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Abstract 

Ultrasonic echo estimation is important in ultrasonic non-destructive evaluation and 

material characterization. Matching pursuit is one of the most popular methods for the 

purpose of estimating ultrasonic echoes. In this paper, an artificial bee colony optimization 

based matching pursuit approach (ABC-MP) is proposed specifically for ultrasonic signal 

decomposition by integrating the artificial bee colony algorithm into the matching pursuit 

method. The optimal atoms are searched from a continuous parameter space over a tailored 

Gabor dictionary in ABC-MP instead of a discrete parameter space in matching pursuit. As a 

result, echoes characterized by a set of physical parameters can be estimated accurately and 

efficiently. The performance of ABC-MP is tested using both simulated signals and real 

ultrasonic signals, and compared with matching pursuit. Results clearly demonstrate the 

superior performance of the proposed ABC-MP approach over matching pursuit in ultrasonic 

echo estimation in terms of the shape and amplitude of the recovered echoes and the 

reconstructed signal, and the residue signal. 

 

Keywords: Artificial bee colony optimization; Matching pursuit; Gabor dictionary; Sparse 

signal representation; Ultrasonic echo estimation; 
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1. Introduction 

 

1.1 Modelling of ultrasonic signals  

    Ultrasonic inspection is one of the most widely used techniques for non-destructive 

evaluation (NDE) of materials, and its applications in industries range from defect detection, 

structural health monitoring, and measurement of material properties. In ultrasonic NDE, an 

ultrasonic transducer sends pulses and receives reflected echoes from discontinuities in the 

test sample. According to the acoustic propagation theory, a reflected ultrasonic echo 𝑠(𝑡) 

from a flat surface reflector in pulse-echo mode ultrasonic inspection is often modelled 

approximately [1] as 

𝑠(𝑡) = 𝑐𝑒𝑥𝑝(−𝐵𝛼(𝑡 − 𝜏)2cos(2𝜋𝑓𝑐(𝑡 − 𝜏) + 𝜑).                                        (1) 

Let 𝜃 = [𝑐, 𝐵𝛼 , 𝑓𝑐 , 𝜏, 𝜑] denote the parameter vector. The parameters of this model are 

closely related to the physical properties of the ultrasonic signal propagating through the 

material. The amplitude of the echo c is primarily governed by the acoustic impedance values 

of the materials involved, the attenuation of the original signal, and the size and orientation of 

the reflector. The parameters 𝐵𝛼  and 𝑓𝑐  are the bandwidth factor and centre frequency, 

respectively. These parameters are governed by the transducer frequency characteristics and 

the propagation path. The time of flight τ is related to location of the reflector as the distance 

between the transducer and the reflector. The phase of the echo φ accounts for the distance, 

acoustic impedance, size, and orientation of the reflector. Therefore, ultrasonic echoes 

reflected from homogeneities or discontinuities in tested samples contain information 

pertaining to the location, size, and characteristics of defects, along with the material and 
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geometry of the test sample [2].  

For pulse-echo mode ultrasonic inspection, a recorded signal y(t) is a superposition of 

ultrasonic echoes 𝑠𝑖(𝑡) reflected from different interfaces inside the test sample,  

𝑦(𝑡) = ∑ 𝑠𝑖(𝑡) + 𝜉(𝑡)𝑚
𝑖=1 ,                                                   (2) 

where 𝜉(𝑡) accounts for the noise originating from the measurement system and materials. 

Equation (2) can be further expanded as: 

𝑦(𝑡) = ∑ 𝑐𝑖∅𝑖(𝑡)
𝑚
𝑖=1 + 𝜉(𝑡), (3) 

where ∅𝑖(𝑡) is the incident pulse impinged to the ith interface, and 𝑐𝑖are the refection 

coefficients. Due to the limited interfaces and defects in the test sample, the reflection 

coefficients 𝑐𝑖 are generally a sparse distribution. From Equation (3), it can be seen that 

ultrasonic echo estimation can be formulated as the problem of blind source separation that 

separates a set of linear mixtures into a number of unknown source signals, inferring both the 

reflection coefficients 𝑐𝑖, which can be considered as the virtual ultrasonic sources, and the 

ultrasonic incident pulses 𝜙𝑖(𝑡) from the observed signal y(t).  

 

1.2 Ultrasonic echo estimation via sparse signal representation 

From Section 1.1, it can be seen that the accurate detection, location and sizing of 

defects during ultrasonic inspection are limited by the ability to precisely estimate the 

information of the reflected echoes contained in the recorded ultrasonic signals, including 

amplitudes/reflection coefficient, time positions, and shape of the echoes. Therefore, 

ultrasonic echo estimation is an important issue in ultrasonic NDE. Various signal processing 

techniques have been developed to tackle this issue, and a review can be found in Ref. [3]. 
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The most appealing method among them is sparse signal representation (SSR), an emerging 

signal processing technique.  

