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 

Abstract—Convolutional neural networks (CNN) have yielded 

state-of-the-art performance in image classification and other 

computer vision tasks. Their application in fire detection systems 

will substantially improve detection accuracy, which will 

eventually minimize fire disasters and reduce the ecological and 

social ramifications. However, the major concern with 

CNN-based fire detection systems is their implementation in 

real-world surveillance networks, due to their high memory and 

computational requirements for inference. In this work, we 

propose an energy-friendly and computationally efficient CNN 

architecture, inspired by the SqueezeNet architecture for fire 

detection, localization, and semantic understanding of the scene of 

the fire. It uses smaller convolutional kernels and contains no 

dense, fully connected layers, which helps keep the computational 

requirements to a minimum. Despite its low computational needs, 

the experimental results demonstrate that our proposed solution 

achieves accuracies that are comparable to other, more complex 

models, mainly due to its increased depth. Moreover, the paper 

shows how a trade-off can be reached between fire detection 

accuracy and efficiency, by considering the specific characteristics 

of the problem of interest and the variety of fire data.  

 
Index Terms— Convolutional Neural Networks, Deep 

Learning, Fire Detection, Fire Localization, Fire Disaster, Image 

Classification, Surveillance Networks  

I. INTRODUCTION 

ECENTLY, a variety of sensors have been introduced for 

different applications such as setting off a fire alarm [1], 

vehicle obstacle detection, visualizing the interior of the 

human body for diagnosis [2-4], animal and ship monitoring, 

and surveillance [5]. Of these applications, surveillance has 

primarily attracted the attention of researchers due to the 

enhanced embedded processing capabilities of cameras. Using 

smart surveillance systems, various abnormal events such as 

road accidents, fires, medical emergencies etc. can be detected 

at early stages, and the appropriate authority can be 

autonomously informed [6]. A fire is an abnormal event which 

can cause significant damage to lives and property within a 

very short time [7]. The main causes of such disasters include 

human error or a system failure which results in severe loss of 
human life and other damage [8]. In Europe, fire disasters affect 

10,000 km2 of vegetation zones each year; in North America 

and Russia, the damage is about 100,000 km2. In June 2013, fire 

disasters killed 19 firefighters and ruined 100 houses in Arizona, 

USA. Similarly, another forest fire in August 2013 in California 

ruined an area of land the size of 1042 km2, causing a loss of 

 
 

$127.35 million [9]. According to an annual disaster report [10], 

fire disasters alone affected 494,000 people and resulted in a 

loss of $3.1 billion USD in 2015. In order to avoid such 

disasters, it is important to detect fires at early stages utilizing 

smart surveillance cameras.  

 Two broad categories of approach can be identified for fire 

detection: traditional fire alarms and vision sensor-assisted fire 

detection. Traditional fire alarm systems are based on sensors 

that require close proximity for activation, such as infrared and 

optical sensors. These sensors are not well suited to critical 

environments and need human involvement to confirm a fire in 

the case of an alarm, involving a visit to the location of the fire. 

Furthermore, such systems cannot usually provide information 

about the size, location, and burning degree of the fire. To 

overcome these limitations, numerous vision sensor-based 

methods have been explored by researchers in this field 

[11-14]; these have the advantages of less human interference, 

faster response, affordable cost, and larger surveillance 

coverage. In addition, such systems can confirm a fire without 

requiring a visit to the fire’s location, and can provide detailed 

information about the fire including its location, size, and 

degree, etc. Despite these advantages, there are still some issues 

with these systems, e.g. the complexity of the scenes under 

observation, irregular lighting, and low-quality frames; 

researchers have made several efforts to address these aspects, 

taking into consideration both color and motion features. 

Chen et al. [8] examined the dynamic behavior of fires using 

RGB and HSI color models and proposed a decision 

rule-assisted fire detection approach, which uses the irregular 

properties of fire for detection. Their approach is based on 

frame-to-frame differences, and hence cannot distinguish 

between fire and fire-colored moving regions. Marbach et al. 

[15] investigated the YUV color space using motion 

information to classify pixels into fire and non-fire 

components. Toreyin et al. [16] used temporal and spatial 

wavelet analysis to determine fire and non-fire regions. Their 

approach uses many heuristic thresholds, which greatly 

restricts its real-world implementation. Han et al. [17] 

compared normal frames with their color information for tunnel 

fire detection; this method is suitable only for static fires, as it is 

based on numerous parameters. Celik et al. [18] explored the 

YCbCr color space and presented a pixel classification method 

for flames. To this end, they proposed novel rules for separating 

the chrominance and luminance components. However, their 

method is unable to detect fire from a large distance or at small 

scales, which are important in the early detection of fires. In 

addition to these color space-based techniques, Borges et al. 
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[19] utilized the low-level features including color, skewness, 

and roughness in combination with a Bayes classifier for fire 

recognition.  

Rafiee et al. [20] investigated a multi-resolution 2D wavelet 

analysis to improve the thresholding mechanism in the RGB 

color space. Their method reduced the rate of false alarms by 

considering variations in energy as well as shape; however, 

false alarms can be higher in this approach for the case of rigid 

body movements within the frames, such as the movement of a 

human arm in the scene. In [21], the authors presented a 

modified version of [20] based on a YUC color model, which 

obtained better results than the RGB version. Another similar 

method based on color information and an SVM classifier is 

presented in [22]. This method can process 20 frames/sec; 

however, it cannot detect a fire from a large distance or of small 

size, which can occur in real-world surveillance footage. 

