Ahuja, R, Sawhney, A, Jain, M, Arif, M and Rakshit, S

Factors influencing BIM adoption in emerging markets—the case of India

http://researchonline.ljmu.ac.uk/8427/

Citation (please note it is advisable to refer to the publisher’s version if you intend to cite from this work)

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk
Factors influencing BIM adoption in emerging markets—the case of India

Ritu Ahuja a, Anil Sawhney b*, Megha Jain c, Mohammed Arif d and Samya Rakshit a

a RICS School of Built Environment, Amity University, Noida, India;

b Department of Built Environment, Faculty of Engineering and Technology, Liverpool John Moores University, Liverpool, UK;

c School of Business, Middlesex University, Dubai, UAE;

d Architecture and Built Environment, University of Wolverhampton, Wolverhampton, UK

a* Professor, Department of Built Environment, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF UK; +44 151 231 2842; a.sawhney@ljmu.ac.uk
Factors influencing BIM adoption in emerging markets—the case of India

This paper studies the adoption of Building Information Modelling (BIM) in emerging markets. The factors responsible for the adoption of BIM are studied in the context of Indian architectural firms. The mechanisms of diffusion of BIM are analysed through a questionnaire survey based on the Technology–Organization–Environment (TOE) framework which broadly categorises the influencing factors along these three dimensions. Data were collected through a web-based questionnaire survey. The 184 valid responses were analysed using descriptive statistics. The study found that full potential of BIM has been explored but not realised by many in the Indian construction sector. Findings of the study are analysed and compared with other emerging and developed markets. Based on the survey results, recommendations for increasing the BIM adoption are provided. Further studies and learnings from mature markets can help Indian construction sector develop effective BIM implementation strategies.

Keywords: Building Information Modelling (BIM); Technology –Organization – Environment (TOE) framework; Architectural firms; BIM Adoption; Indian construction sector

Importance of BIM for the construction sector and the Indian context

One of the most remarkable recent innovations for systemic improvement in the construction sector is Building Information Modelling (BIM). Adoption of BIM leads to a wide range of benefits that include improved productivity, enhanced quality, and increased opportunities for new businesses (McGraw Hill Construction 2014). Various researchers (Arayici et al. 2011; Navendren et al. 2014; Ramilo and Embi 2014) show that BIM adoption leads to efficiency gains in small and medium architectural firms. However, several studies (Sawhney, 2014a) highlight the stark contrast of BIM adoption among different countries: 71% in the USA, 61% in Australia (McGraw Hill Construction 2014), 62% in the UK (NBS 2017), 36% in Europe, and 25% in the Middle-East (Sawhney et al. 2017). On the other hand, BIM adoption in India is only at 10-18 % (Sawhney 2014b).
Developing countries face the recurrent problems of project delays and cost overruns (Sahil 2016). Since one issue that BIM addresses is design errors, a major cause for delays leading to significant negative time and cost impact (Won et al. 2013), its use could improve the situation in developing countries.

In this study, we investigate the factors influencing BIM adoption in one of the fastest growing developing countries, India (OECD 2017). The construction sector in India is the second largest employer and contributor to the GDP of India (Department of Policy and Promotion; Planning Commission, 2011) and is likely to become the third largest construction market globally by 2025 (Oxford Economics 2016). However, at present, this industry faces various challenges such as low productivity, limited mechanisation, and lack of professionally qualified architects, engineers and construction project managers (Doloi et al. 2012; Sawhney et al. 2014). The Indian construction industry, like many other developing countries, has a low rate of technology adoption. Increased use of Information and Communication Technology (ICT) and ICT-based solutions is extremely important (Planning Commission 2013) and it is therefore important to study and facilitate the adoption of BIM in the Indian construction sector.

