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ABSTRACT 

In a forensic context, microbial-mediated cadaver decomposition and nutrient 

recycling cannot be overlooked. As a result, forensic ecogenomics research has 

intensified to gain a better understanding of cadaver/soil ecology interactions as a 

powerful potential tool for forensic practitioners. For this study, domestic pig (Sus 

scrofa domesticus) (4 g) and grass (Agrostis/Festuca spp) cuttings (4 g) were buried 

(July 2013 to July 2014) in sandy clay loam (80 g) triplicates in sealed microcosms 

(127 ml; 50 x 70 cm) with parallel soil only controls. The effects of the two carbon 

sources were determined by monitoring key environmental factors and changes in 

soil bacterial (16S rRNA gene) and fungal (18S rRNA gene) biodiversity. Soil pH 

changes showed statistically significant differences (p < 0.05) between the 

treatments. The measured ecological diversity indices (Shannon-Wiener, HꞋ;  

Simpson, D; and richness, S) of the 16S rRNA and 18S rRNA gene profiles also 

revealed differences between the treatments, with bacterial and fungal community 

dominance recorded in the presence of Sus scrofa domesticus and grass trimming 

decomposition, respectively. In contrast, no statistically significant difference in 

evenness (p > 0.05) was observed between the treatments.  

Keywords: Cadaver, Forensic ecogenomics, Soil microbial communities, Sus scrofa 

domesticus, Agrostis/Festuca spp 
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1. Introduction  

Cadaver decomposition is a complex process that begins with post-mortem 

changes such as algor mortis, rigor mortis and livor mortis followed by soft tissue 

decomposition through the processes of autolysis, putrefaction, decay and 

skeletonization [1–6]. The soft tissue decomposition stages are characterised by 

protein, carbohydrate and lipid catabolisms in the body [1, 2, 5]. The rate of cadaver 

decomposition can be influenced by both biotic and abiotic factors, which can vary 

between above- and underground situations [2, 3]. Studies which compared above- 

[7–9] and underground [10–12] scenarios have shown that cadaver decomposition 

rate is slower in the latter.  

The application of fatty acid-based techniques, such as phospholipid fatty acid 

and fatty acid methyl ester analyses, and molecular techniques, such as polymerase 

chain reaction (PCR), denaturing/temperature gradient gel electrophoresis 

(T/DGGE) and terminal restriction length polymorphism (T-RFLP) with next 

generation sequencing for microbial community profiling, are beginning to elucidate 

the complex relationships between cadaver decomposition, nutrient cycling and soil 

microbial community dynamics in a forensic context [6, 13–18]. For example, some 

sub-surface studies by Bergmann et al [19] and Olakanye et al [20] recorded spatial 

and temporal changes in soil bacterial diversity relative to burial depth and 

decomposition time, respectively. Also, aboveground studies by Lauber et al [21] that 

investigated the roles of microorganisms in cadaver ecogenomics recorded changes 

in 16S rRNA bacterial, 16S rRNA archaeal, and 18S rRNA fungal communities in 

sterile and non-sterile soils with differences between skin-associated and grave soil 

during the active and advanced decay stages. Thus, several researchers have 

illustrated and suggested that changes in epinecrotic and burial soil microbial 

diversity can be a potential “post-mortem microbial clock” tool for PMI estimation 

[15, 16].  

Although the possible use of forensic ecogenomics as a novel suite of 

techniques for crime scene investigation is gaining momentum [15-17, 19, 22, 23], 

more detailed studies are required to elucidate fully the interactions between soil 

ecology and cadaver decomposition (cadaver decomposition-mediated soil ecology 

changes). Consequently, the values of different microbial ecology tools in this novel 

context, including profiling platforms that are accessible to most researchers and 

practitioners, must be considered while taking full cognizance of their limitations. To 
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explore this, two different carbon sources (Sus scrofa domesticus and 

Agrostis/Festuca spp) were buried and studied over a one-year period (July 2013 to 

July 2014). The specific research questions were: (i) What are the effects of abiotic 

factors such as temperature/pH on decompositional soil biodiversity?; (ii) Will Sus 

scrofa domesticus and plant matter decompositions illicit the same trends or shifts 

in biodiversity compared to the soil only controls?; and (iii) Which biochemical and 

molecular markers (microbial community indices) can be employed reliably during 

Sus scrofa domesticus decomposition? Thus, DGGE profiling was complemented by 

ecological community indices measurements of Shannon-Wiener and Simpson 

diversity, taxa richness and evenness. 

