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coded and imitated during imitation learning by improving upon methodologies currently used 

in the literature to examine imitation of underlying movement kinematics. Across four 

experiments, imitation of the kinematic structures of biological and non-biological motion 

models was examined to investigate the processes involved in imitation learning. The purpose 

of the first experimental chapter, Chapter Two, was to examine the way in which biological 

motion kinematics were coded during imitation learning by establishing whether imitation of 

biological motion kinematics was a function of lower-level visuomotor processing or top-

down attentional modulation.  Results showed that not only were imitations of typical and 

atypical biological motion different, but both models were imitated as accurately during 

spatially incompatible trials as compatible. Accurate imitation of spatially incompatible 

atypical biological motion confirmed biological motion coding is a function of lower-level 

visuomotor processing.  

Following results from Chapter Two, Chapters Three, Four and Five assumed lower-

level visuomotor processing of biological motion and were designed to further examine 

whether this lower-level visuomotor processing of biological motion was modulated by top-

down attentional factors (e.g. end-state-targets, visual attention, social primes). The first of 

these top-down modulations was included in Chapter Three, which examined the influence of 

end-state-targets on biological motion coding during imitation learning. Although kinematics 

was not modulated by end-state-targets, movement time was less accurate when end-state-

targets were present, which suggests that lower-level and top-down processes operate together 

during the processing of visual information during imitation learning. In addition to end-state 

target modulation, imitation data further confirmed the coding of atypical biological motion 
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by demonstrating differences in imitation of two relatively similar atypical biological motion 

models (atypical17 and atypical26). The top-down attentional factor examined In Chapter 

Four was visual attention, which was measured by recording eye movements during 

observation of the model stimuli. Analysis of eye movements demonstrated that visual 

attention was directed towards the model throughout the entirety of the observation phase 

during trials where end-state-targets were both present and absent. As goal-directed eye 

movements were not made during observation of the models, results suggest that the kinematic 

data contained within each of the models was observed and consequently featured in the 

representation formed for motor execution.  

Chapters Two, Three and Four provide a fundamental understanding of how biological 

motion is coded during imitation learning by using robust protocol that improves upon the 

validity of those used in the current literature and specific modulations that discredit 

significant top-down modulatory explanations for biological motion coding. The way in which 

biological motion coding occurs in neurotypicals (no neurologically atypical patterns of 

thought or behaviour) is important when trying to understand where deficiencies in those with 

intellectual disabilities occur. The intellectual disability most closely associated with the 

current thesis is autism, where deficiencies in imitation are suggested to be linked to social 

components. Therefore, to establish a foundational understanding of how social context 

influences neurotypical imitation, Chapter Five examined the influence of social primes on 

the coding of biological motion. Results showed that social primes modulated the accuracy of 

imitation, where peak velocity was more like those of the models following observation of an 

anti-social prime. In addition, observation of both the pro- and anti-social primes was shown 

to reduce the variability of imitation relative to observing no social prime at all. These findings 

demonstrate that social primes are being coded and incorporated into the motor output such 
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that both the accuracy and consistency of imitation of biological motion are modulated. 

Together, the results presented in the current thesis demonstrate imitation of novel, atypical 

biological motion is a function of complimentary lower-level and top-down processes that 

facilitate the coding of both underlying kinematics and environmental context. 
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Chapter 1: Exploring the Processes Underpinning Biological Motion Coding During 

Imitation Learning 
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1.1 Aim of the Chapter 

 

The following introductory chapter outlines the rationale and aims of this thesis, 

providing an overview of imitation of biological motion during imitation learning, as well as 

a review and discussion of the current theories relating to the factors that may modulate this 

process. In addition to discussing the current understanding of biological motion coding 

within existing literature, the introductory chapter will also outline how the methodology used 

in the present thesis will progress and expand upon this understanding to provide a more 

rigorous examination of biological motion coding during imitation learning and how that 

impacts wider research areas such as Autism Spectrum Condition (ASC). 

 

1.2 Imitation 

 

1.2.1 Definition of Imitation 

 Imitation is an important learning strategy for humans (van Gog, Paas, Marcos, Ayres 

& Sweller, 2009) and is largely defined as a method of acquiring novel actions or behaviours 

(Heyes, 2001). Research examining children’s abilities to imitate suggest that imitation is one 

of the earliest forms of reciprocal interaction between infant and caregiver (Nadel, Guerini, 

Peze & Rivet, 1999) and facilitates the learning of fundamental abilities such as language and 

social skills (Adams, 1987). Successful imitation involves observing an action and coding the 

visual information into a representation that contains any perceived goals or means (the way 

in which the movement was executed i.e. movement velocity), such that an appropriate motor 
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response can be generated voluntarily when required (Blake, 1958; Bandura & Huston, 1961; 

Bandura, 1986; Heyes, 2001, 2011; Heyes et al., 2005). Imitation thus enables an individual 

to improve their response accuracy (termed ‘motor control’; Wolpert, Doya, & Kawato, 2003) 

through a sensorimotor loop (Wolpert & Ghahramani, 2000) by updating the representation 

based on the afferent (i.e. visual; proprioceptive) and expected sensory signal information. 

This loop is continuous, as is the updating of the representation, such that prolonged exposure 

to the model combined with repeated imitation attempts results in reduced error as the motor 

response becomes more like the model (Schmidt, 1975; Bandura, Ross & Ross, 1963; Carroll 

& Bandura, 1982). It has been suggested that observation and imitation are part of a system 

in which they are linked by a common representational domain (Prinz, 1997), wherein visual 

information is processed using higher-order top-down (cognitive) and lower-level 

(visuomotor) mechanisms (Byrne & Russon, 1998; Brass & Heyes, 2005). Lower-level 

mechanisms refers to the direct engagement of neural processes through the stimulation of 

sensory receptors (Teufel et al., 2010), whereas top-down mechanisms elicit motor activity 

based on decomposed stimulus features such as goals or environmental context e.g. attention/ 

instruction/ social context (Csibra, 2007).  

 

1.2.2 Importance of Imitation 

While imitation is important in acquiring and developing motor skills (e.g. holding a 

fork, throwing a ball), it is also intricately linked with social interaction and the development 

of social skills such as facial expressions (Piaget, 1962), hand gestures (Fontaine, 1984; 

Vinter, 1986) and other socio-cognitive skills (Meltzoff & Decety, 2003) from infancy 

(Meltzoff & Moore, 1999). Imitation of these skills was initially found in infants between 8-
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12 months of age (Piaget, 1962), however it was later discovered that imitation could be 

observed at an earlier age (Meltzoff & Moore, 1977; Heimann, Nelson & Schaller, 1989). 

This led to the question: what function does imitation at such an early age serve? Initially, the 

answer was 2-fold: the imitative responses were either ‘reflexive’ or a display of ‘social 

cognition’. In terms of the former account, the suggestion was that a displayed model 

automatically triggers a preset motor program where the response is involuntary and 

unplanned (Bjorklund, 1987). The latter account suggests that infants interpret the intermodal 

equivalence, i.e., correlating a model’s display with one of their own (Harvey & Johnston, 

1973), such that imitation is used for social-communication purposes (Meltzoff & Moore, 

1985). Further research on this suggestion found that infants used imitation to enrich their 

understanding of persons and actions used for communicative purposes, as well as to identify 

people by familiarising themselves with nonverbal behaviours to create identity (Meltzoff & 

Moore, 1992). 

Adults, like infants, use imitation as a learning tool (van Gog et al., 2009). However, 

adults are also able to use imitation as a social medium to appear more affable by creating 

positive connections or a sense of familiarity. This was demonstrated when observers were 

shown two loosely related images and asked to highlight the similarities they shared (van 

Baaren, Janssen, Chartrand & Dijksterhuis, 2009). Participants who were being mimicked by 

an examiner reported a greater number of similarities between the images than those who were 

not being mimicked, suggesting that imitation had the power to change the way people think 

and perceive situations. As well as influencing perception, imitation has also been shown to 

increase behaviours such as rapport (Chartrand & Bargh, 1999), trust (Bailenson & Yee, 

2005), memory (van Baaren, Horgan, Chartrand & Dijkmans, 2004), enjoyment (Tanner, 

Ferraro, Chartrand, Bettman & van Baaren, 2007), and likeability (Jacob, Guegeun, Martin & 
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Boulbry, 2011; Herrmann, Rossberg, Huber, Landwehr & Henkel, 2011; Stel, Mastop & 

Strick, 2011). Equally, a lack of imitation has been reported when people have a dislike or 

dissimilarity to those they are observing based on criteria such as obesity (Johnston, 2002), 

religion (Yabar, Johnston, Miles & Peace 2006) and attractiveness (van Leeuwen, Veling, van 

Baaren & Dijksterhuis, 2009) to name a few. Thus, if people want to disaffiliate with others, 

they are likely to imitate them less. 

 

1.2.3 Types of Imitation 

While the concept of imitation may seem straightforward due to its recognisability in 

day-to-day life, there are various types of imitation that are underpinned by different, and very 

complex, mechanisms. Therefore, it is important to consider the characteristics of imitation 

that are most relevant to this program of research and the processes that define and facilitate 

each type. 

 

1.2.3.1 Emulation 

Emulation is a goal-centric type of imitation in which the observer learns something 

about the environment but not about the behaviour of another (Tomasello et al., 1987). 

Emulation changes the saliency of certain goals such that during observation, the purpose or 

goal to which the demonstrator is striving is made obvious by its actions and as a result 

becomes the goal for the observer as well (Tomasello, 1996). The means by which the goal is 

achieved may be the same as those observed, however it is a matter of individual learning and 

not fundamental to emulation. Further, it has been suggested that goal emulation contains 
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elements of cognitive priming, where, providing goals are either familiar or identifiable, they 

are primed in the brain and are addressed before unprimed ones (Byrne, 1998). For example, 

studies have shown that chimpanzees who observed demonstrators collecting out-of-reach 

food with a rake, then used a similar tool themselves to obtain food and importantly, appeared 

to do so without using the same technique as the demonstrators (Call & Tomasello, 1994; 

Nagell, Olguin & Tomasello, 1993; Tomasello, Davis-Dasilva, Camak & Bard, 1987). By 

using dissimilar techniques but primarily obtaining the food, authors suggested the effects 

were a demonstration of emulation. 

 

1.2.3.2 Simple Imitation 

Simple imitation; also, termed ‘mimicry’ (Tomasello, 1996), ‘automatic imitation’ (Heyes et 

al., 2005), ‘priming’ and ‘response facilitation’ (Byrne & Russon, 1998), occurs when an 

observer copies the movements or actions of another that already exist as part of the observer’s 

behavioural repertoire (Heyes, 2011). This is commonly seen in social interactions, where 

preconscious mimicry (Dijksterhuis & Bargh, 2001) of facial, vocal or postural cues (Hess, 

Philippot & Blairy, 1999) has been observed, e.g. ear touching (Bekkering, Wohlschlager & 

Gattis, 2000). However, simple imitation is considered dissimilar to emulation (Tomasello, 

1996). An example of the distinction was demonstrated in a study that required observation 

of a demonstrator who touched their ear using ipsilateral (same side of the body) or 

contralateral (opposite side of the body) arm movements (Bekkering et al., 2000). When a 

demonstrator touched their right ear with their left hand, the goal of the movement was to 

touch the left ear and the contralateral arm movement defined the way in which the goal was 

attained. In this instance, emulation of the movement would have been to touch the right ear 
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regardless of which hand was used, whereas imitation of the movement required not only the 

touching of the right ear, but also the contralateral arm movement. Whilst the focus of this 

thesis is imitation learning (complex imitation), not automatic imitation (simple imitation), 

automatic imitation research is regularly referenced due to the commonalities it shares with 

complex imitation in relation to the underlying mechanisms, as outlined by the ASL theory 

(Heyes & Ray, 2000), that mediate imitation (Heyes, 2005).  

 

1.2.3.3 Complex Imitation 

Complex imitation, also termed ‘imitation learning’ (Tomasello, 1996), ‘true 

imitaiton’ (Zentall, 2006; Cook & Bird, 2012), ‘observational learning’ (Carroll & Bandura, 

1982), occurs when an observer copies a novel sequence of movements. Importantly, these 

are movements that are not already part of the motor repertoire (Heyes, 2011). Throughout 

the thesis, the common term used will be imitation learning. Imitation learning is believed to 

depend on complex psychological processes whereby visual information from a model is 

translated into a motor output that looks the same. Like simple imitation, imitation learning is 

concerned with imitation of both the goal and the way in which the goal was obtained. The 

important distinction though, is that because the to-be-imitated movement is novel, it requires 

an element of learning, e.g. performing a semaphore-like movement with the hand and arm 

(Carroll & Bandura, 1982). As such, it is initially unclear how the cognitive system works out 

which potential action corresponds to the one that was observed as it is one that will not have 

been performed before (Bird & Heyes, 2007). Moreover, a recent review article of imitation 

posited that the processes underpinning the early stages of imitation learning are ‘far from 
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obvious’ due to the complexities and unknowns regarding the available solutions (Heyes, 

2011).  

 

1.2.4 Theoretical Models of Imitation 

1.2.4.1 EP-M Model 

 The EP-M model is a dual route model concerned with how actions are processed and 

is like other dual route models proposed for imitation of actions (Tessari & Rumiati, 2002), 

language processing (Lichtheim, 1885) and stimulus-response compatibility, subsequently 

referred to as SRC (Heyes, 2011). The EP-M model is associated with the perception-action 

system and is made up of two components: the ‘EP’ and the ‘M’ routes (Hamilton, 2008). The 

EP route is involved in understanding, planning and achieving the goal of an observed action, 

which is generated using pre-existing sensorimotor representations (e.g., picking up a fork), 

which are scaled relative to the task-demands. The EP route is suggested to originate in the 

middle temporal gyrus (MTG) and ends at the inferior frontal gyrus (IFG) travelling via the 

inferior parietal lobule (IPL), the region that is associated with identifying the goal of an 

action. The M route is involved in the processing of movement kinematics and makes direct 

associations between the visual and motor components, termed ‘visuomotor mapping’, such 

that automatic mimicry is feasible without cognitive interpretation. It is generally used when 

observing actions that are novel, or are lacking any obvious goals, e.g. accuracy of imitation. 

The M route is also suggested to originate in the MTG, however visual information is sent 

directly to the IFG, leading to direct associations between visual and motor representations. 

Often during observation, these routes are used together to provide a complimentary 

understanding of the goal of the movement and the way in which the goal was obtained 
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(Hamilton, 2008). A similar dual route model was generated in relation to SRC (Heyes, 2011) 

that discussed an intentional and automatic route in relation to stimulus-response association. 

The intentional route was suggested to generate short-term stimulus-response association 

between the sensory and motor representations based on task instructions that generally lasted 

for the duration of the task (Barber & O’Leary, 1997). Conversely, the automatic route is 

modelled as a long-term stimulus-response association between the sensory and motor 

representations, which has recently been shown to be a function of learning (Oostenbroek, 

Suddendorf, Nielsen, Redshaw, Kennedy-Costantini, Davis et al., 2016). 

 

1.2.4.2 Goal-Directed Theory 

 Goal-directed imitation refers to a type of top-down modulation that is suggested to 

influence the direct visuomotor mapping associated with lower-level processing. Broadly 

speaking, goal-directed imitation has largely been examined in terms of meaningful (MF) and 

meaningless (ML) actions (Rumiati & Tessari, 2002; Press & Heyes, 2008), or transitive 

(object-related) and intransitive (non-object related) actions (Bekkering et al., 2000; Press, 

Bird, Walsh & Heyes, 2008). While MF and ML actions are not examined directly in the 

current thesis, their examination and subsequent contribution to goal-directed imitation is 

noteworthy. Imitation accuracy (Rumiati & Tessari, 2002) and reaction time (Press & Heyes, 

2008) are improved following observation of MF (goal-directed) compared with ML (not 

goal-directed) actions, which authors have postulated are a function of a dual-route model of 

imitation (Rumiati & Tessari, 2002). The dual-route model proposed a direct route for 

imitation of unknown actions, which relies on direct visuomotor mapping of an action and a 

semantic route for imitation of known actions that utilises long-term memory. MF actions are 
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stored in the long-term, semantic memory and therefore engage the semantic route, while ML 

actions could only be reproduced through the direct route as they had no pre-stored goals in 

the semantic memory. It was suggested that the less accurate imitation of ML actions was a 

result of using the direct route, as it bypassed the semantic route and created greater demands 

on the short-term and working memory systems (Rumiati, Weiss, Tessari, Assmus, Zilles, 

Herzog et al., 2005). 

Another interpretation of goal-directed imitation suggests that goals are embedded 

within observed and executed actions (Bekkering et al., 2000). It posits that the motor 

representation constructed for imitation is decomposed during observation of an action into 

its constituent components and later reconstructed based from these components. Importantly, 

this process is guided by the viewer’s perception and interpretation of the motor program in 

relation to its goal-directed features. If a tangible goal is present, it is generally considered to 

be of more importance than the way in which the goal is achieved. For instance, touching the 

ear is more important than using the correct ipsilateral (i.e. left hand to touch left ear) or 

contralateral (i.e. right hand to touch left ear) arm movement to touch the ear (Gordon, 1920; 

Head, 1923; Schofield, 1976; Bekkering et al., 2000). However, if there was no obvious goal 

of a movement, e.g. moving a limb into a space (Bekkering et al., 2000; Wild, Poliakoff, 

Jerrison & Gowen, 2010), then the way in which the movement was performed would likely 

be recognised as the primary goal. Within the interpretation of goal-directed features, GOADI 

suggests that goals are represented as a hierarchical structure where specific goals are encoded 

as having greater importance (Bekkering, Wohlschlager & Gattis, 2000; Wohlschlager, Gattis 

& Bekkering, 2003). Consequently, the goals that are prescribed greater importance are likely 

to generate a greater accuracy of imitation. The goals that are selected then elicit the motor 

program with which they are most strongly associated and therefore, do not necessarily lead 
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to matching movements. Consistent with the EP route of the dual route model (Hamilton & 

Grafton, 2006; 2007), neuroimaging research examining the mirror neuron circuitry has 

demonstrated observation and imitation of goal-directed tasks activate parietal regions of the 

brain, specifically the IPL (Rizzolatti, Fogassi & Gallese, 2004; Iacoboni, 2005), which are 

controlled and regulated by the prefrontal cortex, subsequently referred to as PFC (Quintana 

& Fuster, 1999; Miller, 2000).  

 

1.2.4.3 Associative Sequence Learning 

 The associative sequence learning (ASL) theory suggests imitation occurs because the 

sensory and motor representations generated during observation and imitation are connected 

by direct ‘vertical associations’ that are highly experience-dependent (Heyes, 2001). Some of 

these vertical associations are innate, that is, executed autonomously without cognition, e.g. 

yawning, smiling (Meltzoff & Moore, 1977). However, the majority are formed because of 

correlated experience of observation and execution of the movement, where humans use self-

reference after imitating to gauge the accuracy of the representation. As well as direct vertical 

associations, there are also indirect vertical associations between the sensory and motor 

representations, whereby the representation is mediated by an additional representation, e.g. 

a word or phrase. The indirect association can occur during the observation or execution of 

the movement, which then informs the direct association. Vertical associations characterise 

sensorimotor representations and the execution of an imitative movement may be a 

combination of multiple representations. These connections are made through horizontal 

associations to form a sequence or sensorimotor representations. It is suggested that the 

acquisition of novel motor skills assumes that activation of motor representations via vertical 
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associations provides input to task general processes of motor learning, and results in imitative 

performance unless inhibited by mechanisms regulating intentional action. These mechanisms 

then connect the vertical associations to an output in relation to goals that formulate the 

execution of imitation (De Renzi, Cavalleri & Facchini, 1996).  

 

1.2.4.4 Direct-Matching Hypothesis 

 The direct-matching hypothesis has been suggested to operate using a ‘resonance’ 

mechanism (Rizzolatti, Fadiga, Fogassi & Gallesse, 1999), whereby the visual information 

observed (e.g. a picture; movement kinematics) is mapped onto a motor representation of the 

same action in the nervous system (Rizzolatti, Fogassi & Gallesse, 2001). Moreover, this 

hypothesis predicts that cortical areas where matching occurs must contain neurons that 

discharge during observation and that some of them should also receive input based on the 

action they are encoding. Therefore, these areas should have motor properties that are likely 

to be more active when the imitation is primed by observation of the to-be-executed action 

(Iacoboni, Woods, Brass, Bekkering, Mazziotta & Rizzolatti, 1999).  

 

 Several theories have been outlined in this review of current literature to demonstrate 

the complex and specific processes underpinning the ability to imitate. It is important to note 

that no one theory is entirely correct, or incorrect – depending on the feature of imitation that 

is examined, each can assume varying applicability. Therefore, the current thesis is not 

designed to corroborate one particular theory, but to consider all theories and their relevance 

to the findings discussed throughout. That withstanding, certain theories are expected to be 

more relevant to the current thesis based on the research questions examined. The primary 
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research question in the current thesis concerns whether atypical biological motion is coded 

during imitation learning. If results demonstrate, as expected, that atypical biological motion 

is coded and imitated differently to typical biological motion, these findings would support 

the ASL theory by evidencing direct associations between the observed and executed 

movements to produced different visual representations formed during observation that 

resulted in scaled imitation of the respective models. 

 

1.3 Perception-action System 

 

 The perception-action system is believed to contain the neural circuitry that is active 

during imitation learning. The term ‘mirror’ is a reference to the connection between neuron 

activation during observation and imitation respectively; that is, regions of the brain believed 

to activate during observation also activate during imitation of the same stimulus. The first 

example of these ‘mirror neurons’ was discovered in monkeys (di Pellegrino, Fadiga, Fogassi, 

Gallese & Rizzolatti, 1992), specifically in the IFG located in the F5 region, and forms a 

circuit with the posterior parietal area, also containing neurons with mirror properties 

(Gallesse, Fadiga, Fogassi & Rizzolatti, 2002; Fogassi, Ferrari, Gesierich, Rozzi, Chersi & 

Rizzolatti, 2005). Subsequently, there have been many neuroimaging studies examining the 

perception-action system in the human brain. However, it is still uncertain which regions of 

the brain ‘consistently contribute’ to observation and imitation processing (Caspers, Zilles, 

Laird & Eickhoff, 2010). Early neuroimaging studies involving humans suggested mirror 

neuron activation was in the inferior frontal (Iacoboni, 2001), premotor and parietal (Decety, 

Chaminade, Grezes, Meltzoff & Grezes, 2002; Buccino et al., 2004) regions of the brain. Yet, 
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a more recent review of 20 studies found discrepancies based on the regions that were 

consistently activated (Molenberghs, Cunnington & Mattingley, 2009). The first strong 

evidence of a perception-action system in humans was found using motor evoked potentials 

(MEPs) that were activated by single-pulse transcranial magnetic stimulation (TMS) while 

observing upper-limb movements (Fadiga, Fogassi, Pavesi & Rizzolatti, 1995). The study 

found that activation of MEPs during observation of another person’s movement were similar 

to those recorded during execution of the same movement. Neuroimaging studies have also 

reported a mirroring effect between observation and imitation in tasks such as observing goal-

directed hand-grasping movements (Gangitano, Mottaghy & Pascual-Leone, 2001; see 

Rizzolatti & Craighero, 2004), playing guitar chords (Vogt, Buccino, Wohlschlager, Canessa, 

Shah, Zilles et al.., 2007) and compatible finger movements (Biermann-Ruben et al., 2008).  