BIM adoption journey

BIM adoption at an organisational level goes through several stages (Succar 2010). The first stage is object-based modelling spread across various disciplines; the second, model-based collaboration and the third is a network-based collaboration (Succar 2010). This stage or level-based adoption-model has now been used in the UK by defining BIM levels 0, 1, 2 and 3 (UKBIMA 2016), the USA (Chew and Riley 2013), Singapore (Building and Construction Authority 2012) and Australia (NATSPEC 2011) to understand and facilitate greater and deeper BIM adoption. In contrast, developing countries do not have such industry-wide
guidance available to support the BIM adoption journey. For example, the maturity level of BIM adoption in India is thought to be at the lower end of the spectrum, since collaboration and coordination aspects of BIM are absent (Sawhney 2014b). The level of adoption of BIM is also reported to be low in China (Gong 2012; NBS 2016) and Brazil (Kassem 2016).

Design professionals have been the earliest BIM adopters (McGraw Hill Construction 2014), and in most instances, architectural firms are ahead in implementing BIM. Elmualim and Gilder (2014) found that of other organisations the design team usually encourages the use of BIM on projects.

There is limited information available regarding BIM adoption patterns and maturity levels in emerging markets. Therefore the purpose of this study is to identify and compare the presence of possible BIM adoption drivers and inhibitors in adopting and non-adopting firms, within the Indian context. This study also compares adoption patterns and other pertinent findings between emerging markets and mature markets, ultimately framing recommendations for greater levels of adoption in the case of emerging markets.

Literature review

Several studies have been conducted in various part of the world to understand BIM adoption (McGraw Hill Construction 2014; NBS 2016; NBS 2017), factors influencing BIM adoption and use of BIM itself (Gu and London, 2010; Linderoth, 2010; Sawhney, 2014b; Xu, Feng, and Li, 2014). However, this study is the first to identify different factors, which either encourage or prevent BIM adoption in the Indian context among architectural firms.

There are several theories of technology diffusion and adoption, particularly concerning information systems (Sharma and Mishra 2014). Many papers have highlighted that technology adoption is not only a function of the efficiency of the technology but is also dependent on characteristics of the user (Venkatesh et al. 2014), social attitude (Fishbein and Ajzen 1975),
trust (Gefen and Straub 1997) and other causal factors (Thompson et al. 1991). The theories of technology adoption can be broadly classified according to the Table 1 as follows:

Table 1: Theories of Technology Adoption

<table>
<thead>
<tr>
<th>Type of Theory</th>
<th>Name of Theory</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology adoption at individual level</td>
<td>Theory of Reasoned Action (TRA)</td>
<td>Three general constructs: Behavioural Intention (BI), Attitude (A) and Subjective Norm (SN). The behavioural intention of a person is influenced by his or her attitude and subjective norms.</td>
</tr>
<tr>
<td>(Davis et al. 1992; Compeau and Higgins 1995)</td>
<td>Theory of Planned Behaviour (TPB)</td>
<td>The concept of Perceived Behavioural Control added to the pre-existing TRA (Sharma and Mishra 2014). Perceived Behavioural Control signifies the "people's perception of the ease or difficulty of performing the behaviour of interest".</td>
</tr>
<tr>
<td>Technology Acceptance Model (TAM)</td>
<td>Theory of Planned Behaviour (TPB)</td>
<td>Based on two parameters: “perceived usefulness” and “perceived ease of use” (Sharma and Mishra 2014). These parameters are arrived at from the “self-efficacy theory” (Bandura and Cervone 1986) and the study by Roger and Shoemakers (1971).</td>
</tr>
<tr>
<td>(Davis 1989)</td>
<td>Unified Theory of Acceptance and Use of Technology (UTAUT)</td>
<td>Four key constructs: performance expectancy, effort expectancy, social influence and facilitating conditions. It was framed to synthesise all the existing theories of technology adoption at an individual level.</td>
</tr>
<tr>
<td>Technology adoption at organisation level (Leonard-Barton and Deschamps 1988)</td>
<td>Diffusion of Innovation Model (DIM) Theory (Rogers 2003)</td>
<td>Considered a seminal work in the diffusion literature (Sharma and Mishra 2014), it investigated the means by which technology diffusion happens, through a community with the passage of time (Kaur Kapoor et al. 2014). Both efficiencies in obtaining information and influence of society were considered relevant in this type of social contagion model (Deligiannaki and Ali 2011). DIM proposed that groups of adopters have a different type of response to a technology considering the time of adoption (Chiyangwa and Alexander, 2016).</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Technology, Organization and Environment (TOE) Framework (Tornatzky et al. 1990)</td>
<td>Described three facets of a firm’s context in its decision to adopt technology: technological, organisational and environmental. This framework was consistent with DIM (Oliveira and Martins, M 2011) since it incorporated characteristics of both the individual and the organisation. However, it also included a new factor—the environmental, which is why the TOE framework has been said to be better in explaining intra-firm innovation diffusion (Hsu et al. 2006; Oliveira and Martins, M 2011). Research</td>
<td></td>
</tr>
</tbody>
</table>
Research areas of information technology and commerce have constantly seen many successful applications of TOE based empirical research (Xu et al. 2004; Zhu and Kraemer 2005; Lin and Lin 2008; Jain et al. 2011). The key reason for this success is that the TOE framework uses three facets of a firm’s context in its decision to adopt technology: technological, organisational and environmental. This framework was consistent with DIM (Oliveira and Martins 2011) since it incorporated characteristics of both the individual and the organisation. However, it also included a new factor—the environmental, which is why the TOE framework has been said to be better in explaining intra-firm innovation diffusion (Hsu et al. 2006; Oliveira and Martins 2011). Therefore the TOE-based framework was used for this study.