SSR decomposes a signal over an overcomplete dictionary. Assume that a dictionary 

𝐷 = {∅𝑖}𝑖=1
𝐿  consists of L atoms ∅𝑖. The atoms are N-dimensional with unit norm, that is, 

∅𝑖 ∈ 𝑅𝑁 and ‖∅𝑖‖2 = 1. 𝑁 < 𝐿 so that D is overcomplete. For a given signal y ∈ RN, the 

SSR technique is to seek a sparse vector 𝑐 ∈ 𝑅𝐿 satisfying the relationship:  

𝑦 = 𝐷𝑐 + 𝜀,                                                             (4) 

where ε is an error term. This corresponds to solving the following variational problem: 

Minimize ‖𝑐‖0 subject to 𝑦 = 𝐷𝑐, where ‖·‖0 is the 𝐿0 -norm, counting the non-zero 

entries of a vector. Directly solving the sparse decomposition problem is NP-hard. The 

existing SSR algorithms are commonly developed by simplifying the NP-hard problem as a 

constrained optimization problem by greedy approximations or by applying L1-norm or 

Lp-norm constraints on the decomposition coefficients to find sub-optimal solutions. Many 

SSR algorithms have been developed in the past two decade, such as matching pursuit (MP) 

[4], greedy basis pursuit [5], Sparse Bayesian learning (SBL) [6], nonconvex regularization 

[7], and applications of SSR extend into many fields [8-12].  

    Comparing Equations (3) and (4), it can be seen that ultrasonic echo estimation problem 

can be addressed by SSR directly. Through the sparse decomposition of an observed signal 

y(t), both the reflection coefficients 𝑐𝑖 and the ultrasonic echoes 𝜙𝑖(𝑡) can be estimated. 

Although under an overcomplete dictionary the decomposition of a signal is underdetermined, 

recent research shows that in many applications this can offer great advantages compared to 

the conventional signal processing methods. One is that there is greater flexibility in 
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capturing structure in the data [13]. Instead of a small set of general basis vectors, there is a 

larger set of more specialized atoms such that relatively few are required to represent any 

particular signal. The second is super-resolution [14]. We can obtain a resolution of sparse 

objects that is much higher than that possible with traditional methods. The third is that 

overcomplete representations increase stability of the representation in response to small 

perturbations of the signal. The fourth is that the redundant representations have the desired 

shift invariance property [15]. These advantages of SSR are of benefit to the interpretation of 

an ultrasonic signal. In the past decade, research on SSR in the community of ultrasonic NDE 

signal processing has attracted an increasing interest and become a hot research area. In [16], 

MP was used to extract ultrasonic wave shape features of debris echoes and air bubble echoes, 

and by utilizing the extracted wave shape features, the debris with different shapes and air 

bubble are distinguished. In [17], SBL was used to denoise the guided wave signal for 

damage detection. In [18], SBL was employed to estimate the range of frequency and 

bandwidth parameters of the flaw echoes for structure noise elimination and flaw detection. 

In [19], taking the advantages of accurate echo separation and echo estimation, MP was 

integrated into a conventional acoustic micro imaging system, resulting in a super-resolution 

imaging method. In [20], MP is implemented by the selection of a coarse set of atoms in a 

tailored discrete Gabor dictionary and interpolation of the atom parameters to improve the 

accuracy of ultrasonic echo estimation. A comprehensive review about the existing SSR 

algorithms and their applications in ultrasonic NDE can be found in our recent paper of 

Ref.[21]. Among all the SSR algorithms, MP is one of the most popular algorithms used in 

ultrasonic NDE for ultrasonic echo estimation. 
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1.3 Problem statement 

    It has been shown that the behavior of the overcomplete dictionary has a great impact on 

the performance of the SSR methods [22]. In ultrasonic NDE, an ultrasonic echo is usually a 

broadband pulse modulated at the centre frequency of the transducer, and is usually modelled 

as a Gabor function as described in Equation (1). Therefore, the discrete Gabor dictionary is 

normally used in SSR of ultrasonic signals. 

   The real Gabor dictionary is defined by 𝐷𝑅 = {𝑔(𝛾,𝑤): (𝛾, 𝑤) ∈ Γ × [0, 2𝜋]} [23], where 

γ = (s, u, v). For convenience we use the notation 𝛽 = (𝛾,𝑤). 𝑔𝛽 is Gabor atoms: 

𝑔𝛽 = 𝑔(𝛾,𝑤) =
𝐾𝛾

√𝑠
𝑔(

𝑡−𝑢

𝑠
)cos(𝑣𝑡+𝑤),                                            (5) 

where: s is the scale of the function, u its translation, v its frequency modulation, window 

function )(tg  is Gaussian function 
2

)( tetg  , constant and factor 
𝐾𝛾

√𝑠
 normalizes 𝑔𝛽 , 

and w is the phase of the real Gabor atoms.  

    In practical applications, signal decomposition is normally performed in the discrete 

Gabor dictionary 𝐷𝛼 = {𝑔𝛽: 𝛽 ∈ Γ𝛼 × [0, 2𝜋]}, a subset of 𝐷𝑅, where Γ𝛼 is composed of all 

γ= (𝑎𝑗 , 𝑝𝑎𝑗∆𝑢, 𝑘𝑎−𝑗∆𝑣) with ∆𝑢 =
∆𝑣

2𝜋
 and ∆𝑢 ∙ ∆𝑣 < 2𝜋, 𝑗 ∈ 𝑍, 𝑝 ∈ 𝑍, 𝑘 ∈ 𝑍[24]. In the 

practical sparse decomposition, the parameters γ = (s, u, v) are normally discretised as 

follows: 

 𝑠[𝑗] = 𝑎𝑗 , for 1 ≪ 𝑗 ≪ 𝑛 where n is the biggest integer power of a  such that 𝑎𝑛 ≤

𝑁, where N is the length of the input signal. In many applications, 𝑎 is set as 2. 

