence Kernel dynamic processing

algorithm that exhibited a time complexity of the order

𝑂(𝑝|𝑠||𝑡|) where 𝑝 is the maximum subsequence length, |𝑠| is

the length of the first argument string and |𝑡| is the length of

the second argument string. The processing time of the other

algorithms is of negligible time compared to the string kernel

algorithm and therefore do not contribute to the relationship.

As the time complexity is heavily dependent on the number

of training set queries, the size of this set must be limited to

produce enough information about the query generation of the

web application without being overly descriptive. The Feature

Manipulation Algorithm shrinks the length of the testing

strings reducing the processing time of the string kernel

algorithm. Unfortunately, the Input Generator algorithm

produces significantly larger training datasets with queries

containing many input fields. These larger sets then result in

substantially increased processing times. The Input Generator

is therefore a target for further improvements by minimizing

the training set it generates whilst still maintaining an

acceptable sample dataset for the complete set of possible

queries.

VII. CONCLUSION AND FUTURE WORK

Our proposed method has more success with complicated

query strings compared to the simple strings. Fortunately,

despite the weaknesses associated with simple attacks, most of

these simple strings have already been identified and

documented. A major danger is more sophisticated novel

attacks that have yet to be encountered. However, these more

sophisticated attacks tend to result in longer and more feature-

rich query strings and, as a result, are very quickly detected by

the proposed solution. None of the complicated attack strings

caused by more sophisticated attacks such as Inference attacks

failed to be correctly classified and blocked by the

demonstration software. The training set did not directly

describe features within these sophisticated attacks, but the

deviation from the legitimate strings was enough to warrant a

malicious classification. This property of the solution allows it

to be adaptable to attacks not explicitly described in the

training set, both discovered and undiscovered. The difficulty

is focused on the successful description of simple attacks

within the training dataset.

The successful identification of the ideal coefficients for

weighting the features of the string kernel algorithm is

extremely important. The number of possible coefficients for

higher dimensional solutions rises exponentially making the

discovery of the optimum set of coefficients non-trivial. As

the superior solutions are limited to smaller maximum

subsequence length, the coefficient combinations are not

overly large in size during normal operation. The difficulty of

this process can be managed through the realization that the

values of the coefficients are not the important factor but

instead the proportionality between the different coefficients is

the mechanism that alters the accuracy of the trained models.

As the demonstration software only showed a proof of

concept of the design algorithms, the next milestone would be

to deploy the solution as an actual defensive module for a web

application and database server. This would require the

implementation of the full Input Generator algorithm. This

algorithm would be required to identify the possible input

trajectories for a web application and determine how many

different output queries are produced and how they are related

to these inputs. The algorithm would then be able to open a

number of new threaded operational modes for each query

type to generate a series of models.

Most of the time complexity of this proposed solution lies

in the computation of the Gap-Weighted String Subsequence

Kernel function. Additionally, there is evidence indicating that

the models being produced by the SVM have a high variance

which results in models that suffer from overfitting the

training dataset. Both these weaknesses can be compensated

by decoupling the number of ‘landmark’ strings from the

number of the training set strings. Currently, this coupling

results in an exponential increase in the number of kernel

function operations and therefore training and per-query

processing time, upon the increase of the training dataset size.

If a fixed-length set of ‘landmark’ strings can be identified

that result in accurate models, these strings could replace the

training set strings in the computation of the feature vectors of

the query strings.

Additionally, this decoupling would allow for the increase

in the training set size with impact only to the model training

phase processing time and not the per-query processing time

which is the more critical time-dependent component.

Increasing the size of the training set is a well-documented

method of reducing the variance of machine learning models.

As a result, the solution could be made truly intelligent by the

allowing it to incorporate new query strings previous models

misclassified into a new training set to be trained into an

improved model when processing power is available during

downtime.

Currently the proposed solution depends on 𝑝 + 2 variables.

However, if the decoupling operation described above is

successful, it may be possible to output the individual

subsequence length kernel function evaluations 𝐾𝑞(𝑥𝑖 , 𝑥𝑗) as

features instead of relying on a weighted sum of these values

up to the maximum subsequence length. Limited testing of

this method indicates that a set of parameters (related to the

 21

old coefficients) might still be needed. This would reduce the

number of inputs to just two variables, the maximum

subsequence length and the gap decay factor. It would be ideal

if the software could employ a form of optimization algorithm

to identify the values of these two variables that minimize the

error of the classification. A second optimization algorithm

that can determine the parameter set that minimizes the

classification error. If these two algorithms could be optimized

simultaneously, the superior classification model could be

generated automatically. It is of note that this optimization

process would likely heavily influence the time required to

train models but fortunately, would have no effect on the

testing phase processing time.

ACKNOWLEDGMENT

This work was conducted through Liverpool John Moores

University in partial fulfilment of the requirements for the

degree of Masters in Computing and Information Systems.

The Microsoft Visual Studio 2013 integrated development

environment software was supplied through Microsoft

DreamSpark. The LibSVM java library was supplied freely

online by Chih-Chung Chang and Chih-Jen Lin. Version 2.89

of this java library was translated into a clean .NET library by

Matthew Johnson.

REFERENCES

Z. Su and G. Wassermann, “The Essence of Command

Injection Attacks in Web Applications,” In the 33rd Annual

Symposium on Principles of Programming Languages

(POPL2006), 2006.

W. G. J. Halfond, J. Viegas and A. Orso, “A Classification of

SQL Injection Attacks and Countermeasures,” In proceedings

of the International Symposium on Secure Software

Engineering 2006.

