
Gómez-Olivencia, A, Quam, R, Sala, N, Bardey, M, Ohman, JC and Balzeau, A

 La Ferrassie 1: New perspectives on a "classic" Neandertal.

https://researchonline.ljmu.ac.uk/id/eprint/8526/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Gómez-Olivencia, A, Quam, R, Sala, N, Bardey, M, Ohman, JC and Balzeau, 
A (2018) La Ferrassie 1: New perspectives on a "classic" Neandertal. 
Jouranl of Human Evolution, 117. pp. 13-32. ISSN 0047-2484 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


Manuscript Details

Manuscript number HUMEV_2017_187_R2

Title La Ferrassie 1: New perspectives on a “classic” Neandertal

Article type Full Length Article

Abstract

The La Ferrassie 1 (LF1) skeleton, discovered over a century ago, is one of the most important Neandertal individuals
both for its completeness and due to the role it has played historically in the interpretation of Neandertal anatomy and
lifeways. Here we present new skeletal remains from this individual, which include a complete right middle ear
ossicular chain (malleus, incus and stapes), three vertebral fragments and two costal remains. Additionally, the study
of the skeleton has allowed us to identify new pathological lesions, including a congenital variant in the atlas, a
greenstick fracture of the left clavicle and a lesion in a mid-thoracic rib of unknown etiology. In addition, we have
quantified the amount of vertebral pathology, which is greater than previously appreciated. We have complemented
the paleopathological analysis with a taphonomic analysis to identify any potential perimortem fractures. The
taphonomic analysis indicates that no surface alteration is present in the LF1 skeleton and that the breakage pattern is
that of bone which has lost collagen, which would be consistent with the intentional burial of this individual proposed by
previous researchers. In this study we used CT and micro-CT scans in order to discover new skeletal elements, to
better characterize the pathological lesions, and to quantify the fracture orientation of those bones in which the current
plaster reconstruction did not allow its direct visualization, which underlines the broad potential of imaging technologies
in paleoanthropological research. A century after its discovery, LF1 is still providing new insights into Neandertal
anatomy and behavior.

Keywords ear ossicles; vertebra; rib; paleopathology; taphonomy

Corresponding Author Asier Gómez Olivencia

Order of Authors Asier Gómez Olivencia, Rolf Quam, Nohemi Sala, Morgane Bardey Vaillant,
James Ohman, antoine Balzeau

Submission Files Included in this PDF

File Name [File Type]

Answer to reviewers.doc [Response to Reviewers]

New fossils and Pathologies LF1-text-v.8.doc [Manuscript File]

Figure01.tif [Figure]

Figure02.tif [Figure]

Figure03.tif [Figure]

Figure04.tif [Figure]

Figure05.tif [Figure]

Figure06.tif [Figure]

Figure07.tif [Figure]

Figure08.tif [Figure]

Figure09.tif [Figure]

Tables-v.8.doc [Table]

Sup. Info-v.8.pdf [e-Component]



Submission Files Not Included in this PDF

File Name [File Type]

La Ferrassie 1 Right Incus.stl.zip [3D Models (.zip)]

La Ferrassie 1 Right Malleus.stl.zip [3D Models (.zip)]

La Ferrassie 1 Right Stapes.stl.zip [3D Models (.zip)]

To view all the submission files, including those not included in the PDF, click on the manuscript title on your EVISE
Homepage, then click 'Download zip file'.

This manuscript contains content innovation file(s).
General instructions for reviewing content innovation files can be found here.

https://www.elsevier.com/books-and-journals/content-innovation
https://www.elsevier.com/books-and-journals/content-innovation/reviewer-information


Dear Dr. Plavcan, 
We have corrected the manuscript following the copy-editor's suggestion in most cases with only 
two exceptions:
1-we have left the number of the sections, as it is the current format in JHE
2-we have left “incudes” (and not incuses), following one of the reviewer's comments as it is the 
correct way to denominate the plural of incus.

Thank you. 
Kind regards.
Asier Gómez-Olivencia



1

La Ferrassie 1: New perspectives on a “classic” Neandertal 

Asier Gómez-Olivenciaa, b, c, d, *, Rolf Quame, f, d, Nohemi Salag, d, Morgane Bardeyc, 

James C. Ohmanh, i, Antoine Balzeauc, j

aDept. Estratigrafía y Paleontología, Facultad de Ciencia y Tecnología, Euskal Herriko 

Unibertsitatea, UPV-EHU. Barrio Sarriena s/n, 48940 Leioa, Spain

bIKERBASQUE. Basque Foundation for Science, 48013 Bilbao, Spain

cÉquipe de Paléontologie Humaine, UMR 7194, CNRS, Département Homme et 

Environnement, Muséum national d'Histoire naturelle. Musée de l’Homme, 17, Place du 

Trocadéro, 75016 Paris, France

dCentro UCM-ISCIII de Investigación sobre Evolución y Comportamiento Humanos, 

Avda. Monforte de Lemos 5 (Pabellón 14), 28029 Madrid, Spain

eDepartment of Anthropology, Binghamton University (SUNY), Binghamton, NY 

13902, USA

fDivision of Anthropology, American Museum of Natural History, Central Park 

West@79th St., New York, NY 10024, USA

gGrupo de Investigación en Bioacústica Evolutiva y Paleoantropología. Área de 

Antropología Física, Departamento de Ciencias de la Vida. Universidad de Alcalá, 

28871 Alcalá de Henares, Madrid, Spain

hResearch Centre in Evolutionary Anthropology and Palaeoecology. School of Natural 

Sciences and Psychology. Liverpool John Moores University, Liverpool L3 3AF, UK

iDepartment of Physical Anthropology. Cleveland Museum of Natural History. 1 Wade 

Oval Drive. Cleveland, Ohio 44106, USA



2

jDepartment of African Zoology, Royal Museum for Central Africa, Tervuren, Belgium

* Corresponding author.

E-mail address: asier.gomezo@ehu.eus (A. Gómez-Olivencia)

Keywords: Ear ossicles; Vertebra; Rib; Paleopathology; Taphonomy



3

Abstract

The La Ferrassie 1 (LF1) skeleton, discovered over a century ago, is one of the 

most important Neandertal individuals both for its completeness and due to the role it 

has played historically in the interpretation of Neandertal anatomy and lifeways. Here 

we present new skeletal remains from this individual, which include a complete right 

middle ear ossicular chain (malleus, incus, and stapes), three vertebral fragments, and 

two costal remains. Additionally, the study of the skeleton has allowed us to identify 

new pathological lesions, including a congenital variant in the atlas, a greenstick 

fracture of the left clavicle, and a lesion in a mid-thoracic rib of unknown etiology. In 

addition, we have quantified the amount of vertebral pathology, which is greater than 

previously appreciated. We have complemented the paleopathological analysis with a 

taphonomic analysis to identify any potential perimortem fractures. The taphonomic 

analysis indicates that no surface alteration is present in the LF1 skeleton and that the 

breakage pattern is that of bone that has lost collagen, which would be consistent with 

the intentional burial of this individual proposed by previous researchers. In this study, 

we used CT and microCT scans in order to discover new skeletal elements to better 

characterize the pathological lesions and to quantify the fracture orientation of those 

bones in which the current plaster reconstruction did not allow its direct visualization, 

which underlines the broad potential of imaging technologies in paleoanthropological 

research. A century after its discovery, LF1 is still providing new insights into 

Neandertal anatomy and behavior.
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1. Introduction

New analytical and conceptual tools are providing the opportunity for 

paleoanthropologists to gain insights into fossil remains discovered a long time ago. 

Computed Tomography (CT) and microCT scans are providing new means to assess the 

fossil record, including the quantification of some anatomical features that were not 

previously (easily) accessible (e.g., Spoor et al., 1994; Stoessel et al., 2016a, b). These 

new technical means have also enlarged the available fossil record of certain bones that 

are not easily preserved, such as the ear ossicles (e.g., Gómez-Olivencia et al., 2015; 

Stoessel et al., 2016b), and have allowed researchers to develop novel approaches to 

studying the paleobiology of Pleistocene populations (Martínez et al, 2004, 2013; Quam 

et al, 2015).

At the same time, paleopathological and taphonomic approaches to hominin 

fossils represent complementary avenues of inquiry that, in combination, could be 

considered paleoforensic studies. These new approaches have already provided insights 

into important questions in human evolutionary studies. In particular, they are helping 

to clarify the anthropic origin of the Middle Pleistocene hominin accumulation at the 

site of the Sima de los Huesos (SH) in Spain (Arsuaga et al., 1990, 1997, 2014, 2015; 

Andrews and Fernández-Jalvo, 1997; Carbonell and Mosquera, 2006; Sala et al., 2014, 

2015a, b, 2016). New excavations are providing evidence that complete human 

skeletons were accummulated in the SH (Arsuaga et al., 2014, 2015). Carnivores have 

been ruled out of the bone accummulation of the SH, as the carnivore activity on both 

bear and human bones at this site was subtle and performed by bears, which do not 

accummulate bones (Sala et al., 2014). Also, the SH human crania and long bones show 
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a post-mortem fracture pattern, compatible with collective burial assemblages (Sala et 

al., 2015a, b, 2016). Also, new taphonomic analyses have also given rise to an 

interesting debate about the accumulation of Homo naledi hominins at Dinaledi 

Chamber in South Africa (Dirks et al., 2015; Val, 2016). They are also providing new 

insights into the potential cause-of-death of iconic fossil specimens such as A.L. 288-1 

“Lucy” (Kappelman et al., 2016). In these two cases, breakage analysis provided an 

additional tool in order to complement classical paleopathological analyses as it 

provides information on whether a bone was broken around the time of the death 

(perimortem) or after death (postmortem) once the collagen was lost (Sala et al., 2015a, 

b, 2016). In this context, in order to assess the breakage patterns, new imaging 

techniques based on CT-scans were used. The ongoing reassessment of the faunal 

collections from “classical” Neandertal sites (e.g., Spy, Regourdou, Goyet, Combe 

Grenal) has led to the identification of new fossil remains. Coupled with new dating and 

imaging technologies, as well as new taphonomic approaches, this is providing novel 

and important data on Neandertals (e.g., Crevecoeur et al., 2010; Gómez-Olivencia et 

al., 2013a, b; Maureille et al., 2015; Rougier et al., 2016). The recent reassessment of 

the faunal remains associated with the La Ferrassie 1 (LF1) Neandertal skeleton at the 

Musée de l’Homme (MH, Museum national d’Histoire naturelle, Paris) led to the 

identification of five new skeletal elements belonging to this individual. LF1 was found 

in 1909 and was removed from the site in at least two blocks of sediment (which also 

included stone tools and faunal remains) sealed in plaster and subsequently cleaned at 

the Musée de l’Homme by Marcellin Boule (Laville, 2007). The new fossils from LF1 

correspond to three vertebral fragments and two costal remains that have not been 
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included in any previous studies.

This reassessment of the LF1 skeleton from an anatomical and taphonomic 

perspective also resulted in identifying previously undescribed bone anomalies in the 

axial and appendicular skeleton and provided the first taphonomic characterization of 

the LF1 skeleton. In addition, microCT scanning of the right temporal bone of LF1 led 

to the identification and virtual reconstruction of a complete ossicular chain (malleus, 

incus, and stapes) from the right side (Supplementary online material [SOM] .stl files; 

SOM Fig. S1).

The present study provides the first metric and morphological description of 

these new LF1 fossils, as well as comparison with other Pleistocene and recent humans. 

In addition, the bone anomalies are described and discussed in the context of previous 

pathologies documented for this same individual. A complete taphonomic analysis of 

the LF1 individual is also provided, with an emphasis on timing and causes of bone 

breakage that would complete the paleopathological assessment and might have 

implications for LF1’s status as an intentional burial. These new results have 

implications for Neandertal anatomical variation and evolution, the paleobiology of the 

LF1 individual, and the taphonomic history of LF1 within the important archaeological 

sequence of the La Ferrassie rockshelter (Grand abri de la Ferrassie in French).

1.1. The La Ferrassie 1 skeleton

La Ferrassie rockshelter is located at the base of a limestone hill (Savignac de 

Miremont, Dordogne), five kilometers north of Le Bugue, France. This site preserves an 

important Middle and Upper Paleolithic sequence starting in MIS 5 (Turq et al., 2012; 
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Guérin et al., 2015; Frouin et al., 2017). On 17 September 1909, an adult male 

Neandertal skeleton, designated La Ferrassie 1 (LF1), was recovered from what Denis 

Peyrony considered a funeral pit contemporary to level C (Maureille and Van Peer, 

1998). The following year, a second skeleton was found 50 cm west of LF1 (for a 

complete description of the history of the findings and the context see Heim [1976], 

Laville [2007], and references therein). This second skeleton belonged to an adult 

woman and was designated La Ferrassie 2 (LF2). These two skeletons were used as 

comparative (and complementary) specimens by Boule in his famous monograph on the 

La Chapelle-aux-Saints 1 specimen (Boule, 1911–13). The specimens LF1 and LF2 

were later thoroughly described in a two-volume monograph (Heim, 1976, 1982b).

From 1912 to 1921, the remains of another four immature individuals were 

recovered from La Ferrassie: La Ferrassie 3, 4bis, 5, and 6 (Heim, 1982a). The right 

humerus and femur that were once labeled as La Ferrassie 4 actually belong to the Le 

Moustier 2 skeleton (Maureille, 2002), and thus LF4bis could now be named LF4. 

Finally, in 1970 and 1973, a fifth immature individual was found, La Ferrassie 8 (Heim, 

1982a). Recent reassessment of the materials from the excavations by Delporte have 

yielded new remains from La Ferrassie 8 (Gómez-Olivencia et al., 2015) and several 

isolated dental remains that appear to represent additional adult individuals (Becam et 

al., 2015). 

