
Li, C, Nguyen, TT, Wu, M, Yang, M and Zeng, S

 An Open Framework for Constructing Continuous Optimization Problems

http://researchonline.ljmu.ac.uk/id/eprint/8434/

Article

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Li, C, Nguyen, TT, Wu, M, Yang, M and Zeng, S (2018) An Open Framework
for Constructing Continuous Optimization Problems. IEEE Transactions on
Cybernetics. ISSN 2168-2275

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

1

An Open Framework for Constructing Continuous
Optimization Problems

Changhe Li, Member, IEEE, Trung Thanh Nguyen, Sanyou Zeng, Ming Yang, Min Wu, Senior Member, IEEE

Abstract—Many artificial benchmark problems have been pro-
posed for different kinds of continuous optimization, e.g., global
optimization, multi-modal optimization, multi-objective optimiza-
tion, dynamic optimization, and constrained optimization. How-
ever, there is no unified framework for constructing these types
of problems and possible properties of many problems are not
fully tunable. This will cause difficulties for researchers to analyze
strengths and weaknesses of an algorithm. To address these issues,
this paper proposes a simple and intuitive framework, which
is able to construct different kinds of problems for continuous
optimization. The framework utilizes the k-d tree to partition the
search space and sets a certain number of simple functions in
each subspace. The framework is implemented into global/multi-
modal optimization, dynamic single objective optimization, multi-
objective optimization, and dynamic multi-objective optimization,
respectively. Properties of the proposed framework are discussed
and verified with traditional evolutionary algorithms.

Index Terms—Continuous optimization, global optimization,
multi-modal optimization, multi-objective optimization, dynamic
optimization, free peaks.

I. INTRODUCTION

A general continuous optimization problem can be mathe-
matically defined as follows:

maximize f(x, t) = {f1(x, t), . . . , fO(x, t)}
subject to gi(x) ≤ 0, i = 1, . . . , I

hi(x) = 0, i = 1, . . . , E
(1)

where x = (x1, . . . , xD) ∈ RD is a decision vector of D
dimensions in continuous space, xi is within a boundary
li ≤ xi ≤ ui (1 ≤ i ≤ D), t is real-world time, and f ,
g, and h are objective functions, inequality constraints and
equality constraints, respectively. In this paper, we aim to
provide a method for constructing artificial problems by taking
properties of real-world problems into account, such as non-
linear, multi-modal, discontinuous, multi-objective, dynamic,
and constrained properties.

Manuscript received April 7, 2018. This work was supported in part by the
National Natural Science Foundation of China under Grant 61673355, in part
by the Hubei Provincial Natural Science Foundation of China under Grant
2015CFA010, in part by the 111 project under Grant B17040, in part by the
British Council under a Newton Institutional Links grant, and in part by the
Royal Academy of Engineering under the Newton Research Collaboration
Programme (3).

C. Li and M. Wu are with the School of Automation and also with the Hubei
key Laboratory of Advanced Control and Intelligent Automation for Complex
Systems, China University of Geosciences, Wuhan 430074, China (email:
changhe.lw@gmail.com; wumin@cug.edu.cn).

T. T. Nguyen is with the School of Engineering, Technology and Maritime
Operations, Liverpool John Moores University, Liverpool L3 3AF, U. K. (e-
mail: T.T.Nguyen@ljmu.ac.uk).

M. Yang is with the School of Computer Science, China University of
Geosciences, Wuhan 430074, China (email: yangming0702@gmail.com).

S. Zeng is with the School of Mechanical Engineering and Electronic
Information, China University of Geosciences, Wuhan 430074, China (email:
sanyouzeng@gmail.com).

In the literature of continuous evolutionary optimization,
there exist several types of optimization problems, e.g., glob-
al optimization problems (GOPs), multi-modal optimization
problems (MMOPs), dynamic single objective optimization
problems (DSOOPs), multi-objective optimization problems
(MOOPs), and dynamic multi-objective optimization problems
(DMOOPs), and many benchmark problems have been devel-
oped in each type. These problems have been widely employed
to test and compare an algorithm’s performance [11], [32],
[63]. However, for benchmarking problems we still believe that
several aspects should be enhanced in terms of the convenience
for researchers to carry out experimental studies.

First, there is no framework that comprises different classes
of problems. Existing frameworks are designed only for one
specific class. This makes it difficult to 1) test algorithms that
are able to solve multiple types of problems such as [51] and 2)
transfer the problem difficulties from one type of problem to
another, e.g., from SOOPs to MOOPs. We believe it would
be useful to have a unified open-source framework, which
specifies common terminating criteria, scale, multimodality,
ruggedness etc. for different types of problems.

Second, the function expressions of some benchmark prob-
lems, like the composition test functions series from the IEEE
CEC [56] or the MOOP benchmarks in [8], [33], [65], do not
offer good indications on what are the geometric properties
of the functions. For example, by looking at the problem
expressions, it is hard to know the properties of the global
structure, the number of local optima, locations of local
optima, the relationship between the number of optima and
dimension (for GOPs); or the shape of the Pareto optima front,
and the distribution of the Pareto optimal set (for MOOPs).

Third, in some popular benchmark problems [17], [56],
the problem properties are not fully tunable or controllable
or the properties are non-separable, meaning that tuning one
property would affect other properties. This would make it
difficult to analyse the impact of one single property on an
algorithm’s behaviour. For example, increasing the number of
dimensions will exponentially increase the number of optima
for most multi-modal benchmark problems. This would be
difficult for researchers to analyze the multi-modal difficulty
for their algorithms on problems with different dimensions.

Therefore, we would like to propose an intuitive framework
that can enhance these aspects. This paper proposes a unified
framework for generating different types of continuous opti-
mization problems. The framework is designed to be simple
and intuitive yet highly configurable. The following features
are taken into account.
• The framework should be easy to understand and analyze

2

in the following aspects: the position of an optimum,
the shape of an optimum, the basin of attraction of an
optimum, the local structure of an optimum, the shape
of the Pareto optimal front (POF), the distribution of the
Pareto optimal set (POS), and the dominating relationship
between any solutions.

• The framework should be independently configurable in
the following aspects: the dimensionality, the modality,
the number of objectives, the position of an optimum, the
shape of an optimum, the size of the basin of attraction of
an optimum, the local/global structure, the shape of the
POF, the distribution of the POS, the size of a countable
POS, the inter-relationship between decision variables,
the size of feasible areas, and domino convergence [58].

• The framework should be computationally efficient for
fitness evaluations in comparison with existing problems.

• The framework should be able to show common charac-
teristics of existing problems, e.g., the common shapes
of the POF.

• The framework should be flexible and extendable, i.e.,
users are able to easily add new components to the
framework.

• The framework should be able to easily manipulate any
optimum with different transformations, e.g., rotation,
shift, irregularities, and break of the symmetry of sym-
metric peaks.

• The framework should be compatible with existing prob-
lems. Existing problems can be integrated into the frame-
work without changing their structures.

To construct a framework that has all the features mentioned
above, this research utilizes the k-d tree [1] to partition the
solution space into subspaces, then in each subspace proper
functions are set depending on desired features. The frame-
work is named Free Peaks (FPs). Four types of optimization
problems are constructed: GOPs/MMOPs, DSOOPs, MOOPs,
and DMOOPs. Properties of these problems are analyzed with
the support of experiments.

The rest of this paper is organized as follows. Sect. II briefly
reviews related work. The details of the FPs are gigen in
Sect. III. Sect. IV presents the methods for generating different
types of problems. Sect.V carries out experimental studies.
Finally, conclusions are given in Sect. VI.

II. RELATED WORK

This section briefly reviews related work to benchmarking
problems and discusses some issues.

1) Global/Multi-Modal Optimization Problems: Due to the
simplicity of traditional benchmarks, many researchers pro-
posed complicated versions based on traditional benchmarks.
There are mainly three types of modifications. The first type is
the composition of benchmarks with different properties in the
form F (x) = max /min(fi(x)). In [36], Liang et al. proposed
a composition test suite, where each problem is composed
of ten functions selected from a basic set of five traditional
functions. Gallagher et al. proposed a parameterized landscape
generator [10], where a set of Gaussian functions are used to
form peaks. The generator [10] was recently extended with a

linear ridge structure [42]. Two simple problems [37], namely
”double-Sphere” and “double-Rastrigin”, were proposed to
study the impact of the global structure on the behavior of
evolutionary search.

Recently, Qu et al. proposed a set of benchmarks for multi-
modal optimization, where seven of them were constructed
based on sixteen traditional functions using the idea of [36].
This kind of benchmarks have been widely used in the related
IEEE CEC competitions in recent years [56].

The second type is the application of different kinds of
transformations to traditional benchmarks, e.g., the orthogonal
rotation matrix for rotating the fitness landscape randomly
around various axes [17], [36], [56], the shift vectors for
shifting the global optima, and the diagonal matrix for creating
ill-conditioned fitness landscape [17]. The rotation matrix and
shift vector were also used to create difficult MOOPs in [23].
These transformations make benchmark functions much more
difficult than the original versions. An early study [50] showed
that a rotation of the coordinate system causes a severe per-
formance loss to genetic algorithms (GAs). Non-separability
and asymmetry issues were highlighted in [62] for the design
of test suites. The BBOB test suite proposed by Hansen et
al. [17] collects 24 noise free single-objective benchmark
functions. These benchmarks have also been widely used for
evaluating the performance of algorithms regarding several
typical aforementioned difficulties, such as ill-conditioning,
irregularities, non-separability, asymmetry, irregularity, and
deceptiveness, etc. The difficulties of different features were
studied on several existing EAs [16], particularly the ill-
conditioned and non-separable features.

The third type is modifications based on the structure of
existing functions, e.g., the Hump and Common families
problems in a tunable test suite [48]. In [47], four types of
interactions between components, namely, the fully separable,
partially separable, overlapping, and fully non-separable, were
suggested for the buildup of interactions between variable
components for large scale optimization.

Besides the above three types of modifications based on
existing functions, several new problems have also been
proposed. A HappyCat problem with special properties of
the fitness landscape structure near the global optimum was
proposed in [2]. Genetic programming was used to evolve
problem landscapes [30] to analyze the performance of ex-
isting EAs. Thereafter, the test suite [30] was extended to
MOOPs using the combination of three types of real-coded
crossovers [53].