A literature review of ICT adoption was conducted to identify the constructs within TOE framework. Al-Qirim (2007) found the relationship between complexity, compatibility, top-management support, and innovation adoption to be significant. This is true, while it found that the relationship between Information Systems (IS) expertise, trialability and innovation adoption as insignificant, a belief in congruence with other studies (Mirchandani and Motwani 2001; Huang et al. 2008). Similarly, Premkumar and Roberts (1999), in studying the state of use of various communication technologies, asserted that top-management support, IT expertise, complexity, compatibility and perceived cost have a significant impact on technology adoption. A study conducted on the determinants of e-business diffusion (Lin and
Lin 2008), concluded that IS expertise and trading partner readiness are important factors for successful e-business diffusion. Research in the IT sector by Roberts and Pick (2004), confirmed top management support as a significant factor that promotes technology adoption. Similarly, the study by Balocco, Mogre and Toletti (2009) asserted that clarity on benefits from return on investments could increase the adoption rate of IT applications. In addition to above, the study by Kuan and Chau (2001) affirmed the significant effect of perceived cost, IS expertise and regulatory support while investigating the adoption of electronic data interchange by U.S. enterprises. Similar studies by Zhu and Kraemer (2005) regarding diffusion and consequences of e-business at the firm level, also asserted regulatory support and trade partner readiness as significant factors. Another study by Dasgupta, Agarwal, Ioannidis and Gopalkrishnan (1999) confirmed that regulatory support and IS expertise are significant factors which help the organisations to make decisions regarding information technology adoption. These factors, summarised in Table 2, formed the basis of the study conducted by the authors.

Table 2: TOE Construct from literature

<table>
<thead>
<tr>
<th>Constructs</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complexity</td>
<td>(Premkumar and Roberts 1999; Al-qirim 2007)</td>
</tr>
<tr>
<td>Compatibility</td>
<td>(Premkumar and Roberts 1999; Al-qirim 2007)</td>
</tr>
<tr>
<td>Trialability</td>
<td>(Mirchandani and Motwani 2001; Huang et al. 2008)</td>
</tr>
<tr>
<td>Top Management Support</td>
<td>(Premkumar and Roberts 1999; K.G. Roberts and Pick 2004b; Al-qirim 2007)</td>
</tr>
<tr>
<td>Perceived costs</td>
<td>(Premkumar and Roberts 1999; Kuan and Chau 2001; Balocco et al. 2009)</td>
</tr>
</tbody>
</table>

Client Requirement (Soon and Gutiérrez 2003; Doolin and Al Haj Ali 2008)

Regulatory Support (Dasgupta et al. 1999; Zhu and Kraemer 2005)

Research methodology

The TOE framework was used to develop a survey instrument for collecting primary data from industry experts. After combining these studies with the literature review as discussed in this section, TOE framework was adopted for the current research, and a model was proposed for BIM adoption with different identified and relevant TOE factors with constructs defined as listed in Table 3.

