
Forsythe, L, MacIver, DH, Johnson, C, George, KP, Somauroo, J, Papadakis, M, 
Brown, B, Qasem, M and Oxborough, D

 The relationship between left ventricular structure and function in the elite 
rugby football league athlete as determined by conventional echocardiography
and myocardial strain imaging

http://researchonline.ljmu.ac.uk/id/eprint/8576/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Forsythe, L, MacIver, DH, Johnson, C, George, KP, Somauroo, J, Papadakis, 
M, Brown, B, Qasem, M and Oxborough, D (2018) The relationship between 
left ventricular structure and function in the elite rugby football league 
athlete as determined by conventional echocardiography and myocardial 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


http://researchonline.ljmu.ac.uk/



1 

 

The Relationship between Left Ventricular Structure and Function in the Elite Rugby 

Football League Athlete as determined by Conventional Echocardiography and 

Myocardial Strain Imaging 

 

Lynsey Forsythe a, David Hunter MacIver b,c, Christopher Johnson a, Keith George a, John 

Somauroo a, Michael Papadakis d, Benjamin Brown a, Mohammad Qasem a and David 

Oxborough a* 

 

a Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, 

Liverpool, United Kingdom. 

b Department of Cardiology, Taunton and Somerset Hospital, Musgrove Park, Taunton, 

United Kingdom. 

c Biological Physics Group, School of Physics and Astronomy, University of Manchester, 

Manchester, United Kingdom, 

d Cardiovascular Sciences Research Centre, St Georges University of London, London, 

United Kingdom. 

 

*Corresponding Author: 

Dr David Oxborough, 

Reader in Cardiovascular Physiology 

Research Institute for Sport and Exercise Sciences 

Tom Reilly Building 

Liverpool John Moores University 

Liverpool 

L3 3AF 

 

Email: d.l.oxborough@ljmu.ac.uk  Tel: 44 151 904 623 

 

mailto:d.l.oxborough@ljmu.ac.uk


2 

 

Abstract 

Aims 

The aims of this study were to establish the left ventricular (LV) phenotype in rugby football 

league (RFL) athletes and to mathematically model the association between LV size, strain 

(ɛ) and ejection fraction (EF).   

 

Methods and Results 

139 male athletes underwent echocardiographic LV evaluation including ɛ imaging.  Non-

athletic males were used for comparison.  All absolute and scaled structural indices were 

significantly larger (P < 0.05) in athletes with a predominance for normal LV geometry.  EF 

and global ɛ were similar between groups but strain rates (SR) were significantly lower (P < 

0.05) in athletes.  Lower apical rotation (P = < 0.001) and twist (P = 0.010) were exhibited in 

athletes.   

 

Conclusion 

Normal EF is explained by divergent effects of LV internal diastolic dimension (LVIDd) and 

mean wall thickness (MWT) on LV function.  Reductions in SR and twist may be part of 

normal physiological LV adaptation in RFL athletes.  

 

Key Words:  Athletes’ heart, left ventricle, echocardiography, strain  
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1. Introduction 

 

Athletes’ Heart (AH) describes the physiological adaptation from chronic exposure to 

exercise training1. The magnitude and type of adaptation is heterogeneous, being dependent 

on factors including age, body size, gender, ethnicity, training status and sporting discipline2. 

Recent studies have demonstrated changes in left ventricular (LV) geometry3,4 alongside 

functional adaptation5 across sporting disciplines. Pre-participation cardiac screening (PPS) 

in Rugby Football League (RFL) is mandatory for all male players competing in the 

professional RFL Super-League. Although Sudden Cardiac Death (SCD) in an athlete is 

rare6, the impact is devastating for the family and the broader sporting community which 

often results with increased calls for more vigorous screening of athletes7. RFL is a high 

intensity sport8, defined as moderate static (20-50% maximal voluntary contractions) and 

moderate dynamic (40-70% maximal oxygen uptake) activity and PPS aims to identify 

athletes at risk of SCD by detecting previously undiagnosed cardiac conditions. It is 

appropriate that screening strategies should be tailored to the population being screened7 and 

it is therefore pertinent to establish the LV phenotype in RFL athletes. Echocardiography is 

routinely used in this setting with newer techniques, including strain (ɛ) and strain rate (SR) 

imaging now being implemented to describe chamber mechanics9. Previous data on LV 

