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Abstract 13 

The measurement of ‘cognitive bias’ has recently emerged as a powerful tool for assessing 14 

animal welfare. Cognitive bias was initially, and widely, studied in humans, and describes the 15 

way in which particular emotions are associated with biases in information processing. 16 

People suffering from clinical levels of anxiety or depression, for example, interpret 17 

ambiguous events more negatively than do non-anxious or non-depressed people. 18 

Development of methods for use with non-human animals has revealed similar biases in 19 

several species of mammals and birds, and one invertebrate. However, cognitive bias has 20 

not previously been explored in any species of non-human primate, despite specific concerns 21 

raised about the welfare of these animals in captivity. Here, we describe a touchscreen-based 22 

cognitive bias task developed for use with captive rhesus macaques. Monkeys were initially 23 

trained on a Go/No-Go operant task, in which they learned to touch one of two lines that 24 

differed in size in order to receive a reward (food), and to desist from touching the other 25 

line to avoid a mildly aversive stimulus (delay to the next trial and white noise). In 26 

testing sessions, the monkeys were presented with lines of intermediate size. We measured 27 

whether touchscreen responses to these ambiguous stimuli were affected by husbandry 28 

procedures (environmental enrichment, and a statutory health check involving restraint and 29 

ketamine hydrochloride injection) presumed to induce positive and negative shifts in 30 

affective state respectively. Monkeys made fewer responses to ambiguous stimuli post-31 

health-check compared to during the phase of enrichment suggesting greater expectation of 32 

negative outcomes following the health check compared to during enrichment. Shifts in 33 

affective state following standard husbandry procedures may therefore be associated with 34 

changes in information processing similar to those demonstrated in anxious and depressed 35 

humans, and in a number of other vertebrate taxa. 36 
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 40 

Introduction   41 

Improving methods used to assess the psychological wellbeing of animals in captivity is a 42 

key goal for animal welfare researchers (Dawkins 1990; Mendl & Paul 2004; Rennie & 43 

Buchanan-Smith 2006a, b; Veissier et al 2008; Broom 2010; Mason & Veassey 2010; Mendl 44 

et al 2010a; NC3Rs 2011). A particularly promising development in this area has been the 45 

emergence of ‘cognitive bias’ as an indicator of animal psychological wellbeing (Harding et 46 

al 2004; Mendl & Paul 2004; Paul et al 2005; Mendl et al 2009, 2010a). The cognitive bias 47 

model draws on work with humans which demonstrates a strong link between trait and state 48 

affect and cognitive processes (including attention, appraisal, expectation and memory: 49 

Eysenck et al 1991, 2006; MacLeod & Byrne 1996; Mathews & MacLeod 2002; Richards et 50 

al 2002; Bar-Haim et al 2007; Miranda & Mennin 2007). For example, people high in 51 

anxiety demonstrate a bias to judge ambiguous information as more negative, and report a 52 

greater expectation of negative future events, than do people who are low in anxiety (Eysenck 53 

et al 1991, 2006; Richards et al 2002; Blanchette et al 2007). Anxious people with co-morbid 54 

depression additionally demonstrate a reduced expectation of future positive events 55 

(MacLeod & Byrne 1996; Miranda & Mennin 2007). These emotion-mediated biases in the 56 

appraisal of the valence of stimuli, events and future outcomes are implicated in the onset and 57 

maintenance of clinical affective disorders in modern day human populations (Gray 1971; 58 

Mathews & MacLeod 2002). They are also reliable predictors of self-reported distress 59 
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experienced during stressful life events, and considered to be important markers of human 60 

psychological wellbeing (Mathews & MacLeod 2002; Pury 2002; Wilson et al 2006).  61 

 62 

Recent work with rats (Harding et al 2004; Burman et al 2008a, 2009), starlings (Bateson & 63 

Matheson 2007), dogs (Mendl et al 2010b), sheep (Doyle et al 2010a), honeybees (Bateson 64 

et al 2011) and chicks (Salmeto et al 2011), has demonstrated that emotion-mediated 65 

cognitive biases in information processing are also evident in non-human animals (see Mendl 66 

et al 2009 for a review). In these studies animals were tested using a species-specific variant 67 

of a ‘Go/No-Go’ task. Initially, animals were trained to make ‘Go’ responses (eg approach, or 68 

press a lever) to a rewarded stimulus and ‘No-Go’ responses (eg do not approach, or desist 69 

from pressing a lever) to an unrewarded or punished stimulus. Animals then underwent a 70 

manipulation presumed to induce a shift in underlying affective state, for example disrupted 71 

housing conditions to induce a negative shift (Harding et al 2004), or environmental 72 