 𝑑𝑢[𝑗] = 𝑠[𝑗]/2 and 𝑑𝑣[𝑗] = 𝜋/𝑠[𝑗].  

 𝑢 ∈ {𝑝𝑑𝑢|𝑝 ∈ 𝑍, 0 ≤ 𝑝, 𝑝𝑑𝑢 ≤ 𝑛 − 1}. 
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 𝑣 ∈ {𝑘𝑑𝑣|𝑘 ∈ 𝑍, 0 ≤ 𝑘, 𝑘𝑑𝑣 < 𝑟𝑚𝑣}, where 𝑟𝑚𝑣 = 2𝜋.  

It is proven in [23, 24] that if the parameters 𝑠, 𝑢, 𝑣 are discretised as indicated above the 

fourth parameter w is uniquely determined in the standard MP algorithm.  

    In our application, the atoms in the overcomplete dictionary should match the ultrasonic 

echoes as close as possible in order to obtain accurate echo estimation. In order to achieve 

this goal, the parameters s, u, v in the real Gabor dictionary 𝐷𝑅 is required to be discretised 

as fine as possible rather than the above partition. In [20], it demonstrated that refining the 

parameters significantly improves the performance of MP. 

However, for given parameter bounds, this means significantly increase the size of the 

discrete Gabor dictionary 𝐷𝛼. According to the SSR theory, MP finds the optimal solution 

only when the dictionary size, i.e., the number of atoms in the dictionary, is smaller than a 

threshold due to cumulative coherence bound [22]. Otherwise MP fails to find the optimal 

solution, and the decomposition is not stable and reliable as well.  

This contradiction is caused by the greedy searching strategy when MP searches for the 

best matching atoms over an overcomplete dictionary iteratively. Because of its greediness, 

MP initially may select an atom that is not part of the optimal sparse representation; as a 

result, many of the subsequent atoms selected by MP simply compensate for the poor initial 

selection.  

One solution to this problem is to refine the resolution of the parameter space by 

improving the search from a coarse grid to a fine grid and then interpolating both the fine grid 

and the time shift parameter [20]. This strategy significantly improves the MP performance 

without increasing the size of the dictionary.  
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In this paper an alternative solution to this problem is proposed. The greedy searching 

method in MP is replaced by a search method that is able to find the global solution in a 

continuous parameter space of atoms. This replacement is assumed to significantly alleviate 

the above contradiction and achieve high performance for ultrasonic echo estimation 

although it may not be able to completely eliminate the drawbacks of MP. Many optimization 

algorithms might be used to realize this idea, for example particle swarm optimization [25], 

simulated annealing [26], and artificial bee colony algorithm (ABC) [27-29]. Without loss of 

generality, ABC is used in this paper to test this idea because ABC can find the global 

optimal solution with quick convergence by carrying out a parallel global searching in a 

continuous parameter space.  

The rest of the paper is organized as follows. Section 2 presents a brief review of the MP 

and ABC algorithms. This will facilitate the description of the proposed algorithm. In Section 

3, an ABC optimization based MP approach (ABC-MP) is proposed and detailed numerical 

implementation is presented. Experimental verification and performance analysis are given in 

Section 4. Finally, we conclude in Section 5.  

 

2. Review of the MP algorithm and ABC algorithm 

 

2.1 Review of the MP algorithm 

MP computes a signal representation by greedily constructing successive 

approximations to the signal, 𝑦(0), 𝑦(1), 𝑦(2),  , by orthogonal projections on atoms of 

the dictionary 𝐷𝛼. The following summarizes the steps of the MP algorithm [24]:  
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1) Initialize the iteration counter k = 1, the initial approximation 𝑦(0) = 0, and the 

residue 𝑅(0) = 𝑦 where y is the measured ultrasonic signal. 

2) Search the dictionary atom 𝑔𝛽𝑘that best correlates with the residue 𝑅(𝑘−1).  

This is achieved by solving the optimization problem: 

𝑔𝛽𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑔𝛽𝜖𝐷𝛼‖〈𝑅
(𝑘−1), 𝑔𝛽〉‖.                                           (6) 

3) Calculate a new approximation 𝑦(𝑘) = 𝑦(𝑘−1) + 𝑐𝑘𝑔𝛽𝑘 and a new reside 𝑅(𝑘) = 𝑦 −

𝑦(𝑘), where 𝑐𝑘 is computed by the L2-inner product of 𝑅(𝑘−1) and 𝑔𝛽𝑘, i.e., 

𝑐𝑘 = 〈𝑅(𝑘−1), 𝑔𝛽𝑘〉.                                                         (7) 

4) If the residue energy ‖𝑅(𝑘)‖
2
< 𝜀, then stop. Otherwise k = k + 1 and jump to Step 2. 