2. Materials and methods 

2.1 Soil collection and characterization 

Twenty kg of sandy clay loam soil were dug from a well secured site at Bishop 

Burton College of Agriculture, Lincolnshire, U.K. (Lat. 53.27°N, Long. 0.52°W) [24] 

and stored in a sterilized 25 l airtight bucket. To ensure homogeneity, the soil was 

milled thoroughly (Retsch SM 100, Retsch, Haan, Germany) and sieved (ASTM - 

standard soil sieve No 10; 2 mm mesh). The sandy clay loam soil was constituted 

(w/w) by 21% clay, 21% silt and 58% sand (Forestry Commission, Surrey, U.K.) and 

physicochemical charateristics of Al (25 g kg-1), Ca (5.4 g kg-1), K (4.6 g kg-1), Mg (2.8 

g kg-1), Na (0.28 g kg-1), nitrate aqueous extract as NO3 (76 mg l-1), total organic 

carbon (5.9 %), total S (0.05%), pH (5.8), P (1.0 mg kg-1), calorific value (2.0 MJ kg-1) 

and electrical conductivity (590 µS cm-1) (Derwentside Environmental Testing 

Services Ltd, County Durham, U.K.).  

2.2 Experimental design and sampling 

Triplicate polyethylene microcosms (127 ml, 50 x 70 cm; VWR, Lutterworth, 

U.K.) for the control and each treatment were perforated at equal distances and 

heights to facilitate aeration, moisture migration, sampling and hygiene 

maintenance. In total, 24 microcosms were established for the control and each of 

the two treatments to enable triplicate destructive sampling on days 7, 14, 28, 60, 

120, 180, 300 and 365. Freshly-butchered domestic pig (Sus scrofa domesticus) was 

bought from a local butcher (Middlebrough, U.K.), washed thoroughly with sterile 
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deionised water and cut into similar 4 g cubes while freshly cut grass 

(Agrostis/Festuca spp) was collected from a domestic garden (Wynyard, U.K.). The 

Sus scrofa domesticus and grass cuttings (4 g) were buried individually in 80 g (fresh 

weight) of homogenized soil. In parallel, an 80 g soil sample was included as a 

control. All microcosms were stored outside (Teesside University, Middlesbrough, 

U.K.; Lat. 54.5722° N, Long. 1.2349° W) but within perforated plastic boxes. 

2.3  pH measurement 

The average pH of each treatment and control (n = 3) soil was determined by 

mixing thoroughly samples with deionised water in a ratio (w/v) of 1:5 prior to  

measurement with a pH 213 microprocessor (Hanna Instruments, Bedfordshire, 

U.K.) fitted with a Fisher electrode. 

2.4 Temperature measurement 

The average soil temperatures (n = 3) were measured at every sampling time 

with a hand-held Hanna thermometer (Hanna Instruments, Bedfordshire, U.K.) 

while daily atmospheric temperatures for Middlesbrough, U.K. were obtained from 

http://www.metoffice.gov.uk/. 

2.5 DNA extraction 

DNA extraction and PCR-DGGE of each sample were as described by 

Olakanye et al [20]. The DNA extractions were made with FastDNA SPIN Kit for 

Soil™ (MP Biomedicals, U.K.) according to the manufacturer’s instructions and 

stored at -20 °C until needed. Triplicate DNA extracts (5 µl), each mixed with 1 µl 6X 

loading buffer, were analysed on 1.5% (w/v) agarose gels which contained 6 µl SYBR 

Safe (Invitrogen, U.S.A.). The gels were electrophoresed in 1X TBE buffer for 90 min 

at 150 V and viewed (AlphaImager HP®, Alpha Innotech, Braintree, U.K.) under UV 

light. 