All the LF skeletons were intentionally buried according to Peyrony (1934) and 

Heim (1976). In fact, a report written by D. Peyrony in 1920 to the Ministère des 

Beaux-Arts explains that all five skeletons discovered until that moment show more or 

less the same orientation (East-West). The two adults (LF1 and LF2) had their heads 
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about 50 cm apart (Peyrony, 1934): LF2’s head was located to the East and that of LF1 

to the West. Moreover, the recent re-study of the archives from the different excavation 

periods show that LF1, LF2, and LF8, the three individuals for which more detailed 

information is available, had their head at a higher elevation than the rest of the body 

(Laville, 2007; Balzeau et al., 2016a, b). H. Breuil described LF1 as laying on an 

apparently natural depression (Maureille and Van Peer, 1998). D. Peyrony and M. 

Boule observed small packets of yellow sand (from the lower level) mixed with the 

Mousterian sediments associated with both LF1 and LF2, something not seen in the rest 

of the Mousterian levels. This has been interpreted as the effect of intentional funerary 

pits that removed sediment from the underlying level and mixed with that which 

afterwards filled the pit (Maureille and Van Peer, 1998). Both LF1 and LF2 are 

associated with the Ferrassie facies of the Mousterian. The geological levels they were 

discovered in are attributed to MIS3, between 54 ± 3 and 40 ± 2 ka (Guérin et al., 2015).

LF1 is a virtually complete skeleton that preserves all anatomical regions (Heim, 

1976, 1982b; Fennell and Trinkaus, 1997; see SOM Table S1 and SOM Fig. S2). The 

bones missing in this skeleton are basically the patellae and small hand and foot bones. 

First, the presence of LF1 was recognized as a human femur and a human tibia were 

identified in the stratigraphic section. It is likely that one of the patellae was lost in the 

excavation that led to the unearthing of that stratigraphic section. The rest of the missing 

bones were either lost during the excavation process and/or were broken, which would 

have worsened their identifiability. It was determined to be male based on greater sciatic 

notch morphology of the pelvis (Heim, 1982b). The age-at-death of LF1 has been 

estimated to be between 40 and 55 years, and this individual has been classified as an 
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old adult (see Heim, 1976; Trinkaus, 1995). Our own assessment of the pubic 

symphysis is consistent with Todd's (1920) age phase X (50+; Meindl et al., 1985), 

which is consistent with previous estimations. Stature and body mass of this individual 

have been calculated at 171.0–173.1 cm and 85 kg (Ruff et al., 1997:their 

supplementary information; Carretero et al., 2012). 

The pathological lesions present in LF1 include: alveolar mandibular abscesses 

related to a high degree of dental attrition; minor vertebral osteophytosis and 

osteoarthritis on one articular facet of a lumbar vertebra; presence of an exostosis that 

has reduced the size of the left transverse foramen of the atlas (C1); possible 

osteoarthritic changes of the right proximal radio-ulnar and left sacro-iliac articulation 

due to trauma; a healed fracture of the right femoral greater trochanter with abnormal 

bone growth in the trochanteric fossa (SOM Fig. S3); and bilateral periostitis on the 

distal femora and both proximal and distal ends of the tibiae (and presence on at least 

one fibula) as a result of a systemic condition, likely due to hypertrophic pulmonary 

osteoarthropathy (HPO) due to a thoracic infection and/or carcinoma (Dastugue, 1960; 

Heim, 1976, 1982b; Trinkaus, 1985; Fennell and Trinkaus, 1997). Regarding the 

femoral lesion, Dastugue (1960) described an osseous formation in the trochanteric 

fossa of the right femur. Trinkaus (1985:34) described the “abnormally enlarged” 

greater trochanter of the right femur as “the product of either an injury to the region 

affecting m. gluteus medius and/or m. obturator externus, or a fracture of the greater 

trochanter in which the detached portion was displaced proximomedially prior to 

healing.” In a subsequent study, Fennell and Trinkaus (1997) only mention the 

hypothesis of a healed fracture of the trochanter. Regarding the vertebral column, 



10

Fennell and Trinkaus (1997:986) describe the presence of “minor vertebral 

osteophytosis and osteoarthritis of a lumbar facet,” although Heim (1976:318) also 

noted that one lumbar vertebral body displays an osteophyte remarkable in size 

(“portent une exostose assez importante”). Gómez-Olivencia (2013) described in detail 

the vertebral remains of LF1, providing new anatomical determinations and detecting 

errors in the reconstruction of some of the vertebrae. He also provided a brief 

description of the pathological lesions present in the vertebrae, although he did not 

quantify them as Dawson and Trinkaus (1997) did with the spine of La Chapelle-aux-

Saints 1.

2. Material and methods

The fossil remains of LF1 are housed at the Musée de l’Homme (MH, Museum 

national d’Histoire naturelle, Paris) and are available for study (requests should be made 

via http://colhelper.mnhn.fr/). The 3D models of the newly identified ossicles are 

available as SOM material to this article, which will allow further independent research 

on this material (Balzeau et al., 2010); the microCT from which they derive is also 

available (requests should be made using the previous link).

2.1. Ear ossicles

The anatomical description of the three ear ossicles refers to each of the bones 

within the tympanic cavity. In the case of the malleus, the tip of the manubrium is 

placed inferiorly, the manubrium itself laterally, the head medially and superiorly, and 

the articular facet posteriorly. In the case of the incus, the tip of the long process is 

http://colhelper.mnhn.fr/
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placed inferiorly and angled posteriorly, the short process placed superiorly and 

protruding posteriorly, the articular facet facing anteriorly, and the lowermost margin of 

the articular facet facing laterally to articulate with the malleus head. Finally, in the case 

of the stapes, the head is placed laterally to articulate with the tip of the incus long crus, 

the crura are located anteriorly and posteriorly, and the footplate is located medially 

with its long axis oriented anteroposteriorly. 

The LF1 ear ossicles were compared with Pleistocene and recent hominin 

ossicles (SOM Table S2). Data from original fossil hominin specimens representing 

European Middle Pleistocene fossils, Neandertals, and Pleistocene Homo sapiens are 

included. Most data were collected by one of us (RQ) on original specimens, with 

additional data taken from the literature. Additional observations on early hominin 

ossicles representing Australopithecus and Paranthropus from southern Africa are 

discussed when relevant. The modern human sample consists of ossicles removed from 

cadavers during surgical dissection for gross anatomy instruction at the New York 

Chiropractic College in Seneca Falls, NY (USA; Quam, 2006). 

Measurements of the ossicles follow previously outlined protocols (Quam et al., 

2014) and consist of linear, angular, and area measurements of the individual bones 

(SOM Tables S3-S5). A recent study by Stoessel et al. (2016b) has provided additional 

data on a few measurements of Neandertal and fossil H. sapiens ear ossicles. Data have 

been included in the present study for the maximum length of the malleus, the long 

process length of the incus, and the height and footplate area of the stapes. Data for the 

lever arm (i.e., functional) lengths in the malleus and incus were also provided by 

Stoessel et al. (2016b), but were measured differently from the present study. 
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Nevertheless, the resultant lever ratio between the malleus and incus is similar to those 

in other studies and can be compared with the results presented here. We also provide 

some measurements for the LF8 stapes in addition to those that were published by 

Gómez-Olivencia et al. (2015).

The area of the stapes footplate can be estimated from the dimensions of the oval 

window when the stapes is not preserved. Prior studies have suggested that the footplate 

area can be estimated as 90% of the oval window area to account for the annular 

ligament (Martínez et al., 2004; Quam et al., 2013a; Stoessel et al., 2016b). This 

correction factor has been used for the oval window data published by Stoessel et al. 

(2016b) to provide a larger comparative context for LF1.

In addition to descriptive statistics for the comparative samples, statistical 

analysis included t-tests of a few variables that allowed for large enough sample sizes. 

In particular, significant differences between Neandertals and H. sapiens were examined 

for the malleus total length, incus long process length, and stapes total height and 

footplate area. Correlations between variables in the modern human sample (Quam et 

al., 2014) are also discussed where relevant for interpreting differences in the fossil 

specimens.

2.2. Paleopathological analysis

All postcranial elements of LF1 were examined macroscopically on multiple 

occasions. Radiographs and CT data (see below) were used to visualize the internal 

structure of those bones that showed external anomalies. The degenerative lesions 

present in the LF1 skeleton were quantified using a numerical code to describe the 
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presence and degree of development of the pathological lesions on the surfaces and 

edges of both vertebral bodies and articular facets (SOM Table S5), following Dawson 

and Trinkaus (1997) and Bridges (1994). The anatomical determination of the LF1 

vertebrae followed Gómez-Olivencia (2013). To assess the potential presence of 

scoliosis, we measured the presence of asymmetry in the height of the vertebral body 

and in the articular pillars of the vertebrae and quantified the torsion and degree to 

which the spinous processes depart from the mid-sagittal plane defined from the 

vertebral body. 

2.3. Taphonomic analysis

Surface analysis For the taphonomic analysis, 84 bone remains were studied, 

comprising all long and flat bones including the cranium. All bones were 

macroscopically and microscopically examined using a hand lens and a digital 

microscope (DINO-LITETM). 

Breakage pattern The analysis of breakage patterns was focused on the long bones and 

cranial bones since these elements allows more accurate estimations for the timing and 

mechanisms of fracture (Sala et al., 2015a, 2016). This analysis followed different 

methodologies, depending on the skeletal element. For long bones, we followed the 

methodology proposed by Villa and Mahieu (1991) and Sala et al. (2015a) in terms of: 

fracture outline (longitudinal, transverse, or oblique/curved), fracture angle (right or 

oblique), fracture edge (smooth or jagged), shaft circumference (1: <50% of the 

circumference, 2: >50% of the circumference, 3: complete circumference), and shaft 
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fragment (1: <25% of the total diaphysis, 2: 25–50% of the total diaphysis, 3: 50–75% 

of the diaphysis, 4: >75% of the diaphysis). Previous studies have demonstrated that 

long bones with transverse fractures to the long axis, complete circumferences, and 

fracture edges with right angles and jagged surfaces are commonly associated with dry 

bone fractures (which occur postmortem), while oblique fractures with bevelled angles 

of the fracture plane, incomplete circumferences, and smooth surfaces are commonly 

associated with fresh or green bone fractures (perimortem; Villa and Mahieu, 1991; Sala 

et al., 2015a).

In the present study, our results are compared with bibliographic data and 

original observations made on different osteological assemblages, grouped by different 

taphonomic origins, in particular regarding the causes of the fracture. The long bone 

fracture pattern of LF1 was compared to two different groups. The first group is 

comprised of sites with assemblages considered standards of fresh bone fractures, such 

as in a cannibalism scenario: Fontbrégoua Neolithic site (data from Villa and Mahieu, 

1991) or the Magdalenian assemblage from Brillenhöhle (data from Sala and Conard, 

2016). The second comparative group consists of long bones from collective burials 

with evidence of breakage by sediment pressure: Late Neolithic collective burial of 

Sarrians site (Villa and Mahieu, 1991) and Sima de los Huesos hominins (Sala et al., 

2015a).

For cranial remains, we followed the analytical method developed by Sala et al. 

(2016) in terms of: fracture outline (linear, depressed, stellate) ,fracture location, 

fracture angle (right or oblique), fracture edge (smooth or jagged), and presence/absence 

of cortical delamination. Fresh bone fractures can be identified by oblique angles, 
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smooth surfaces, the presence of cortical delamination, a pattern of depressed or stellate 

fracture outlines, and fractures crossing cranial sutures. In contrast, straight or linear 

fracture outline, right angles, jagged surfaces, absence of cortical delamination, and 

fractures interrupted by cranial sutures are more common in dry-bone or postmortem 

cranial fractures (Sala et al., 2016). For the cranial assemblages, we compared our 

results with bibliographic resources of osteological sites that are considered standards, 

in the literature, of fresh bone fractures (Agris Mesolithic site and Châteliers du Vieil-

Auzay, France, from the Neolithic period) and dry bone fractures (the Neolithic site of 

Corconne and the Chalcolithic site of Villedubert, France; Jordana et al., 2013). Finally, 

the cranial breakage pattern of LF1 is also compared to original data on fossil specimens 

collected by one of us (NS), such as other adult Neandertal crania (La Chapelle-aux-

Saints 1 and La Quina H5) and Sima de los Huesos cranial specimens (Sala et al., 

2016).

Because both the cranial and postcranial remains of LF1 have been 

reconstructed using different glues and fillings (plaster/gypsum, wax; e.g., see Fennell 

and Trinkaus, 1997:their Figs. 3 and 4), the direct visualization of the fracture properties 

is occasionally obscured. For this reason, the fracture features were analyzed by using 

the CT scan images of long and cranial bones (SOM Fig. S4).

2.4. Radiographs and CT-scans

The clavicles of LF1 were radiographed using a Faxitron RX-650 (located at the 

MNHN) and were CT scanned in the Service de Radiologie Polyvalente, Hôpital de la 

Pitié-Salpètrière, Paris (pixel size = 0.35 mm, slice thickness = 0.5 mm). The CT scans 
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of the long bones and the cranium used for the taphonomic analysis range between 

0.335 mm of slice thickness (and 0.259 mm of pixel size) for the femora to 0.131 mm of 

voxel size for the skull. One rib with an evident pathological lesion on its surface was 

microCT scanned using the AST-RX platform (UMS 2700, CNRS, and MNHN) with a 

voxel size of 0.056 mm. The LF1 temporal bones were also microCT scanned using the 

AST-RX platform (voxel size = 0.02365 mm). Multiplanar reformatting, thresholding 

procedures, three-dimensional volume rendering, and illustration acquisition were made 

with Avizo 6.1 (Mercury Computer Systems). 

3. Description and comparison of new fossil remains from La Ferrassie 1 (LF1)

The careful assessment of the microCT scans has allowed us to virtually recover 

a complete chain of ear ossicles from the right temporal bone (the .stl models are added 

as SOM). No ear ossicles are preserved inside the left temporal bone. In addition, the 

revision of a box with indeterminate remains associated with LF1 has allowed us to 

identify five new human remains: three vertebral and two costal fragments. 