After K iterations, matching pursuit decomposes the signal y into 

𝑦 = ∑ 𝑐𝑖𝑔𝛽𝑖 + 𝑅(𝐾)𝐾
𝑖=1 .                                                     (8) 

 

2.2 Review of the ABC algorithm 

    The ABC algorithm is an optimization algorithm evolved from the honey bees efficient 

behavior introduced by Karaboga [27]. In the ABC algorithm, the position of a nectar source 

represents a possible solution to the optimization problem and the nectar amount of a nectar 

source corresponds to the quality (fitness) of the associated solution. The number of the 

employed bees or the onlooker bees is equal to the number of solutions in the population. In 

the basic ABC algorithm, it firstly generates a population with SN initial nectar source 

positions (SN solutions) that are randomly distributed, where SN denotes the number of nectar 

sources (the size of population). This can be done using Equation (9): 

𝑋𝑖 = 𝑋𝑙𝑜𝑤 + 𝑟𝑎𝑛𝑑(0,1) × (𝑋𝑢𝑝 − 𝑋𝑙𝑜𝑤), (𝑖 = 1,2,⋯ , 𝑆𝑁).                       (9) 
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Each solution 𝑋𝑖 is represented by a P-dimensional vector, where P is the number of the 

optimization parameters. 𝑋𝑢𝑝  and 𝑋𝑙𝑜𝑤  are the upper and lower bounds of these 

optimization parameters. rand(0,1) indicates a random number between 0 and 1. 

    After initialization, the nectar source positions (solutions) are then updated iteratively 

through the neighbourhood search processes of the employed bees, the onlooker bees and 

scout bees. An employed bee produces a modification on the position (solution) in her 

memory depending on the local information (visual information) and tests the nectar amount 

(fitness value) of the new source (new solution). Modification of the position is implemented 

by changing the parameters of the nectar position using Equation (10): 

𝑧𝑖𝑗 = 𝑥𝑖𝑗 + 𝜑𝑖𝑗(𝑥𝑖𝑗 − 𝑥𝑘𝑗), 𝑖 ∈ {1,2,⋯ , 𝑆𝑁}, 𝑘 ∈ {1,2, ⋯ , 𝑆𝑁}, 𝑗 ∈ {1,2,⋯ , 𝑃},      (10) 

where 𝑥𝑖𝑗 is the current nectar source position, 𝑥𝑘𝑗 is a random nectar source position, and 

𝑧𝑖𝑗 is the searched new nectar source position. 𝜑𝑖𝑗 is a random number between [-1, 1], and 

it controls the production of neighbor nectar sources around 𝑥𝑖𝑗. k is a randomly chosen 

index, and ik  . In Equation (10), if a parameter value produced by this operation exceeds 

its predetermined limit, the parameter can be set to an acceptable value. Provided that the 

nectar amount of the new one is higher than that of the previous one, the bee memorizes the 

new position and forgets the old one. Otherwise she keeps the position of the previous one in 

her memory.  

After all employed bees complete the searching process, they share the nectar 

information of the nectar sources and their position information with the onlooker bees on the 

dance area. An onlooker bee evaluates the nectar information taken from all employed bees 

and chooses a nectar source with a probability related to its nectar amount. The probability is 
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calculated using Equation (11) in this work: 

𝑝𝑖 =
𝐹𝑖𝑡𝑖

∑ 𝐹𝑖𝑡𝑛
𝑆𝑁
𝑛=1

,                                                         (11) 

where 𝐹𝑖𝑡𝑖 is the fitness value of the nectar source 𝑋𝑖. As in the case of the employed bee, 

the onlooker bee produces a modification on the position in her memory and checks the 

nectar amount of the candidate source. Providing that its nectar is higher than that of the 

previous one, the bee memorizes the new position and forgets the old one. 

    If a nectar source has not updated when the preset iteration limit of abandonment is 

reached, this nectar source will be abandoned because it is likely to be a local optimum. The 

associated employed bee turns into a scout bee. The scout bee then discovers a new nectar 

source to replace the abandoned one. In the ABC algorithm, this is implemented by producing 

a random nectar source to replace the abandoned one using Equation (12):   

𝑥𝑖𝑗 = 𝑥𝑙𝑜𝑤
𝑗 + 𝑟𝑎𝑛𝑑(0,1) × (𝑥𝑢𝑝

𝑗 − 𝑥𝑙𝑜𝑤
𝑗 ),                                   (12) 

where𝑥𝑙𝑜𝑤
𝑗 = 𝑚𝑖𝑛{𝑥1𝑗 , 𝑥2𝑗 , ⋯ , 𝑥𝑆𝑁𝑗} , 𝑥𝑢𝑝

𝑗 = 𝑚𝑎𝑥{𝑥1𝑗 , 𝑥2𝑗 , ⋯ , 𝑥𝑆𝑁𝑗} , 𝑗 ∈ {1,2,⋯ , 𝑃} . After 

the discovery operation, the scout bee turns back to be an employed bee. 

After each candidate source position 𝑧𝑖𝑗 is produced and then evaluated by the artificial 

bee, its performance is compared with that of its old one. If the new food has equal or better 

nectar than the old source, it is replaced with the old one in the memory. Otherwise, the old 

one is retained in the memory. In other words, a greedy selection mechanism is employed as 

the selection operation between the old and the candidate one. 