2) Dynamic Single Objective Optimization Problems: For
DSOOPs, researchers are interested in characteristics/types
of changes, such as the predictability–whether changes are
predictable in a regular pattern (e.g., recurrent changes in the
objective value and/or location of an optimum, the location of
an optimum moves on a certain path), time-linkage–whether
future changes depend on the current/previous solutions found
by optimizers [3], [45], detectability–whether changes are de-
tectable, severity– determines the magnitude of a change (e.g.,
the distance of the location of an optimum moves, the objective
value of an optimum changes), and change factors (objective
functions, the number of dimensions, constraints, domain of

3

the search space, and function parameters). A comprehensive
review of characteristics of existing DSOOPs can be found in
[44]. In this paper, we review existing benchmarks from the
way of the construction point of view as follows.

One of the most popular benchmarks is the MPB [4]. The
MPB consists of a set of peaks, which change in height, width,
and location. The fitness landscape is constructed by

F (x, t) = max
i=1,...,N

Hi(t)

1 +Wi(t)
∑D
j=1 (xj(t)−Xij(t))2

, (2)

where Wi(t) and Hi(t) are the height and width of peak i
at time t, respectively, and Xij(t) is the j-th element of the
location of peak i at time t. The DF1 [43] and the rotation
DBG (RDBG) [31] used a similar way to construct dynamic
environments. However, their mechanisms of generating the
dynamism are different from the MPB. The DF1 used the lo-
gistical function to generate dynamism, and the RDBG rotates
the coordinates to generate dynamism. A challenging dynamic
landscape (composition DBG, CDBG) [31] was constructed,
where a set of composition functions are shifted in the fitness
landscape.

3) Multi-Objective Optimization Problems: The aforemen-
tioned difficulties for single objective optimization problems
(SOOPs) still apply to multi-objective optimization problems
[7], [24]. In addition, for MOOPs researchers may be more
interested in the properties of the POS and POF. Many
benchmarks have been proposed to construct the POS and POF
with different properties.

Deb stated that several features of the POF are hard for
optimizers to maintain the diversity [7], such as non-linearity,
discontinuity, and non-uniform distribution. In [7], Deb pro-
posed a two-objective test problem toolkit, in which three
functions with different purposes are involved. A distribution
function f1 is used to test the performance of an algorithm on
maintaining diversity on the POF. A distance g is used to test
the convergence performance to the POF. A shape function h
determines the shape of the POF.

Based on Deb’s toolkit [7], Zitzler et al. proposed a test
suite (ZDT) [65]. The ZDT test suite is very popular due
to its simplicity. However, both test suites are not scalable
in terms of the number of objectives. Meanwhile, many-
objective optimization problems (problems with more than
three objectives) have attracted many researchers. Therefore,
Deb et al. proposed the DTLZ test suite in [8] with a
scalable number of objectives, which is relatively fixed with
the number of dimensions. Due to the simplicity of the ZDT
and DTLZ, the OKA test suite was proposed in [46] with
complicated properties. However, the OKA test suite only has
two objectives and two dimensions. To construct a test suite
with a scalable number of dimensions, Li and Zhang proposed
nine problems with complicated POS shapes [33]. Like the
ZDT, all of these benchmark problems are not scalable with
the number of objectives. A test suite called SYM-PART
was proposed with a controllable number of POSs in [49].
In [24], a test suite called WFG was proposed with several
difficult features, such as flat regions, variable dependency,
multi-modal, and deceptiveness.

Besides the above test suites, researchers are also interested
in problems that can be visually examined for many-objective

optimization. A distance minimization test suite was proposed
where each vertex (an objective) of a polygon is minimized in
the decision space [25]. A rectangle problem was proposed
in [35] to help the visual investigation of many-objective
search, where the POS lies in a rectangle in a two-dimensional
decision space. The problem [35] was recently updated in [34].

4) Dynamic Multi-Objective Optimization Problems: For
DMOOPs, benchmarks with various hard features as men-
tioned for MOOPs and various types of changes are needed.
In addition to the characteristics of changes of DSOOPs,
researchers are also interested in characteristics of changes
in the POS and POF for DMOOPs. Changes for DMOOPs
were categorized into four types in [9], namely:
• Type I, the POS changes but the POF does not change.
• Type II, both the POS and the POF change.
• Type III, the POF changes but the POS does not.
• Type IV, neither the POS nor the POF changes but

environmental changes occur.
A mixed type was recently proposed in [26]. Goh proposed
another way to categorize DMOOPs in [12], where DMOOPs
were classified based on spatial and temporal features, which
are closely related to the change types of DSOOPs.

Several test suites [9], [18], [60] were proposed based on the
ZDT [65] and DTLZ [8] test suites. Among these test suites,
the one, named FDA, proposed by Farina et al. is a popular
suite, and two other test suites [40], [64] were proposed based
on it. In addition, there exist several other test suites [14], [27],
[22], [29]. Considering the characteristics of these test suites as
well as the features of several MOOPs [24], [19], [33], recently
Helbig and Engelbrecht [20] proposed a test suite with three
hard properties: deceptiveness, isolated POF, and complicated
POS. Thereafter, Helbig and Engelbrecht introduced a test
suite of problems collected from [9], [18], [19], [20], [29],
[13] on a special session and a competition on IEEE CEC15
[21].

5) Summary and Discussions: The aforementioned studies
focus on developing benchmark problems, there are also
many studies that focus on developing methods for analyzing
existing benchmark problems based on features of the fitness
landscape. A length scale was introduced to measure the
ratio of changes in the objective function value to steps
between points in the search space [41]. A random increasing
walk method was proposed to measure the ruggedness of the
fitness landscape [38]. A nearest-better clustering method was
proposed to detect if a problem is funnel or random [28].
A notion of evolvability was introduced based on the fitness
distribution of the offspring of sampled solutions to describe
features of the fitness landscape [54]. A recent survey of
existing techniques for characterising continuous problems can
be found in [39].

Many benchmark problems have been developed for each
type of numerical optimization. However, we think some of
them have disadvantages. Firstly, they are not intuitive in
terms of geometric properties. For example, it is very hard to
comprehend the geometric properties of Liang’s composition
test suite. In the ZDT [65] and DTLZ [8] suites, objective
functions need external or intermediate functions as input
parameters, which also causes difficulties to imagine the POF

4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

s(
x)

d(x,X)

s1
s2

s3
s4

s5
s6

s7
s8

Fig. 1. Shapes of the eight functions with D=1, where h=100, r=50, η=5.5,
and m=3 (objective values of all functions are standardized within [0, 100].

and the POS of these test suites. Secondly, properties are not
tunable or separately tunable, which causes two difficulties:
1) it is hard to investigate how each property influences the
behavior of an algorithm and 2) it is not easy to choose
which problems to use for experimental studies since there
are many problems and they may share common properties.
Therefore, we would like to propose a fully tunable and highly
intuitive generator, which is able to generate different kinds
of numerical optimization problems.

III. FREE PEAKS

This section gives the detailed descriptions of our Free Peak-
s framework. Without any loss of generality, maximization
optimization problems are considered in this paper.

A. One Peak Problems

Before constructing the problem, we need to prepare a set
of simple problems and a way to partition the solution space.
Eight simple symmetrical unimodal functions are constructed
as follows:

s1(x;h,X) = h− d(x,X),

s2(x;h,X) = h exp(−d(x,X)),

s3(x;h,X) = h−
√
h · d(x,X),

s4(x;h,X) = h/(1 + d(x,X)),

s5(x;h,X) = h− d2(x,X)/h,

s6(x;h,X) = h− exp(2

√
d(x,X)/

√
D) + 1,

s7(x;h,X, r) =

{
h cos(πd(x,X)/r) d(x,X) ≤ r
−h− d(x,X) + r d(x,X) > r

,

s8(x;h,X, r) =

h(cos(mπ

d(x,X)−mnr
r

)−ηn)√
d(x,X)+1

d(x,X) ≤ r

h− ηm
√
r + 1− d(x,X) + r d(x,X) > r,

where d(x,X) =
√∑D

i (xi −Xi)2 is the Euclidean distance from
x to the peak, which is located at a location Xsv = 0 with
a height of h > 0 for each shape function sv (v = 1, . . . , 8)
in the solution space with D dimensions, r is a parameter of
value in [0,Ω] (Ω =

√∑D
i (usvi − l

sv
i)2, usvi = 100, lsvi = −100), m

and η determine the number of segments and the gap between
two neighbor segments of s8, respectively, and n=bmd(x,X)/rc.
The default values of Xsv=0,h=100,r=50,m=3, and η=5.5 are
used in this paper.

Fig 1 shows the shapes of the eight functions. As shown in
the figure, we have a linear function s1, three convex functions
s2-s4, two concave functions s5 and s6, a disconnected func-
tion s8, and a hybrid function s7 which is partially convex,

partially concave, and partially linear (see Appendix B for
more shapes). Every function is symmetrical at its peak.

B. Additional Properties

To make the one-peak problems with enriched properties,
several groups of transformations are introduced.

1) Group One – Shift of location X:
• T1: Random shift. X is shifted by

Xi = R(li, ui), 1 ≤ i ≤ D, (4)

where R(a, b) returns a random number of the uniform
distribution within [a, b], li and ui are the lower and upper
boundary of the ith dimension, respectively.

• T2: Corner shift. The location of X is shifted to a corner
of the decision space by

Xi = li, 1 ≤ i ≤ D, (5)

Note that, the corner shift may be easy for some EAs
if they set out-of-range components of a solution to
boundary values.

2) Group Two – Redefinition of distance :
• T3: Setup of dependencies. Variables are randomly put

into K (1 ≤ K < D) groups (Ij , j ∈ [1,K], e.g.,
I1={4, 8, 1}, I2={3, 5}, . . .). Variables in one group interact
with each other as described in Eq. (6) and variables in
different groups have no dependence. The dependence of
variables in a group Ij is set by

d1(x,X) =

√√√√√ K∑
j=1

(

|Ij |∑
i=1

(

i∑
k=1

(xIj,k −XIj,k))2). (6)

where Ij,k is the kth element of group Ij . Note that,
the problem is fully non-separable if K=1; otherwise,
the problem is partially separable. The higher the degree
of non-separability, the harder a function will normally
become [57]. Although T3 will introduce ill-conditioning
as T6 introduced later, we still keep it in order to study
the effect of varying the degree of dependencies.

• T4: Setup of domino convergence. The domino conver-
gence [58] occurs when variables have contributions of
a significantly different degree to the objective value.
Domino convergence could cause difficulties for optimiz-
ers because domino variables would dominate the search
of an algorithm. As a result, the other variables may
be ignored regardless of whatever values they have. The
domino convergence of variables is set by

d2(x,X) =

√∑D

i
wi · (xi −Xi)2, (7)

where wi is a random weight generated by wi =
103N(0,1), N(0, 1) returns a random number of the s-
tandard normal distribution. Note that, T4 is simply to
make variables ill-scaled, which is a specific form of T6
introduced later.