3.1. Malleus

The LF1 malleus (Fig. 1, Table 1) is complete and well-preserved except for the 

missing tip of the lateral process. The position of this measurement point was estimated 

based on comparison with the complete manubrium in the LF3 malleus.

The manubrium in LF1 is curved with a flattened, spatulate tip and a well-

developed and projecting lateral process. The head and neck join the manubrium 
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superiorly in a wide, open angle. A well-developed bony crest is present on the superior 

aspect of the neck and extends inferiorly onto the medial aspect. There is no gracile 

process and no tubercle for the tensor tympani muscle on the manubrium. There is no 

groove on the lateral aspect of the head, as described in the Qafzeh malleus (Arensburg 

and Nathan, 1972). However, there is a pronounced area of bone resorption on the 

anterior aspect of the head and neck. The articular facet is clearly delimited from the 

surrounding bone and covers most of the medial aspect of the head, with an inferior 

extension onto the inferior aspect of the head. The head is flattened in the ML direction, 

but shows a well-developed projection of bone on the superior aspect of the lateral face 

of the head.

The LF1 malleus compares favorably with the LF3 Neandertal malleus in all 

these anatomical details. The shape analysis performed by Stoessel et al. (2016b) shows 

that the Neandertal malleus differs from H. sapiens in showing, among other things, a 

relatively shorter manubrium and a more open angle between the manubrium and 

corpus. The manubrium length in the La Ferrassie Neandertals is nearly identical to the 

mean value in our recent H. sapiens sample, but LF1 shows longer length of the corpus 

(though not significantly), which would be consistent with the observation made by 

Stoessel et al. (2016b). Additionally, LF1 does show a wide angle between the 

manubrium and corpus, falling towards the upper end of the recent human range (see 

below).

The total length of the LF1 malleus (8.78 mm) is shorter than the Middle 

Pleistocene Ehringsdorf specimen, but nearly the same as in Biache 1 and falls within 

the Neandertal range of variation (Table 1). In contrast, fossil H. sapiens individuals 
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have uniformly shorter mallei, falling below the Neandertal range of variation, and the 

LF1 malleus is more than 1 s.d. above our recent human mean. A t-test reveals that 

Neandertals have significantly (p = 0.033) longer mallei than recent humans. The 

manubrium length in LF1 (4.90 mm) is nearly identical to that in the LF3 malleus, but 

both specimens show shorter manubria than the Middle Pleistocene AT-3746 specimen. 

The manubrium length is again uniformly shorter in fossil H. sapiens, but the recent 

human mean is very close to both the La Ferrassie specimens. The manubrium arc 

depth, reflecting the curvature of the manubrium, is similar in both the La Ferrassie 

mallei and deeper (i.e., more curved) than in fossil H. sapiens individuals. Nevertheless, 

higher values are found in our recent human sample.

The length of the corpus in LF1 (6.26 mm) is slightly shorter than in the Middle 

Pleistocene Biache 1 individual, but above the range of variation in fossil H. sapiens 

and longer than all but four individuals (c. 9%) in our recent human sample. The angle 

between the manubrium and the corpus (angle between the axes) in LF1 (140.6º) is 

similar to several fossil H. sapiens individuals and falls toward the upper end of the 

recent human range of variation. The width of the head in LF1 (2.60 mm) is smaller 

than in LF3 and the Middle Pleistocene Biache 1 individual (Table 1). Nevertheless, the 

head width does fall within the upper limit of the range of variation in fossil and recent 

H. sapiens.

3.2. Incus

The LF1 incus (Fig. 1, Table 2) is complete and well-preserved. The superior 

margin of the short process is slightly concave moving towards the rounded and bulbous 
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tip. A clear notch is present along the medial aspect of the inferior margin of the short 

process, close to the tip. The medial aspect of the incus body shows a deeply excavated 

depression. The long process is gently curved along its anterior margin, and the angle 

between the long and short processes is fairly closed (see below).

The LF1 incus compares favorably with both the LF3 and Amud 7 Neandertal 

incudes in most features. Like LF1, both of the latter show a concave superior border of 

the short process, a well-defined notch along the lower margin of the short process, as 

well as a bulbous short process tip. The presence of a notch in the incus short process is 

a well-known anatomical variant in H. sapiens (Arensburg and Nathan, 1971). The 

notch is located at the insertion point of the posterior incudal ligament, and its presence 

has been linked with this anatomical structure. All four incudes from the site of Qafzeh 

show the presence of a notch. Within our recent human sample, a notch occurs in 10.8% 

of individuals, and frequencies of this feature range from 30–100% in recent human 

populations (Mutaw, 1988). The shape of the short process tip is more variable in fossil 

and recent H. sapiens, ranging from bulbous to pointed. This range of variation is seen 

within the Qafzeh sample, with some specimens (Q11, Q12) showing a bulbous tip 

similar to that seen in the Neandertals and others (Q15, Q21) showing a more pointed 

tip.

Neandertal incudes are generally characterized by a straight long process (Heim, 

1982a) as seen in the LF3, Amud 7, and Le Moustier 1 specimens (Ponce de León and 

Zollikofer, 1999; Quam et al., 2013a). The long process in LF1 is somewhat more 

curved than these other Neandertal individuals. The medial surface of the incus body in 

LF1 shows a well-excavated depression, giving a “wasted” aspect to the bone in this 
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region, and a similar depression is also seen on the medial aspect of the incus body in 

LF3 and Amud 7. While a shallow depression is also commonly seen on the medial 

body in recent humans, it is considerably more pronounced in the Neandertal 

specimens. Among the Qafzeh specimens, only Q15 approaches the degree of 

expression seen in the Neandertals, while the remaining three specimens show a 

considerably milder expression, more similar to recent humans.

The short process length in LF1 (5.26 mm) is clearly longer than the middle 

Pleistocene specimen Biache 1, as well as the LF3 and Amud 7 Neandertals (Table 2). 

The short process in LF1 also falls above the mean, but well within the ranges of 

variation, in fossil and recent humans. Similarly, Neandertals seem to have slightly 

shorter long processes than their middle Pleistocene ancestors. The long process length 

in LF1 (7.22 mm) is slightly longer than in either LF3 or Amud 7, but is nearly identical 

to the Neandertal mean reported by Stoessel et al. (2016b). The value in LF1 is above 

the upper limit of the range of variation seen in fossil H. sapiens, but is within the 

variation found in our recent human sample. Regarding the long processes, a t-test 

reveals that those of Neandertals are significantly (p < 0.001) longer than those of recent 

humans. Nevertheless, the resulting incudal index, comparing the long and short process 

lengths, is fairly similar in Neandertals and H. sapiens.

The arc depth (curvature) of the long process in LF1 (0.55 mm) is deeper (more 

curved) than in either LF3 or Amud 7 and is similar to the mean value in our recent 

human sample (Table 2). All of the Neandertal specimens fall towards the lower end of 

the range of variation in recent humans. The functional length in LF1 (4.25 mm) is 

slightly shorter than that reported for the middle Pleistocene Biache 1 individual, but 
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longer than LF3 or Amud 7. All of these specimens are close to or fall above the upper 

limit of variation in fossil H. sapiens specimens, and only Dolní Vĕstonice 14 overlaps 

with the Neandertal values. In contrast, the articular facet in the Neandertals is taller 

than in H. sapiens, with the values in both LF1 and Amud 7 falling above the upper 

limit of the fossil and recent H. sapiens ranges of variation.

The interprocess length in Neandertals, including LF1, is slightly shorter than in 

Biache 1, and all of the Neandertals fall toward the lower end of the fossil and recent H. 

sapiens ranges of variation (Table 2). The interprocess arc depth seems fairly similar in 

fossil and recent H. sapiens, but is deeper in LF1 and, particularly, Amud 7. The angle 

between the short and long processes is more closed in Neandertals than in fossil and 

recent H. sapiens, with little overlap in the range of values. The value in LF1 (53.7º) is 

closest to Qafzeh 11 (52.4º) among the H. sapiens samples. The more closed angle 

between the short and long processes in Neandertals is likely a primitive feature of their 

ossicles, since similarly low values have been reported in the early hominin 

Paranthropus robustus individual SKW 18 from South Africa, as well as in 

chimpanzees (Quam et al., 2013b).

3.3. Middle ear lever ratio

The functional lengths (i.e., lever arms) of the malleus and incus can be 

compared to one another to derive the middle ear lever ratio, an important physiological 

variable in modeling audition (Martínez et al., 2004, 2013). For the malleus, the 

functional length corresponds to the manubrium length, while for the incus it is 

measured from the rotational axis to the tip of the long process. Stoessel et al. (2016b) 
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have measured the functional lengths in the malleus and incus based on defining the 

center of mass of the ossicles. This corresponds approximately to the center of the 

articular facets. While the values for the individual malleus and incus lever arms 

reported by Stoessel et al. (2016b) are higher than those in the present study, the 

resultant lever ratio is comparable with the data in the present study since the mean 

lever ratio and the range of values are very similar between a sample of recent humans 

measured by Stoessel et al. (2016b) and us (Table 3). These values are also similar to 

those reported for modern humans in other studies (Dahmann, 1929, 1930; Rosowski, 

1996).

The malleus and incus functional lengths in both LF1 and LF3 are slightly 

shorter than in the Middle Pleistocene individual from the Atapuerca Sima de los 

Huesos (SH) site (Table 3). Nevertheless, the lever ratios are quite similar in all three 

individuals. Indeed, there seems to be little difference in the lever ratio in any of the 

fossil or recent Homo samples in the present study. In contrast, chimpanzees show a 

higher lever ratio due to the combination of a long manubrium and short functional 

length, and the lever ratio in P. robustus is intermediate between chimpanzees and 

humans (Quam et al., 2013b). Thus, the presence of a human-like lever ratio in LF1 is a 

derived condition of the genus Homo, attributable to a lengthening of the incus 

functional length.

3.4. Stapes

The LF1 stapes (Fig. 1) is complete and well-preserved and shows an 

oval/kidney-shaped footplate. There is no tubercle for the insertion of the stapedius 
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muscle, but the stapedial head is clearly anteriorly skewed and located nearly in line 

with the anterior crus. The obturator foramen is bounded by a much longer and more 

curved posterior crus and shorter, straighter anterior crus.

The anteriorly skewed head and asymmetrical crura in the LF1 stapes are 

features that characterize Neandertals more generally. The asymmetrical crura are 

related to the anterior skew of the stapedial head, and these features were first described 

in the LF3 Neandertal (Heim, 1982a) and subsequently reported in the Subalyuk 2 and 

Le Moustier 2 Neandertals (Maureille et al., 2002; Quam et al., 2013a). This appears to 

be a derived condition in Neandertals (Stoessel et al., 2016b), since early hominin 

stapes show a stapedial head that is centrally placed atop more symmetrical crura 

(Quam et al., 2013b). This is the condition generally seen in modern humans as well. 

While an anteriorly skewed stapedial head and asymmetrical crura do also occur as a 

less frequent variant in modern humans, the expression of these traits is constant and 

more pronounced in Neandertals (Stoessel et al., 2016b).

The stapes height in LF1 (3.04 mm) is taller than in LF3, LF8, and Subalyuk 2 

(Table 4). LF1 is close to the mean value for a small sample of Neandertal specimens 

(3.11 mm), but is smaller than fossil H. sapiens individuals and is nearly two standard 

deviations below the mean of our modern human sample (3.44 mm). A t-test reveals 

that Neandertals have significantly (p < 0.001) shorter stapes than recent humans. The 

obturator foramen is widest near the footplate, and the width is greater than the height in 

LF1. The resulting index is high (120), much higher than the other fossil specimens, and 

even above the upper limits of our modern human sample. The high value for this index 

in LF1 is primarily due to the width, rather than the height, of the foramen.
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The posterior crus is considerably longer and more curved than the relatively 

short, straight anterior crus in LF1, contributing to an asymmetrical appearance of the 

bone and the anteriorly skewed head. The crural index in LF1 is low (77.8), but similar 

to other Neandertals. Fossil and recent H. sapiens show higher values for this index and 

generally have a more symmetrical appearance, with the head approximately centered 

above the crura. Compared with our modern human sample, it is obvious that the main 

difference in LF1 is the shortened anterior crus. The angle between the anterior and 

posterior crura (Angle A = 52.1º) in LF1 and all of the other fossil specimens fall within 

the range of variation in our modern human sample. In contrast, the angles between the 

footplate and the anterior crus (Angle B = 78.3º) and the posterior crus (Angle C = 

49.6º) are higher and lower than the values in our modern human sample, falling outside 

the range of variation, but comparing more favorably with LF3 and LF8.

The footplate length (2.74 mm) and width (1.49 mm) in LF1 are larger than in 

the LF3 and LF8 stapes (Table 5). Compared with fossil and recent H. sapiens, the 

footplate in LF1 is considerably shorter, but the width is similar. The resultant index in 

LF1 (54.4) is similar to that in LF8 and close to the mean of a Neandertal sample based 

on the oval window. Fossil and recent H. sapiens show lower values for the index, 

mainly as a result of their longer footplates. A t-test reveals that Neandertals have 

significantly (p < 0.001) smaller stapes footplate areas than recent humans. 

Nevertheless, the area of the footplate in LF1 (3.39 mm2) is larger than any other 

Neandertal measured to date (Table 4), including LF3, LF8, and other individuals from 

this same site whose footplate area is estimated from the oval window. The closest 

Neandertal individual to LF1 is Le Moustier 1 (3.30 mm2; Stoessel et al., 2016b), and 
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the value in LF1 is exceeded by one Middle Pleistocene Sima de los Huesos (SH) 

individual. In contrast, the footplate size in LF1 is identical to the mean values in 

samples of fossil and recent H. sapiens. 