2.6 PCR – DGGE analysis 

Triplicate PCR amplifications used GC 388F – 530R to target the 16S rRNA 

gene [25] and the nested primer sets NS1/NS8 and NS1/NS210-GC for the 18S rRNA 

gene [26]. The 25 μl PCR mixtures contained 12.5 μl of 2X PCR master mix 

(Promega, Southampton, U.K.), 8.25 μl molecular grade water (Promega, 

http://www.metoffice.gov.uk/
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Southampton, U.K.), 1.25 μl BSA (0.5 mg ml-1), 0.5 μl of both the forward and reverse 

primers (0.2 μM), and 2 μl of DNA templates. The thermo-cycling programme 

(Primus 96 Plus, MWG-Biotech, Ebersberg, Germany) for the 16S rRNA consisted of 

initial denaturation at 95 °C for 2 min; 35 cycles of: denaturation at 95 °C for 1 min, 

annealing at 60 °C for 1 min, extension at 72 °C for 1.5 min; and final extension at 72 

°C for 30 min. The first 18S rRNA gene step (NS1/NS8) consisted of initial 

denaturation at 94 °C for 2 min; 30 cycles of: denaturation at 94 °C for 30 s, 

annealing at 50 °C for 45 s, and extension at 72 °C for 2 min; and final extension at 

72 °C for 5 min, while the second step (NS1/NS210-GC) entailed initial denaturation 

at 94 °C for 2 min; 35 cycles of: denaturation at 94 °C for 30 s, annealing at 55 °C for 

1 min, and extension at 72 °C for 1.15 min; and final extension at 72 °C for 5 min. 

Subsequent to checking on 1.5% (w/v) agarose gels as described above, the 

amplicons (20 μl) were separated on 10% (w/v) polyacrylamide gels (acrylamide/bis-

acrylamide gel 37.5:1) with a 30% to 70% denaturing gradient for the 16S rRNA, and 

6% (w/v) polyacrylamide gels with a 25% to 45% denaturing gradient for the 18S 

rRNA with a PHOR-U (X2) Ingeny system (Leiden, Netherlands) at 60 °C and 110 V 

for 18 hours. The gels were stained with SYBR Gold (Invitrogen, U.S.A.) and viewed 

under UV light (AlphaImager HP®; Alpha Innotech, Braintree, U.K). 

2.7 Statistical analyses 

The DGGE images were quantified by Phoretix 1D software (TotalLab, 

Newcastle, U.K.) with the gel bands used to infer bacterial and fungal ‘species’ or 

operational taxonomic units (OTUs). Similarities between microbial community 

fingerprints were determined by cluster analysis, which was made with un-weighted 

pair-group using arithmetic average (UPGMA). The number, intensity and rank of 

the log10 of abundance of detectable OTUs were used to determine the ecological 

indices for richness (S), diversity (Shannon-Wiener, HꞋ (Equation 1); Simpson, D 

(Equation 2)) and evenness/equatibility (E), respectively. All data were evaluated 

statistically by a two-way ANOVA with repeated measures (xlstats 2014.5.02, New 

York, U.S.A.). To ensure robustness beyond the overall mean used in ANOVA, 

specific temporal statistical differences between the treatments and control were 

determined by further analysis with the Tukey (HSD) and Bonferroni post hoc tests 

(xlstats 2014.5.02, New York, U.S.A.). 
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Shannon-Wiener index (HꞋ) = −∑𝑷ᵢ 𝐥𝐧𝑷ᵢ  Equation 1 

Simpson index (D) = 1- ∑𝒏ᵢ(𝒏ᵢ−𝟏)

𝐍(𝐍−𝟏)
    Equation 2 

3. Results 

3.1 Temperature 

Between days 0 and 60, the average microcosm temperature was 25.1 °C ± 

0.31 while the atmosphere was 19.2 °C ± 0.19. The seasonal weather change then 

resulted in a temperature decrease that was marked from days 120 to 180 with an 

average of 8 °C ± 0.26.   For days 300 to 365 temperature increases were apparent 

with an average of 14.5 °C ± 0.14. The two-way ANOVA showed a statistically 

significant difference (p < 0.001) between the atmospheric and microcosm 

temperatures but no difference (p > 0.05) between the Sus scrofa domesticus and 

grass burial soils (Fig. 1). 

3.2 pH 

Compared to the control (pH 6.08 ± 0.04), increased average pH values were 

recorded for the Sus scrofa domesticus (6.83 ± 0.1) and grass (6.33 ± 0.07) 

microcosms between days 0 and 28.  Subsequently, decreased values were recorded 

for all of the microcosms between days 60 and 180 before each reached its highest 

value on day 300 (control, 6.44 ± 0.09; Sus scrofa domesticus, 8.43 ± 0.01; grass, 

7.58  ± 0.03) (Fig. 2). Two-way ANOVA showed statistically significant temporal 

differences (p < 0.001) between the control and experimental microcosms. 