Color-based methods typically generate more false alarms due 

to variations in shadows and brightness, and often mis-classify 

people wearing red clothes or red vehicles. Mueller et al. [23] 

attempted to solve this issue by analyzing changes in the shape 

of a fire and the movement of rigid objects. Their algorithm can 

distinguish between rigid moving objects and a flame, based on 

a feature vector extracted from the optical flow and the physical 

behavior of a fire. De Lascio et al. [24] combined color and 

motion information for the detection of fire in surveillance 

videos. Dimitropoulos et al. [25] used spatio-temporal features 

based on texture analysis followed by an SVM classifier to 

classify candidate regions of the video frames into fire and 

non-fire. This method is heavily dependent on the parameters 

used; for instance, small-sized blocks increase the rate of false 

alarms, while larger blocks reduce its sensitivity. Similarly, the 

time window is also crucial to the performance of this system; 

smaller values reduce the detection accuracy, while larger 

values increase the computational complexity. These 

dependencies greatly affect the feasibility of this approach for 

implementation in real surveillance systems. Recently, the 

authors of [21] proposed a real-time fire detection algorithm 

based on color, shape, and motion features, combined in a 

multi-expert system. The accuracy of this approach is higher 

than that of other methods; however, the number of false alarms 

is still high, and the accuracy of fire detection can be further 

improved. A survey of the existing literature shows that 

computationally expensive methods have better accuracy, and 

simpler methods compromise on accuracy and the rate of false 

positives. Hence, there is a need to find a better trade-off 

between these metrics for several application scenarios of 

practical interest, for which existing computationally expensive 

methods do not fit well. 

To address the above issues, we investigate convolutional 

neural network (CNN)-based deep features for early fire 

detection in surveillance networks. The key contributions can 

be summarized as follows: 

1. We avoid the time-consuming efforts of conventional 

hand-crafted features for fire detection, and explore deep 

learning architectures for early fire detection in closed-circuit 

television (CCTV) surveillance networks for both indoor and 

outdoor environments. Our proposed fire detection 

framework improves fire detection accuracy and reduces 

false alarms, compared to state-of-the-art methods. Thus, our 

algorithm can play a vital role in the early detection of fire to 

minimize damage. 

2. We train and fine-tune an AlexNet architecture [26] for fire 

detection using a transfer learning strategy. Our model 

outperforms conventional hand-engineered features based 

fire detection methods. However, the model remains 

comparatively large in size (238 MB), making its 

implementation difficult in resource-constrained equipment. 

3. To reduce the size of the model, we fine-tune a model with a 

similar architecture to the SqueezeNet model for fire 

detection at the early stages. The size of the model was 

reduced from 238 MB to 3 MB, thus saving an extra space of 

235 MB, thus minimizing the cost and making its 

implementation more feasible in surveillance networks. The 

proposed model requires 0.72 GFLOPS/image compared to 

AlexNet, whose computational complexity is 2 

GFLOPS/image. This makes our proposed model more 

efficient in terms of inference, allowing it to process multiple 

surveillance streams.  

4. An intelligent feature map selection algorithm is proposed for 

choose appropriate feature maps from the convolutional 

layers of the trained CNN, which are sensitive to fire regions. 

These feature maps allow a more accurate segmentation of 

fire compared to other hand-crafted methods. The 

segmentation information can be further analyzed to assess 

the essential characteristics of the fire, for instance its growth 

rate. Using this approach, the severity of the fire and/or its 

burning degree can also be determined. Another novel 

characteristic of our system is the ability to identify the object 

which is on fire, using a pre-trained model trained on 1,000 

classes of objects in the ImageNet dataset. This enables our 

approach to determine whether the fire is in a car, a house, a 

forest or any other object. Using this semantic information, 

firefighters can prioritize their targets by primarily focusing 

on regions with the strongest fire. 

The remainder of this paper is organized as follows. We 

propose our architecture in Section 2. Our experimental results 

using benchmark datasets and a feasibility analysis of the 

proposed work are discussed in Section 3. Finally, the 

manuscript is concluded in Section 4 and possible future 

research directions are suggested. 

II. THE PROPOSED FRAMEWORK  

Fire detection using hand-crafted features is a tedious task, 

due to the time-consuming method of features engineering. It is 

particularly challenging to detect a fire at an early stage in 

scenes with changing lighting conditions, shadows, and 

fire-like objects; conventional low-level feature-based methods 

generate a high rate of false alarms and have low detection 

accuracy. To overcome these issues, we investigate deep 

learning models for possible fire detection at early stages 

during surveillance. Taking into consideration the accuracy, the 

embedded processing capabilities of smart cameras, and the 

number of false alarms, we examine various deep CNNs for the 

target problem. A systematic diagram of our framework is 

given in Fig. 1.  
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Fig. 1: Overview of the proposed system for fire detection using a deep CNN 

A. Convolutional Neural Network Architecture  

CNNs have shown encouraging performance in numerous 

computer vision problems and applications, such as object 

detection and localization [27, 28], image segmentation, 

super-resolution, classification [29-31], and indexing and 

retrieval [32]. This widespread success is due to their 

hierarchical structure, which automatically learns very strong 

features from raw data. A typical CNN architecture consists of 

three well-known processing layers: 1) a convolution layer, 

where various feature maps are produced when different 

kernels are applied to the input data; 2) a pooling layer, which 

is used for the selection of maximum activation considering a 

small neighborhood of feature maps received from the 

previous convolution layer; the goal of this layer is to achieve 

translation invariance to some extent and dimensionality 

reduction; and 3) a fully connected layer which models 

high-level information from the input data and constructs its 

global representation. This layer follows numerous stacks of 

convolution and pooling layers, thus resulting in a high-level 

representation of the input data. These layers are arranged in a 

hierarchical architecture such that the output of one layer acts 

as the input of the next layer. During the training phase, the 

weights of all neurons in convolutional kernels and fully 

connected layers are adjusted and learnt. These weights model 

the representative characteristics of the input training data, and 

in turn can perform the target classification. 