enrichment to induce a positive shift (Bateson & Matheson 2007). During a subsequent 73 

testing phase, ‘Go’ and ‘No-Go’ trials were interspersed with test trials in which ambiguous 74 

probes (which possess characteristics intermediate to both the rewarded and non-75 

rewarded/punished stimuli) were presented.  76 

 77 

It is the response to intermediate probes which is used to quantify cognitive bias. Animals 78 

that more often respond to the ambiguous probes with ‘Go’ responses are interpreted as 79 

having a heightened expectation of receiving a reward (they have a more positive cognitive 80 

bias). Fewer ‘Go’ responses to ambiguous probes signal a more negative cognitive bias. In all 81 

species studied to date, animals presumed to be in a relatively more negative affective state 82 

perform fewer ‘Go’ responses to at least one of the ambiguous probes than do animals 83 
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presumed to be in a more positive affective state. In other words, following a stressor, 84 

animals appear to develop a more negative outlook, while following a positive manipulation 85 

such as enrichment animals appear to develop a more positive outlook.  86 

 87 

The value of the cognitive bias approach is therefore that it captures directly aspects of 88 

the valence of affective state, something which behavioural and physiological measures 89 

do not do. For example, commonly used behavioural indicators of ‘stress’ such as self-90 

directed, stereotypical and self-injurious behaviours have great inter- and intra-91 

individual variation and may, in some contexts, better reflect coping strategies and 92 

developmental history (Maestripieri 2000; Novak 2003); cortisol, the widely measured 93 

‘stress’ hormone may provide a better indicator of physiological arousal than 94 

(psychological) ‘stress’ per se (Honess & Marin 2006a). What cognitive bias studies do 95 

not currently show is whether an animal is in a categorically positive or negative 96 

emotional state, as opposed to simply in a relatively more positive or relatively more 97 

negative emotional state than the comparison condition (eg Boissy et al 2007; Mendl et 98 

al 2009). Distinguishing between absolute versus relative states remains a challenge for 99 

researchers, and it is likely that combination of the cognitive bias approach with 100 

neurophysiological data will help elucidate this issue in the future. What the current 101 

studies do show is that changes in an animal’s environment influence how that animal 102 

processes information about, and responds to, ambiguous cues. Since environmental 103 

manipulations are common components of standard husbandry procedures used with 104 

all animals housed in captivity it is critical that we consider the psychological impact of 105 

such procedures.  106 

 107 
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One group of animals for which particular captive welfare issues have been raised 108 

(Rennie & Buchanan-Smith 2006a, b; NC3Rs 2011), but for which cognitive bias has not yet 109 

been tested, is the non-human primates. The National Centre for the Replacement, 110 

Refinement and Reduction of Animals in Research (NC3Rs) states that the use of primates in 111 

research is ‘of particular concern…since, in the case of these animals, the potential for 112 

suffering is compounded because of their highly developed cognitive abilities and the 113 

inherent difficulties in meeting their complex social, behavioural and psychological needs in 114 

a laboratory environment’ (NC3Rs 2011). The aim of the current study was to adapt the 115 

paradigm first developed to assess cognitive bias in rats (Harding et al. 2004) for use with 116 

rhesus macaques, Macaca mulatta. We used a repeated measures design, which allowed us 117 

specifically to address the effects of changes in emotion state within individuals. To induce 118 

shifts in emotion state we made use of two pre-existing husbandry procedures that were 119 

familiar to the monkeys: restraint in the home cage for veterinary inspection, and 120 

addition of food- and object-based environmental enrichment. There is evidence that 121 

for rhesus macaques the former is putatively more negative than the latter (restraint: 122 

Heistermann et al 2006; enrichment: Honess & Marin 2006b). We tested whether these 123 

two husbandry procedures influenced responses to ambiguous information characteristic of 124 

the cognitive biases implicated in psychological wellbeing in humans. 125 

 126 

Method 127 

Study animals, housing and treatments 128 

Seven male rhesus macaques, M. mulatta, housed at the Caribbean Primate Research Centre, 129 

Puerto Rico took part in the study (average age: 4.5 years; range: 3.6 – 7.4 years). All animals 130 

were captive born and housed in an outdoor covered enclosure in single quarantine caging in 131 
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accordance with United States federal regulations. All animals had access to water ad libitum 132 

in the home cage and were provisioned with food during morning and afternoon feeding 133 

rounds. All aspects of the study conformed to the University of Puerto Rico’s Institutional 134 