Table 3: Definition of TOE constructs for BIM adoption

<table>
<thead>
<tr>
<th>Group</th>
<th>Constructs</th>
<th>Definition and Reason for Consideration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technological Factors</td>
<td>Complexity</td>
<td>When innovation is relatively complex to use and understand, it is termed as complex (Kumar and Swaminathan 2003). Various sources have cited that with increasing difficulty of use, the adoption rate of a technology decreases (Howard and Björk 2008;</td>
</tr>
<tr>
<td>Compatibility</td>
<td>Kunz and Fischer 2012; Newton and Chileshe 2012.</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>The degree to which an innovation is perceived as being consistent with existing beliefs, values and needs of the adopter (Rogers 2003). New technology can herald substantial changes in work practice which can be difficult for organisations to incorporate (Premkumar and Roberts 1999)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trialability</td>
<td>The extent of experimentation available with any innovation on a limited basis is defined as Trialability (Kumar and Swaminathan 2003). Trialability has been described as the property by which the various benefits accrued from adoption of technology can be examined without putting the firm’s core at risk (Panuwatwanich and Peansupap 2013)</td>
<td></td>
</tr>
<tr>
<td>Organizational Factors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top Management Support</td>
<td>The supportive climate and resources received from top management for adoption of new technologies (Premkumar and Roberts 1999). It has been found that greater support from the top management leads to BIM adoption benefits (Gu and London 2010; Xu et al. 2014; Cao et al. 2015)</td>
<td></td>
</tr>
<tr>
<td>Perceived costs</td>
<td>The perceived cost is categorised into one-time setup costs and general system-related costs. A lower perceived cost facilitates the adoption of innovation. (Bouchbout and Alimazighi 2008)</td>
<td></td>
</tr>
<tr>
<td>Expertise</td>
<td>The availability of skilled and technological experts has been found to be positively related</td>
<td></td>
</tr>
</tbody>
</table>
to adoption (Crook and Kumar 1998). Studies suggest that firms with technologically experienced employees have a greater propensity to adopt new technology (Lin and Lee 2005; Eastman et al. 2011)

<table>
<thead>
<tr>
<th>Environmental Factors</th>
<th>Trade Partner Readiness</th>
<th>Good partner relationships is found be a significant determinants of inter-organisational systems adoption and implementation (Grover 1993)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Requirement</td>
<td>Regulatory Support</td>
<td>Owner’s innovativeness: willingness to adopt new ideas/technological innovations plays a significant role in technology adoption (Al-qirim 2007)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Regulatory factors may affect technology diffusion across different countries (Zhu and Kraemer, 2005)</td>
</tr>
</tbody>
</table>

A web-based questionnaire, based on the TOE framework (Table 4), pretested with five architects to check for inconsistency, was sent to experts within the Indian architectural firms.

To omit common method bias, several steps were taken in framing the questionnaire. These included protecting respondent identity, using pre-validated scales, reducing evaluation apprehension, counterbalancing of question order and the use of verbal midpoints for measures (Podsakoff et al. 2003).

The sample of Indian architecture, engineering and construction (AEC) industry professionals who are either architects or are significantly involved in architectural practice was drawn from membership database of Royal Institution of Charted Surveyors, India and a popular construction industry magazine. The two databases used in this study very well represented the Indian construction sector.
The initial and follow-up questionnaire requests resulted in 413 responses out of which 184 valid responses were eventually collected and analysed using descriptive statistics (the reason for a large number of invalid responses was that the criteria that respondents who were either architects or were significantly involved in the architectural practice such as design managers, project managers, and other professionals working in architectural firms were selected). Assuming there are 53,696 architects in India (Council of Architecture 2017), a sample size of 184, with 95% confidence interval, has a margin of error 8% (Vidakovic 2014).