 Further research using functional magnetic resonance imaging (fMRI), 

electroencephalography (EEG), magnetoencephalography (MEG) and TMS methods, 

indicated a contribution from the primary motor cortex (Nishitani & Hari, 2002; Jarvelainen, 

Schurmann & Hari, 2004) and the dorsal premotor cortex (Grezes, Armony, Rowe & 

Passingham, 2003; Leslie, Johnson-Frey & Grafton, 2004) in the mirror-circuitry due to their 

activation during action observation. In addition to the core circuitry, it had also been 

suggested that other regions of the brain not containing mirror properties are active during 

action observation. For example, the posterior part of the superior temporal sulcus (pSTS) has 

been shown to act as a visual relay to the IPL and frontal lobe structures (Nishanti & Hari, 

2002; Iacoboni et al., 2001). Specifically, it was suggested that the visual information 

provided by the pSTS to the fronto-parietal mirror regions facilitates goal-directed 

information processing in the IFG and ventral premotor cortex (vPM), as well as kinematic 
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information processing in the rostral part of the inferior parietal lobule (aIPL) (Iacoboni, 

2005).  

More recently, it has been posited that the frontal regions of the perception-action 

system code the kinematics, whereas the parietal regions code the goal(s) of an observed 

movement (Hamilton, 2008). Moreover, it has also been suggested that these regions not only 

code the kinematics or goal of an observed movement, but also contribute to the understanding 

of actions and their consequences (Hamilton & Grafton, 2008). This was demonstrated using 

a repetition suppression (RS) protocol to measure blood oxygen level-dependent signal 

(BOLD), which highlights active regions during visual information processing, after viewing 

videos of novel or repeated kinematics, goals and outcomes. A selection of RS studies have 

reported suppression of the lateral occipital cortex (LOC) and IFG when constructing the 

visual and motor representations of kinematics (Hamilton & Grafton, 2007; Kilner, Neal, 

Weiskopf, Friston & Frith, 2009), as well as in the IPL when processing the goals or outcomes 

of a movement (Hamilton & Grafton, 2008; Chong, Cunnington, Williams, Kanwisher & 

Mattingley, 2008). However, RS studies have also indicated that while these regions are 

active, they may not in fact contain neurons with mirror properties. Rather, motor areas have 

distinct, segregated populations of visual and motor neurons where the visual neurons 

discharge during observation and the motor neurons fire during imitation (Dinstein, Thomas, 

Behrmann & Heger, 2008). It was proposed that if mirror neurons existed in humans, they 

should adapt at a synaptic level based on repetitive exposure to the same information through 

common pathways (Sawamura, Orban & Vogels, 2006). However, it was suggested that 

adaptation effects were difficult to interpret as common pathways are often lacking (Bartels, 

Logothetis & Moutoussis, 2008). For example, frontoparietal regions receive visual 

information during observation from the superior temporal sulcus (STS) (Rizzolatti & 
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Luppino, 2001; Iacoboni, 2005), whereas during imitation it mostly comes from the frontal 

lobes (Fuster, 2008). Moreover, this inference of separate neural regions involved in visual 

and motor processing is unlikely based on the volume of literature demonstrating congruency 

between the regions and neurons involved in observing and imitating motor acts (Fadiga et 

al., 1995; Strafella & Paus, 2000; Maeda, Kleiner-Fisman & Pascual-Leone, 2002). Therefore, 

if visual information reaches neurons that encode the same motor act such that imitation is 

achieved, the neurons involved in these processes have mirror properties (Rizzolatti & 

Sinigaglia, 2010). 

 

1.4 Biological Motion 

 

1.4.1 Definition of Biological Motion 

‘Biological motion’ refers broadly to the movement of an animate object. Relative to 

human movement, it refers more specifically to body movements (e.g. hands, eyes, face) that 

may provide information about specific actions or intentions (Allison, Puce & McCarthy, 

2000). The original methodology designed to measure biological motion processing used a 

rudimentary version of point-light displays (PLD), which allowed for studying of the 

movement without interference from the form (Johansson, 1973). It was suggested that 10-12 

light bulbs located on the major joints in the human body, observed against a contrasting 

background (often in a darkened room) were sufficient to be able to convey enough visual 

information to be able to distinguish between the highly specific movement patterns that 

comprise actions such as walking, running and dancing (Johansson, 1973). The theory is 

founded on the basis of physics principles, which state the motion of a single point is 
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characterised by its position and the forces applied to it. That is, the movement of a single 

point, as well as it’s interaction with the other visible points within a PLD, contain enough 

relative information to represent motion structure. It is suggested that recognition occurs due 

to the implicit recognition that the visual information follows the laws of human motion. One 

law of human movement is the minimum jerk (MJ) velocity profile, which describes a ‘bell-

shaped’ velocity curve during a point-to-point movement (e.g. drawing a horizontal line across 

a piece of paper). A MJ velocity profile starts with a slow acceleration from a stationary 

position where the magnitude of acceleration gradually increases until it reaches a peak 

velocity (typically between 40%-60% of the movement displacement; Elliott, Helsen & Chua, 

2001), before a gradual decrease in magnitude of velocity as the movement reaches its 

conclusion (Abend, Bizzi & Morasso, 1982; Flash & Hogan, 1985). Relative to the current 

thesis, the MJ velocity profile is representative of one of the model data that was observed by 

participants as it complies with the laws of human motion. That is, it is a movement that 

humans make implicitly when moving between two points (Abend et al., 1982). 

 

1.4.2 Importance of Biological Motion 

 The functional implications of being able to detect biological motion have developed 

over time. From an evolutionary standpoint, it has been shown to facilitate the identification 

of predators, prey and those of one’s own kind (Ewert, 1987). Specifically, within humans, 

observation of biological motion has allowed for the distinction between animals and humans 

(Mather & West, 1993), genders (Kozlowski & Cutting, 1977), identities/ familiarity (Cutting 

& Kozlowski, 1977; Troje, Westhoff & Lavrov, 2005), facial expressions (Bassili, 1978) and 

actions (Dittrich, 1993) to name a few. These effects are largely consistent when observing 
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static or dynamic biological motion. However, it has been suggested that the depth of 

movement recognition is greater when observing dynamic biological motion (Mather & 

Murdoch, 1994; Troje, 2002). Importantly, the ability to process observed biological motion 

to infer actions and intentions (termed ‘social perception’; Allison et al., 2000) is a function 

that defines humans and can be identified in infants as early as days old (Simion, Regolin & 

Bulf, 2008; Meary, Kitromilides, Mazens, Graff & Gentaz, 2007). Four-month-old infants 

were reported to stare at human motion sequences for longer duration than at random 

movements (Bertenthal, 1993; Fox & McDaniel, 1982). While it has been suggested that 

infants may process biological motion in a similar way to adults (Jokisch, Daum, Suchan & 

Troje, 2005; Reid, Hoehl & Striano, 2006), it has also been shown that children improve their 

abilities to perceive and process biological motion until they reach adult levels of performance 

at approximately age 5 (Pavlova, Krageloh-Mann, Sokolov & Birbaumer, 2001). Being 

socially cognisant is a feature that allows humans to thrive in complex social situations and is 

the cornerstone of human life (Amodio & Frith, 2006). 

 

1.4.3 Neural Mechanisms and Application of Biological Motion Processing 

 In the adult brain, multiple areas are required for biological motion processing (for 

reviews, see Allison et al., 2000; Puce & Perrett, 2003) such as inferior occipital cortex 

(Bonda, Petrides, Ostry & Evans, 1996; Pelphrey, Mitchell, McKeown, Goldstein, Allison & 

McCarthy, 2003; Dayan, Casile, Levit-Binnun, Giese, Hendler & Flash, 2007), lingual gyrus 

(Vaina, Solomon, Chowdhury, Sinha & Belliveau, 2001; Pelphrey et al., 2003; Dayan et al., 

2007), premotor cortex (Saygin, Wilson, Hagler, Bates & Sereno, 2004; Saygin, 2007) and 

primarily, the STS (Bonda et al., 1996, Pelphrey et al., 2003; Saygin et al., 2004; Safford, 
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Hussey, Parasuraman & Thompson, 2010). Each of these areas is suggested to process 

different components of the visual information such as motion and form (Vangeneugden, de 

Maziere, van Hulle, Jaeggli, van Gool & Vogels, 2011). However, the STS is considered the 

primary area associated with biological motion processing and is believed to integrate all 

components of biological motion processing to construct a complete visual representation of 

an observed movement (Puce, Allison, Bentin, Gore & McCarthy, 1998; Vangeneugden, 

2011). STS activation in response to observed human movement was first discovered using 

single cell recordings in macaque monkeys (Oram & Perrett, 1994). More recently, 

neuroimaging studies have substantiated and elaborated upon this finding to show that it is 

specifically the pSTS that is most active when observing human movement, as demonstrated 

in PLD paradigms (Bonda et al., 1996; Grossman & Blake, 2002; Grossman, Blake & Kim, 

2004). However, the breadth of regions that appear to be responsive to observed biological 

motion have meant it is unclear whether they are responding to general human movement or 

if they are specifically linked to biological motion (Troje, 2008). Nevertheless, neuroimaging 

studies spanning 20 years have sought to find definitive answers. 

 Some of the first studies on humans used positron emission tomography (PET) during 

observation of biological PLDs, such as hand-grasping actions and whole body movement. 

Increased activity was reported in the STS when observing biological motion compared to a 

non-biological control conditions that showed random motion (Bonda et al., 1996; Grossman 

et al., 2000) or scrambled motion (reconfigured biological PLD motion; Grossman et al., 

2000). As well as PET, TMS has been used to temporarily disrupt cortical activity in specific 

areas of the brain. Applying repetitive TMS (rTMS) over the right pSTS prior to completing 

a biological motion discrimination task showed a decrease in detection of biological motion, 

suggesting normal function of the pSTS is required for the perception and processing of 
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biological motion (Grossman, Battelli & Pascual-Leone, 2005). Moreover, TMS has impaired 

biological motion coding when applied to the STS relative to control regions of the brain not 

associated with biological motion coding (vertex) and decreased sensitivity in the STS when 

observing biological, compared to non-biological (scrambled biological) motion (van 

Kemenade, Muggleton, Walsh & Saygin, 2012). These finding underscore the unique 

involvement of the STS in the processing of human movement. 

More recently, neuroimaging studies have used fMRI as it is considered safer than 

PET and is more appropriate and accurate for determining the contribution from areas of the 

brain than TMS. Early fMRI studies demonstrated activations in portions of the STS region 

when observing facial movements, e.g. directed/ averted eye gaze that were both dynamic 

(Puce et al., 1998) and static (Haxby, Hoffman & Gobbini, 2000). The study using dynamic 

eye movements displayed human models that appeared to make eye movements from a central 

fixation to either the right or left side and then return to a central fixation while the head stayed 

in register. These eye movements were shown alongside clips of the same length, 

demonstrated by the same models, which demonstrated the eyes maintaining a central fixation. 

Brain activity in the STS region, specifically the pSTS was greater during clips where the eyes 

made a movement to either side, compared to when they maintained a fixation, which 

suggested the STS was active in the perception of biological motion contained in certain body 

movements (Puce et al., 1998). While the same conclusions were reported when using static 

images of eye movements and gaze direction, it was suggested that in addition to the 

perception of eye movements and gaze direction, the STS is also involved in higher-level 

representations of actions (Haxby, Hoffman & Gobbini, 2000), specifically recruiting the 

spatial-cognitive system to encode the direction in which eye movements or gaze were 

focussed. This is concurrent with a recent repetition suppression fMRI study that used the 
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repetition suppression (RS) design during observation of PLDs and suggested the STS 

generates higher-level representations of biological motion during action coding (Grossman, 

Jardine & Pyles, 2010). RS is based on the theory that consecutive activations of the same 

neuronal population create a reduced haemodynamic response compared to consecutive 

activations of different neuronal populations (Buckner et al., 1998; Grill-Spector & Malach, 

2001). The experiment consisted of observation of pairs of images; the first animation was of 

a PLD showing one of twenty-five action sequences, e.g. walking, running etc., and the second 

was either (a) the same animation repeated, (b) a PLD of a different animation, or (c) the same 

animation mirror-reversed. Results showed that activation in the pSTS was suppressed after 

observation of the same animation and of the mirrored animation but not after observing 

different animations. The implication is that regions of the STS not only detect biological 

motion, but also generate higher-level representations to form a more complex understanding 

of actions and movements.  

In addition to the wealth of neuroimaging research demonstrating a connection 

between the STS region and the perception of biological motion, this association is made even 

more robust by the implementation of the theory in behavioural studies that observe 

interactive performance (Saygin, 2007; Lange & Lappe, 2006; van Kemenade et al., 2012). 

One example of biological motion processing affecting behavioural performance was 

demonstrated when participants performed linear arm movements while concurrently 

observing orthogonal arm movements. Online imitation of the vertical human arm movement 

produced involuntary movement deviation in the execution of horizontal arm movements 

whereas observation of the vertical robot arm movement did not. The suggestion is that the 

observation of incompatible biological properties to those of execution create an interference 

effect during the processing of the visual information (Kilner, Paulignan & Blakemore, 2003). 
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This effect has also been replicated when observation was of a robot arm reproducing 

biological motion (Chaminade, Franklin, Oztop & Cheng, 2005), inferring it is the underlying 

nature of the movement, not the form in which the movement is presented, which creates the 

interference. This was recently corroborated when a curvilinear arm movement was included 

in addition to the same vertical and horizontal arm movements used in the above studies 

(Roberts, Hayes, Uji & Bennett, 2015). Although no interference was reported during 

observation of the congruent, horizontal arm movements, observing the curvilinear arm 

movement produced a significant interference resulting in vertical deviations when trying to 

execute the horizontal movements. As the end-points of the movement were the same, authors 

concluded that the interference was a result of the observed biological motion being different 

to that being executed and represented the overlap in processing of different representations 

of biological motion. These perceived interference effects during online imitation have been 

termed ‘motor contagion’ (Blakemore & Frith, 2005) based on the theory that during 

observation, the observed biological properties directly activate a corresponding 

representation in the observer’s motor repertoire.  

Similarly, during imitation learning, observers have been shown to imitate movement 

kinematics such as peak velocity and differences in velocity of biological motion performed 

by both human (Wild, Poliakoff, Jerrison & Gowen, 2010) and non-human (Bisio Stucchi, 

Jacono, Fadiga & Pozzo, 2010) agents. Moreover, the imitation of biological motion 

kinematics appears to be more accurate when environmental context facilitates ‘true imitation’ 

such that there is no social or goal-based context (Iriki, 2006; Wild et al., 2010). It has been 

suggested that the imitation of movement kinematics is representative of the ability to code 

kinematic markers repeatedly during observation. This temporal coding has been 

demonstrated using MEPs during single TMS pulses while observing a reaching-grasping 
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action (Gangitano et al., 2001). The TMS pulses were administered relative to specific 

kinematic landmarks linked to certain phases of the reaching-grasping movement such as 

maximal finger aperture. It was reported that in addition to coding the features or goals of 

biological motion to form a motor plan, this process also automatically codes visual 

information relative to the temporal features, which accounts for the ability to code kinematic 

features such as changes in velocity. These findings have all been amalgamated in a recent 

study that showed biological motion kinematics are coded during imitation learning and 

moreover, and that imitation is more accurate when there are no target goals present during 

the task (Hayes, Dutoy, Elliott, Gowen & Bennett, 2016). Participants were tasked with 

imitating novel biological motion stimuli with different kinematic profiles relative to peak 

velocity and the time at which peak velocity occurred (percentage-time-to-peak-velocity). 

There were two atypical biological motion models wherein the peak velocities were greater 

and occurred earlier than ‘normal’ and a non-biological constant velocity model. Imitating 

accurately but also relative to the respective models, showed participants could distinguish 

between different types of biological motion to accurately code and imitate specific features 

of the movements. This finding suggests the coding of biological motion involves lower-level 

sensorimotor systems to produce high-level, complex representations of observed visual 

stimuli. 

 

 In the review of imitating biological motion, there is relative consistency within 

neuroimaging research that identifies certain regions of the brain that are activated when 

identifying biological motion (STS) and coding the underlying kinematics of an observed 

stimulus (IFG, mPFC), compared to coding the cognitive, attentional features of the 

environmental context e.g. goals (IPL). Although there appears to be a general consistency in 



 24

how the visual information is processed, the way in which the visual information influences 

physical imitation seems more varied. For example, there is evidence to suggest that spatial 

compatibility between observation and imitation of transitive hand movements is both 

required (Sturmer et al., 2000; Brass et al., 2001) and not required (Brass et al., 2005) to 

facilitate successful imitation of the observed action. While there are not always behavioural 

discrepancies in the research, inconsistencies in behavioural research provide an insight into 

how complex imitation can be.   

Similarly, it is difficult to identify any right or wrong regarding the theories that are 

suggested to underpin imitation of biological motion. Each theory discussed previously has 

been experimentally proved and disproved, which further suggests the environmental context 

can heavily influence how people imitate certain features of an observed stimuli. Instead, these 

discrepancies allude to the complexities involved in imitating that may, by definition, not be 

explained by one single theory. Instead, it is predicted that the various modulations included 

in each of the experimental chapters may corroborate different theories of imitation relative 

to the purpose of the experiment e.g. the end-state-target modulation in Chapter Three may 

confirm GOADI in the context of goal-directed imitation of biological motion kinematics 

during imitation learning. While the experiments examining top-down modulations may 

support their corresponding theories, the theory behind coding of biological motion 

kinematics is predicted to be more straightforward. The ASL theory suggests that direct 

associations between the visual and motor representations are formed during processing of the 

visual stimulus, which facilitates accurate imitation. Therefore, in line with ASL theory, it is 

expected that imitation of novel atypical biological motion will be scaled to the model and 

different to that of the other models used in the respective experiments e.g. typical biological 

motion/ constant velocity.  
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1.5 Other Factors That May Modulate Imitation 

 

 While the effect goals, or the absence thereof, on imitation have been alluded to above 

(see Goal-directed Theory of Imitation; pg 9), it is important to discuss some of the other 

factors that influence the processes underlying imitation. While there are numerous factors 

that could be discussed, those addressed below are central to some of the studies presented in 

this thesis, namely spatial compatibility, visual attention and social primes. 

 

1.5.1 Spatial Compatibility 

 SRC refers to the situation where the selection of a response is directly related to the 

position of the related stimulus. When the relationship between stimulus and response is 

natural and direct, it is described as natural. When it is unnatural and indirect, it is described 

as incompatible (Proctor & Vu, 2006). Basic understanding of this subject has used simple 

tasks involving finger pressing of keys. Faster responses were generated in both horizontal 

(left and right; Proctor & Reeve, 1990) and vertical (top and bottom; Chan, & Chan, 2005) 

axes when the stimulus was compatible, compared with incompatible, to the response 

required, e.g. left light stimulus paired with left button rather than right button response. From 

an imitation perspective, spatial SRC protocols have been used to extensively to explore action 

representation and control, seminal among which were the Simon effect (1969) and spatial 

Stroop effect (1935). 

 In a Simon task, the relevant stimulus is a non-spatial physical feature (e.g. colour, 

shape) that is assigned to left or right manual responses often controlled by key-presses, and 
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the location in which the stimulus occurs (left or right) is irrelevant. A spatial Stroop task is 

largely the same, however the relevant stimulus is a word or feature that conveys spatial 

information, e.g. the word “LEFT”. Measurements are often recorded in relation to reaction 

time and error scores, where compatible and incompatible trials are directly compared. In both 

the Simon and spatial Stroop tasks, responses are faster when the stimulus appears at a 

congruent position (e.g. “LEFT appearing on the left side of the screen), than at an incongruent 

position. More recently, this effect has been examined in automatic imitation where protocols 

based on the original spatial Stroop and Simon tasks were used. Largely, they were choice 

reaction time SRC protocols where the cues were photographic images of human models 

performing the actions required in the response set. For example, Sturmer, Aschersleben and 

Prinz (2000) examined hand-opening and hand-closing. As the hand started to either open or 

close, the hand would change colour to signal either the opening (blue) or closing (red) of the 

observer’s hand as quickly as possible. Results showed that reaction time was quicker when 

the stimulus hand was compatible with the correct response (e.g. open hand stimulus to open 

hand response), compared to when the stimulus and response were incompatible (e.g. close 

hand stimulus to open hand response). Similar results have been demonstrated when lifting 

movements of the index or middle finger were examined (Brass, Bekkering, Wohlschlager & 

Prinz, 2000). A number would appear to signify the lifting of either the index (“1”) or middle 

(“2”) finger, which coincided with the lifting of either the index or middle finger of the 

stimulus hand. Again, reaction time was quicker when the stimulus finger was compatible 

with the correct response e.g. index finger stimulus and index finger response. 

 While similar studies (Gillmeister, Catmur, Liepelt, Brass & Heyes, 2008; Bach & 

Tipper, 2007; Leighton & Heyes, 2010) have contributed to robust findings regarding this 

automatic imitation effect within SRC protocols, the protocols themselves were not designed 
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such that the effects could be definitively attributed to imitation. Relevant to observation of 

body movement, the term “imitation” is often used to describe actions that are topographically 

similar (Heyes, 2001). However, it is possible that the tendency to produce a topographically 

similar response, e.g. “imitatively compatible” (Catmur & Heyes, 2011), could be confused 

with the tendency to respond in the same relative position as the stimulus, e.g. “movement 

compatible” (Brass, Bekkering & Prinz, 2001). For example, observing a hand move quickly 

to a target could prompt the response to also move quickly to a target (imitatively compatible) 

but it could also have prompted the response to simply reach the target and thus finish the 

movement in the same location (spatially compatible) regardless of speed (Wild et al., 2010). 

The bigger issue however, is that when considering a multitude of action types, such as power/ 

precision grip (Chong, Cunnington, Williams & Mattingley, 2009), index finger movements 

(Brass et al., 2000; Brass et al., 2001; Bertenthal, Longo & Kosobud, 2006), and hand and/ or 

mouth opening/ closing (Heyes et al., 2005; Press et al., 2008; Leighton & Heyes, 2010), it is 

not always possible to dissociate imitation effects from spatial compatibility effects.  