Animal Care and Use Committee (IACUC) guidelines (Protocol approval: A1850106) and 135 

were passed by the Ethics Committee of Roehampton University. All monkeys were naïve to 136 

operant training until six months prior to the start of the study, from which point they worked 137 

in the laboratory on a daily basis. After the study had been completed the monkeys were 138 

moved to pair-housing in larger purpose-built, floor-to-ceiling cages for welfare purposes.  139 

 140 

During the initial training phase and subsequent enrichment treatment phase monkeys were 141 

provided with regular familiar additional enrichments (juice ice lollies, toys, twigs and 142 

preferred foods in Kong toys) all frozen into equivalent sized ice blocks, with daily food 143 

rations adjusted accordingly for calorie intake. Published data suggest such enrichments may 144 

lead to physiological and behavioural changes in primates suggestive of improved welfare 145 

(Honess & Marin 2006a, b). Juice and food items in ice blocks were most often used in 146 

the current study because they were largely composed of water (0 calories), all animals 147 

who took part engaged with the blocks, spent prolonged periods of time manipulating 148 

them, fed on blocks preferentially over freely available chow in the home cage, would 149 

often actively take the block from the caretaker’s hand when presented and, once the 150 

blocks melted, they left no debris in the home cage. Food rations were adjusted directly 151 

so that each animal received the same quantity of chow and fruit in a day, but a 152 

proportion of this would be provisioned in enrichment form during the enrichment 153 

phase.  During the health check treatment, monkeys were individually restrained in the home 154 

cage and sedated with an injection of Ketamine Hydrochloride (KHCl) before being removed 155 
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for a physical examination by the veterinarian. This procedure has been shown to act as a 156 

physiological stressor in captive primates (Ruys et al 2004; Heistermann et al 2006).  157 

 158 

Cognitive bias experiment 159 

The design of the cognitive bias experiment was a visual analogue of the ‘Go/No-Go’ 160 

paradigm developed by Harding et al (2004). Training stimuli were two yellow lines (Figure 161 

1a). One line was long (70 x 13 mm), and one was short (16mm x 11mm), subtending 7.15 x 162 

1.24 and 1.62 x 1.05 degrees of visual angle respectively when presented centrally on a 163 

computer monitor at a 60 cm viewing distance. These were used during training on the initial 164 

Go/No-Go task and for control trials during testing. The assignment of long and short line 165 

control trial stimuli to rewarded (S+) and unrewarded (S-) conditions was counterbalanced 166 

across monkeys (see below for details). Ambiguous probes were three intermediate-sized 167 

yellow lines (ambiguous probe trials: Figure 1b). One probe (Pi) was intermediate in size 168 

between the two training/control stimuli (33 x 12 mm), and two probes (P+ and P-) were 169 

intermediate in size between Pi and each of the training/control stimuli (S+/S-) respectively 170 

(shorter probe: 22.5 x 11.5 mm; longer probe: 49.5 x 12.5 mm).  171 

 172 

Single stimuli were presented centrally on a 15” Protouch Aspect TS17LBRAI001 touch-173 

sensitive LCD monitor connected to a Toshiba Satellite Pro A60 laptop computer running 174 

EPrime v1.0 experimenter-generator software. Touchscreen responses were recorded 175 

automatically by the computer. Correct responses were rewarded with delivery of 190mg 176 

primate pellets (P.J. Noyes, Lancaster, New Hampshire, USA) from an automatic dispenser 177 

(Biomed Associates Pedestal 45 mg mount dispenser, ENV-203). At the end of a daily 178 

session monkeys were rewarded with half of the daily chow ration and an item of 179 
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preferred fruit delivered via a purpose-built solenoid-operated lunch box. All sessions 180 

were video recorded. 181 

 182 

During training, animals learned to perform a Go/No-Go task during which only control trials 183 

were presented (S+ and S-: Figure 1a). Each line stimulus appeared on the screen until the 184 

monkey touched the stimulus, or until 2 sec had elapsed if no touch had occurred by this 185 

time. A 2 sec presentation time was selected based on the typical working speed of the 186 

animals during previous tasks: it allowed enough time for animals to respond on Go 187 

trials, whilst also allowing for a large number of trials to be run in each daily session. 188 

Correct ‘Go’ (touch S+) responses were rewarded with a secondary reinforcing tone 189 

(Microsoft Windows media file ‘ding.wav’, 11 kHz, 70 dB at 1 m, 0.6 sec) a feedback 190 

screen showing the rewarded stimulus for 1 sec, and two primate pellets which were 191 

delivered on 40% of trials on a variable reinforcement ratio (40%VRR). The reinforcement 192 

ratio was maintained at 40%VRR during the testing phase for ‘Go’ trials. The trial was then 193 

followed by an inter-trial interval (ITI) during which a plain black screen was shown 194 

