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ABSTRACT 28 
Background. Carotid artery (CCA) dilation occurs in healthy subjects during cold pressor 29 

test (CPT), whilst the magnitude of dilation relates to cardiovascular risk. To further explore 30 

this phenomena and mechanism, we examined carotid artery responses to different 31 

sympathetic tests, with and without α1-receptor blockade, and assessed similarity to these 32 

responses between carotid and coronary arteries. 33 

Methods. In randomised order, 10 healthy participants (25±3 yrs) underwent sympathetic 34 

stimulation using the CPT (3-minutes left hand immersion in ice-slush) and lower-body 35 

negative pressure (LBNP). Before and during sympathetic tests, CCA diameter and velocity 36 

(Doppler ultrasound) and left anterior descending (LAD) coronary artery velocity 37 

(echocardiography) were recorded across 3-min. Measures were repeated 90-min following 38 

selective α1-receptor blockade via oral Prazosin (0.05mg per kg bodyweight).   39 

Results. CPT significantly increased CCA diameter, LAD maximal velocity and velocity-40 

time integral area-under-the-curve (all P<0.05). In contrast, LBNP resulted in a decrease in 41 

CCA diameter, LAD maximal velocity and velocity time integral (VTI, all P<0.05). 42 

Following α1-receptor blockade, CCA and LAD velocity responses to CPT were diminished. 43 

In contrast, during LBNP (-30 mmHg), α1-receptor blockade did not alter CCA or LAD 44 

responses. Finally, changes in CCA diameter and LAD VTI-responses to sympathetic 45 

stimulation were positively correlated (r=0.66, P<0.01). 46 

Conclusion. We found distinct carotid artery responses to different tests of sympathetic 47 

stimulation, where α1-receptors partly contribute to CPT-induced responses. Finally, we found 48 

agreement between carotid and coronary artery responses. These data indicate similarity 49 

between carotid and coronary responses to sympathetic tests and the role of α1-receptors that 50 

is dependent on the nature of the sympathetic challenge.  51 

 52 



van Mil et al.  SNS activation & central artery responses 

KEYWORDS: carotid artery, coronary artery endothelial function, sympathetic nervous 53 

system, cardiovascular disease, α1--adrenoceptors   54 



van Mil et al.  SNS activation & central artery responses 

NEWS AND NOTEWORTHY 55 
 56 

 We showed distinct carotid artery responses to cold pressor test (i.e. dilation) and 57 

lower-body negative pressure (i.e. constriction). 58 

 Blockade of α1-receptors significantly attenuated dilator responses in carotid and 59 

coronary arteries during CPT, whilst no changes were found during LBNP.  60 

 Our findings indicate strong similarity between carotid and coronary artery responses 61 

to distinct sympathetic stimuli, and for the role of α-receptors.  62 

ABBREVIATION LIST 63 
 64 
Cardiovascular disease (CVD) 65 

Cardiac output (CO) 66 

Cold pressor test (CPT) 67 

Common carotid artery (CCA) 68 

Diastolic blood pressure (DBP) 69 

Heart rate (HR) 70 

Left anterior descending (LAD) 71 

Left anterior descending artery, mean diastolic velocity (LADVmean) 72 

Left anterior descending artery, peak diastolic velocity (LADVmax) 73 

Lower body negative pressure (LBNP) 74 

Partial pressure of end-tidal carbon dioxide (PETCO2) 75 

Partial pressure of end-tidal oxygen (PETO2) 76 

Rate pressure product (RPP) 77 

Systolic blood pressure (SBP) 78 

Sympathetic nervous system (SNS) 79 

Stroke volume (SV) 80 

Velocity time integral (VTI) 81 
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INTRODUCTION 82 

Activation of the sympathetic nervous system (SNS) is an important and clinically-relevant 83 

prognostic stimulus to examine artery function (12, 36). During the cold pressor test (CPT), a 84 

potent sympathetic stimulus, the coronary arteries can result in a vasoconstrictor (via α1-85 

receptors) or vasodilatory response (via the α2-, and β-receptors)(2). Vasodilator pathways 86 

prevail in healthy volunteers (10, 27), whereas experimental studies in patients with coronary 87 

artery disease demonstrate vasoconstriction during SNS activation (30, 47, 49). Coronary 88 

artery responses to CPT independently predict future cardiovascular events in patients at risk 89 

for cardiovascular disease (31, 32, 36), which highlights the clinical relevance of this 90 

response. However, the invasive nature of angiography make these tests impractical for large 91 

scale clinical use. Interestingly, the carotid artery shows vasodilation during SNS activation in 92 

healthy subjects, similar to coronary artery responses. This carotid dilation is abolished or 93 

even reversed to vasoconstriction in those with (increased risk for) cardiovascular disease (34, 94 

44). To date, relatively little is known about the underlying mechanisms for the carotid artery 95 

reactivity to SNS activation.  96 

 97 

Previous studies in peripheral conduit arteries have reported divergent responses to different 98 

tests of SNS-activation (11, 15, 25, 27, 41). To date, no previous study compared vasomotor 99 

responses of the carotid artery to distinct SNS stimuli. In line with peripheral arteries (i.e., the 100 

brachial and superficial femoral artery), we expect that distinct SNS stimuli (i.e. CPT and 101 

lower body negative pressure (LBNP)) lead to distinct carotid and coronary artery responses, 102 

as these tests mediate sympathetic activation through different pathways. More specifically, 103 