3.3 Ecological indices measurement 

Species richness was calculated by the numbers of visualized DGGE bands 

(OTUs). For the 16S rRNA gene profiles, two-way ANOVA showed statistically 

significant temporal differences (p < 0.001) in response to the presence of Sus scrofa 

domesticus and grass cuttings (Fig. 3a & 3b). These observations were most 

pronounced on days 28 (9 ± 1.5, 20 ± 0.9, 19 ± 1.2) and 300 (8 ± 1.2, 19 ± 1.9, 13 ± 

0.6) for the control, Sus scrofa domesticus and grass cuttings microcosms, 

respectively. In contrast to the bacterial community trends, the 18S fungal profiles 

did not show any statistically significant differences (p = 0.27) in response to the 

burials. The Tukey (HSD) and Bonferroni post hoc tests did, however, identify 
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differences (p < 0.05) between the grass trimmings (8 ± 1.2, 19 ± 0.7) and Sus scrofa 

domesticus (16 ± 0.9, 11 ± 0.8) microcosms on days 28 and 180, respectively (Fig. 4a 

& 4b). 

The Shannon-Wiener index, which is a function of evenness and species 

relative abundance, showed statistically significant temporal differences (p = 0.034) 

in diversity between the control and the Sus scrofa domesticus and grass microcosms 

with the divergence more pronounced on days 28 (1.94 ± 0.19, 2.72 ± 0.10, 2.36 ± 

0.04) and 300 (1.94 ± 0.14, 2.75 ± 0.12, 2.30 ± 0.06), respectively (Fig. 3c & 3d). In 

contrast to the 16S profiles, the 18S fungal communities recorded no statistically 

significant differences (p = 0.41) between the control and experimental microcosms 

(Fig. 4c & 4d). Nevertheless, both the Tukey (HSD) and Bonferroni post hoc tests 

showed statistically significant differences (p < 0.05) between the Sus scrofa 

domesticus and grass cuttings microcosms on days 28 (2.41 ± 0.10, 1.79 ± 0.03), 60 

(1.84 ± 0.19, 2.33 ± 0.07) and 180 (2.09 ± 0.08, 2.53 ± 0.07), respectively. 

The Simpson diversity index, which exemplifies species richness and relative 

abundance, showed no statistically significant temporal differences (p = 0.89) for the 

16S bacterial communities between the control and experimental microcosms. 

Nonetheless, Tukey (HSD) and Bonferroni post hoc analyses recorded differences (p 

< 0.05) on days 28 (control, 0.82 ± 0.03; Sus scrofa domesticus, 0.92 ± 0.01), 180 

(control, 0.69 ± 0.01; Sus scrofa domesticus, 0.64 ± 0.02; grass, 0.82 ± 0.03) and 

300 (control, 0.83 ± 0.02; Sus scrofa domesticus, 0.92 ± 0.01) (Fig. 3e & 3f). For the 

fungal 18S rRNA gene profiles no temporal differences were recorded (p = 0.49). As 

shown earlier, the Tukey (HSD) and Bonferroni post hoc tests recorded statistically 

significant differences (p < 0.05) between the grass and Sus scrofa domesticus 

microcosms on days 28 (0.81 ± 0.02, 0.88 ± 0.04), 60 (0.89 ± 0.02, 0.81 ± 0.01) and 

80 (0.89 ± 0.01, 0.84 ± 0.01), and between the control and Sus scrofa domesticus 

microcosms on day 180 (0.89 ± 0.01, 0.84 ± 0.01) (Fig. 4e & 4f). 

Since changes in microbial diversity can sometimes result in an imbalanced 

community, evenness is measured to assess the distribution of microorganisms over 

time [27-30]. Evenness was calculated using the rank of the log10 of species relative 

abundance, with the actual value determined from the inverse log of the gradient. 

Calculations for the bacterial 16S and fungal 18S rRNA gene profiles (Table 1) 

showed that the biodiversities of both microbial community types were distributed 
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evenly in the control, Sus scrofa domesticus and grass soils independent of both the 

decomposition time and the presence or absence of decomposing matter. 