(variable duration of 5-6 sec), as were all other trial types. Correct ‘No-Go’ (do not touch 195 

S-) responses were not rewarded and were followed instantly by the ITI. If the monkey 196 

incorrectly touched S-, a blue feedback screen immediately appeared for 16 sec and a burst of 197 

white noise (71 dB at 1 m, 2 sec) sounded.  198 

 199 

XXXFigure 1XXX 200 

 201 

Each monkey took part in one training session per day, seven days per week, with each 202 

session consisting of 62 control trials, presented in randomized order with the first and last 203 
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trials always S+ ‘Go’ trials (rewarded with 2 pellets on 100% fixed ratio). There were never 204 

more than three consecutive presentations of the same trial type. Criteria for learning the 205 

Go/No-Go task during the training phase were ≥80% correct responses over the 62 trial 206 

training block, with ≥70% accuracy for each of the ‘Go’ and the ‘No-Go’ trials respectively. 207 

All seven monkeys reached training criterion (range = 19 - 43 daily training sessions). 208 

Response accuracy at criterion ranged from 70-100% for ‘Go’ trials (all monkeys correctly 209 

responded on at least 70% of the ‘Go’ trials), and 87%-100% for ‘No Go’ trials (all 210 

monkeys correctly withheld from responding on at least 87% of the ‘No Go’ trials). The 211 

number of daily training sessions which monkeys completed following achievement of 212 

criterion and before the start of testing ranged from 5-11. All monkeys were required to 213 

perform to criterion on three consecutive daily training sessions before commencing testing. 214 

 215 

Following training, each monkey underwent six testing sessions during which control trials 216 

(S+ and S-) were randomly interspersed with ambiguous probe trials (P+, Pi, P-). Testing 217 

sessions were held daily at 24 hours, 48 hours and 72 hours after the statutory health 218 

check, and on the eight, ninth and tenth days of a 10 day enrichment phase (Figure 2). 219 

Control trials continued to be randomized and reinforced with 2 pellets at the 40%VRR 220 

for correct ‘Go’ trials, or delay and white noise for incorrect responses on ‘No Go’ 221 

trials. Ambiguous probe trials were not reinforced. Each testing session consisted of three 222 

blocks. Within each block the first and last trials were always S+ ‘Go’ trials. Block 1 223 

contained 12 control trials only: six S+ ‘Go’ trials and six S- ‘No-Go’ trials, presented in 224 

random order. Block 1 was included to ensure monkeys were working to criterion prior to the 225 

start of the experimental block. Monkeys were required to score 9 (75%) correct responses 226 

during block 1, with ≥4 correct responses for each of the ‘Go’ and ‘No-Go’ trials in order to 227 
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move onto block 2.  Block 2 contained 48 control trials (24 x S+ ‘Go’ trials, and 24 x S– ‘No-228 

Go’ trials), which were randomly interspersed with 18 (non-reinforced) ambiguous probe 229 

trials (6 x P+; 6 x Pi and 6 x P-). Data were collected on frequency and latency of responses 230 

to control and ambiguous probe trials. Block 3 contained 20 control trials (10 x S+ ‘Go’ 231 

trials: 10 x S– ‘No-Go’ trials). This block was included to reinstate the reinforcement 232 

contingencies for control trials following the presentation of the ambiguous probes in block 2. 233 

Monkeys were required to perform ≥ 14 correct responses, with ≥ 7 correct responses for 234 

each of S+ and S- trials in block 3. After block 3, each monkey received the adjusted chow 235 

ration. Feeding motivation was assessed by the number of primate pellets left in the pellet 236 

tray and the amount of monkey chow left in the ‘lunch box’ at the end of each daily session. 237 

The order of testing (post-health-check versus enrichment treatment first) and allocation of 238 

control trial stimuli (long line or short line for S+) were counterbalanced across individuals 239 

so that three monkeys were first tested during the feeding enrichment phase (S+ long line, n = 240 

1; S+ short line n = 2), and four monkeys were first tested post-health-check (S+ long line, n 241 

= 2; S+ short line n = 2).  242 

 243 

XXX Figure 2 here XXX 244 

 245 

Data analysis 246 

To assess whether performance during each testing session reached criterion for 247 

inclusion in the study, individual-level analyses were conducted initially. For each daily 248 

testing session for each monkey, it was assessed whether correct responses were made on at 249 

least 80% of control trials in block 2 (≥ 70% S- and 70% S+, separately), and feeding 250 

motivation was assessed by a 1 x 3 Repeated Measures ANOVA on proportion of pellets 251 
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consumed during training and testing sessions (post-health-check, enrichment). Five 252 

monkeys reached response criterion on all six testing sessions. Two monkeys failed to 253 

respond to the S+ to criterion on the day following the health check, and one of these 254 

also failed to respond to the S+ on the second day following the health check. For these 255 

two monkeys only data from testing days (two and three) for which data were available 256 

from both treatments were entered into the analysis. Therefore, out of 42 testing sessions, 257 

six were discarded, resulting in 2376 trials, from 36 testing sessions included in the analyses.  258 

