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Abstract
Infrastructure as a service clouds hide the complexity of maintaining the physical infrastructure with a slight disadvantage:

they also hide their internal working details. Should users need knowledge about these details e.g., to increase the reliability

or performance of their applications, they would need solutions to detect behavioural changes in the underlying system.

Existing runtime solutions for such purposes offer limited capabilities as they are mostly restricted to revealing weekly or

yearly behavioural periodicity in the infrastructure. This article proposes a technique for predicting generic background

workload by means of simulations that are capable of providing additional knowledge of the underlying private cloud

systems in order to support activities like cloud orchestration or workflow enactment. Our technique uses long-running

scientific workflows and their behaviour discrepancies and tries to replicate these in a simulated cloud with known (trace-

based) workloads. We argue that the better we can mimic the current discrepancies the better we can tell expected

workloads in the near future on the real life cloud. We evaluated the proposed prediction approach with a biochemical

application on both real and simulated cloud infrastructures. The proposed algorithm has shown to produce significantly

(� 20%) better workload predictions for the future of simulated clouds than random workload selection.

Keywords Workload prediction � Cloud computing � Simulation � Scientific workflow

1 Introduction

Infrastructure as a Service (IaaS) clouds became the

foundations of compute/data intensive applications [2].

They provide computational and storage resources in an on

demand manner. The key mechanism of IaaS is virtuali-

sation that abstracts resource access mechanisms with the

help of Virtual Machines (VM) allowing their users to

securely share physical resources. While IaaS clouds offer

some means to control a virtual ensemble of resources (so

called virtual infrastructures), they inherently provide no

means for precise insight into the state, load, performance

of their resources, thus the physical layer is completely

hidden. Due to the multi-tenant environment of clouds,

application performance may be significantly affected by

other, (from the point of view of a particular user) unknown

and invisible processes, the so-called background work-

load. Albeit Service Level Agreements (SLA) define the

expected specifics and various Quality of Service (QoS)

methods are aimed at their fulfilment, yet they can provide
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a very broad range of performance characteristics only

[13].

This article studies performance issues related to the—

unknown—background load and proposes a methodology

for its estimation. We envision a scenario where modifi-

cations in the virtual infrastructure are necessary at runtime

and to make the right decisions and take actions the

background load cannot be omitted. As follows, we made

two assumptions: (i) the application runs long enough so

that the time taken by a potential virtual infrastructure re-

arrangement is negligible and (ii) the application is exe-

cuted repeatedly over a period of time. Both these

assumptions are valid for a considerably large class of

cloud based applications. Scientific workflows are espe-

cially good candidates for exemplifying this class as they

are executed in numerous instances by large communities

over various resources [20]. During execution, jobs of a

workflow are mapped onto various resources e.g., a parallel

computer, a cluster, a grid, a virtual infrastructure on a

cloud, etc. Efficient execution of workflows requires a

precise scheduling of tasks and resources which further-

more, requires both timely information on the resources

and the ability to control them. Thus we have chosen sci-

entific workflows as a subject and evaluation example of

our method.

The recurring nature of workflows enables the extraction

of performance data and also successive adaptation,

refinement and optimisation leading to dynamic workflow

enactment. The main motivation for our work stems from

the assumption that by extracting information from past

workflow executions, one could identify current and pre-

dict future background workloads of the resources allo-

cated for the workflow. The result of this prediction

subsequently enables to steer current and future cloud

usage accordingly, including the option of resource re-ar-

rangement if indicated. The idea is centred around a set of

past load patterns (a database of historic traces). When a

workflow is being enacted, some of its jobs have already

been executed and some others are waiting for execution.

Our workload prediction aims at finding historic traces, that

likely resemble the background of workload behind the

currently running workflow. Hence, future tasks (even

those that are completely independent from the workflow

that was used for the prediction) are enacted taking into

consideration the recent background load estimations.

The main contributions of this article are: (i) the concept

of a private-cloud level load prediction method based on

the combination of historic traces, aimed at improving

execution quality (ii) an algorithm for realising the load

prediction at runtime so that performance constraints are

observed, and (iii) an evaluation of this approach using a

biochemical application with simulations using historic

traces from a widely used archive.

The remainder of this article is as follows: Sect. 2 pre-

sents related work, then Sect. 3 introduces the basic ter-

minology and assumptions of our research. Section 4

introduces our new algorithm. Section 5 presents its eval-

uation with a biochemical application. Finally, the contri-

butions are summarised in Sect. 6.

2 Related work

In this article, we examine past traces of certain workflows,

and predict the expected background load of the clouds

behind current workflow instances. Our technique fits in

the analyse phase of autonomous control loops (like

monitor-analyse-plan-execute [8]). Similarly, Maurer et al.

[18] investigated adaptive resource configuration from a

SLA/QoS point of view using such a loop. In their work,

actions to fine tune virtual machine (VM) performance are

categorised hierarchically as so called escalation levels.

Generally, our work addresses a similar problem (our scope

is on the background workload level instead of infras-

tructure and resource management) with a different grained

action set for the plan-execute steps of the autonomous

loop.

Concerning workload modelling, Khan et al. [12] used

data traces obtained from a data centre to characterise and

predict workload on VMs. Their goal was to explore cross-

VM workload correlations, and predict workload changes

due to dependencies among applications running in dif-

ferent VMs—while we approach the load prediction from

the workflow enactment point of view.

Li et al. [14] developed CloudProphet to predict legacy

application performance in clouds. This tool is able to trace

the workload of an application running locally, and to

replay the same workload in the cloud for further investi-

gations and prediction. In contrast, our work presents a

technique to identify load characteristics independent from

the workflow ran on cloud resources.

Fard et al. [7] also identified performance uncertainties

of multi-tenant virtual machine instances over time in

Cloud environments. They proposed a model called

R-MOHEFT that considered uncertainty intervals for

workflow activity processing times. They developed a

three-objective (i.e., makespan, monetary cost, and

robustness) optimisation for Cloud scheduling in a com-

mercial setting. In contrast to this approach our goal is to

identify patterns in earlier workloads to overcome the

uncertainty, and apply simulations to predict future back-

ground load of the infrastructure.

Calheiros et al. [5] offers cloud workload prediction

based on autoregressive integrated moving average. They

argue that proactive dynamic provisioning of resources

could achieve good quality of service. Their model’s
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accuracy is evaluated by predicting future workloads of

real request traces to web servers. Additionally, Magalhaes

et al. [15] developed a workload model for the CloudSim

simulator using generalised extreme value/lambda distri-

butions. This model captures user behavioural patterns and

supports the simulation of resource utilisation in clouds.

They argue that user behaviour must be considered in

workload modelling to reflect realistic conditions. Our

approach share this view: we apply a runtime behaviour

analysis to find a workflow enactment plan that best mat-

ches the infrastructure load including user activities.

Caron et al. [6] used workload prediction based on

identifying similar past occurrences of the current short-

term workload history for efficient resource scaling. This

approach is the closest to ours (albeit, we have a different

focus support for on-line decision making in scientific

workflow enactors etc.), as it uses real-world traces from

clouds and grids. They examine historic data to identify

similar usage patterns to a current window of records, and

their algorithm predicts the system usage by extrapolating

beyond the identified patterns. In contrast, our work’s

specific focus on scientific workflows allows the analysis

and prediction of recently observed execution time dis-

crepancies, by introducing simulations to the prediction

and validation phases.

Pietri et al. [19] designed a prediction model for the

execution time of scientific workflows in clouds. They map

the structure of a workflow to a model based on data

dependencies between its nodes to calculate an estimated

makespan. Though the goal of this paper, i.e. to determine

the amount of resources to be provisioned for better

workflow execution based on the proposed prediction

method is the same in our article, we rely on the runtime

workflow behaviour instead of its structure. This means we

aim to predict the background load instead of the execution

time of a workflow.