We use a model with an architecture similar to that of 

SqueezeNet [33], modified in accordance with our target 

problem. The original model was trained on the ImageNet 

dataset and is capable of classifying 1000 different objects. In 

our case, however, we used this architecture to detect fire and 

non-fire images. This was achieved by reducing the number of 

neurons in the final layer from 1000 to 2. By keeping the rest 

of the architecture similar to the original, we aimed to reuse the 

parameters to solve the fire detection problem more 

effectively.  

There are several motivational reasons for this selection, 

such as a lower communication cost between different servers 

in the case of distributed training, a higher feasibility of 

deployment on FPGAs, application-specific integrated circuits, 

and other hardware architectures with memory constraints and 

lower bandwidth. The model consists of two regular 

convolutional layers, three max pooling layers, one average 

pooling layer, and eight modules called “fire modules”. The 

input of the model is color images with dimensions of 

224×224×3 pixels. In the first convolution layer, 64 filters of 

size 3×3 are applied to the input image, generating 64 feature 

maps. The maximum activations of these 64 features maps are 

selected by the first max pooling layer with a stride of two 

pixels, using a neighborhood of 3×3 pixels. This reduces the 

size of the feature maps by factor of two, thus retaining the 

most useful information while discarding the less important 

details. Next, we use two fire modules of 128 filters, followed 

by another fire module of 256 filters. Each fire module 

involves two further convolutions, squeezing, and expansion. 

Since each module consists of multiple filter resolutions and 

there is no native support for such convolution layers in the 

Caffe framework [34], an expansion layer was introduced, 

with two separate convolution layers in each fire module. The 

first convolution layer contains 1 x 1 filters, while the second 

layer consists of 3×3 filters. The output of these two layers is 

concatenated in the channel dimension. Following the three 

fire modules, there is another max pooling layer which 

operates in the same way as the first max pooling layer. 

Following the last fire module (Fire9) of 512 filters, we 

modify the convolution layer according to the problem of 

interest by reducing the number of classes to two (M=2 (fire 

and normal)). The output of this layer is passed to the average 

pooling layer, and result of this layer is fed directly into the 

Softmax classifier to calculate the probabilities of the two 

target classes.  
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A significant number of weights need to be properly 

adjusted in CNNs, and a huge amount of training data is 

usually required for this. These parameters can suffer from 

overfitting if insufficient training data is used. The fully 

connected layers usually contain the most parameters, and 

these can cause significant overfitting. These problems can be 

avoided by introducing regularization layers such as dropout, 

or by replacing dense fully connected layers with convolution 

layers. In view of this, a number of models were trained based 

on the collected training data. Several benchmark datasets 

were then used to evaluate the classification performance of 

these models. During the experiments, a transfer learning 

strategy was also explored in an attempt to further improve the 

accuracy. Interestingly, we achieved an improvement in 

classification accuracy of approximately 5% for the test data 

after fine-tuning. A transfer learning strategy can solve 

problems more efficiently based on the re-use of previously 

learned knowledge. This reflects the human strategy of 

applying existing knowledge to different problems in several 

domains of interest. Employing this strategy, we used a 

pre-trained SqueezeNet model and fine-tuned it according to 

our classification problem with a slower learning rate of 0.001. 

We also removed the last fully connected layers to make the 

architecture as efficient as possible in terms of classification 

accuracy. The process of fine-tuning was executed for 10 

epochs; this increased the classification accuracy from 89.8% 

to 94.50%, thus giving an improvement of 5%. 

 

 
Fig. 2: Prediction scores for a set of query images using the proposed deep 

CNN. 

B. Difference with other network models  

The key difference of our proposed CNN architecture in Fig.3 

with SqueezeNet [28] is that our model simplifies the 

SqueezeNet model by removing no residual connections, 

which is more light-weight and balanced computational 

efficiency.  

As shown in Fig.3, looking at the architectural similarity 

between our CNN's Fire and Inception modules, note that in 

Inception modules, Fire modules have multiple sizes of filters 

at the same level of depth in the NN. For example, 

Inception-v1 modules have multiple instances with 1x1, 3x3, 

and 5x5 filters alongside each other. This arose the relevant 

question "how does a CNN architect decide how many of each 

size of filter to have in each module?" Some versions of the 

inception modules have 10 or more filter banks per module. 

Doing careful A/B comparisons of "how many of each type of 

filter" would easily lead to a combinatorial explosion. But, in 

the Fire modules, there are just 3 filter banks (1x1_1, 1x1_2, 

and 3x3_2). With this setup, it can be further asked that: What 

are the tradeoffs in "many 1x1_2 and few 3x3_2" vs "few 

1x1_2 and many 3x3_2" in terms of metrics such as model size 

and accuracy? From [1], it is evident that 50% 1x1_2 and 50% 

3x3_2 filters generate the same accuracy level as 99% 3x3_2. 

But there is a significant difference in the model size and 

computational footprint of these models. The lesson learnt is 

the suitability to adopt, to some extent, a simple step-by-step 

methodology: look for the point where adding more spatial 

resolution to the filters stops improving accuracy, and stop 

there; otherwise computation and model parameters are being 

wasted. 