mechanics is variable due to heterogeneous study design, methods and/or athlete populations 

with differentiation from inherited conditions often being based on a ‘one size fits all’ 

interpretation of echocardiographic derived measures and with little consideration of body 

size.   
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The relationships between LV geometry and ejection fraction (EF) have been extensively 

investigated in pathological hypertrophy10,11 whilst the association in a physiological model, 

such as the AH, remains incompletely understood. Since the interrelationship between 

ventricular wall thickness, cavity dimension and EF is complicated, a better comprehension 

of the relationship between the thickness of the LV wall, EF and myocardial ɛ has been aided 

using mathematical modelling10,12. Using intuition alone to assess the effects of multiple 

changes in structural and geometric may lead to incorrect interpretations. Mathematical 

modelling helps as it eliminates confounding factors and quantifies the individual effects of 

geometric and physiological changes. The understanding provided by modelling studies has 

now been applied to hypertensive hypertrophic ventricular disease11. It has been shown that 

using mathematical modelling10 and confirmed observational clinical data, that increasing LV 

wall thickness and/or myocardial ɛ independently leads to increased EF11. Similar findings 

have been seen in hypertrophic cardiomyopathy where the combination of reduced 

myocardial ɛ and increased wall thickness results in a normal or even increased EF13. In 

contrast, athletes tend to have greater wall thickness and dimensions yet have similar EF 

compared with controls14.   

 

This study focusses on the LV to provide an in-depth assessment of the structural and 

functional characteristics of this chamber in the elite RFL athlete to aid PPS and differential 

diagnosis where the LV is implicated. The primary aims of this study are to (1) establish the 

LV phenotype in elite male RFL athletes using standard 2D, Doppler, tissue Doppler, ɛ and 

SR speckle tracking echocardiography (STE), and (2) mathematically model the association 

between LV size, EF and ɛ in a physiological model of hypertrophy.  

 

2. Methods 
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2.1 Study population and design  

Following ethical approval by the ethics committee of Liverpool John Moores University, 

139 elite, RFL Super-League athletes aged 24±4 years (range 19-34) and 52 sedentary control 

subjects 22±3 years (range 20–35) provided written informed consent to participate in the 

study. Athlete data was collected as part of mandatory PPS. Athletes participated in more 

than 10 hours structured exercise training per week and healthy controls engaged in less than 

3 hours recreational activity per week. Participants completed a medical questionnaire to 

document any cardiovascular symptoms, family history of SCD or other cardiovascular 

history and abstained from exercise training or recreational activity for at least 6 hours prior 

to the investigation.  A cross-sectional study was employed and data acquired in a resting 

state at a single testing session. Screening results were reported by a sports cardiologist with 

clinical referrals made for any participant requiring further cardiac evaluation. Further 

evaluation in cases of suspected pathology provided no evidence of cardiac disease, therefore 

all participants remained in the study. 

 

2.2 Procedures 

2.2.1 Anthropometry 

Anthropometric assessment included height (Seca 217, Hannover, Germany) and body mass 

(Seca supra 719, Hannover, Germany) measurements with body surface area (BSA) 

calculated as previously described15. Blood Pressure (BP) was assessed with an automated 

sphygmomanometer (Dinamap 300, GE Medical systems, USA). 
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2.2.2 Conventional 2D Echocardiography 

All echocardiographic images were acquired using a commercially available ultrasound 

system (Vivid Q, GE Medical, Horten, Norway) with a 1.5-4 MHz phased array transducer. 

Two experienced sonographers acquired the images with the participant lying in the left 

lateral decubitas position in adherence to American Society of Echocardiography (ASE) 

guidelines16. Images were stored as a raw digital imaging and communications in medicine 

(DICOM) format and exported to an offline workstation (Echopac, Version 110.0.2, GE 

Healthcare, Horten, Norway) for subsequent analysis. Data was analysed by a single 

experienced sonographer and standard 2D, Doppler and pulsed wave tissue Doppler (TDI) 

measurements of chamber structure and function were made in accordance with ASE 

guidelines16,17.  