Besides these approaches, Mao et al. proposed a com-

bined algorithm in [16] for prediction, arguing that a single

prediction algorithm is not able to estimate workloads in

complex cloud computing environments. Therefore they

proposed a self-adaptive prediction algorithm combining

linear regression and neural networks to predict workloads

in clouds. They evaluated their approach on public cloud

server workloads, and the accuracy of their results on

workload predictions are better compared to purely neural

network or linear regression-based approaches.

Brito and Araújo [3] proposed a solution for estimating

infrastructure needs of MapReduce applications. Their

suggested model is able to estimate the size of a required

Hadoop cluster for a given timeframe in cloud environ-

ments. They also presented a comparative study using

similar applications and workloads in two production

Hadoop clusters to help researchers to understand the

workload characteristics of Hadoop clusters in production

environments. They argued that the increased sharing of

physical computing host resources reduces the accuracy of

their model. In this paper we exploit these inaccuracies in

order to provide insights into the inner working of the

utilised shared cloud resources.

Mathá et al. [17] stated that estimating the makespan of

workflows is necessary to calculate the cost of execution,

which can be done with the use of Cloud simulators. They

argued that an ideal simulated environment produces the

same output for a workflow schedule, therefore it cannot

reproduce real cloud behavior. To address this requirement,

they proposed a method to add noise to the simulation in

order to equalise the simulated behavior with the real cloud

one. They also performed a series of experiments with

different workflows and cloud resources to evaluate their

approach. Their results showed that the inaccuracy of the

mean value of the makespan was significantly reduced

compared to executions using the normal distribution. A

similar variance based workflow scheduling technique was

investigated by Thaman and Singh [21], where they eval-

uated dynamic scheduling policies with the help of

WorkflowSim. In both cases, the authors added artificial

variance for workflow’s tasks. In contrast, we do not only

introduce realistic background workload, but expose the

matched workload as a characterisation of the used cloud.

3 Background

An enactment plan describes the jobs of a scientific

workflow, their schedule to resources, and it is processed

by a workflow enactor that does the necessary assignments

between jobs and resources. If a workflow enactor is cap-

able to handle dynamic environments [4], such as clouds,

the resources form a virtual infrastructure (crafted to serve

specific jobs). In our vision, the enactment plan also lists

the projected execution time of each job in the workflow.

Workflow enactors are expected to base the projected

execution time on historic executions to represent their

expectations wrt. the job execution speed. This enactment

extension allows the workflow enactor to offer background

knowledge on the behaviour past runs of the workflow that

combined the use of various distinct inputs and resource

characteristics. As a result, during the runtime of the

workflow, infrastructure provisioning issues could be pin-

pointed by observing deviations from the projected exe-

cution time in the enactment plan.

The virtual infrastructures created by the enactor are

often hosted at IaaS cloud providers that tend to feature

multi-tenancy and under provisioning for optimal costs and

resource utilisation. These practices, especially under pro-

visioning, could potentially hinder the virtual
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infrastructure’s performance (and thus the execution times

of jobs allocated to them). In accordance with the first

phase (monitor) of autonomous control loops, to maintain

the quality and to meet the SLAs set out for the virtual

infrastructure in the enactment plan, the workflow enactor

or a third party service continuously monitors the beha-

viour of the applications/services/workflows running on the

virtual infrastructure. In case of deviations, actions in the

management of the virtual infrastructure should take place,

such as adding or removing new computing/storage com-

ponents, to minimize fluctuations in the quality of execu-

tion (note: these reactive actions are out of scope of this

article). We assume sufficiently small, likely private, cloud

infrastructures where the workflow instances could expe-

rience significant enough portion of the whole infrastruc-

ture allowing the exploitation of the identified deviations

for prediction purposes.

We represent workflows W 2 W (whereW is the set of

all possible abstract workflows) as an ordered set of jobs:

W ¼ fj1. . .jNg, where the total number of jobs in the

workflow is N 2 N. The job order is set by their projected

completion time on the virtual infrastructure whereas the

job inter-relations (dependencies) are kept in the domain of

the workflow enactors. The projected execution time of the

a job (jx 2 W) is rexðjxÞ – where rex : W ! Rþ. We expect

the enactor to calculate the projected execution times based

on its background knowledge about thousands of past runs.

We refer to a workflow instance (i.e., a particular exe-

cution of the abstract workflow W) with the touple:

½W ; t� :W � T—i.e., the workflow and the start time (t and

T depicts the set of all time instances) of its first job ½j1; t�.
Hence, all instances of jx 2 W are also identified as

½jx; t� : jx 2 ½W ; T �. Once the workflow started, the enac-

tor’s monitoring facilities will collect the observed exe-

cution times for each job instance. We denote these as:

robðjx; tÞ—where rob : W � T ! Rþ.
Using the acquired data from the enactors and its

monitoring facilities, we define the error function of

(partial) workflow execution time to determine the devia-

tion in execution time of a particular workflow suffered

compared to the projected times in the enactment plan.

Such function is partial if the evaluated workflow instance

is split into two parts: jobs j1; :::jk already executed whereas

jkþ1; :::jN are not yet complete or waiting for execution;

when k ¼ N the workflow instance is done and the error

function determines its final execution time error. So in

general, the error function of workflow execution time is

defined as: E :W � T �N! Rþ.
We require that error functions assign higher error val-

ues for workflow instances that deviate more from the

projected runtime behaviour set in their enactment plan.

These functions should also penalise both positive and

negative execution time differences ensuring that the exe-

cution strictly follows the plan. The penalties applied here

will allow us to detect if the background workload reduces/

improves the performance of the workflow instance com-

pared to the enactor’s expectations. These penalties are

exploited by the later discussed workload prediction tech-

nique: it can tell if a particular workload estimate is not

sufficiently close to its actual real life counterpart. For

example, when the execution times show improvements—

negative differences—under a particular workload esti-

mates, then the prediction technique knows it still has a

chance to improve its estimate (allowing other, not nec-

essarily long running, applications to better target the

expected background workload on the cloud of the

workflow).

The penalties are also important from the point of view

of the workflow enactor. The enactment plan likely con-

tains projected values resulted from several conflicting

service level requirements (regarding the quality of the

execution). These projected values are carefully selected by

the enactor to meet the needs of the workflow’s user and

follow the capabilities of the used cloud resources. Thus,

error functions should indicate if the fulfilment of the

projected values set by the enactor are at risk (i.e., they

should penalize with higher error values even if the

observed execution times turned out to be better than

originally planned). For example, if we have jobs jx and jy
where jy is dependent on the output of jx and several other

factors, these factors could make it impossible for jy to be

ready for execution by a the time a better performing jx
completes. Thus, the enactor could make a plan relaxed for

jx and explicitly ask for its longer job execution time. If the

job is executed more rapidly in spite of this request, the

penalty of the error function would show there were some

unexpected circumstances which made the job faster.

The deviation from the projected execution times (as

indicated by the error function) could either be caused by

(i) an unforeseen reaction to a specific input, or by (ii) the

background load behind the virtual infrastructure of the

workflow. In case (i), the input set causes the observed

execution times to deviate from the projected ones. Such

deviations are rare, because job execution times on a

dedicated infrastructure (i.e., only dependent on input

values) usually follow a Pareto distribution [1]. Thus, job

execution times mostly have small variances, but there

could be jobs running several orders of magnitude slower

than usual. Figure 1 exemplifies this behaviour with a

sample of over 20 k jobs ran for various cloud simulation

workflows. As it can be observed on the example figure,

the long execution times in the slowest 5 % of the jobs

cannot be mistaken for perturbations caused by background

load.
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On the other hand (ii), under-provisioning in IaaS clouds

can cause significant background load variation yielding

observable (but minor) perturbations in job execution

times. In this article, we focus on case (ii) only, therefore

we must filter observed execution times whether they

belong to case (i) or (ii). Consequently, when observing a

significant increase in job execution time (i.e., enactor’s

predicted execution time is a magnitude smaller than what

was actually observed), we assume that the particular job

belongs to case (i) and we do not apply our technique.