CPT evokes sympathetic activation via cold stress. The LBNP test gradually decreases central 104 

blood volume which results in progressive increases in muscle sympathetic nerve activity (8, 105 

9), which can directly lead to constriction of the carotid diameter.  106 
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No previous study examined the potential underlying mechanisms mediating carotid artery 107 

vasomotion during SNS activation. Work in both animal and human coronary arteries 108 

revealed a central role for α1-receptors to mediate vasomotor responses during SNS activation 109 

(17, 23, 26). In line with this previous work, we expect that α1-receptors, at least in part, 110 

contribute to the carotid artery responses to CPT and LBNP. Therefore, our first aim is to 111 

examine the impact of activation of the SNS, either through the CPT (i.e. elevates SNS 112 

activity and blood pressure)(18, 46) or LBNP (i.e. elevates SNS activity, with preserved blood 113 

pressure)(21, 45) on carotid artery diameter. Our second aim was to assess the role of α1-114 

adrenoreceptors to these carotid artery responses by using an oral, selective α1-adrenoreceptor 115 

blocker (i.e. Prazosin).  116 

 117 

A recent study found good agreement between carotid and coronary responses to the CPT in 118 

healthy young and older subjects (44). To further explore this relationship, we aimed to 119 

compare the responses between the carotid artery diameter and left anterior descending 120 

coronary artery velocity (LAD velocity) during different SNS stimuli, with and without α1-121 

receptor blockade. Based on previous work (34, 44), we anticipated that there would be 122 

similarity in the magnitude and direction of the vascular responses between both the carotid 123 

artery diameter and LAD velocity, and that these responses would be partly mediated via α1-124 

receptors.  125 

 126 

METHODS 127 

Ethical approval 128 

This study was approved by the Human Ethics Committee of the University of British 129 

Columbia and conformed to the standards set by the Declaration of Helsinki. All volunteers 130 

provided written informed consent. 131 
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 132 

Participants 133 

We recruited 10 healthy male participants (mean age 25±3 years, height 1.78±0.1 m, and 134 

weight 76±9 kg). Exclusion criteria were a history of cardiovascular disease (i.e. angina 135 

pectoris, myocardial infarction, heart failure), lung disease (i.e. COPD, lung cancer), brain 136 

disease (i.e. stroke, dementia), presence of Raynaud's phenomenon, scleroderma, chronic pain 137 

and/or open wounds on the upper extremities, obesity (body mass index >30 kg/m2), diabetes 138 

mellitus type 1 or 2, history of smoking, or elevated blood pressure (systolic >130 mmHg; 139 

diastolic >85 mmHg).  140 

 141 

Experimental design 142 

All participants reported to our laboratory for a single visit. They were asked to abstain from 143 

strenuous exercise for 24 hours and abstain from dietary products known to affect endothelial 144 

function for ≥18 hours prior to the testing session (i.e. vitamin C, caffeine and alcohol). 145 

Moreover, participants were asked to fast for ≥2 hours, adapted from existing guidelines to 146 

assess peripheral vascular function (38). Participants rested in the supine position for >15 147 

minutes on a bed in a temperature-controlled room (23±1°C). Subsequently, participants 148 

underwent LBNP and two CPT, in a randomly assigned order, with 45-minutes rest between 149 

tests. All tests involved simultaneous assessment of common carotid artery (CCA) diameter 150 

and velocity (ultrasound) and left anterior descending (LAD) coronary artery velocity 151 

(echocardiography) before (across a 1-minute baseline) and during sympathetic stimulation. 152 

The protocol was repeated 90-minutes after oral administration of Prazosin (i.e. α1- adrenergic 153 

receptor antagonist that effectively blocks 80% of α1-recepter activity, 0.05mg per kg body 154 

weight)(1, 22). 155 

 156 
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Experimental measures  157 

Common carotid artery diameter and velocity. Left carotid artery diameter and red blood cell 158 

velocity were recorded simultaneously and continuously during baseline (1-minute) and 159 

sympathetic stimuli (i.e. 3-minutes CPT, and ~18-minutes LBNP). Carotid artery image 160 

acquisition was performed using a 10-MHz multifrenquency linear array handheld probe 161 

attached to a high resolution ultrasound machine (15L4, Terason T3200, Burlington, MA, 162 

USA). When an optimal image was found, 2-3 cm proximal from the bifurcation, the probe 163 

was held stable and the ultrasound parameters were set to optimise the longitudinal, B-mode 164 

image of the lumen-arterial wall interface. Continuous pulsed wave Doppler velocity 165 

assessments were also obtained and were collected at the lowest possible insonation angle 166 

(always <60º). Assessment was performed by an experienced sonographer (ACCM), whom 167 

has an hour-to-hour reproducibility (i.e. coefficient of variation) of CCA baseline diameter of 168 

0.8% and reproducibility of 0.8% for the peak CCA diameter, in line with previous findings 169 

(44). 170 

 171 

Coronary artery velocity. Before and during both CPT and LBNP, the left anterior descending 172 

(LAD, cm) coronary artery velocity was examined using transthoracic ultrasound. This 173 

assessment was performed simultaneously with CCA diameter and velocity responses. All 174 

echocardiographic measurements were collected by a trained sonographer (MS) on a 175 

commercially available ultrasound system (Vivid E9; GE, Fairfield, CT) using a broadband 176 