 

1.5.2 End-state-targets 

 The theory underpinning meaningfulness and transitive goal-directed imitation was 

discussed earlier in the chapter. This section will discuss some of the research that 

incorporated end-state-targets as the specific transitive goal, designed to induce top-down 

modulation of imitation. When end-state-targets are present, they provide a tangible, 

achievable goal that defines the movement and acts as a definitive form of completion of an 

imitation attempt. The goal-directed theory of imitation suggests that when there are obvious 
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goals of a movement, these goals are incorporated into the to-be-used motor representation 

and moreover, arranged within a hierarchy based on their perceived importance. 

One of the most thoroughly examined paradigms used to explore this theory required 

participants to imitate a model making either ipsilateral or contralateral arm movements to 

touch their ears (Head, 1920; 1926; Gordon, 1923; Schofield, 1976; Bekkering et al., 2000). 

In these instances, touching the ear represented the goal of the trial and was deemed the ‘end-

state-target’ that concluded the imitation attempt. Results have consistently shown more 

ipsilateral than contralateral responses are produced, regardless of the way in which the model 

demonstrated the task, to touch the correct ear as demonstrated by the model. The most recent 

of these studies (Bekkering et al., 2000) extended these findings by including two further 

manipulations. Firstly, only one ear was used as an end-state and thus reduced the number of 

objects at which the arm movements were directed. This resulted in more correct arm 

movements being made during imitation. Secondly, an additional trial type was included 

where the model made the same ipsilateral or contralateral arm movements, but in addition to 

touching the ear and thus being goal-directed, also moved to a nondescript space by the side 

of the head. There trial types were classified as being goal-less, and reduced the preference to 

make predominantly ipsilateral arm movements. Instead, the type of arm movement used by 

the model in goal-less trials was more accurately imitated. Results primarily corroborated 

previous research that showed that imitation is mediated by goals. They also showed that when 

multiple goals are available, they are organised into a perceived hierarchy that inform what 

elements of an action are imitated. Further, if there are no obvious goals present during 

observation, the way in which the action is achieved becomes the primary goal and is thus 

imitated with more accuracy. 
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 The structure of goal-directed imitation was further explored using a modified version 

of the classic SRC protocol mentioned earlier in the chapter (Brass et al., 2000). Participants 

were shown clips of a finger movement that produced either a biomechanically possible 

(flexion) or impossible (hyperextension) movement but were not given instruction as to their 

physical nature (Longo et al., 2008; Experiment 1). Even though participants were largely 

aware of the biomechanical differences between the movements, comparable automatic 

imitation was elicited from both actions, which suggested the actions were coded in relation 

to their respective goals (e.g. tapping a surface) rather than their constituent movements. In a 

subsequent study (Longo et al., 2008; Experiment 2), participants were informed they would 

see both possible and impossible actions prior to completing the same task. Results indicated 

that the automatic imitation effects from Experiment 1 were only found during imitation of 

biomechanically possible actions. In line with previous suggestions (Bekkering et al., 2000), 

the authors agreed that goal-directed coding appears to be the default response when 

generating imitative responses. Further, these results suggest that the proposed hierarchy of 

goals appears to incorporate additional top-down factors such as attention and instruction.  

 In addition to automatic imitation, top-down modulation has also been examined 

relative to imitation learning and more complex movements. For example, participants were 

required to imitate a model that moved between two points and displayed different movement 

kinematics (Wild et al., 2010). The kinematics represented either ‘fast’ or ‘slow’ speeds and 

were displayed either between beginning and end-state-targets (goal-directed), or two 

nondescript points in space (goal-less). Results showed that the presence of end-state-targets 

modulated the accuracy of kinematic imitation such that it was less accurate compared with 

when there were no-end-state-targets present. In line with GOADI, these results suggest that 

goals have a modulatory effect on imitation and moreover, that these top-down modulations 



 30

apply to all forms of imitation. Further, they demonstrate that in the absence of any obvious 

goals during observation, the way in which a movement is completed becomes the primary 

goal of the movement, as demonstrated by the more accurate imitation of movement 

kinematics during goal-less trials.  

 

1.5.3 Visual Attention 

 Visual attention is defined by two basic phenomena: limited capacity for processing 

information; and selectivity. Limited capacity refers to amount of information available on 

the retina that can be processed to influence behaviour, while selectivity is the ability to filter 

out unwanted information (Desimone & Duncan, 1995). Taken together, these phenomena 

suggest that at some point between input and response, objects in the visual input compete for 

representation, analysis or control (Treisman, 1960; 1993). This competition has been 

demonstrated several times in experiments where two objects are presented in the visual field 

that require property identification of both stimuli, with separate responses for each. These 

types of experiments highlighted several important facts: dividing attention almost always 

results in poorer performance than focussing attention on one object (Duncan, 1984); 

interference and subsequent performance limitation only occurs when multiple stimuli are 

presented simultaneously (Duncan, 1980); interference is independent of eye movements (e.g. 

fixation or periphery) and spatial separation (Sagi & Julesz, 1985). Once there is competition 

in the visual field, the next issue is how selectivity is coordinated across the different systems 

so that a target object is selected for perceptual and spatial analysis as well as for motor 

control.  



 31

 Selectivity refers to the ability to screen out unwanted or irrelevant information, but 

this process is complex. Depending on the difficulty of filtering out a non-target, responses 

such as reaction time can be affected by as much as 50 ms (Treisman & Gelade, 1980), 

although this number varies continuously depending on the task (Treisman & Gormican, 

1988). The biased competition model (Desimone & Duncan, 1995) suggests a bottom-up bias 

can influence selectivity where features such as inhomogeneity (Sagi & Julesz, 1984), new 

objects (Jonides & Yantis, 1988) or objects that are larger, brighter or faster (Treisman & 

Gormican, 1988) are naturally biased towards. However, this natural, instinctive bias would 

be impractical unless there was also a way to bias the visual competition towards whatever is 

relevant to current behaviour. That is, bottom-up, stimulus driven biases need top-down 

attentional control. Because the spectrum of behaviourally relevant input can be so broad, it 

is argued that some form of description of the information is required to control the 

competitive bias in the visual system such that matching inputs are favoured by having 

attention directed towards them (Wolfe, Cave & Franzel, 1989). 

 Attention refers to the ability to focus one’s cognitive resources on information (e.g. 

motion, goals), which from an imitation perspective could subsequently influence 

performance. While it has been demonstrated that intentionally directed attention to a stimulus 

or feature is not a requirement to imitate (Leighton & Heyes, 2010), there is evidence to 

suggest that intentionally mediated attention and feature selection can influence the magnitude 

of imitation effects. For example, when required to imitate an index/ middle finger tapping 

motion, instructions slowed reaction time down when it was believed the movement being 

observed was either impossible (Longo, Kosobud & Bertenthal, 2008) or represented non-

biological motion (Longo & Bertenthal, 2009). When instructions did not mention any 

stimulus features, both possible and impossible, biological and non-biological motions 



 32

produced an effector compatibility effect. Using the same paradigm, instructions also 

modulated imitation based on the belief of the origins of the observed stimuli (Liepelt & Brass, 

2010). When observing a gloved human hand, those who were told the hand was wooden 

showed smaller imitation effects than those who were told the hand was human. In all three 

instances, authors concluded that any reduced imitation effects (impossible, non-biological 

motion, wooden hand) could have been a result of attention being on the kinematics of the 

stimuli, rather than the end-point of each of the movements. Importantly, even when attention 

was not directed to a specific feature of the stimuli, some feature of the observed stimuli was 

acknowledged as the goal (i.e., the end-point of the movement). This demonstrates that while 

attention can be directed to purposefully allude to task-relevant or irrelevant information for 

experimental purposes, attention can also be non-consciously self-focussed to imitate or 

achieve a goal (Chartand & Baugh, 1999). 

 Neurophysiological studies have shown that relevant and irrelevant items to task goals 

both enhance and suppress cortical activity respectively (Reynolds & Chelazzi, 2004). For 

successful top-down modulation to occur, attention should be focussed on task-relevant 

stimuli while irrelevant distractions are ignored (Gazzaley & Nobre, 2012). This subsequently 

activates the ‘control’ regions of the brain, such as the PFC and the parietal cortex (Curtis & 

D’Esposito, 2004; Gazzaley & D’Esposito, 2007), both of which are known to be involved in 

information processing within the perception-action system. Moreover, the ability to observe 

and then imitate a task is dependent on certain stages of processing and neural representations, 

which are also linked to attention e.g. expectation, encoding, maintenance and retrieval. These 

stages contribute in some part to forming a representation that facilitates imitation, although 

expectation and encoding are the key contributors, and all are enhanced when attention is 

specifically directed (Gazaley & Nobre, 2012).  
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The expectation phase arrives before any visual stimuli is visible. Indeed, specifying 

where or what to attend to can enhance perceptual performance, most notably to improve the 

speed or accuracy of a response (Posner, 1980). Pre-stimulus enhancement has been 

demonstrated in regions of the brain associated with visual information following cues that 

attend to task features such as location (Kastner, Pinsk, De Weerd, Desimone & Ungerleider, 

1999) and stimulus features (Giesbrecht, Weissman, Woldorff & Mangun, 2006). 

Demonstration of the latter effect was shown in an automatic imitation study that presented 

pre-cues of either a finger-tapping or finger-lifting movement prior to having to execute a 

finger tap movement (Brass, Bekkering & Prinz, 2001). Results showed that when the 

stimulus features of the pre-cues were task-relevant (finger tap) as opposed to task irrelevant 

(finger lifting), reaction time was significantly quicker and more accurate.  

The encoding phase follows the presentation of any visual stimulus, where the 

information is initially processed to construct a representation of what has been observed, 

usually in terms of any goal-related tasks (see GOADI; Bekkering et al., 2000). Goal-related 

tasks can occur at any point during the observation of stimuli (Hillyard, Vogel & Luck, 1998) 

and have been shown to activate specific regions of the brain associated with goal-directed 

attention (visual association cortex; Gazzaley, Cooney, McEvoy, Knight & D’Esposito, 

2005). For example, identifying goals early in movement observation (within 200 ms of 

stimulus onset) can improve performance (Gazzaley, 2011). Still, optimal performance 

requires the addition of filtering irrelevant information, thus allowing for increased attention 

to the task-relevant information (Zanto & Gazzaley, 2009). This was demonstrated by children 

who were required to imitate a model that made goal-directed and goal-less movements 

(Bekkering et al., 2000). The goal-directed task was to imitate a model who touched their ear 

using either ipsilateral (same side e.g. left hand touched left ear) or contralateral (e.g. left hand 
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touched right ear) arm movements. The goal-less task used the same arm movements but 

instead of touching an ear, the model moved the hand to the space at either side of the head. 

Results showed that when children were required to touch their ears (make a goal-directed 

movement), they generally did so using ipsilateral arm movements regardless of how the 

model had executed the task. This demonstrated identification of goals within an observed 

stimulus (touching the ear) and the filtering of irrelevant information (how the ear was 

touched) to focus attention on what was perceived as the goal of the movement. 

  

1.5.4 Social Primes 

 Social interaction in humans is ubiquitous and often involuntary or spontaneous (van 

Baaren et al., 2009), but as with attention it can influence imitation. Social interaction is 

complex and dynamic. It defines humans (Hari & Kujala, 2009) and is conveyed through 

multiple verbal and non-verbal behaviours. It is widely understood in social psychology that 

humans will communicate through these unintentional social interactions that form the basis 

of relationships. For example, people have exhibited imitative behaviours connected to 

postures, gestures, facial expressions, emotions and language (Chartrand & van Baaren, 

2009). Social psychology suggests that imitation has positive social consequences on social 

interaction whereby liking and affiliation are created between those involved (Chartrand & 

Bargh, 1999) through processes linked to the perception-action system (Catmur, Gillmeister, 

Bird, Liepelt, Brass & Heyes, 2008; Catmur, Walsh & Heyes, 2009; Heyes, 2011). The 

perception-action system creates a direct link between perception and action where the 

sensory input automatically activates a motor response (Brass & Heyes, 2005), which has led 
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to the suggestion that this link is formed through ASL (Heyes, 2001; Catmur et al., 2008; 

Catmur et al., 2009).  

While imitation is often subconscious and involuntary, there is also the theory that 

imitation within social interaction may be strategically implemented to change the social 

context for self-advancement, termed the social top-down response modulation theory 

(STORM; Lakin & Chartrand, 2003), or perhaps to simulate theory of mind (Pickering & 

Garrod, 2004; Gallese, 2006). In relation to the latter, the suggestion is if I were to imitate 

someone, that gives me a better understanding of their feelings or intentions. The STORM 

theory suggests when I consciously choose to imitate another person, they unconsciously 

detect my behaviour such that they positively change their attitude towards me. Therefore, if 

it was beneficial for someone to like me, I could imitate them more to improve my social 

standing. This has been evidenced in studies demonstrating greater liking (Chartrand & 

Baugh, 1999), feelings of closeness (van Baaren, Holland, Kawakami & van Knippenberg, 

2004), trust (Bailenson & Yee, 2005) and levels of persuasion (Maddux, Mullen & Galinsky, 

2008) between people who imitate strangers.  

 From a neurological standpoint, the STORM model has two core components: 

visuomotor mapping and a top-down modulation system. The visuomotor mapping contains 

a series of connections running from higher-order visual systems through the inferior parietal 

cortex to premotor and motor cortices (Cisek & Kalaska, 2010). Generally, for imitation to 

occur, connections are formed between visual and motor representations after actions are 

observed and performed (see ASL theory; Heyes, 2011). While imitation is a very natural and 

instinctive response (e.g., seeing an action automatically activates the ability to imitate in the 

perception-action system), the tendency to imitate must obviously be restrained to avoid over-

imitating. Therefore, the suggestion is that social imitation is governed and inhibited by top-
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down control from regions in the prefrontal lobes (Teufel, Fletcher & Davis, 2010). For 

example, patients with prefrontal lesions have difficulty with tasks that require the inhibition 

of dominant responses, e.g. go/ no-go paradigm and will often over-imitate, displaying traits 

of echolalia or echopraxia (Lhermitte, Pillon & Serdaru, 1986). Similarly, the mPFC and TPJ 

display stronger activations when the natural tendency to imitate something incongruent needs 

to be suppressed (Wang, Newport & Hamilton, 2011; Kampe, Frith & Frith, 2003; Teufal et 

al., 2010). This top-down control has been demonstrated in modulation of imitation using 

various social cues, such as eye contact (Wang, Newport & Hamilton, 2011), word scrambles 

(Leighton et al., 2010; Cook & Bird, 2011) and social status (Lakin & Chartrand, 2003).  

 Of these well researched social cues, most pertinent to the current thesis is eye gaze. 

Eye gaze is considered a critical social cue as it expresses social knowledge of imitative 

behaviour and, based on the STORM theory, direct eye contact is sufficient for an interactive 

partner to detect imitative behaviours and thus improve performance (Wang & Hamilton, 

2012). For example, a study examined the reaction time of executing a hand-opening or hand-

closing movement in response to either a congruent or incongruent stimuli, while concurrently 

playing a video of a model displaying either direct or averted gaze (Wang, Newport & 

Hamilton, 2011). Results showed that direct gaze improved the speed of hand action imitation 

relative to the averted gaze, demonstrating the positive affect social cues can have on features 

of imitation. Similar research showed that by moving the position of the hand stimuli such 

that it was besides, not directly in front of, the model displaying direct or averted gaze (Wang 

& Hamilton, 2014), direct gaze again enhanced imitation whereas the averted gaze did not. 

This finding demonstrated that attention is not necessary for social primes to influence 

imitation, and subsequently that it may be the social elements of the primes that directly 

influence or control imitation.  
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 While imitation can be used to form positive social connections and improve 

performance, it has also been shown to generate negative responses and reduce performance 

following engagement in a social priming task prior to completion of  the hand-opening/ hand-

closing stimulus response compatibility paradigm discussed previously (Leighton et al., 

2010). The social priming task required the formation of sentences from a series of scrambled 

words that included either pro-social, neutral or anti-social words. Results showed an 

automatic imitation effect, where reaction time was faster while imitating compatible, rather 

than incompatible hand movements (Sturmer et al., 2000; Heyes et al., 2005). In addition to 

an automatic imitation effect, results showed a pro-social priming effect (Wang & Hamilton, 

2011a; Wang & Hamilton, 2014) where reaction time was faster after completing the pro-

social word scrambles compared with the neutral and anti-social word scrambles. In addition, 

results also showed that the anti-social word scrambles decreased performance such that the 

both the automatic imitation effect and reaction time were decreased following the anti-social 

primes, relative to the neutral primes. It was suggested that anti-social primes may have 

increased the inhibition of imitation responses relative to a neutral baseline of inhibition and 

subsequently decreased performance.
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 Figure 1.1. A schematic showing the structure, purpose and hypotheses of the four experimental chapters in the current thesis. 

 

Chapter 2: Spatial Compatibility 

RQ:  -Is BM coded during imitation learning? Methods: -Atypical vs Typical 

 -If so, how does this coding occur?  -Compatible vs Incompatible 

Hypotheses:  -Difference in imitation of Atypical and Typical models 

-No difference between compatible and incompatible trials, suggesting 
lower-level visuomotor processing 

Chapter 4: Visual Attention 

RQ:  -Do eyes track cursor during observation Methods: -Atypical vs Typical vs CV 

 of model?     -Targets vs No Targets 

Hypotheses:  -Eye movements are expected to track cursor during observation 

-Eye movements may become more goal-directed when targets are present 

Factors influencing biological motion 

processing during imitation learning 

Chapter 3: Targets 

RQ:  -Is Atypical BM coded during 
imitation learning? 

-Do end-state-targets modulate 
biological motion coding? 

Methods: -Atypical17 vs Atypical26 vs CV 

 -Targets vs No Targets 

Hypotheses:  

-Difference in imitation of Atypical17 and 
Atypical26 

-End-state-targets will modulate imitation of 
BM 

Chapter 5: Social Primes 

RQ:  -Is BM coded during imitation 
learning? 

-Do social primes modulate 
biological motion coding? 

Methods: -Atypical vs Typical vs CV 

-Pro-social vs Anti-social vs Neutral 

Hypotheses:  

-Difference in imitation of Atypical and Typical 

-Social primes will modulate imitation of BM 
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1.6 Summary of Research and Current Thesis Aims 

 

 The aim of the introductory sections was to give an account of imitation of biological 

motion kinematics and the processes that underpin it, as well as ways in which the processing 

can be modulated. It appears to date that although the way in which biological motion is 

processed is largely lower-level (Iacoboni et al., 1999; Brass & Heyes, 2005), there are 

numerous top-down factors that can modulate this process (Kilner et al., 2007; Stanley, 

Gowen & Miall, 2007). However, explicit measurement of the coding of biological motion 

kinematics and the processes that underpin them during imitation learning are not currently 

well understood. Therefore, the purpose of the present thesis is to examine a methodology 

designed to develop the current understanding of biological motion coding. Principally, the 

methodology in the present thesis defines the to-be-observed models through discrete 

variables (peak velocity and percentage-time-to-peak-velocity) that are considered 

appropriate kinematics markers to differentiate model stimuli (Hayes et al., 2014), which are 

also used to determine imitation accuracy during data analysis.  

In addition to developing the fundamental methodology, the present thesis will also 

seek to clarify the underlying processes associated with biological motion coding. Within the 

current literature, it has been suggested that some imitation effects may be the result of 

reproducing spatial properties of observed stimuli, rather than the underlying kinematics 

contained within the observed stimuli (Heyes, 2011). Therefore, Chapter Two will spatially 

decouple the observed and imitated stimuli to isolate the coding of biological motion to either 

lower-level or top-down processing. Once a baseline for unmodulated imitation has been 

established in Chapter Two, subsequent experimental chapters will examine additional top-
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down modulatory effects (end-state-targets, visual attention) to expand upon the information 

processing contained within imitation of biological motion during imitation learning. 

Finally, as imitation is widely shown to be influenced by social context (Bandura, 

1986; Blake, 1958; Chartrand & Bargh, 1999; Wang & Hamilton, 2012), Chapter Five 

examined the way in which biological motion coding was modulated by social priming during 

imitation learning. In addition to developing the current understanding of social priming on 

biological motion coding by integrating it with an improved methodology, the social 

manipulation in Chapter Five was included to provide a baseline for social modulation of 

imitation learning in neurotypicals, which would facilitate future research in people with ASC. 

Imitation is a well-established issue for people with ASC (Ritvo & Provence, 1953; 

Ramachandran & Oberman, 2006), so Chapter Five was the first in a series of experiments 

using a similar methodology (Hayes et al., 2016; Hayes, Andrew, Foster, Elliott, Gowen & 

Bennett, 2017), to examine the sensorimotor processing of biological motion in people with 

ASC.  

 

1.6.1. Aims of Thesis 

 The primary aim of the present thesis is to examine whether biological motion 

kinematics is processed during imitation learning. If biological motion coding is established, 

the way in which the biological motion is processed will be examined, as well as the ways in 

which that processing can be modulated. The following section describes the specific 

hypotheses pertinent to each of the chapters individually: 
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1.6.1.1. Chapter Two 

 The primary aim of Chapter Two is to examine whether biological motion is coded 

during imitation learning by examining the imitation of atypical and typical biological motion 

models. Further, by decoupling the spatial properties of the observed and executed stimuli, 

Chapter Two will examine the underlying processes associated with biological motion coding. 

Participants will observe the biological motion models in trials that are either spatially 

compatible or incompatible. Imitation of the model stimuli will always be from left to right 

and spatially compatible trials will be observed in the same direction and spatial orientation. 

Spatially incompatible trials will require observation of the model either in the opposite 

direction (right to left), or orthogonal plane (top to bottom/ bottom to top). Firstly, if biological 

motion is coded during imitation learning it is expected that there will be differences in 

imtation between the atypical and typical models. Secondly, if biological motion coding is a 

function of function of lower-level visuomotor processing (Iacoboni et al., 1999; Heyes, 

2001), the kinematics of atypical biological motion should be imitated as accurately during 

spatially incompatible trials as compatible trials. Conversely, if biological motion coding is 

mediated by top-down attentional control related to the spatial coordinates of the model 

kinematics (Proctor & Vu, 2006; Bisio et al., 2010; Heyes, 2011), spatially incompatible trials 

will be less accurate than spatially compatible trials. 

 

1.6.1.2. Chapter Three 

 The imitation task in Chapter Three presents the visual stimuli in a single horizontal 

trajectory for both observation and imitation, thus removing any spatial incompatibility. 