However, when we only observe minor deviations from our

execution time expectations, we assume that they are of

case (ii), caused by the under-provisioned cloud behind the

virtual infrastructure executing the observed jobs.

Below, we present a few workflow execution time error

functions that match the above criteria. Later, if we refer to

a particular function from below, we will use one of the

subscripted versions of E, otherwise, when the particular

function is not relevant, we just use E without subscript.

Although the algorithm and techniques discussed later are

independent from the applied E function, these functions

are not interchangeable, their error values are not compa-

rable at all.

Average distance. This error function calculates the

average time discrepancy of the first k jobs.

ESQDðW ; t; kÞ :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

1� i� kðrexðjiÞ � robðji; tÞÞ2

k

s

ð1Þ

Mean absolute percentage error. Here the relative error

of the observed runtime is calculated for each job, then it

is averaged for all k jobs:

EMAPEðW ; t; kÞ :¼ 100

k

X

1� i� k

jrexðjiÞ � robðji; tÞj
rexðjiÞ

ð2Þ

Time adjusted distance. The function adjusts the execu-

tion time discrepancies calculated in ESQD so that the

jobs started closer (in time) to jk will have more weight

in the final error value.

ETAdj�SQDðW ; t; kÞ :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

1� i� k
i
k
ðrexðjiÞ � robðji; tÞÞ2
P

1� i� k
i
k

s

ð3Þ

4 Workflow enactment and simultaneous
prediction

When job jk is completed during the execution (phase I in

Fig. 2), a deviation analysis is performed using one of the

error functions of Eqs. 1–3 to compare the actual job

execution times to the ones in the enactment plan. Signif-

icant deviations—EðW ; t; kÞ[E�, where E� is predefined

by the workflow developer—initiate the background

workload prediction phase that corresponds to the second,

Analysis phase of autonomous control loops. This phase is

omitted, if the workflow enactor estimates the remaining

workflow execution time is smaller than required for

background workload prediction. The maximum time spent

on workload prediction is limited by a predefined T, rep-

resented as a gap in the execution in Fig. 2. Thus, workload

prediction is not performed if
PN

i¼kþ1 rexðjiÞ\T.

4.1 Background workload prediction

In essence, we simulate the workflow execution on a given

cloud infrastructure while adding known workloads as

background load (phase II in Fig. 2). The workflow is sim-

ulated according to the enactment plan specified runtime

properties, like job start time, completion time, and times for

creating virtual machines. We expect the simulated work-

flow to match its real-world counterpart (in terms of runtime

properties), when the added background load closely esti-

mates the real-world load.We useEqs. 1–3 to find the known

workload closest to the observed one (note: only one function

should be used during thewhole prediction procedure). Next,

we present the details of Algorithm 1 that implements this

background workload matching mechanism.

4.1.1 Base definitions

Before diving into the details, we provide a few important

definitions: trace fragment—used to provide a particular

background workload –, past error—determines the pre-

viously collected execution time error values regarding the

completed jobs j1; :::jk—finally, future error—defines the

previously collected execution error evaluations of the jobs

jkþ1; :::jN that have not yet run in the current workflow

instance (i.e., what was the level of error in the ‘‘future’’

that after a particular past error value was observed).

A trace fragment is a list of activities characterised by

such runtime properties (e.g., start time, duration,

Fig. 1 Example distribution of job execution times in a scientific

workflow (where 95% of the execution time is spent on 5 % of the

jobs)
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performance, etc.) that are usable in simulators, their col-

lection is denoted as fragment database in Fig. 2. Each

fragment represents realistic workloads i.e., real-world

system behaviour. Fragments are expected to last for the

duration of the complete simulation of the workflow with

all its jobs. The fragment duration is independent from the

actual real life situation modelled—which stems from the

actual ½jk; t� job which triggered the prediction. In a worst

case, fragments should last for the completely serial exe-

cution of the workflow:
P

i¼1...k robðjiÞ þ
P

i¼kþ1...N rexðjiÞ.
Thus fragment durations vary from workflow-to-workflow.

Apart from their duration, fragments are also characterised

and identified by their starting timestamp, i.e., the time

instance their first activity was logged, denoted as t 2 T

(where T � T ); later we will refer to particular fragments

by their identifying starting timestamp (despite these

fragments often-times contain thousands of activities). As a

result, when the algorithm receives an identifying times-

tamp, it queries the trace database for all the activities that

follow the first activity for the whole duration of the

fragment. Note, that our algorithm uses the relative posi-

tion of these timestamps. Therefore, when storing historic

traces as fragments, they are stored so that their timestamps

are consistent and continuous, this requires some dis-

placement of their starting positions. This guarantees that

we can vary the fragment boundaries (according to the

workflow level fragment duration requirements) at will.

Arbitrary selection of fragment boundaries would result

in millions of trace fragments. If we would simulate with

every possible fragment, the analysis of a single situation

would take days. However, as with any prediction, the

longer time it takes the less valuable its results become (as

the predicted future could turn past by then). Predictions

typically are only allowed to run for a few minutes as a

maximum, thus the entire simulation phase must not hinder

the real execution for more than T. In the following, we

survey the steps that are necessary to meet this requirement

i.e., reducing the analysis time from days to T. The frag-

ment database needs to be pre-filtered so only a few

fragments (Tfilt � T) are used in the analysis later on.

Although this is out of scope of the current article, pre-

filtering can use approaches like pattern matching, runtime

behaviour distance minimisation (e.g., by storing past

workflow behaviour—for particular fragments—and by

comparing to the current run to find a likely start timestamp),

or even random selection. Filtering must take limited and

almost negligible time. In our experiments, we assumed it

below T=1000 (allowing most of the time to be dedicated to

the simulation based analysis of the situation). As a result of

filtering, the filtered fragment count must be reduced so that

the time needed for subsequent simulations does not exceed

the maximum time for predictions: jTfiltj\T=tsimðWÞ,
where tsim is the mean execution time ofW in the simulated

cloud. Our only expectation that the pre-filtering happens

only in memory and thus the fragment database is left intact.

As a result, when we run the algorithm, it only sees a portion

of the fragment database. On the other hand, future runs of

the algorithmmight get a different portion from the database

depending on the future runtime situation.

Finally, we dive into the error definitions. Alongside

fragments, several error values are stored in the fragment

database, but unlike fragments, which are independent

from workflows, these error values are stored in relation to

a particular workflow and its past instances. Later, just like
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projected execution times, these stored error values are also

used to steer the algorithm. First, in terms of past errors,

we store the values from our previous partial execution

time error functions, Eqs. 1–3. Past errors are stored for

every possible k value for the particular workflow instance.

We calculate future errors similarly to past errors. Our

calculation uses the part of the workflow containing the

jobs after jk: W
FðW ; kÞ :¼ f8ji 2 W : i[ k ^ i�Ng,

where WF 2 W. Thus, the future error function determines

how a particular, previously executed workflow instance

continued after a specific past error value:

FðW ; t; kÞ :¼ EðWFðW ; kÞ; t;N � kÞ: ð4Þ

This function allows the evaluation and storage of the final

workflow execution time error for those parts of the past

workflow instances, which have not been executed in the

current workflow execution.