The similarities between the control and treatments were measured with the 

un-weighted pair-group using arithmetic average (UPGMA) for cluster analysis of the 

PCR-DGGE image fingerprints. The 16S bacterial communities showed 75% 

similarities between the microcosms on day 0, 35% on day 7, 8% on day 14, 22% on 

day 28, 38% on day 60, 24% on days 120, 180 and 300, and 35% on day 365 (Fig. 

5a). For the 18S fungal communities, 63% similarities were recorded for the 

microcosms on day 0, 58% on day 7, 31% on day 14, 49% on day 28, 44% on day 60, 

48% on day 120, 24 % on day 180, 43 % on day 300 and 28% 0n day 365 (Fig. 5b).

4. Discussion 

Studies of cadaver decomposition and its interactions with, and effects on, soil 

ecology have highlighted the potential of forensic ecogenomics as a powerful tool to 

estimate PMI and identify clandestine graves through changes in microbial 

communities [14-16, 20-23]. Although this tool has potential advantages compared 

with conventional methods for estimating PMI, most studies have, however, only 

considered a single carbon source (the cadaver) while dual sources can provide useful 

information for forensic practitioners to identify and differentiate gravesites in 

difficult cases such as transit or clandestine scenarios. This study examined the 

effects of two carbon sources, Sus scrofa domesticus and grass (Agrostis/Festuca 

spp) on soil diversity. 

Ambient temperature has been shown to have one of the greatest effects on 

cadaver decomposition rate. According to various workers [2, 9, 12, 31], the rate is 

enhanced by high temperature while the process slows or stops at cold temperatures. 

For cadaver decomposition under anaerobic conditions the optimum temperature 

range is 21°C to 38°C with very limited activity at temperatures below 4°C [2, 3, 32]. 

In our study, seasonal temperature changes were accompanied by  increases and 

decreases in diversity of both the 16S bacterial and 18S fungal communities. On day 

14 a microcosm temperature of 38°C, indicative of exothermic microbial activity, 

contrasted the air temperature of 22°C and preceded an increase in 16S bacterial 

biodiversity as expressed by ecological measures of richness (20.3; 19.3) (Fig. 3a & 

3b), Shannon-Wiener index (2.72; 2.36) (Fig. 3c & 3d) and Simpson index (0.92; 

0.84) (Fig. 3e & 3f) for Sus scrofa domesticus and grass, respectively on day 28. 
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From day 0 to 28, the 18S fungal communities (Fig. 4b, 4d & 4f) did not follow the 

same pattern as the bacterial species. Although different platforms were used, i.e. 

DGGE vs. next generation sequencing, Lauber et al [21] stated that initial 

decomposition does not provide robust 18S fungal community analysis data until 

after 20 days of carcass rupture. This supports earlier research [2, 8] where 

approximately 90% of the microorganisms isolated during initial decomposition 

were bacteria with Staphylococcus, Malasseria, Bacillus and Streptococcus species 

predominant. Other documented genera included Proteus, Salmonella, Klebsiella, 

Serratia, Flavobacterium and Pseudomonas [2, 8]. 

Changes in soil pH due to cadaver decomposition have been reported [12, 33-

35]. The results of our study showed differences in pH in response to Sus scrofa 

domesticus and grass decomposition due to their chemical compositions of protein, 

lipid and carbohydrate [2, 5] and cellulose and lignin [36-38], respectively. Hopkins 

et al [35] reported an accumulation of NH4+ and mineralisation of C and N at a 

gravesite which resulted in a soil pH increase similar to the one recorded for the Sus 

scrofa domesticus microcosm. Thus, while NH4+, PO4
-, K+ and NO3

- were not 

analysed in the current study, the recorded pH trends can still be related to earlier 

research [e.g. 5, 35] which entailed physico-chemical characterization of the 

gravesoil.  Consequently, changes in pH can result in microbial population shifts with 

bacteria more dorminant in pH 5.5 – 7.5 grave soil [23]. 