Also, in comparison to other network models like 

AlexNet [26] and GoogleNet [27]. Our proposed network is 

light-weight, requiring a memory of 3 MB which is less than 

AlexNet and GoogleNet. It also is computationally 

inexpensive, requiring only 0.72 GFLOPS/image compared to 

other networks such as AlexNet (which needs 2 

GFLOS/image). Thus, our proposed model maintains a better 

trade-off between the computational complexity, memory 

requirement, fire detection accuracy and number of false 

alarms compared to other networks.  

Looking at GoogLeNet-v1, some of the Inception-v1 

modules are set up such that the early filter banks have 75% 

the number of filters as the late filter banks. This is like they 

have a "squeeze ratio" (SR) of 0.75. Another interesting point 

was to find the tradeoffs that emerge if the number of filters at 

the beginning of each module are more aggressively cut down. 

It was experimentally found, again, that there is a saturation 

point where going from SR=0.75 to SR=1.0; here, the increase 

in computational footprint and model size does not correspond 

to a significant improvement, but it does not improve accuracy. 

Thus, the Fire modules have been very useful in our 

experience for understanding the tradeoffs that emerge when 

selecting the number of filters inside of the CNN modules. 

C. Deep CNN for Fire Detection and Localization 

Although deep CNN architectures learn very strong 

features automatically from raw data, some effort is required 

to train the appropriate model considering the quality and 

quantity of the available data and the nature of the target 

problem. We trained various models with different parameter 

settings, and following the fine-tuning process obtained an 

optimal model which can detect fire from a large distance and 

at a small scale, under varying conditions, and in both indoor 

and outdoor scenarios. 

Another motivational factor for the proposed deep CNN 

was the avoidance of pre-processing and features engineering, 

which are required by traditional fire detection algorithms. To 

test a given image, it is fed forward through the deep CNN, 

which assigns a label of ‘fire’ or ‘normal’ to the input image. 
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This label is assigned based on probability scores computed by 

the network. The higher probability score is taken to be the 

final class label of the input image. A set of sample images 

with their predicted class labels and probability scores is given 

in Fig. 2. To localize a fire in a sample image, we employ the 

framework given in Fig. 3.  

 

 
 

Fig. 3: Fire localization using the proposed deep CNN. 

First, a prediction is obtained from our deep CNN. In non-fire 

cases, no further action is performed; in the case of fire, we 

perform further processing of its localization, as given in 

Algorithms 1 and 2. 

After analyzing all the feature maps of the different layers of 

our proposed CNN using Algorithm 1, feature maps 8, 26, and 

32 of the “Fire2/Concat” layer were found to be sensitive to 

fire regions and to be appropriate for fire localization. We 

therefore fused these three feature maps and applied 

binarization to segment the fire. A set of sample fire images 

with their segmented regions is given in Fig. 4. 

The segmented fire is used for two further purposes: 1) 

determining the severity level/burning degree of the scene 

under observation; 2) finding the zone of influence from the 

input fire image. The burning degree can be determined from 

the number of pixels in the segmented fire. The zone of 

influence can be calculated by subtracting the segmented fire 

regions from the original input image. The resultant zone of 

influence image is then passed from the original SqueezeNet 

model [33], which predicts its label from 1000 objects. The 

object information can be used to determine the situation in the 

scene, such as a fire in a house, a forest, or a vehicle. This 

information, along with the severity of the fire, can be reported 

to the fire brigade to take appropriate action. 

Algorithm 1. Feature Map Selection Algorithm for Localization 

Input: Training samples (TS), ground truth (GT), and the proposed 

deep CNN model (CNN-M) 

1. Forward propagate TS through CNN-M 

2. Select the feature maps FN from layer L of CNN-M  

3. Resize GT and FN to 256×256 pixels 

4. Compute mean activations map FMAi for FN 

5. Binarize each feature map Fi as follows: 
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6. Calculate the hamming distance HDi between GT and each 

feature map Fbin (i) as follows: 

GTFHD ibini  )(  

This results in TS×FN hamming distances 

7. Calculate the sum of all resultant hamming distances, and 

shortlist the minimum hamming distances using threshold T 

8. Select appropriate feature maps according to the shortlisted 

hamming distances 

Output: Feature maps sensitive to fire 

 
Algorithm 2. Fire Localization Algorithm 

Input: Image I of the video sequence and the proposed deep CNN 

model (CNN-M) 

1. Select a frame from the video sequence and forward propagate it 

through CNN-M 

2. IF predicted label = non-fire THEN 

 No action 

ELSE 

a) Extract feature maps 8, 26, and 32 (F8, F26, F32) from 

the “Fire2/Concat” layer of CNN-M 

b) Calculate mean activations map (FMA) for F8, F26, and 

F32 

c) Apply binarization on FMA through threshold T as 

follows: 

  







 


Otherwise

TF
F

MA

Localize
,0

,1
 

d) Segment fire regions from FMA 

       END  

Output: Binary image with segmented fire Ilocalize 

 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

The experiments performed to verify the performance of our 

approach are described in this section. Starting with the 

experimental details, we give information about the system 

specification and the datasets used for the experiments. 

Following this, the experimental results for various fire 

datasets are presented, followed by a comparison with existing 

approaches in terms of fire detection and localization. Finally, 

we describe tests verifying the superiority of our method from 

the perspective of robustness. Our approach is referred to as 

“CNNFire” throughout the experiments.  
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Fig. 4: Sample images and the corresponding localized fire regions using our approach. The first row shows the original images, while the second row shows the 

localized fire regions. 