4.1.2 Overview of the algorithm

Algorithm 1 Fitting based prediction
Require: Tfilt ⊂ T – the filtered trace fragment set
Require: S ∈ R

+ – the primary search window size
Require: Π ∈ R

+ – the precision of the trace match
Require: I ∈ N – the maximum iteration count
Require: P ∈ R

+ – max evaluations for searching in func-
tion φ(x)

Require: [W, tcurr] – the current workflow instance
Require: Rex := {rex(ji) : {ji ∈ W}} – the model execu-

tion times
Require: Rob := {rob(tcurr, ji) : {ji ∈ W ∧ i ≤ k}} – the

observed execution times
Ensure: ttarget is around the approximated workload
1: tinit ← t ∈ Tfilt

2: Tlist ← ∅
3: repeat
4: I ← (tinit − S/2, tinit + S/2)
5: R ∈ 2I\{∅} – arbitrary choice
6: for all t ∈ R do
7: for all ji ∈ W : i < k do
8: r′

ex(ji) ← rob(tcurr, ji)
9: r′

ob(ji, t) ← sim(W, Rex, i, t)
10: end for
11: end for
12: Tred ∈ 2T\Tlist : |Tred| = P
13: Tmin ← {t ∈ T |φ(t) = min

x∈{Tred}
φ(x)}

14: tmin ← minTmin

15: Tlist ← Tlist ∪ {tmin}
16: ttarget(|Tlist|) ← {tl ∈ T : F (W, tl, k)− E(W, tl, k) =

min
tmin−S/2<t<tmin+S/2

(F (W, t, k) − E(W, t, k))}
17: tinit ← tx ∈ Tfilt : |tx − ttarget(|Tlist|)| =

mint∈Tfilt
|t − ttarget(|Tlist|)|

18: until (|ttarget(|Tlist|) − ttarget(|Tlist| − 1)| > Π) ∧
(|Tlist| < I)

19: return ttareget(|Tlist|)

Algorithm 1 (also depicted functionally in Fig. 3 and

structurally as phases II–III in Fig. 2) aims at finding a

timestamp so that the future estimated error is minimal,

while past error prediction for this timestamp is the closest

to the actual past error (i.e., the estimated and actual ‘‘past

errors are aligned’’). The algorithm is based on the

assumption that if past workloads are similar (similarity

measured by their error functions) then future workloads

would be similar, too.

In detail, line 1 picks randomly one of the fragments

identified by the timestamp in the filtered set Tfilt and stores

in tinit. This will be the assumed initial location of the frag-

ment that best approximates the background load. Later, in

line 17, this tinit will be kept updated so it gives a fragment

that better approximates the background load. The primary

search window—R of line 5 also shown between the dashed

lines of the lower chart in Fig. 3 represents a set of times-

tamps within a S / 2 radius from the assumed start of the

fragment specified by tinit. The algorithm uses set Tlist to

store timestamps for the approximate trace fragments as well

as to count the iterations (used after line 15).

A simulator is used to calculate observed execution times

r0ob for the jobs in the simulated infrastructure (see line 9).

This is expressed with simðW ;Rex; i; tÞ thus, each simulation

receives the workflow to be simulated, the set of execution

time expectations (Rex) that specify the original enactment

plan, the identifier of the job (1� i�N) we are interested in

and the timestamp of the trace fragment (t 2 T) to be used in
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the simulation as background load to the workflow, respec-

tively.With these parameters the simulator is expected to run

all the activities in the trace fragment identified by t in par-

allel to a simulated workflow instance. Note: the simulation

is done only once for the complete workflow for a given

infrastructure and a given fragment, later this function sim-

ply looks up the past simulated r0ob values.

Next, we use one of the error functions of the workflow

execution time as defined in Eqs. 1–3. As we have simu-

lated results, we substitute the observed/expected execution

time values in the calculation with their simulated coun-

terparts. In the simulation, the expected execution times r0ex
are set as the real observed execution times rob (see line 8).

To denote this change in the inputs to the error function, we

use the notation of E0ðW ; t; kÞ—error of simulated execu-

tion time. This function shows how the simulated workload

differs from the observed one. The evaluation of the E0

function is depicted with � marks at the bottom chart of

Fig. 3.

Afterwards, lines 12–14 search through the past error

values for each timestamp (using the same error function as

we used for the evaluation of E0). With the help of function

/ : T ! R:

/ðxÞ :¼
X

t2R

�

�E0ðW ; t; kÞ � EðW ; xþ t � tinit þ S=2; kÞ
�

�

ð5Þ

This function offers the difference between the simulated

and real past error functions (Fig. 3 represents this with red

projection lines between the chart of E and the � marks of

E0). The algorithm uses the /ðxÞ function to find the best

alignment between the simulated and real past error func-

tions: we set tmin as the time instance inR with the smallest

difference between the two error functions. The alignment

is searched over an arbitrary subset of the timestamps:

Tred—the secondary search window. The algorithm selects

a Tred with a cardinality of P in order to limit the time to

search for tmin. The arbitrary selection of Tred is used to

properly represent the complete timestamp set of T.

After finding tmin, we have a timestamp from the frag-

ment database, for which the behaviour of the future error

function is in question, this corresponds to the fragment

selection in Fig. 2. Line 16 finds the timestamp that has the

closest past and future error values in the range around tmin
within radius S / 2—see also in the top right chart of

Fig. 3. Note, this operation utilises our assumption that past

and future errors are aligned (i.e., a trace fragment with

small past error value is more likely to result in similarly

small future error value). The timestamp with the future

error value closest to the past error is used as ttarget for the

current iteration (i.e., our current estimate for the start

timestamp of the approximate background load).

Finally, the iteration is repeated until the successive

change in ttarget is smaller than the precision P or the

iteration count reaches its maximum—I, represented as

phase III in Fig. 2. Note, I is set so the maximum time

spent on workload prediction (T) is not violated. The

algorithm then returns with the last iteration’s ttarget value

to represent the starting timestamp of the predicted trace

fragment that most resembles the background load cur-

rently experienced on the cloud behind the workflow. This

returned value (and the rest of the trace fragment following

ttarget) then could be reused by when utilizing the real life

version of the simulated cloud. For example, the workflow

enactor could use the knowledge of the future expected

workload for the planning and execution phases of its

autonomous control loop (phase IV in Fig. 2). Note, the

precise details on the use of the predicted workload is out

of the scope of this article.

5 Evaluation with a biochemical workflow

We demonstrate our approach via a biochemical workflow

that generates conformers by unconstrained molecular

dynamics at high temperature to overcome conformational

bias then finishes each conformer by simulated annealing

and/or energy minimisation to obtain reliable structures. It

uses the TINKER library [11] for molecular modelling for

QSAR studies for drug development.

Our evaluation approach is summarized in Fig. 4. It is

composed of three main phases: (i) data collection from a

real life environment, (ii) modelling the TCG workflow and

simulating its behaviour under various background loads,

and (iii) evaluating the algorithm based on the collected

real life and simulated data.

5.1 The tinker workflow on the LPDS cloud

The TINKER Conformer Generator (TCG) workflow [11]

consists of 6 steps (see the top left corner of Fig. 4): (i) G:

generating 50,000 input molecule conformers (taking

around 12 h, compressed into 20 zip files by grouping 2500

conformers); (ii) T1: minimising the initial conformational

states generated at high temperature; (iii) T2: performing a

short low temperature dynamics with the high temperature

conformations to simulate a low temperature thermody-

namic ensemble, and minimising the above low tempera-

ture states; (iv) T3: cooling the high temperature states by

simulated annealing, and minimising the annealed states;

(v) TC: collecting parameter study results; (vi) C: re-

compressing results to a single file. The sequential execu-

tion of the workflow on a single core 2 GHz CPU takes

around 160 h.
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Note that the parallel section of the workflow could be

partitioned arbitrarily: by changing how G splits the input

molecule conformers. For example, any options could be

chosen from the extreme case of each molecule becoming

an input for a separate T1/2/3/C run, to the other extreme

of having a single zip file produced and processed in a

single T1/2/3/C. Also, if a larger infrastructure is available,

more input molecule conformers could be considered in a

single run (this would result in a longer execution time for

G).