• T5: Flat border: To have the same objective value at the
space boundary, the distance is reformed by

d3(x,X) = (1−
∏

qi)Ω, qi =

{
1− xi−Xi

ui−Xi
xi ≥ Xi

1− Xi−xi
Xi−li

xi < Xi
(8)

5

This property is to address the disconnection issue when a
problem consists of multiple peaks, and it will be further
discussed in Sect. IV-A1 later.

3) Group Three – Transformations in the decision space:
• T6: Setup of ill-conditioning. To have an ill-conditioned

fitness landscape, a linear transformation matrix R is
applied to x

x = R · x, (9)

where R is obtained by R=QNP, Q and P are orthog-
onal matrixes generated by the classical Gram-Schmidt
method, N is a diagonal matrix with a default condition
number of 1000.

• T7: Setup of irregularities. To generate irregularities, the
transformation [17] below is applied to xi

xi = sign(xi)exp(x̃i + 0.049(sin(c1x̃i) + sin(c2x̃i))), (10)

where x̃i =

{
log(|xi|) xi 6= 0

0 xi = 0
, sign(xi) =

−1 xi < 0

0 xi = 0

1 xi > 0

,

c1 =

{
10 xi > 0

5.5 xi ≤ 0
, c2 =

{
7.9 xi > 0

3.1 xi ≤ 0.

• T8: Setup of asymmetry. To break the symmetry of a
symmetric function, the following transformation [17] is
applied to xi

xi =

x1+0.2 i−1
D−1

√
xi

i xi > 0

xi xi ≤ 0.
(11)

4) Group Four – Transformations in the objective space:
• T9: Noise is added to the objective value by

s(x) = s(x) + |N(0, 1)|. (12)

• T10: Mapping the objective value in a range [h
¯
, h] by

s(x) = h
¯
+ (h− h

¯
)
s(x)− s(x

¯
)

h− s(x
¯
)
, (13)

where h
¯
∈ (0, h) is a user given value, x

¯
is a solution that

has the lowest object function’s value. Note that, this is a
linear mapping, non-linear mapping can also be applied.

5) Group Five — Constraints:
• The peak is within the feasible area.

g1(x) = d(x)− rg1 , (14)

where rg1 >0 is a parameter with a default value of 50.
• The peak is at the border of the feasible area.

g2(x) =

√√√√ D∑
i

(xi −Xci)2 −

√√√√ D∑
i

(Xi −Xci)2, (15)

where Xci =

Xi i = j|argmin
j
|Xj − lj |

li else
.

• The problem has multiple feasible areas.

g3(x) = |sin(log(1 + d3(x)))| − rg3 , (16)

where 0 < rg3 < 1 is a parameter with a default value
of 0.5.

Fig. 2 shows the effect of the transformations on function
s1 with D=2, where Fig. 2-(a) is the original landscape of s1,
Fig. 2-(b)-(i) are the landscapes of s1 after using transforma-
tions T1-T8, respectively, and Fig. 2-(j)-(l) are the landscapes

(a) Normal (b) Random shift (c) Corner shift (d) Non-separable

(e) Imbalance (f) Flat border (g) Ill-conditioned (h) Irregular

(i) Asymmetric (j) g1 (rg1=20) (k) g2 (l) g3 (rg3=0.5)

Fig. 2. Visual effect of different transformations on the fitness landscape of
s1 with D=2, where the black areas are infeasible areas.

(7,2)

(5,4) (9,6)

(4,7) (8,1)(2,3)

[0:2)

[0:4)

[7:8)

[0:6)

[0: 4)

[4:10]

[4: 7)

[4:10]

[2:7)

[0:4)

[8:10]

[0: 6)

[7:10]

[6:10]

x1

x2

x1

0 2 4

6

8 10

2

4

10

6

8

(7,2)

(5,4)

(9,6)
(4,7)

(8,1)

(2,3)

x1

x2

Fig. 3. An example of the k-d tree for the division of a 2-D space with
ranges ([0:10],[0:10]) by a set of six points.

of s1 after adding the constraints in Eqs.(14)-(16), respectively.
In Fig. 2-(j)-(l), the black areas are infeasible areas. Note
that, the aforementioned transformations and constraints can
be mixed together to make the fitness landscape more complex
except for the transformations in groups one and two, because
these transformations are mutually exclusive with each other.

C. Partition the Search Space

The k-d tree [1] is a binary tree in which every node is a
k-dimensional point. Every non-leaf node can be thought of
as implicitly generating a splitting hyperplane that divides the
space into two parts. Points to the left of this hyperplane are
represented by the left subtree of that node and points to the
right of the hyperplane are represented by the right subtree.
Every leaf node denotes a subspace of the solution space.
Fig. 3 shows a k-d tree (Fig. 3-left) for the decomposition
of a 2-D solution space (Fig. 3-right) with six points.

To construct a balanced tree, the canonical method [1] is
used, where a median point is selected with the cutting axis.
Algorithms 1 and 2 present the space partition process and
the inquiry of a solution, respectively. Note that, for the range
of a subspace, in each dimension it takes the close form for
the lower bound and the open form for the upper bound (see
subspace ([0:2),[0:4)) of the left child of node (2,3) in the left
graph of Fig. 3). However, for a subspace containing the upper
bound of the whole solution space, it takes the close form for
both its lower and upper bounds (see subspace ([7:10],[6:10])
of the right child of node (9,6) in the left graph of Fig. 3).

In this paper, the solution space is divided by default into

6

Algorithm 1 kdtree(list, depth)
1: axis ← depth%D + 1; . Select a cutting plane axis based on depth
2: Select the median by axis from list
3: if ‖list‖=1 then . A leaf node
4: Create a subspace;
5: else
6: Create a node node with data of the median point;
7: node.left ← kdtree(points in list before the median, depth+1);
8: node.right← kdtree(points in list after the median, depth+1);
9: return node;

10: end if

Algorithm 2 inquire(x, node,depth)
1: i ← depth%D + 1;
2: if node is a leaf node then return the subspace; end if
3: if xi < nodei then
4: inquire(x, node.left,depth+1);
5: else
6: inquire(x, node.right,depth+1);
7: end if

N subspaces with random sizes. The solution space can be
divided into subspaces with user-defined sizes (see the method
in Appendix C).

D. Setup of Subspaces
After dividing the search space into N subspaces, we can

set them as follows. An O-objective function f(x) with N
subspaces can be defined by

f(x) =

fb1 (x) = {fb11 (x), f

b1
2 (x), . . . , f

b1
O (x)},x ∈ [lb1 ,ub1]

fb2 (x) = {fb21 (x), f
b2
2 (x), . . . , f

b2
O (x)},x ∈ [lb2 ,ub2]

· · ·
fbN (x) = {fbN1 (x), f

bN
2 (x), . . . , f

bN
O (x)},x ∈ [lbN ,ubN]

(17)

where each subspace bk contains O component functions
and each component function f bkj is associated with a shape
function sv (j=1, 2, . . . O, k=1, 2, . . . N , v=1, 2, . . . , 8). The
whole search space of f ([l,u]) is divided into N subspaces:
[l,u]={[lbk ,ubk], . . .}, k=1, 2, . . . N .

To compute the jth objective of x (fj(x)), we need to
find the subspace bk where x is (i.e., lbk ≤ x < ubk) by
Algorithm 2, then map x to a solution xsv in the search space
of sv associated with fj in subspace bk by

map(xi) = x
sv
i = l

sv
i + (u

sv
i − l

sv
i)

xi − l
bk
i

u
bk
i − l

bk
i

, i = 1, 2, . . . D, (18)

Eventually, we set the objective fj(x) by

fj(x) = f
bk
j (x) = sv(x

sv). (19)

Note that, the fitness landscape of sv will be
stretched/squeezed if the aspect ratio of the subspace is
different from that of the search space of sv .

For single objective problems, i.e., O=1, the shape function
of each subspace is not necessarily the same and any transfor-
mation introduced in Sec. III-B can be applied. For multi-
objective problems, however, the shape function associated
with a particular objective in all subspaces is normally the
same and these transformations are not applied for simplicity.
This would be easy to analyze the dominant relationships
between any two solutions in the search space. The detailed
setup of subspaces will be given later for each type of
optimization problems.

(a) Without T5 (b) With T5 (c) Schwefel (d) Simulated Schwefel

Fig. 4. Visual effect of transformation T5 and a simulated fitness landscape,
where graphs (a) and (b) consist of two peaks with shapes s1 (the right peak)
and s6 (the left peak) in each graph and graph (d) is a simulated landscape
of the Schwefel’s landscape shown in graph (c).

E. Time Complexity

To evaluate a solution x we need to perform the following
three steps: 1) to find out the subspace (bk) where x is; 2)
to map x to a location (xsv) in the search space of f bk ; 3)
to compute the objective of (xsv) by one of the eight shape
functions. Identifying to which subspace a point belongs has
a complexity of O(log(N)) by Algorithm 2. Both the second
and the third steps run in O(D). Therefore, the total time
complexity of evaluating a solution is O(log(N)) + 2O(D).

IV. BENCHMARK PROBLEMS

In this section, we will construct GOPs/MMOPs, DSOOPs,
MOPs, and DMOOPs with the FPs framework.

A. Global/Multi-Modal Optimization Problems

Based on the FPs, we can construct a GOP or MMOP with
independently manageable properties, such as the number of
optima, the number of dimensions, the shape of each peak,
the size of the basin of attraction of each peak, the height
of each peak, and the location of each peak. Given these
basic manageable properties, the FPs is capable of generating a
fitness landscape which has enriched properties. Together with
the transformations introduced in Sect.III-B, we are even able
to construct a very complex landscape with fully independently
configurable properties.

1) Stitching Borders: The objective values of solutions at
the border of two neighbour subspaces may be different.
This may cause disconnections at the borders of neighbour
subspaces. This issue can be addressed by the transformation
T5. Fig. 4-(b) shows the effect of T5 on a fitness landscape
with two peaks. The transformation T5 stitches borders of
neighbour subspaces.

2) Defining Global Structures: The whole fitness landscape
may have a very weak global structure if the height of a peak
is randomly set. To address this issue, we could simply set
peak heights based on any existing problem. Fig. 4-(d) shows
a simulated fitness landscape of the Schwefel function (Fig. 4-
(c)) with 1,000 subspaces, where each subspace is associated
with s6. To achieve this, we set the height of a peak to the
objective value of a solution, which maps to the peak location,
in a traditional problem. Note that, the global optimum of the
simulated problem would change if the location of the global
optimum of the original problem is unknown.