Repeat the above steps, until the maximum iteration number is reached or a convergence 

criterion is satisfied.   
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3. ABC optimization based MP  

In this Section, the numerical implementation of the proposed ABC-MP approach is 

described in detail. The basic principle of ABC-MP is that, the optimization problem of 

Equation (6) in the standard MP algorithm is solved using the ABC algorithm in a continuous 

parameter space of atoms, instead of carrying out the greedy search in the discrete 

overcomplete dictionary 𝐷𝛼.  

 

3.1 Interlink of ultrasonic echoes, Gabor atoms, and nectar sources  

    Since the ABC-MP algorithm is designed for ultrasonic echo estimation, an atom 𝑔𝛽 

represents an ultrasonic echo, and the decomposed coefficients in the ABC-MP 

decomposition of the ultrasonic signal correspond the ultrasonic reflection coefficients. 

A nectar source in ABC-MP is an atom 𝑔𝛽 so that each nectar source position 𝑋𝑖 

described in Section 2.2 is represented by the four parameters 𝑠, 𝑢, 𝑣, 𝑤, which will be 

optimized using the ABC algorithm. The physical meaning of the four parameters in 

ultrasonic NDE can be found in Section 1.1. The fitness value for a nectar source 𝑋𝑖 is 

calculated as the inner product’s absolute value of the ultrasonic signal y and the nectar 

source using the following equation: 

𝐹𝑖𝑡𝑖 = 〈𝑦, 𝑋𝑖〉.                                                         (13) 

The higher the fitness value, the better the nectar source, i.e., the better atom 𝑔𝛽. The fitness 

value of an atom corresponds the reflection coefficient of the found ultrasonic echo. 

 

3.2 Numerical implementation of the ABC-MP approach 
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The basic structure of ABC-MP is similar to MP, which computes a signal approximation 

by iteratively searching a global optimal ultrasonic echo from the residue signal,𝑅(0), 𝑅(1), 

𝑅(2),  , 𝑅(𝑚). m is the estimated number of ultrasonic echoes in the recorded ultrasonic 

NDE signal y.  

The main steps of the ABC-MP algorithm are given below: 

1) Initialization. Set the upper and lower bounds of the Gabor atom parameters 𝛽 =

(𝑠, 𝑢, 𝑣, 𝑤); Set the initial approximation 𝑦(0) = 0, and the residue signal 𝑅(0) = 𝑦 

where y is the recorded ultrasonic signal. 

2) Iteration k=1 

3) Repeat 

4) Search the dictionary atom 𝑔𝛽𝑘that best correlates with the residue signal 𝑅(𝑘−1) 

from the continuous parameter space of Gabor atoms using the ABC algorithm. 

5) Save the optimal atom 𝑔𝛽𝑘 found at the iteration k by the ABC algorithm as a found 

ultrasonic echo in the residue signal 𝑅(𝑘).  

6) Save the fitness value 𝑐𝑘 of the optimal atom 𝑔𝛽𝑘 as the amplitude of the found 

ultrasonic echo in the residue signal 𝑅(𝑘).  

7) Calculate a new approximation and a new reside by 𝑦(𝑘) = 𝑦(𝑘−1) + 𝑐𝑘𝑔𝛽𝑘 

and a new reside 𝑅(𝑘) = 𝑦 − 𝑦(𝑘). 

8) k=k+1 

9) Until iteration k=m, or a convergence criterion is satisfied.  

    The reconstructed ultrasonic signal can then be approximated by:  

𝑦 = ∑ 𝑐𝑘𝑔𝛽𝑘 + 𝑅(𝑚)𝑚
𝑘=1 .                                                  (14) 
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At iteration k and in the step 4 of ABC-MP, the search process is to solve the following 

optimization problem: 

𝑋𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑋𝑖∈𝐷𝑅‖〈𝑅
(𝑘−1), 𝑋𝑖〉‖.                                          (15) 

A nectar source 𝑋𝑖 is a Gabor atom 𝑔𝛽, which is defined by the four parameters 𝛽 =

(𝑠, 𝑢, 𝑣, 𝑤). The upper and lower bounds of the positions of the nectar sources, i.e., the 

bounds of DR, are determined by the bounds of the parameters β.  

    The pseudo-code of the ABC algorithm used in the step 4 of the ABC-MP algorithm is 

given as below: 

1) Initialize the population of solutions 𝑥𝑖𝑗, i = 1. . .SN, j = 1. . .4 

2) Iteration=1 

3) Repeat 

4) Produce new solutions 𝑧𝑖𝑗  for the employed bees by using Equation (10) and 

evaluate them 

5) Apply the greedy selection process as described in Section 2.2  

6) Calculate the probability values 𝑝𝑖𝑗 for the solutions 𝑥𝑖𝑗 by using Equation (11) 

7) Produce the new solutions 𝑧𝑖𝑗 for the onlookers from the solutions 𝑥𝑖𝑗 selected 

depending on 𝑝𝑖𝑗 and evaluate them 

8) Apply the greedy selection process 

9) Determine the abandoned solution for the scout bees, if exists, and replace it with a 

new randomly produced solution 𝑥𝑖𝑗 by using Equation (12) 

10) Memorize the best solution achieved so far 

11) iteration=iteration+1 
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12) Until iteration= the maximum iteration number.  