In the period of over half a year, the workflow was ran

several times on the cloud of the Laboratory of Parallel and

Distributed Systems—LPDS cloud—, which ran OpenNe-

bula 4.10 and consisted of 216 cores, 604 GBs of memory

and 70 TBs of storage at the time of the experiments. We

used a workflow enactor without autonomous control

mechanisms. We have collected the job execution times for

all jobs in the workflow, as well as the time instance when

the workflow was started. We have calculated the expected

job execution times—rexðjiÞ—as an average of the execu-

tion times observed. This average was calculated from over

500 runs for each step of the TCG workflow. To enable a

more detailed analysis of the workflow executions, we have

generated larger input sets allowing us to repeatedly exe-

cute the parallel section with 20 virtual machines (in our

implemented workflow, the 20 machine parallel section

was executed 15 times before concluding with the final re-

compression phase—C). This allowed us to populate our

initial past and future error values in the cache (i.e., we

have calculated how particular workflow instances behaved

when expected job execution times are set to be the aver-

age of all). Not only the error cache was populated though,

the individual robðji; tÞ values were also stored in our

database (in total, the collected data was about 320 MBs).

These data stores are shown in Fig. 4 as a per instance

expected runtimes database, job execution logs) and Past/

Future error cache. The stored values acted as the foun-

dation for the simulation in the next phase of our

evaluation.

5.2 Modelling and simulating the workflow

This section provides an overview on how the TCG

workflow was executed in a simulator. Our choice for the

simulator was the open source DISSECT-CF.1 We have

chosen it, because it is well suited for simulating resource

bottlenecks in clouds, it has shown promising performance

gains over more popular simulators (e.g., CloudSim, Sim-

Grid) and its design and development was prior work of the

authors [10]. The section also details the captured proper-

ties of the TCG workflow, which we collected in previous

phase of the evaluation. Then, as a final preparatory step

Real-life data  collection
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Fig. 4 Our detailed evaluation approach

1 https://github.com/kecskemeti/dissect-cf.
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for our evaluation, we present the technique we used to add

arbitrary background load to the simulated cloud that is

used by the enactor to simulate the workflow’s run.

5.2.1 The model of the workflow’s execution

The execution of the TCG workflow was simulated

according to the description presented in Fig. 5. The

description is split into three main sections, each starting

with a PSSTART tag (see lines 1, 6 and 20, which corre-

spond to the three main sections G–[T1/T2/T3–TC]–C of

the TCG workflow shown in the top left corner of Fig. 4).

This tag is used as a delimiter of parallel sections of the

workflow, thus everything that reside in between two

PSSTART lines should be simulated as if they were exe-

cuted in parallel. Before the actual execution though, every

PSSTART delimited section contains the definition of the

kind of VM that should be utilized during the entire parallel

section. The properties of these VMs are defined by the

VMDEF entry (e.g., see lines 2 or 8) following PSSTART

lines. Note, the definition of a VM is dependent on the

simulator used, so below we list the defining details

specific to DISSECT-CF:

The virtual machine image used as the VM’s disk. This

is denoted with property name VA. In this property, we

specify that the image is to be called ‘‘tinker’’. Next, we

ask its boot process to last for 25 seconds. Afterwards,

we specify the VM image to be copied to its hosting PM

before starting the VM—0 (i.e., the VM should not run

on a remote filesystem). Finally, we set the image’s size

as 306 MBs.

The required resources to be allocated for the VM on its

hosting PM. These resources are depicted behind the

property name of RC in the figure. Here we provided

details for the number of cores (1), their performance

(5.0E-4—this is a relative performance metric com-

pared to one of the CPUs in LPDS cloud) and the

amount of memory (1 GB) to be associated with the

soon to be VMs.

Image origin where the VM’s disk image is downloaded

from before the virtual machine is instantiated. We used

the property name of VAST to tell the simulator the host

name of the image repository that originally stores the

VM’s image.

Data store is the source/sink of all the data the VM

produces during its runtime. This is defined with the

property called DATA. This field helps the simulation to

determine the target/source of the network activities later

depicted in the VMSEQ entries.

The real-life workflow was executed in the LPDS cloud

(see the leftmost section of Fig. 4). Thus, we needed to

model this cloud to match the simulated behaviour of the

workflow to its real life counterpart ran in phase one.

Therefore, the storage name iscsi� izabel in the workflow

description (e.g., in line 2 of Fig. 5) refers to the particular

storage used on LPDS cloud, just like the VMI image name

tinker does.

Now, we are ready to describe the runtime behaviour of

the workflow observed in phase one in a format easier to

process by the simulation. This behaviour is denoted with

the VMSEQ entries (e.g., see lines 4 or 10) that reside in

each PSSTART delimited parallel section. VMSEQ entries

are used to tell the simulator a new VM needs to be

1| PSSTART
2| VMDEF VA=tinker,25,0,306176000 RC=1,5.0E-4,1073741824 VAST=iscsi-izabel DATA=iscsi-izabel
3| #This is the seq for job G
4| VMSEQ N50500 N190000 N334000 C22.333 N4578744 C0.5 N6150209 N1488 C43200
5|
6| PSSTART
7| # VM instance description for the VMs to be used
8| VMDEF VA=tinker,25,0,306176000 RC=1,5.0E-4,1073741824 VAST=iscsi-izabel DATA=iscsi-izabel
9| # 20x the main PS part of the workflow

10| # The last four C-s are jobs T1, T2, T3 and TC from the workflow
11| VMSEQ N50500 N190000 N334000 C22.333 N4578744 C0.5 N6150209 N1488 C2145 C3573 C1886 C2
12| VMSEQ N50500 N190000 N334000 C22.333 N4578744 C0.5 N6150209 N1488 C2145 C3573 C1886 C2

]...[#|31
])lellarapnisMV02nignitluser(x71rofdetaepersiQESMVsiht...[#|41

]...[#|51
16| VMSEQ N50500 N190000 N334000 C22.333 N4578744 C0.5 N6150209 N1488 C2145 C3573 C1886 C2
17|

]semiterom41rofdetaepernoitcesTRATSSPevobaeht...[#|81
19|
20| PSSTART
21| VMDEF VA=tinker,25,0,306176000 RC=1,5.0E-4,1073741824 VAST=iscsi-izabel DATA=iscsi-izabel
22| #This is the seq for job C
23| VMSEQ N50500 N190000 N334000 C22.333 N4578744 C0.5 N6150209 N1488 C10.6

Fig. 5 The description of the TCG workflow’s execution for the simulation
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instantiated in the parallel section. Each VM requested by

the VMSEQ entries will use the definition provided in the

beginning of the parallel section. All VMs listed in the

section are requested from the simulated LPDS cloud right

before the workflow’s processing reaches the next

PSSTART entry in the description. This guarantees they

are requested and executed in parallel (note, despite

requesting the VMs simultaneously from the cloud, their

level of concurrency observed during the parallel section

will depend on the actual load of the simulated LPDS

cloud). The processing of the next parallel section, only

starts after the termination of all previously created VMs.

In the VMSEQ entries, a VM’s activities before termi-

nation. There are two kinds of activities listed: network and

compute. Network activities start with N and then followed

by the number of bytes to be transferred between the DATA

store and the VM (this is the store defined by the VMDEF

entry at the beginning of the parallel section). Compute

activities, on the other hand, start with the letter C and then

they list the number of seconds till the CPUs of the VM are

expected to be fully utilised by the activity. VM level

activities are executed in the simulated VM in a sequence

(i.e., one must complete before the next could start).

For example, line 12 of Fig. 5 defines how job execu-

tions are performed in a VM. First, we prepare the VM to

run the tinker binaries by installing three software pack-

ages. This results in three transfers (49 KB, 186 KB and

326 KB files) and a task execution for 22 seconds. Next, we

fetch the tinker package (4.4 MBs) and decompress it (in a

half a second compute task). Then, we transfer the input

files with the 2500 conformers and the required runtime

parameters to use them (5.9 MBs and 1.5 KBs). After-

wards, we execute the T1, T2, T3 and TC jobs sequentially

taking 35, 60, 32 minutes and 2 seconds, respectively.

These values were gathered as the average execution times

for the jobs while the real life workflows were running in

the LPDS cloud. Finally, this 2 second activity concludes

the VMs operations, therefore it is terminated.