3.5. Vertebral and costal remains

Three new vertebral and two new costal remains belonging to LF1 (Fig. 2) have 

been identified that add to those previously known (Heim, 1976; Gómez-Olivencia, 

2013). These comprise two fragments of thoracic vertebrae and a fragmentary lumbar 

vertebral body. The two thoracic and the two costal fragments come from a bag 

containing faunal elements associated to the LF1 skeleton (“Ossements animaux 

provenent de la sépulture La Ferrassie I nº23645”). The lumbar vertebral fragment 

comes from a bag that was labeled as remains likely belonging to LF1 (“Ossements très 

vraisemblablement attribués au squelette de LA FERRASSIE 1”).

Fragment of a thoracic vertebra This fragment (label: 23645 1953-25) represents a small 

fragment of the vertebral body and left pedicle of a thoracic vertebra (Fig. 2a1, a2). It 

preserves the upper left demifacet for the articulation with the rib, although it is partially 

eroded. It also shows erosion to the caudo-lateral edge of the vertebral body. The 

annular epiphysis is completely fused, indicating adult status. There are signs of 

osteophytosis on the edges of the vertebral body, which is consistent with the attribution 

of this fragment to La Ferrassie 1. The preserved measurements are 20.7 mm 

craniocaudally, 20.0 mm dorsoventrally, and 12.3 mm mediolateraly. Due to the 

incompleteness of this specimen, standard measurements are not possible. Based on the 
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vertebral bodies, Gómez-Olivencia (2013) proposed that at least 10 out of the 12 

thoracic vertebrae were present in the LF1 skeleton. This new fragment represents a 

new specimen, and LF1 now preserves a minimum of 11 (out of 12) thoracic elements 

based on the vertebral body. Based on the preserved anatomy of the fragment, it likely 

represents a T5-T8 (Gómez-Olivencia, 2013).

Articular facet of a thoracic vertebra This is the upper right facet of a thoracic vertebra 

(no label). The preserved measurements are 16.6 mm cranio-caudally, 11.9 mm 

dorsoventrally, and 11.4 mm mediolateraly. The facet measures 8.7 mm craniocaudally 

and has an estimated mediolateral value of 12.0 mm. The preserved measurements of 

the pedicle are 11.0 mm (cranio-caudally) and 4.5 mm (thickness).

Vertebral body of a lumbar vertebra This is a fragmentary vertebral body (labels: “La 

Fer. I 23645 1953-25” in white ink on “1910 8” in red ink). This specimen likely 

represents the lowermost (fifth) lumbar vertebra. Preserved measurements are 

approximately 33.1 mm craniocaudally, 33.6 mm mediolaterally, and 30.7 mm 

dorsoventrally. The annular epiphysis is visible and completely fused, which is 

consistent with the adult age-at-death of LF1. The body cranio-caudal ventral diameter 

(height; M1; 33.1 mm) is larger than other Neandertal specimens and above the range of 

variation of a modern human comparative sample (Gómez-Olivencia et al., 2017), 

which would be consistent with LF1 being one of the tallest Neandertal individuals 

(Ruff et al., 1997).
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Neck and fragment of the articular tubercle of a left rib This fragment (maximum 

preserved dimension: 29.5 mm) preserves the neck (cranio-caudal dimension: 11.9 mm; 

thickness: 5.4 mm) and part of the articular tubercle of the rib (Fig. 3a1, a2). Based on 

the preserved length of the neck and its cranio-caudal dimension, we tentatively assign 

this fragment to a mid-thoracic rib (between the 4th and the 7th): more cranial ribs would 

show smaller cranio-caudal dimensions of the neck, while caudal-most ribs would show 

shorter necks in the vertebro-sternal direction.

This aspect of the Neandertal anatomy is still largely unexplored due to its 

limited preservation in the fossil record (García-Martínez et al., 2017).

Shaft fragment of a rib This specimen preserves 20.1 mm of the shaft, with a preserved 

craniocaudal dimension of 12.5 mm and a thickness of 8.8 mm. In caudal view, it shows 

a well developed costal groove. Unfortunately, its limited preservation precludes its 

siding.

It was not possible to refit any of the new vertebral or costal fragments to the 

original LF1 collection. 

4. Newly detected bone anomalies: preliminary description

The descriptions of the newly observed/revised pathological lesions are 

presented by anatomical region: first the postcranial axial skeleton (vertebral column 

and costal skeleton), second the upper limb, and finally the lower limb. No perimortem 

trauma was found in the analysis of the bone breakage.
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4.1. Vertebral column

Anomaly on the atlas Heim (1976) noted the small size of the left transverse foramen of 

the atlas (C1; Fig. 4) that he attributed to the presence of an exostosis. In our view, there 

is no sign that indicates that abnormal bone growth reduced the size of the foramen. 

Rather, we consider that the small size of the transverse foramen is consistent with a 

case of unilateral persistent first intersegmental artery. In this variant, the vertebral 

artery enters the spinal canal of the C1 directly from the transverse process of the C2, 

without going through the transverse process of the C1, hence resulting in the small size 

of the transverse foramen. This is a common variant, appearing in 3.8% unilaterally and 

0.8% bilaterally in a sample of 1013 individuals (Hong et al., 2008). It results in a deep 

groove on the inner aspect of the ipsilateral side of the posterior arch of the atlas and the 

abnormal transverse foramina are significantly smaller in size (Hong et al., 2008). The 

C1 of LF1 shows asymmetry in the posterior arch (Fig. 4d), which suggests the 

presence of the left vertebral artery inside the vertebral foramen, a further indication of 

this variant. 

Additional lesions and anomalies of the spine SOM Tables S6 and S7 display the 

quantification of the osteoarthritic lesions on the spine, following the system by Dawson 

and Trinkaus (1997; based on Bridges, 1994). For a complete description of the 

pathological lesions of each vertebra see Gómez-Olivencia (2013). There is no sign of 

ossification at the insertion point (entheso-exostosis) of the anterior ligament (on the 

ventral surfaces of the vertebral bodies), nor of the ligamenta flava (cranial and caudal 

edges of the laminae). Compared to La Chapelle-aux-Saints 1, LF1 does not have 
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substantial degeneration in the lower cervical spine (Trinkaus, 1985; Gómez-Olivencia, 

2013b). Nevertheless, the amount of vertebral pathology displayed in LF1 is greater 

than previously was reported by Fennell and Trinkaus (1997).

The LF1 individual shows different signs of asymmetries in the spine indicative 

of scoliosis in the vertebral bodies, articular pillars, and spinous processes (Fig. 5, SOM 

Tables S8). The latter include deviations from the mid-sagittal plane and rotations of the 

spinous process (Fig. 5c, d). Based on this evidence, we can detect two abnormal 

scoliotic curvatures in the vertebral column: one in the lower lumbar region and another 

in the cervical region. 

Remodeling in the articular facets of L4, L5, and the sacrum are larger on the 

left side. Additionally, the close approximation between the L5 transverse process and 

the left sacral ala has formed a pseudoarthrosis (Fig. 5c, d). Together with the clockwise 

rotation of the spinous process, this evidence likely indicates a scoliotic curvature of the 

spine, with the concavity to the left (from the dorsal view). In our view, this scoliosis 

could have been compensatory to the pathology of the right femur. However, it cannot 

be ruled out that the compensation could be due to other causes, such as the asymmetry 

of either the length of the lower limbs and/or the pelvis. Unfortunately, the fragmentary 

nature of the pelvis and the reconstruction of the long bones prohibit further assessment.

In the cervical column, there is evidence of intense remodeling in the left 

articulation between C2 and C3. In fact, the left articular pillar of C3 is cranio-caudally 

smaller when compared to its right side counterpart. This suggests a cervical spine with 

a scoliotic concavity to the left. Remodeling on the right side of the uncinate process of 

the C3 is consistent with this hypothesis, as the rotation of the C2 relative to the C3 
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would have caused the remodeling of C3 on its right side. The cause of this lesion is not 

known, but could be related to the spinal lesions in the lumbar region and/or postural 

changes due to the lesion in the left clavicle (see below), among other possible causes. 

4.2. Costal skeleton

We have detected a bone anomaly on the shaft fragment, just sternal to the 

posterior angle, of a rib from the left side, classified by Heim (1976) as a 6th or 7th rib. 

This specimen represents a refit of two fragments. This rib shaft fragment preserves a 

maximum straight length of ca. 103 mm, which starts close to the articular tubercle and 

includes the posterior angle. There are two abnormal bulges on the internal surface of 

the rib and a remodeled area on the external surface of the rib. The largest (ca. 16 mm × 

3.5 mm) of these bulges (b1 in Fig. 6) is on the cranial edge of interior surface of the 

rib, while the second bulge (b2 in Fig. 6) is present on the caudal end of the internal 

surface of the rib near the internal edge of the costal groove. The first bulge (b1) is 

separated from the external surface by a shallow groove. The external surface of this rib, 

on the area affected by this bone anomaly, displays an area of ca. 29.5 mm in length by 

15.5 mm in cranio-caudal direction that is more porous and may be due to bone 

remodeling. On this exterior surface, towards the cranial end of the rib, there are two 

abnormal ridges joining where a small fragment of bone protrudes from the surface 

(asterisk in Fig. 6). MicroCT analysis reveals that both bulges are likely expressions of 

a similar phenomenon. In section 1 (Fig. 1), it is possible to see the orientation of the 

original cortical bone beneath the largest bulge (b1). Two mutually non-exclusive 

hypotheses are posed to explain these anomalies: they could be related to a traumatic 
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event or they could be related to the hypertrophic pulmonary osteoarthropathy (Fennell 

and Trinkaus, 1997).

4.3. Upper limb: the left clavicle

Heim (1982b) provided a thorough metrical and morphological description of 

the clavicles of LF1. He suggested that the slightly (~1 mm) longer right clavicle was 

consistent with the hypothesis that this individual might have been left-handed (Heim, 

1982b). He also recognized the strong asymmetry of the clavicles (Fig. 7) in frontal 

view, but did not provide an explanation for this asymmetry. 

In cranial view, both clavicles look similar with the exception of a larger 

insertion for the M. deltoideus on the right clavicle. In dorsal view, the right clavicle is 

straight, while the lateral third of the left side clavicle is caudally oriented ca. 23º with 

respect to the medial half of the shaft (Fig. 7). Using the approach of Trinkaus et al. 

(1994) and Franciscus and Churchill (2002; i.e., absolute length difference divided by 

the smaller side times 100), the values provided by Voisin (2006) were used to calculate 

the asymmetry of the different curvatures of the clavicles of LF1. Neandertal 

individuals preserving both clavicles are rare, but surprisingly, despite the pathological 

lesion present on the left clavicle of LF1 (described below), this individual is not the 

Neandertal individual that displays the greatest percentage asymmetry (SOM Table S9). 

Regourdou 1 (R1; Vandermeersch and Trinkaus, 1995) shows a larger asymmetry in 

both the inferior and the superior curvatures in dorsal view (Voisin, 2006). The value of 

the inferior curvature could be affected by the fact that the acromial end of the left 

clavicle of R1 is broken. However, the value of the superior curvature would not be 
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affected by the missing fragment on the left clavicle and could be interpreted as 

asymmetry present in the upper limb of this individual due to his right-handedness 

(Volpato et al., 2012). Alternatively, the proposed methodology to measure the 

curvatures may not be suited to quantify the differences around the midshaft that we 

have detected in the LF1 individual.

On the left clavicle, at midshaft and again at about 65% distally, there are two 

"bumps" (see arrows in Fig. 9) with the shaft in between them slightly compressed 

cranio-caudally. A radiographic image of this section of the shaft is more "irregular," 

with regions of more dense trabeculae (SOM Fig. S5). At the equivalent location, the 

right clavicle displays a more organized trabecular orientation. This can also be seen in 

the CT-scans (Figs. 8–9), which also reveal differences in the shaft morphology.

We suggest that the morphological differences between the clavicles of LF1 are 

likely due to a well healed fracture of the left clavicle without bone displacement. The 

absence of a proper callus (except for the two "bumps") suggests this fracture likely 

occurred long before this individual's death, perhaps in childhood or early adulthood. 

Given the lack of evidence for a displaced fracture, it is probable this was a greenstick 

fracture in which the bone bends and partially breaks. There is one other example of a 

clavicular fracture in the Neandertal fossil record: clavicle Cl.8-149 from Krapina 

(Gardner and Smith, 2006) displays a healed fracture, but with bone displacement.

5. Taphonomic results

5.1. Bone surface
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The LF1 skeleton is characterized by good preservation of bone surfaces. None 

of the analyzed LF1 remains shows any signs of hominin manipulation, such as cut-

marks or intentional breakage. No evidence of carnivore activity, such as tooth marks, 

or small mammal activity, like rodent gnawing, was observed on the LF1 remains. 

Indeed, approximately 60% of the analyzed sample is intact bone remains in which no 

alterations of the bone surfaces or fractures are present. Regarding the post-depositional 

and/or postmortem modifications, no signs of trampling, carbonatic concretions or 

weathering, have been documented. Presence of manganese oxides was documented on 

35.7% of the sample.

5.2. Fracture pattern

A total of 29 specimens (34.5% of the analyzed sample) display fractures, 

including the cranium, 21 long bone fragments, and seven other postcranial remains. 

The LF1 individual shows a fracture pattern characterized by the dominance of 

transverse fractures to the long axis, complete circumferences, and fracture edges with 

right angles (consistent with a preliminary assessment by Laville, 2007) and jagged 

surfaces (Table 6). Chi square values between the properties of long bone fractures of 

the LF1 sample and assemblages considered as showing typical postmortem fractures 

do not present significant differences regarding the fracture angle, fracture outline, or 

completeness of the circumference (Table 7). The same results are obtained when 

comparing the cranial fracture patterns with cranial samples interpreted as postmortem 

main fractures in terms of fracture angle or the presence of cortical delamination (Table 

7). On the contrary, LF1 is significantly different in both the cranium and long bones 
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from those assemblages considered to show typical perimortem fractures for all the 

considered features (Table 7). This is consistent with a previous study, in which the LF1 

cranium grouped with other Neandertal and Paleolithic H. sapiens specimens with 

typical postmortem features (Sala et al., 2016).