  259 

To treat data for analysis of proportion of responses made by each monkey per daily 260 

testing session, per treatment, frequency data were calculated as (P = n ‘Go’ responses / n 261 

trials) for each of the control trials (S+ and S-), and the ambiguous probe trials (P+, Pi and P), 262 

separately. To treat data for analysis of latency to respond, individual latency data were 263 

trimmed to remove responses faster than 400ms, as these were likely to reflect errors (i.e. 264 

responses that occurred too quickly to reflect the monkey’s perception-reaction time, 265 

given the distance of reach to the screen, probably due to the monkey having his hand 266 

on the screen at stimulus onset, or being already in the process of reaching to touch the 267 

screen before the stimulus had been presented). Mean latency to respond was calculated 268 

for each stimulus and probe, per monkey, per testing session, per treatment, including non-269 

responses as 2 sec. Exploratory analyses were conducted to assess possible effects of testing 270 

day on proportion or latency of responses. A 3 x 5 (day x trial type) Repeated Measures 271 

ANOVA was conducted for each treatment, separately (including only monkeys for 272 

whom data were available on all three days). Analyses revealed no effect of testing day 273 

on proportion of responses made in either treatment (post-health-check: F2,8 = 1.30, P = 274 

0.32; Enrichment: F2,8 = 0.89, P = 0.45), with a similar pattern for latency to respond 275 
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(both Ps > 0.38) so for all analyses data were collapsed across the three (or equivalent) 276 

testing sessions for each monkey within each treatment (post-health-check, enrichment). 277 

 278 

Group – level analysis of data was performed using Repeated Measures ANOVA. Data 279 

were first checked for the underlying assumptions of normality using the Shapiro-Wilk test 280 

and for homogeneity of variance using Mauchley’s Sphericity Test. Data met the assumptions 281 

of normality without need for transformation. Greenhouse-Geisser corrected values were 282 

used where assumptions of sphericity were not met. Higher order 2 x 5 (treatment, trial type) 283 

Repeated Measures ANOVAs were conducted to assess within-subjects factors of treatment 284 

(post-health-check, enrichment) and trial type (S+, P+, Pi, P- and S-) for proportion of 285 

responses and latency to respond, separately. Significant main effects and interactions were 286 

examined using paired samples t-tests. Due to the small sample size it was not possible to 287 

include order of testing (post-health-check versus enrichment treatment first) in the higher 288 

order ANOVA. This was addressed separately in appropriate non-parametric Mann-Whitney 289 

U tests to compare performance of the three animals that were tested in the enrichment 290 

treatment first with performance of the four animals that were tested after the health 291 

check first (see Figure 2: Non-parametric tests were selected due to the inclusion of only 292 

three and four individuals respectively in the two groups, and are interpreted with caution 293 

due to the low Power afforded by the small sample size). Two Mann-Whitney U tests 294 

were conducted per treatment, one each for proportion and latency data. All descriptive 295 

data are reported as mean ± 1 SE. 296 

 297 

Although we carry out a number of statistical tests here, for three reasons we do not 298 

make adjustment for multiple testing. Firstly, these approaches greatly inflate the risk 299 
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of type II error (Nakagawa 2004); as our sample sizes are already low, this point is 300 

particularly relevant to our analyses. Secondly, such adjustments have been heavily 301 

criticized due to the inconsistency in their application (Moran 2003). Finally, reporting 302 

uncorrected P values is arguably the most transparent approach, allowing independent 303 

assessment of the validity of results.  304 

 305 

Results 306 

All animals consumed equivalent proportions of primate pellets during training and the 307 

two treatments (F2,12

 310 

 = 1.40, P = 0.28) and were observed to collect the full daily food 308 

ration on all occasions. 309 

For proportion of responses, there was a significant interaction of treatment x trial type (F4,24 311 

= 2.74, P = 0.05) and a main effect of both treatment (F1,6 = 7.93, P = 0.03) and trial type 312 

(F4,24 = 59.16, P < 0.01: Figure 3). Pairwise comparisons for each of the three probes 313 

revealed monkeys made fewer responses post-health-check versus during enrichment to the 314 

ambiguous probes P+ (t6 = 2.53, P = 0.05) and Pi (t6 = 2.55, P = 0.04), but not to P- (t6 = 315 