The PSSTART entry in line 6 and the virtual machine

executions, defined until line 16, represent a single exe-

cution of the parallel section of the TCG workflow.

Because of repetitions, we have omitted the several VMSEQ

entries from the parallel section, as well as several

PSSTART entries representing further parallel sections of

conformer analysis. On the other hand, the description

offered for the simulator did contain all the 14 additional

PSSTART entries which were omitted here for readability

purposes.

To conclude, the description in Fig. 5 provides details

for over 1800 network and computing activities to be done

for a single execution of the TCG workflow. If we consider

only those activities that are shown in the TCG workflow,

we still have over 1200 computing activities remaining.

These activities result in the creation and then destruction

of 302 virtual machines in the simulated cloud. When

calculating the error functions, we would need expected

execution details for all these activities or VMs. The rest of

the article will assume that the workflow enactor provides

details about the computing activities directly relevant for

the TCG workflow only (i.e., the jobs of G/Tx/C). Thus our

N value was 1202. The partial workflow execution error

functions could be evaluated for every job done in the

simulated TCG. This, however, is barely offering any more

insight than having an error evaluation at the end of each

parallel section (i.e., when all VMs in the particular parallel

section are complete). As a result, in the rest of the article,

when we report k values, they are going to represent the

amount of parallel sections complete and not how many

actual activities were done so far. To transform between

activity count and the reported k values one can apply the

following formula:

kreal :¼
k ¼ 0 0

k\15 1þ 80k

k ¼ 15 1þ 80k þ 1;

8

<

:

ð6Þ

where 15 is the number of parallel sections, and 80 is the

number of TCG activities per parallel section. Finally, the

kreal is the value used in the actual execution time error

formulas from Eqs. 1–3.

Although, the above description was presented with our

TCG workflow, the tags and their attributes of the

description were defined with more generic situations in

mind. In general, our description could be applied to

workflows and applications that have synchronisation

barriers at the end of their parallel sections.

5.2.2 Simulating the background load

In order to simulate how the workflow instances of TCG

would behave under various workload conditions, we

needed a comprehensive workload database. We have

evaluated previously published datasets: we looked for

workload traces that were collected from scientific com-

puting environments (as that is more likely to resemble the

workloads behind TCG). We only considered those traces

that have been collected over the timespan of more than 6

months (i.e., the length of our experiment with TCG on the

LPDS cloud—as detailed in Sect. 5.1). We further filtered

the candidate traces to only contain those which would not

cause significant (i.e., months) overload or idle periods in

the simulated LPDS cloud. This essentially left 4 traces

(SharcNet, Grid5000, NorduGrid and AuverGrid) from the

Grid Workloads Archive (GWA [9]), we will refer to the

summary of these traces as TGWA 	 T . Note, it is irrelevant
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that the traces were recorded on grids—for our purposes

the user behaviour, i.e., the variety of tasks, their arrival

rate and duration are important. Fortunately, these char-

acteristics are all independent from the actual type of

infrastructure.

Trace fragments were created using GWA as follows:

we started a fragment from every job entry in the trace.

Then we identified the end of the fragment as follows. Each

fragment was expected to last at least for the duration of

the actual workflow instance. Unfortunately, the simulated

LPDS cloud could cause distortions to the job execution

durations (e.g., because of the different computing nodes or

because of the temporary under/over-provisioning situa-

tions compared to the trace’s original collection infras-

tructure), making it hard to determine the exact length of a

fragment without simulation. Thus, we have created frag-

ments that included all jobs within 3 times the expected

runtime of the workflow. As a result each of our fragments

was within the following time range: ½t; t þ 3
P

0\i\N

rexðjiÞ�. All these fragments were loaded in the trace

archive of Fig. 4 (see its middle section titled ‘‘simulated

data generation’’). All together, our database have con-

tained more than 2 million trace fragments.

With the trace fragments in place, we had every input

data ready to evaluate the r0ob values under various work-

load situations (i.e., represented by the fragments). Thus,

we have set out to create a large scale parametric study. For

this study, we have accumulated as many virtual machines

from various cloud infrastructures as many we could

afford. In total, we have had 3 cloud infrastructures

(SZTAKI cloud,2 LPDS cloud, Amazon EC23) involved

which hosted 192 single core virtual machines with 4 GBs

of memory and 5 GBs of hard disk storage (and the closest

equivalent on EC2). We offered the trace archive to all of

them as a network share. Each VM hosted DISSECT-CF

v0.9.6 and was acting as a slave node for our parametric

study. The master node (not shown in the figure), then

instructed the slaves to process one trace at a time as

follows4:

1. Load a trace fragment as per the request of master.

2. Load the description of LPDS cloud.5

3. Load the description of TCG workflow execution (i.e.,

the one shown in Fig. 5).

4. Start to submit the jobs from the loaded fragment to the

simulated LPDS cloud (for each submitted job, our

simulation asks a VM from the cloud which will last

until the job completes).

5. Wait until the 50th job—this step ensures the simu-

lated infrastructure is not under a transient load.

6. Start to submit the jobs and virtual machines of the

workflow execution specified in the previously loaded

description (the VMs here were also ran in the

simulated LPDS cloud).

7. For each task, record its observed execution time—

r0obðji; tÞ. Note, here t refers to the start time of the

simulated workflow.

8. After the completion of the last job and VM pair in the

workflow, terminate the simulation.

9. Send the collected job execution times to master.

The simulation of all trace fragments took less than 2 days.

The mean simulation execution time for a fragment run-

ning on our cloud’s model is tsimðTCGÞ ¼ 756ms. We

have stored the details about each simulation in relation to

the particular trace fragment in our simulated job execution

log database (see Fig. 4).

To conclude our simulated data generation phase, we

populated our past and future error cache of Fig. 4. Later

our algorithm used this to represent past workflow beha-

viour. We calculated the past and future error values with

the help of all r0ob we collected during the simulation phase.

The error values were cached from all 3 error functions we

defined in Eqs. 1–3 as well as from their future error

counterparts from Eq. 4. This cached database allowed us

to evaluate the algorithm’s assumptions and behaviour in

the simulated environment as we discuss it in the next

section.

5.3 Evaluation

In this section, we evaluate our algorithm using the col-

lected data about the simulated and real life TCG workflow

instance behaviour. We focused on three areas: (i) analyse

our assumption on the relation of past and future errors, (ii)

provide a performance evaluation of the algorithm, and (iii)

analyse how the various input variables to the algorithm

influence its accuracy. These are shown as the last two

phases (algorithm behaviour data collection and analysis)

in Fig. 4.

5.3.1 Relation between past and future errors

To investigate our assumption on the relation of past and

future error values, we have analysed the collected values

in the error cache. In Fig. 6, we exemplify how the simu-

lated past and future error values (using the ESQD function)

vary within a subset of the past/future error cache (which

we collected in the previous phase of our evaluation). Here,

2 http://cloud.sztaki.hu/en.
3 https://aws.amazon.com/ec2.
4 The source code of these steps are published as part of the following

project: https://github.com/kecskemeti/dissect-cf-examples/.
5 http://goo.gl/q4xZpe.
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each dot represents a single simulation run, while the error

values were calculated after the twelfth parallel section—

k ¼ 12, see Fig. 5. To reduce the clutter in the figure, we

present the simulation results using only a subset of the

trace fragments that we have identified in the Nordugrid

GWA trace (TGWA
nordu � T). The items in the subset were

selected so every 50th Nordugrid related trace fragment is

shown in the chart: fti; tiþ1g 2 TGWA
nordu ! ftj; tjþ50g 2 T . Out

of the selected fragments, only those are shown in the

figure which resulted in relatively low error values. This

allows us to better observe the relationship between past

and future errors when both error values are low. For

example, in case of Fig. 6, we have used the low error

value limit of 107. Note, the range of this error function for

all the simulated trace fragments was:

8t 2 T : 1:5� 106\ESQDðW ; 12; tÞ\4� 107.