Biological motion coding will be further examined by examining two structurally similar 
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atypical biological motion models (atypical17 and atypical26) rather than atypical and typical 

models. In addition to the coding of atypical biological motion, the modulatory effect of goals 

on biological motion processing will be measured by including the presence of end-state-

targets in 50% of the trials (Wohlschlager et al., 2003; Wild et al., 2010). If biological motion 

kinematics are coded during imitation learning, it is expected that imitation of atypical17 and 

atypical26 models will be scaled relative to the respective models. Further, if imitation is goal-

directed, it is expected that the reproduction of biological motion kinematics will be less 

similar to those of the models when end-state-targets are present during the imitation task 

(Bekkering et al., 2000). 

 

1.6.1.3. Chapter Four 

 In Chapter Four, eye movements will be recorded to confirm the direction of visual 

attention during observation of the model stimuli. The imitation task will examine the coding 

of biological motion through imitation atypical, typical and constant velocity models, as well 

as the modulatory effect of end-state-targets on both imitation and eye movements (Wild et 

al., 2010). It is expected that if biological motion is coded during imitation learning, there will 

be differences in imitation of the atypical, typical and constant velocity models. If end-state-

targets modulate the processing of biological motion, it is expected that imitation of the 

models will be less accurate, compared to when end-state-targets are absent. Further, eye 

movements will confirm whether visual attention is directed the cursor or other environmental 

factors (e.g. end-state-targets) during the observation phase of the imitation task. 
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1.6.1.4. Chapter Five 

 Chapter Five will examine whether social context modulates imitation of biological 

motion kinematics (Lakin & Chartrand, 2003; Wang & Hamilton, 2012). The imitation task 

will use the same biological and non-biological models as Chapter Four (atypical, typical and 

constant velocity) but remove end-state-targets, and social primes will be examined by 

showing an image displaying a pro-social, anti-social or neutral eye gaze prime prior to 

imitation of the model stimuli. The pro-social prime displays a face making direct eye contact; 

the anti-social prime displays a face looking away from the monitor; and the neutral prime 

displays a grey background with no person on it. The expectation is that participants will show 

improved imitation accuracy following the pro-social prime and decreased imitation accuracy 

following the anti-social prime (Leighton et al., 2010). 

 

1.6.1.5. Chapter Six 

 The aim of the final chapter is to provide a summary of the above program of work 

and to integrate these findings with the current understanding in the literature. In addition, 

conclusions for this body of work will be made and future directions of research will be 

discussed.   



 44

 

 

 

 

 

 

 

 

 

Chapter 2: The Coding of Biological Motion Kinematics During Imitation Learning is 

a Function of Lower-level Visuomotor Processing 
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2.1. Abstract 

 

The present chapter investigated the effect of SRC on the representation of atypical 

biological kinematics during imitation learning. Typical and atypical biological motion 

models were observed and then imitated with either compatible or incompatible spatial 

congruency. A compatible trial constituted one where the observed model stimuli moved from 

left to right and imitation was also executed from left to right. An incompatible trial 

constituted one where the observed stimuli moved from left to right, but the imitation was 

executed either right to left, top to bottom or bottom to top. Participants were instructed to 

observe the model with the intention to later imitate the movement as accurately as possible. 

Results showed that irrespective of whether the stimulus was observed in a spatially 

compatible or incompatible orientation, participants imitated both atypical and typical 

biological motion and imitation was scaled relative to the respective models. Therefore, by 

demonstrating imitation of novel kinematics during spatially incompatible imitation learning, 

the current chapter has isolated the processing and representation of atypical biological 

kinematics to the underlying sensorimotor processes, rather than spatial encoding of peak 

velocity via processes associated with SRC. 
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2.2. Introduction 

 

Learning novel movements provides an important means by which humans interact 

within the world, and with other people. One form of sensorimotor learning is called imitation 

learning, and requires a person to watch a model with the intention of physically recalling and 

reproducing the observed action. For example, when observing a hand move between two 

points at different speeds (‘fast’ or ‘slow’), participants could distinguish between the speeds 

of the movements and produce an imitation attempt that was scaled to the respective model 

(Wild et al., 2010). Using TMS to examine the links between perception and action, it was 

shown that sensorimotor training (Bird, Brindley, Leighton, & Heyes, 2007; Heyes, et al., 

2005) could reconfigure the motor system after periods of compatible and incompatible 

training prior to executing index- and little-finger movements (Catmur et al., 2007). 

Incompatible training (e.g. observing a little finger movement while executing an index-finger 

movement) resulted in a countermirror effect, where MEPs were greater in the little-finger 

when observing the index-finger, and vice versa. These findings show that even though the 

peripheral motor system is not task-specifically engaged during observation (e.g., a limb is at 

rest), a sensorimotor representation of the action is developed by engaging a common-coding 

system linking perception and action (Brass & Heyes, 2005; Jeannerod, 1994; Prinz, 1997).  

Direct activation of the sensorimotor system during the observation of actions is said 

to be underpinned by processes preferentially tuned to biological motion (Press, 2011). As 

well as facilitating socio-cognitive functioning during interactions between people (Cook, 

Blakemore, & Press, 2013; Press, Cook, Blakemore, & Kilner, 2011), biological tuning is 

important for the acquisition of novel motor actions during observational practice (Bird & 
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Heyes, 2005). Biological tuning has been confirmed across numerous behavioural studies 

where participants observe different model stimuli that depict typical or atypical human 

biological kinematics (Hayes, Dutoy, Elliott, Gowen, & Bennett, 2016; Hayes, Elliott, & 

Bennett, 2010; Hayes, Roberts, Elliott, & Bennett, 2014; Hayes, Timmis, & Bennett, 2009; 

Roberts, Bennett, Elliott, & Hayes, 2015). Typical kinematics had a movement profile where 

peak velocity occurred at approximately 50% of the trajectory, which is consistent with goal-

directed upper-limb aiming movements (Elliott et al., 2010). Atypical kinematics were novel, 

and displayed peaks occurring at 18% (Hayes et al., 2016) or 77% (Hayes et al., 2014) of the 

movement trajectory. From a theoretical perspective, the presentation of atypical kinematics 

was fundamental for understanding the contribution of low-level visuomotor processes during 

imitation learning. For example, if a model is presented that has typical kinematics it cannot 

be ruled out that imitation is based on recognising the movement speed, as opposed to 

representing the underlying biological motion kinematics. In this case, the feedforward 

contribution to motor execution would have been associated with rescaling a pre-existing 

motor representation of a familiar and meaningful movement based on higher-order semantic 

processes (Rumiati et al., 2005). Whereas, imitation of atypical kinematics cannot be solved 

by merely recruiting an existing sensorimotor representation, and therefore the sensorimotor 

system needs to be configured during imitation learning based on representing the kinematics 

within a mechanism that activates sensorimotor processes. 

While an acceptable conclusion, it is relevant that these protocols did not control for 

the influence of SRC (Heyes et al., 2005). Therefore, it remains a possibility that the spatial 

position of peak velocity could have been represented through interpretation of the observed 

visuomotor situation (Hommel & Lippa, 1995). To better isolate processing of biological 

motion to sensorimotor processes, S-R compatibility can be controlled by arranging the 
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stimulus and response in an orthogonal (e.g., stimulus hand vertical; responding hand 

horizontal) orientation (Bertenthal, Longo & Kosobud, 2006; Catmur & Heyes, 2011; Heyes 

et al., 2005; Press, Bird, Walsh, & Heyes, 2008). Indeed, during automatic imitation, which 

recruits similar sensorimotor processes as imitation learning (Heyes, 2011), motor responses 

are facilitated in compatible compared to incompatible trials, thus confirming direct activation 

of motor representations during action-observation. 

Based on the aforementioned methodology, the present chapter investigated S-R 

compatibility on the reproduction of atypical biological kinematics during imitation learning. 

Participants observed a model (a single dot) with the intention to reproduce the movement as 

accurately as possible. During the imitation phase, the model was always imitated moving in 

a left to right direction on a monitor. During the observation phase, spatially compatible and 

incompatible trials were randomly interspersed and required observation of the model from 

one of four origins of movement. In the compatible trials, observation was also in a left to 

right direction, whereas incompatible trials were observed in a right to left, top to bottom or 

bottom to top direction. This controlled for both spatially incompatible direction and plane of 

movement during imitation trials. If the reproduction of atypical biological kinematics is 

underpinned by direct activation of sensorimotor processes, it is expected that imitation 

accuracy will be comparable in the spatially incompatible as compatible trials (Catmur et al., 

2007; Heyes, 2011). If, however, reproduction is mediated by S-R compatibility associated 

with spatial orientation, the compatible trials should be more accurate than the incompatible 

trials (Brass et al., 2000; Sturmer et al., 2000). 
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2.3. Methods  

2.3.1. Volunteers  

Twenty participants (aged between 18 and 21 years) volunteered for the study. All 

participants were right-hand dominant, had normal or corrected-to-normal vision and gave 

written informed consent. The experiment was designed in accordance with the 1964 

Declaration of Helsinki and approved by the research ethics committee of the host University. 

 

2.3.2. Apparatus and Stimuli 

Participants sat facing a 21-inch CRT monitor (Iiyama Vision Master 505) operating 

with a resolution of 1280 x 1024 pixels and a refresh rate of 85 Hz, located on a table at a 

viewing distance of 555 mm. The monitor was connected to a PC (HP Compaq 8000 Elite), 

which also recorded input of a hand-held stylus on a graphics tablet (Wacom Intuos Pro XL), 

which displayed a 1:1 ratio between the tablet and screen to reduce any potential learning 

effects required to complete the imitation task. This ratio was consistent throughout all 

experiments contained within the current thesis. Experimental stimuli were generated using 

COGENT toolbox (developed by John Romaya at the Laboratory of Neurobiology at the 

Wellcome Department of Imaging Neuroscience) and implemented by MATLAB 

(Mathworks Inc.).  

 Two non-human agent models were created by a human volunteer performing typical 

and atypical horizontal movements using a hand-held stylus on a graphics tablet (Figure 

2.1A). The stylus movement was represented as a white-dot (diameter = 6 mm) on the 

computer monitor, and traversed from the left-hand start-position (red-dot, diameter = 12 mm) 
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to the right-hand end-position located at an amplitude of 200 mm. The total movement 

duration was exactly 1700 ms. For both models, raw position data were first filtered using a 

low pass 4th order autoregressive filter with an 8 Hz cut-off. Data were then differentiated 

using a three-point central difference algorithm to obtain velocity. The typical model reflected 

an exemplar trial, and thus displayed a typical (Elliott et al., 2010; Flash & Hogan, 1985) bell-

shaped velocity profile (dashed trace in Figure 2.1C) with a peak velocity of 0.2 mm/ms that 

occurred at 44% of the movement duration. For the atypical model (black trace in Figure 

2.1C), peak velocity was 0.41 mm/ms and occurred at 18% of the movement duration. Peak 

velocity and percentage-time-to-peak-velocity were selected as the kinematic dependent 

variables as they had been used in previous research that had reached publication (Hayes et 

al., 2014) and were therefore considered appropriate kinematic markers within the literature. 

Further, as peak velocity and percentage-time-to-peak-velocity were the discrete kinematic 

markers used to define the model stimuli, it followed that they were also the kinematic markers 

used to determine imitation accuracy.  

The method of using a human volunteer to generate both models was important 

because it ensured the kinematics were biological and reproducible by participants (Hayes et 

al., 2016). This did result in movement deviation in the x and y axes, however the latter was 

minimal (i.e., perpendicular deviation). In addition to conforming with kinematic parameters 

suggested by previous literature, the typical and atypical biological motion models were also examined 

through rigorous pilot testing. Although several models were compared, the atypical and typical 

models used in the current chapter, and indeed much of the thesis, were most frequently identified as 

being human movements that presented discernibly different kinematic structures when viewed by 

novice observers. Comprehensive pilot testing of the models and inclusion of a familiarisation phase 

prior to testing alleviated a requirement to post-experimentally debrief participants on their perception 

of the stimuli or requirements of the task. 
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Figure 2.1. (A) A schematic representation of the experimental trials. The black outlined 
rectangle represents a graphics tablet. The white circle displayed on the CRT monitor 
represents the model. The single-segment movement is depicted by the arrow (i.e., from the 

A 

C 

Direction of Stimulus During Observation 

B 
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start-position to the end-position). (B) The directions of the model stimuli during observation, 
originating from the white circle. (C) Displacement time-series displaying typical (dashed 
trace) and atypical (black trace) velocity models. 

 

2.3.3. Procedure 

The experiment consisted of familiarisation and experimental phases. In the 

familiarisation phase, participants performed 6 trials with the intention of understanding the 

imitation protocol. The 6 familiarisation trials had an observation and imitation phase, as in 

the experimental phase, and consisted of observing a constant velocity model, which displayed 

the exact movement duration and amplitude of the experimental models, but with a constant 

velocity in the horizontal x axis of 0.120 mm/ms. Observing the constant velocity model 

ensured construct validity by preventing participants experiencing biological motion before 

the imitation trials, although no specific information was provided regarding the nature of 

model, nor was feedback regarding imitation performance provided. Following an 

observation, participants were instructed to imitate the model as accurately as possible by 

using the stylus on the tablet. The familiarisation phase allowed participants to understand the 

spatiotemporal relationship between the stylus movement on the graphics tablet and cursor 

movement on the screen, and quantified base-line motor behaviour associated with performing 

typical goal-directed movements. 

The experimental phase consisted of 80 trials that comprised 10 blocks of 8 trials. A 

block contained 4 typical and 4 atypical biological kinematic models wherein each of the 4 

trials had a different point of origin during observation (left to right; right to left; top to bottom; 

bottom to top; see Figure 2.1B). Every imitation was from left to right, so each block had 1 

spatially compatible atypical and typical trial and 3 spatially incompatible atypical and typical 

trials. Trial order within a block, as well as block order, was randomised across volunteers. 
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The randomised structure reduced predictability of an upcoming models and promoted 

imitation on a trial-by-trial basis. This research design was like previous research examining 

biological motion coding that had reached publication (Hayes et al., 2009; 2014) and thus, 

was accepted as a balanced and thorough way in which to design the experimental protocol.  

 

2.3.4. Data Reduction 

To quantify imitation of movement kinematics, analysis focused on x-axis data. 

Position data of the start and end of the movement was identified in each imitation trial. The 

start was identified when the cursor was moved beyond the perimeter of the home-position, 

while the end was identified when the participant clicked the lower-button on the stylus. From 

this identification process, the position data was filtered using a low pass 4th order 

autoregressive filter with an 8 Hz cut-off. The filtered data were then differentiated using a 3-

point central difference algorithm to obtain velocity. A MATLAB routine extracted the 

movement and displayed the velocity curve for each trial. Using a mouse, an experimenter 

manually selected the start, peak, and end of the movement on the velocity curve. While the 

clicking of the lower-button during the imitation trial indicated a general point at which the 

participant considered their imitation trial to be complete, manual picking of the data ensured 

a consistent end-point based on minimum velocity thresholds, where the MATLAB routine 

integrated the velocity curve to identify the start of the movement when velocity was > 0.003 

mm/ms, and the end when velocity was < 0.003 mm/ms. Peak velocity and percentage-time-

to-peak-velocity from each trial was quantified, with percentage-time-to-peak-velocity 

calculated as (time to peak velocity / movement time) x 100. Intra-participant means were 

calculated from 10 trials associated with each model and origin of movement (e.g., 10 trials 
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for the atypical model in the left-to-right origin). These kinematic dependent variables were 

chosen as they provide discrete measures that accurately reflect whether participants imitate 

the magnitude and timing characteristics of the observed biological motion kinematics (Hayes 

et al., 2014; 2016; Andrew et al., 2016). 

 

2.3.5. Data Analysis 

Intra-participant mean data were submitted to separate 2 Model (atypical; typical) x 4 

Origin (left-to-right; right-to-left; top-to-bottom; bottom-to-top) repeated measures ANOVA. 

Significant main and/or interactions effects involving more than two means were analysed 

using Tukey HSD post-hoc procedure and alpha was set at p < 0.05.  

 

2.4. Results 

 

2.4.1. Peak Velocity 

A main effect of model [F(1, 19) = 39.241, p < 0.001] for peak velocity indicated that 

magnitude was significantly higher when imitating atypical (M = 0.280 mm/ms; SD = 0.079 

mm/ms) compared to typical (M = 0.192 mm/ms; SD = 0.033 mm/ms) biological kinematics. 

As seen in Figure 2.2A, the ANOVA did not reveal a main effect of origin [F(3, 57) = 1.707, 

p = 0.176] or a model x origin interaction [F(3, 57) = 1.800, p = 0.157].] 
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Figure 2.2. (A) Peak velocity of imitation across all four origins of movement (error bars 
represent standard error of the mean) presented as a function of model. Dashed line represents 
the model. (B) Percentage-time-to-peak-velocity of imitation across all four origins of 
movement (error bars represent standard error of the mean) presented as a function of model. 
Dashed line represents the model. 
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2.4.2. Percentage-Time-To-Peak-Velocity 

A main effect of model [F(1, 19) = 46.639, p < 0.001] for percentage-time-to-peak-

velocity indicated that peak velocity occurred significantly earlier when imitating the atypical 

(M = 32 %; SD = 11%) compared to typical (M = 45 %; SD = 8%) biological kinematics 

(Figure 2.2B). The ANOVA did not reveal a main effect of origin [F(3, 57) = 1.161, p = 0.332] 

or a model x origin interaction [F(3, 57) = 0.893, p = 0.450].  

 

These effects can be seen in the exemplar velocity traces illustrated in Figure 2.3. 

When imitating the atypical biological kinematics, peak velocity occurred earlier in the 

movement across all origins (Figure 2.3A). When imitating the typical biological kinematics, 

peak velocity occurred toward the midpoint of the movement for all origins (Figure 2.3B). 
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Figure 2.3. (A) Exemplar velocity traces for imitation of the atypical model during compatible 
(black trace) and incompatible (light-grey, light-grey dashed, and black dashed traces) trials, 
as well as the model (red trace). (B) Exemplar velocity traces for imitation of the typical model 
during compatible (black trace) and incompatible (light-grey, light-grey dashed, and black 
dashed traces) trials, as well as the model (red trace).  
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2.5. Discussion 

 

 The present chapter investigated the influence of S-R compatibility on the 

reproduction of atypical biological kinematics during imitation learning. Results showed that 

percentage-time-to-peak-velocity occurred earlier in the movement trajectory, and was scaled 

to the model, during imitation of the atypical, compared with the typical model. Similarly, the 

magnitude of peak velocity was greater during imitation of the atypical, compared with the 

typical model. Following observation of the typical model, peak velocity occurred towards 

the midpoint of the trajectory and reflected the constraints of the task, as well as a pre-existing 

motor repertoire. In addition to the imitation of atypical biological motion kinematics, results 

showed both atypical and typical biological motion kinematics were imitated with a similar 

degree of accuracy during spatially compatible and incompatible trials. 

These findings support previous work (Hayes et al., 2016) that showed atypical 

kinematics are represented during imitation learning. As before, it is suggested that this occurs 

within a mechanism that activates sensorimotor processes. However, to control the influence 

of S-R compatibility (Hommel & Lippa, 1995), the observation and imitation trials were 

spatially decoupled in both the direction (left to right and right to left) and plane (top to bottom 

and bottom to top) of the imitated movements. The fact that incompatible trials showed 

reproduction of the atypical kinematics when physically executing the movement in the 

opposite (left to right) or orthogonal (top to bottom, bottom to top) direction, strengthens the 

suggestion that sensorimotor adaptation occurs via lower-level processes linking visual and 

motor representations (Catmur, Walsh, & Heyes, 2007; Catmur & Heyes, 2011). For example, 

there is a possibility that participants represented a kinematic landmark during observation, 
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such as the position that peak velocity occurs (e.g., spatial position relative to the monitor 

frame), however this is a less likely explanation that would require a spatial translation to 

reproduce an accurate atypical trajectory in an incompatible reproduction of the stimulus.  

In addition to low-level sensorimotor processes underlying the adaptation effects, 

other higher-order processes may have been involved. Specifically, visual attention and 

intention could have modulated the lower-level processing of the atypical kinematics 

following the instructions given to participants to observe the model with the intention to 

execute a movement during imitation that was as accurate to the observed stimulus as possible 

(Hayes et al., 2014; 2016). Also, having perceived the atypical model had an explicit 

acceleration profile that differed from the typical model that was observed, and/or their own 

pre-existing sensorimotor repertoire, it follows that during the experimental phase inductive 

processes could have influenced the developing sensorimotor representation (Burke, Tobler, 

Baddeley, & Schultz, 2010; Turnham, Braun, & Wolpert, 2011). However, the randomised 

trial order would have minimised the frequency of repeated stimuli and thus the opportunity 

to directly compare lower-level sensorimotor representation through repeated trials 

(Tenenbaum, Griffiths, & Kemp, 2006; Turnham, et al., 2011). Therefore, in line with 

automatic imitation research (Catmur & Heyes, 2011; Cook & Bird, 2011; Grezes et al., 2003) 

the imitation of atypical biological motion is more likely to reflect the sensorimotor 

representation of atypical biological motion resonating with the motor system such that a 

correlated motor response is generated. 

The coding of atypical biological motion through lower-level sensorimotor processes 

supports previous research that has suggested that biological motion kinematics are processed 

in the parietal and frontal regions of the perception-action system (Casile et al., 2010; Dayan 

et al., 2007; Higuchi et al., 2012; Press, Catmur, Cook, Widmann, Heyes & Bird, 2012). In 
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addition to confirming perception-action system activity, parietal and frontal neural activation 

during lower-level biological motion coding corroborates the EP-M model of imitation 

(Hamilton, 2008). Within the EP-M model, the M-route suggests that the STS generates a 

visual description of the observed stimulus, which is coded in IFG based on the kinematic 

properties and directly mapped as a motor representation containing the underlying kinematic 

features for subsequent imitation. This direct transformation of visual description to motor 

representation corroborates the ASL theory (Heyes & Ray, 2000), which suggests vertical 

associations are made between the sensory and motor representations that are strengthened 

through correlated sensorimotor experience of the stimuli. The direct association between the 

visual and motor representations formed through lower-level processing suggest the imitation 

of atypical biological motion is likely to be a result of reproducing the underlying kinematics, 

rather than the spatial properties of the movement (Iacoboni et al., 1999; Buccino et al., 2004).  

To conclude, the present chapter confirmed that atypical biological kinematics 

associated with an observed novel action are represented and reproduced during imitation 

learning. Although this effect has been shown previously (Hayes et al., 2014; Hayes et al., 

2016; Andrew, et al 2016), the current data extends theoretical knowledge of the processes 

underlying imitation learning by implementing a methodology that controls movement 

direction of a model during action-observation and imitation, and thus spatial compatibility. 