1.50, P = 0.18). For control trials, there was no difference in responses to S+ post-health-316 

check versus during enrichment (t6 = 1.86, P = 0.11), and no difference in the proportion of 317 

responses to S- (t6

 321 

 = 0.60, P = 0.57). Mann-Whitney U tests revealed no effect of order of 318 

testing on proportion of responses across the five trial types in either treatment (all P values 319 

> 0.16). 320 

XXXFigure 3 hereXXX 322 

 323 
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Analysis of latency data revealed a main effect of trial type (F4,24 = 41.40, P < 0.001), but no 324 

effect of treatment (F1,6 = 4.26, P = 0.08) and no significant interaction between the two 325 

(F1.6,9.6 = 2.38, P = 0.15: Figure 4). The main effect of trial type was driven by the difference 326 

in response speed on control trials, with faster responses to S+ than to S- in both treatments 327 

(post-health-check: t6 = 7.90, P < 0.001; enrichment: t6 = 7.63, P < 0.001). Comparison 328 

between trial types adjacent to each other in the series revealed a significant difference 329 

between Pi and P- (post-health-check: t6 = 3.69, P = 0.01; enrichment: t6 = 3.32, P = 0.02) 330 

and a difference between P- and S- in the enrichment treatment (t6

 335 

 = 4.66, P = 0.003). All 331 

other comparisons were non-significant (all P values > 0.08). Mann-Whitney U tests 332 

revealed no effect of order of testing on latency to respond across the five trial types in either 333 

treatment (all P values > 0.16). 334 

XXXFigure 4 hereXXX 336 

 337 

Discussion 338 

The data presented here suggest that differential shifts in emotion state following two 339 

standard husbandry procedures influence judgements about the positive or negative meaning 340 

of ambiguous information. Seven rhesus macaques were trained and tested on an adapted 341 

version of Harding et al’s (2004) cognitive bias Go/No-Go task. The likelihood of responding 342 

to ambiguous probes was influenced by treatment condition, while likelihood of responding 343 

to previously learned stimuli was not. Specifically, during a period of enrichment monkeys 344 

were more likely to touch ambiguous probes P+ (the probe closest to the rewarded stimulus) 345 

and Pi (the probe intermediate between rewarded and non-rewarded stimuli) than they were 346 
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to touch the same probes on the days following a health check. This is the first evidence for 347 

emotion-mediated cognitive bias for ambiguous stimuli in a non-human primate. 348 

 349 

The data presented here indicate that rhesus macaques demonstrate patterns of emotion-350 

mediated cognitive biases comparable to those exhibited by humans and other animals 351 

(Eysenck et al 1991, 2006; MacLeod & Byrne 1996; Garner et al 2006; Mendl et al 2009). 352 

This finding supports the argument that such biases play a fundamentally similar role in 353 

directing the behavior of diverse mammalian and avian taxa (Mendl et al 2009, 2010a). In 354 

humans, different affective traits and states are associated with specific patterns of processing 355 

bias. For example, anxiety is associated with an increased expectation of negative events 356 

(Eysenck et al 1991, 2006) while depression is associated with both increased expectation of 357 

negative events and reduced expectation of positive events (MacLeod & Byrne 1996). Our 358 

findings suggest that, with careful development of paradigms like the one presented 359 

here, we may have a powerful new tool to help us identify and differentiate between 360 

emotion states in non-human primates (Mendl et al 2009). A crucial step in this 361 

direction is manipulating the salience of the positive and negative events used during 362 

training. For example, by comparing responses to probes intermediate between positive 363 

and neutral, and between negative and neutral reinforcers, we may begin to test 364 

hypotheses about the extent to which animals show a changed expectation of negative 365 

events (as in anxiety in humans), positive events (as in depression), or both (as seen in 366 

depression with comorbid anxiety: see Bateson et al 2011; Salmeto et al 2011).  367 

 368 

The picture emerging, as to whether non-human animals demonstrate changes in 369 

expectation of positive or negative events following experimental manipulations of 370 
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affective state and as measured by changes in response to ambiguous probes closer to the 371 

rewarded or the unrewarded/punished stimuli, is varied. A number of studies, including the 372 

current study, reveal changes in response to P+, the probe closest to the rewarded training 373 

stimulus (rats in unpredictable housing: Harding et al 2004; starlings following removal of 374 

enrichment: Bateson & Matheson 2007; sheep following administration of a serotonin 375 

antagonist: Doyle et al 2011; a chick model of depression: Salmeto et al 2011). Such 376 

reduced responding to P+ is expected in depression (with or without co-morbid anxiety). 377 