6. Discussion

The new results obtained in this study have important implications in terms of: 

a) broadening the known Neandertal variation for certain skeletal elements, such as the 

ear ossicles, and thus improving our general knowledge of the paleobiology of these 

extinct humans; b) providing new information regarding the paleobiology of the LF1 

individual himself; and c) providing new evidence on the status of LF1 as an intentional 

burial.

6.1. Neandertal ear ossicle morphology and auditory implications

In his original study of the LF3 ossicular chain, the only one known at the time, 

Heim (1982a) suggested that Neandertals show some consistent differences from H. 

sapiens. Several of these observations have been confirmed by recent studies (Quam 

and Rak, 2008; Quam et al., 2013a; Stoessel et al., 2016b). Stoessel et al. (2016b) 

estimated the ancestral character state of the last common ancestor (LCA) of Homo and 

Pan and found Neandertals were more derived than recent H. sapiens in all three 

ossicles. Nevertheless, some of the features that distinguish the Neandertal ossicles from 

those of modern humans seem to be primitive retentions, since the Neandertals resemble 

the early hominins, while other features appear to be derived in the Neandertal ear 
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ossicles (Quam et al., 2013a, b; Stoessel et al., 2016b). Most of the features seen in 

Neandertal ossicles are also found among modern humans, and the Neandertal 

measurements are usually encompassed within the modern human range of variation. 

Although the sample size is small, Neandertal ossicles generally show a narrower range 

of morphological and metric variation than in modern humans. 

The present study based on the ossicular chain of LF1 has confirmed that the 

Neandertal malleus is characterized by a similarly long but more curved manubrium, a 

larger head, and a more open angle between the manubrium and corpus when compared 

with modern humans. The incus of LF1 resembles other Neandertals in showing a 

longer and straighter long process, a more closed angle between the long and short 

processes, a larger articular facet, and a relatively “flattened” body. The present study 

agrees with previous suggestions for a slightly larger incudo-malleolar joint size in 

Neandertals (Quam et al., 2013a; Stoessel et al., 2016b). The Neandertals, including 

LF1, are derived in their longer incus functional length, and their lever ratio is similar to 

H. sapiens. However, the more closed angle between the long and short processes in 

Neandertals seems to reflect a primitive retention in their incus, with values similar to 

the early hominins and even chimpanzees (Quam et al., 2013b). A similar suite of 

features was also reported previously in the LF3 malleus and incus (Quam et al., 

2013a).

Like other Neandertals, the LF1 stapes shows an asymmetrical configuration of 

the anterior and posterior crura and an anteriorly skewed stapedial head, and this 

appears to be a derived condition. While the LF1 footplate resembles other Neandertals 

in its shape, the overall size of the footplate is the largest yet reported among 
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Neandertals, being close to the mean in our recent H. sapiens sample. The size of the 

stapes footplate in Neandertals is variable, with the smallest specimens showing values 

as small as those in early hominins and chimpanzees, while larger specimens are similar 

in size to modern humans (Quam et al., 2013a). Values for the footplate area can be 

measured or estimated in five Neandertal individuals from La Ferrassie. The smallest 

individual, LF8, has a footplate area similar in size to some early hominin individuals, 

while LF1 represents the largest known Neandertal stapes. Only the Le Moustier 1 

individual approximates the value found in LF1, and one of the Sima de los Huesos 

Middle Pleistocene individuals has a larger value.

The ossicular chain is the primary route for bony conduction of sound energy to 

the inner ear and has a central role in the hearing process (Wever and Lawrence, 1954). 

The proportions of the malleus and incus lever arms provide a mechanical advantage in 

transmitting the sound power from the outer ear to the cochlea, and the ratio between 

the sizes of the stapes footplate and tympanic membrane creates a pressure increase of 

the sound power reaching the inner ear (Rosowski, 2001). While much of the shape of 

the resultant audiogram is determined by the structures of the outer and middle ear, a 

recent study of Neandertal and modern human ear ossicles found a broad similarity in 

function, despite clear shape differences (Stoessel et al., 2016b). Specifically, the 

middle ear lever ratio and the stapes footplate/tympanic membrane area ratio were 

similar between these two groups. While these particular parameters can offer only 

limited insight into hearing abilities, the similarity between modern humans and 

Neandertals suggests their auditory capacities were also probably similar. The Sima de 

los Huesos Middle Pleistocene hominins, considered ancestors of the later Neandertals, 
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showed auditory capacities that were quite similar to those of modern humans (Martínez 

et al., 2004, 2013), while the early hominin taxa Australopithecus and Paranthropus 

showed auditory patterns that were distinct from modern humans (Quam et al., 2015).

6.2. Interrelationship, timing, and consequences of the different pathological lesions

In this study, evidence for the presence of additional anomalies and pathological 

lesions in LF1 are described. Altogether, LF1 displays an anomaly of the atlas (with no 

clinical consequences), clear signs of traumatic and degenerative lesions, as well as 

bilateral periostitis indicating a hypertrophic pulmonary osteoarthropathy due to a 

thoracic infection and/or carcinoma. 

The anomaly of the atlas is the only congenital condition in LF1. The remaining 

various lesions occurred at different moments of this individual’s life, but their onsets 

are difficult to establish. First, whether the two traumatic lesions (left clavicle and right 

femur) represent one or two events is currently unknown, but both clearly occurred long 

before death and most probably early in life. We hypothesize that the clavicular fracture 

was probably a greenstick fracture, while among the hypotheses posed to explain the 

fracture in the greater trochanter of the femur (Trinkaus, 1985), we prefer the avulsion 

fracture. It seems that LF1 displays a minimum of two scoliotic curvatures: one in the 

cervical region and one in the lower lumbar region. The degree of scoliosis of this 

individual was likely not very large. The scoliosis, at least in the lumbar region, could 

have resulted from the ongoing degenerative processes in the spine that occurred 

throughout adulthood. This process could have been aided by the possible postural 

asymmetry resulting from the femoral fracture. According to Fennell and Trinkaus 
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(1997), LF1 suffered from the early stages of an acute form of HPO, which likely began 

2–14 months before death. Whether this HPO could be related to the lesion that we have 

detected in the rib is currently unknown. 

Heim (1982b) suggested that the slightly (~1 mm) longer right clavicle was 

consistent with the hypothesis that this individual was left-handed. It is difficult to 

assess the extent to which the new pathology of the left clavicle contributed to its 

slightly shorter length, and thus Heim’s assessment was biased by an undetected 

pathological lesion. The humeral asymmetry of LF1 demonstrated by Trinkaus et al. 

(1994) is strong evidence of a more robust right humerus, which suggests that LF1 was 

right-handed. The LF1 endocast also displays a morphological pattern of fronto-

occipital petalia (i.e., a more anteriorly projecting right frontal pole, a larger 

development in antero-lateral orientation of the anterior curve of the right frontal lobe in 

superior view, and a more posteriorly projecting occipital pole as reflected by the 3D 

quantification of these anatomical traits) that is more consistent with the pattern in right-

handed modern humans (Balzeau et al., 2012a, b). 

The lesions of LF1 would have likely affected his posture and appearance. The 

traumatic lesion of the shoulder would have likely resulted in an asymmetrical external 

appearance of the shoulders. The presence of scoliosis and degeneration of the spine 

(based on the osteophytes) suggest that the trunk of LF1 was not straight, although its 

fragmentary status precludes an assessment to infer the degree of scoliosis in this 

individual. In addition, the HPO would have resulted in digital clubbing (Fennell and 

Trinkaus, 1997). In summary, it is likely that the trauma and degenerative lesions 

present in LF1 were also reflected in his external appearance, which would be consistent 
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with LF1 being an old man that suffered various healed lesions during his life and had 

ongoing problems due to respiratory issues. In fact, Fennell and Trinkaus (1995) 

proposed the HPO as the likely cause of death of LF1.

6.3. Is the taphonomic evidence consistent with LF1 being an intentional burial? 

In Europe and Western Asia, starting in MIS 5 there is an increase in the 

preservation of partial-to-complete individual skeletons belonging to both Neandertals 

and modern humans in caves and rock-shelters. Paleolithic burials of hominin fossils are 

typically identified by relying on the combination of: the presence of a burial pit, in situ 

anatomical position of skeletal elements, the general completeness of the bones, and/or 

the presence of grave goods (Gargett, 1999; Riel-Salvatore and Clark, 2001; Duday, 

2009). Surprisingly, taphonomic analysis of the hominin remains themselves has not 

figured prominently in the discussion surrounding Paleolithic burials, and taphonomic 

analyses of hominin fossils are still rare in the literature and limited mainly to those 

cases with evidence of cannibalism (e.g., Defleur, 1999; Fernández-Jalvo et al., 1999; 

Saladié et al., 2012; Rougier et al., 2016; Sala and Conard, 2016). In this study, we 

present for the first time the taphonomic analysis of the LF1 skeleton based on direct 

observations of bone alterations. 

In addition to the paleopathological studies, the analysis of fracture patterns 

helps to elucidate the timing and causes of bone fractures. Wet state fractures occur 

while the bone is still surrounded by muscles, periosteum, skin, and other soft tissues 

and still has plastic properties. Fresh fracturing can be antemortem (before death) and/or 

perimortem (around the time of death), with the latter exhibiting no evidence of healing 
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(Ubelaker and Adams, 1995; Ortner, 2008; Wedel and Galloway, 2014; Sala et al., 

2015a, 2016), while postmortem fractures occur after the individual's death, on 

defleshed bones (Sala et al. 2015a). The LF1 long bones exhibit a fracture pattern 

characterized by the dominance of transverse fractures to the long axis, complete 

circumferences, and fracture edges with right angles and jagged surfaces. These 

attributes are expected in post-depositional (i.e., postmortem) fracturing. Regarding the 

cranial breakage in LF1, all fractures display linear outlines, right angles, jagged 

surfaces, fractures interrupted by sutures, and the absence of cortical delamination, 

which are all indicative of dry bone fractures (Sala et al., 2016). Furthermore, the 

comparison of LF1 with other modern and fossil samples allow us to suggest that all the 

cranial and postcranial fractures of this individual occurred postmortem, probably due to 

the sediment pressure, after the loss of soft tissues and the main organic fraction (i.e., 

collagen) of bones. Wet bone has more energy when it absorbs stress than a dry bone, 

and, therefore, a dry bone needs much less energy to be fractured than a wet bone 

(Evans, 1957). LF1 was identified in the profile and, in order to recover it, it was 

necessary to excavate approximately 5 m of sediment that was lying on top of the 

skeleton in a surface area of 4 m2 (Laville, 2007). The pressure of 5 m of sediment was 

likely responsible for most of the fractures and the fact that the cranium was crushed. 

In addition to the fracture patterns, no signs of perimortem bone damage were 

documented, such as carnivore activity or traces of anthropic modifications of the bone 

surfaces. Lastly, the absence of any sign of weathering, trampling, or any other 

indication of postmortem modifications by bone exposure to the surface, together with 

the completeness and good preservation of the bones, and the fact that they were found 
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articulated (Heim, 1976; Laville, 2007), indicates that the internment of the LF1 

individual occurred quickly and shortly after death. These observations are consistent 

with the observations made at the site by D. Peyrony, who in a letter written to M. 

Boule in 1926 said that sediment from the lower stratigraphic level was found mixed 

with that of the level containing the human remains, which would be consistent with the 

digging of a funeral pit for this individual (Maureille and Van Peer, 1998). The East-

West orientation of at least five of the skeletons found at the site and the fact that LF1 

and LF2 were located in the same orientation but facing opposite directions suggest that 

the orientation of the corpses may also have had an anthropogenic origin (Laville, 

2007). While the presence of cryoturbation is well known at the La Ferrassie site, the 

fact that LF1 preserves a large part of the skeleton in anatomical connection indicates 

that this individual was likely not affected to a large degree by these processes. Laville 

(2007) proposed that other parts of the rock shelter, more to the east (the sector where 

LF8 was found), were likely more affected by these geological processes, which would 

be consistent with the scatter of the bones of these individuals, which still preserve 

anatomical coherence but likely not connection (Heim, 1982a; Balzeau et al., 2016a, b).

Excavation of a pit for the deposition of a very well preserved Neandertal 

skeleton is also present in the Bouffia Bonneval for La Chapelle-aux-Saints 1 (LC1; 

Rendu et al., 2014, 2016; but see Dibble et al., 2015). The preservation and 

completeness of the LC1 skeleton is similar to that of LF1. 

In summary, the taphonomic analysis of the LF1 individual is consistent with the 

corpse being buried shortly after death, and thus not suffering any carnivore 

modifications or any other external weathering process. The bones lost collagen and 
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were fractured in situ due to the weight of the overlying sediments, but the anatomical 

connection between the bones was not affected. The taphonomic data for LF1 combined 

with information on the context of the discovery of other individuals at the site are 

consistent with an anthropogenic origin for the LF1 burial. Neandertals seem to show a 

fairly complex mortuary behavior, and different treatments of the dead have been 

described in the fossil record. There is a good evidence for cannibalistic practices 

among Neandertals in different parts of Western Europe: El Sidrón, Moula-Guercy, or 

Goyet (Defleur et al., 1999; Rosas et al., 2006; Rougier et al., 2016). It is also likely that 

some Neandertal groups (Pettitt, 2011) also purposefully buried their dead, i.e., that they 

practiced funerary behavior. This would be the case of individuals such as LF1, LF2, La 

Chapelle-aux-Saints 1, Amud 7, and Le Moustier 2, among others (Hovers et al., 2000; 

Maureille, 2002; Rendu et al., 2014, 2016; Balzeau et al., 2016a, b). Differences in 

preservation between individuals at the same site (e.g., Dederiyeh) also suggest the 

possibility of different kinds of interment (primary vs secondary; Akazawa and 

Muhesen, 2003). We are far from knowing the extent of variation in the mortuary 

behavior of Neandertals, and new findings of Neandertal remains at open air sites (e.g., 

Ein Qashish, Been et al., 2017) may complicate the picture further. In any case, the 

presence of intentional burial in Neandertals is strengthened by even earlier evidence, 

during the Middle Pleistocene, of intentional treatment of the dead in the Neandertal 

lineage (Arsuaga et al., 1997; Sala et al., 2015b).