This method better isolates the representation of atypical kinematics to sensorimotor processes 

rather than spatial encoding. Moreover, by using discrete kinematic markers to both define 

the models and measure imitation accuracy, these data represent the most accurate 

measurement of biological motion coding during imitation learning in the current literature. 
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Chapter 3: Atypical Biological Motion Kinematics are Represented by Complimentary 

Lower-level and Top-down Processes During Imitation Learning 
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3.1. Abstract 

 

Learning a novel movement requires a new set of kinematics to be represented by the 

sensorimotor system. This is often accomplished through imitation learning where lower-level 

sensorimotor processes are suggested to represent the biological motion kinematics associated 

with an observed movement. Top-down factors have the potential to influence this process 

based on the social context, attention and salience, and the goal of the movement. In order to 

further examine the potential interaction between lower-level and top-down processes in 

imitation learning, the aim of this study was to systematically control the mediating effects 

during an imitation of biological motion protocol. In this protocol, a non-human agent model 

that displayed different novel atypical biological motion kinematics, as well as a control model 

that displayed constant velocity. Importantly the three models had the same movement 

amplitude and movement time. Also, the motion kinematics were displayed in the presence, 

or absence, of end-state-targets. Kinematic analyses showed atypical biological motion 

kinematics were imitated, and that this performance was different from the constant velocity 

control condition. Although the imitation of atypical biological motion kinematics was not 

modulated by the end-state-targets, movement time was more accurate in the absence, 

compared to the presence, of an end-state-target. The fact that end-state-targets modulated 

movement time accuracy, but not biological motion kinematics, indicates imitation learning 

involves top-down attentional, and lower-level sensorimotor systems, which operate as 

complementary processes mediated by the environmental context.  
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3.2. Introduction 

 

Imitation is a powerful mechanism that supports human interaction. In familiar social 

settings, imitation involves the automatic activation of a motor response triggered by 

observing a similar motor action (Chartrand & Bargh, 1999; Heyes, 2001, 2011; Heyes et al., 

2005). For example, individuals execute faster pre-specified movements (e.g., finger tapping) 

when observing biologically compatible (finger tapping), compared to incompatible (finger 

lifting), movements (Brass, Bekkering, & Prinz, 2001; Stürmer, Aschersleben, & Prinz, 2000). 

The shorter motor reaction times occur independent of task instructions, which suggests 

involvement of automatic sensorimotor processes linking perception and action (Brass & 

Heyes, 2005; Prinz, 1997). 

To understand if the automatic sensorimotor effects are developed through experience, 

and linked to a general mechanism incorporating processes associated with perception, action 

and attention (Leighton, Bird, Orsini & Heyes, 2010), studies have examined automatic 

imitation following correlated sensorimotor training (Bird, Brindley, Leighton, & Heyes, 

2007; Catmur, Mars, Rushworth, & Heyes, 2011; Catmur, Walsh, & Heyes, 2007, 2009; 

Cavallo, Heyes, Becchio, Bird, & Catmur, 2014; Heyes, et al., 2005). For example, individuals 

performed a countermirror protocol that required compatible or incompatible sensorimotor 

training (Catmur, et al., 2007). During compatible training, individuals executed index-finger 

movements, whilst simultaneously observing index-finger movements. During incompatible 

training, individuals executed index-finger movements, whilst simultaneously observing 

little-finger movements. After incompatible training, TMS-induced MEPls recorded from the 

little finger abductor muscle were greater during observation of index-finger movement 

compared to a little-finger movement. These findings demonstrate the sensorimotor system 
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was reconfigured during correlated sensorimotor training, and thus indicate imitation is 

associated with a general mechanism involving lower-level visuomotor processes that 

represent biological motion, as opposed to a specialised mechanism that mediates (Meltzoff 

& Moore, 1977) the translation of visual information into a motor action. 

Of primary interest to the present chapter is the suggestion that similar sensorimotor 

processes operate during automatic imitation and imitation learning (Brass & Heyes, 2005; 

Buccino et al., 2004; Heyes, 2011; Iacoboni, 2009). Like the countermirror principle, imitation 

learning often requires the sensorimotor system to represent a novel biological motion across 

consecutive imitation trials. Although there is strong evidence that biological motion is 

processed during automatic imitation (Brass, Bekkering, Wohlschlaeger, & Prinz, 2000; 

Heyes, et al., 2005; Press & Heyes, 2008) and interpersonal observation-execution imitation 

tasks (Kilner, Paulignan, & Blakemore, 2003), support from imitation learning studies has 

typically been based on protocols that manipulated the speed of the imitated movement (Bisio, 

Stucchi, Jacono, Fadiga, & Pozzo, 2010; Hayes, Timmis, & Bennett, 2009; Wild, Poliakoff, 

Jerrison, & Gowen, 2010). 

Although participants have been shown to imitate different movement speeds (e.g., 

slow, medium, and fast upper-limb aiming movements), it is notable that the observed 

stimulus was representative of typical aiming movements (Wild, et al., 2010). Thus, it remains 

possible that imitation was limited to recognising differences in movement speed between 

observations, as opposed to representing the underlying biological motion kinematics. In this 

case, the feedforward contribution to motor execution could have been associated with an 

individual recruiting and rescaling a pre-existing motor representation of a familiar and 

meaningful aiming movement (Hayes, Roberts, Elliott, & Bennett, 2014; Hayes, et al., 2009). 

This would imply imitation was based on higher-order semantic processes (Rumiati, Papeo, 
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& Corradi-Dell’Acqua, 2010; Rumiati et al., 2005), as opposed to lower-level sensorimotor 

processes representing the observed biological kinematics. 

The current chapter adopted a novel protocol that enabled direct examination of 

biological motion processing during imitation learning. In addition to displaying a constant 

velocity control model, the structure of two experimental models was manipulated so that 

peak velocity in the aiming movements no longer occurred at the typical mid-point (40-60% 

of the total time) of the trajectory (Elliott, Helsen, & Chua, 2001). With such stimuli, imitation 

can be quantified according to timing and magnitude of velocity, which in combination would 

not reflect the kinematics of typical aiming movements (Hayes, et al., 2014). Following this 

logic, imitation of two different biological motion models was compared, in which 

percentage-time-to-peak-velocity occurred at 17% or 26% of the total movement time 

(henceforth atypical17 and atypical26), and thus earlier than normally expected when aiming 

to a target. By maintaining equal movement time and amplitude, magnitude of peak velocity 

also differed between the biological motion models (atypical 17 = 0.37 mm/ms; atypical 26 = 

0.24 mm/ms). These specific kinematic features were selected for atypical17 and atypical26 

based on rigorous pilot testing and conformity with the guidelines for atypical kinematics 

within current literature. Peak velocities for both models occurred earlier than the 40-60% 

associated with a typical velocity profile (Elliott et al., 2001) and importantly, were both 

identified as being different to each other and faster than the typical model used in the previous 

chapter during pilot testing.  

Finally, given that the lower-level processes that code biological motion kinematics 

are modulated by various top-down processes (Bekkering, Wohlschlaeger, & Gattis, 2000; 

Heyes & Bird, 2007; Leighton, et al., 2010; Rumiati, et al., 2005; Southgate & Hamilton, 

2008; Wang & Hamilton, 2012), motion stimuli was displayed as a non-human agent (a white 
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dot) to control social context, and in the presence or absence of end-state-targets. The latter 

manipulation is important because previous work (Hayes et al., 2007; Wild, et al., 2010) has 

shown that the imitation of biological motion is attenuated in the presence of an end-state-

target. In this context, the end-target provides a salient task-relevant (Leighton, et al., 2010) 

environmental visual cue that modulates attention so that this feature (target attainment) is 

prioritized and represented during imitation. The removal of end-state-targets in half of the 

present experimental trials generated a protocol that examined biological motion kinematics 

during true imitation (Cook & Bird, 2012; Vivanti & Hamilton, 2014). 

With behaviourally realisable but atypical biological motion (i.e., atypical17; 

atypical26), represented as a non-human agent, it was expected that participants would imitate 

in accord with the observed biological kinematics (Hayes, et al., 2014) and thus produce 

movements scaled to both timing and magnitude of peak velocity. Because of the constraints 

on human movement imposed by the neuro-muscular system (Abend, Bizzi, & Morasso, 

1982), participants were not expected to move with constant velocity having observed the 

constant velocity stimulus, or to execute a kinematic profile that resembled the atypical motion 

kinematics. Rather, it was anticipated that participants would recruit a pre-existing motor 

response and thus exhibit time of peak velocity that was similar to typical aiming movements. 

Finally, it was anticipated that imitation of atypical biological motion would be more accurate 

in the absence, compared to presence, of end-state-targets. In the absence of end-state-targets, 

there should be minimal contribution from top-down attentional processes, thus encouraging 

participants to focus on representing the characteristics of lower-level visual stimuli during 

imitation learning. 
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3.3. Methods 

 

3.3.1. Volunteers 

Data were recorded from twenty participants (aged range 18 - 21 years) who 

volunteered for the study. All participants had normal or corrected-to-normal vision and gave 

written informed consent. The experiment was designed in accordance with the Declaration 

of Helsinki and was approved by the ethics committee of the host University. 

 

3.3.2 Apparatus and Procedures 

The apparatus consisted of a PC (Dell Optiplex GX280), a 21-in CRT computer 

monitor (IIyama Vision Master 505), and a graphics tablet with a hand-held stylus (WACOM 

Intuos 3). The CRT monitor operated with a spatial resolution of 1280 x 1024, and a refresh 

rate of 85 Hz. Visual stimuli were generated via MATLAB (The Mathworks, Inc), using 

Cogent 2000 toolbox (www.vislab.ucl.ac.uk/cogent.php). Importantly, the apparatus used in 

the current chapter had the same setup as that used in the previous chapter and were consistent 

throughout the thesis. 

Participants were required to observe and imitate the movement of a model (a white 

cursor, diameter = 8mm) presented on the 21-inch CRT monitor. The model displayed a single 

horizontal trajectory that originated from a home-target positioned on the left-hand side of the 

screen. The amplitude of the movement was 200 mm, with a movement time of 1700 ms, and 

ended on the right-hand side of the monitor. For the end-state-target condition, two red circles 

representing home-target and the end-state-target (diameter = 16 mm) were positioned at 

centre-left (home) and centre-right (end-state) of the monitor (Figure 3.1A). To examine 
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imitation of biological motion, three models were created: atypical (atypical17; atypical26) or 

constant velocity (Figure 3.2). The atypical models displayed a velocity profile that was 

positively skewed so that peak occurred at 17% or 26% of movement time, and with a 

magnitude of 0.37 mm/ms and 0.24 mm/ms, respectively. The models were created by a 

human volunteer who practiced the two atypical goal-directed aiming movements using a 

hand-held stylus on a graphics tablet until a white cursor, which represented the stylus, moved 

from a left-hand home-target to a right-hand end-state-target in a movement time of 1700 ms. 

The displacement time-series data recorded from a successful practice trial for each model 

was selected to create the models. The method of using a human to generate the models was 

critical because it ensured the kinematics of the movement was biological in origin, and thus 

the movement was achievable. The model displaying constant velocity was created according 

to the amplitude (200 mm) and time (1700 ms) constraints associated with the task. The model 

displayed the exact movement time, but with a constant velocity trajectory that had no 

deviations in the perpendicular axis. 

Prior to the experimental trials, all participants completed a familiarization period that 

replicated the conditions of the imitation task. Participants sat on a chair in front of a CRT 

monitor and held the stylus in their preferred hand. The participants performed four 

familiarization trials; 2 trials representing the end-state-target condition (see Figure 3.1A) 

performed in the imitation task, and 2 trials representing the no-end-state-target condition (see 

Figure 3.1B) performed in the imitation task. Participants were instructed to passively observe 

the model stimuli during the observation phase, with the intention of reproducing the model 

as accurately as possible during the imitation trials. These specific instructions were given to 

provide as little information about the nature of the task and kinematic structures of the models 

as possible, thus allowing for the most natural imitation of the respective models. Each trial 
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commenced with the model being positioned in the centre of the home-target. The participants 

observed the model display a movement from the home-target to an end-target (end-state-

target condition), or end space (no-end-state-target condition), with a constant velocity 

trajectory and a movement time of 1700 ms. A constant velocity trajectory was used to ensure 

construct validity by preventing participants from experiencing biological motion before the 

imitation trials. Participants were not informed about the agency of the model or duration of 

the movement time. Following observation of the model, participants moved the cursor from 

the centre of the monitor to the centre of the home-target, and clicked the lower-button on the 

stylus. In an end-state-target condition, the two targets remained on the screen as the 

participant imitated the model. In a no-end-state-target condition, the two targets were 

removed before a participant imitated the model. To finish imitation, participants clicked the 

lower-button on the stylus a second time once the cursor was located in the end-state-target, 

or end-space in the no-end-state-target condition. After familiarization, all participants 

confirmed they understood the model, the end-state-target and no-end-state-target conditions, 

the instruction to imitate, and the sensorimotor association between the stylus on a graphics 

tablet, and the corresponding movement of cursor on the monitor.  

 The imitation task comprised 14 blocks of 6 trials (84 trials). A block contained each 

of the 6 combinations of target (end-state-target, no-end-state-target) and velocity model 

(atypical17, atypical26, constant) presented in random order. A trial commenced with an 

observation phase where the home-target (red) was displayed on the monitor for 1000 ms, 

before disappearing for 1000 ms, and being replaced by a model positioned in the same 

location. Depending on the trial type, the model moved to an end-state-target (Figure 3.1A) 

or end-space in the no-end-state-target (Figure 3.1B) condition, with one of three velocity 

models. After observing the model, participants imitated the movement as per the instructions 
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given in the familiarization period. This experimental design ensured consistency between 

experimental chapters within the current thesis by equally distributing trial types and 

containing a total number of trials that produced sufficient exposure to each condition, as 

consistent with previously published research (Hayes et al., 2009; 2014).  

 

3.3.3. Statistical Analysis 

To quantify imitation performance, and imitation of atypical biological motion, 

movement kinematics exhibited by the participants were extracted on each trial. The start of 

movement was defined as the time the centre of the cursor moved beyond the perimeter of the 

home-target, and the end was calculated when the participant clicked the lower-button on the 

stylus. For each imitation attempt, the 2-dimensional displacement data were filtered using a 

low-pass (8 Hz) autoregressive filter. These data were differentiated using a central difference 

algorithm to obtain velocity. A MATLAB routine extracted the primary movement occurring 

in the x-axis and identified the following dependent variables: movement time, peak velocity, 

and percentage-time-to-peak-velocity. The two velocity variables were chosen for analysis 

because they most reflected the difference between the two atypical biological motion models. 

Intra-participant means from the 14 trials per condition were calculated for each dependent 

variable and submitted to separate Model (atypical17; atypical26; constant velocity) x Target 

(end-state-target; no-end-state-target) repeated measures ANOVAs. Alpha was set at p < 0.05 

and follow-up testing used the Tukey post-hoc procedure. 
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Figure 3.1. A visual representation depicting a single trial in the end-state-target-condition 
(A) and no-end-state-target condition (B). The apparatus outlined in Panel A and B is a CRT 
monitor and a graphics tablet. The trial timeline arrows at the bottom of the figure indicate the 
Observation Phase and Imitation Phase. During the Observation Phase, the non-human agent 
model is positioned in the left-hand home target (A) and left-hand space (B). The model 
(atypical17 or atypical26 or constant velocity) displays a horizontal movement of 200 mm 
from the left-hand home target to an end-state-target (A) or end-space in the no-end-state-
target-condition. The model has a movement time of 1700 ms. The Imitation Phase 
commences with the white cursor positioned in left-hand home target (A) or left-hand space 
(B). A participant imitates the observed model by controlling a stylus on the graphics tablet.  
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Figure 3.2. The velocity profiles for atypical17 model (light grey trace; peak), atypical26 
model (dark grey trace), and constant velocity control model (black trace).  

 

3.4. Results 

 

3.4.1. Movement Time 

As illustrated in Figure 3.3, the presence of an end-state-target [F(1, 19) = 36.61, p < 

0.05] modulated movement time, with significantly shorter and more accurate movement 

times imitated in the absence (M = 2156 ms; SD = 387 ms), compared to the presence (M = 

2294 ms; SD = 386 ms), of an end-state-target. Although there was no significant difference 

in movement times when imitating the atypical17 (M = 2121 ms; SD = 382 ms) and atypical26 

(M = 2191 ms; SD = 379 ms) models, the main effect [F(2, 38)  = 17.90, p < 0.05] indicated 

these two movement times were significantly shorter (ps < 0.05) and more accurate than 
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imitating the constant velocity (M = 2362 ms; SD = 399 ms) model. The interaction 

concerning model and target [F(2, 38)  = 3.51, p < 0.05] indicated that significantly shorter 

and more accurate movement times were performed in the no-end-state-target compared to 

the end-state-target condition (ps < 0.05) when viewing atypical17 and atypical26 models. 

This effect was not significant when imitating constant velocity. 

 

 

Figure 3.3. Mean movement time data (ms) as a function of model (atypical17, atypical26 

and constant velocity) and target condition (light grey = end-state-target; dark grey bar = no-

end-state-target). The criterion model data for atypical17 and atypical26 is represented in the 

black bars. Error bars (±) display the standard error mean. 
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3.4.2. Peak Velocity 

An effect of model [F(2, 38)  = 59.56, p < 0.05] indicated the magnitude of peak 

velocity was significantly greater when imitating the atypical model (M = 0.24 mm/ms; SD = 

0.048 mm/ms) compared to the atypical26 (M = 0.19 mm/ms; SD = 0.036 mm/ms) and 

constant velocity (M = 0.15 mm/ms; SD = 0.027 mm/ms) models. Moreover, the magnitude 

of peak velocity was significantly (p < 0.05) greater when imitating the atypical26 compared 

to the constant velocity model. As illustrated in left-hand and centre portions of Figure 3.4, 

the magnitude of peak velocity executed by the participants in the atypical17 and atypical26 

conditions (grey bars) was scaled (i.e., more similar) to peak velocity displayed by the model 

(black bar). However, peak velocity was not modulated by the presence or absence of an end-

state-target [F(1, 19) = 1.48, p > 0.05], irrespective of how it was combined with the model 

stimulus [F(2, 38)  = 1.54, p > 0.05]. 
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Figure 3.4. Mean peak velocity data (mm/ms) as a function of model and target condition. 
The target conditions are displayed in the light grey bar (end-state-target) and dark grey bar 
(no-end-state-target). The criterion model data for atypical17 and atypical26 is represented in 
the black bars. Error bars (±) display the standard error mean. 
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3.4.3. Percentage-Time-to-Peak-Velocity 

An effect of model [F(2, 38) = 68.99, p < 0.05] indicated peak velocity occurred 

significantly earlier in the movement when imitating the atypical17 model (M = 22%; SD = 

6%) compared to both the atypical26 (M = 29%; SD = 8%) and constant velocity (M = 38%; 

7%) models (ps < 0.05). As illustrated in Figure 3.5, the grey bars indicate the temporal 

occurrence of peak velocity in the atypical17 and atypical26 conditions was scaled to peak 

velocity displayed by the model (black bar). This effect can also be seen from an exemplar 

velocity trace in Figure 3.6. When imitating the atypical17 (light grey trace) model, peak 

velocity occurred significantly earlier in the movement than the atypical26 (dark grey trace) 

model. When imitating the constant velocity model, peak velocity occurred toward the 

midpoint of the movement (black trace). Although there was no main effect for target [F(1, 

19) = 1.58, p > 0.05], there was an interaction concerning model and target [F(2, 38)  = 11.40, 

p < 0.05]. Percentage-time-to-peak-velocity occurred earlier in the movement in the end-state-

target condition compared to the no-end-state-target condition when imitating the atypical17 

and atypical26 models (ps < 0.05). This effect was reversed when imitating constant velocity 

model.  
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Figure 3.5. Mean percentage-time-to-peak-velocity (%) as a function of model and target 
condition. The target conditions are displayed in the light grey bar (end-state-target) and dark 
grey bar (no-end-state-target). The criterion model data for atypical17 and atypical26 is 
represented in the black bars. Error bars (±) display the standard error mean. 
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Figure 3.6. Exemplar imitation data of atypical (light grey trace), typical (dark grey trace) and 
constant (black trace) velocity models, showing peak velocity (mm/ms) and the relative time 
it occurred (percentage-time-to-peak-velocity) during imitation.  
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3.5. Discussion 

 

The present chapter examined the representation of biological motion kinematics 

during imitation learning using a novel protocol that systematically manipulated the structure 

of a model’s kinematic profile. The percentage-time-to-peak-velocity data supported the 

expectations by indicating peak velocity occurred significantly earlier in the movement after 

imitating both the atypical17 and atypical26 models. Moreover, while movement time was 

similar in these conditions, the magnitude of peak velocity also differed in accord with the 

atypical biological motion models. Imitation of both atypical17 and atypical26 models was 

confirmed by the data showing participant exhibited peak velocity significantly later in the 

movement in the constant velocity control condition. Specifically, percentage-of-time-to-

peak-velocity occurred closer to the mid-point of the trajectory (38%; see exemplar data 

displayed in Figure 3.6), which is consistent with what would be expected if participants had 

imitated a model displaying a typical biological motion profile (Hayes, et al., 2014; Hayes, et 

al., 2009). Because participants were unable to directly match the constant velocity stimulus 

due to the anatomical and physiological constraints of the human-motor system (Abend et al. 

1982), imitation in the control condition most likely occurred by forming a representation 

based on the internal (pre-existing motor priors) and external (amplitude and speed of 

movement) constraints of the task (Elliott, et al., 2001; Roberts, Bennett, Elliott, & Hayes, 

2012). 

As expected, the findings also showed that imitation learning was modulated by the 

presence or absence of end-state-targets. Having observed the two atypical biological models 

in the absence of end-state-targets, participants exhibited shorter movement times, which were 

more accurate (M = 2156 ms) compared to when end-state-targets were present (M = 2294 
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ms). As suggested previously (Wild, et al., 2010), this effect was unlikely to be associated 

with differences in movement amplitude, which was 6 mm shorter when end-state-targets 

were absent1. Neither was it a function of greater average acceleration, which was less in the 

absence of end-state-targets (i.e., similar peak velocity but achieved later). Although not 

measured in the present experiment, an explanation for the less accurate imitation of 

movement time in the presence of end-state-targets is that participants paid more attention 

(Leighton, et al., 2010) to target attainment and thus were more goal-directed during 

movement execution. As a consequence, it is likely they focused more on aiming to position 

the cursor in the end-target, which resulted in proportionately more time after peak velocity 

in the deceleration phase (Elliott, Hansen, Mendoza, & Tremblay, 2004). 