Reduced responding to the ambiguous probe P-, the probe nearest the unrewarded/punished 378 

stimulus, is expected in anxiety (and depression if accompanied by reduced responding to 379 

P+), and has been demonstrated in rats (following removal of enrichment: Burman et al 380 

2008a; see also Mendl et al 2010b for a non-significant trend in dogs), a congenitally helpless 381 

(rat) model of depression (Enkel et al 2009) and chick models of anxiety and depression 382 

(Salmeto et al 2011). Other studies have found significant effects for Pi, the intermediate 383 

probe (dogs showing separation-related behaviour: Mendl et al 2010b; sheep following 384 

physical restraint and release: Doyle et al 2010a). A key issue in comparing findings across 385 

these studies is the relative salience of the positive and negative events in each case, for 386 

which meaningful comparison data are not currently available. Therefore, we 387 

tentatively suggest the significant change in frequency of responses to both P+ and Pi, but 388 

not to P-, in macaques following a health check relative to during a period of enrichment, 389 

may implicate a role of mechanisms sensitive to reward (specifically food pellets) as 390 

opposed to non-reward or punishment (white noise and delay), but this requires further 391 

exploration. 392 

 393 
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Our finding that standard husbandry procedures can lead to changes in the way rhesus 394 

macaques respond to novel ambiguous cues has implications for the way we think about 395 

‘stressors’ in a captive animal’s environment. Although a given stimulus may not be stress-396 

inducing per se, the stressfulness of a stimulus may be a function of its ambiguity and the 397 

emotional state of the animal. The strength of this effect may vary between species, as 398 

suggested by contrasting patterns of emotional responsiveness and cognitive bias across taxa. 399 

While most studies show a negative bias following a stressor or a more positive bias 400 

following enrichment, there are some exceptions. Bateson and Matheson (2007) found a 401 

negative shift in cognitive bias among starlings moved from enriched to standard cages, but 402 

no evidence for a positive shift in bias among birds moved from standard to enriched cages. 403 

Doyle et al (2010a; see also Sanger et al 2011) found a positive shift in cognitive bias in 404 

sheep following a restraint and isolation procedure, compared to non-restrained control 405 

animals, and interpreted this as reflecting relief following the termination of the stressor, 406 

resulting in a pattern of bias opposite to that which may have been expected. These variations 407 

suggest possible species differences in sensitivity of emotional response to experimental 408 

manipulations and highlight the possibility that manipulations do not always result in the shift 409 

in underlying affect that has been presumed, or that there may be a limited time-window for 410 

detecting this shift. Interestingly, given that restraint was used as a stressor by both 411 

Doyle et al (2010a) and in the current study, the differential patterns of response 412 

(positive shift in bias immediately following release from restraint: Doyle et al 2010a; 413 

negative shift in bias 24 – 72 hours following release from restraint here) may reflect the 414 

influence of additional factors on emotional response to presumed stressors, such as the 415 

role of control versus learned helplessness (eg Rodd et al 1997). It is arguable that the 416 

repeated exposure to restraint over three days conducted by Doyle et al (2010a) prior to 417 
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testing provided animals with a reliable cue that resulted in a sense of control on 418 

release. Sense of control is associated with robustness to stressors in humans (Seligman 419 

1991, 1994). By comparison, the tri-monthly health-check conducted with the monkeys 420 

in the current study occurred infrequently, and lacked predictable cues, which may 421 

have resulted in a state more similar to learned helplessness. Learned helplessness is 422 

associated with depression in humans (Seligman 1991; Ozment & Lester 2001).  An 423 

additional finding in our study was the utility of the cognitive measure to assess the duration 424 

of the psychological response to the health check. There was no effect of testing day (days 1-425 

3) on proportion or latency of responses to the control stimuli and ambiguous probes, 426 

suggesting that the statutory three-monthly health check may present a psychological stressor 427 

that has a persistent effect lasting several days or more. Inclusion of baseline measures, 428 

currently lacking from most studies in both the animal and human literature, will 429 

enable further investigation of these contextual and temporal factors. 430 

 431 

There were several aspects of the current study that were designed to address specific 432 

concerns raised about the paradigm first developed by Harding et al (2004; see also Mendl et 433 

al 2009). In their study, Harding et al (2004) compared two groups of rats, in one of which 434 

depressive-like symptoms had been induced using unpredictable housing; they consequently 435 

required an additional set of tests to check for arousal, motivation and cognitive function 436 

differences between treatment groups. These checks are particularly pertinent given the 437 

evidence for an influence of affect on processes such as attention and memory formation 438 

(Mendl, 1999), state-dependent-learning and reward sensitivity (van der Harst et al 2003; 439 