7. Summary and conclusions

The LF1 skeleton, discovered over a century ago, is one of the most important 
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Neandertal individuals both for its completeness and due to the important role it has 

played historically in the interpretation of Neandertal anatomy and lifeways (Boule 

1911–13). Nevertheless, after more than 100 years of study, this specimen continues to 

offer new insights into our understanding of the Neandertals.

New analytical and research tools have allowed us to: 

1) Identify new fossil remains belonging to this skeleton, comprising the three ear 

ossicles from the right-side temporal bone, three vertebral remains, and two rib 

fragments. While the costal and vertebral remains are fragmentary, the ear ossicles are 

complete and help us to better understand the range of variation of this anatomical 

region in Neandertals.

2) Identify new pathological anomalies that make the pathological record of this 

individual more complete and yet also complicated. The skeletal remains of LF1 show 

the presence of two traumatic lesions: a possible greenstick fracture in the left clavicle 

with no displacement of the bone and a possible avulsion fracture of the greater 

trochanter of the right femur with a medial displacement of the trochanter. The spine 

shows signs of degenerative osteoarthritis and mild signs of scoliosis, which in the 

lumbar region could be caused by instability due to the aforementioned femoral 

fracture. Both femora and tibiae, and the fibula, radius, and first metatarsal from the 

right side show periostitis. This evidence for chronic, systemic infection could be due to 

a hypertrophic pulmonary osteoarthropathy (HPO) related to a pulmonary infection or 

carcinoma. One of the ribs shows a pathological anomaly of unknown etiology that 

could be either (or both) of traumatic origin and/or related to the HPO. Finally, LF1 also 

presents a non-clinical variant in the vertebral artery, called unilateral persistent first 
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intersegmental artery, which has no clinical consequences.

3) Confirm that no surface alterations are present on the bones in the LF1 skeleton and 

that the breakage pattern is that of bone that has lost collagen, which would be 

consistent with the intentional burial of this individual proposed by previous studies.

Finally, use of imaging technologies has allowed us to: 1) identify and virtually 

extract the ear ossicles that were inside the right temporal bone; 2) visualize the 

pathological lesions present in LF1 more clearly; and 3) quantify the fracture properties 

in those bones in which the reconstruction with plaster (or other materials) was 

obscuring them. Over a century after its discovery, the LF1 Neandertal is still revealing 

new insights into Neandertal anatomy and behavior.
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Figure legends

Figure 1. Virtual reconstruction of the ear ossicles found in the right temporal bone of 

the La Ferrassie 1 Neandertal skeleton (see also SOM Fig. S2).

Figure 2. Recently identified new vertebral fossils belonging to La Ferrassie 1. Left 

lateral (a1) and dorsal (a2) views of a thoracic (T5-T8) vertebral body fragment 

preserving part of the pedicle (see the represented part on Kebara 2’s T4 3D virtual 

reconstruction in lateral view). Medial (b1) and dorsal (b2) views of the upper right 

articular facet of a thoracic vertebra (see the represented part on Kebara 2’s T9 3D 

virtual reconstruction in dorsal view). Ventral (c1) and caudal (c2) views of a fragment 

of lumbar vertebral body (L5?) and the represented part on Kebara 2’s L5 3D virtual 

reconstruction.

Figure 3. New costal remains belonging to the LF1 skeleton. External (a1) and internal 

(a2) views of a fragment of a left rib preserving the neck and the articular tubercle (a. 

tb.). External (b1) and internal (b2) views of a shaft fragment of a rib of indeterminate 

side preserving the costal groove (c. gr.).

Figure 4. Cranial (a) and caudal (b, d) views of the La Ferrassie 1 (LF1) and caudal 

view of the atlas of Krapina CA1.98 (c). In d, the wrongly reconstructed right half of the 

posterior arch has been "virtually" placed in its proper place using imaging software. 

Note the size difference between the transverse foramen of LF1 compared to the 

Krapina specimen. Also note the large asymmetry of the vertebral foramen of LF1. In 

our view, the groove on the left side is due to the left vertebral artery that entered the 

spinal canal of the C1 directly from the transverse process of the C2, rather than passing 
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through the C1 transverse process.

Figure 5. Selected pathological lesions of the vertebral column of LF1. Ventral view of 

#3 (C3) of La Ferrassie 1 (a and b); note the difference in the height of the articular 

pillars and on the uncinate processes. Dorsal view of the fifth lumbar and sacrum of La 

Ferrassie 1 (c and d). The arrows indicate remodeling of the bone surface because of the 

contact between the L5 and the sacrum (lower left arrow) or between the L4 and L5 

(upper central and right arrows). This remodeling occurs on the left side of these bones, 

which indicates a concavity of the spine to the left. Note also the clockwise rotation of 

the spinous process (Gómez-Olivencia, 2013) that would be consistent with the 

concavity to the left of the spine.

Figure 6. Left sixth or seventh rib of La Ferrassie 1: internal (a), cranio-external (b), 

and caudal (c, d) views; 3D reconstruction and transverse (1, 8) and cross-sections (2–

7). The asterisk indicates a protruding small bone chip (see text). b1 = bulge 1, b2 = 

bulge 2, s = adhered sediment. Scale bars represent 1 cm.

Figure 7. Comparison between the clavicles of La Ferrassie 1. For a better comparison, 

we have mirror-imaged the right side. The two clavicles look similar in cranial view, 

except for the shape of the attachment of the deltoid muscle. In contrast, there is a 

pronounced difference in dorsal view between the two clavicles. The arrows indicate 

“bumps” of the diaphysis on the left side clavicle.

Figure 8. 3D reconstruction of the left clavicle of La Ferrassie 1, showing different 

sections (numbers 1 to 8). Letters “A” and “B” indicate recent (postdepositional) 

fractures of the bone. The asterisk indicates the area of interest in which the density and 
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arrangement of the trabeculae is different from the clavicle of the right side (compare 

with Fig. 9).

Figure 9. 3D reconstruction of the right clavicle of La Ferrassie 1, showing different 

sections (numbers 1 to 5). Letters “A” and “B” indicate recent (postdepositional) 

fractures of the bone. The arrangement of the trabeculae in this clavicle looks normal 

and more organized than its left side counterpart (see Fig. 8).





















Table 1
Raw dimensions of the La Ferrassie 1 malleus, summary statistics of other fossils, recent and fossil modern human samples, and results of the z-score analysis between Neandertals 
and recent modern humans.a

Specimen/Sample
Total length 

(mm)
Manubrium 
length (mm)

Manubrium ML 
thickness (mm)

Manubrium arc 
depth (mm)

Length of the 
corpus (mm)

S-I head width 
(mm)

Angle between 
the axes (º) Source

La Ferrassie 1 8.78 4.90 1.10 0.49 6.26 2.60 140.6 This study
La Ferrassie 3 4.89 1.26* 0.44 2.92** Quam et al., 2013b
Neandertals mean ± s.d. 8.56 ± 0.36 Stoessel et al., 2016a
Neandertals range (n) 8.23–8.96 (4)

Mid. Pleist. Europe range (n) 8.80–8.98 (2) 5.16 (1) 6.40 (1) 2.70 (1)

Martínez et al., 2004; 
Crevecoeur, 2007; Stoessel et 
al., 2016a

Fossil H. sapiens mean ± s.d. 7.84 ± 0.23 4.49 ± 0.27 0.95 ± 0.13 0.24 ± 0.09 5.42 ± 0.18 2.45 ± 0.12 137.4 ± 3.2
Original specimens; Lisoněk 
and Trinkaus, 2006

Fossil H. sapiens range (n) 7.37–8.10 (8) 4.02–4.80 (6) 0.81–1.10 (4) 0.14–0.33 (4) 5.21–5.67 (7) 2.30–2.62 (7) 132.1–140.0 (5)
Crevecoeur, 2007; Ponce de 
León and Zollikofer, 2013

Recent H. sapiens mean ± s.d. 8.25 ± 0.41 4.94 ± 0.31 1.00 ± 0.09 0.33 ± 0.15 5.83 ± 0.35 2.43 ± 0.17 132.1 ± 6.2 Quam, 2006
Recent H. sapiens range (n) 7.43–9.31 (43) 4.22–5.59 (43) 0.81–1.28 (43) 0.05–0.64 (43) 4.96–6.69 (43) 2.03–2.79 (43) 116.5–145.7 (43)
a Values underlined are outside the range of the modern human comparative sample. The fossil remains with a * or ** are significantly different from the modern comparative sample 
based on a z-score analysis (*p < 0.05, **p < 0.01). Values in bold indicate those values that are significantly different and/or outside of the range of the modern human sample.



Table 2
Raw dimensions of the La Ferrassie 1 incus, summary statistics of other fossils, recent and fossil modern human samples, and results of the z-score analysis between Neandertals and 
recent modern humans.a

Specimen/Sample

Short 
process 
length 
(mm)

Long 
process 
length 
(mm)

Functional 
length 
(mm)

Long 
process arc 
depth (mm)

Articular 
facet 

height 
(mm)

Inter-
process 
length 
(mm)

Inter-
process arc 

depth 
(mm)

Angle 
between 

the axes (º)
Incudal 
index Source

La Ferrassie 1 5.26 7.22 4.25 0.55 3.50** 5.71 1.81 53.7* 72.9 This study
La Ferrassie 3 4.74 6.89 4.08 0.40 3.34 5.51* 1.43 48.2** 68.8 Quam et al., 2013b
Amud 7 5.07 6.98 4.08 0.28** 3.44* 5.38* 2.13* 48.3** 72.6 Quam and Rak, 2008

Neandertal sample (mean ± s.d) 7.25 ± 0.28 Stoessel et al., 2016a

Neandertals range (n)
6.74–7.58 

(10)

Mid. Pleist. Europe range (n) 4.90 (1)
7.50–7.69 

(2) 4.33 (1) 5.90 (1)

Martínez et al., 2004; 
Lisoněk and Trinkaus, 2006; 
Crevecoeur, 2007

Fossil H. sapiens (mean ± s.d) 4.76 ± 0.44 6.61 ± 0.29 3.90 ± 0.19 0.38 ± 0.10 3.23 ± 0.15 5.79 ± 0.44 1.58 ± 0.27 61.3 ± 4.9 71.3 ± 4.5

Lisoněk and Trinkaus, 2006; 
Crevecoeur, 2007; Quam et 
al., 2013b; Stoessel et al., 
2016a

Fossil H. sapiens range (n)
4.10–5.50 

(7)
6.30–7.10 

(8)
3.57–4.11 

(6)
0.26–0.56 

(7)
2.99–3.45 

(7)
5.29–6.60 

(6)
1.30–2.00 

(6)
52.4–67.3 

(7)
64.1–77.5 

(6)

Recent H. sapiens (mean ± s.d) 5.07 ± 0.37 6.83 ± 0.32 4.00 ± 0.21 0.56 ± 0.14 3.00 ± 0.19 6.18 ± 0.34 1.66 ± 0.21 64.0 ± 4.7 74.3 ± 4.9 Quam, 2006

Recent H. sapiens range (n)
4.02–5.86 

(41)
6.17–7.59 

(43)
3.61–4.46 

(42)
0.25–0.80 

(43)
2.60–3.41 

(42)
5.61–7.44 

(41)
1.18–1.95 

(41)
56.6–75.6 

(41)
59.2–84.8 

(41)
aValues underlined are outside the range of the modern human comparative sample. The fossil remains with a * or ** are significantly different from the modern comparative sample 
based on a z-score analysis (*p < 0.05, **p < 0.01). Values in bold indicate those values that are significantly different and/or outside of the range of the modern human sample.



Table 3
The middle ear lever ratioa in La Ferrassie 1 and Pleistocene and recent hominins.a

Specimen/Sample
Malleus functional 

length (mm)
Incus functional 

length (mm)
Middle Ear lever 

ratiob Source
Mid. Pleist. Europe (n = 1) 5.16 4.33 119.2 Martínez et al., 2004

La Ferrassie 1 4.90 4.25 115.3 This study
La Ferrassie 3 4.89 4.08 119.9 Quam et al., 2013b

Neandertals mean ± s.d. 116.0 ± 10.0 Stoessel et al., 2016a
Neandertals range (n) 105.0–125.0 (5)

Qafzeh 12 4.02** 3.84 104.7* Quam and Rak, 2008
Qafzeh 15 4.48 3.57* 125.5 Quam and Rak, 2008
Dolní Věstonice 14 4.60 4.11 111.9 Lisoněk and Trinkaus, 2006

Recent H. sapiens (mean ± s.d) 4.94 ± 0.31 4.00 ± 0.21 123.4 ± 8.5 Quam, 2006
Recent H. sapiens range (n) 4.22–5.59 (43) 3.61–4.46 (42) 101.9–138.9 (42)

Recent H. sapiens (mean ± s.d) 120.1 ± 8.4 Stoessel et al., 2016a
Recent H. sapiens range (n) 107.7–137.0 (27)
aValues underlined are outside the range of the modern human comparative sample. The fossil remains with a * or ** are significantly different from the modern comparative sample 
based on a z-score analysis (*p < 0.05, **p < 0.01). Values in bold indicate those values that are significantly different and/or outside of the range of the modern human sample.
b Lever ratio = (Malleus functional length/Incus functional length) × 100



Table 4
Raw dimensions of the La Ferrassie 1 stapes, summary statistics of other fossils, recent and fossil modern human samples, and results of the z-score analysis between Neandertals 
and recent modern humans.a

Specimen/Sample Head Total Foramen

Obturatorfor
amen width 

(mm)

Anterior 
crus length 

(mm)

Posterior 
crus length 

(mm)
Angle A 

(º) Angle B (º)
Angle C 

(º) Stapedial index Source
La Ferrassie 1 1.05 3.04 1.65 1.98 2.56 3.29 52.1 78.3 49.6 90.1 This study
La Ferrassie 3 0.71** 2.76 1.89 1.79 2.38 3.20 47.3 86.9 45.7 90.6 Quam et al., 2013b
La Ferrassie 8 0.80* 2.63 1.75 1.74 2.60 3.20 48.3 89.7 42.0 83.3 Gómez-Olivencia et al., 2015
Subalyuk 2 0.93 (2.70) (1.60) 1.60 (2.45) (2.90) (50.3) Quam et al., 2013b
Neandertal sample (mean 
± s.d) 3.11 ± 0.18 Stoessel et al., 2016a
Neandertal sample range 
(n)

2.88–3.31 
(5)

Oase 2 (3.2) (3.0)
Ponce de León and Zollikofer, 
2013

Cro-Magnon 1 3.39 Stoessel et al., 2016a

Recent H. sapiens (mean 
± s.d.) 1.21 ± 0.16 3.44 ± 0.20 1.90 ± 0.18 1.74 ± 0.19 3.40 ± 0.21 3.35 ± 0.20 49.7 ± 3.4 67.4 ± 3.5 63.0 ± 4.1 85.90 ± 5.29 Quam, 2006
Recent H. sapiens range 
(n)

0.84–1.52 
(40)

2.94–3.87 
(40)

1.52–2.30 
(41)

1.34–2.18 
(42)

2.94–3.93 
(40)

2.77–3.72 
(40)

44.3–59.6 
(40)

60.4–75.0 
(40)

53.6–70.3 
(40)

77.20–102.72 
(39)

aValues in parentheses are estimated. Values underlined are outside the range of the modern human comparative sample. The fossil remains with a * or ** are significantly different 
from the modern comparative sample based on a z-score analysis  (* = p < 0.05, ** = p < 0.01). Values in bold indicate those values that are significantly different and/or outside of 
the range of the modern human sample.