The nature of this top-down attentional effect is important from a theoretical position 

because the decrease in movement time accuracy when end-state-targets were present did not 

lead to a concomitant decrease in the imitation of atypical biological motion kinematics. This 

is consistent with the suggestion that during imitation both lower-level sensorimotor and top-

down attentional processes operate in a complementary (Buxbaum & Kalénine, 2010; 

Footnote 

1Additional analyses were conducted to determine if movement time was correlated with 
movement amplitude. Separate within-participant correlations were run on these two 
dependent variables for end-state-target and no-end-state-target conditions. For each 
participant, a correlation was run on movement time and movement amplitude from 42 trials 
(i.e., 14 trials and 3 velocity models). The logic is that a positive correlation would occur if 
longer movement times were associated with longer movement amplitudes, and vice versa. 
The group mean r value for the end-state-target condition was 0.27 ± 0.27, and 0.30 ± 0.2 for 
the no-end-state-target condition. Furthermore, of the 20 participants, 9 had a significant r 
value in the end-state-target condition, and 12 had a significant r value no-end-state-target 
condition. Only 8 of the participants exhibited a significant r value in both the end-state-target 
condition and no-end-state-target condition. In addition, the mean r2 for the end-state-target 
condition was 0.14 ± 0.18 and 0.15 ± 0.14 for the no-end-state-target condition, and the 
coefficient of determination was less than 0.5 for all participants. These analyses indicate no 
clear trend across participants for a relationship between movement time and amplitude.  
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de Lange, Spronk, Willems, Toni, & Bekkering, 2008; Heyes, 2011) manner in order to 

represent biological motion kinematics, as well as other salient factors in the environment 

(Leighton, et al., 2010).The fact that kinematics and the end-state-target context were coded 

suggests an equitable contribution of processing which is perhaps less hierarchical than 

concluded in previous work (Bekkering, et al., 2000; Hamilton, Brindley, & Frith, 2007; 

Hayes, Hodges, Scott, Horn, & Williams, 2007; Wohlschlager, Gattis, & Bekkering, 2003). 

The more equitable contribution shown in the present chapter most likely reflected the fact 

that the to-be-imitated movement kinematics could not be solved by merely recruiting a pre-

existing motor pattern. 

To minimize the potential modulation of biological motion processing by top-down 

factors associated with goal coding (Bekkering, et al., 2000), attention/salience (Leighton, et 

al., 2010), teleological reasoning (Csibra & Gergely, 2007) and social modulation (Wang & 

Hamilton, 2012), the atypical biological models were observed as non-human agents in the 

absence of end-state-targets. The finding of temporal correspondence (Gangitano, Mottaghy, 

& Pascual-Leone, 2001) between observed (atypical17; atypical26) and imitated movement 

kinematics is therefore consistent with biological motion being processed through lower-level 

visuomotor processes operating in the human mirror-mechanism (Brass & Heyes, 2005; 

Casile et al., 2010; Dayan et al., 2007; Press, Cook, Blakemore, & Kilner, 2011). Detection 

of biological motion is suggested to occur in a neural substrate associated with the pSTS 

(Allison, Puce, & McCarthy, 2000), while coding the kinematic properties of an observed 

action (Hamilton, 2008; Iacoboni, 2009) is suggested to occur in the fronto-parietal mirror-

system (Di Dio et al., 2013; Press, et al., 2011). Within the fronto-parietal mirror mechanism, 

the premotor region has been associated with coding the temporal features of visual 

information through analysis of MEPs during different phases of a grasping action 



 82

(Gangitano, et al., 2001). Moreover, evidence that certain phases of movement are reflected 

in time-synchronized neural activation (e.g., greatest activation during display of maximal 

grip aperture), has been suggested to indicate online visual processing during observation of 

biological motion. In line with this reasoning, the data from the current chapter suggest the 

finding of temporal correspondence between the model and imitation of atypical biological 

motion was in part based on the online visual processing of such motion during each 

observation trial. Such findings of continual matching of action-execution with action-

observation is consistent with previous work on biological motion coding during 

observational practice (Hayes, et al., 2014). 

In summary, the findings in the present experiment showed atypical biological motion 

kinematics was represented during imitation learning, both in the presence and absence of 

end-state-targets. Imitation of biological motion kinematics involves top-down attentional and 

lower-level visuomotor systems, which operate as complementary processes. 
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Chapter 4: Eye movements confirm visual attention is stimulus driven during 

observation of biological motion. 
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4.1. Abstract 

 

The previous experimental chapters have demonstrated the lower-level coding of 

biological motion (Chapter Two) are influenced by top-down factors related to the goal of the 

movement, namely end-state-targets (Chapter Three). Goal-directed modulation of imitation 

is related to visual attention becoming more goal-directed during observation, resulting in less 

visual information from the observed stimulus being coded (Wild et al., 2010). In order to 

examine eye movement behaviour and strategy, the aim of this study was to record eye 

movements during observation of the model stimuli, prior to imitation of model stimuli. In 

this protocol, a modified version of that used in Chapter Three, a non-human agent model was 

used that displayed novel atypical biological motion kinematics, as well as biological and non-

biological control models that displayed typical biological motion kinematics and constant 

velocity respectively. Importantly the three models had the same movement amplitude and 

movement time. Also, the motion kinematics were displayed in the presence, or absence, of 

end-state-targets. Kinematic analyses showed atypical biological motion kinematics were 

imitated, and that this performance was different from the typical and constant velocity control 

condition. Although the imitation of atypical biological motion kinematics was not modulated 

by the end-state-targets, movement time was more accurate in the absence, compared to the 

presence, of an end-state-target. These data replicate the findings from Chapter Three. Eye 

movement analysis showed no difference in visual strategy during observation of model 

stimuli when end-state-targets were present, compared to when they were absent. Therefore, 

these data suggest that the coding of biological motion kinematics is a result of tracking the 

cursor during observation and consequently, associated with lower-level visuomotor 

processing of the visual stimuli. 
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4.2. Introduction 

 

 Imitation as a learning mechanism is complex, involving the formation and refinement 

of an internal action model that enables observed biological motion properties to be 

voluntarily reproduced by the human observer. Imitation learning requires processes that 

transform and integrate input from observing the visual stimulus, with afferent and efferent 

inputs that are generated when voluntarily activating the motor system. When the observed 

biological motion stimulus is novel, these bi-directional processes are said to operate at a 

lower-level of the CNS, whereby they directly link perception and action (Brass & Heyes, 

2005; Heyes, 2011; Iacoboni, 2005). A seminal example of the direct relationship between 

movement perception and motor execution was reported by Sturmer, Aschersleben and Prinz 

(2000), who showed response times to opening or closing the hand were shorter when cues 

were compatible with the response (e.g. open hand stimulus and open hand response) than 

incompatible (e.g. close hand stimulus and open hand response). Support for sensitivity to 

coding biological motion during observation of a stimulus was reported in a series of studies 

by Kilner and colleagues (Kilner, Paulignan & Blakemore, 2003; Kilner, Hamilton & 

Blakemore, 2007). Both human and robotic arm movements were observed while concurrently 

executing either congruent or incongruent arm movements. It was predicted that if perception 

and action shared similar neural circuitry during activation, observing an incongruent 

movement to that of the executed movement would create interference (e.g. variance from the 

stimulus). Importantly, significant interference was reported when observing human 

incongruent movement but not robotic incongruent movement, which suggests the direct link 

between perception and action is specifically related to the detection of biological motion.  
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 In addition to linking perception and action, the detection of biological motion is also 

crucial to the ability to learn through observation. Indeed, it has been reported that biological 

motion perception underpins the ability to differentiate between moving stimuli (i.e., a video 

clip of a hand moving at slow and fast speeds) and thereby accurate imitation, as evidenced 

by the participant’s movement kinematics relative to the observed model (Wild, Poliakoff, 

Jerrison & Gowen, 2010). The neural components of this process have been examined using 

TMS. When observing a human hand complete a reaching-grasping action, MEPs increased 

in amplitude relative to the amount of observed finger aperture (Gangitano, Mottaghy & 

Pascual-Leone, 2001). These findings showed that as well as linking action observation and 

action execution, underlying visuomotor processing in the mirror mechanism also took 

account of the temporal components of the observed stimuli.  

 The coding of kinematics has recently been demonstrated by examining biological 

motion coding during imitation learning (Hayes, Dutoy, Elliott, Gowen & Bennett, 2016). By 

requiring participants to imitate two slightly different atypical biological motion models (peak 

velocities that occurred at 17% and 26% respectively), the study sought to determine whether 

a general representation was formed during observation or if specific representations were 

developed that reflected the kinematic profile of each model. Imitation of the two atypical 

models was significantly different from each other and importantly, scaled to the models, thus 

demonstrating specific kinematic properties of biological motion are coded during imitation 

learning. Further, and in line with GOADI (Bekkering et al., 2000; Wohlschlager et al., 2003), 

it was predicted that imitation would be modulated by the presence of end-state-targets such 

that visual attention and motor output would become goal-directed (Wild et al., 2010). 

Consequently, when end-state-targets are present it is suggested that goal attainment becomes 

the primary feature of the action, at the expense of coding stimulus kinematics. Results showed 
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that end-state-targets modulated the accuracy of movement time, such that it was more 

accurate when end-state-targets were absent, but not the coding of biological motion 

kinematics. As the imitation of kinematics was not influenced by the presence of end-state-

targets, it was concluded that this process was a function of lower-level visuomotor 

processing. However, the goal-directed modulation of movement time suggested that top-

down attentional systems operated alongside lower-level processing, relative to the 

environmental context.  

 It has been suggested that increased imitation effects when end-state-targets are absent 

could be a function of eye movement strategies during observation (Wild et al., 2010). Due to 

the less predictable nature of a stimulus moving between undefined start and end points, it 

follows that more visual attention would be paid to the stimulus, thus leading to subtle 

differences in movement kinematics being coded through direct visuomotor mapping 

(Rumiati & Tessari, 2002). Conversely, when end-state-targets are present, it is likely that eye 

movements would become more predictive and goal-directed, resulting in a larger saccade to 

the end target and a longer goal-directed fixation (Flanagan & Johansson, 2003). The current 

chapter was designed to further examine these suggestions. The same novel protocol was used 

as in previous chapters (Chapters Two and Three) to examine biological motion coding during 

imitation learning but now with the addition of eye movement recording during the 

observation phase of the protocol. Eye movements were recorded to determine eye movement 

strategies, and thus the location of overt visual attention during observation of the stimulus. 

The observed stimuli showed either typical (percentage-time-to-peak-velocity = 44%) or 

atypical (percentage-time-to-peak-velocity = 17%) biological motion models and a constant 

velocity (non-biological motion) model. The atypical model was replicated from Chapter Two 

whereas the typical model represented a natural aiming movement with a bell-shaped velocity 
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profile (Elliott, Helsen & Chua, 2001). The constant velocity model was generated based on 

an equation accounting for time and displacement of the movement. All model stimuli were 

presented as anon-human agent (white dot) that moved either between two non-defined start 

and end locations (no-end-state-target condition) or two red targets (end-state-target 

condition). 

 As observation and imitation components of the experiment are similar to previous 

research (Andrew et al., 2016;Hayes et al., 2016), the imitation results are expected to replicate 

those findings. That is, biological motion kinematics would be imitated such that there would 

be a difference between the atypical and typical imitation behaviour, with each scaled relative 

to their respective models. Imitation with end-state-targets is expected to be less accurate than 

with no-end-state-targets. With respect to eye movements, it is expected that the cursor will 

be tracked during observation and thus eye movement velocity will closely resemble the 

velocity profiles of the respective stimuli. This pattern of eye movements would confirm that 

overt attention was directed to the observed models, thereby providing the opportunity to 

perceive and code the underlying biological kinematics.   

 

4.3. Methods 

 

4.3.1. Volunteers 

Nineteen participants (aged between 18 and 21 years) volunteered for the study. All 

participants were right-hand dominant, had normal or corrected-to-normal vision and gave 

written informed consent. The experiment was designed in accordance with the 1964 
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Declaration of Helsinki and approved by the research ethics committee of the host University. 

 

4.3.2. Apparatus and Stimuli 

Participants sat facing a 21-inch CRT monitor (Iiyama Vision Master 505) operating 

with a resolution of 1280 x 1024 pixels and a refresh rate of 85 Hz, located on a table at a 

viewing distance of approximately 890 mm. The monitor was connected to a desktop PC (Dell 

Optiplex GX280), which received input from a graphics tablet and hand-held stylus (Wacom 

Intuos Pro XL) (Figure 4.1A). Experimental stimuli were generated on the desktop PC using 

the COGENT toolbox (developed by John Romaya at the Laboratory of Neurobiology at the 

Wellcome Department of Imaging Neuroscience) implemented in MATLAB (Mathworks 

Inc.). 

Eye movements of both groups were recorded using the EyeLink1000 (SR Research 

Ltd., Mississauga, Ontario, Canada), which sampled eye gaze locations in the horizontal and 

vertical axes at 1000 Hz. Data was stored for off-line analysis with routines written 

in MATLAB. A chin and forehead rest was used to minimise head movement, and to ensure 

that participant eyes were located 890 mm perpendicular to the centre of the computer 

monitor. At this distance, the cursor subtended a visual angle of 13°. A nine-point calibration 

and validation of gaze location accuracy occurred prior to the pre- and post-test. 
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4.3.3. Procedure 

The imitation task required participants to observe and imitate non-human agent 

models that displayed a single horizontal trajectory that originated from a home-position on 

the left side of the monitor and terminated at an end-position on the right side of the monitor 

(Figure 4.1). The movement amplitude of a model was 200 mm and total duration was 1700 

ms. To examine imitation of biological motion, two models were created that displayed typical 

or atypical velocity profiles (Hayes et al., 2015; 2016; Andrew et al., 2016). The typical model 

was created by a human volunteer and displayed a natural (Flash & Hogan, 1985; Elliott et 

al., 2010) bell-shaped velocity profile (dark grey trace in Figure 4.2) with a peak velocity of 

0.200 mm/ms that occurred at 44 % of the movement duration. The atypical model (solid-

black trace in Figure 4.2) was created by the same volunteer and displayed a novel kinematic 

trajectory, with a peak velocity of 0.410 mm/ms that occurred at 18 % of the movement 

duration. The method of using a human volunteer to generate both models was critical because 

it ensured the kinematics were biological. In addition to the biological motion models, a 

constant velocity model was used to create a non-biological control condition (light grey trace 

in Figure 4.2). This non-biological model was computer-generated and moved at a uniform 

velocity of 0.120 mm/ms across the same 200 mm amplitude and 1700 ms duration as the 

biological motion models. During trials with end-state-targets, two red circles representing 

home-target and end-state-target (diameter = 16 mm) were positioned at left (home) and right 

(end) sides of the monitor respectively. During trials with no-end-state-targets, only one red 

circle was present and represented the home position to encourage a consistent start location 

for all imitation trials. 

Prior to a familiarisation period that replicated the task requirements of the imitation 

protocol (e.g. operating the stylus, start location of each trial, controlling the cursor, ending 
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the imitation trial), participants were informed that their task was to “watch the movement of 

the dot, with the intention to then imitate it as accurately as possible”. Then, during the 6 

familiarisation trials, participants observed a non-human agent model move from the home-

position with a constant velocity to the end-position. The model displayed the exact movement 

duration and amplitude of the experimental models, but with a constant velocity in the 

horizontal x axis of 0.120 mm/ms. There were no deviations in the perpendicular y axis. Using 

this model ensured construct validity by preventing participants experiencing biological 

motion before the imitation trials. Participants were not informed about the duration of the 

movement, or the type of stimuli. After observing the model, participants imitated by moving 

the stylus on the tablet so that a cursor displayed on the monitor moved from the home-

position to the end-position as per the model. Following movement execution, there was a 

4000 ms inter-trial delay before the next trials commenced. All participants confirmed they 

understood the instructions on how to observe and imitate the trajectory of the model, and the 

sensorimotor association between the stylus on the graphics tablet and the corresponding 

movement of the cursor on the monitor. Participants then performed the imitation protocol 

that consisted of 14 blocks of 6 trials. A block contained two typical and two atypical 

biological motion trials, as well as two non-biological motion trials; of the two trials for each 

model, end-state-targets were either absent or present. Trial order within a block, as well as 

block order, was randomised across volunteers. The randomised structure reduced 

predictability of an upcoming model(s) and end-state-target presence and promoted imitation 

on a trial-by-trial basis.  

 



 92

 

Figure 4.1. A visual representation depicting a single trial in the end-state-target-condition 
(A) and no-end-state-target condition (B). The apparatus outlined in Panel A and B is a CRT 
monitor and a graphics tablet. The trial timeline arrows at the bottom of the figure indicate the 
Observation Phase and Imitation Phase. During the Observation Phase, the non-human agent 
model is positioned in the left-hand home target (A) and left-hand space (B). The model 
(atypical, typical or constant velocity) displays a horizontal movement of 200 mm from the 
left-hand home target to an end-state-target (A) or end-space in the no-end-state-target-
condition. The model has a movement time of 1700 ms. The Imitation Phase commences with 
the white cursor positioned in left-hand home target (A) or left-hand space (B). A participant 
imitates the observed model by controlling a stylus on the graphics tablet.  
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Figure 4.2. The velocity profiles for atypical model (black trace), typical model (dark grey 
trace), and constant velocity control models (light grey trace).  

 

4.3.4. Data Reduction 

4.3.4.1. Imitation 

To quantify imitation of movement kinematics, analysis focussed on x-axis data only. 

Within the x-axes, position data was identified at the start and end of the movement in each 

imitation trial. The start was identified by the cursor moving beyond the perimeter of the 

home-position, while the end was identified when the participant clicked the lower-button on 

the stylus. From this identification process, the position data was filtered using a low pass 4th 

order autoregressive filter with an 8 Hz cut-off. The filtered data were then differentiated using 

a 3-point central difference algorithm to obtain velocity. A MATLAB routine extracted the 
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based on predetermined velocity criteria.. The MATLAB routine integrated the velocity curve 

to identify the start of the movement when velocity was > 0.003 mm/ms, and the end when 

velocity was < 0.003 mm/ms. Movement time, peak velocity and percentage-time-to-peak-

velocity from each trial was quantified. Intra-participant means were calculated from 10 trials 

associated with each model and origin of movement (e.g., 10 trials for the atypical model in 

the left-to-right origin). These kinematic dependent variables were chosen as they provide 

discrete measures that accurately reflect whether participants imitate the magnitude and 

timing characteristics of the observed biological motion kinematics (Hayes et al., 2014; 

Andrew et al., 2016). 

 

4.3.4.2. Eye Movements 

Eye gaze locations were low-pass filtered using a zero-phase digital filter 

(autoregressive; forward and backward filter; cut-off frequency, 35 Hz). Eye velocity and 

acceleration were then derived from eye position data using a three-point central difference 

algorithm. Next, saccades were identified and removed from the smooth response using a 

technique described in previous research (Bennett & Barnes, 2003). Saccades were identified 

as points in the acceleration trace exceeding a threshold of 750°/s2. When the threshold criteria 

were exceeded, the complete saccade trajectory was identified by finding the peak and trough 

of acceleration. On the rare occasions when the use of the acceleration threshold failed to 

identify a saccade, these were identified by a second pass in which a maximum velocity 

criteria of 30°/s was applied. By using these criteria, saccades of 0.3°or more were reliably 

detected and segregated from blinks and other noise. Saccades were generally of small 

amplitude and brief duration, so linear interpolation was used as a simple and adequate method 
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of waveform restoration. To obtain desaccaded smooth eye velocity, data points equivalent to 

12ms at the beginning and end of the identified saccade trajectory were excluded to ensure 

that no saccadic element remained when applying subsequent interpolation. A linear 

interpolation routine was used to bridge the gaps produced by removal of saccades from the 

eye velocity trajectory. The desaccaded eye velocity data were then filtered at 35 Hz with a 

low-pass, zero-phase filter. This extraction process generated a smooth velocity trace of the 

eye movement recorded during observation of the stimuli. From this trace, peak velocity and 

percentage-time-to-peak velocity were extracted from each trial. 

 

4.3.5. Data Analysis 

Intra-participant mean data for each dependent variable were submitted to separate 3 

Model (atypical; typical; constant velocity) x 2 Goal (end-state-target; no-end-state-target) 

repeated measures ANOVA. Significant main and/or interactions effects involving more than 

two means were analysed using Tukey HSD post-hoc procedure. Alpha was set at p < 0.05. 

 

4.4. Results 

 

4.4.1. Imitation Data 

4.4.1.1. Movement Time 

The presence of an end-state-target [F(1, 18) = 15.29, p < 0.05] modulated movement 

time, with significantly shorter and more accurate movement times imitated in the absence (M 

= 2663 ms; SD =431), compared to the presence (M = 2815 ms; SD = 420 ms), of an end-
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state-target. An effect of model [F(2,36) = 89.61, p < 0.05] indicated movement time was 

significantly shorter when imitating the atypical (M = 2502 ms; SD =379 ms) than the typical 

(M = 2625 ms; SD =403 ms) and constant velocity (M = 3089 ms; SD = 495 ms) models. 

Moreover, movement time was significantly shorter (p < 0.05) when imitating the typical, 

compared with the constant velocity model. As seen in Figure 4.3, there was no interaction 

[F(2, 36) = 1.47, p > 0.05] concerning any combinations of model and target. 

 

Figure 4.3. Mean movement time data (ms) as a function of model (atypical, typical and 
constant velocity) and target condition (light grey = end-state-target; dark grey bar = no-end-
state-target). Model data is displayed by the dashed red line and error bars (±) display the 
standard error mean. 

 

 

0

500

1000

1500

2000

2500

3000

3500

Atypical Typical Constant Velocity

M
ov

em
en

t T
im

e 
(m

s)

Model



 97

4.4.1.2. Peak Velocity  

An effect of model [F(2, 36) = 91.05, p < 0.05] indicated the magnitude of peak 

velocity was significantly greater when imitating the atypical model (M = 0.17 mm/s; SD = 

0.04 mm/ms) compared to the typical (M = 0.12 mm/s; SD = 0.02 mm/ms) and constant 

velocity (M = 0.1 mm/s; SD = 0.01 mm/ms) models. Additionally, the magnitude of peak 

velocity was significantly greater (p < 0.05) when imitating the typical compared to the 

constant velocity model. As seen in Figure 4.4, peak velocity was not modulated by the 

presence of targets [F(1, 18) = 1.48, p > 0.05] and there was no significant interaction between 

the presence of targets and the model stimuli [F(2, 36) = 1.42, p > 0.05]. 