 

The internal LV cavity dimension was measured at end diastole (LVIDd) and end systole 

(LVISd) and its length calculated (LV length) from base to apex. LV end diastolic volume 

(LVEDV), LV end systolic volume (LVESV), stroke volume (SV) and EF were calculated 

using the Simpson’s Biplane summation of discs method. In addition, a comprehensive 

assessment of LV wall thickness was employed. Essentially, four linear measurements 

(infero-septum, antero-septum, posterior wall and lateral wall) were made at both the basal 

and mid-levels in the parasternal short axis at end diastole18. The mean wall thickness 

(MWT) was calculated from the average of the 8 segments.  The maximum wall thickness 

was also determined and relative wall thickness (RWT) was calculated to include the anterior 

septum (basal antero-septal and posterior wall thicknesses measured in diastole and dividing 

by LVIDd).  LV mass was determined using the ASE corrected equation and a description of 
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LV geometry was provided based on a combination of LV mass index and RWT16. All 

structural indices were scaled allometrically to BSA based on the principle of geometric 

similarity19. Linear dimensions were scaled to BSA0.5, areas directly to BSA and volumes to 

BSA1.5 and LV mass scaled to height2.7 20 and BSA 16. Transmitral Doppler allowed the 

assessment of early (E) and late (A) diastolic velocities and the ratio was calculated (E/A). 

TDI at the septum and lateral walls provided regional and average peak early (E’), late 

diastolic (A’) and systolic S’ myocardial velocities. To account for chamber size, average 

values were indexed for LV length (S’ index, E’ index and A’ index) as previously 

recommended21.  

 

2.2.3 Myocardial ɛ Imaging - STE 

Images for the assessment of myocardial ɛ and SR were acquired with frame rates between 40 

and 90 frames per second with settings adjusted to provide optimal endocardial delineation. ɛ 

and SR were analysed using an offline software package (Echopac, Version 110.0.2, GE 

Healthcare, Horten, Norway).   

 

LV Longitudinal ɛ and SR were assessed from the apical four-chamber, three-chamber and 

two- chamber images allowing for assessment of both regional and global values. Each apical 

image provided 6 segments (basal, mid and apical segments of each wall) from which 

longitudinal ɛ, time to peak ɛ, systolic strain rate (SRS), early diastolic strain rate (SRE) and 

late diastolic strain rate (SRA) were assessed. All regional values were recorded 

(Supplementary Material Figure S1a) and an average value of 18 segments was presented as a 

global parameter of LV longitudinal function. 
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LV radial and circumferential ɛ and SR were assessed from the LV parasternal short axis 

image at both basal and mid-levels. Both views provided 6 myocardial segments from which 

peak circumferential and radial ɛ, time to peak ɛ, SRS, SRE and SRA were assessed. This 

allowed regional circumferential and radial ɛ and SR to be recorded from 12 segments 

(Supplementary Material Figure S1b) and an average was calculated to provide global 

circumferential and radial ɛ and SR. LV basal and apical rotation were assessed from the 

basal and an apical parasternal image and twist was calculated as the net difference between 

peak basal and peak apical rotation22. Regional data across all the myocardial segments was 

assessed for variability by calculating the standard deviation (SD) of the 18 longitudinal 

segments and the 12 circumferential/radial segments.  

 

2.2.4 Mathematical Model 

In order to calculate the independent effects of LV cavity size, mural thickness and 

contractile ɛ on EF, a mathematical model of LV contraction was used as previously 

described10,12. The mathematical model has recently been validated using 

echocardiography23. The LV geometry was modelled using a two-layer with an ellipsoidal 

(prolate spheroidal) shape. The total mid-wall volume (intra-ventricular volume plus inner 

shell volume) was obtained and the volumes of the outer and inner shells were then 

calculated. The diastolic external and internal ventricular volumes were then obtained using 

the area-length method24, and the total myocardial volume derived from the difference. The 

mid-wall short-axis diameter and LV length were reduced, so that myocardial longitudinal ɛ 

and mid-wall circumferential ɛ were the same, to simulate systole and the new mid-wall 

volume was derived. Myocardial volume was assumed to be conserved therefore allowing the 

internal end-systolic volume to be calculated by subtracting the total muscle volume from the 
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external end-systolic volume. The end-diastolic LV length was held constant and the end-

diastolic MWT, end-diastolic diameter and myocardial ɛ were adjusted to include the range 

found in both the athletes and control groups. The systolic and diastolic left ventricular 

volumes were calculated as described above and EF calculated. 