The use of some ecological indices, as employed by other researchers [20, 29, 

30], revealed interesting data that could be used to differentiate between Sus scrofa 

domesticus and grass decompositions. As suggested by McGuire and Treseder [38], 

bacterial and fungal richness might be useful in calculating decomposition time.  One 

noticeable result from this study was that ecological indices determined for 16S rRNA 

bacteria communities seemed to be the most useful for estimating PMI for Sus scrofa 

domesticus. For example, bacterial diversity and richness indices highlighted some 

temporal differences particularly on days 28 (summer; July 2013), 180 (winter; 

January 2014) and 300 (summer; July 2014) (Fig. 3a-3f). In contrast, 18S rRNA 

fungal determinations were the best estimates of grass decomposition (Fig. 4a-4f). As 

reported by Voříšková and Baldrian [39], fungi tend to dominate the later stage of 

plant decomposition and this was evidenced by the grass microcosms diversity 

measurements (Fig. 4c & 4e) although equatibility between the species diversities 

showed no significant difference (p > 0.05). 
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5. Conclusion 

Abiotic factors such as temperature and pH are key variables in taphonomic 

studies. This research identified interesting trends, as revealed by an accessible 

ecogenomics technique and multiple and robust statistical analyses, that could be 

useful in identifying a cadaver grave by targeting specific microbial community 

diversity changes. In this study microcosms were used but an extensive whole carcass 

programme is in progress and should result in more comprehensive data by targeting 

specific microbial communities with next generation sequencing. 
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Novelty Statement  

Recent cadaver decomposition studies focussing on soil ecology impacts have 

highlighted the potential of forensic ecogenomics to estimate PMI and identify 

clandestine graves through microbial community changes. Most studies have, 

however, only considered a single carbon source (the cadaver) while dual sources 

(Sus scrofa domesticus and plant matter) can provide information for academics and 

forensic practitioners to identify and differentiate gravesites in difficult cases such as 

transit or clandestine scenarios. 

Highlights 

 Significant differences in 16S Shannon-Wiener and Simpson diversity 

recorded for the control vs. two burial soils. 

 Distinct bacterial and fungal rRNA gene profile shifts for pig and grass soils, 

respectively. 

 Temporal divergence in burial soils observed after Tukey (HSD)/Bonferroni 

post hoc tests. 

 Potential applicability determined by sequencing and in situ studies. 
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Table 1: Evenness values of the 16S bacterial and 18S fungal communities of control, 

Sus scrofa domesticus and grass soil microcosms during 365 days of study. 

Treatment 16S bacterial communities 18S fungal communities 

Control 0.87 ± 0.06 0.90 ± 0.04 

Sus scrofa domesticus 0.84 ± 0.08 0.89 ± 0.03 

Grass (Agrostis/Festuca spp) 0.86 ± 0.02 0.90 ± 0.03 
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Fig. 1: Atmospheric () and microcosm (control (◊), Sus scrofa domesticus (□) and 

grass (∆)) soil temperatures during 365 days of study. 

 

 

Fig. 2: Average (n=3) pH values of control (◊), Sus scrofa domesticus (□) and grass 

(∆) soil microcosms during 365 days of study. 
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Figure 3a, 3c and 3e: Average (n=3) richness,  Shannon-Wiener diversity index and 

Simpson diversity index for 16S bacterial communities of control (◊), Sus scrofa 

domesticus (□) and grass (∆) soil microcosms during 365 days of study. 

Figure 3b, 3d and 3f: Average (n=3) richness, Shannon-Wiener diversity index and 

Simpson diversity index for 16S bacterial communities of control (◊), Sus scrofa 

domesticus (□) and grass (∆) soil microcosms from day 0 to day 60.  
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Figure 4a, 4c and 4e: Average (n=3) richness, Shannon-Wiener diversity index and 

Simpson diversity index for 18S fungal communities for control (♦), Sus scrofa 

domesticus (■) and grass (▲) soil microcosms during 365 days of study. 

Figure 4b, 4d and 4f: Average (n=3) richness, Shannon-Wiener diversity index and 

Simpson diversity index for 18S fungal communities for control (♦), Sus scrofa 

domesticus (■) and grass (▲) soil microcosms from day 0 to day 60. 
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Fig. 5a: 16S bacteria community UPGMA cluster analysis (where: C, control; P, Sus 

scrofa domesticus; G, grass). 
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Fig. 5b: 18S fungal community UPGMA cluster analysis (where: C, control; P, Sus 

scrofa domesticus; G, grass). 

 