Pompilio et al 2006; Burman et al 2008b; Woike et al 2009; Mendl et al 2009). The within-440 

subjects repeated measures design in our study, along with the inclusion of the control trials 441 
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during all stages of training and testing, provided an inbuilt check for these factors, thereby 442 

removing the need for these extra tests. The use of the touchscreen with a variable 443 

reinforcement ratio also had the advantage that, once animals were trained, a large number of 444 

test trials could be run in a short space of time (typically < 8 sec per trial, allowing each 445 

animal to be tested and allowed to feed at the apparatus within a ~40 minute window). 446 

The number of experimental trials we were able to run in a daily testing session (n = 66, 447 

of which 18 were probe trials) was large compared to those obtained using spatial 448 

orienting paradigms in which animals are required to move from a start location to the 449 

stimulus or probe location (typically in the range of 1 - 9 probe trials per day across 450 

species tested: eg Burman et al 2008a; Doyle et al 2010a; Mendl et al 2010b); this 451 

reduces the need for an extended number of days of testing during which time learning 452 

might reduce the ambiguous meaning of the probes (see Doyle et al 2010b). The variable 453 

reinforcement ratio on control trials reduced the likelihood of animals learning that probe 454 

trials were not reinforced. The delivery of pellets via a concealed chute following correct 455 

‘Go’ trials meant responses were not influenced by possible odour cues to the presence of 456 

food rewards during the trial.  457 

 458 

Alternative explanations for our results, such as contrast effects (the effect of previous 459 

experience on the perception of the current situation as negative, positive or neutral), 460 

arousal, motivation and risk-taking behaviour must also be considered. In our study there was 461 

no evidence for an effect of order of testing on likelihood of responding to probes and 462 

stimuli, and no effect of treatment on latency to respond, indicating that contrast and arousal 463 

effects are unlikely to account for the observed patterns of change. There was also no effect 464 
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of treatment on proportion of responses to the control stimuli suggesting it is unlikely that 465 

feeding motivation or risk-taking behavior had a significant effect on the results. 466 

 467 

Finally, cognitive biases are considered to reflect vulnerability to clinical affective disorders 468 

in humans (Mogg et al 1995), and there is empirical evidence that cognitive bias measures 469 

provide reliable predictors of experienced (self-reported) distress in humans that are more 470 

accurate than autonomic measures such as skin conductance (eg Pury 2002; Jansson & 471 

Najström 2009). For example, Pury (2002) measured biases in interpretation of homophones 472 

in students during a period of low academic stress and found negative bias in the 473 

interpretation of homophones to be a reliable predictor of consciously experienced negative 474 

affect during a later period of high academic stress. Jansson and Najstrom (2009) found 475 

that cognitive biases were reliable predictors of self-reported emotional distress in 476 

response to a laboratory stressor, while skin conductance responses were less reliable 477 

predictors, requiring additional information, such as heart rate variability, for 478 

interpretation. We lack methods to assess whether other species have any awareness of their 479 

emotional states (eg whether they can feel distressed). Given the predictive power of 480 

cognitive bias measures for determining experienced distress in humans, it is interesting to 481 

consider whether these measures may provide us a window into comparable psychological 482 

processes in other species. As such, we support the notion that the cognitive bias model may 483 

provide information about psychological processes in animals that is not accessible using 484 

other measures. 485 

 486 

Animal Welfare Implications  487 
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Our results indicate that singly-housed rhesus macaques show a negative shift in cognitive 488 

bias following a health check relative to during a period of feeding enrichment. This relative 489 

negative bias in information processing, which in humans is associated with affective states 490 

such as anxiety and depression, may last for several days. This raises important issues about 491 

the frequency with which medical or research interventions that involve potentially stressful 492 

procedures, such as restraint in the home cage, should be made, the need to consider 493 

alternative methods (eg training to present a limb for injection), and raises points for 494 

consideration regarding animals recovering from such interventions (eg the potential for 495 

heightened sensitivity to psychological stressors, and the potential duration of such 496 

heightened sensitivity). This approach may equally have value in identifying positive 497 

shifts in cognitive bias, and the duration of such shifts, which may indicate 498 

improvements in psychological wellbeing and assist in the identification of positive 499 

emotion states. In humans, experimental manipulations to induce positive shifts in 500 

cognitive biases have been used in therapeutic approaches to treat affective disorders 501 

(eg. Seligman 1991; Yiend et al 2005; Tran et al 2011) and it may be that, with further 502 

research, similar approaches could be applied with non-human animals. Importantly our 503 

data highlight the need for further development and investigation of methods to measure 504 

cognitive bias and the psychological component of affect in non-human primates.  505 
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