 

2.2.5 Statistical Analysis 

Study data were collected and managed using REDCAP electronic data capture tools hosted 

at Liverpool John Moores University25. All echocardiographic data are presented as mean ± 

SD and ranges. Statistical analyses were performed using a commercially available software 

package (SPSS, Version 23.0 for Windows, Illinois, USA).  Variables were analysed between 

athletes and controls using independent T-tests with a P value of <0.05 considered 

statistically significant. 

 

Where significant differences in global ɛ, SR and TDI between groups were found, a 

bivariate Pearson’s correlation was performed against appropriate structural measures and 

heart rate (HR). Where significant correlations were found multi–linear regression was 

undertaken to determine the relative contribution of each parameter on the dependent 

variable. 

 

3. Results 

Athletes were significantly older (P=0.001) than controls (24±4 and 22±3 years). Height 

(1.82±0.06 and 1.78±0.06 m), weight (96±11 and 78±9 kg) and BSA (2.20±0.15 and 

1.96±0.13 kg/m2) were all significantly (P<0.001) higher in the athlete group whilst HR was 
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significantly (P<0.001) lower in the athlete group (56±10 and 69±9 beats.min-1). Blood 

pressure (BP) was 131/69 mmHg and 129/74 mmHg in the athlete and control groups 

respectively. There was no significant difference in systolic BP between groups but diastolic 

BP was significantly lower in athletes (P<0.001). 

 

Conventional LV structural and functional indices are presented in table 1. All absolute and 

scaled LV structural indices were significantly larger (P<0.05) in the athlete compared to the 

control group. RWT was not significantly different between groups. LV geometry was 

assessed in all participants highlighting a predominance for normal geometry with 1.4 % and 

0.7% of athletes having eccentric hypertrophy and concentric remodelling respectively. None 

of the athletes exhibited concentric hypertrophy. The entire control group presented with 

normal geometry (Supplementary Material Figure S2). 

 

There was no significant difference in EF or septal S’ between groups. However lateral S’ 

and average S’ were significantly lower in the athlete group (P<0.001 and =0.001 

respectively). E wave velocity was similar between groups but A velocity was significantly 

lower (P<0.001) in athletes resulting in a higher E/A ratio (P=0.002). Septal E’, A’ and lateral 

A’ were significantly lower in the athlete group (P=0.027, 0.003 and 0.016 respectively) and 

hence average E’ and A’ were also significantly lower (P=0.028 and 0.020). Indexed S’, E’ 

and A’ were significantly lower (P<0.001) in the athlete group. 

 

Insert Table 1 
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Global LV ɛ, SR and twist data are presented in table 2. There was no statistically significant 

difference between groups for global longitudinal, circumferential or radial peak ɛ. The 

respective time to peak ɛ (P<0.001) and was significantly increased in the athlete group 

across all planes of contraction. Longitudinal SRS, SRE, SRA (P=0.01, <0.001 and 0.011 

respectively), circumferential SRS, SRE, SRA (P=0.08, <0.001 and 0.023 respectively) and 

radial SRS, SRE, SRA (P =<0.001, <0.001 and 0.019 respectively) were lower in the athlete 

group.  Significant differences between groups were observed for LV rotational parameters 

with higher basal rotation (P=0.030), lower apical rotation (P<0.001) and lower twist (P = 

0.010) exhibited in the athlete group compared to the control group.  

 

Insert Table 2 

 

There were significant correlations between HR, MWT, LVIDd, LV length and global SR 

parameters across both groups (Supplementary Material, Table S1). Increased HR correlated 

with higher SR, whilst increased structural indices correlated with lower SR’s. Following 

multi-linear regression, HR (β=-0.003, P<0.001) and MWT (β=0.020, P=0.039) accounted 

for 16% of the variance in longitudinal SRS.  HR (β=0.007, P=0.001) and MWT (β=-0.061, 

P=0.033) accounted for 11% of the variance in circumferential SRE, whilst HR (β=-0.013, 

P<0.001) and MWT (β=0.120, P=0.006) also accounted for 15% of the variance in radial 

SRE. HR (β =0.011, P<0.001) and LVIDd (β=-0.019, P = 0.001) accounted for 25% of the 

variance in radial SRS and HR (β=0.003, P=0.001) and LV length (β=-0.003, P=0.024) 

accounted for 15% of the variance in longitudinal SRA. MWT (β=-0.099, P<0.001) was a 

significant independent contributor to longitudinal SRE and apical rotation accounting for 

19% and 10% of the variance respectively. MWT is also independently correlated to LV twist 
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(R=-0.170, P=0.021). HR also correlated with medial, lateral and average A’ (R=0.311, P 

<0.001, R=0.349, P<0.001and R=0.390, P<0.001). There was no correlation between HR and 

TDI medial, lateral or average E’.  