The basin of attraction of a peak, i.e., the subspace where the
peak is, is the main factor which impacts a gradient-based local
search method. However, for an EC algorithm, the main factor,

7

0 2 4

6

8 10

2

4

10

6

8

x1

x2

p1

p2

Fig. 5. Location change of a peak, where triangle points are peaks’ locations
and circle points are division points.

strictly speaking, would be the effective basin of attraction of
an optimum. It is very hard to estimate the size of the effective
basin of attraction of an optimum. In the FPs, for a peak,
subspaces, which are around the peak and with peak heights
monotonically decreases as the distance to the peak increases,
are regarded as the effective basin of attraction of the peak.

B. Dynamic Single-Objective Optimization Problems

In this section, changes in DSOOPs are categorized into two
types: physical changes and non-physical changes. Physical
changes are changes that can be seen in the fitness landscape,
including changes in peak location, peak height, the size
of the basin of attraction, and the number of peaks. Non-
physical changes are categorised based on the characteristics
of changes, including detectability, predictability, time-linkage,
and noise. The physical changes are listed as follows.

1) The change in a peak’s location within the peak’s basin:
To change a peak’s location (Xbk(t)) within its basin bk at
time t, we change its mapping location Xsv (t) (see Eq. (18))
in the search space of the associated function sv by

X
sv (t+ 1) = (X

sv (t)−X
sv (t− 1))λ+ ν(1− λ)N(0, σ

sv), (20)

where ν is a normalized vector with a random direction;
N(0, σsv) returns a random number of the normal distribution
with mean 0 and variance σsv (the shift severity with a
default value of 1); λ ∈ [0, 1] is a parameter to determine
the correlation between the direction of the current movement
and the previous movement. λ = 1 indicates the direction of
a peak’s movement is predictable, and λ = 0 indicates the
movement of a peak is completely in a random direction. The
ith dimension of Xsv (t) will be re-mapped to a valid location
if it moves out of the range of the component function by (see
the movement of peak p1 in Fig. 5)

X
sv
i =

lsvi + (usvi − l

sv
i)

(l
sv
i
−Xsv

i
)

(u
sv
i
−Xsv

i
)

Xsvi < lsvi ,

lsvi +
(u
sv
i
−lsv
i

)2

(X
sv
i
−lsv
i

)
Xsvi > usvi

(21)

2) The change in a peak’s shape: To change a peak’s shape
in subspace bk, a random shape function is chosen from the
eight basic functions by

f bk = sR(1,8), (22)

where R(a, b) returns a random number of the uniform distri-
bution within [a, b].

3) The change in the size of a peak’s basin of attraction:
To vary the size of the basin of attraction of a peak, we just
need to change the value of the cutting hyper-plane constructed
with the dimension c of a division point dp (point dp should

TABLE I
FEATURE COMPARISON WITH PEER BENCHMARKS

Physical changes/
Non-physical changes MPB[4] DF1 [43] RDBG [31] CDBG [31] FPs

Peak location X X X X X
Peak height X X X X X
Peak width X X X X X
Peak shape × × × × X
Movement within the basin × × × × X
Manageable basin size × × × × X
Number of peaks × × X × X
Recurrent × × X X X
Partial × × X × X
Time-linkage × × × × X
Noise × × X × X
Predictable X × × × X

be a parent node of a leaf node in the kd-tree, e.g., node (2,3)
in Fig. 3) by

dpc = dpc + R(−σc, σc), i = 1, 2, . . . D, (23)

where σc is a constant related to the range of the cth dimension
of the hyper-rectangle cut by the cutting hyper-plane for
the generation of two neighbour subspaces. Note that, two
neighbour subspaces will change if we change the value of a
cutting dimension (see the movement of peak p2 in Fig. 5).

4) The change in a peak’s height: The height of a peak at
time t is changed by

Hi(t+1) =

{
Hi(t)− δhi Hi(t+ 1) < Hmin||Hi(t+ 1) > Hmax,

Hi(t) + δhi Otherwise,
(24)

where δhi=N(0, σhi), σhi is the height severity of peak pi,
σhi is set to a random value in [0, 7]; Hmin and Hmax are the
minimum and maximum heights, which are set to 0 and 100,
respectively, in this paper.

5) The change in the number of peaks: The number of
peaks follows a recurrent change by

N(t+ 1) =

{
σN (N(0) + t)%T +Nmin (N(0) + t)%T = 0,

σN (T − (N(0) + t)%T) +Nmin Otherwise,
(25)

where N(t) is the number of peaks at time t (N(0) is the
initial number of peaks); σN = 2 is the change step; T = 25 is
the time period; Nmin=1 is the minimum number of peaks. If
the number of peaks increases, σN random division points are
added to the division set; Otherwise, σN points are randomly
removed from the division set.

In addition to the predictable change in a peak’s location
and the recurrent change in the number of peaks, three other
non-physical features are introduced: a time-linkage change,
a partial change, and noisy environments. In the time-linkage
change, a peak changes only when it is found by an optimizer.
For the partial change, a part of peaks change when an
environmental change occurs. In the noisy environment, noise
is added to a solution when it is to be evaluated by

xi = xi + σnoiBRbkN(0, 1), (26)

where i = 1, . . . , D, bk = inquire(x), σnoi=0.01 is the noise
severity; BRbk is the basin ratio of the subspace bk where x
is located.

Table I summarizes the feature comparison with other four
popular dynamic benchmarks. From the table, the FPs provides
many more features than the other four benchmarks.

8

C. Multi-Objective Optimization Problems
In an MOOP for maximum optimization, a solution a is

said to dominate another solution b, denoted as a � b, iff
∀i ∈ {1, . . . , O}, fi(a) ≥ fi(b) and f(a) 6= f(b). A solution
x∗ is called a Pareto optimal solution, iff @ y that y � x∗.
The set of all Pareto optimal solutions is called the Pareto
optimal set (POS) and the image of the POS in the objective
space is called the Pareto optimal front (POF).

In this subsection, we aim to provide a flexible framework
for constructing MOOPs, which are easy to analyze the POS
and POF but can have hard properties for optimizers. To
construct a problem with O objectives under the FPs, we set
O component functions in every subspace. Each component
function is associated with an objective. In this paper, compo-
nent functions are chosen from s1-s8 defined in Sect. III-A.

1) Problems with A Finite Countable POS : To construct
an MOOP where its POS is finite and countable, we just
simply set peaks of all component functions within a sub-
space at a same location, i.e., in subspace bk, we have
X
bk
1 =Xbk

2 , . . . ,=Xbk
O , where Xbk

j , j = 1, . . . , O, k = 1, . . . , N , is
the peak of the component function associated with objective
fj in subspace bk. For solutions in each subspace, the solution
at the peak location dominates all other solutions since the
objective values of all component functions monotonically
decrease as the distance to the peak increases. Therefore, the
peak solution has the largest objective values on all objectives.
The POS comprises all the peak solutions, which are all non-
dominated. Points on the POF of this type of problems are
countable and completely disconnected with each other.

2) Problems with an Infinite Non-Countable POS and with-
out Space Division: Here we consider the case where there is
no space division. To construct an MOOP with an infinite POS,
we just simply set peaks of component functions at different
locations in the solution space. For simplicity, in this paper the
peak associated with f1 is located at the center of a subspace
and peaks associated with remaining objectives are located on
a sphere, which is centered at the center peak with a radius
100rb (rb ∈ [0, 1]).

Here we explain how to identify the POS for such a
problem. As mentioned above, functions s1-s8 have rotational
symmetry with respect to their peaks and the objective value
of each function monotonically decreases as the distance to its
peak increases. For any point x in the solution space, we draw
O spheres, of which each sphere is centered at a particular
peak and passes through point x. Solutions within a sphere
have greater objective values than point x with respect to the
objective associated with the sphere center. Similarly, solutions
outside a sphere have smaller objective values than point x
with respect to the associated objective. Therefore, solutions
in the intersection of the inside of all spheres dominate point
x and solutions in the intersection of the outside of all spheres
are dominated by point x.

Fig. 6 shows a two-objective case, where X1 and X2 are
locations of peaks associated with objective functions f1 and
f2, respectively, and function s1 is used for both f1 and
f2. According to the above analysis, solution b dominates
solutions in the two red dotted areas and is dominated by
solutions in the red solid area as shown in the middle graph.

a

PO
S

b

Fig. 6. Illustration of a two-objective problem with D=2, where X1 and
X2 are locations of the peaks associated with f1 and f2, respectively, the
left graph is the POF, the middle graph shows the search space, and the right
graph shows functions f1 and f2.

POS

Fig. 7. Illustration of a three-objective problem with D=2, where X1, X2,
and X3 are locations of peaks associated with three objectives, the POS is
the solutions in the triangle, solutions in the red dotted areas are dominated
by the red point, and solutions in areas with grey dots are dominated by X3.

For a solution a on the line segment X1X2, there is no solution
which dominates it. Therefore, a is a solution in the POS.
Together with the above analysis, it can be seen that the POS
of the problem is composed of all solutions on the line segment
between X1 and X2. Fig. 7 shows a three-objective case. For
point X3 and the red point between X1 and X2, there is no
point that dominates them and they dominate all the points in
grey and red color, respectively. The POS for this case, hence
comprises solutions in the triangle 4X1X2X3. In the general
case with O objectives and D dimensions, the POS is the
set of points in a closed convex hyper-polygon expanded by
X1, · · · , XO, where Xj denotes the peak of the component
function associated with objective fj (see the mathematical
proof in Appendix E).

Different shapes of the POF can be constructed if we set
component functions with different shapes. Fig. 8 shows eight
shapes of the POF of problems with two objectives, where
component functions s1-s8 are used as f1, respectively, for the
eight problems and s1 is used as f2 for all problems. Among
these shapes, one is linear, three are convex, two are concave,
one is both concave and convex, and one is disconnected (see
Appendix F for the three-objective version of each problem).

3) Problems with an Infinite POS and Space Division:
Problems without space division may have simple properties
and they may be easy to solve. Problems with space divi-
sion, on the other hand, can have complicated properties,
which make them hard to solve. In this subsection, the same
component function is used for all peaks associated with a
particular objective in all subspaces. In this section two types
of problems are constructed, namely Jump and Web. In a
solution space S that is equal to the solution space of any
component function sv , v = 1, 2, . . . , 8, we first draw N
spheres centered at the center of S, where the radius of each
sphere is the same for the Jump type and is different for
the Web type (note that, one sphere is sufficient in the Jump
case, but we still draw N spheres for the consistency of the

9

(a)f1:s1 (b)f1:s2 (c)f1:s3 (d)f1:s4 (e)f1:s5 (f)f1:s6 (g)f1:s7 (h)f1:s8

Fig. 8. The POF of two-objective problems, where f2 : s1, rb=0.8, m=3
and η=2.5 for the problem shown in graph (h).