Table 5
Comparison of stapes footplate and oval window dimensions in the La Ferrassie 1 Neandertal compared to other Neandertals, Middle Pleistocene fossils, and recent and fossil 
modern humans.a

Specimen/Sample
Footplate length 

(mm)
Footplate 

width (mm)

Measured 
footplate area 

(mm2)

Measured oval 
window area 

(mm2) Footplate index
Oval window 

index Source
La Ferrassie 1 2.74 1.49 3.39 54.4* Original specimen
La Ferrassie 3 (2.50)** (1.25) 2.70 (50.0) 54.0 Original specimen
La Ferrassie 8 2.19** 1.22 2.16** 55.7* Gómez-Olivencia et al., 2015

Neandertals (mean ± s.d.) 2.58 ± 0.20 3.01 ± 0.35 54.6 ± 1.6 
Quam et al., 2013b; Stoessel et al., 
2016a

Neandertals range (n) 2.35–2.81 (5) 2.36–3.67 (18) 53.2–56.5 (5)

Mid. Pleist. Europe range (n) 2.77 (1) 3.02–3.98 (3) Martínez et al., 2004

Oase 2 2.9 Ponce de León and Zollikofer, 2013
Cro Magnon 1 2.99 Stoessel et al., 2016a
Fossil H. sapiens (mean ± s.d) 3.46 ± 0.28 48.8 ± 5.8 Quam et al., 2013b
Fossil H. sapiens range (n) 3.06–3.88 (9) 36.7–55.8 (9)

Recent H. sapiens (mean ± s.d) 2.94 ± 0.14 1.39 ± 0.10 3.39 ± 0.32 47.29 ± 3.30 Original specimens
Recent H. sapiens range (n) 2.47–3.27 (46) 1.20–1.63 (43) 2.95–4.29 (41) 40.27–57.09 (43)
aValues in parentheses are estimated. Values underlined are outside the range of the modern human comparative sample. The fossil remains with a * or ** are significantly different 
from the modern comparative sample based on a z-score analysis (*p < 0.05, **p < 0.01).Values in bold indicate those values that are significantly different and/or outside of the 
range of the modern human sample.



Table 6
Fracture properties in the La Ferrassie 1 long bones.

NISPa %

Fracture outline Longitudinal   0     0.0

Transversal 16   80.0

Oblique   4   20.0

Fracture angle Right 11 100.0

Acute/obtuse   0     0.0

Mixed   0     0.0

Fracture edge Smooth   0     0.0

Jagged 17 100.0

Mixed   0     0.0

Shaft circumference 1: < 50%   0     0.0

2: > 50%   0     0.0

3: Complete 18 100.0

Shaft fragment 1: <25%   0     0.0

2: 25-50%   1     5.6

3: 50-75%   3   16.7

4: >75% 14   77.8
aNISP = Number of identified specimens



Table 7
Results of the chi square analysis of the fracture properties of La Ferrassie 1 compared to other samplesa.

aBold p-values refer to significant results. Data for LF1 (La Ferrassie 1), LC1 (La Chapelle-aux-Saints 1), and LQH5 (La Quina H5) are original from this work. In the all other 
cases, it has been extracted from the bibliography: Sarrians and Fontbrégoua Neolithic assemblages from Villa and Mahieu (1991); Agris Mesolithic site,  AUZAI (Châteliers du 
Vieil-Auzay from the Neolithic period), the Neolithic site of Corconne site and the Chalcolithic site of Villedubert from Jordana et al. (2013); and SH (Sima de los Huesos Middle 
Pleistocene hominins) from Sala et al. (2015a, 2016). Fontbrégoua, Agris and Châteliers du Vieil-Auzay are considered typically fresh bone fractured samples. Sarrians, Corconne, 
Villedubert and Sima de los Huesos are considered samples with dry bone fractures pattern.

Long bones Fracture angle Fracture outline Shaft circumference

LF1 vs Sarrians
n (11/269)

Chi2 = 5.6943
p = 0.058

n (20/326)
Chi2 = 5.0299

p = 0.081

n (18/226)
Chi2 = 2.3178

p = 0.314

LF1 vs   Fontbrégoua
n (11/174)

Chi2 = 25.609
p = 2.75E-06

n (20/169)
Chi2 = 6.36

p = 0.041586

n (18/151)
Chi2 = 89.681
p = 3.36E-20

LF1 vs SH
n (11/471)

Chi2 = 1.3907
p = 0.499

n (20/587)
Chi2 = 1.4454

p = 0.485

n (18/475)
Chi2 = 1.3839

p = 0.501
Cranial bones Fracture angle Cortical delamination

LF1 vs SH
N (25/513)

Chi2 = 0.88016
p = 0.348

N (25/518)
Chi2 = 1.2648

p = 0.261

LF1 vs Agris N (25/15)
Chi2 = 25.378
p = 4.71E-07

N (25/15)
Chi2 = 35.897
p = 2.08E-09

LF1 vs AUZAI
N (25/46)

Chi2 = 40.888
p = 1.61E-10

N (25/46)
Chi2 = 11.225
p = 0.00081

LF1 vs Corconne
N (25/297)

Chi2 = 1.3527
p = 0.245

N (25/297)
Chi2 = 3.8446

p = 0.050

LF1 vs Villedubert
N (25/1760)

Chi2 = 1.6228
p = 0.203

N (25/1760)
Chi2 = 3.5643

p = 0.059

LF1 vs LC1
N (25/16)

Chi2 = 3.7028
p = 0.054

N (26/17)
Chi2 = 0.096099

p = 0.757

LF1 vs LQH5
N (25/30)

Chi2 = 0.056122
p = 0.813

N (26/31)
Chi2 = 0.016073

p = 0.899
 



SOM Figure S1. Cross-section of the right temporal bone of La Ferrassie 1 Neandertal showing the
position of the three ear ossicles and their 3D virtual reconstructions. 



SOM Figure S2.  Cumulative percentage of the minimum number of anatomical units (MNAU), 
i.e., number of bones or bone portions preserved in a sample divided by number of that bone or 
bone portion in a complete skeleton, present in La Ferrassie 1 (blue dots) compared to what would 
be expected in a complete skeleton (orange line; see SOM Table S1).



SOM Figure S3. Dorsal view of the cast of the right femur of the Feldhofer Neandertal (left) with 
the right femur of the La Ferrassie 1 Neandertal. Note the difference in the size and location of the 
greater trochanter (arrow with **). Note also the exostosis present in the trochanteric fossa (arrow 
with *).



SOM Figure S4. Left ulna of the La Ferrassie 1 Neandertal skeleton: original bone and 3D 
reconstruction in ventral (anterior) views (left half of the image) and longitudinal section and detail 
of the section from the CT-scan showing two natural bone fractures with angles close to 90º (right 
half of the image).



SOM Figure S5. Cranio-caudal and dorso-ventral x-rays of the clavicles of La Ferrassie 1. Note the
difference in the trabecular organization in the shaft, which is more irregular in the left clavicle  
(arrows).



SOM Table S1
Anatomical representation (absolute and relative) of the La Ferrassie 1 individual and cumulative 
percentage.

Anatomical region NISP NME NºAU
One

skeleton
MNAU

Relative
MNAU

Cumulative %
MNAU

Cranium >25   1   1   1 1.00 3.41     3.41

Mandible   6   1   1   1 1.00 3.41     6.83

Teeth 32 32 32 32 1.00 3.41   10.24

Cerv. vertebrae     7*   7   7   7 1.00 3.41   13.65

Thor. vertebrae   18* 11 11 12 0.92 3.13   16.78

Lumb. vertebrae     9*   5   5   5 1.00 3.41   20.19

Os coxae   3   2   2   2 1.00 3.41   23.61

Sacrum   3   1   1   1 1.00 3.41   27.02

Coccyx   1   1   1   2 0.50 1.71   28.73

Ribs   43*     22** 22 24 0.92 3.13   31.85

Claviculae   5   2   2   2 1.00 3.41   35.27

Scapulae   7   2   2   2 1.00 3.41   38.68

Humerus   3   2   2   2 1.00 3.41   42.09

Ulnae   4   2   2   2 1.00 3.41   45.51

Radii   3   2   2   2 1.00 3.41   48.92

Scaphoids   1   1   1   2 0.50 1.71   50.63

Lunates   0   0   0   2 0.00 0.00   50.63

Triquetrals   1   1   1   2 0.50 1.71   52.33

Pisiforms   0   0   0   2 0.00 0.00   52.33

Trapeziums   2   2   2   2 1.00 3.41   55.75

Trapezoids   2   2   2   2 1.00 3.41   59.16

Capitates   1   1   1   2 0.50 1.71   60.86

Hamates   1   1   1   2 0.50 1.71   62.57

Metacarpals 16 10 10 10 1.00 3.41   65.98

Hand phalanges 19 18 18 28 0.64 2.19   68.18

Femora   6   2   2   2 1.00 3.41   71.59

Patellae   0   0   0   2 0.00 0.00   71.59

Tibiae   4   2   2   2 1.00 3.41   75.00

Fibulae   5   2   2   2 1.00 3.41   78.42

Tali   2   2   2   2 1.00 3.41   81.83

Calcanei   2   2   2   2 1.00 3.41   85.24

Cuboids   1   1   1   2 0.50 1.71   86.95

Cuneiforms I   2   2   2   2 1.00 3.41   90.36

Cuneiforms II   1   1   1   2 0.50 1.71   92.07

Cuneiforms III   1   1   1   2 0.50 1.71   93.78

Naviculars   1   1   1   2 0.50 1.71   95.48

Metatarsals 15 10 10 10 1.00 3.41   98.89

Pedal phalanges 10   9 9 28 0.32 1.10 100.00

Abbreviations: NISP = Number of Identified Specimens, MNE = Minimum Number of Elements,  
MNAU = Minimum Number of Anatomical Units, Cumulative % MNAU = Cumulative percentage 
of the minimum number of anatomical units.



* The vertebrae and ribs are very fragmented. Here we indicate the NISP after all the possible refits 
were performed.
** Gómez-Olivencia, unpublished data.



SOM Table S2
Comparative sample of ear ossicles used in the present study.

Specimen/Group Malleus Incus Stapes
Oval

window Source

Middle Pleistocene Europe

AT-84 X Martínez et al., 2004

AT-421 X Martínez et al., 2004

AT-667 (Cranium 5) X X Martínez et al., 2004

AT-3746+3747 X X Martínez et al., 2004

Ehringsdorf H1026 X X X Stoessel et al., 2016a

Biache-Saint-Vaast 1 X X Lisoněk and Trinkaus, 2006; Crevecoeur, 2007

Neandertals

La Ferrassie 1 X X X This study

La Ferrassie 3 X X X X Quam et al., 2013b

La Ferrassie 4 bis X Quam et al., 2013b

La Ferrassie 5 X Quam et al., 2013b

La Ferrassie 8 X Gómez-Olivencia et al., 2015

Subalyuk 2 X Quam et al., 2013b

Amud 7 X Quam and Rak, 2008

Arcy-sur-Cure X Quam et al., 2013b

Kebara 1 X Quam et al., 2013b

Neandertal sample (n = 4) ( n = 10) ( n = 5) ( n = 13) Stoessel et al., 2016a

Fossil H. sapiens

Qafzeh 3 X Quam et al., 2013b

Qafzeh 11 X X X Quam and Rak, 2008; Quam et al., 2013b

Qafzeh 12 X X X Quam and Rak, 2008; Quam et al., 2013b

Qafzeh 13 X Quam et al., 2013b

Qafzeh 15 X X Quam and Rak, 2008

Qafzeh 21 X X Quam and Rak, 2008; Quam et al., 2013b

Skhul 1 X Quam et al., 2013b

Border Cave 3 X Quam et al., 2013b

Nazlet Khater 2 X Crevecoeur, 2007

Pestera cu Oase 2 X X Ponce de León and Zollikofer, 2013

Dolní Věstonice 14 X X Lisoněk and Trinkaus, 2006; Quam and Rak, 2008

Dolní Věstonice 15 X Lisoněk and Trinkaus, 2006; Quam and Rak, 2008

Cro-Magnon 1 X X X Stoessel et al., 2016a

Cro-Magnon 2 X Quam et al., 2013b

Abri Pataud 1 X X Stoessel et al., 2016a

Lagar Velho 1 X X Quam and Rak, 2008



Parpalló 1 X Quam et al., 2013b

Recent H. sapiens (n = 43) (n = 43) (n = 40) Quam and Rak, 2008; Quam et al., 2013b



SOM Table S3
Measurement protocol for the malleus.