Based on the error cache, in this section, we investigated

two assumptions that are both important for the algorithm’s

success: (i) low past error values likely pair up with low

future error values; and (ii) show that as we approach the

end of the workflow, decreasing past error values would

more likely pair up with decreasing future error values (i.e.,

as past error values converge towards the final worklfow

execution error, future error values also approach a

stable hypothetical final value). As a first step, we limited

our analysis to fragments with past/future error values

below a chosen low error value—s—threshold:

T
exp
filt :¼ ft 2 T : EðW ; t; kÞ\s _ FðW ; t; kÞ\sg ð7Þ

The choice for s could ensure that this filtered set contains

the trace fragments most likely to be found by Algorithm 1

lines 1–14. For the error function ESQD, we have identified

the low error value limit as: s :¼ 2� 106.

For our first assumption, we evaluated the likelihood

that consecutive fragments with small past error values

E(W, t, k) lead to small F(W, t, k) values. We consider two

trace fragments (ta; tb 2 T : ðta\tbÞ) consecutive when

there are no other trace fragments with starting timestamps

in between the starting timestamps of the consecutive ones:

6 9tc 2 T : ðtc [ ta ^ tc\tbÞ. First, we prepared the subsets

of T
exp
filt , that hold more than 80 consecutive timestamps of

the trace. The number of consecutive timestamps is cal-

culated as T=tsim while assuming T to be a minute to

minimise the impact of the simulation on the complete

prediction operation and its users (eg., a workflow enactor)

from the autonomous control loop. Next, we observed that

in these subsets the likelihood of having both minimal

future and past error values was 65–86%. Finally, we also

observed that the selection of a lower s value could notably

decrease the simultaneous presence of below-threshold

error values (suggesting that a too precise match for the

past/future error leads to over fitting).

For our second assumption, we evaluated the error cache

and we observed that the higher k is the more potential the

prediction has. I.e., with increasing k the error values tend

towards the low error values, while simultaneously their

deviation also decrease. Videos of this behaviour can be

seen in footnotes for the Sharcnet6 and AuverGrid7 traces.

The recordings show how the past and future error func-

tions of ESQD converge towards the optimal values as a

result of the increasing number of completed parallel sec-

tions of TCG—k.

Fig. 6 Nordugrid trace as the

background load behind TCG,

exemplified with the use of error

function ESQD

6 https://youtu.be/gozmHoCneyU.
7 https://youtu.be/BzdVcAq4ez8.
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To conclude, we have shown that our assumption on

using past error values to indicate the tendency of future

ones is well supported by our simulated error cache. In

other words, if a trace shows similarity (in terms of an error

function) to past workloads then the same trace can be used

to estimate future workloads.

5.3.2 Behaviour analysis of the algorithm

In the final phases of our evaluation, we first executed an

extensive parametric study on the most important inputs of

the algorithm. Table 1 shows all the parameters evaluated.

In our parametric study, we have ran all input parameter

combinations on resources utilizing the private OpenStack

cloud of Liverpool John Moores University. We have used

5 VM instances with equivalent configurations as follows:

(i) 20 GB disks, containing the execution logs and the error

cache, (ii) 16 GB of memory to allow efficient handling of

the cache, and (iii) an Intel Core i7 4790 processor. For

each parameter combination, these VMs ran 500 approxi-

mations using our previously collected simulated job exe-

cution log database (this is depicted in Fig. 4 as the

‘‘Algorithm behaviour data collection’’ phase).

For each approximation run, we have randomly selected

an approximation target: a golden fragment, which we

denote as tg 2 TG, where TG � TGWA denotes the set of all

randomly chosen golden fragments. We have retrieved the

execution logs related to the golden fragment (i.e., the

robðj; tgÞ). Then, we applied our algorithm to identify an

approximate GWA trace fragment for this particular

(golden) TCG workflow instance, given that the instance

has progressed to job jk (i.e., the algorithm did not receive

the complete execution log, just the observed execution

time values that occurred before job jk:

robðji; tgÞ : 1� i\k). The approximation resulted in a

ttarget 2 TGWA trace fragment start time from one of the

GWA traces. Finally, we have analysed the relation of

ttarget and tg, as well as the execution time—d—of the

approximation algorithm under the particular input

parameter conditions.

To analyse the capabilities of the algorithm in terms of

workload approximation, we first defined the metrics to

quantify the accuracy. An ideal solution would be finding

exactly the golden fragment however, this is neither fea-

sible nor necessary (as real life traces for the background

workload would not be comparable). The aim is to see the

degree of similarity between the golden fragment and its

approximation (identified by ttarget). We have defined two

fundamental metrics for the evaluation of our algorithm:

Execution time level metric: First, we used the EMAPE

function from Eq. 2. We wanted EMAPE to show the

average error (in percentage) between tg and ttarget, thus

during this evaluation, we assigned rexðjiÞ  robðji; tgÞ
and robðji; tÞ  robðji; ttargetÞ. This allowed us to see the

execution time differences the algorithm’s predicted

ttarget trace fragment causes in contrast to the golden’s.

We will denote this special use of the error function as

E
MAPE.

Error level metric:We also compared how do the golden

and the approximated trace fragments relate to the real

life execution expectations of TCG—these are the rexðjiÞ
values we have identified in the LPDS cloud according

to Sect. 5.1. For this metric, we again use the mean

absolute percentage error method, but this time to see

how the error for tg is approximated by the error of ttarget
at every k value.

Thus our second, error level, metrics are defined as:

MAPEEðW ; tgÞ :¼
X

1� i�N

jEðW ; tg; iÞ � EðW ; ttarget; iÞj
N
100

EðW ; tg; iÞ

ð8Þ

for past errors, and

MAPEFðW ; tgÞ :¼
X

2� i�N�1

jFðW ; tg; iÞ � FðW ; ttarget; iÞj
N�2
100

FðW ; tg; iÞ

ð9Þ

for future errors. Note: when evaluating our above metrics,

we used the same error function as the algorithm—e.g.,

EðW ; tg; iÞ could be in both cases ESQDðW ; tg; iÞ.
As we have done 500 approximations for each input

parameter combination, we have calculated their overall

average and median values (for the following metrics:

E
MAPE;F


MAPE;MAPEE;MAPEF ; d) to represent the accu-

racy and performance of the approximation with a particular

input set. To put these aggregated values into context, we

have evaluated them for a random trace selection approach as

well (this served as a baseline for comparing the effective-

ness of our technique). Here, for each member of the golden

set (TG), an arbitrary trace fragment from the whole trace

Table 1 Algorithm configurations investigated in our parametric

study

Input Used parameters

P 10, 20, 50, 100, 200, 500,

1000, 2000, 5000

S 100, 200, 500, 1000, 2000


I 2, 4, 8, 16, 32

ðmax Tred �minTredÞ=S 2, 5, 10, 20, 50, 100

E ESQD, EMAPE , ETAdj�SQD

* As there was no significant improvement when using values of

S = 2000, their corresponding results are not included in the figures.

These experiments are only discussed in the penultimate paragraph of

Sect. 5.3.2

Cluster Computing

123



database was selected as the member’s approximation:

tRANDOMtarget 2 TGWA. The calculated accuracy metrics of this

approximation approach are shown in Table 2.

Figures 7 and 8 show the behaviour induced by the

changes in the two most impacting parameters of the

algorithm. In total, each figure represents results of over

500 thousand approximations. A plotted point averages the

outcomes of all possible parameter configurations except

the one that is fixed for the plot. Note, the apparent impact

of a parameter is often reduced by averaging (e.g., the best

parameter configurations for S ¼ 1000 lead to E
MAPE val-

ues in the range of 28%, while the average shown in the

figure is over 34%). Nevertheless, the major trends are still

visible. Also, in all cases the approximations of our algo-

rithm yield significantly better results than random selec-

tion. Not surprisingly, using the E
MAPE metric, we have the

best results when the algorithm also uses our MAPE based

workflow execution time error function (EMAPE), while the

time adjusted function (ETAlt�SQD) performs poorly. The

improvements over random selection range between 10 and

20% for the median of our execution time level metric.