 

Regional LV longitudinal, circumferential and radial ɛ and SR data is presented in figure 1 

(Supplementary Material, Tables S2-S4). Regional heterogeneity was most prominent within 

longitudinal SRS (P=0.049), circumferential SRE (P=0.008), circumferential SRA (P=0.011), 

radial SRS (P=0.009) and radial SRE (P=0.049).  

 

Insert Figure 1 (a-d) 

 

The mathematical model demonstrated that increasing MWT from 7 to 18 mm predicted an 

increase in EF (Figure 2). Improving myocardial ɛ from -15 % to -19 % also predicted an 

increasing EF. As LVIDd was increased from 40 to 60 mm, however, the EF decreased. 

Furthermore, the combination of an increase in MWT combined with an elevated EDV, as 

seen in the athletes, led to a normalisation of EF. 

 

Insert Figure 2 

 

4. Discussion 
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The main findings of this study are: (1) Absolute and scaled values for LV chamber size and 

wall thickness are increased in RFL athletes whilst indexed TDI, SR, apical rotation and twist 

are lower in RFL athletes compared to sedentary controls, (2) EF is maintained which is 

likely due to the interaction of divergent effects of LVIDd and MWT on LV function. 

 

Absolute and indexed LV structural parameters are increased in elite RFL athletes consistent 

with previous studies2,4. Utomi et al 14 described a predominance of normal LV geometry in 

both endurance and resistance trained athletes, a pattern seen in this study of RFL athletes 

who were engaged in structured training and competition and had a history of long-term 

chronic exposure to training. None of the athletes exhibited concentric LVH in contrast to a 

study by Finocchiaro et al 5 who reported that 12% of male athletes demonstrated concentric 

remodelling/LVH,  rising to 15 % for males competing in dynamic sports. The natural 

progression of LV geometric changes are not completely understood within populations26 

however studies have shown that abnormal LV geometry can be detrimental and has been 

associated with increased morbidity and mortality risk27 thereby supporting the inclusion of  

LV geometry assessment in athlete echocardiographic screening. 

 

No significant differences in longitudinal, circumferential and radial ɛ were observed 

between groups similar to previous findings9. Previously, athletes with the most marked LV 

remodelling were found to have similar longitudinal ɛ patterns as those with normal LV 

dimensions28 and in groups of untrained subjects assigned to either endurance or resistance 

training LV longitudinal ɛ did not change despite changes in LV mass and volumes29. During 

an 18 week intensive training programme in competitive athletes engaged in team sports, 

there was an increase in global longitudinal ɛ with an increase in LV cavity size, suggesting a 
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reduction in longitudinal ɛ is not associated with physiological adaptation30. Our data would 

suggest that a reduction in global longitudinal, circumferential and radial ɛ is not a normal, 

physiological training adaptation. Lower SR was observed in RFL athletes and has been 

observed previously in athletes’28. Regional heterogeneity was observed for both ɛ and SR, 

the latter demonstrating most variation, both within and between groups which suggests this 

may be a normal finding in adults possibly due to regional curvature and myocardial 

architecture differences31 and/or a non-uniform contractile stress across the LV13. The 

decreased regional SR in athletes may be a normal physiological adaptation to exercise and 

likely reflects a combination of lower HR and larger LV dimensions. Speculatively, with 

increased MWT, the LV may reach the same required deformation or EF at a slower rate due 

to an increased number of myofibrils, or in other words, a similar wall tension and 

intraventricular pressure can be generated or released at a slower speed. An increase in MWT 

and a reduced contractile stress may result in the same contractile force32. 