A. Experimental Setup and Datasets 

We conducted the experiments using a system with the 

following specifications: NVidia GeForce GTX TITAN X 

(Pascal) with 12 GB onboard memory using a deep learning 

framework [34] and Ubuntu OS installed on an Intel Core i5 

CPU with 64 GB RAM. A total of 68,457 images were used in 

the experiments; these were obtained from well-known fire 

datasets including those of Foggia et al. [21] with 62,690 

frames, Chino et al. [35] with 226 images, and other dataset 

sources [14, 36]. For the training and testing phases of the 

experiments, we followed the experimental strategy of [21], 

where 20% and 80% of the data are used for training and 

testing, respectively. Using this strategy, we trained our 

proposed SqueezeNet model with 5,258 fire images and 5,061 

non-fire images, resulting in a training dataset of 10,319 

images. The details of the experiments using the different fire 

datasets and their comparison with state-of-the-art techniques 

are given in subsequent sections. 

B. Experiments on Dataset1 

Our experiments for testing the performance of the proposed 

framework are mainly based on two datasets: 1) Foggia et al. 

[21] (Dataset1), and Chino et al. [35] (Dataset2). The reasons 

for using each of these datasets are provided in the relevant 

sections. Dataset1 contains a total of 31 videos captured in 

different environments. Of these videos, 14 videos include a 

fire, while 17 are normal videos. A variety of challenges, 

including its larger size compared to other available datasets, 

make this dataset particularly suitable for these experiments. 

For example, some of the normal videos include fire-like 

objects; this makes fire detection more challenging, and hence 

fire detection methods using color features may wrongly 

classify these frames. In addition, a set of videos are captured in 

mountain areas and contain clouds and fog, for which 

motion-based fire detection schemes may not work properly. 

These situations can occur in the real world, and they are 

therefore introduced in this dataset to make it as challenging as 

possible. This is the primary reason for the selection of this 

dataset for the experimental evaluation of our work. Further 

information about Dataset1 is given in Table I. A set of sample 

images from Dataset1 are given in Fig. 5, and the collected 

experimental results using Dataset1 are tabulated and compared 

with related methods in Table II. 

Fig. 5 shows a set of representative images from Dataset1. 

The top four images were taken from videos containing a fire, 

and the remaining four are from videos without a fire. As 

described at the start of this section, this dataset has many 

challenges, which are evident from the given set of images. The 

dataset contains videos captured in both indoor and outdoor 

environments (see Figs. 5 (ii) and (vii) for indoor and Figs. 5 

(i), (iii-vi), and (viii) for outdoor examples). The distance of the 

camera from the fire and the size of the fire also vary a lot in the 

videos of Dataset1. For example, Fig. 5 (i) illustrates a video 

where the fire is far away and the size is very small; conversely, 

the size of the fire in Fig. 5 (iii) is much larger, and it is at a 

shorter distance. Fig. 5 (ii) represents an indoor environment 

with a small fire. Fig. 5 (iv) contains both a fire at a medium 

distance and red objects; this is similar to Fig. 5 (viii) except for 

the fact that the latter contains no fire. This poses a challenge 

and can be used to evaluate the effectiveness of color-based fire 

detection algorithms. Figs. 5 (v) and (vi) represent normal 

images with smoke and sunlight, which both look like fire. A 

similar effect is illustrated in the indoor scenario in Fig. 5 (vii), 

where the sun is rising and is reflected in the window. These 

variations make the dataset much more challenging for fire 

detection algorithms. 

For a comparison of our results with state-of-the-art methods 

for Dataset1, we selected a total of six related works. This 

selection was based on criteria including the features used in 

the related works, their year of publication, and the dataset 

under consideration. We then compared our work with the 

selected fire detection algorithms, as shown in Table II. 
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Fig. 5: A set of representative images from Dataset1. The top four images are 

taken from videos of fires, while the remaining four images are from non-fire 

videos 

The selected works use various low-level features and different 

datasets, and their year of publication ranges from 2004 to 2015. 

The results show that Celik et al. [18] and Foggia et al. [21] are 

the best algorithms in terms of false negatives. However, their 

results are not impressive in terms of the other metrics of false 

positives and accuracy. From the perspective of false positives, 

the algorithm of Habibuglu et al. [22] performs best, and 

dominates the other methods. However, its false negative rate is 

14.29%, the worst result of all the methods examined. The 

accuracy of the four other methods is also better than this 

method, with the most recent method [21] being the best. 

However, the false positive score of 11.67% is still high, and 

the accuracy could be further improved. 

To achieve a high accuracy and a low false positive rate, we 

explored the use of deep features for fire detection. We first 

used the AlexNet architecture without fine tuning, which 

resulted in an accuracy of 90.06% and reduced false positives 

from 11.67% to 9.22%. In the baseline AlexNet architecture, 

the weights of kernels are initialized randomly and these are 

modified during the training process considering the error rate 

and accuracy. We also applied the strategy of transfer learning 

[37] whereby we initialized the weights from a pre-trained  

 
Fig. 6: Representative images from Dataset2. The top four images include fires, 

while the remaining four images represent fire-like normal images 

 

AlexNet model with a low learning rate of 0.001 and 

modified the last fully connected layer according to our 

problem. Interestingly, we obtained an improvement in 

accuracy of 4.33% and reductions in false negatives and false 

positives of up to 8.52% and 0.15%, respectively. 