Subspace b 1 Subspace b 2

b c

POS a

d

(a) Jump

Subspace b 1

POS

Subspace b 2

a cb
d

g
e

(b) Web

Fig. 9. Illustration of dominating relationships for two types of problems,
where each has two subspaces and curved arrows denote the mappings
between points in the subspaces of f and points in a space S.

description of the two types of problems). Then we draw O−1
rays that start from the center of S by random directions. These
rays intersect each sphere at O−1 intersection points. Finally,
to construct an MOOP with O objectives and N subspaces,
the intersection points on each sphere and the center point
of S are mapped to the peak points in a different subspace
bk, k ∈ [1, N] according to Eq. (18) (see the peak mapping
relationship for both types of problems in Fig. 9 introduced
later). Note that, the peak associated with f1 is located at the
center of each subspace. For both types of problems, all peaks
associated with a particular objective have the same height
except peaks associated with f1, which have different heights,
in the Jump case. The illustration of the POS of these two
types of problems is explained as follows.

Fig. 9 shows two examples of three-objective problems
with two subspaces where curved arrows denote the mappings
defined by Eq. (18) between points in subspaces of function
f to points in the solution space S. Note that, a sphere in the
solution space S with a cube shape will map to an ellipse in
a subspace bk with a rectangle shape. We still use the term
“sphere” instead of “ellipse” for consistency in this section.

The problem in Fig. 9-(a) belongs to the Jump type, where
f1(X

b1
1) > f1(X

b2
1), f2(Xb1

2) = f2(X
b2
2), f3(Xb1

3) = f3(X
b2
3),

rb1=rb2 , Xj , j = 1, 2, 3, is the jth peak in the solution
space S and Xbk

j , j = 1, 2, 3, k = 1, 2 is the mapping peak
of Xj in subspace bk. In the graph, any point xb2 in the
triangle 4Xb2

1 Xb2
2 Xb2

3 is dominated by at least one point in
4Xb1

1 Xb1
2 Xb1

3 . This is because, for any point xb2 there always
exists one point xb1 in 4Xb1

1 Xb1
2 Xb1

3 so that xb1 has the same
mapping point as xb2 in the search space of S. It is easy to
see that point xb1 has the same objective value as point xb2
on f2 and f3, respectively, and a greater objective value than
point xb2 on f1 due to f1(Xb1

1) > f1(X
b2
1), f2(Xb1

2) = f2(X
b2
2),

and f3(X
b1
3) = f3(X

b2
3).

Here we explain how to find all points which dominate a
point xb2 . Take the case where xb2 is also Xb2

1 as an example.
Due to f1(Xb1

1) > f1(X
b2
1), we assume that there exists a point

a on the line segment Xb1
1 Xb1

3 so that f1(Xb2
1)=f1(a). Note

that, this assumption holds if f1(Xb2
1) > f1(X

b1
3). If f1(Xb2

1) <

f1(X
b1
3), then point a will be on the extension of Xb1

1 Xb1
3

starting from Xb1
3 . However, this will not affect the analysis

below. Given the above, we can have three observations for
the three objectives f1, f2, and f3: Firstly, because f1(Xb1

1) >

f1(X
b2
1)=f1(a), f1(Xb2

1) will always be less than the objective
values of all solutions within a sphere which is centered at
Xb1

1 and goes through a. Secondly, because f2(Xb1
2) = f2(X

b2
2)

and rb1=rb2 , f2(Xb2
1) will always be less than the objective

values of all solutions within a sphere which is centered at Xb1
2

and goes through Xb1
1 . Thirdly, because f3(X

b1
3) = f3(X

b2
3)

and rb1=rb2 , f3(Xb2
1) will always be less than the objective

values of all solutions within a sphere which is centered at
Xb1

3 and goes through Xb1
1 . Combining the three observations

above, we can conclude that Xb2
1 is dominated by solutions in

the intersection of the three aforementioned spheres (the red
shaded area shown in Fig. 9-(a)).

Interestingly, as shown in Fig. 9-(a) for any point c on the
line segment Xb2

2 Xb2
3 in the subspace b2, there exists only one

point b, which dominates point c, on the line segment Xb1
2 Xb1

3

in the subspace b1. If we draw three spheres as above, it is
easy to see that the intersection of the inside of the three
spheres only has one point b as shown in Fig. 9-(a) since two
spheres centered at Xb1

2 and Xb1
3 , respectively, are tangential

at point b. Points b and c have the same objective values on f2

and f3, respectively. However, point b has a greater objective
value than point c due to f1(X

b1
1) > f1(X

b2
1) and |Xb1

1 b| =
|Xb2

1 c| (points b and c map to the same point in space S,
i.e., point d in the right graph). Therefore, we can deduce that
b dominates c. This will cause difficulties for optimizers to
give up solutions on Xb2

2 Xb2
3 to explore the true POS (see the

results in Appendix A.D). This is because, for any point c on
Xb2

2 Xb2
3 obtained by an algorithm, the algorithm must find an

exact point b so that the dominated point c can be eliminated
during the selection. Finally, combining the analysis above
with the analysis of problems without space division, we can
see that the POS for a Jump problem comprises solutions in
the triangle with the highest peak associated with f1.

Fig. 9-(b) shows a problem of the Web type, where the
radius of the sphere in subspace b2 is greater than that in
subspace b1, i.e., rb1 < rb2 and points g and e are the
mapping points of Xb1

2 and Xb1
3 , respectively, in the space

S. Fig. 9-(b) also shows the two mapping spheres of the
respective spheres in subspaces b1 and b2 (in blue and green).
Since the sphere in b1 is smaller than the sphere in b2, the
mapping sphere of b1 (in blue) is also smaller than the mapping
sphere of b2 (in green). In the figure, for any point a in
4Xb2

1 Xb2
2 Xb2

3 , there exist a point b in 4Xb1
1 Xb1

2 Xb1
3 so that

b dominates a. In the right graph, assuming point c is the
mapping point of point a, it is easy to find a point d on the
line segment X1c so that |X1g|

|gX2|
= |X1e|

|eX3|
= |X1d|

|dc| and hence,
|X1d| < |X1c|, |dg| < |X2c|, and |de| < |X3c|. Now if we
call b the mapping point of d in subspace b1, we can see

10

that b dominates a. The proof above means that, for any pair
of subspaces (like the example in Fig. 9-(b)), the one with a
smaller sphere radius will always have dominating solutions
(in the triangle 4Xb1

1 Xb1
2 Xb1

3). More generally, among all the
subspaces, the one with the smallest sphere radius will be the
one that contains dominating solutions, and the POS will be
all the points in the triangle in that smallest sphere. Therefore,
the POS in Fig. 9-(b) comprises solutions in the triangle in
subspace b1, which has the smallest sphere radius.

D. Dynamic Multi-Objective Optimization Problems

Based on the structure of MOOPs, we can construct a
DMOOP with the four change types mentioned in Sect. II-4.
The four change types are implemented in six changes in
this paper, including changes of rotation, web, jump, basin
size, the number of subspaces, the number of dimensions,
and the number of objectives. In all the six changes, peaks’
locations are set using the same way as described in the
previous subsections. All the changes use the same initial
setup, where all peaks have the same height and each subspace
has a random rb (determining the radius of the hyper-sphere
where peaks locate), except the jump change. In the jump
change, all subspaces have the same value for rb and all on-
sphere peaks have the same height.

1) Rotation: The landscape of each subspace bk, k ∈
[1, N(t)] is rotated separately by a transformation matrix Abk ,
which is a product of a set of rotation matrices. Each rotation
matrix Mθbk

i1,i2
is obtained by rotating the projection of the

decision space in the plane i1-i2, i1, i2 ∈ [1, D] by an angle
θbk from the i1-th axis to the i2-th axis. A point xbk(t) in
subspace bk is changed by the following procedures:
• Randomly select L dimensions (L is an even number)

from the D dimensions to compose a vector.
• In the vector, for each pair of two neighbor dimensions
il and il+1, construct a rotation matrix Mθbk

il,il+1
.

• A transformation matrix Ak is obtained by

Abk = Mθbk
i1,i2 · . . . ·M

θbk
iL−1,iL , θ

bk = R(0, 2πσθ) (27)

where σθ ∈ [0, 1] is a rotation severity with a default
value of 0.1.

• Rotate xbk(t) by xbk(t+ 1) = xbk(t) ·Ak(t)

2) Web: In each subspace bk, we simply change the value
of parameter rbk as follows:

rbk (t+ 1) = rbk (t) + R(−σr, σr), (28)

where σr is a web severity with a default value of 5. Then,
we move each on-sphere peak as follows:

X
bk
j (t+ 1) = rbk (t+ 1) · normalize(Xbk

j −X
bk
1), (29)

where j = 2, . . . , O (the number of objectives). Note that, a
random initial rb is generated for each subspace.

3) Jump: In this change, all on-sphere peaks remain un-
changed and only center peaks are allowed to change their
heights. All subspaces use the same parameter settings except
the height for the center peak with objective f1. Eq. (24) is
used to change the height of center peaks.

4) Basin Size: The size of each subspace is allowed to
change and the change in Sect. IV-B3 is used.

5) The number of subspaces, the number of dimensions,
and the number of objectives: The same method as used in
Sect. IV-B5 is used for the three changes, which is shown in
Eq. (25), except that the step size for the three changes is one
and the minimum value for dimensions and objectives is two.
For the three changes, a random subspace/dimension/objective
is added/removed when the number is increased/decreased by
one. To remove one random objective, each associated peak
with that objective in every subspace is removed. Note that,
due to the structure of MOOPs it is not allowed to remove the
first objective. To add one objective, a new peak with the same
component function is added on the sphere in each subspace.
Regarding the addition of a new subspace, a subspace with a
random rb is added in the Web case or a subspace with the
first peak of a random height is added in the Jump case. Other
parameters for the new subspace use the same configurations
as other subspaces.

Given the above changes, we can analyze the effect of
changes on the POS and POF. For the rotation and basin size
changes, the POS changes but the POF does not change. This
is because these changes do not alter the distribution of the
POS and the relative positions of all peaks in a subspace. The
jump and web changes will affect both the POS and the POF.
The distribution of the POS will move from one subspace to
another subspace if the subspace with the highest center peak
in the jump change or the subspace with the smallest rb in
the web change does not remain the highest or smallest. The
POF will also change even if the subspace with the highest
peak or the smallest rb remains the same. Take a two-objective
problem as an example. If two peaks move close to each other,
the largest objective value of each objective will not change,
but the smallest value of each objective will increase. As a
result, the POF will also change. For the change in the number
of subspaces, it may affect both the POS and POF or neither
the POS nor the POF, depending on the rb value of the new
subspace. If the rb of the new subspace is the smallest, then
the POF and the POS will change; Otherwise, the POS and
POF will not change.