 

Figure 4.4. Mean peak velocity data (mm/ms) as a function of model (atypical, typical and 
constant velocity) and target condition (light grey = end-state-target; dark grey bar = no-end-
state-target). Model data is displayed by the dashed red line and error bars (±) display the 
standard error mean. 
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4.4.1.3. Percentage-Time-to-Peak-Velocity 

An effect of model [F(2, 36) = 88.37, p < 0.05) indicated peak velocity occurred 

significantly earlier when imitating the atypical model (M = 25%; SD = 11%) compared to 

the typical (M = 39%; SD =14%) and constant velocity (M = 44%; SD = 17%) models. Peak 

velocity also occurred significantly earlier (p < 0.05) when imitating the typical compared to 

the constant velocity model. Although there was no main effect for targets (F1, 18 = 0.55, p > 

0.05) there was an interaction between model and target (F2, 36 = 4.02, p < 0.05). As seen in 

Figure 4.5, percentage-time-to-peak-velocity occurred earlier in the movement in the end-

state-target condition compared with the no-end-state-target condition when imitating the 

typical and constant velocity models (ps < 0.05). This effect was reversed when imitating the 

atypical model. 
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Figure 4.5. Mean percentage-time-to-peak-velocity data (%) as a function of model (atypical, 
typical and constant velocity) and target condition (light grey = end-state-target; dark grey bar 
= no-end-state-target). Model data is displayed by the dashed red line and error bars (±) 
display the standard error mean.  
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11) = 0.01, p > 0.05] the magnitude of peak velocity and there was no significant interaction 

between targets and the model stimuli [F(2, 22) = 0.92, p > 0.05]. 

 

 

 

Figure 4.6. Mean peak velocity eye movement data (degrees/s) as a function of model 
(atypical, typical and constant velocity) and target condition (light grey = end-state-target; 
dark grey bar = no-end-state-target). Error bars (±) display the standard error mean. 
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4.4.2.2. Percentage-Time-to-Peak-Velocity 

An effect of model [F(2, 22) = 3.83, p < 0.05] indicated peak eye velocity occurred 

significantly earlier in the movement when observing the atypical model (M = 40%; SD = 

10%) compared to the typical (M = 52%; SD = 13%) and constant velocity (M = 44%; SD = 

12%) models. However, as seen in Figure 4.7, the time of peak eye velocity was not modulated 

by the presence of targets [F(1, 11) = 1.75, p > 0.05] and there was no significant interaction 

between targets and the model stimuli (F(2, 22) = 1.57, p > 0.05].   

 

 

Figure 4.7. Mean percentage-time-to-peak-velocity eye movement data (%) as a function of 
model (atypical, typical and constant velocity) and target condition (light grey = end-state-
target; dark grey bar = no-end-state-target). Error bars (±) display the standard error mean. 
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Figure 4.8. Exemplar traces of eye movement velocities (degrees/ s) during observation of the 
atypical (A), typical (B) and constant velocity (C) models. The dashed black line depicts trials 
where targets were present, and the solid black line depicts trials were targets were absent. 
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4.5. Discussion 

 

The aim of the present chapter was to examine the underlying stimulus features that 

facilitate the coding of atypical biological motion during imitation learning, and whether these 

influence eye movements, and thereby the locus of overt attention. Consistent with previous 

work (Hayes et al., 2016; Hayes, Roberts, Elliott & Bennett, 2014) and those of the current 

thesis, the results demonstrate biological motion coding during imitation learning, such that 

peak velocity was greater and percentage-time-to-peak-velocity occurred earlier when 

imitating the atypical than the typical model. In other words, imitation of kinematics did not 

simply reflect the natural constraints of the task (e.g. bell-shaped velocity profile). These 

results concur with the suggestion that accurate coding and representation of biological motion 

during imitation learning occurs through lower-level sensorimotor processes (Brass & Heyes, 

2005; Press, Cook, Blakemore & Kilner, 2011). Further, it was found that the presence of end-

state-targets modulated imitation similarly to previous research (Hayes et al., 2016). 

Movement time was more accurate to that of the model when end-state-targets were not 

present relative to when they were present, yet kinematics were not modulated. It was 

suggested that this finding was a consequence of increased visual attention to target 

attainment, and thus greater focus was on moving the cursor to the target after peak velocity 

had been achieved (Elliott, Hansen, Mendoza & Tremblay, 2004). 

The eye movement data of the current chapter provides further insight into the process 

of imitation, and more specifically where overt visual attention is directed during observation. 

Results showed that, like the imitation data, eye movements had greater magnitude of peak 

velocity, which occurred earlier in the observation when watching atypical, compared with 
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typical and constant velocity models. Further, these effects were consistent regardless of the 

presence of targets during observation. Thus, the velocity profile of the eyes suggest 

participants were attempting to track the stimuli. By evidencing tracking of the cursor during 

observation, these data confirm that during the observation phase of the experiment, 

participants had the opportunity to extract and code the salient velocity characteristics from 

the respective models.  This finding may have been facilitated by the instructions given prior 

to the experiment, whereby participants were told to observe the model with the intention of 

imitating it as accurately as they could (Hayes et al., 2014; 2016). Indeed, by continuing to 

track the cursor throughout each trial, the direct correlated sensorimotor experience between 

observation and imitation would have become stronger over time (Heyes, 2011), thereby 

underpinning accurate imitation of the respective models. Moreover, when visual attention is 

engaged on a specific feature, for example the trajectory of the model stimuli, it is suggested 

that information processing is up-regulated during the early stages of skill acquisition 

(Higuchi, Holle, Roberts, Eickhoff & Vogt, 2012). Therefore, up-regulation could have 

facilitated the formation of internal representations based on task characteristics such as 

kinematics (e.g. peak velocity, percentage-time-to-peak-velocity) or temporal features (e.g. 

movement time).  

In addition to general tracking of the model stimuli, eye movement data further 

demonstrates tracking of model trajectories is consistent both when end-state-targets are 

absent and present. These findings differ from previous research that showed eye movements 

become more goal-directed when end-state-targets are present during a task and moreover, 

that this results in the modulation of biological motion coding (Wild et al., 2010). 

Consequently, authors suggested that the lower-level processes involved in imitation of 

kinematics, and top-down modulation associated with visual attention and end-state-targets, 



 105

were exclusive processes that operated independently. In addition to not reporting goal-

directed eye movements, results from the current chapter also show only movement time, and 

not kinematics, are modulated by the presence of end-state-targets. These effects corroborate 

previous research that has shown a general acquisition of kinematics, but modulation of 

movement time, during a learning task with varying levels of feedback (Andrew et al., 2016). 

In line with results in the present chapter, these findings demonstrate that various higher-order 

cognitive systems (e.g. visual attention, end-state-targets, feedback) can influence the 

processing of temporal components of the stimuli during observation of the models and thus, 

not only lower-level, but additional top-down processes are involved in the coding of 

biological motion during imitation learning.  

In summary, the findings in the present study showed atypical biological motion 

kinematics were coded and represented during imitation learning. Further, eye movements 

confirmed that visual attention was directed to the stimuli during observation, thus providing 

the opportunity to perceive and code and consequently, confirms previous assumptions that 

imitation of biological motion kinematics through lower-level visuomotor processing.   
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Chapter 5: Social Attitudes Modulate Biological Motion Coding During Imitation 

Learning 
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5.1. Abstract 

 

Imitation of novel kinematics has been shown to be a function of lower-level processing 

(Chapter Two), which can be modulated by top-down factors related to end-state-targets 

(Chapter Three), attention and social context. In order to further examine the potential 

interaction between lower-level and top-down processes during imitation learning, the aim of 

this study was to systematically control the social context during the imitation protocol. In 

this protocol, a non-human agent model was used that displayed different novel atypical 

biological motion kinematics, as well as a control model that displayed constant velocity. 

Importantly the three models had the same movement amplitude and movement time. Prior to 

observation of the models, a social prime displaying either neutral (no eye gaze), pro- (direct 

eye gaze), or anti-social (averted eye gaze) eye gaze was presented on the monitor. Kinematic 

analyses showed atypical biological motion kinematics were imitated, and that this 

performance was different from the typical and constant velocity control conditions. Although 

imitation accuracy of atypical biological motion kinematics was not modulated by the social 

primes, the variability of imitation reduced after viewing pro- and anti-social primes, relative 

to the neutral prime. The fact that social primes modulated imitation variability, but not 

imitation accuracy, indicates observation of social primes resonated with the fidelity of the 

representations formed during observation, such that the corresponding motor representation 

were produced with greater accuracy relative to the explicit kinematic features of the models.  
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5.2. Introduction 

 

Imitation of an observed action can accelerate the acquisition attainment of complex, 

novel motor skills (Hayes, Elliott & Bennett, 2010) and their respective movement kinematics 

(Wild et al., 2010; Hayes, Dutoy, Elliott, Gowen & Bennett, 2016). Imitation of observed 

actions engages sensorimotor processes (Heyes, 2001) that occur in the fronto-parietal mirror-

mechanism (Fadiga et al., 2000; Rizzolatti & Craighero 2004). This region of the brain is 

known to link perception and action (Rizzolatti, 2005; Rizzolatti & Foagssi, 2014). In addition 

to actions, imitation is also an important feature of developing social interaction and 

communication, as demonstrated in the mirroring of behaviours such as posture, facial 

expressions, language and understanding (Hurley & Chater, 2005; Chartrand & van Baaren, 

2009).  

When the observed and executed actions share spatial alignment, the neural connection 

between perception and action generally enables and facilitates imitation; however; when they 

do not share spatial alignment, results have shown there to be interference effects. For 

example, greater movement deviation occurs when observing a stimulus move orthogonally 

to the concurrent arm movement e.g. observing horizontal arm movements while concurrently 

making vertical arm movements (Kilner, Paulignan & Blakemore, 2003; Chaminade, et al., 

2005). This interference effect was termed ‘motor contagion’ (Blakemore & Frith, 2005) and 

refers to the co-activation of incompatible internal representations. This process is largely 

subconscious and consequently, governed by lower-level processes (Rizzolatti, Fogassi & 

Gallesse, 2001; Iacoboni, 2005). 
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However, it has also been shown that these lower-level processes associated with 

automaticity can be modulated by top-down processes associated with social cognition (Cook 

& Bird, 2011; Wang & Hamilton, 2011). For example, completing a word scramble task 

modulated the accuracy and speed with which imitation was made in a subsequent stimulus 

response compatibility (SRC) protocol (Leighton, Bird, Orsini & Heyes, 2010). When the 

word scramble displayed pro-social words (friend, together, assist), the accuracy of imitation 

and speed of reaction time improved. Conversely, imitation accuracy and reaction time 

deteriorated following anti-social word scrambles (independent, apart, single). It was 

concluded that social primes act as modulatory top-down processes that influence the lower-

level processing of visual information. That is, pro-social cues down-regulate, and anti-social 

cues up-regulate, inhibitory processes operating in the SRC protocol (Cook & Bird, 2011). 

The notion of top-down social processes modulating imitation is the foundation of the 

social top-down response modulation (STORM) model (Lakin & Chartrand, 2003; Wang & 

Hamilton, 2012). STORM suggests that imitation, or lack thereof, can enhance or inhibit a 

given social situation. For example, the “Chameleon effect” (Chartrand & Bargh, 1999) 

suggests that imitating actions or behaviours, such as body language, gestures and postures 

(Chartrand & van Baaren, 2009), can result in increased rapport and feelings of closeness (van 

Baaren, Holland, Kawakami & can Knippenberg, 2004) between people. However, any social 

repercussions are dependent on the imitative behaviours being detected by the partner. Eye 

gaze is considered a critical social cue that conveys important social knowledge, 

understanding and confirms visual attention. As such, they have been extensively examined 

in the context of identifying imitative behaviours (Perrett, Smith, Potter, Mistlin, Head, Milner 

et al., 1985; Pelphrey, Morris & McCarthy, 2005; Wang, Ramsey & Hamilton, 2011;).  
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A recent study combined a classic SRC protocol (Heyes et al., 2005) with an eye gaze 

social prime (Wang & Hamilton, 2011). The imitation task required participants to open or 

close their hand in response to a hand-opening or hand-closing stimuli. Prior to the imitation 

task, a spatially aligned video clip showed a head movement that displayed either a direct 

(pro-social) or averted (anti-social) eye gaze prime. Results showed that observing direct gaze 

improved reaction time of hand movements compared to observing averted gaze. Similarly, 

when the hand and the eye gaze primes were spatially decoupled, such that the hand appeared 

to the side of the face, direct gaze was again the only social prime that enhanced imitation 

(Wang & Hamilton, 2014). These findings suggest that imitation can be modulated by social 

engagement cues and that eye gaze could drive the degree to which an action is imitated.  

Together these findings contribute to the credible interpretation of social context 

directly modulating imitation. It is important to recognise, as has been previously highlighted 

(Roberts, Bennett, Elliott & Hayes, 2015), that the discussion of visuomotor mapping was in 

relation to observing a human hand and subsequent changes in reaction time. This is somewhat 

different from the observation of continuous biological motion and analysis of biological 

motion properties. Therefore, while the research by Wang and Hamilton is well-conducted 

and informative with regard to the social priming of reaction time, it does not provide any 

insight into the underlying processes associated with the imitation of biological motion e.g. 

whether it is a function of lower-level visuomotor processing related to kinematics e.g. being 

topographically similar (Catmur & Heyes, 2011) or top-down modulation based on the goal 

or spatial end-point of the movement (e.g., movement compatibility; Brass, Bekkering & 

Prinz, 2001). 

The present chapter examined social modulation of biological motion coding during 

imitation learning. The same experimental protocol and imitation task as in Chapters Three 
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and Four was used, but with target goals removed from all trials to control for any additional 

top-down goal-related modulatory effects. In addition, a pro-social (direct gaze), anti-social 

(averted gaze) or neutral (no model) human model prime (Wang & Hamilton, 2011) was 

displayed prior to observation of the model stimuli. The model stimuli were also consistent 

with those from the previous chapter; that is, atypical and typical biological motions, as well 

as non-biological constant velocity models. If biological motion is coded during imitation 

learning, it is expected that imitation of the atypical model will be different to that of the 

typical model. Further, if social primes modulate the processing of biological motion, there 

are two additional expectations. First, the coding of biological motion kinematics will be more 

accurate following the pro-social primes and less accurate following the anti-social primes 

(Leighton et al., 2010). Second, in addition to imitation accuracy, social primes have also 

modulated movement variability, as demonstrated during online imitation of congruent and 

incongruent arm movements (Roberts et al., 2015). If this effect is applicable to imitation 

learning, movement variability is likely to be greater following the anti-social primes than the 

neutral or pro-social primes (Roberts et al., 2015). 

 

5.3. Methods 

 

5.3.1. Volunteers 

Nineteen participants (aged 18-21 years) volunteered for the study. All participants 

were right-hand dominant, had normal or corrected-to-normal vision and gave written 

informed consent. The experiment was designed in accordance with the 1964 Declaration of 

Helsinki and approved by the research ethics committee of the host University. 



 112

 

5.3.2. Apparatus and Stimuli 

Participants sat facing a 21-inch CRT monitor (Iiyama Vision Master 505) operating 

with a resolution of 1280 x 1024 pixels and a refresh rate of 85 Hz, located on a table at a 

viewing distance of approximately 555 mm. The monitor was connected to a desktop PC (Dell 

Optiplex GX280), which received input from a graphics tablet and hand-held stylus (Wacom 

Intuos Pro XL). Experimental stimuli were generated on the desktop PC using the COGENT 

toolbox (developed by John Romaya at the Laboratory of Neurobiology at the Wellcome 

Department of Imaging Neuroscience) implemented in MATLAB (Mathworks Inc.). The 

social prime images [120 mm (h) x 160 mm (w)] were integrated into the experimental 

procedure and displayed in the centre of the monitor. 

 

5.3.3. Procedure 

The imitation task required participants to first view an image depicting one of the 

three social primes, then observe and imitate non-human agent models that displayed a single 

horizontal trajectory that originated from a home-position on the left-hand side of the monitor 

and terminated at an end-position on the right-hand side of the monitor (as in Chapters Three 

and Four). The movement amplitude of the models was 200 mm and total duration was 1700 

ms. As in Chapters Two and Four, biological motion was examined by comparing imitation 

of two models that displayed typical or atypical velocity profiles (Hayes et al., 2016; Andrew 

et al., 2016). The typical model (dark grey trace in Figure 5.1D) displayed a natural (Elliott et 

al., 2010) bell-shaped velocity profile with a peak velocity of 0.200 mm/ms that occurred at 

44 % of the movement duration and was designed as a control condition when examining 
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biological motion coding. The atypical model (black trace in Figure 5.1D) was created by the 

same volunteer and displayed atypical velocity profile with a peak velocity of 0.410 mm/ms 

that occurred at 18 % of the movement duration. The method of using a human volunteer to 

generate both models was critical because it ensured the kinematics were biological. In 

addition to two biological motion models, a non-biological constant velocity model (light grey 

trace in Figure 5.1D) was included to act as a stimulus control for any potential biological 

tuning and expectation of the nature of the stimuli. This model also had an amplitude of 200 

mm and duration of 1700ms, thus resulting in a constant velocity of 0.120 mm/ms, and no y-

axis deviation.  

To examine the effect of social primes on imitation learning, an image was displayed 

in the centre of the monitor prior to the imitation task, which displayed either a pro-social (see 

Figure 5.1A), anti-social (see Figure 5.1B) or neutral (see Figure 5.1C) prime. The social 

primes displayed an image of a human head and shoulders in front of a grey background, 

where the salient information pertained to the type of eye gaze the model was engaging in. In 

the pro-social prime, the model engaged in ‘direct gaze’ such that he seemed to be looking 

straight back at the participant and making eye contact. In the anti-social prime, the model 

engaged in ‘averted gaze’ such that the model’s head was turned slightly to one side and was 

looking away from the centre of the image. The neutral prime was designed to control for a 

general effect of social context and as such, only displayed the grey background used in both 

social primes and included no human model. The primes used in the current chapter were 

modified from previous research that had reached publication (Wang et al., 2011a; 2011b; 

Wang & Hamilton, 2012) and had also been used in pilot testing, where the salient features of 

the social primes e.g. the gaze direction of the eyes in the image (direct/ averted), were shown 
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to be obvious and recognisable, without conveying any information regarding what they were 

attempting to modulate. 

Participants first performed 6 familiarisation trials that replicated the task requirements 

of the imitation protocol. The experiment commenced with participants being instructed to 

“observe a model stimulus and then imitate what you see as accurately as possible”. A non-

human agent model located in the home-position then moved with a constant velocity to the 

end-position. The model displayed the exact movement duration and amplitude of the 

experimental models, but the familiarisation phase contained only constant velocity trials. 

Further, the familiarisation phase didn’t display any of the social primes prior to observing 

the model stimulus. Using this model ensured construct validity by preventing participants 

experiencing biological motion or social priming before the imitation trials. Participants were 

not informed about the duration of the movement, or the type of stimuli.  

During the experiment trials, one of the social prime images was displayed for 2000 

ms prior to the beginning of the imitation task, after which there was a 1000 ms delay before 

the onset of the to-be-observed model stimulus. After observing the model, participants 

imitated by moving the stylus on the tablet so that a cursor displayed on the monitor moved 

from the home-position to the perceived end-position as per the model. Following movement 

execution, there was a 4000 ms inter-trial delay before the next social prime and model 

appeared for action-observation. All participants confirmed they understood that there would 

be an image to view prior to observing a model, the instruction on how to observe and imitate 

the trajectory of the model, and the sensorimotor association between the stylus on the 

graphics tablet and the corresponding movement of the cursor on the monitor. Participants 

then performed the imitation protocol that consisted of ten blocks of nine trials. A block 

contained three typical and three atypical biological kinematic models, as well as three 
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constant velocity models. The three trials of each model stimulus were preceded by of one of 

each of the social primes – pro-social, anti-social and neutral – such that each social prime 

was also shown three times in a block of nine trials. Trial order within a block, as well as 

block order, was randomised across participants. The randomised structure reduced 

predictability of upcoming social primes and models and promoted imitation on a trial-by-

trial basis. 
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Figure 5.1. A schematic representation of the experimental design. Prior to observation of the 
stimulus, a social prime was shown depicting pro-social (A), anti-social (B) or neutral prime 
(C). The black outlined rectangle represents a graphics tablet. The white circle displayed on 
the CRT monitor represents the model. The single-segment movement is depicted by the 
arrow (i.e., from the start-position to the end-position). (D) Displacement time-series 
displaying atypical (black trace), typical (dark grey trace) and constant (light grey) velocity 
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models. The black boxes shown in the image were added to conceal the identity of the model 
but were not included in the actual experiment. 

 

5.3.4. Statistical Analysis 

To quantify accuracy of biological motion imitation, movement kinematics were 

extracted from the x-axis movement exhibited by the participants on each trial. Initially, the 

start was identified as the moment the cursor moved beyond the perimeter of the home-

position, while the end was identified when the participant clicked the lower-button on the 

stylus. The resulting position data was filtered using a low pass 4th order autoregressive filter 

with an 8 Hz cut-off. The filtered data were then differentiated using a 3-point central 

difference algorithm to obtain velocity. A MATLAB routine then displayed the velocity 

profile for each trial, such that an experimenter could manually identify the start, peak, and 

end of the movement on the velocity profile. Using these points as a guide, the MATLAB 

routine identified the start of the movement as the moment when velocity was > 0.003 mm/ms, 

and the end when velocity was < 0.003 mm/ms. Peak velocity and percentage-time-to-peak-

velocity from each trial was used to calculate intra-participant means (10 trials per condition) 

for each independent variable (Model – atypical, typical, constant velocity x Social Prime - 

direct gaze, averted gaze, neutral). The kinematic variables (percentage-time-to-peak-

velocity, peak velocity and movement time) were selected as they most appropriately 

represent the structural differences contained within the atypical and typical biological motion 

models and have been used in previously published research, thus acknowledging them as 

suitable kinematic markers (Hayes et al., 2014; Andrew et al., 2016). 
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5.4. Results 

 

5.4.1. Imitation 

5.4.1.1. Movement Time 

 A main effect of stimulus [F(2, 40) = 25.05, p < 0.001] for movement time indicated 

that imitation was significantly shorter when imitating atypical (M = 2591 ms; SD = 463 ms) 

compared to the typical (M = 2677 ms; SD = 468 ms) and constant (M = 3050 ms; SD = 445 

ms) velocity models (ps < 0.05). Movement time was also significantly shorter when imitating 

the typical compared with the constant (p < 0.05) velocity model. As seen in Figure 5.2A, 

there was no main effect of social prime [F(2, 40) = 0.56, p > 0.05] and there was no significant 

interaction between the primes and model stimuli [F(4, 80) = 0.78, p > 0.05]. 