Although the results of the proposed fine-tuned AlexNet 

are good compared to other existing methods, there are still 

certain limitations. Firstly, the size of this model is 

comparatively large (approx. 238 MB), thereby restricting its 

implementation in CCTV networks. Secondly, the rate of false 

alarms (false positives) is 9.07%, which is still high and would 

be problematic for fire brigades and disaster management 

teams. With these strong motivations, we explored SqueezeNet, 

a lightweight architecture, for this problem. We repeated the 

experiments for this new architecture and achieved an 

improvement of 0.11% in accuracy. Furthermore, the rate of 

false alarms was reduced from 9.07% to 8.87%. The rate of 

false negatives remained almost the same. Finally, the major 

achievement of the proposed framework was the reduction of 

the model size from 238 MB to 3 MB, thus saving an extra 235 

MB, which can greatly minimize the cost of CCTV surveillance 

systems. 
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TABLE I 

Details of Dataset1 

Video Name Resolution Frames Frame Rate Modality Description 

Fire1 320×240 705 15 Fire Fire in a bucket with person walking around it 

Fire2 320×240 116 29 Fire Fire at a comparatively long distance from the camera in a bucket 

Fire3 400×256 255 15 Fire A large forest fire 

Fire4 400×256 240 15 Fire Same description as Fire3 

Fire5 400×256 195 15 Fire Same description as Fire3 

Fire6 320×240 1200 10 Fire Fire on the ground with red color 

Fire7 400×256 195 15 Fire Same description as Fire3 

Fire8 400×256 240 15 Fire Same description as Fire3 

Fire9 400×256 240 15 Fire Same description as Fire3 

Fire10 400×256 210 15 Fire Same description as Fire3 

Fire11 400×256 210 15 Fire Same description as Fire3 

Fire12 400×256 210 15 Fire Same description as Fire3 

Fire13 320×240 1650 25 Fire An indoor environment with fire in a bucket 

Fire14 320×240 5535 15 Fire A paper box, inside which a fire is burning 

Fire15 320×240 240 15 
Normal Smoke visible from a closed window with the appearance of a red 

reflection of the sun on the glass 

Fire16 320×240 900 10 Normal Smoke from a pot near a red dust bin. 

Fire17 320×240 1725 25 Normal Smoke on the ground with nearby trees and moving vehicles  

Fire18 352×288 600 10 Normal Smoke on the hills, far from the camera  

Fire19 320×240 630 10 Normal Smoke on red-colored ground 

Fire20 320×240 5958 9 Normal Smoke on the hills, with nearby red buildings 

Fire21 720×480 80 10 Normal Smoke at a larger distance behind trees 

Fire22 480×272 22500 25 Normal Smoke behind hills in front of UOS 

Fire23 720×576 6097 7 Normal Smoke above hills 

Fire24 320×240 342 10 Normal Smoke in a room 

Fire25 352×288 140 10 Normal Smoke at a larger distance from a camera in a city 

Fire26 720×576 847 7 Normal Same description as Fire24 

Fire27 320×240 1400 10 Normal Same description as Fire19 

Fire28 352×288 6025 25 Normal Same description as Fire18 

Fire29 720×576 600 10 Normal Red buildings covered in smoke  

Fire30 800×600 1920 15 Normal A lab with a red front wall, where a person moves, holding a red ball 

Fire31 800×600 1485 15 Normal A lab with red tables, and a person moving with a red bag and a ball 

 
 

TABLE III 

Comparison of different fire detection methods for Dataset2 

Technique Precision Recall F-Measure 

Proposed 

Method 

After FT 0.86 0.97 0.91 

Before FT 0.84 0.87 0.85 

AlexNet after FT 0.82 0.98 0.89 

AlexNet before FT 0.85 0.92 0.88 

Chino et al. (BoWFire) [35] 0.51 0.65 0.57 

Rudz et al. [39] 0.63 0.45 0.52 

Rossi et al. [40] 0.39 0.22 0.28 

Celik et al. [18] 0.55 0.54 0.54 

Chen et al. [8] 0.75 0.15 0.25 

 

 
 

 

 
TABLE II 

Comparison of various fire detection methods for Dataset1 

Technique 
False 

Positives 

False 

Negatives 
Accuracy 

Proposed after FT 8.87% 2.12% 94.50% 

Proposed before FT 9.99% 10.39% 89.8% 

AlexNet after FT 9.07% 2.13% 94.39% 

AlexNet before FT 9.22% 10.65% 90.06% 

Foggia et al. [21] 11.67% 0% 93.55% 

De Lascio et al. [24] 13.33% 0% 92.86% 

Habibuglu et al. [22] 5.88% 14.29% 90.32% 

Rafiee et al. (RGB) [20] 41.18% 7.14% 74.20% 

Rafiee et al. (YUV) [20] 17.65% 7.14% 87.10% 

Celik et al. [18] 29.41% 0% 83.87% 

Chen et al. [8] 11.76% 14.29% 87.10% 
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C. Experiments on Dataset2 

Dataset2 consists of 226 images, with 119 fire images and 

107 non-fire images. The dataset was obtained from [35], and is 

relatively small but contains several challenges such as red and 

fire-colored objects, fire-like sunlight, and fire-colored lighting 

in different buildings. For illustration purposes, a set of 

representative images are shown in Fig. 6. It should be noted 

that none of the images from Dataset2 were used in the training 

processes of either AlexNet or our proposed model. The 

experimental results obtained from Dataset2 using the proposed 

architecture are presented in Table III. We compared our 

results with four other fire detection algorithms in terms of their 

relevancy, dataset, and year of publication. To ensure a fair 

evaluation and a full overview of the performance of our 

approach, we considered another set of metrics (precision, 

recall, and F-measure [38]) as used by [35]. In a similar way to 

the experiments on Dataset1, we tested Dataset2 using the 

fine-tuned AlexNet and our proposed fine-tuned SqueezeNet 

model. For the fine-tuned AlexNet, an F-measure score of 0.89 

was achieved. Further improvement was achieved using our 

model, increasing the F-measure score from 0.89 to 0.91 and 

the precision from 0.82 to 0.86. It is evident from Table III that 

our work achieved better results than the state-of-the-art 

methods, confirming the effectiveness of the proposed deep 

CNN framework. 