13) Return the optimal xij as the found optimal atom gβk in the residue signal R(k), 

and the corresponding fitness value as the found ck.  

 

3.4 Determination of the upper and lower bounds of the Gabor atom parameters 

In our practical applications, when an ultrasonic signal consists of multiple ultrasonic 

echoes that are heavily overlapped, it shows that the choices of the upper and lower bonds of 

the Gabor atom parameters have a significant impact on the stability and reliability of the 

ABC-MP algorithm. In this work, the following strategies are adopted to determine the upper 

and lower bounds of the Gabor atom parameters: 

 The upper and lower bounds of the four parameters 𝛽 = (𝑠, 𝑢, 𝑣, 𝑤)  are 

predetermined according the a-prior information of the ultrasonic inspection system, 

including the characteristics of the used transducer and the attenuation properties of 

the test sample. During ultrasonic NDE, changing of the parameters s and v is mainly 

caused by the dispersive attenuation. High frequency has a high attenuation and low 

frequency has a low attenuation, as a result, leading to a frequency shift. The bound of 

s is estimated according to transducer bandwidth and the attenuation properties of the 

test sample. The bound of v is estimated based on the central frequency of the 

transducer and the attenuation properties of the test sample. u is between 0 to the 

length of the signal, and w is between 0 to 2π.     

 For a real ultrasonic echo with a high central frequency, it must have a relative small 

scale s. On the contrary, a low frequency ultrasonic echo has a relative large scale s. 
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On the basis of this physical property, when modifying the parameter v using the 

Equation (10) during the neighboring search process of the ABC algorithm, the 

parameter s will be checked so that the new nectar source (i.e, the new ultrasonic echo) 

has a clear physical interpretation. This is achieved by: during the modification of v, 

we firstly estimate the ideal parameter s according to the used transducer 

characteristics and the attenuation properties of the test sample, which is used as a 

reference sc. Then, the parameter s of the new nectar source will be checked. If it is 

not in a reasonable range (s1, s2) around sc, the parameter s will be shift into this 

range.  

 Similar to the above, when modifying the parameter s, the parameter v will be 

checked. This is achieved by: during the modification of s, we firstly estimate the 

ideal parameter v which is used as a reference vc. Then, the parameter v will be 

checked if it is in a reasonable range (v1, v2) around vc. If not, the parameter v will be 

shift into this range.  

 s1, s2, v1 and v2 will be set empirically according to the given applications. If s1 and 

s2 are too close to sc, and v1 and v2 are too close to vc, it will affect the convergence 

of the ABC algorithm and even miss the optimal atoms because sc and vc are 

estimated. Obviously, if s1 and s2 are too deviated from sc, and v1 and v2 are too 

deviated from vc, it will lose the purpose of forcing the searched atom with a clear 

physical interpretation. In our experiments, s1=0.99sc, s2=1.01sc, v1=0.99vc, and 

v2=1.01vc gives a good performance.  
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4. Experimental results and performance analysis 

In the following experiments, the ABC control parameters are set as: the number of 

nectar sources 40, the iteration limit of abandonment 80, and the maximum iteration number 

2000.  

 

4.1 Ultrasonic echo estimation for simulated ultrasonic NDE signals 

 

4.1.1 Ultrasonic signal generation 

In this section, simulation experiments were carried out to quantitatively evaluate the 

performance of the proposed ABC-MP algorithm on ultrasonic echo estimation. Ultrasonic 

signals were created according to the ultrasonic signal model of Equation (3), where the 

incident pulses were simulated by the measured ultrasonic echoes from a standard steel test 

block in a water tank using 230, 100, 50, 30, and 20-MHz transducers respectively on a 

Sonoscan’s D9000 system. The measured ultrasonic echoes are firstly normalized. Then, each 

echo 𝑠𝑖(𝑡) in an ultrasonic signal was generated according to Equation (3), where the 

reflection coefficient that determined the amplitude of each echo, was changed to simulate 

different reflectivity properties of the interrogated defects/interfaces. Each echo was 

translated along the time axis to various time positions to simulate a wide diversity of 

interfaces at different depths. The simulated signal was the superposition of several echoes 

according to Eq. (3), and various signals are generated for test. 

Notice that using the measure echoes rather than the ultrasonic echo model of Equation 

(1) to generate simulated ultrasonic signals makes the simulation as close to practice as 
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possible. It has been widely used in the community of ultrasonic NDE signal processing.  

 

4.1.2. Performance criteria 

    The performance of ABC-MP was measured quantitatively by four performance criteria: 

energy error, coefficient error, amplitude error, and the energy of the residue signal. The 

energy error 𝐸𝑒𝑟𝑟𝑜𝑟 is defined as: 

𝐸𝑒𝑟𝑟𝑜𝑟 =
‖�̃�𝑖−𝑠𝑖‖2

‖𝑠𝑖‖2
× 100%,                                                 (16) 

where 𝑠𝑖 is the original echo and �̃�𝑖 is the recovered echo. The coefficient error is defined 

as: 

𝑐𝑒𝑟𝑟𝑜𝑟 =
||�̃�𝑖|−|𝑐𝑖||

|𝑐𝑖|
× 100%,                                                 (17) 

where 𝑐𝑖 is the original reflection coefficient, and �̃�𝑖 is the estimated reflection coefficient.  