No. Definition Description

Orientation
Bone is lying on its posterior aspect (with the articular facet away 
from the observer) and with the manubrium parallel to the plane of 
projection, i.e., flat on the surface.

X-axis (Head/neck axis)
Defined by a line connecting the midpoint of the minimum neck 
width and the most salient point along the top of the head. This is a 
slightly different definition than that of Masali (see text).

Y-axis (Manubrium 
axis)

Defined by a line connecting the inferiormost points of the short 
process and the manubrium tip.

1 Total length
Maximum distance from the tip of the manubrium to the top of the 
head.

2 Manubrium length
Distance from the tip of the short process to the manubrium tip, 
following the Y-axis.

3
Manubrium M-L 
thickness

M-L thickness of the manubrium at mid-manubrium length, taken 
perpendicular to the Y-axis

4
Arc depth of the 
manubrium

Maximum depth of the curvature of the arc of the manubrium, 
measured from the point of maximum depth to the Y-axis.

5 Corpus length
Distance from the tip of the head to the lower border of the 
manubrium, taken following the X-axis.

6 S-I head width
Maximum distance between two parallel lines marking the widest 
points of the margin of the head, taken perpendicular to the X-axis.

7 Neck width
Minimum distance between the anterior and posterior borders of the 
neck.

8
Angle between the axes
(M) Angle formed between the X- and Y-axes.

Manubrium/length 
index (Manubrium length/total length)× 100

Manubrium robusticity 
index (Manubrium M-L thickness/manubrium length) × 100

Manubrium/corpus 
index (Manubrium length/corpus length) × 100

Corpus/length index (Corpus length/total length) × 100



SOM Table S4
Measurement protocol for the incus.

No. Definition Description

Orientation
Bone is lying on its medial aspect. In this orientation, more of the 
articular facet is visible and the lowest point of the articular facet is 
marked by a 'lip'

X-axis (Long process 
axis)

Defined by a line joining the tip of the long process to the most 
salient point along the superior border of the body.

Y-axis (Short process 
axis)

Defined by a line joining the tip of the short process to the most 
salient point along the anterior portion of the superior border of the 
body.

Z-axis (Rotational axis)

Defined by a line joining the tip of the short process to the most 
external point along the margin of the articular facet. This axis 
approximates the rotational axis of the incus within the tympanic 
cavity.

9 Short process length
Maximum distance from the tip of the short process to the most 
salient point along the anterior portion of the superior border of the 
body, following the Y-axis.

10 Long process length
Maximum distance from the tip of the long process to the most 
salient point along the superior border of the body.

11 Articular facet height
Maximum height of the articular facet taken perpendicular to the Z-
axis.

12 Functional length
Maximum distance from the tip of the long process to the Z-axis, 
taken perpendicular to the Z-axis.

13
Arc depth of the long 
process

Maximum depth of the arc along the long process, measured from the
plane defined by the lateralmost edge of the articular facet and the 
lateralmost point along the tip of the long process.

14 Inter-process length

Maximum distance between the most salient points along the 
superior margin of the short process and the tip of the long process. 
The lateralmost points of the short and long process tips define the 
measurement plane.

15 Inter-process arc depth
Maximum depth of the curvature between the short and long crurae 
tips. The depth is taken perpendicular to the axis defined above for 
the intercrural length (No. 14).

16 Angle between the axes Angle formed between the X- and Y-axes.

Crural index (Short process length/long process length) × 100



SOM Table S5
Measurement protocol for the stapes.

No. Definition Description

Bone orientation
Bone is lying flat on the surface with the convex (round) side turned 
toward the observer. This is the "norma craniale" orientation of 
Masali.

X-axis (Anterior crus 
axis)

Defined by a line joining the antero-superior corner of the footplate 
and the tip of the head.

Y-axis (Posterior crus 
axis)

Defined by a line joining the postero-superior corner of the footplate 
and the tip of the head.

Z-axis (Footplate axis)
Defined by a line joining the most inferior points along the footplate 
margin anteriorly and posteriorly.

19
Total height of the 
Stapes

Maximum height from the lower margin of the footplate to the tip of 
the head, taken perpendicular to the Z-axis.

20 Head height
Minimum distance between the superior margin of the obturator 
foramen and the top of the head, taken perpendicular to the Z-axis. 
The latter point is defined as for total staps height (No. 19).

21
Obturator foramen 
height

Maximum height of the obturator foramen taken perpendicular to the 
Z-axis.

22
Obturator foramen 
width Maximum width of the obturator foramen taken parallel to the Z-axis.

24 Posterior crus length
Maximum distance from the postero-superior corner of the footplate 
to the tip of the head, following the Y-axis.

26 Anterior crus length
Maximum distance from the antero-superior corner of the footplate to
the tip of the head, following the X-axis.

28 Angle A
Angle between the anterior and posterior crurae, or between the X- 
and Y-axes.

29 Angle B
Angle between the anterior crus and the footplate, or between the X- 
and Z-axes.

30 Angle C
Angle between the posterior crus and the footplate, or between the Y- 
and Z-axes.

31 Footplate length Maximum length of the footplate.

32 Footplate width
Maximum width of the footplate, not necessarily perpendicular to the 
length.

33 Footplate area Measured area of the footplate.

Stapedial index (Footplate length/height of the stapes) × 100

Obturator foramen 
index (Obturator foramen width/obturator foramen height) × 100

Foot plate index (Footplate width/footplate length) × 100

Crural index (Anterior crus length/posterior crus length) × 100



SOM Table S6
Coding for the presence and degree of development of the pathological lesions of the surfaces and 
edges of both the vertebral body and articular facetsa.

Anatomical region Code Description

Subchondral bone (articular facets) 0 Normal

1 Porosity

2 Eburnation, destruction of the 
subchondral surface (porosity), or fusion

Osteophytic lipping (vertebral body and 
articular surfaces)

0 None

1 Trace (<1 mm)

2 Moderate (<4 mm)

3 Major (>4 mm)

Intervertebral disc surfaces (vertebral 
bodies)

0 Good condition

1 Porosity

2 Schmorl’s node, destruction of the 
subchondral surface (porosity), or 
eburnation.

aFollowing Dawson and Trinkaus (1997), modified from Bridges (1994).



SOM Table S7
La Ferrassie 1 vertebral pathology from the elements kept in Box 37.

Anatomical po-
sition

C1 C2 C3 C4 C5 C6 C7 T1 T2 T3 T4?
T5-
T11

T4? T9?
T5-
T8

T5-
T8

T12

Label* #a
#b
(2)

#d
(3)

#c
(4)

#e
(5)

#f
(6)

#g
(7)

#h
(8)

#i
(9)

#j
(10)

#k1 #k2

#k3
+#k
4+#
k5

#p
(13)

#m #q #r

Cranial
facets

Right surface 0 0 0 0 0 0 0? 0? 0 X 0 X

Right margin 0? X 2 2 1 1 X 2 2 X X X

Left surface 0 0 1 0 0 0 0 0 0 0 0 X X

Left margin 0? 1? 2 2 2 2 1 2 2 X 1 X X

Caudal
facets

Right surface 0 0 0 0 0 0 0 0 0 0 0 X

Right margin X 2 2 2 2 2 2 X 1 X X X

Left surface 0 1 0 0 0 0 0 0 0 X 1 0 0 0

Left margin 1 3 1 2 2 1 1 X X X 1 1 X 2?

Cranial
body

Surface - - 0 0 0 0 X X 0 X 0? X X 0?

Ventral - - 1? X X X X X X X X X X X

Dorsal - - 0 0 X 0 X X X 0? 0 1 X X

Right - - 1? X X X X X X X X X X X

Left - - 1? X 0 1? X X X X X X X 0

Caudal
body

Surface - 0 0 0 0 0 0? 0 0 0? 0? X X 0?

Ventral - X X 0? 0? X X X 1? X X X X X

Dorsal - 1 0 1 1 1 1 1 1 1 0 2 1 1

Right - 1? 0 1 X X X X 1? 1? X X X X

Left - 1? 0 1 X X X X 1? 1? X X X 0?

Costal
facets

(vertebral
body)

Right surface X X X 0 0 X X

Right margin X X X X X X X

Left surface X X 0 0 0 0 0

Left margin X X X 0 X X 2

Costal
facets
(trans-
verse

process)

Right surface X 0 0 -

Right margin X X X -

Left surface X X X -

Left margin X X X -

*Following Gómez-Olivencia, 2013.
Subchondral bone: 0 = normal; 1 = porosity; 2 = eburnation, destruction of the subchondral surface (porosity), or fusion.
Osteophytic lipping: 0 = none; 1 = trace (<1 mm); 2 = moderate (<4 mm); 3 = major (>4 mm).
Intervertebral disc surfaces: 0 = good condition; 1 = porosity; 2 = Schmorl’s node, destruction of the subchondral surface (porosity), 
or eburnation.



SOM Table S8
La Ferrassie 1 vertebral pathology from the elements kept in Box 38.

Anatomical
position

T7-T8? T9 T L1? L3? L2 L3 L4 L5

Label #z #s1 #s2 #t2 #x #aa (21) #ab (22) #ad (23) #ac (24)

Cranial facets

Right surface X 0 0 0?

Right margin X 1 1 X

Left surface X X 0 0 0-1

Left margin X X X 1 2

Caudal facets

Right surface X X 0 0 0

Right margin X X 1 1 1-2

Left surface X X 0 0 0 0

Left margin X X 2 3 3 2

Cranial body

Surface 0? X X X 0-1

Ventral X X X 2 2

Dorsal 1 X X X 0

Right X X X X 3

Left X X X X X

Caudal body

Surface X 0? X 0? 0

Ventral X X X X X

Dorsal 2 0 X 0 0

Right X X X 2 1

Left X X X X 1+

Costal facets
(vertebral

body)

Right surface X 0 X

Right margin 1 X X

Left surface X 0? X

Left margin X 0? X

Subchondral bone: 0 = normal; 1 = porosity; 2 = eburnation, destruction of the subchondral surface (porosity), or fusion.
Osteophytic lipping: 0 = none; 1 = trace (<1 mm); 2 = moderate (<4 mm); 3 = major (>4 mm).
Intervertebral disc surfaces: 0 = good condition; 1 = porosity; 2 = Schmorl’s node, destruction of the subchondral surface (porosity), 
or eburnation.



SOM Table S9
Evidences of scoliosis in the LF1 spine.
Physical 
label

Virtual 
labela

Anatomical
position

Vertebral body
(larger side)b

(Right/Left)

Articular pillar/mass 
(larger side) 
(Right/Left)

Spinous process 
twisting (in 
cranial view)

Rotation of the spinous 
process (in dorsal view)c

#a C1 X - X X

2 #b C2 - R (Left pathologically 
remodelled) 

3 #d C3 L (15.0/17.0) R (Left pathologically 
remodelled) (8.5/6.4)

L (~7º) Broken spinous process

4 #c C4 - R (13.5/11.0) R (~8º)

5 #e C5 - L (9.9/11.3) Straight No rotation
6 #f C6 - = (12.4/12.4) Straight No rotation
7 #g C7 - - R (~8º)

8 #h T1 - R ((30.2)/28.2) R (~7º) Clockwise (?). Tip missing.
9 #i T2 R (17.3/16.5) R (36.4/(34.0)) R (~5º) Clockwise (~10º). Tip 

missing.
10 #j T3 - - - -
11 #k1 T4? -

11 #k3+#k
4

T4? R Clockwise (?)

14 #q T7 Straight? No rotation (?)

19 #r T12 = (23.7/24.0) - - -
#x L3? L (22.6/25.7)

22 #ab L3 - L (based on the crcd 
larger lower left facet)

- Clockwise (?)

23 #ad L4 - R (48.6/(48.0)) Left 
side pathologically 
remodelled

L (~3º) -

24 #ac L5 - - Straight? Clockwise (~20-25º)
aFollowing Gómez-Olivencia, 2013.
bIn cervical vertebrae, it refers to the development of the uncinate processes.
cNo rotation refers to a rotation degree of <5º.
X=This anatomical region does not exist in this vertebra.
- = Not possible to assess, due to preservation.
In the cervical vertebrae, the thickness of the articular pillars has been measured from the inferior surface (positioning 
the caliper parallel to the orientation of the facet), to the middle of the upper facet. 
In thoracic and lumbar vertebrae, we have measured the bi-articular diameter, i.e., from the cranialmost point of the 
upper articular facet to the caudalmost point of the inferior articular facet.



SOM Table S10
Absolute valuesa and percentage asymmetryb for the clavicular curvatures in cranial and dorsal 
views 

Specimen Species
Cranial view Dorsal view

Internal curvature External curvature Inferior curvature Superior curvature

R L %
asym.

R L %
asym.

R L %
asym.

R L %
asym.

La Ferrassie 1 H. neanderthalensis 13.2 12.3  7.3 14.2 17.7 24.6 5.4 8.2   51.8 5.8 2.6 123.1

Kebara 2 H. neanderthalensis 11.3 11.1  1.8   9.5 16.5 73.7 3.4 4.9   44.1 0.0 0.0     0.0

Regourdou 1 H. neanderthalensis 10.0 11.9 19.0 14.5 13.2   9.8 7.4 3.0 146.7 8.0 3.2 150.0

KNM-WT 
15000

Homo erectus 13.1 15.3 16.8 14.6 14.7   0.7 5.0 5.3    6.0 7.4 8.1     9.5

R = Right; L = Left; asym. = asymmetry. 
aValues from Voisin (2006).
bCalculated following Franciscus and Churchill, 2002.
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