Table 4: Structure of the Questionnaire

<table>
<thead>
<tr>
<th>No.</th>
<th>Focus</th>
<th>Target Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Participant Profile</td>
<td>All the respondents</td>
</tr>
<tr>
<td>2</td>
<td>Participant's Job Profile</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Organization's Details</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>BIM adoption in the organisation</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Analysis of technological aspects of BIM</td>
<td>BIM adopters and non – adopters</td>
</tr>
</tbody>
</table>

5.3 Trialability (K G Roberts and Pick 2004; Al-qirim 2007; Ramdani et al. 2009; Jain et al. 2011)
Findings from the survey

The survey resulted in useful insights on the current status of BIM usage and adoption within architectural firms in India. The survey shows that out of the total 184 complete responses, 42% of the respondents have over 15 years of professional experience in the industry and 16% of the respondents have professional experience between 10-15 years. As most of the respondents had above ten years of experience, this suggests that the respondents had a holistic knowledge of the Indian AEC industry. 50% of the respondents reported that they were using BIM in their organisations and 50% of the respondents reported that their organization is not using BIM (refer Figure 1). Non-adopters were routed to a different
section of the survey where they were asked to respond to the BIM adoption questions based on their current understanding and perceptions.

![Figure 1: Organizations using BIM on projects](image)

Technological factors

According to literature, lack of awareness of and exposure to BIM constitutes a major hurdle in its more extensive use, in several countries like the UK (Khosrowshahi and Arayici 2012), Ireland (Mcauley et al. 2013) and Malaysia (Zahrizan et al. 2014). In such a situation, exposure to software on a trial basis might provide a stepping-stone to widespread BIM-acceptance. Figure 2 shows that permission to use trial software functionality on pilot projects was available to 56% of the total number of respondents with 46% of the BIM adopters reporting the same. In line with the BIM adopters, 42% of the non-adopters also agreed on the importance of the use of software functionality on trial basis, with 43% asserting that software should be available for a timeframe long enough to explore its potential benefits.

Only 41% of the BIM adopters and 30% of non-adopters believe that BIM related software is not complex to use. 33% of BIM adopters pointed out that BIM related software is complex to use and 39% non-adopters have a similar perception. An equal number of respondents, with 40% adopters stated that it is not only the software but also the BIM implementation process which is complex. When asked 41% of non-adopters perceived that the BIM implementation process is complex prompting them to delay adoption. One of the
reasons for this can be the lack of standards and well-laid-out processes, as compared to other countries.

Although some BIM adopters and non-adopters reported the perceived complexity of BIM software, 63% of adopters and 60% of non-adopters stated that BIM process is consistent with their beliefs and values. Along with this, 70% of BIM adopters and 46% of non-adopters mentioned that there has always been a favourable attitude towards BIM adoption in their organisation, while 66% BIM adopters and 48% non-adopters have confirmed that BIM is compatible with their existing practices. This readiness to incorporate BIM within Indian firms has also been observed in the literature (Yan and Damian 2008).
Figure 2: Technological factors affecting BIM adoption decision

Organizational factors

The study reveals that top management support is one of the major drivers for BIM adoption. A total of 75% of BIM adopters and 50% of non-adopters have reported that top management in their firm has always shown an interest in the implementation of BIM. Along with this, 74% of BIM adopters and 42% of non-adopters have also mentioned that top management in their organisation has effectively communicated their support for BIM implementation. The
importance of the role of top management has also been highlighted elsewhere in the context of Singapore (Attarzadeh et al. 2015).