 

Twist contributes to LV function by storing additional potential energy which is released to 

increase early diastolic suction, with the recoil inducing a rapid reduction of LV pressure 

leading to early diastolic filling33. Weiner et al 34 have previously highlighted that apical 

rotation is the primary determinant of peak systolic LV torsion. In the current study increased 

basal rotation and decreased apical rotation and twist in the athlete group is in part related to 

increased MWT and we can speculate that there may be some reduction in mechanical 

function or more simply this may be an adaptive training response to create a ‘reserve’ for the 

onset of exercise as previously suggested35. Zocalo et al 36 reported reduced twist in soccer 

players and Nottin et al 37  reported reduced twist in elite cyclists mainly driven by a 

reduction in apical rotation. Stöhr et al 38 also reported significantly lower LV apical rotation 

at rest and during submaximal exercise in individuals with high aerobic fitness, however this 
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could not be explained by LV wall thickness or HR.  A phasic response to cardiac 

remodelling has been reported in competitive rowers where in the acute phase of exercise 

training (90 days) an increase in apical rotation and twist was reported; however follow up at 

39 months following the chronic phase of adaptation revealed a regression in both apical 

rotation and twist39. It is possible that reduced apical rotation and twist is a normal 

physiological response to chronic exercise training.  The LV base rotates in the opposite 

direction to that of the apex and is significantly lower in magnitude40 with net twist explained 

on the basis of varying spiral myofibre architecture of these regions40,41. With high aerobic 

fitness, it has been previously speculated that lower apical rotation may be due to a change in 

LV microstructure with subsequent rearrangement of LV myofibres38.  

 

All participants in the current study exhibited normal indices of diastolic function.  Indexed 

and absolute diastolic TDI measures were significantly lower in the RFL athletes compared 

to controls and were associated with a significantly increased, but normal E/A mitral inflow 

ratio. Importantly, unlike A’, there was a lack of correlation between E’ and HR 

demonstrating that a faster HR in the control population is not responsible for the differences 

observed. These data may be reflective of differences in cardiac mechanics between the two 

groups, in particular reduced apical rotation and twist. A reduction in LV twist would impact 

the subsequent diastolic recoil, which has implications for diastolic filling42 and may help to 

explain the reduction in TDI.  

 

LV remodelling in RFL athletes allows for preservation of EF within normal range possibly 

through an adaptive process involving a balance between the breakdown and rebuilding of 

myocardial tissue43. Longitudinal ɛ is similar between groups but in the presence of a 
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significantly increased wall thickness, cavity size, and therefore, LV mass. No differences in 

EF between groups suggests a relationship exists between increased LVIDd and increased 

MWT to normalise EF for any given ɛ. EF is one of the most commonly used parameters to 

describe LV systolic function during serial athlete cardiac assessments. Our results are in 

agreement with Baggish et al 6 who concluded that EF alone was unable to account for 

geometric and functional changes, with lack of sensitivity to track LV function in the 

presence of significant changes in LV architecture.   

 

5. Limitations 

 

From this cross sectional study we cannot determine the timing of exercise induced changes 

in LV structure and function. The athletes were selected according to sporting discipline and 

whilst physiological adaptation of the nature observed in RFL athletes is likely similar to 

athletes of other sports of this type, further application of the model is warranted in athletes 

involved in a range of sporting disciplines. Genetic factors and seasonal variation should also 

be considered during cardiac evaluation.  

 

6. Conclusion 

 

Despite an increased LV size, there is a predominance for normal LV geometry in RFL 

athletes, who undertake mixed resistance and endurance based training. Despite normal EF 

and global ɛ, global SR is lower and there is significant regional ɛ and SR heterogeneity 

compared to controls. Apical rotation and twist are also significantly lower in and it is likely 
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that lower SR and twist mechanics are part of the normal physiological cardiac adaptation in 

RFL athletes. Normal EF and therefore ɛ, observed in these athletes, is explained by the 

increase in both MWT and LVIDd. This study suggests that the utilisation of myocardial 

mechanics in addition to standard functional indices may aid differential diagnosis during 

PPS. A normal or abnormal STE assessment in those RFL athletes presenting with standard 

LV parameters at or above/below the physiological limits or ranges considered normal for 

those parameters is likely to aid differential diagnosis. 