M5S 5 MHz or a 3V 3D-array transducer. In a previous study the Cronbach's alpha reliability 177 

test revealed alpha values of 0.81 and 0.89 for both max and mean LAD velocities, 178 

respectively, suggesting good consistency between LAD velocity measurements (5). 179 

Participants assumed a left lateral position to allow for data collection. The LAD was imaged 180 

using a modified parasternal short axis view from the fourth or fifth left intercostal space, and 181 
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was assessed using pulsed-wave Doppler. The transducer was positioned such that a 2- to 3-182 

mm segment of the LAD was imaged along the long axis, taking care to align the pulse-wave 183 

cursor with the length of the vessel. With a sample volume (2.0 mm) positioned over the color 184 

Doppler signal in the LAD, measurements of the LAD velocity were collected during the 185 

sympathetic tests.  186 

 187 

Blood pressure and heart rate. All continuously recorded cardiovascular measurements were 188 

acquired at 200 Hz using an analog-to-digital converter (Powerlab/16SP ML 880; 189 

ADInstruments, Colorado Springs, CO, USA) interfaced with a personal computer. Before 190 

and during CPT and LBNP, systolic and diastolic blood pressure (SBP and DBP, in mmHg, 191 

respectively), stroke volume (SV, ml), rate-pressure product (RPP, HR x SBP, a reliable 192 

indicator for myocardial oxygen demand)(14), and cardiac output (CO, L/min) were 193 

continuously measured using non-invasive finger photoplethysmography (Finometer Pro, 194 

Finapres medical systems, Amsterdam, Netherlands). Heart rate (HR, beats per minute) was 195 

recorded using three-lead electrocardiography, placed in lead II configuration (Bioamp, 196 

ML132, ADInstruments, Colorado Springs, CO, USA).  197 

 198 

 Sympathetic stimuli 199 

Cold pressor test. The cold pressor tests (CPT) consisted of a 3-minute immersion of the left 200 

hand in a bucket of ice slush (~4.0°C)(44). The participant was positioned in supine position 201 

on a tilt bed, tilted slightly to the left lateral position (~25-30°), to facilitate arm movement in 202 

the bucket of slush without significant movement of the body, and provide adequate coronary 203 

assessment. After a 1-minute baseline period, the participants hand was immersed up to the 204 

wrist in the ice-slush for 3 minutes.  The participant was instructed to remain quiet during the 205 

CPT to provide for valid CCA assessment. The partial pressures of end-tidal carbon dioxide 206 
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(PETCO2) and oxygen (PETO2) were clamped at baseline values for the entire duration of the 207 

protocol to reduce the potential impact of hyperventilation on the vascular responses, upon an 208 

end-tidal forcing approach described extensively elsewhere (43). To reduce measurement 209 

error, CPT procedures were repeated twice and averaged for analyses (44). 210 

 211 

Lower body negative pressure. The participant was positioned in the supine position on a tilt 212 

bed, and strapped into a custom-made airtight, lower-body suction chamber at the level of the 213 

iliac crest (42). The LBNP chamber was then moved from supine position into a left lateral 214 

position (~25-30°) to ensure adequate coronary imaging. The lower body negative pressure 215 

test consisted of a 5-minute baseline, followed by progressive 2-minute stages, using 216 

increments of -10 mmHg, to -80 mmHg or until pre-syncope. LBNP was terminated when a) 217 

pre-syncope occurred, defined by a sustained drop in systolic blood pressure <80 mmHg for 218 

more than 10 seconds (24), or b) upon participants request due to the onset of subjective 219 

symptoms (e.g. feelings of dizziness, nausea, faintness). During the Prazosin condition, 220 

participants were unable to last longer than -40mmHg during the LBNP test. For reliable 221 

comparison between the control and drug condition, we chose to only include data until -222 

30mmHg.  223 

 224 

Data analysis 225 

Carotid artery responses. Analyses of diameter (cm), blood flow (ml/sec), blood velocity 226 

(cm/sec) and shear (s-1) were performed using custom-designed edge-detection and wall-227 

tracking software, which is largely independent of investigator bias, as was extensively 228 

described elsewhere (4). Baseline diameter, blood flow, blood velocity and shear were 229 

calculated as the mean of data acquired across a 1-minute baseline period (4). For the CPT, 230 

data were calculated for 10-second intervals. LBNP data was calculated per 1-minute 231 
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intervals. Subsequently, offline image analysis involves the identification of the region of 232 

interest (ROI), to allow for automated calibration on the B-mode image and velocities on the 233 

Doppler assessment (40). A ROI is drawn around the optimal B-mode image, in which a 234 

pixel-density algorithm automatically identifies the near- and far wall. Another ROI is drawn 235 

around the Doppler waveform, which is synchronized with the B-mode diameter ROI. 236 

Ultimately, this allows for blood flow and shear rate calculations (40). Peak diameter change 237 

was calculated relative to baseline diameter.  238 

Coronary artery responses. All images were exported for offline analysis using commercially 239 

available software (EchoPAC Version 13.0; GE Medical, Horten, Norway). All 240 

echocardiographic values represent an average value of three cardiac cycles representing the 241 

clearest of five collected images for each experimental stage. The collected waveforms were 242 

analyzed to determine mean diastolic velocity (LADVmean, cm/sec), peak diastolic velocity 243 

(LADVmax, cm/sec), and the velocity time integral (VTI, cm) (19). Coronary flow velocity 244 

reliably reflects changes in absolute coronary blood flow (10, 13, 27), suggesting that an 245 

increase in flow velocity reflects coronary artery dilatation. Using observer-independent 246 

software, VTI is calculated as the integral of individual velocities across the cardiac cycle. 247 