D. Fire Localization: Results and Discussion 

In this section, the performance of our approach is evaluated 

in terms of fire localization and understanding of the scene 

under observation. True positive and false positive rates were 

computed to evaluate the performance of fire localization. The 

feature maps we used to localize fire were smaller than the 

ground truth images, and were therefore resized to match the 

size of the ground truth images. We then computed the number 

of overlapping fire pixels in the detection maps and ground 

truth images, and used these as true positives. Similarly, we 

also determined the number of non-overlapping fire pixels in 

the detection maps and interpreted these as false positives. One 

further reason for using SqueezeNet was the ability of the 

model to give larger sizes for the feature maps by using smaller 

kernels and avoiding pooling layers. This allowed us to perform 

a more accurate localization when the feature maps were 

resized to match the ground truth images.  

Our system selects suitable features which are sensitive to 

fire using Algorithm 1, and localizes the fire using Algorithm 2. 

These localization results are compared with those of several 

state-of-the-art methods such as Chen et al. [8], Celik et al. [18], 

Rossi et al. [40], Rudz et al. [39], and Chino et al. (BoWFire) 

[35], as shown in Fig. 7. We report three different results for 

our CNNFire based on the threshold T of the binarization 

process in Algorithm 2. It can be seen from Fig. 7 that our 

approach maintains a better balance between the true positive 

rate and false positive rate, making it more suitable for fire 

localization in surveillance systems.  

Fig. 8 shows the results of all methods for a sample image 

from Dataset2. The results of BoWFire, color classification, 

Celik and Rudz are almost the same. Rossi gives the worst 

results in this case, and Chen is better than Rossi. The results 

from CNNFire are similar to the ground truth. 

 

 

Fig. 7: Comparison of our CNNFire approach with other methods 

 

Fig. 9 highlights the performance of all methods for another 

sample image, with a higher probability of false positives. 

Although BoWFire has no false positives for this case, it misses 

some fire regions, as is evident from its result. Color 

classification and Celik detect the fire regions correctly, but 

give larger regions as false positives. Chen fails to detect the 

fire regions of the ground truth images. Rossi does not detect 

fire regions at all for this case. The false positive rate of Rudz is 

similar to our CNNFire, but the fire pixels detected by this 

approach are scarce. Although our method gives more false 

positives than the BoWFire method, it correctly detects the fire 

regions which are more similar to the ground truth images.  

In addition to fire detection and localization, our system can 

determine the severity of the detected fire and the object under 

observation. For this purpose, we extracted the zone of 

influence (ZOI) from the input image and segmented fire 

regions. The ZOI image was then fed forward to the 

SqueezeNet model, which was trained on the ImageNet dataset 

with 1000 classes. The label assigned by the SqueezeNet model 

to the ZOI image is then combined with the severity of the fire 

for reporting to the fire brigade. A set of sample cases from this 

experiment is given in Fig. 10. 

E. Robustness of the Proposed Fire Detection Method against 

Attacks 

In addition to comparing our results with state-of-the-art 

methods, we tested the performance of our model against 

numerous attacks, i.e. all effects that can negatively affect the 

correct detection of a fire. Possible attacks include rotations, 

cropping, and noise. All attacks and their effects on 

performance were checked using a test image, as shown in Fig. 

11 (a), which is labeled as fire with an accuracy of 99.24% by 

our algorithm. In Figs. 11 (b) and (e), parts of the fire are 

blocked by cropping a normal section from the same image and 

placing it over parts of the fire. The resultant images are labeled 

as normal with an accuracy of approximately 99% when passed 

through the proposed fire detection model. 
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Fig. 8: Visual fire localization results of our CNNFire approach and other fire localization methods 
 

 
 

Fig. 9: Fire localization results from our CNNFire and other schemes with false positives 

 

In Figs. 11 (c), (f), and (g), different types of noise are added 

to the original image, and its behavior is investigated. 

Interestingly, we found that the proposed model still labeled 

them as fire, despite a change in the quality of the images and 

especially the parts showing the fire. The probability scores of 

Figs. 11 (c) and (g) are higher than Fig. 11 (f), since the latter 

image of fire is more affected by the noise. Fig. 11 (d) 

illustrates another special test aimed at evaluating the capability 
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of our model in terms of early fire detection. A small amount of 

fire is cropped from another image and is added to Fig. 11 (b). 

The resultant image is passed through our model, which 

identifies this as fire with a probability score of around 78.11%. 

Lastly, we investigated the behavior of the proposed model 

under rotation. For this purpose, we rotated the test image by 

90° and 180° and passed these images through our fire 

detection architecture. It can be seen from Figs. 11 (h) and (i) 

that both images are correctly labeled as fire. We included this 

evaluation in experiments since in real-world surveillance 

systems, video frames can be exposed to different types of 

noise due to varying weather conditions. Thus, a fire detection 

system with the capability to withstand various attacks is more 

suitable for robust surveillance systems. Hence, our proposed 

architecture can be effectively used in current CCTV 

surveillance systems for fire detection with better accuracy and 

under a range of conditions, as verified by experiments. 