The amplitude error is defined as: 

𝐴𝑒𝑟𝑟𝑜𝑟 =
|�̃�𝑖−𝐴𝑖|

|𝐴𝑖|
× 100%,                                                  (18) 

where 𝐴𝑖 is the peak intensity value of the original echo 𝑠𝑖, and �̃�𝑖 is the peak intensity 

value of the recovered echo �̃�𝑖. The energy of the residue signal is defined as: 

𝐸𝑟𝑒𝑠𝑖𝑑𝑢𝑒 = ‖𝑅(𝑚)‖
2
,                                                      (19) 

where 𝑅(𝑚) is the residue signal after decomposition. 

    From Section 1.1, it can be the four performance criteria are tightly related to the quality 

of ultrasonic echo estimation in practical ultrasonic NDE applications. They are good 

indicators for accuracy of defect detection and sizing. For example, the energy error 𝐸𝑒𝑟𝑟𝑜𝑟 

measures the overall quality, including the echo shape. The amplitude error measures 

accuracy of defect sizing. Moreover, in ultrasonic imaging, ultrasonic images are normally 
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generated by using the amplitude, as a result, the amplitude error is a direct measure of the 

image quality.  

 

4.1.3 Generation of discrete Gabor dictionary 

In the experimental tests, MP were carried out as well for the comparison purpose. To 

numerically implement the MP method, the first issue is to select a discrete subset in the 

continuous parameter space of (s, u, v, w), i.e., to generate a discrete Gabor dictionary. 

    There are various sampling schemes to generate a discrete Gabor dictionary [30]. The 

discrete Gabor dictionary used widely in the literature is generated by the sampling scheme 

described in Section 1.3. The generation of this discrete dictionary is closely related to the 

frame theory used in the wavelet transform. The dictionary is succinct and complete from a 

mathematical point of view. However, it generally is unsuitable for decomposing ultrasonic 

signals comprised of time-localized echoes. For ultrasonic signal decomposition, 

time-localized Gabor atoms better match time-localized echoes, i.e., small values for the scale 

s are preferred. Moreover, it is desirable that the frequency range of the Gabor atoms in the 

dictionary matches the spectrum of the signal, and the discretization interval is independent 

of the scale s to achieve a uniformly high resolution. A small and constant discretization 

interval for the time shift is preferred to obtain the property of translation invariance for the 

decomposition. Therefore, based on this sampling scheme, an alternative dictionary can be 

generated for which the upper and lower bounds of the frequency v, scale s, and time shift u 

are determined as described in the Section 3.4 to give meaningful decomposition results for 

an ultrasonic signal. The bounds of the parameters 𝛽 = (𝑠, 𝑢, 𝑣, 𝑤) are the same with the 
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continuous parameter space of atoms used in ABC-MP. The superior performance of this 

sampling scheme has been demonstrated in [21, 31]. 

The second sampling scheme is used to generate a discrete Gabor dictionary for the MP 

decomposition in our experiments. The parameters 𝛽 = (𝑠, 𝑢, 𝑣, 𝑤)  were discretized 

independently. The discretization interval is determined empirically to get the best 

performance of MP for fair comparison with ABC-MP.  

 

4.1.4 Results and analysis 

Figure 1(a) shows a simulated signal. Figure 1(b) shows the three composing echoes 

which were obtained by 100, 50, and 30-MHz transducers. Figure 2 shows the spectrum of 

each composing echo. Notice that the peak frequencies of these echoes are far less than the 

transducer frequencies due to the dispersive attenuation in water and packaging materials. 

The simulated signal was processed by the proposed ABC-MP approach, and the processed 

results are presented in Figure 3, Figure 3(a) shows the recovered echoes, while Figure 3(b) 

shows the reconstructed signal. Figure 3(c) displays the sparse representation in the phase 

plane, and Figure 3(d) is the residue signal. 
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Figure 1: (a) The simulated signal; (b) The composing echoes. 

 

Figure 2: Spectrum of the composing echoes in Figure 1(b). Top to bottom: for the echoes 

from left to right in Figure 1(b) respectively. 
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Figure 3: Processed results obtained by the proposed ABC-MP approach for the simulated 

signal shown in Figure 1(a). (a) The recovered composing echoes; (b) The reconstructed 

signal; (c) The sparse representation in the phase plane; (d) The residue. 

 

Figure 4: Processed results obtained by MP for the simulated signal shown in Figure 1(a). (a) 

The recovered composing echoes; (b) The reconstructed signal; (c) The sparse representation 

in the phase plane; (d) The residue. 

 

For the purpose of comparison, the processed results obtained using MP and the discrete 
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results from Figures 3 and 4 are presented in Table1. 𝐸𝑟𝑒𝑠𝑖𝑑𝑢𝑒 for the residue signals shown 

in Figures 3d and 4d are 12.05% and 21.85% respectively. From Figures 1b, 3a, and 4a, it can 

be seen that the accuracy of recovered echoes by the proposed ABC-MP approach are much 

higher than the MP method in terms of amplitude and shape. Comparing Figure 3(d) and 

Figure 4(d), it is also observed that the residue signal produced by ABC-MP is smaller than 

MP. The quantitative analysis results above confirm the superior performance of ABC-MP in 

ultrasonic echo estimation. Experimental verification were carried out over a large number of 

simulated signals, and very similar performance to the results presented here are observed.  