The survey results (Figure 3) highlight that one of the challenges faced by BIM adopters, is the perceived cost of BIM—including high set-up, running and training cost. This was reported by 54% of BIM adopters and 54% of non-adopters. Again, 52% of BIM adopters and 55% of non-adopters also reported long lead time for full-scale BIM implementation as another obstacle. Along with this, respondents felt that organisations find it challenging to measure the return on investment on BIM since they do not have clarity on the value proposition especially on Indian projects. That many in the AEC industry have no clear understanding of the accrued benefits for BIM is also noted in the context of the United Kingdom (Khosrowshahi and Arayici 2012), Ireland (Mcauley et al. 2013) and Nigeria (Abubakar et al. 2014). Enterprises are also unwilling to invest in BIM due to this reason in China (Geng 2011) and Malaysia (Zahrizan et al. 2014).

BIM expertise is reported to be one of the major influencing factors for BIM adoption. It is seen that awareness level regarding BIM is high amongst the adopters with 62% confirming that the employees in their organisations are aware of BIM functions. However, the awareness level amongst non-adopters is relatively low—with only 30% having employees with an awareness of BIM functions. It is also seen that although 55% of BIM adopters reported that their firm has highly specialised or knowledgeable personnel for BIM processes and implementation. 58% of non-adopters had no such specialisation in their organisations. Similarly, 46% of BIM adopters confirmed that their employees are well trained in BIM. 66% of non-adopters did not have employees capable of handling BIM. It is concluded that few technically skilled employees can help organisations with the process of BIM adoption. This factor has also been recognised as the foremost obstacle in the path of BIM implementation in the US (Ku and Taiebat 2011) and one of the significant obstacles in
the UK (Khosrowshahi and Arayici 2012) among the developed countries. Among the developing countries, the high cost of training and lack of trained professionals are ranked third and fifth according to significance in a study in the context of Nigeria (Abubakar et al. 2014). The high cost of training has also been recognised as a significant hurdle in BIM implementation in Malaysia (Sahil 2016) and China (Ying 2011).

Figure 3: Organizational factors affecting BIM adoption decision

Environmental factors

Environmental factors considered in this study comprised of client requirements, trade partner readiness and regulatory support. Figure 4 shows that 44% of BIM adopters stated that BIM implementation in their organisations is mostly driven by request from sponsors whereas only 29% of the non-adopters believed that use of BIM would be asked for by sponsors. With the current status of BIM adoption and implementation in the industry, 31% of BIM adopters and 32% of non-adopters were unable to comment on this issue decisively.
The role of demand from the client’s side has been noted in the context of the UK (Khosrowshahi and Arayici 2012), and the role of contractual agreements in the USA (Ku and Taiebat 2011). In the context of developing countries, this has been noted in Nigeria (Abubakar et al. 2014) and Malaysia (Sahil 2016).

Another challenge faced by the architectural firms is that the engineering consultants possess limited knowledge regarding BIM leading to inefficient BIM adoption. Although 46% of adopters and 39% of non-adopters confirmed that project consultants are willing to implement BIM, 41% of adopters and 36% of non-adopters also reported that project consultants lack in technical knowledge regarding BIM.

Non-availability of government incentives for BIM adoption has been considered as another hurdle for effective BIM adoption in India. In countries like UK and Singapore, strong support by the government (Building and Construction Authority 2012; UKBIMA 2016) has been documented as one of the major drivers for encouraging and increasing the rate of BIM adoption. However, in this study, 51% of the BIM adopters reported that there are no incentives by the Indian government for BIM adoption, while 49% thought that current green rating systems can support BIM adoption. The contribution of BIM to green construction has been noted in other contexts (Autodesk 2005; Azhar et al. 2010; McGraw Hill Construction 2010; Becerik-Gerber et al. 2012).
In considering the impact of BIM on performance and trust (refer Figure 5), 83% of BIM adopters and 69% of non-adopters believe that BIM has the potential to improve the quality of work within architectural firms. 81% BIM adopters and 69% non-adopters, were positive regarding improvement in the effectiveness of their work practices contributed by the implementation of BIM.

71% adopters and 63% non-adopters, were positive regarding the improvements in productivity caused by the implementation of BIM. Again, 75% of the BIM adopters and 64% of the non-adopters reported that BIM implementation has a positive impact on coordination of drawings and construction activities. BIM-related performance benefits and
similar findings have also been documented globally in the works of Azhar (2011), Azhar et al. (2012), Barlish and Sullivan (2012), Chen and Luo (2014), Coates et al. (2010) Eastman et al. (2011) and Sebastian (2011).