F. Feasibility Analysis 

In this section, the feasibility of the proposed fire detection 

method in terms of its implementation in real-world CCTV 

surveillance systems is investigated. For this purpose, we 

considered two different experimental setups with 

specifications as follows: 1) NVidia GeForce GTX TITAN X 

(Pascal) with 12 GB onboard memory using a deep learning 

framework [34] and Ubuntu OS installed on an Intel Core i5 

CPU with 64 GB RAM (as described in Section III (A)); and 2) 

a Raspberry Pi 3 with 1.2 GHz 64-bit quad-core ARMv8 

Cortex-A53 and a Broadcom BCM2837, equipped with 1024 

MiB SDRAM [41]. Using these two specifications, our system 

can process 20 frames/sec and 4 frames/sec, respectively, with 

an accuracy of 94.50% and a false positive rate of 8.87%. It is 

worth noting that conventional cameras can acquire 

approximately 25-30 frames/sec and processing a single 

frame/sec for the possible detection of fire is sufficient due to 

the minor changes between frames. Similar work was done in 

[21], where they achieved 60 frames/sec using a traditional PC 

(Intel dual core T7300 with 4 GM RAM) and 3 frames/sec 

based on a Raspberry Pi B (ARM processor with 700 MHz and 

512 MiB RAM). These authors reported an accuracy of 93.55% 

with a false positive rate of 11.67%.  

 

Castle: 0.21a. Fire: 98.76%

Normal: 1.24%

b. Fire: 98.8%

Normal: 1.2%

c. Fire: 99.53%

Normal: 0.47%

Car: 0.37

Church: 0.14

Input images
Features 

maps 
(F8, F26, F32)

Segmented fire
ZOI with predicted 

class Report to fire brigade

Fire on Castle

Fire on Car

Fire on Church

Fig. 10: Sample outputs from our overall system: the first column shows input images with labels predicted by our CNN model and their probabilities, with the 

highest probability taken as the final class label; the second column shows three feature maps (F8, F26, and F32) selected by Algorithm 1; the third column 
highlights the results for each image using Algorithm 2; the fourth column shows the severity of the fire and ZOI images with a label assigned by the SqueezeNet 

model; and the final column shows the alert that should be sent to emergency services, such as the fire brigade 
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Related work done by the same group is reported in [24], 

where they obtained 70 frames/sec using the above traditional 

PC with 92.59% accuracy and a 6.67% false positive rate group 

is reported in [24], where they obtained 70 frames/sec using the 

above traditional PC with 92.59% accuracy and a 6.67% false 

positive rate. Another similar work is reported in [22], where 

the authors achieved 20 frames/sec with a dual core 2.2 GHz 

system with a 5.88% false positive rate and 90.32% accuracy. 

However, these scores were collected using a smaller dataset 

than the ones used here and in [21]. Our proposed deep CCN 

architecture, which has a much smaller size (3 MB) compared 

to the AlexNet architecture (238 MB), can successfully detect 

fire at an early stage with 4 frames/sec and resolution 320×240 

with a 8.87% false positive rate and 94.50% accuracy. The 

motivation for using a Raspberry Pi 3 is its affordable price of 

$35 USD. In view of these statistics, it is evident that the 

performance of our model is better than state-of-the-art 

methods, and that it can be easily integrated with current 

surveillance systems. Finally, it is worth mentioning that our 

proposed model requires 0.72 GFLOPS/image compared to 

AlexNet’s 2 GFLOPS/image, which makes it more efficient in 

inference, allowing it to process multiple surveillance streams. 

 

 
 

Fig. 11: Evaluation of the robustness of the proposed fire detection algorithm 

against different attacks (noise, cropping, and rotation); images (b) and (e) are 
labeled as normal, and the remaining seven images are predicted as fire 

IV. CONCLUSION AND FUTURE WORK 

The embedded processing capabilities of smart cameras have 

given rise to intelligent CCTV surveillance systems. Various 

abnormal events such as accidents, medical emergencies, and 

fires can be detected using these smart cameras. Of these, fire is 

the most dangerous abnormal event, as failing to control it at an 

early stage can result in huge disasters, leading to human, 

ecological and economic losses. Inspired by the great potential 

of CNNs, we propose a lightweight CNN based on the 

SqueezeNet architecture for fire detection in CCTV 

surveillance networks. Our approach can both localize fire and 

identify the object under surveillance. Furthermore, our 

proposed system balances the accuracy of fire detection and the 

size of the model using fine-tuning and the SqueezeNet 

architecture, respectively. We conduct experiments using two 

benchmark datasets and verify the feasibility of the proposed 

system for deployment in real CCTV networks. In view of the 

CNN model’s reasonable accuracy for fire detection and 

localization, its size, and the rate of false alarms, the system can 

be helpful to disaster management teams in controlling fire 

disasters in a timely manner, thus avoiding huge losses. 

This work mainly focuses on the detection of fire and its 

localization, with comparatively little emphasis on 

understanding the objects and scenes under observation. Future 

studies may focus on making challenging and specific scene 

understanding datasets for fire detection methods and detailed 

experiments. Furthermore, reasoning theories and information 

hiding algorithms [42-44] can be combined with fire detection 

systems to intelligently observe and authenticate the video 

stream and initiate appropriate action, in an autonomous way. 
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