 

Supplementary Material  

Figures S1-S2 and Tables S3-S6 
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Figure Legends 

Figure 1: Regional ɛ and SR in RFL athletes and controls (ɛ = strain; SR = strain rate; SRS = 

systolic strain rate; SRE = early diastolic strain rate; SRA = late diastolic strain rate). 

a: Regional longitudinal, circumferential and radial ɛ  

b: Regional longitudinal, circumferential and radial SRS  

c: Regional longitudinal, circumferential and radial SRE  

d: Regional longitudinal, circumferential and radial SRA  

Figure 2: Mathematical modelling of left ventricular contraction. As ɛ decreases, ejection 

fraction decreases. The opposing effects of increased MWT and increased LVIDd results in a 

normalisation of ejection fraction. (MWT = mean wall thickness; LVIDd = left ventricular 

internal diastolic dimension; ɛ = strain). 
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Table 1:  Echocardiographic parameters of the left ventricle 

 Athlete 

Mean±SD  

(Range) 

Control 

Mean±SD  

(Range) 
 

P value 
 

LVIDd (mm) 56±4  

(47-63) 

50±4  

(40-56) 

<0.001* 

LVIDd index 

(mm/(m2)0.5) 

37±2  

(31-43) 

35±3  

(30-40) 

<0.001* 

LVIDs (mm) 38±3  

(28-48) 

34±3  

(28-40) 

<0.001* 

LVIDs index 

(mm/(m2)0.5) 

26±2  

(19-31) 

25±2  

(20-29) 

0.017* 

Mean Wall 

Thickness (mm) 

9±1  

(7-11) 

8±1  

(6-9) 

<0.001* 

Maximum wall 

thickness (mm) 

10±1  

(8-12) 

8±1  

(7-10) 

<0.001* 

Relative Wall 

Thickness 

0.33±0.04  

(0.24-0.42) 

0.32±0.04  

(0.25-0.41) 

0.205 

LV Mass (g) 191±31  

(112-279) 

132±24  

(81-187) 

<0.001* 

LV Mass index 

(g/(m2)2.7) 

38±7  

(24-63) 

28±6  

(15-39) 

<0.001* 

LV mass index  

(g/m2) 

87±13  

(55-128) 

67±11  

(42-86) 

<0.001* 

LV Length 

(mm) 

97±5  

(84-111) 

87±6  

(70-99) 

<0.001* 

LVEDV (ml) 157±25  

(105-228) 

105±20  

(55-148) 

<0.001* 

LVEDV 

(ml/(m2)1.5)) 

48±7  

(33-65) 

38±8  

(22-51) 

<0.001* 

LVESV (ml) 65±13  

(40-108) 

43±9  

(24-59) 

<0.001* 

LVESV 

(ml/(m2)1.5) 

20±4  

(13-30) 

16±4  

(9-23) 

<0.001* 

Stroke Volume 

(ml) 

92±16  

(60-136) 

62±12  

(30-90) 

<0.001* 

Ejection 

Fraction (%) 

59±4  

(48-70) 

59±3  

(54-68) 

0.466 

Transmitral E 

Velocity (m/s) 

0.79±0.15  

(0.47-1.15) 

0.82±0.15  

(0.49-1.19) 

0.307 

Transmitral A 

Velocity (m/s) 

0.41±0.10  

(0.24-0.69) 

0.49±0.10  

(0.31-0.81) 

<0.001* 

Transmitral 

E:A Ratio 

2.01±0.54  

(0.84-3.83) 

1.75±0.47  

(0.78-2.91) 

0.002* 

Medial S' (cm/s) 9±1  

(8-13) 

9±1  

(7-13) 

0.228 

Medial E' (cm/s) 13±2  

(9-18) 

13±3  

(9-21) 

0.027* 

Medial A' 7±2  8±2  0.003* 
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(cm/s) (4-12) (5-12) 

Lateral S' 

(cm/s) 

11±2  

(8-18) 

13±3  

(7-19) 

<0.001* 

Lateral E' 

(cm/s) 

18±3  

(11-27) 

19±4  

(8-28) 

0.084 

Lateral A' 

(cm/s) 

7±2  

(3-13) 

8±2  

(3-16) 

0.016* 

Average S' 

(cm/s) 

10±1  

(8-15) 

11±2  

(8-16) 

0.001* 

Average E' 

(cm/s) 

16±2  

(11-21) 

16±3  

(9-24) 

0.028* 

Average A' 

(cm/s) 

7±2  

(4-12) 

8±2  

(6-11) 

0.02* 

Average S' 

index 

((cm/s)/cm) 

1.06±0.15  

(0.73-1.61) 