V. EXPERIMENTAL STUDIES

Due to the space limitation, this section only carries out
experiments on the effect of transformations for GOPs. Other
experimental studies are moved to Appendix A in the supple-
mentary file.

A. Experimental Setup

For GOPs, we select five traditional algorithms: two of them
are the standard particle swarm optimization (PSO) [5] with a
local-best model (PSO/L) and the global-best model (PSO/G),
respectively, the other two are the differential evolution (DE)
[55] with mutation strategies of DE/Rand/1 and DE/Best/2,
respectively, and the last choice is the evolution strategy with
covariance matrix adaptation (CMA-ES) [15]. For both PSOs,
the initial weight [52] version is used. In the PSO/L, an

11

-8

-6

-4

-2

 0

 2

 4

 6

 8

O T1 T2 T3-N T3-P T4 T5 T6 T7 T8 T9

er
ro

r
(l

og
10

)

Transformation (CMAES)

 S=1
 S=2

 S=3
 S=4

 S=5
 S=6

 S=7
 S=8

-8

-6

-4

-2

 0

 2

 4

 6

O T1 T2 T3-N T3-P T4 T5 T6 T7 T8 T9

er
ro

r
(l

og
10

)

Transformation (DE/Best/2)

 S=1
 S=2

 S=3
 S=4

 S=5
 S=6

 S=7
 S=8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 12

O T1 T2 T3-N T3-P T4 T5 T6 T7 T8 T9

er
ro

r
(l

og
10

)

Transformation (DE/Rand/1)

 S=1
 S=2

 S=3
 S=4

 S=5
 S=6

 S=7
 S=8

-6
-4
-2
 0
 2
 4
 6
 8

 10
 12
 14
 16

O T1 T2 T3-N T3-P T4 T5 T6 T7 T8 T9

er
ro

r
(l

og
10

)

Transformation (PSO/G)

 S=1
 S=2

 S=3
 S=4

 S=5
 S=6

 S=7
 S=8

-8

-6

-4

-2

 0

 2

 4

 6

 8

O T1 T2 T3-N T3-P T4 T5 T6 T7 T8 T9

er
ro

r
(l

og
10

)

Transformation (PSO/L)

 S=1
 S=2

 S=3
 S=4

 S=5
 S=6

 S=7
 S=8

Fig. 10. The errors obtained by the five algorithms on the eight one-peak problems with different transformations in 100 dimensions, where O denotes the
original problem, T3-N and T3-P denote non-separable and partially separable transformations, respectively.

adaptive random topology [6] is used, where a particle’s neigh-
bourhood is updated with a certain number of random particles
when the best particle shows no improvement. The parameters
of the PSOs are set to ω = 0.7298 and η1 = η2 = 1.496
as suggested by [59] and the parameters F and CR for
the DEs are set to 0.5 and 0.6 as suggested by [55]. The
latest source code for CMA-ES from the GitHub page was
used in this paper and the suggested parameter settings are
used. Because the purpose of this experiment is studying the
effect of transformations on GOP algorithms rather than tuning
algorithms to find the best settings, the population size for all
the five algorithms are set to 100.

B. Effect of Transformations On One-peak Problems

In this sub-section, the effect of the transformations is
investigated with the five chosen algorithms on the eight one-
peak problems. All algorithms stop running when the error is
less than 1.E-6 or the number of fitness evaluations reaches
100,000. All results are averaged over 100 independent runs.
Fig. 10 shows the results of problems in 100 dimensions.

From the results, we can have the following observations.
Firstly, the transformations brings difficulties for all algorithms
except for CMA-ES with transformations flat border (T5),
irregularity (T7) and asymmetry (T8). Transformation T5
makes CMA-ES spend a slightly greater number of evaluations
than it does on the original problems, while the other two
transformations have no impact on the performance of CMA-
ES. Note that, DE/Best/2, DE/Rand/1 and PSO/L achieve
better results on problems with the corner shift (T2) than their
results on the original problems. This is due to that these three
algorithms always assign boundary values to their individuals
if they go outside the search boundary.

Secondly, different transformations have different impact
on the performance of all algorithms regarding a particular
problem. For example, the transformations of shift, interdepen-
dence, imbalance, and noise make problems much harder for
CMA-ES than the other transformations. The non-separable
problems (T3-N) are harder than the partially separable prob-
lems (T3-P) for all algorithms. Thirdly, a particular transfor-
mation also has different impact on different problems. For
example, problem s6 seems to be the most sensitive to most
transformations, which makes it much more difficult to solve
than other problems in many cases.

C. Effect of the Number of Partitions

In the paper, we introduce a method for creating global
structures using traditional functions with a number of sub-

spaces. With this method, each subspace contains a peak (i.e., a
local optimum). In this sub-section, the effect of the number of
partitions is investigated. An experiment is conducted on two
traditional functions with different numbers of dimensions. In
the experiment, the search space is evenly divided. Note that,
the location and objective value of a simulated function are
the same as its original function.

Fig. 11 shows the results of the five algorithm on the
two problems with different numbers of dimensions. For both
problems in low dimensional spaces (i.e, D=2 and D=5),
the performance of all the algorithms does not vary much
with different numbers of partitions. However, for the two
problems in high dimensional spaces (i.e., D=10 and D=30),
the performance varies much with different numbers of parti-
tions. For the simulated Sphere function, the more partitions
means the more local optima, and hence the harder to solve in
comparison with the original Sphere function. This is because,
the original Sphere function always has one peak regardless
of the number of dimensions. Therefore, the results of the
simulated Sphere functions with a large number of partitions
are much worse than that of the original function. For the
multi-modal Schwefel function, the number of local optima
will increase exponentially as the number dimensions increas-
es. However, for a simulated Schwefel function, the number
of local optima does not change with different dimensions as
long as the number of partitions does not change. Although
the difficulty of the simulated Schwefel function increases as
the number of partitions increases, the increased difficulty of
the simulated function is far less than the increased difficulty
of the original Schwefel function as the number of dimensions
increases. Therefore, the results with the simulated Schwefel
functions are much better than that of the original function.

D. Effect of Transformations in the Global Optimal Subspace

In this sub-section, we evenly divide the search space into
100 subspaces, and only apply the transformations to the
subspace of the global optimum. For all the other subspaces,
the function s1 is used and there is no transformation. Fig. 12
shows the effect of the transformations on the two simulated
problems used in Sec. V-C, with different dimensions.

From Fig. 12, it can be seen that different transformations
have very different impacts on the search of the global
optimum for all algorithms. Take the two graphs on the
right (1000 dimensions) as an example. The global optimum
becomes difficult to find when its shape switches from s1

to s2. The random shift and the corner shift also make the
global optimum harder to find, especially for the corner shift.

12

-8

-6

-4

-2

 0

 2

 4

 6

0.1E3 0.2E3 0.5E3 1.0E3 2.0E3 5.0E3 10.0E3 Origin

er
ro

r
(l

og
)

Number of subspaces (Sphere,D=2)

 PSO/G
 PSO/L

 DE/Best/2

 DE/Rand/1
 CMAES

-8

-6

-4

-2

 0

 2

 4

 6

0.1E3 0.2E3 0.5E3 1.0E3 2.0E3 5.0E3 10.0E3 Origin

er
ro

r
(l

og
)

Number of subspaces (Sphere,D=5)

 PSO/G
 PSO/L

 DE/Best/2

 DE/Rand/1
 CMAES

-8

-6

-4

-2

 0

 2

 4

 6

0.1E3 0.2E3 0.5E3 1.0E3 2.0E3 5.0E3 10.0E3 Origin

er
ro

r
(l

og
)

Number of subspaces (Sphere,D=10)

 PSO/G
 PSO/L

 DE/Best/2

 DE/Rand/1
 CMAES

-8

-6

-4

-2

 0

 2

 4

 6

0.1E3 0.2E3 0.5E3 1.0E3 2.0E3 5.0E3 10.0E3 Origin

er
ro

r
(l

og
)

Number of subspaces (Sphere,D=30)

 PSO/G
 PSO/L

 DE/Best/2

 DE/Rand/1
 CMAES

-6

-4

-2

 0

 2

 4

0.1E3 0.2E3 0.5E3 1.0E3 2.0E3 5.0E3 10.0E3 Origin

er
ro

r
(l

og
)

Number of subspaces (Schwefel,D=2)

 PSO/G
 PSO/L

 DE/Best/2

 DE/Rand/1
 CMAES

-15

-10

-5

 0

 5

0.1E3 0.2E3 0.5E3 1.0E3 2.0E3 5.0E3 10.0E3 Origin
er

ro
r

(l
og

)

Number of subspaces (Schwefel,D=5)

 PSO/G
 PSO/L

 DE/Best/2

 DE/Rand/1
 CMAES

-6

-4

-2

 0

 2

 4

0.1E3 0.2E3 0.5E3 1.0E3 2.0E3 5.0E3 10.0E3 Origin

er
ro

r
(l

og
)

Number of subspaces (Schwefel,D=10)

 PSO/G
 PSO/L

 DE/Best/2

 DE/Rand/1
 CMAES

-6

-4

-2

 0

 2

 4

0.1E3 0.2E3 0.5E3 1.0E3 2.0E3 5.0E3 10.0E3 Origin

er
ro

r
(l

og
)

Number of subspaces (Schwefel,D=30)

 PSO/G
 PSO/L

 DE/Best/2

 DE/Rand/1
 CMAES

Fig. 11. Results of different algorithms on the two simulated functions with different numbers of partitions.

This is different from the effect of transformations on the
one-peak problems in Fig. 10. The results of problems with
transformation T3-N are better than that of T3-P. This is
because that transformation T3-N makes individuals within
the global optimal subspace hardly get improved and they all
move to other peaks with relatively high heights.

VI. CONCLUSIONS

This paper proposes an open framework, named Free Peaks,
for constructing continuous optimization problems. The FPs
is able to construct different types of problems. With the
exception of [61] in the domain of combinatorial optimization,
this is the first framework that is able to create different types
of numerical problems with a unified method. The framework
is easy to understand, highly configurable, feature enriched,
and computationally efficient. The properties and difficulties of
problems constructed with the FPs are analyzable. This makes
it easy for users to analyze weaknesses and strengths of an
algorithm. The framework uses the building-blocks approach
to construct a problem, therefore users can construct a problem
with desired features. Moreover, the framework is extendable.
Users can replace the component functions used in this paper
with their own functions. To test an algorithm’s performance
on a problem with a certain feature, users just need to switch
on or off that particular feature instead of switching to another
problem. The framework is also compatible with existing
problems. An important work in the future is to develop
benchmark problems for each type of numerical problems. The
design of typical global structures is also important.