Based on the results, one can also conclude that the

secondary search window size (shown in Fig. 8) is a more

important factor (albeit not directly configurable from the

algorithm’s inputs). Thus, this must be an exposed user

configurable parameter in the future.

In general, the d duration of the approximation is neg-

ligible (in the range of 31–2114 ms, with a median of less

than 200 ms) compared to our assumed 1 minute maximum

time for prediction. This leaves enough time for the sim-

ulation needs of the algorithm and therefore ensures timely

predictions. We have also observed that increasing any of

the parameters obviously introduces more calculations,

however they do not increase the accuracy in a uniform

way. Increasing parameter I, the number of iterations

increases accuracy in a minimal way. After investigation,

we have concluded that the algorithm’s exit condition (see

line 18 of Algorithm 1) is often fulfilled by its sub-condi-

tion on P—which was a set constant in all algorithm

executions. Increasing the number (P) of evaluations for

/ðxÞ often leads to slightly decreasing accuracy because a

higher number of evaluations lead to local minimums.

The effects on accuracy are not conclusive, because the

nature of cross-parameter averages shown in Figs. 7 and 8.

Table 2 Baseline results of

random trace selection
Random selection MAPEEðW ; tgÞ MAPEFðW; tgÞ E
MAPE F
MAPE

Average (8tg 2 TG) 157.874 166.166 72.243 85.893

Median (8tg 2 TG) 49.180 67.825 45.174 47.002

E MAPE
*

E MAPE
*

F MAPE
*

F MAPE
*

d

F/E
EP

A
M*

(a) ESQD

E MAPE
*

E MAPE
*

F MAPE
*

F MAPE
*

d

F/E
EP

A
M*

(b) EMAPE

E MAPE
*

E MAPE
*

F MAPE
*

F MAPE
*

d

F/E
EP

A
M*

(c) ETAlt−SQD

Fig. 7 The influence of the input S of the algorithm to its performance and accuracy

F/E
EP

A
M*

E MAPE
*

E MAPE
*

F MAPE
*

F MAPE
*

d

(a) ESQD

F/E
EP

A
M*

E MAPE
*

E MAPE
*

F MAPE
*

F MAPE
*

d

(b) EMAPE

E MAPE
*

E MAPE
*

F MAPE
*

F MAPE
*

d

F/E
EP

A
M*

(c) ETAlt−SQD

Fig. 8 Performance and accuracy impacts of the secondary search window size—ðmax Tred �min TredÞ=S
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To better understand the effects of particular parameters,

we have filtered the top 5% most accurate parameter con-

figurations. Figures 9, 10, 11 and 12 show the likelihood

for a particular parameter value to be represented in the

filtered list. The figures also analyse how the particular

error functions benefit from the other input parameters of

the algorithm. Note, the average d duration of the algo-

rithm’s evaluation with the parameter combinations from

the top 5% was 2333 ms.

These figures suggest, that selecting an I value between

8 and 32 could bring slight benefits in accuracy. With

regards to S, we have seen that values over 500 are bene-

ficial. Our parametric study evaluated for S ¼ 2000 as well,

but this increased S value did not bring significant enough

improvements to compensate for the additional time spent

on evaluating the algorithm (i.e., the d increased threefold

for an average accuracy increase of less than 1%). Next, we

have analysed the effect of the number of /ðxÞ evaluations
(P). As with our previous experiments, P have had an

inconclusive effect on accuracy (which highlights that the

algorithm would greatly benefit from techniques that avoid

the traps of local minimums). In general, lower P\500

values proved more accurate, especially values of 20–50

were strongly represented in the top 5%. Finally, we have

concluded that the secondary search window size has the

biggest impact on accuracy, which is to be set between 50

and 100 times the size of the primary search window S. We

recommend the following values:

(a) ESQD (b) EMAPE (c) ETAlt−SQD

Fig. 9 The likelihood that the algorithm will produce predictions in the top 5% depending on input I

(a) ESQD (b) EMAPE (c) ETAlt−SQD

Fig. 10 The likelihood that the algorithm will produce predictions in the top 5% depending on input S

(a) ESQD (b) EMAPE (c) ETAlt−SQD

Fig. 11 The likelihood that the algorithm will produce predictions in the top 5% depending on input P

(a) ESQD (b) EMAPE (c) ETAlt−SQD

Fig. 12 The likelihood that the algorithm will produce predictions in the top 5% depending on secondary search window size—

ðmax Tred �min TredÞ=S
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P ¼ 20

I ¼ 32

S ¼ 1000

max Tred �min Tred

S
¼ 50

ð10Þ

Based on the recommended input values, we have

analysed how the past and future errors for each 500 tg 2
TG correlated with the error values acquired for the cor-

responding ttarget predicted fragments. To evaluate the level

of correlation, we used the statistical indicator called

coefficient of determination: R2. The results are shown in

Table 3. The algorithm finds strongly correlating approxi-

mations for past errors, while future errors show weaker

correlation patterns. The weakest correlation was observed

for the EMAPE error function, which shows that the function

is too focused on the particular rob values. On the other

hand, the error function of ETAlt�SQD leads to the best future

error predictions, we assume this performance is likely

caused by the function’s stronger reliance on job order (and

indirectly time). The best R2 results we have obtained are

presented in Fig. 13. These were using slightly different

input parameter values (namely S ¼ 500;P ¼ 50) than we

recommended based on our statistical evaluation. Amongst

our future work, we plan to investigate techniques that

would allow the algorithm to auto tune its parameters to get

better correlating past and future error predictions for

particular workflows.

6 Conclusions

IaaS clouds hide the complexity of maintaining the phys-

ical infrastructure, but there are many application areas that

need additional knowledge of the underlying cloud systems

in order to support their activities. Workflow enactment is

one of these areas that could benefit from detecting beha-

vioural changes in the underlying system. Therefore, this

article aimed at studying performance issues related to the

background load and proposes a methodology for its

estimation.

We followed the concept of a load prediction method

based on the combination of historic traces to improve

execution quality. We proposed an algorithm for realising

the load prediction at runtime so that performance con-

straints are observed. We proposed these predictions to

select more suitable execution environments for scientific

workflows, hence we evaluated this approach using a bio-

chemical application with a state of the art simulator using

historic traces from a widely used archive. We have shown

that our assumption of using past error values to indicate

the tendency of future ones is partially supported by our

simulations. Thus, if a trace shows similarity to past

workloads then the continuation of the same trace has a

potential to be used as an estimate for future workloads.

In our future work, we aim at analysing further areas to

employ our algorithm (e.g., to support cloud orchestration,

brokering). We also aim at refining our algorithm through

multiple approaches: (i) revise the method to select frag-

ments with likely better future matches; (ii) analyse the

impact of other error functions; (iii) explore, if certain sim-

ulators are better suited for modelling particular clouds and

offering better support to our prediction algorithms; (iv)

investigate if discrepancies in the cloud based execution of

Table 3 Coefficient of determination (R2) for the recommended input

combination with the various error functions

Error function Coefficient of determination

# R2ðEðtgÞ;EðttargetÞÞ R2ðFðtgÞ;FðttargetÞÞ

ESQD 0.824 0.176

EMAPE 0.656 0.015

ETAlt�SQD 0.696 0.267

(a) Past errors (b) Future errors

Fig. 13 Correllation analysis of

the ESQD values for the

corresponding items from the

golden and predicted sets
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other scientific workflows’ could also be used to improve

prediction accuracy. Finally, we also plan to enable other

(non-workflow-like) long running applications (e.g., com-

mercial web traffic) to offer their inputs to our prediction

technique. This direction would allow us to consider

broadening the scope of our predictions from private clouds

(that could be easily modelled in feasible time with current

simulators) to some commercial clouds as well.
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