Participants in whom at least 1 image was suboptimal, were excluded prior to analyses (5). 248 

Blood pressure and heart rate. Analyses of systolic and diastolic pressure, heart rate, cardiac 249 

output, stroke volume, and the rate-pressure product (RPP) were performed in commercially 250 

available software (LabChart V7.1, ADInstruments, Colorado Springs, CO, USA). 251 

Measurements were averaged per 10-second bins for analyses for the CPT, and 1-minute bins 252 

for the LBNP analyses. Baseline CPT was averaged over a 3-minute period. Continuous 253 

blood pressure measurements were calibrated to automated brachial blood pressure readings 254 

during baseline (HEM-775CAN, Omron Healthcare, Bannockburn, IL, USA).  255 

 256 
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Statistical analyses 257 

All data were presented as mean±SD unless stated otherwise. Parameters were tested for 258 

normality using a Shapiro-Wilk test. Responses of the CCA (i.e. diameter (cm), blood 259 

velocity (cm/sec), flow (ml/sec) and shear (s-1)) and LAD (i.e. mean velocity (cm/sec), max 260 

velocity (cm/sec) and VTI (cm) were assessed during the sympathetic stimulus with paired 261 

Students’ t-tests (in case of non-parametric variables, a Wilcoxon signed-rank test was 262 

performed). Changes over time were assessed with 2-way repeated measurement ANOVA’s 263 

(missing values were only imputed based on previous and consecutive measurements when 264 

available). We assessed whether CCA and LAD changes in diameter, velocity, flow and shear 265 

occurred over time (i.e. within factor ‘time’), and whether this differed between conditions 266 

(i.e. between factor control vs Prazosin) were examined. In addition to the main effects, the 267 

‘time’*’condition’-interaction revealed whether the CCA and LAD changes across time 268 

differed between the control condition and Prazosin. This was done to assess the potential role 269 

of α-receptors in mediating CCA and LAD responses. The 2-way repeated measurement 270 

ANOVA’s were performed with Sidak correction to account for multiple comparisons. Data 271 

were analysed using SPSS 20.0 software (IBM SPSS, IBM Corp., Armonk, NY, USA). 272 

Values for p<0.05 were assumed to be statistical significant. 273 

 274 

 275 

RESULTS 276 

Carotid artery responses: different SNS stimuli. 277 

Cold pressor test. The CPT caused a significant increase in systolic and diastolic blood 278 

pressure and the rate-pressure product (RPP), whilst no change was found in stroke volume, 279 

heart rate and cardiac output (n=9, Table 1). Although the diameter (cm) of the CCA 280 

increased significantly during CPT (P<0.001, Figure 1), CCA velocity (cm/sec), flow (ml/sec) 281 
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and shear rate (s-1) did not change significantly across time during CPT (P>0.05, data not 282 

shown).  283 

Lower body negative pressure. LBNP caused a gradual, but significant increase in heart rate, a 284 

decrease in stroke volume and diastolic blood pressure, whilst systolic blood pressure and 285 

cardiac output were preserved (n=9, Table 2). LBNP caused a significant decrease in CCA 286 

diameter (cm, Figure 2), whereas no changes were found in CCA velocity (cm/sec), flow 287 

(ml/sec) and shear (s-1) (data not shown).  288 

 289 

Carotid artery response to sympathetic activation: role of α1-receptors. 290 

Cold pressor test. Prazosin increased baseline CCA diameter, and decreased shear ( 291 

0.671±0.05 to 0.703±0.05 cm, and 185.9±50 to 159.1±40 s-1 respectively, all P<0.05), whilst 292 

no changes were found in carotid blood flow and blood velocity (10.9±1.8 to 10.8±1.5 ml/sec 293 

P=0.405, and 30.7±6.6 to 27.7±5.2 cm/sec, P=0.051). Prazosin caused an abolished CPT-294 

induced increase in diameter (Figure 3). Prazosin attenuated the increase in blood pressure 295 

during CPT, and resulted in a larger increase in cardiac output, heart rate and RPP during the 296 

CPT (n=9, Table 2). We found no change in stroke volume (Table 2), whilst we also found no 297 

change in CCA flow, shear and velocity (data not shown).  298 

Lower-body negative pressure. Baseline CCA diameter, flow and velocity were significantly 299 

larger following Prazosin adminstration (0.684±0.05 to 0.706±0.05 cm, 10.2±1.6 to 12.0±2.3 300 

ml/sec, and 27.6±5.0 to 30.0±5.5 cm/sec, respectively, all P<0.05). All subjects reached pre-301 

syncope at -30 or -40 mmHg. Therefore, we compared data between both sessions up to -30 302 

mmHg. Prazosin did not alter CCA diameter responses during LBNP (Table 2, Figure 4). 303 

Prazosin exaggerated the increase in heart rate and RPP during LBNP, whilst blood pressure 304 

decreased during the Prazosin trial (n=9, Table 2).  305 

 306 
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Carotid artery responses versus coronary artery responses. 307 

SNS stimulation. Similar to CCA responses, CPT caused a significant increase in LAD 308 

maximum velocity (n=6, baseline 0.25±0.03 to peak 0.34±0.02 cm/sec, P<0.05) and VTI 309 