From Figure 6, it is evident that BIM as a process is gaining the trust of architectural firms in India. 67% adopters and 51% non-adopters stated that the BIM process is trustworthy; while 69% adopters and 49% of non-adopters also believe that BIM process is reliable and that once implemented in projects, has either improved or can improve the effectiveness of work and efficiency in performance.
Conclusions

This study has found that the full potential of BIM has not yet been explored on Indian projects by architectural firms. Usage is still in an initial stage, judging from the description of the three stages in the literature (Succar 2010). Although there are some new players who are willing to use BIM on their projects, a number of challenges are being reported. From the questionnaire-survey that was conducted, the significant drivers of and barriers to BIM adoption, are categorized using the TOE framework and provided in Table 5 below.

<table>
<thead>
<tr>
<th>1. Technological Factors</th>
<th>1.1 Inhibitors</th>
<th>a. Full potential of BIM is unclear</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b. BIM software is complex to use</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. BIM implementation is a complex process</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Lack of process standardisation</td>
<td></td>
</tr>
</tbody>
</table>
Looking at the challenges, it is inferred that development of a BIM implementation plan and an organizational framework for AEC industry in India is needed for the improved usage of BIM in the sector. This would aid in several ways such as providing guidelines to adopt BIM (points 1.1b and 1.1c of Table 4), suggesting some standardisation in the process of implementation (points 1.1d of Table 4), spreading awareness, clarifying the BIM-related processes and increasing top management support (points 2.1c, 1.1a and 2.2b of Table 4). The guidelines would also bring about clarity among clients (point 3.1c of Table 3) and among the stakeholders on their respective responsibilities in a BIM-integrated work-
structure (points 3.1b and 3.2a on Table 4). BIM is a collaborative system, and without
synergy of all the consultants, such a complex mechanism cannot be handled successfully.
The necessity of BIM-capability amongst all the stakeholders for its full utilisation has been
also been identified in the context of USA (Ku and Taiebat 2011), China (Zhang 2011) and
Malaysia (Zahrizan et al. 2014).

The hindrance caused by the complexity involved in BIM adoption is also noted in
other developing countries like China (Ma 2013; Wang et al. 2016). Government-support and
encouragement have been suggested for other developing countries, like Brazil (Kassem
2016). The Building and Construction Authority of Singapore has recommended that the
public sector has to take the lead in BIM adoption, along with regulatory approval,
incentives, capability-development and removal of impediments (Building and Construction
Authority 2012).

An implementation strategy will also hopefully create an incentive from the
government for development of expertise in BIM (points 3.1a and 2.1e of Table 4). BIM-
education could be incorporated as a part of existing civil engineering, architecture and allied
streams, empowering more professionals to be qualified to handle BIM-integrated
construction projects (points 2.1a, 2.1b, 2.1e, 3.1b and 3.2a in Table 4). The absolute
necessity of a mature form of BIM training is recognised in a study in Brazil (Kassem 2016),
while a study in the context of Singapore suggests the introduction of more widespread
undergraduate and postgraduate course-modules focused on BIM (Attarzadeh et al. 2015).
The respondents also note that greater incentives of green ratings can promote BIM. A
national BIM education and research agenda can ensure the creation of a well-defined
organisational BIM framework. Further studies and learnings from mature BIM markets can
also help Indian AEC industry to develop BIM implementation strategies.
References

Department of Policy & Promotion. Make In India.

Gong YX. 2012. Analysed the present situation of the application of BIM in our country and the development obstacles. Electron. Commer.:204–205.

Sahil A. 2016. Adoption of Building Information Modeling in Developing Countries: Colorado State University. Libraries.

Sawhney A. 2014b. State of BIM Adoption and Outlook in India.

Zhang CX. 2011. BIM technology application situation and development of the construction industry in our country obstacles to study. Build. Econ.:96–98.