J. Williams and D. Wichers, “Top Ten Most Critical Web

Application Vulnerabilities,” 2013. [Online]. Available:

https://www.owasp.org/index.php/Top_10_2013-Top_10.

[Accessed 1 August 2015].

Trustwave. Trustwave 2015 global security report.

https://www2.trustwave.com/rs/815-RFM-

693/images/2015_TrustwaveGlobalSecurityReport.pdf; 2015

[accessed 18.05.15]

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini and C.

Watkins, “Text Classification using String Kernels,” Journal

of Machine Learning Research, no. 2, pp. 419-444, 2002.

C. Cortes and V. Vapnik, “Support-vector Networks,” in

Machine Learning, 3 ed., vol. 20, Springer, 1995, pp. 273-297.

A. Liu, Y. Yuan, D. Wijesekera and A. Stavrou, “SQLProb: a

proxy-based architecture towards preventing SQL injection

attacks,” SAC 2009, 2009.

M.-Y. Kim and D. H. Lee, “Data-Mining based SQL injection

attack detection using internal query trees,” Expert Systems

with Applications, vol. 41, no. 11, pp. 5416-5430, 1

September 2014.

G. T. Buehrer, B. W. Weide and P. A. G. Sivilotti, “Using

parse tree validation to prevent SQL injection attacks,” In

proceedings of the International Workshop on Software

Engineering and Middleware (SEM) at Joint FSE and ESEC,

pp. 106-113, 2005.

I. Lee, S. Jeong, S. Yeo and J. Moon, “A novel method for

SQL injection attack detection based on removing SQL query

attribute values,” Mathematical and Computer Modelling, vol.

55, pp. 58-68, 29 January 2011.

F. Valeur, D. Mutz and G. Vigna, “A Learning-Based

Approach to the Detection of SQL Attacks,” In Proceedings of

the Conference on Detection of Intrusions and Malware and

Vulnerability Assessment (DIMVA), 2005.

I. Homoliak, “Increasing Classification Accuracy in LIBSVM

using String Kernel Functions,” Student EEICT, Volume: 2,

2012.

J. Rouso and J. Shawe-Taylor, “Efficient Computation of

Gapped Substring Kernels on Large Alphabets,” Journal of

Machine Learning Research, vol. 6, pp. 1323-1344, 2005.

C.-C. Chang and C.-J. Len, “LIBSVM: A Library for Support

Vector Machines,” ACM Transactions on Intelligent Systems

and Technology, vol. 2, no. 3, p. article 27, 2007.

W. G. J. Halfond and A. Orso, “AMNESIA: Analysis and

Monitoring for NEutralizing SQL-Injection Attacks,” In

Proceedings of the IEEE and ACM International Conference

on Automated Software Engineering (ASE 2005), 2005.

P. Bisht, P. Madhusudan and V. N. Venkatakrishnan,

“CANDID: Dynamic candidate evaluations for automatic

prevention of SQL Injection Attacks,” ACM Transactions on

Intelligent Systems and Technology, vol. 13, no. 2, p. 14,

2010a.

P. Bisht, T. Hinrichs, N. Skrupsky, R. Bobrowicz and V. N.

Venkatakrishnan, “NoTamper: Automatic Blackbox Detection

of Parameter Tampering Opportunities in Web Applications,”

In Proceedings of the 17
th

 ACM Conference on Computer and

Communications Security, p. 272-288, 2010b.

B. Kar, S. Panigrahi and S. Sundararajan, “SQLiGoT:

Detecting SQL Injection attacks using graph of tokens and

SVM,” Computers and Security, vol. 60, pp. 206-225, 2016.

H. Shahriar, S. North and W. Chen, “Client-Side Detection of

SQL Injection Attack,” In: Advanced Information Systems

engineering workshops, Springer, p. 512-517, 2013.

A. Moosa, “Artificial Neural Network based Web Application

Firewall for SQL Injection,” World Academy of Science,

Engineering and Technology, International Journal of

Computer, Electrical, Automation, Control and Information

Engineering, vol. 4, no. 4, 2010.

A. Makiov, Y. Begriche and A. Serhrouchni, “Improving web

application firewalls to detect advanced SQL Injection

attacks,” In: Information assurance and security (IAS) 2014

10
th

 International conference on, IEEE, p. 35-40, 2014.

K. Zhang, C. Lin, S. Chen, Y. Hwang, H. Huang and F. Hsu,

“TransSQL: A translation and validation-based solution for

SQL-Injection attacks,” In: Robot, Vision and Signal

processing (RVSP), 2011 first international conference on,

IEEE, p. 248-251, 2011.

M. Le, A. Stavrou and B. B. Kang, “DoubleGuard: Detecting

Intrusions in Multitier Web Applications,” IEEE Transactions

on Dependable and Secure Computing, vol. 9, issue 4, p. 512-

525, 2012.

C. I. Pinzón, J. F. De Paz, Á. Herrero, E. Corcado, J. Bajo and

J. M. Corchado, “idMAS-SQL: Intrusion Detection Based on

 22

MAS to Detect and Block SQL Injection through data

mining,” Information Sciences, vol. 231, pp. 15-31, 2013.

S. B. Needleman and C. D. Wunsch, “A general method

applicable to the search for similarities in the amino acid

sequence of two proteins,” Journal of Molecular Biology, vol.

48, issue 3, pp. 443-453, 1970.

Fig. 26. The SQLIA detection framework.