(P<0.05, Figure 1). Due to the suction of the LBNP box, movement of the participants 310 

prevented assessment in 5 participants. Again in agreement with CCA responses, LBNP 311 

caused a reduction in LAD maximum velocity (n=5, Table 2) and peak VTI (cm, Figure 2). 312 

When pooled, a significant correlation was found between changes in CCA diameter and 313 

LAD peak VTI (n=20, r=0.65, P<0.01).  314 

α1-receptor blockade. Following Prazosin administration, LAD VTI were elevated and 315 

Prazosin abolished the increases in CCA diameter and LAD peak VTI (Figure 3, Table 2). 316 

During LBNP, Prazosin did not alter CCA diameter (cm), LAD peak VTI or LAD peak 317 

velocity responses (cm/sec, up to -30 mmHg; Table 2, Figure 4).  318 

 319 

 320 

DISCUSSION 321 

We present the following findings. First, activation of the SNS using the CPT significantly 322 

increased CCA diameter, whilst SNS activation using LBNP mediated a decrease in CCA 323 

diameter. Second, systemic blockade of the α1-receptors significantly attenuated the dilator 324 

response of the carotid during the CPT, whilst these changes were unaltered during LBNP. 325 

This latter finding suggests the presence of distinct carotid artery responses to different types 326 

of SNS activation, with a distinct contribution of α1-receptors mediating these responses. 327 

Furthermore, we found good agreement between the direction and magnitude of the coronary 328 

and carotid artery responses when comparing the different tests of sympathetic stimulation, 329 

but also regarding the contribution of α1-receptors. Taken together, we found divergent 330 

responses to distinct tests of SNS activation and the role of α1-receptors mediating these 331 
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responses, whilst similarity is found between carotid and coronary arteries in the magnitude 332 

and direction of vascular responses to sympathetic stimulation and blockade of α1-receptors.  333 

 334 

Carotid artery responses to sympathetic stimulation. 335 

The CPT resulted in a characteristic dilation in the CCA of our healthy subjects, a finding 336 

observed previously in our laboratory (44) and others (34). Interestingly, these dilator 337 

responses of the carotid artery contrasts with peripheral artery responses, since brachial or 338 

superficial femoral arteries demonstrate negligible diameter changes during CPT (11, 25). 339 

Central, elastic arteries (such as the carotid artery) may thus respond differently to SNS 340 

activation using the CPT compared to muscular, peripheral arteries. This notion is further 341 

supported by observations of abdominal aorta dilation during the CPT (6). In contrast, LBNP 342 

mediated a decrease in CCA diameter. The presence of distinct artery responses to different 343 

tests of sympathetic activation has also been reported in peripheral conduit arteries (11). Both 344 

CPT and LBNP mediate sympathetic activation through different pathways, leading to distinct 345 

vascular responses in peripheral and central arteries. The CPT causes an immediate stressor 346 

response (11, 27), leading to rapid catecholamine release and blood pressure elevation. This 347 

induces β-receptor mediated vasodilation, and sympathetic blood pressure mediated 348 

constriction, respectively. The resultant of this response is an increase in CCA diameter, due 349 

to the outweighting effect of β-receptor mediated vasodilation. In contrast, the LBNP 350 

mediates a gradual, arterial baroreflex-mediated activation of the sympathetic nervous system 351 

and thus can directly decrease carotid diameter. Both sympathetic tests demonstrate distinct 352 

time-dependent changes in circulating catecholamines, with an immediate elevation after 353 

CPT, and a slower (time- and intensity-dependent) elevation during LBNP (11, 21, 27, 33). 354 

This data indicates that distinct tests of stimulation of the sympathetic nervous system lead to 355 

different carotid artery responses. 356 
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 357 

Role of α1-receptors in carotid artery responses to sympathetic stimulation. 358 

Under physiological conditions, α1-receptors mediate vasoconstriction in coronary arteries 359 

during a sympathetic stimulus (23, 29). Indeed, blockade of α1-receptors resulted in an 360 

increase in baseline CCA diameter and velocity, but also LAD velocity. However, in contrast 361 

to our hypothesis, α1-blockade attenuated the carotid artery dilator responses during the CPT, 362 

whilst no impact of α1-blockade was found during LBNP. One potential explanation is that 363 

the increase in baseline diameter and/or velocity (induced by α1-receptor blockade) prevented 364 

a further increase in diameter upon additional SNS stimulation. This explanation is supported 365 

by previous work in peripheral arteries, which found that an increase in baseline diameter is 366 

associated with a smaller endothelium-(in)dependent vasodilation (37, 39). However, our data 367 

does not reveal such a relation between resting carotid diameter and peak responses (CPT 368 

control r=-0.280, Prazosin r=-0.275, LBNP control r=-0.401, Prazosin r=-0.219, all P>0.05). 369 

Therefore, CCA dilation during α1-blockade may not explain the attenuated vasomotor 370 

responses to CPT or preserved response to LBNP.  371 

 372 

An alternative explanation for the attenuated dilator response may relate to the 373 

pharmacological actions of α1-receptor blockers. In healthy coronary arteries, vasoconstriction 374 

upon sympathetic stimulation is largely mediated via α1-receptors, with only a minor role for 375 

α2-receptors (3, 48). Previous studies in both animals and humans found that during α1-376 

receptor blockade, SNS activation still mediates coronary constriction through activation of 377 