1.28±0.24  

(0.87-1.79) 

<0.001* 

Average E' 

Index 

((cm/s)/cm) 

1.61±0.24  

(1.09-2.41) 

1.89±0.33  

(1.18-2.73) 

<0.001* 

Average A' 

index 

((cm/s)/cm) 

0.72±0.17  

(0.40-1.32) 

0.90±0.19  

(0.57-1.43) 

<0.001* 

Average E/E' 5.14±0.96  

(3.03-9.33) 

5.07±1.01  

(3.29-7.50) 

0.649 

 

SD = standard deviation; * = Statistically significant (P < 0.05); LVIDd = left ventricular 

internal diastolic dimension; LVIDs = left ventricular internal systolic dimension; LVEDV = 

left ventricular end diastolic volume; LVESV = left ventricular end systolic volume; E = 

early diastolic velocity; A = late diastolic velocity; S’ = systolic myocardial velocity; E’ = 

early diastolic myocardial velocity; A’ = late diastolic myocardial velocity. 
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Table 2:  Global Left ventricular ɛ, SR and Twist 

 Athlete 

mean ± SD 

(Range) 

Control 

mean ± SD 

(Range) 

P Value 
 

LV Longitudinal 
 

   

Global ɛ (%) -19.8±1.9 

(-15.5- -24.5) 

-19.4±1.8 

(-15.8- -25.0) 

0.240 

Time to Peak ɛ 

(s) 

0.37±0.03 

(0.30-0.44) 

0.35±0.03 

(0.27-0.43) 

<0.001* 

SRS (s-1) -0.96±0.10 

(-0.72- -1.31) 

-1.02±0.15 

(-0.81- - 1.41) 

0.01* 

SRE (s-1) 1.41±0.23 

(0.75-2.00) 

1.56±0.24 

(1.02-2.15) 

<0.001* 

SRA (s-1) 0.61±0.13 

(0.28-1.00) 

0.66±0.13 

(0.40-0.99) 

0.011* 

LV 

Circumferential 
 

   

Global ɛ (%) 

 

-18.7±2.5 

(-12.6- -24.9) 

-19±2.4  

(-13.9 - -25.0) 

0.458 

Time to Peak ɛ 

(s) 

 

0.37±0.03  

(0.28-0.45) 

0.35±0.03  

(0.28-0.43) 

<0.001* 

SRS (s-1) 

 

-1.06±0.15  

(-0.72- -1.60) 

-1.14±0.22  

(-0.80- -1.72) 

0.008* 

SRE (s-1) 

 
1.51±0.33  

(0.77-2.59) 

1.72±0.32  

(1.09-2.54) 

<0.001* 

SRA (s-1) 

 
0.42±0.13  

(0.21-0.84) 

0.47±0.17  

(0.22-1.11) 

0.023* 

LV Radial 
 

   

Global ɛ (%) 

 

46.8±11.2  

(25.1-72.7) 

50.1±9.0  

(32.3-68.3) 

0.059 

Time to Peak ɛ 

(s) 

 

0.41±0.04  

(0.26-0.52) 

0.38±0.04  

(0.29-0.50) 

<0.001* 

SRS (s-1) 

 

1.57±0.28  

(1.03-2.38) 

1.90±0.43  

(1.16-3.12) 

<0.001* 

SRE (s-1) 

 
-1.94±0.44  

(-1.08- -4.08) 

-2.39±0.61  

(-1.59- -4.26) 

<0.001* 

SRA (s-1) 

 
-0.95±0.39  

(-0.31- -2.76) 

-1.12±0.54  

(-0.30- -2.47) 

0.019* 

LV Rotation 
 

   

Basal rotation (o) 

 

-6.23±2.94 

 (-11.97-0) 

-5.21±2.47 

 (-11.19-0) 

0.030* 

Apical rotation 

(o) 

 

8.22±3.86  

(0.87-22.75) 

11.22±4.59  

(1.51-22.66) 

<0.001* 

Twist (o) 14.0±4.7  16.1±4.9  0.010* 
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 (3.0-28.1) (6.9-26.5) 

 

SD = standard deviation; * = Statistically significant (P < 0.05); ɛ = strain; SRS = systolic 

strain rate; SRE = early diastolic strain rate; SRA = late diastolic strain rate. 

 

 