APPENDIX

The appendix consists of the following contents:
1) Appendix A: Experimental studies.
2) Appendix B: Other one-peak problems.
3) Appendix C: Space partition with user-defined sizes.
4) Appendix D: Defining multi-funnel structures.
5) Appendix E: Proof of the POS.
6) Appendix F: Method of the generation of the POF.
7) Appendix G: The POS in multiple subspaces.
8) Appendix H: Default setups and experimental results.

9) Appendix I: Online source code at GitHub:
https://github.com/Changhe160/FreePeaks.

REFERENCES

[1] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517, Sep. 1975.

[2] H.-G. Beyer and S. Finck, “Happycat — a simple function class where
well-known direct search algorithms do fail,” in Proc. 12th Inter. Conf.
on Parallel Problem Solving from Nature - Part I, ser. PPSN’12. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 367–376.

[3] P. A. N. Bosman, “Learning, anticipation and time-deception in evolu-
tionary online dynamic optimization,” in Proc. 2005 Genetic and Evol.
Comput. Conf. ACM, 2005, pp. 39–47.

[4] J. Branke, “Memory enhanced evolutionary algorithms for changing
optimization problems,” in Proc. 1999 IEEE Congr. Evol. Comput.,
vol. 3, 1999, pp. 1875–1882.

[5] D. Bratton and J. Kennedy, “Defining a standard for particle swarm
optimization,” in Proc. 2007 IEEE Swarm Intell. Symp., 2007, pp. 120–
127.

[6] M. Clerc, Particle Swarm Optimization. ISTE (Int. Scientific and
Technical Encyclopedia), 2006.

[7] K. Deb, “Multi-objective genetic algorithms: Problem difficulties and
construction of test problems,” Evol. Comput., vol. 7, no. 3, pp. 205–
230, Sep. 1999.

[8] K. Deb, L. Thiele et al., “Scalable multi-objective optimization test
problems,” in in Proc. 2002 IEEE Congr. Evol. Comput., 2002, pp. 825–
830.

[9] M. Farina, K. Deb, and P. Amato, “Dynamic multiobjective optimization
problems: test cases, approximations, and applications,” IEEE Trans.
Evol. Comput., vol. 8, no. 5, pp. 425–442, Oct 2004.

[10] M. Gallagher and B. Yuan, “A general-purpose tunable landscape
generator,” Trans. Evol. Comp, vol. 10, no. 5, pp. 590–603, Oct. 2006.

[11] C. Garcı́a-Martı́nez, P. D. Gutiérrez et al., “Since cec 2005
competition on real-parameter optimisation: a decade of research,
progress and comparative analysis’s weakness,” Soft Computing,
vol. 21, no. 19, pp. 5573–5583, Oct 2017. [Online]. Available:
https://doi.org/10.1007/s00500-016-2471-9

[12] C.-K. Goh, “Evolutionary multi-objective optimization in uncertain
environments,” Ph.D. dissertation, Department of Electrical & Computer
Engineering National University of Singapore, Singapore, 2007.

[13] C.-K. Goh and K. C. Tan, “A competitive-cooperative coevolutionary
paradigm for dynamic multiobjective optimization,” IEEE Trans. Evol.
Comp, vol. 13, no. 1, pp. 103–127, Feb. 2009.

[14] S.-U. Guan, Q. Chen, and W. Mo, “Evolving dynamic multi-objective
optimization problems with objective replacement,” Artificial Intell.
Review, vol. 23, no. 3, pp. 267–293, 2005.

[15] N. Hansen, S. Muller, and P. Koumoutsakos, “Reducing the time
complexity of the derandomized evolution strategy with covariance
matrix adaptation (CMA-ES).” Evol. Comput., vol. 11, no. 1, pp. 1–
18, 2003.

[16] N. Hansen, R. Ros et al., “Impacts of invariance in search: When cma-
es and pso face ill-conditioned and non-separable problems,” Appl. Soft
Comput., vol. 11, pp. 5755–5769, 2011.

13

-7
-6
-5
-4
-3
-2
-1
 0
 1
 2
 3

S1 S2 T1 T2 T3-N T3-P T4 T5 T6 T7 T8 O

er
ro

r
(l

og
)

Test scenarios (Sphere,D=2)

 PSO/G
 PSO/L

 DE/Best/2

 DE/Rand/1
 CMAES

-8

-6

-4

-2

 0

 2

 4

 6

S1 S2 T1 T2 T3-N T3-P T4 T5 T6 T7 T8 O

er
ro

r
(l

og
)

Test scenarios (Sphere,D=10)

 PSO/G
 PSO/L

 DE/Best/2

 DE/Rand/1
 CMAES

-10

-8

-6

-4

-2

 0

 2

 4

 6

S1 S2 T1 T2 T3-N T3-P T4 T5 T6 T7 T8 O

er
ro

r
(l

og
)

Test scenarios (Sphere,D=100)

 PSO/G
 PSO/L

 DE/Best/2

 DE/Rand/1
 CMAES

-3
-2
-1
 0
 1
 2
 3
 4
 5
 6
 7

S1 S2 T1 T2 T3-N T3-P T4 T5 T6 T7 T8 O

er
ro

r
(l

og
)

Test scenarios (Sphere,D=1000)

 PSO/G
 PSO/L

 DE/Best/2
 DE/Rand/1

-7
-6
-5
-4
-3
-2
-1
 0
 1
 2
 3

S1 S2 T1 T2 T3-N T3-P T4 T5 T6 T7 T8 O

er
ro

r
(l

og
)

Test scenarios (Schwefel,D=2)

 PSO/G
 PSO/L

 DE/Best/2

 DE/Rand/1
 CMAES

-8

-6

-4

-2

 0

 2

 4

S1 S2 T1 T2 T3-N T3-P T4 T5 T6 T7 T8 O
er

ro
r

(l
og

)

Test scenarios (Schwefel,D=10)

 PSO/G
 PSO/L

 DE/Best/2

 DE/Rand/1
 CMAES

-8

-6

-4

-2

 0

 2

 4

 6

S1 S2 T1 T2 T3-N T3-P T4 T5 T6 T7 T8 O

er
ro

r
(l

og
)

Test scenarios (Schwefel,D=100)

 PSO/G
 PSO/L

 DE/Best/2

 DE/Rand/1
 CMAES

-1

 0

 1

 2

 3

 4

 5

 6

S1 S2 T1 T2 T3-N T3-P T4 T5 T6 T7 T8 O

er
ro

r
(l

og
)

Test scenarios (Schwefel,D=1000)

 PSO/G
 PSO/L

 DE/Best/2
 DE/Rand/1

Fig. 12. Effect of transformations in the global optimal subspace of two simulated problems, where O denotes the original problems.

[17] N. Hansen and A. A. Steffen Finck, Raymond Ros, “Real-parameter
black-box optimization benchmarking 2009: Noiseless functions defini-
tions.” RR-6829 INRIA, Tech. Rep., 2009.

[18] M. Helbig and A. P. Engelbrecht, “Archive management for dynamic
multi-objective optimisation problems using vector evaluated particle
swarm optimisation,” in Proc. 2011 IEEE Congr. Evol. Comput., June
2011, pp. 2047–2054.

[19] ——, “Dynamic multi-objective optimization using pso,” in Metaheuris-
tics for Dynamic Optimization, ser. Studies in Computational Intell.,
E. Alba, A. Nakib, and P. Siarry, Eds. Springer Berlin Heidelberg,
2013, vol. 433, pp. 147–188.

[20] ——, “Benchmarks for dynamic multi-objective optimisation algorithm-
s,” ACM Comput. Surv., vol. 46, no. 3, pp. 37:1–37:39, Jan. 2014.

[21] ——, “Benchmark functions for cec 2015 special session and compe-
tition on dynamic multi-objective optimization,” University of Pretoria,
Computer Science Department, Pretoria, South Africa, Tech. Rep., 2015.

[22] L. Huang, I. H. Suh, and A. Abraham, “Dynamic multi-objective
optimization based on membrane computing for control of time-varying
unstable plants,” Inf. Sci., vol. 181, no. 11, pp. 2370 – 2391, 2011.

[23] V. L. Huang, A. K. Qin et al., “Problem definitions for performance
assessment of multi-objective optimization algorithms,” Nanyang Tech-
nological University, Singapore., Special Session on Constrained Real-
Parameter Optimization of the CEC07, Tech. Rep., 2007.

[24] S. Huband, P. Hingston et al., “A review of multiobjective test problems
and a scalable test problem toolkit,” IEEE Trans. Evol. Comput., vol. 10,
no. 5, pp. 477–506, 2006.

[25] H. Ishibuchi, N. Akedo, and Y. Nojima, “A many-objective test problem
for visually examining diversity maintenance behavior in a decision
space,” in Proc. of the 13th Annu. Conf. on Genetic and Evol. Comput.,
ser. GECCO ’11. New York, NY, USA: ACM, 2011, pp. 649–656.

[26] S. Jiang and S. Yang, “Evolutionary dynamic multiobjective optimiza-
tion: Benchmarks and algorithm comparisons,” IEEE Trans. Cybern.,
vol. 47, no. 1, pp. 198–211, Jan 2017.

[27] Y. Jin and B. Sendhoff, “Constructing dynamic optimization test prob-
lems using the multi-objective optimization concept,” in Applications
of Evolutionary Computing, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2004, vol. 3005, pp. 525–536.

[28] P. Kerschke, M. Preuss et al., “Detecting funnel structures by means of
exploratory landscape analysis,” in Proc. of the 2015 Annu. Conf. on
Genetic and Evol. Comput., ser. GECCO ’15. New York, NY, USA:
ACM, 2015, pp. 265–272.

[29] W. Koo, C. Goh, and K. Tan, “A predictive gradient strategy for
multiobjective evolutionary algorithms in a fast changing environment,”
Memetic Computing, vol. 2, no. 2, pp. 87–110, 2010.

[30] W. B. Langdon and R. Poli, “Evolving problems to learn about particle
swarm optimizers and other search algorithms,” IEEE Trans. Evol.
Comput., vol. 11, no. 5, pp. 561–578, Oct. 2007.

[31] C. Li and S. Yang, “A generalized approach to construct benchmark
problems for dynamic optimization,” in 7th Int. Conf. on Simulated
Evolution and Learning, 2008, pp. 391–400.