α2-receptors (7, 16, 20). Possibly, α1-receptor blockade in our study yielded stimulation of α2-378 

receptors during activation of the SNS using the CPT. Consequently, the vasodilator 379 

responses may be attenuated by the constrictive actions of α2-receptors. This hypothesis needs 380 

further exploration. A final reason for the dimished CCA dilation during CPT could reside in 381 
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the attenuated blood pressure responses. However, it is unclear whether blood pressure 382 

represents the principal contributor to the carotid dilation, especially since peak diameter 383 

responses precede peak blood pressure values. Moreover, blood pressure rises similarity 384 

between individuals who demonstrate carotid artery vasodilation versus vasoconstriction (44). 385 

Nonetheless, we cannot exclude a potential role for the blood pressure response to contribute 386 

to the carotid dilation.  387 

 388 

Carotid artery versus coronary artery. 389 

Our findings provide strong evidence for similarity between the carotid and coronary arteries 390 

regarding the direction and magnitude of the vasomotor response. Indeed, both carotid and 391 

coronary arteries demonstrated dilation in response to CPT, but constriction was present in 392 

both arteries during LBNP. The presence of coronary dilation to CPT (30, 49), but also 393 

coronary constriction to LBNP (27), has been reported in previous studies. This further 394 

confirms the presence of distinct artery responses to distinct stimuli to activate the 395 

sympathetic nervous system.Furthermore, α1-receptor blockade mediated similar effects 396 

between carotid and coronary arteries for the LBNP test. During the CPT we observed that 397 

α1-receptor blockade attenuated the carotid responses, whilst the coronary responses were 398 

reversed. Agreement between arteries was further supported by the presence of a significant 399 

and strong correlation between both arteries (Figure 5), a finding that is in line with previous 400 

work (34, 44). A potential limitation of the echocardiographic measurement is the inability to 401 

examine blood flow. However, strong agreement is present between changes in coronary 402 

artery blood velocity and blood flow in response to sympathetic stimulation (10, 27, 28), 403 

suggesting that the increase in LAD velocity can be interpreted as true coronary vasodilation.  404 

 405 
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Despite these similarities in magnitude and direction of vascular responsiveness, it is 406 

important to emphasise that the mechanisms contributing to vascular control may differ 407 

between arteries. For example, coronary artery flow and velocity during sympathetic 408 

stimulation are dependent on both local metabolic and vasodilatory mechanisms sensitive to 409 

the rate of myocardial oxygen consumption (MVO2).(27) For this purpose, we have calculated 410 

the rate-pressure product, a common used index for myocardial oxygen consumption (RPP, 411 

Supplemental data). The increase in RPP during the CPT suggests that the dilation of the 412 

coronary artery is, at least partly, related to the increase in myocardial oxygen uptake. 413 

Whether similar mechanisms are present in the brain to contribute to carotid artery dilation 414 

during the CPT is currently unknown. For the LBNP, we found no important role for RPP to 415 

contribute to the vascular responses in our study. When correcting our responses for potential 416 

differences for the RPP, correlation between LAD VTI and CAR(%) remained present 417 

(r=0.66, P<0.05). Future studies are required to better understand the mechanisms 418 

contributing to the vascular responses during sympathetic stimulation in both carotid and 419 

coronary arteries.  420 

 421 

Clinical relevance. Coronary artery responsiveness to SNS stimulation, including the CPT, 422 

has shown a strong predictive ability for future cardiovascular disease and/or events (31, 32, 423 

36). Similarity in vasomotor responsiveness between coronary and carotid arteries suggests 424 

that the carotid artery may serve as a alternative measure for coronary vascular responses to 425 

SNS stimulation. An important advantage of measuring the carotid artery is its easy 426 

accessibility,  high reproducibility and the accuracy of the test. This warrants future studies to 427 

further explore the potential clinical use of examining carotid responses to SNS stimulation. 428 

To further explore the similarity between the carotid and coronaries, future studies could be 429 

performed in a catheterisation laboratory, to simultaneously measure both carotid and 430 
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coronary artery responses during sympathetic stimulation. These studies can be extended by 431 

the addition of selective α- and /or β-adrenergic agonist/antagonists, to further resolve the 432 

contribution of adrenergic receptors to sympathetically-mediated carotid and coronary artery 433 

responses.  434 

 435 

Methodological considerations. A strength of our study was that we controlled for end-tidal 436 

gases at baseline values, during both CPT and LBNP, and the α1-receptor blockade condition. 437 

Fluctations and alterations in PETCO2 are known to directly influence the diameter of the CCA 438 

(35) and LAD VTI (5). Following our α1 blockade, which directly affects mean arterial 439 

pressure and ventilatory regulation during sympathetic activation, clamping PETCO2 and 440 

PETO2 to baseline values reduced the possible interference with our carotid and coronary 441 

artery responses.  442 

 443 

To summarize, our data demonstrates that the carotid artery demonstrates distinct vascular 444 

responses to different stimuli to activate the sympathetic nerve system. Additionally, blockade 445 

of the α1-receptors significantly attenuated the dilator responses in the carotid artery during 446 

the CPT, whilst no changes were found during LBNP, suggesting a potential role for α-447 

receptors to contribute to vasomotor responses in carotid arteries. Finally, even though α1-448 

blockade resulted in disparate responses during CPT, our findings indicate strong similarity 449 

between carotid and coronary artery reactivity in response to distinct sympathetic stimuli.  450 
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TABLE 1 – Cold pressor test responses 629 

Cold pressor test  

 

1 minute CPT 2 minutes CPT 3 minutes CPT 
2-way ANOVA 

 