In addition, the MP algorithm searches the optimal atom greedily in the Gabor 

dictionary which has 31360 atoms. Under the same conditions, the ABC algorithm searching 

the optimal atom, just needs to search 1000 space parameter points at most, i.e., the number 

of iterations to reach convergence is less than 1000. Thus, the proposed ABC-MP is much 

more efficient than MP in terms of computation time. 

 

Table 1. The performance of ABC-MP. 

 errorE (%) errorc  (%) errorA  (%) 

ABC-MP MP ABC-MP MP ABC-MP MP 

The first echo 11.52 17.19 0.88 1.79 1.69 5.84 

The second echo 14.89 25.98 3.91 6.36 0.87 3.36 

The third echo 10.94 26.14 0.52 3.45 1.93 5.07 

 

4.2 Pulse detection and noise suppression for simulated ultrasonic NDE signals 
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In this experiment, the performance of the proposed ABC-MP algorithm was tested by 

applying it for pulse detection and noise suppression. The pulse detection and noise 

suppression technique proposed in [31] is adapted by using the ABC-MP algorithm replacing 

the SBL algorithm. In particular, a noisy ultrasonic signal was firstly decomposed into sparse 

representations using the ABC-MP algorithm. Pulse detection and noise suppression was then 

carried out on the decomposed coefficients in the time-frequency domain. Nonlinear 

post-processing including thresholding and pruning was applied to the decomposed 

coefficients to reduce the noise contribution and extract the flaw information. Because of the 

high compact essence of sparse representations, flaw echoes are packed into a few significant 

coefficients, and noise energy is likely scattered all over the dictionary atoms, generating 

insignificant coefficients. This property greatly increases the efficiency of the pruning and 

thresholding operations, and is extremely useful for detecting flaw echoes embedded in 

background noise. Finally, reconstruct the ultrasonic signal using the processed coefficients 

and the corresponding dictionary atoms. 

Computer generated white Gaussian noise was added to the simulated signal shown in 

Figure 1(a), and the resulting noisy signal was processed using the proposed technique. In 

order to quantify the efficiency of the proposed approach in ultrasonic signal detection, the 

output SNR was evaluated as a function of the input SNR. The output SNRout is calculated as 

the ratio of the output signal power computed in a time window where the ultrasonic echoes 

are present and another time window for which the original echoes are null. SNRin is 

calculated as the ratio of the power of the simulated signal shown in Figure 1(a) and the 

power of noise added to it. Figure 5 shows an example of our experimental results. The MP 
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decomposition was carried using the same way in Section 4.1. From Figure 5, it can be seen 

that the proposed ABC-MP algorithm outperforms MP.  

 

Figure 5: Input SNR versus output SNR 

 

4.3 Ultrasonic echo estimation for real ultrasonic NDE signals 

In this experiment, the performance of the ABC-MP algorithm was tested using real 

ultrasonic NDE signals. Figure 6(a) shows a measured signal using a 100-MHz transducer on 

our commercial acoustic micro imaging system when inspecting a flip-chip package. The 

structure of a flip-chip package can be found from Ref.[32]. The measured signal contains 

three echoes. The first echo is the reflected echo from the interface of water-silicon die. The 

second echo is the reflected echo from the silicon die-solder joint. The second echo is 

reflected from a defect inside the solder joint. The spectrum of the signal is plotted in Figure 

6(b). Figure 7 shows the processed results obtained using the proposed ABC-MP approach, 

and as a comparison, Figure 8 shows the processed results obtained using MP. Comparing 
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Figures 7 and 8, it can be seen that ABC-MP outperforms MP in terms of the shapes and 

amplitudes of the recovered echoes. Furthermore, 𝐸𝑟𝑒𝑠𝑖𝑑𝑢𝑒 for the residue signals shown in 

Figures 7 and 8 are 27.59% and 35.48% respectively. This further confirms the superior 

performance of ABC-MP.  

 

Figure 6: (a) A measured ultrasonic signal using a 100-MHz transducer and (b) its spectrum. 

 

 

Figure 7: Processed results obtained by the proposed ABC-MP approach for the measured 

signal shown in Figure 6(a). (a) The recovered echoes; (b) The reconstructed signal; (c) The 

sparse representation in the phase plane; (d) The residue. 
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Figure 8: Processed results obtained by MP for the measured signal shown in Figure 6(a). (a) 

The recovered echoes; (b) The reconstructed signal; (c) The sparse representation in the phase 

plane; (d) The residue. 

 

5 Conclusions 

In this paper, an artificial bee colony optimization based matching pursuit approach for 

ultrasonic echo estimation is proposed. The signal is approximated by constructing a linear 

combination of atoms selected from the dictionary by ABC which finds the global optimal 

solution with quick convergence. Because ABC searches the optimal atoms in a continuous 

parameter space, it allows highly flexible of the adaptation of the approximation to the 

non-stationary nature of ultrasonic NDE signals. These advantages of ABC-MP lead to 

superior performance in ultrasonic echo estimation, pulse detection and noise suppression, 

which have been demonstrated from both simulated and measured signals.  
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