[32] C. Li, S. Yang, and T. T. Nguyen, “A self-learning particle swarm
optimizer for global optimization problems,” IEEE Trans. Systems,
Man, and Cyberne., Part B, vol. 42, no. 3, pp. 627–646, 2012. [Online].
Available: https://doi.org/10.1109/TSMCB.2011.2171946

[33] H. Li and Q. Zhang, “Multiobjective optimization problems with com-
plicated pareto sets, moea/d and nsga-ii,” IEEE Trans. Evol. Comput.,
vol. 13, no. 2, pp. 284–302, April 2009.

[34] M. Li, C. Grosan et al., “Multi-line distance minimization: A visualized
many-objective test problem suite,” IEEE Trans. on Evol. Comput.,
vol. PP, no. 99, pp. 1–1, 2017.

[35] M. Li, S. Yang, and X. Liu, “A test problem for visual investigation
of high-dimensional multi-objective search,” in Proc. of the 2014 IEEE
Congr. Evol. Comput., July 2014, pp. 2140–2147.

[36] J. Liang, P. Suganthan, and K. Deb, “Novel composition test functions
for numerical global optimization,” in Swarm Intell. Symp., Proc. 2005
IEEE, 2005, pp. 68–75.

[37] M. Lunacek, D. Whitley, and A. Sutton, The Impact of Global Structure
on Search. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp.
498–507.

[38] K. M. Malan and A. P. Engelbrecht, “Quantifying ruggedness of
continuous landscapes using entropy,” in Proc. 2009 IEEE Congr. Evol.
Comput., May 2009, pp. 1440–1447.

[39] ——, “A survey of techniques for characterising fitness landscapes and
some possible ways forward,” Information Sciences, vol. 241, pp. 148
– 163, 2013.

[40] J. Mehnen, T. Wagner, and G. Rudolph, “Evolutionary optimization of
dynamic multiobjective functions,” Department of Machining Technol-
ogy,University of Dortmund, Germany, Tech. Rep., 2006.

[41] R. Morgan and M. Gallagher, “Using landscape topology to compare
continuous metaheuristics: A framework and case study on edas and
ridge structure,” Evol. Comput., vol. 20, no. 2, pp. 277–299, Jun. 2012.

[42] ——, Length Scale for Characterising Continuous Optimization Prob-
lems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 407–
416.

[43] R. W. Morrison and K. A. De Jon, “A test problem generator for non-
stationary environments,” in Proc. 1999 IEEE Congr. Evol. Comput.,
1999, pp. 2047–2053.

[44] T. T. Nguyen, S. Yang, and J. Branke, “Evolutionary dynamic optimiza-
tion: A survey of the state of the art,” Swarm and Evol. Comput., vol. 6,
no. 0, pp. 1 – 24, 2012.

[45] T. T. Nguyen and X. Yao, Applications of Evolutionary Computing.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, ch. Dynamic
Time-Linkage Problems Revisited, pp. 735–744.

[46] T. Okabe, Y. Jin et al., “On test functions for evolutionary multi-
objective optimization,” in Parallel Problem Solving from Nature - PPSN
VIII, X. Yao, E. K. Burke et al., Eds. Springer Berlin Heidelberg, 2004,
vol. 3242, pp. 792–802.

[47] M. N. Omidvar, X. Li, and K. Tang, “Designing benchmark problems for
large-scale continuous optimization,” Inf. Sci., vol. 316, pp. 419 – 436,
2015, nature-Inspired Algorithms for Large Scale Global Optimization.

[48] J. Rönkkönen, X. Li et al., “A framework for generating tunable test
functions for multimodal optimization,” Soft Computing, vol. 15, no. 9,
pp. 1689–1706, 2011.

[49] G. Rudolph, B. Naujoks, and M. Preuss, “Capabilities of emoa to detect
and preserve equivalent pareto subsets,” in Evolutionary Multi-Criterion
Optimization, ser. Lecture Notes in Computer Science, S. Obayashi,
K. Deb et al., Eds. Springer Berlin Heidelberg, 2007, vol. 4403, pp.
36–50.

14

[50] R. Salomon, “Reevaluating genetic algorithm performance under coor-
dinate rotation of benchmark functions - a survey of some theoretical
and practical aspects of genetic algorithms,” BioSystems, vol. 39, pp.
263–278, 1995.

[51] H. Seada and K. Deb, “A unified evolutionary optimization procedure
for single, multiple, and many objectives,” IEEE Trans. Evol. Comput.,
vol. PP, no. 99, pp. 1–1, 2015.

[52] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in Proc.
1998 IEEE Congr. Evol. Comput., 1998, pp. 69–73.

[53] S. Shirakawa, N. Yata, and T. Nagao, “Evolving search spaces to
emphasize the performance difference of real-coded genetic algorithms
using genetic programming,” Trans. of the Japanese Society for Evol.
Comput., vol. 1, no. 1, pp. 54–64, 2010.

[54] T. Smith, P. Husbands et al., “Fitness landscapes and evolvability,” Evol.
Comput., vol. 10, no. 1, pp. 1–34, Mar. 2002.

[55] R. Storn and K. Price, “Differential evolution – a simple and efficient
heuristic for global optimization over continuous space,” J. Global
Optimization, vol. 11, pp. 341–359, 1997.

[56] P. Suganthan, “Benchmarks for evaluation of evolutionary algorithms.”
[Online]. Available: http://www.ntu.edu.sg/home/epnsugan/

[57] A. M. Sutton, M. Lunacek, and L. D. Whitley, “Differential evolution
and non-separability: Using selective pressure to focus search,” in Proc.
of the 9th Annu. Conf. on Genetic and Evol. Comput., ser. GECCO ’07.
New York, NY, USA: ACM, 2007, pp. 1428–1435.

[58] D. Thierens, D. Goldberg, and A. Pereira, “Domino convergence, drift,
and the temporal-salience structure of problems,” in in Proc. 1998 IEEE
Congr. Evol. Comput., 1998, pp. 535–540.

[59] F. Van Den Bergh, “An analysis of particle swarm optimizers,” Ph.D.
dissertation, Department of Computer Science, University of Pretoria,
South Africa, 2002.

[60] Y. Wang and B. Li, “Investigation of memory-based multi-objective
optimization evolutionary algorithm in dynamic environment,” in Proc.
2009 IEEE Congr. Evol. Comput., 2009, pp. 630–637.

[61] T. Weise, S. Niemczyk et al., “A tunable model for multi-objective,
epistatic, rugged, and neutral fitness landscapes,” in Proc. of the 10th
Ann. Conf. on Genetic and Evol. Comput., ser. GECCO ’08. New York,
NY, USA: ACM, 2008, pp. 795–802.

[62] D. Whitley, S. Rana et al., “Evaluating evolutionary algorithms,” Artifi-
cial Intelligence, vol. 85, no. 1-2, pp. 245 – 276, 1996.

[63] M. Yang, C. Li et al., “Differential evolution with auto-enhanced
population diversity,” IEEE Trans. Cybern., vol. 45, no. 2, pp. 302–315,
Feb 2015.

[64] A. Zhou, Y. Jin et al., “Prediction-based population re-initialization
for evolutionary dynamic multi-objective optimization,” in Evolutionary
Multi-Criterion Optimization, ser. Lecture Notes in Computer Science,
S. Obayashi, K. Deb et al., Eds. Springer Berlin Heidelberg, 2007,
vol. 4403, pp. 832–846.

[65] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective
evolutionary algorithms: Empirical results,” Evol. Comput., vol. 8, pp.
173–195, 2000.

Changhe Li (M’12) received the B.Sc. and M.Sc.
degrees in computer science from China University
of Geosciences, Wuhan, China, in 2005 and 2008,
respectively, and the Ph.D. degree in computer sci-
ence from the University of Leicester, U.K. in July
2011.

He has been an associate professor at China U-
niversity of Geosciences (Wuhan) since 2011. He is
the chair of the Task Force on Evolutionary Compu-
tation in Dynamic and Uncertain Environments. His
research interests are evolutionary algorithms with

machine leaning, swarm intelligence, multi-modal optimization and dynamic
optimization.

Trung Thanh Nguyen received his BSc in 2000
from Vietnam National University, and his MPhil
and PhD in Computing Science from University of
Birmingham in 2007 and 2011, respectively.

He has been a Reader in Operational Research
at Liverpool John Moores University (LJMU) since
2015. Prior to that, he was a Senior Lecturer in Op-
timisation and Simulation Modelling at LJMU since
2013, and a Research Fellow at LJMU and Univer-
sity of Birmingham in 2011. His current research
interests include operational research/dynamic opti-

misation with a particular application to logistics/transport problems.

Sanyou Zeng received the B.Sc. degree in mathe-
matics from Hunan University of Science and Tech-
nology, Xiangtan, China in 1983, the M.Sc. degree
in mathematics from Hunan University, Changsha,
China, in 1995, and the Ph.D. degree in computer
science from Wuhan University, Wuhan, China in
2002.

He has been a professor at China University of
Geosciences (Wuhan) since 2004. His research inter-
est is evolutionary computation with machine learn-
ing for solving problems with constraints, multi-

objective, dynamic environments and expensive costs, especially the antenna
design problems.

Ming Yang received the B.Sc., M.Sc., and Ph.D.
degrees in computer science from China University
of Geosciences, Wuhan, China, in 2005, 2008, and
2012, respectively. He carried out a postdoctoral
research at the School of Computer Science, Univer-
sity of Birmingham, U.K. from Dec., 2014 to Dec.,
2015.

He is currently an Associate Professor with
the School of Computer Science, China Universi-
ty of Geosciences, Wuhan, China. He also works
in the Hubei Key Laboratory of Intelligent Geo-

Information Processing, Wuhan, China. His research interests include swarm
intelligence, large-scale optimization, multi-objective optimization and their
applications.

Min Wu (SM’08) received the B.Sc. and M.Sc. de-
grees in engineering from Central South University
(CSU), China, and the PhD degree in engineering
from the Tokyo Institute of Technology, Japan, in
1983, 1986, and 1999, respectively.

He was a Lecturer and later a Professor with
the School of Information Science and Engineering,
CSU, Changsha, China, from 1986 to 2014. He was
a Visiting Scholar with the Department of Electrical
Engineering, Tohoku University, Sendai, Japan, from
1989 to 1990, a Visiting Research Scholar with

the Department of Control and Systems Engineering, Tokyo Institute of
Technology, from 1996 to 1999, and a Visiting Professor with the School
of Mechanical, Materials, Manufacturing Engineering and Management, Uni-
versity of Nottingham, Nottingham, U.K., from 2001 to 2002. He joined China
University of Geosciences, Wuhan, China, in 2014. He is currently a Professor
with the School of Automation, China University of Geosciences. His current
research interests include robust control and its application, process control,
and intelligent control.