Baseline 10 20 30 40 50 60 70 80  90 100 110 120 130 140 150 160 170 180 Time Trial Time*Trial 

Stroke volume (ml) Control 105±15 106±17 106±16 105±17 105±17 105±19 105±20 105±21 104±20 104±20 103±20 105±21 106±21 106±21 106±20 106±20 106±20 107±19 107±19 
0.450 0.296 0.450 

Stroke volume (ml) Prazosin 112±14 113±15 114±14 114±15 113±16 112±17 111±16 110±15 111±17 111±16 109±17 110±17 110±17 111±17 112±17 111±17 111±18 112±18 112±17 

Cardiac Output (L/min) Control 6.2±1.3 6.6±1.2 6.8±1.3 6.6±1.4 6.7±1.6 6.8±1.8 7.0±1.6 6.9±1.6 6.7±1.7 6.6±1.5 6.3±1.4 6.3±1.5 6.3±1.4 6.3±1.5 6.1±1.6 6.3±1.5 6.3±1.4 6.3±1.5 6.3±1.4 
0.200 0.049 0.021 

Cardiac Output (L/min) Prazosin 6.7±0.9 7.4±1.0 7.5±1.2 7.5±1.3 7.7±1.5 7.7±1.6 7.5±1.6 7.6±1.6 7.5±1.4 7.5±1.4 7.5±1.4 7.6±1.3 7.6±1.2 7.4±1.1 7.6±1.1 7.6±1.1 7.6±1.0 7.7±0.9 7.6±1.0 

Heart Rate (bpm) Control 59±12 63±10 65±11 64±11 64±13 64±12 67±12 66±12 64±13 63±13 62±12 62±13 61±12 61±13 59±15 61±13 61±12 60±14 59±12 
0.107 0.024 0.001 

Heart Rate (bpm) Prazosin 62±12 69±13 68±11 68±11 71±13 71±14 70±13 71±14 70±15 70±14 71±14 72±14 72±14* 70±13 71±13* 71±12 71±13* 71±12* 70±13* 

Diastolic BP (mmHg) Control 79±8 83±6 81±7 84±9 86±8 88±8* 91±8* 92±9* 92±8 92±8 93±9* 92±9* 92±9* 92±9* 91±8* 90±8* 90±8* 90±8 89±8* 
0.000 0.045 0.031 

Diastolic BP (mmHg) Prazosin 74±9 76±9 74±9 76±9 78±9 80±9 81±10 81±9 81±9 82±8* 82±9* 82±8 83±9 80±9 81±9* 82±9* 81±9* 81±9* 80±8* 

Systolic BP (mmHg) Control 133±7 139±8 137±10 140±11 142±12 146±13 148±11* 150±12* 150±12* 150±13 151±13 150±13 151±12 151±11* 150±12* 149±11* 148±10* 148±11 148±11* 
0.000 0.169 0.023 

Systolic BP (mmHg) Prazosin 131±7 136±6* 135±7 136±7 138±6 140±7 141±9 140±7 140±7 140±6 141±8 141±8 141±9 139±9 140±8 141±9* 141±9* 140±9* 140±7* 

Rate pressure product - Control 7927±1754 8787±1449 8963±1654 9028±1804 9160±2048 9483±2096 9901±2047 9978±2093 9619±2114 9549±2097 9458±1931 9253±2024 9212±1982 9166±2045* 8890±2087 9077±2011 8984±1819 8883±2042 8834±1927 
0.008 0.307 0.014 

Rate pressure product - Prazosin 8141±1534 9380±1761 9169±1724 9284±1750 9771±1778 9953±2062 9833±2023 9960±2072 9887±2196 9858±2024 10088±2018 10158±2138 10217±2204 9705±1855 9892±1870* 9941±1667* 9981±1580* 9928±1482* 9826±1709* 

                       

LAD velocity  max Control 0.252±0.03 

  

0.325±0.07 

  

0.304±0.03 

  

0.280±0.05 

  

0.261±0.04 

  

0.266±0.05 

  

0.265±0.05 
0.007 0.769 0.594 

LAD velocity max Prazosin 0.261±0.04 

  

0.312±0.04 

  

0.302±0.07 

  

0.281±0.06 

  

0.278±0.06 

  

0.284±0.06 

  

0.279±0.05 

LAD velocity mean Control 0.201±0.03 

  

0.256±0.07 

  

0.232±0.03 

  

0.224±0.04 

  

0.209±0.03 

  

0.215±0.03 

  

0.207±0.03 
0.041 0.603 0.400 

LAD velocity mean Prazosin 0.199±0.03 

  

0.25±0.02 

  

0.226±0.03 

  

0.228±0.05 

  

0.231±0.04 

  

0.231±0.04 

  

0.228±0.04 

Hemodynamic and coronary responses during Cold pressor test (averaged per 10 second intervals). P-values refer to 2-way repeated measures 630 

ANOVA's, for within participant comparison (time), between trial comparison, and the interaction time*trial. *Symbols denote P<0.05 631 

difference to baseline values.  632 
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TABLE 2 – Lower body negative pressure responses 633 

Lower body negative pressure 

       

2-way ANOVA 

 
Baseline -10 -20 -30 Time Trial Time*Trial 

Stroke volume (ml) Control 106±13 102±12 100±12 97±12 97±13 93±14 90±14 
0.000 0.687 0.086 

Stroke volume (ml) Prazosin 106±12 103±14 99±16 96±15 93±16 91±16 85±18* 

Cardiac Output (L/min) 

Control 6.4±1.2 6.1±1.1 6.1±1.1 5.9±1.1 6.0±1.0 5.8±1.0 5.9±1.0 
0.642 0.002 0.162 

Cardiac Output (L/min) 

Prazosin 7.1±1.4 7.1±1.2 7.2±1.4 7.2±1.0 7.4±0.9 7.5±0.8 7.3±0.9 

Heart Rate (bpm) Control 61±12 60±12 61±13 62±13 63±13 64±14 67±14 
0.000 0.002 0.009 

Heart Rate (bpm) Prazosin 68±16 70±16 75±20 77±17* 82±17* 84±17* 89±17* 

Diastolic BP (mmHg) Control 77±9 77±9 77±9 78±9 78±9 79±9 79±10 
0.177 0.160 0.060 Diastolic BP (mmHg) 

Prazosin 73±8 74±8 72±9 74±8 73±8 74±9 73±9 

Systolic BP (mmHg) Control 132±7 131±6 129±7 130±7 131±6 130±7 131±7 
0.152 0.388 0.005 

Systolic BP (mmHg) Prazosin 131±9 131±9 128±9 129±9 127±10 127±10 124±11 

Rate pressure product - 

Control 

8048±174

6 

7923±174

5 7929±1831 8024±1766 8192±1741 8348±1895 8708±1916 <0.00

1 
0.027 0.025 

Rate pressure product - 

Prazosin 

8954±261

8 

9253±253

7 9646±2963 

9969±2491

* 

10479±2585

* 

10751±2568

* 

10960±2319

* 

           LAD VTI Control 12.1±2.7 11.1±3.6 

 

9.9±3.4 

 

8.7±1.3 

 
0.019 0.09 0.547 

LAD VTI Prazosin 9.5±0.9 9.8±1.9 

 

8.1±2.2 

 

7.8±1.8 

 

LAD velocity  max Control 

0.277±0.0

5 0.26±0.06 

 

0.243±0.05 

 

0.226±0.03 

 
0.029 0.52 0.621 

LAD velocity max Prazosin 0.25±0.06 

0.249±0.0

3 

 

0.226±0.04 

 

0.225±0.04 

 LAD velocity mean Control 0.21±0.03 0.19±0.03 

 

0.203±0.04 

 

0.187±0.03 

 0.496 0.973 0.177 

LAD velocity mean Prazosin 

0.197±0.0

3 

0.207±0.0

2 

 

0.188±0.03 

 

0.20±0.03 

 



van Mil et al.  SNS activation & central artery responses 

Hemodynamic and coronary responses during Lower body negative pressure test (averaged per 2 minute stages). P-values refer to 2-way 634 

repeated measures ANOVA's, for within participant comparison (time), between trial comparison, and the interaction time*trial. *Symbols 635 

denote P<0.05 difference to baseline values. 636 
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FIGURES 637 

 638 

FIGURE 1. Responses of the carotid artery (n=9) and the LAD coronary artery (n=6) to CPT. 639 

A. Diameter change of the carotid artery over time. B. Percentage change in carotid diameter 640 

at baseline and during CPT (area under the curve, AUC). C. VTI change of the LAD coronary 641 

artery over time. D.  Percentage change in LAD coronary artery VTI at baseline and during 642 

CPT (area under the curve, AUC). Data are presented as mean, error bars represent standard 643 

error of the mean (SEM). White bars represent baseline measurements, black bars represent 644 

peak values. 645 

 646 

FIGURE 2. Responses of the carotid artery (n=9) and the LAD coronary artery (n=5) to 647 

LBNP. A. The diameter change of the carotid artery over time. B. The percentage change in 648 

carotid diameter at baseline and during LBNP. C. the VTI change of the LAD coronary artery 649 

over time. D.  The percentage change in LAD coronary artery VTI at baseline and during 650 

LBNP. Data are presented as mean, error bars represent standard error of the mean (SEM). 651 

White bars represent baseline measurements, black bars represent peak values. 652 

 653 

FIGURE 3. Responses of the carotid artery (n=9) and the LAD coronary artery (n=6) to CPT, 654 

Control versus Prazosin condition. A. Diameter change of the carotid artery over time. B. 655 

Percentage change in diameter. C. VTI change of the LAD coronary artery over time. D.  656 

Percentage change in LAD coronary artery VTI at baseline and during the CPT. Data are 657 

presented as mean, error bars represent standard error of the mean (SEM). White bars 658 

represent the Control condition, black bars represent the Prazosin condition.   659 

 660 
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FIGURE 4. Responses of the carotid artery (n=9) and the LAD coronary artery (n=5) to 661 

LBNP, Control versus Prazosin condition. A. Diameter change of the carotid artery over time. 662 

B. Percentage change in carotid diameter at baseline and during the LBNP. C. VTI change of 663 

the LAD coronary artery over time. D.  Percentage change in LAD coronary artery VTI at 664 

baseline and during the LBNP. Data are presented as mean, error bars represent standard error 665 

of the mean (SEM). White bars represent the Control condition, black bars represent the 666 

Prazosin condition. 667 

 668 

FIGURE 5. Correlation between the carotid artery diameter response (CAR%) and coronary 669 

LAD response (change in the velocity time integral (VTI in cm)) pooled for the cold pressor 670 

test and lower body negative pressure test (n=16).   671 
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