 

5.4.1.2. Peak Velocity 

 As displayed in Figure 5.2B, a main effect of stimulus [F(2, 40) = 27.76, p < 0.001] 

for peak velocity showed that magnitude was significantly greater when imitating atypical (M 

= 0.201 mm/ms; SD = 0.036 mm/ms) compared to typical (M = 0.167 mm/ms; SD = 0.036 

mm/ms) and constant (M = 0.14 mm/ms; SD = 0.034 mm/ms) velocity kinematics. A social 

prime main effect [F(2, 40) = 4.32, p < 0.05] indicated magnitude of peak velocity was greater 

after having viewed the anti-social prime (M = 0.172 mm/ms; SD =0.036 mm/ms ), compared 

to the pro-social (M = 0.167 mm/ms; SD = 0.041 mm/ms) and neutral (M = 0.168 mm/ms; 

SD = 0.029 mm/ms) primes (ps < 0.05). There was no interaction between stimulus and social 

prime [F(4, 80) = 0.29, p > 0.05,. 
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5.4.1.3. Percentage-Time-to-Peak-Velocity 

 As seen in Figure 5.2C, a main effect of stimulus [F(2, 40) = 22.76, p < 0.001] for 

percentage-time-to-peak-velocity showed that peak velocity occurred significantly earlier 

when imitating the atypical (M = 31%; SD = 15%) compared to typical (39%; SD = 14%) and 

constant (43%; SD = 15%) velocity models (ps < 0.05). Peak velocity also occurred 

significantly earlier when imitating the typical compared to the constant velocity model (ps < 

0.05). There was no main effect of social prime [F(2, 40) = 0.79, p > 0.05] and there was no 

significant interaction between the stimuli and social primes [F(4, 80) = 1.14, p > 0.05]. 
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Figure 5.2. Mean imitation data showing movement time (A), peak velocity (B) and percentage-time-to-peak-velocity (C) presented as a function 
of model and social prime (pro-social = white bar; anti-social = light grey bar; neutral = dark grey bar). Error bars (±) display the standard error 
mean.
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5.4.2. Variability 

5.4.2.1. Movement Time 

 A main effect of social prime [F(2, 40) = 9.76, p < 0.001] indicated greater variability 

of movement time when observing the neutral (M =  517 ms) compared with the pro-social 

(M = 419 ms) and anti-social (M = 441 ms) primes (ps < 0.05). As seen in Figure 5.3A, there 

was no main effect of stimulus [F(2, 40) = 0.51, p > 0.05] and there was no significant 

interaction between the primes and model stimuli  [F(4, 80) = 0.93, p > 0.05]. 

 

 

5.4.2.2. Peak Velocity 

 A main effect of social prime [F(2, 40) = 5.49, p < 0.05] indicated less variability of 

peak velocity when observing the neutral (M = 0.029 mm/ms) compared with the pro-social 

(M = 0.037 mm/ms) and anti-social (M = 0.035 mm/ms) primes (ps < 0.05). As seen in Figure 

5.3B, there was no main effect of stimulus [F(2, 40) = 0.67, p > 0.05] and no significant 

interaction between the primes and the model stimuli [F(4, 80) = 0.3, p > 0.05]. 

 

5.4.2.3. Percentage-Time-to-Peak-Velocity 

 As seen in Figure 5.3C, there was no main effect of stimulus [F(2, 40) = 2.27, p > 

0.05] and no significant interaction between the primes and the stimuli [F(4, 80) = 0.32, p > 

0.05]. However, a main effect of social prime [F(2, 40) = 6.75, p < 0.05] indicated greater 
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variability in percentage-time-to-peak-velocity when observing neutral (17%) compared with 

the pro-social (12%) and anti-social (15%) primes (ps < 0.05). 
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Figure 5.3. Mean variability data showing movement time (A), peak velocity (B) and percentage-time-to-peak-velocity (C) presented as a 
function social prime (pro-social = white bar; anti-social = light grey bar; neutral = dark grey bar). 
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5.5. Discussion 

 

 The primary aim of the present study was to examine whether and how social primes 

modulate the coding of biological motion kinematics during imitation learning. By replicating 

a previously studied imitation learning protocol (Hayes et al., 2014; Hayes et al., 2016), the 

first expectation was that imitation of the atypical model would be different to that of the 

typical model. The second expectation was that observing pro-social and anti-social primes 

prior to the imitation task would both improve (increase accuracy and decrease variability) 

and reduce (decrease accuracy and increase variability) imitative performance, respectively. 

 Consistent with previous research (Hayes et al., 2016; 2014; 2010), the results showed 

that biological motion kinematics were coded during imitation learning. Peak velocity was 

greater and percentage-time-to-peak-velocity occurred earlier when imitating the atypical, 

compared with the typical biological motion model (see Figure 5.2). This kinematics are 

different to those that would be expected given the natural constraints of the task (e.g. typical 

kinematics) and therefore replicated the imitation findings from previous chapters. Based on 

the methodologies used in the previous chapters, specifically Chapter Two, the coding of 

atypical biological motion in the present study likely demonstrated lower-level processing of 

biological motion (Iacoboni, 1999; Catmur & Heyes, 2011). It was also found that the 

modulatory effect of social primes occurred at two levels: imitation accuracy and imitation 

variability. In relation to imitation accuracy, peak velocity was more accurate following 

observation of the anti-social prime; relative to imitation variability, movement time and 

percentage-time-to-peak-velocity became less variable after observing the pro- and anti-social 

primes, compared with the neutral prime. 
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 The finding of increased imitation effects following observation of an anti-social 

prime contrast the social top-down modulation effects typically reported in social imitation 

studies (Cook & Bird, 2011; Leighton et al., 2010; Wang et al., 2011a). Behavioural research 

suggests that increased imitation effects often follow pro-social priming, which activates 

social motives designed to affiliate and assimilate (Lakin & Chartrand, 2003; Wang & 

Hamilton, 2012; Wang & Hamilton, 2013). As a result, these positive interpersonal behaviours 

exert top-down control that up-regulates the lower-level visuomotor processing associated 

with the mirror system to improve imitation (Hogeveen & Obhi, 2012; Wang & Hamilton, 

2014). However, there are instances where anti-social up-regulation of imitation have been 

reported (Wang & Hamilton, 2013; Roberts et al., 2016). These effects corroborate the active-

self theory that operates relative to how primes are processed in relation to the ‘self’; that is, 

first-person pro-social and third-person anti-social primes up-regulate and improve imitation, 

whereas first-person anti-social and third person pro-social down-regulate and reduce 

imitation effects (Wang & Hamilton, 2013). Therefore, the finding of increased imitation 

accuracy of peak velocity following anti-social priming in the present study could be 

interpreted as evidence of the active-self theory, where anti-social third-person priming has 

up-regulated imitative processes to produce a more accurate representation of peak velocity. 

Further, this finding demonstrates evidence that the anti-social prime used in the present 

chapter has acted as a regulator of the underlying processes involved in imitation learning.  

The second and perhaps more important social modulation reported in the present 

chapter concerns decreased movement variability (see Figure 5.3), specifically of movement 

time and percentage-time-to-peak-velocity, following observation of pro- and anti-social 

primes. The significance of this findings lies in movement variability not having been 

previously reported in imitation learning. Variability refers to inherent noise in the motor 
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system during motor execution and is stochastic within typical movement or imitation thereof 

(Elliott, Hansen, Grierson, Lyons, Bennett & Hayes, 2010). However, when amplitude 

remains constant but the force involved in motor execution increases, so in turn does 

variability (Elliott et al., 2010). As, both biological models displayed greater velocities than 

the constant velocity model, it could be expected to result in greater movement variability. 

However, results showed that following the observation of social primes, both models were 

imitated with less variability, compared with the neutral prime. Therefore, it could be 

suggested the social primes modulated coding of biological motion such the fidelity of the 

representations formed during visuomotor processing were more refined, thus resulting in 

greater control and proficiency during imitation of the models.  

As previously discussed, improved imitation following social primes is suggested to 

be a function of engaging specifically with positive social primes e.g. direct gaze (Wang et 

al., 2011) or positive word scramble (Leighton et al., 2010). Neurophysiological research has 

shown that observation or completion of a pro-social prime resonates with and activates 

regions of the brain associated with mirror neurons (e.g. mPFC) and in essence, ‘primes’ these 

regions for the ensuing stimulus (Brass et al., 2001; 2005). With these mirror regions primed, 

processing of the visual stimulus is upregulated, such that the visual and motor representations 

are more accurate and thus, imitation improves. Equally, negative social primes have the 

inverse effect and down-regulate the processing of visual information, such that imitation 

becomes less accurate. These effects have most commonly been demonstrated in automatic 

imitation/ mimicry by measuring reaction times (Cook & Bird, 2011; Wang et al., 2011a), and 

online imitation (Roberts et al., 2015) protocols by measuring imitation accuracy and 

variability. However, the findings here suggest it is the presence of a social prime per se that 

modulated imitation, rather than the explicit nature (e.g. pro-social/ anti-social) of the social 
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prime. These data demonstrate that although the social primes worked in relation to 

modulating imitation, the interpretation of the primes has resulted in the effects discussed in 

the current study.  

 These effects could be associated with the connection between the biological nature 

of the social primes the observed stimuli. While the atypical and typical models displayed 

different kinematic structures, they both displayed biological motion kinematics. Similarly, 

both the pro- and anti-social primes displayed different eye gazes but both were portrayed by 

a human model. Conversely, the neutral prime did not display any biological features. It has 

been shown that the neural mechanisms involved in eye gaze priming correspond with regions 

of the brain associated with detection of biological motion, specifically the STS, IFG and 

medial prefrontal cortex (mPFC), within the mirror mechanism (Wang et al., 2011b). 

Moreover, it was suggested that the enhanced connectivity between STS and mPFC following 

pro-social eye gaze priming implied it was these regions that modulated the sensory input to 

the mirror mechanism during observation. Therefore, in the context of the present results, it 

follows that a biological social prime would upregulate the detection and coding of biological 

motion such that the representations generated were more accurate, as demonstrated by 

imitation being less variable. 

  These results appear to add to the current understanding of social modulation during 

imitation as they are novel in the context of imitation learning. Previous research has largely 

examined social primes during automatic imitation, a process whereby the imitation is 

involuntary and relatively independent of intentions (Heyes, 2011). Instead, these results 

demonstrate that during the intentional acquisition of a novel movement that requires complex 

processing, social primes still modulate features of biological motion. While imitation 

learning and automatic imitation engage similar neural circuitry (Iacoboni & Dapretto, 2006), 
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the data in the current study suggests they may also share the way in which they are influenced 

by social primes. Moreover, these effects of social modulation corroborate early psychological 

research examining observational learning, which showed task judgements and work 

productivity have been shown to improve because of positive social context (Weiss, 1977; 

Weiss & Shaw, 1979). 

 In conclusion, the results demonstrated that biological motion kinematics were coded 

during imitation learning and that social primes involving eye gaze modulated these processes. 

Based on previous research (Hayes et al., 2016; 2014), biological motion coding was likely a 

function of lower-level visuomotor processing, where the specific kinematics properties of the 

biological motion models were represented for motor execution. Moreover, this processing 

was influenced by social top-down modulation (Wang & Hamilton, 2012), such that the 

biological nature of the social primes resonated with the biological nature of the model stimuli 

and resulted in decreased movement variability during motor execution. 
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Chapter 6: Epilogue 
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6.1. Aim of the Chapter 

 

The epilogue will present and discuss the key findings from all experimental chapters 

in the program of work. There will be a critical evaluation in accordance with current literature 

on imitation and the lower-level processing of biological motion, as well as top-down factors 

that modulate these processes. Future considerations and translational research will also be 

discussed with the view to suggesting practical implications. 

In short, the present thesis has used a novel protocol that has developed existing 

methodologies to more accurately examine biological motion coding during imitation 

learning. Subsequently, the experimental chapters contained within this thesis have valid 

designs relative to the overall aim of the thesis and therefore extend the current understanding 

of biological motion coding during imitation learning. To that end, Chapter Two is considered 

the most important chapter of the thesis as it robustly demonstrates that spatial compatibility 

is not required to imitate biological motion kinematics; rather, the spatially incompatible 

imitation of atypical biological motion is the first example in imitation learning literature of 

discrete kinematic markers being imitated through lower-level processes. In knowing that 

biological motion kinematics are coded through lower-level processes, Chapters Three and 

Four extend the current literature by demonstrating how top-down modulations (end-state-

targets and visual attention) associated with higher-order cognitive processes operate 

cooperatively with lower-level processes during the processing of visual information. Finally, 

Chapter Five provides a further insight into top-down modulation associated with social 

context and imitation, but more importantly is the origin of a broader line of research designed 

to examine imitation and biological motion coding in people with ASC. The finding of social 
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modulation discussed in the present thesis extends the current understanding in imitation 

learning literature, but due to data collection involving neurotypicals only, will also act as a 

control condition or baseline for future research centred around people with autism.  

 

6.2. Rationale for examining biological motion using an atypical biological motion 

model 

 

 While there is strong evidence of biological motion coding during automatic imitation 

(Brass et al., 2000; Sturmer et al., 2000; Heyes et al., 2005), online imitation (Kilner et al., 

2003; Kilner et al., 2007; Roberts et al., 2015) and the underpinning neuropsychological 

processes (Iacoboni, 1999; Rizzolatti & Craighero, 2004; Press et al., 2008), it is still unclear 

whether biological motion is coded during imitation learning. At present, only a small amount 

of research has investigated biological motion coding during imitation learning, where 

imitation has been measured in relation to how accurately movement kinematics are 

reproduced (Hayes et al., 2009; Wild et al., 2010). For example, Wild et al. (2010) 

demonstrated that observation of “fast” and “slow” hand movements resulted in imitation that 

was relative to the respective model and thus, the kinematics of the movement were suggested 

to be coded. Although observation of the “fast” and “slow” models produced differences in 

the imitation of movement speed, the biological motion kinematics contained within each 

model were not manipulated directly. For example, while the “fast” and “slow” hand 

movements used by Wild et al. (2010) displayed different speeds, each of the model 

kinematics were not manipulated and thus, displayed natural, bell-shaped velocity profiles 

that were scaled by speed. Therefore, the differences in imitation do not confirm whether the 
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findings are due to coding of biological motion kinematics or a reproduction of generic 

differences in the movement speed differences displayed by the models. In this instance, it 

could be argued that imitation of general movement speed could be a function of strategy 

(Chong et al., 2009; Eliasmith, Stewart, Choo, Bekolay, DeWolf, Tang et al., 2012; Grezes, 

Costes & Decety, 1998; Iacoboni et al., 2005; rather than the coding of kinematics (Roberts 

et al., 2014), where pre-existing motor representations are reconfigured and scaled to produce 

movements that are similar to the observed visual information (Buccino et al., 2004; Roberts 

et al., 2014; Vogt et al., 2007).  Therefore, in the current thesis a novel protocol was developed 

to create an imitation task that manipulated the structure of the biological stimuli to directly 

examine biological motion coding. Within each of the experimental chapters, various 

combinations of biological and non-biological motion models were examined to establish 

whether the biological properties of the stimuli are coded and represented during imitation. 

Chapters Three, Four and Five included a constant velocity model, which was 

designed to display uniform velocity of 0.1 mm/ms from the onset of movement. These 

kinematic features make it physically impossible to be imitated through human reproduction 

because of the constraints on human movement imposed by the neuro-muscular system 

(Abend et al., 1982; Elliot et al., 2001). As accurate imitation of the constant velocity 

kinematics was unachievable, it was anticipated that participants would recruit a pre-existing 

motor response and thus exhibit time to peak velocity that was similar to typical aiming 

movements (Hayes et al., 2014; Roberts et al., 2014). Therefore, the primary purpose of the 

constant velocity model in the current thesis was to act as a control condition when comparing 

imitation of the typical biological and constant velocity models as it allowed a direct 

comparison between imitation of biological and non-biological motion. Having a control 

condition for biological motion coding is important as imitation has been shown to be more 
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accurate following observation of biological, compared to non-biological motion (Brass et al., 

2001; Kilner et al., 2003; Press et al., 2005). 

 Typical biological motion was included in Chapters Two, Four and Five and displayed 

human movement that represented a ‘natural’ trajectory. ‘Natural’ trajectory refers to the bell-

shaped velocity profile that is normally produced during human movement and is dependent 

on the time, and displacement (e.g., movement amplitude) of a trajectory, peak velocity 

generally occurs at between 40%-60% of the movement time (Elliott et al., 2001). In the 

present thesis, a number of models were created, all with a movement time of 1700 ms and 

displacement of 406 mm criteria. When recording the typical model, start and end targets were 

visible to ensure trial displacement was consistent and the typical model was performed until 

the timing goal of 1700 ms was achieved, which meant that the kinematic structure for the 

typical model reflected a natural profile based on a 406 mm movement and a 1700 ms 

movement time. As a result, the typical model had a peak velocity of 0.2 mm/ms that, in line 

with ‘natural’ kinematics, occurred at 44% of the movement time.  

The inclusion of typical biological motion was important to examine any effects of 

biological tuning; that is, the perception-action system discriminates between biological and 

non-biological motion, and produces a heightened neural response following detection of 

biological motion (Tai et al., 2004). In line with this suggestion, the imitation of typical 

biological motion should be more accurate than copying non-biological constant velocity 

based on the biological nature of the stimuli. While the perception-action system is suggested 

to be more sensitive to biological motion (Castiello, Lusher, Mari & Edwards, 2002; Longo 

& Bertenthal, 2009; Liepelt & Brass, 2010), it has been recognised that the reproduction of 

typical kinematics could be achieved by rescaling or reproducing existing sensorimotor 

representations (Hayes et al., 2009; Campione & Gentilucci, 2011) and thus, imitation of the 
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typical biological motion model does not directly imply biological motion coding. Therefore, 

all four experimental chapters contained novel, atypical biological motion models to more 

specifically examine biological motion coding. These atypical models still displayed 

biological motion, but contained kinematic structures that were not representative of existing 

sensorimotor representations and deviated from the ‘natural’ constraints of the task (Roberts, 

Bennett, Elliott & Hayes, 2012). By not representing existing sensorimotor representations, 

coding of the underlying movement kinematics contained within the stimuli was required to 

reproduce the atypical biological motion. Chapters Two, Four and Five examined the 

imitation of an atypical biological motion model in comparison primarily with a typical 

biological motion model to examine whether atypical kinematics were coded during imitation 

learning. The atypical model in these chapters had a peak velocity of 0.4 mm/ms that occurred 

at 18% of the movement time. Chapter Three, rather than comparing atypical to typical 

biological motion, examined imitation of two atypical biological motion models that had more 

similar kinematic structures (peak velocity occurred at 17% and 26% respectively), to further 

explore the coding of atypical biological motion kinematics. Each atypical model displayed 

peak velocities that were skewed towards the beginning of the movement and importantly, 

occurred outside the boundaries of a ‘natural’ trajectory. 

While each of the atypical models contains specific kinematic features that are highly 

unlikely to be imitated by chance, it could be argued that the discernible kinematic differences 

between the atypical and typical biological motion models in Chapters Two, Four and Five 

mean the issues previously raised with imitation of “fast” and “slow” movements (Wild et al., 

2010) may not have been alleviated. It was likely that coding of the model stimuli was 

localised to the respective kinematics as Chapter Two controlled for spatial compatibility, 

which confirmed that imitation was not a function of reproducing the spatial coordinates of 



 135

peak velocity e.g. reproducing peak velocity at the left side of the monitor. However, it was 

still unclear whether participants were coding the specific kinematic structure underpinning 

the atypical model (e.g. imitation that was representative of a peak velocity that occurred at 

18% of the movement) or just recognising a difference in acceleration, as no post-

experimental questionnaire was administered to gauge the response to the imitation task. 

Therefore, instead of comparing atypical and typical biological motion models, Chapter Three 

compared two atypical models – atypical17 and atypical 26 – that both had a peak velocity 

skewed towards the beginning of the movement but contained slightly different kinematic 

profiles. Atypical17 had a peak velocity of 0.37 mm/ms that occurred at 17% of the movement 

time. In comparison, atypical26 had a peak velocity of 0.24 mm/ms that occurred at 26% of 

the movement. Here then, imitative differences between these models could not occur without 

their specific kinematic features embedded within the observed biological motion being coded 

for motor execution during imitation.
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Figure 6.1. A summary of the structure, purpose, flow and key findings from the four experimental chapters (Experiments 1-4). 
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6.3. Motion Coding 

 

6.3.1. Constant Velocity, Typical, and Atypical Motion  

 The data reported in the current thesis confirmed the coding of biological motion 

during imitation learning. Imitation data from Chapters Two, Four and Five demonstrates 

imitation of atypical biological motion that was not only different to that of typical biological 

motion, but was also scaled relative to the respective models. Further, imitation data from 

Chapters Four and Five showed imitation of typical biological motion that was different to 

that of non-biological constant velocity.  

 In Chapters Four and Five, where imitation of typical biological motion and non-

biological constant velocity were compared, results consistently showed differences in 

imitation of the two models. For example, results from Chapter Four showed when imitating 

typical biological motion, kinematics was scaled to those of the model, where magnitude of 

peak velocity was 0.12 mm/ms and occurred at 39% of the movement time. In contrast, 

imitation of the constant velocity model produced a peak velocity of 0.1 mm/ms, which 

occurred at 44% of the movement time. While statistically different to the typical model, the 

percentage-time-to-peak-velocity during reproduction of constant velocity indicates rather 

than coding the explicit kinematics of the constant velocity model, imitation represented a 

movement that had been recruited from an existing motor repertoire (e.g. natural kinematics) 

as peak velocity occurred between the 40-60% window typically associated with a generic 

bell-shaped velocity profile (Elliott et al., 2001). Further, although the imitation data suggests 

that the general representation of the typical biological motion model was similar to the 

underlying kinematics, it is unclear whether imitation reflected coding of the biological 
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motion kinematics or reproduction of a non-specific movement pattern based on the perceived 

movement time and displacement during observation of the models. For example, the lacking 

relative accuracy when imitating the typical biological motion model may have been a 

function of the number of practice trials; that is, 84 trials may have been sufficient to form a 

general representation of the typical biological motion model, but insufficient to refine the 

precise kinematics of the typical biological motion model such that they were representative 

of the underlying movement features during imitation trials. The differences in imitation of 

typical biological motion and constant velocity are consistent with previous research that has 

shown differences in imitation following observation of biological, compared with non-

biological motion (Brass et al., 2001; Kilner et al., 2003; Press et al., 2005). In line with these 

findings, it could be suggested that the differences in imitation between typical and constant 

velocity models is a result of the biological nature of the typical model inducing biological 

tuning (Press, 2011) within the perception-action system such that larger visuomotor 

resonance (Becchio & Castiello, 2012) of the typical biological motion kinematics was 

produced (Longo et al., 2008), compared to non-biological constant velocity kinematics (Press 

et al., 2011). Greater visuomotor resonance following observation of human, compared to 

non-human, movement has been demonstrated during congruent and incongruent online 

imitation of horizontal and vertical arm movements (Kilner et al., 2003; Roberts et al., 2015). 

For example, imitation data showed that when making orthogonal arm movements to those 

observed, interference (or motor contagion; Blakemore & Frith, 2005) was greater when 

observing a human arm compared with a robotic arm (Kilner et al., 2003). Relative to the 

current thesis, the difference in imitation of typical biological motion and non-biological 

constant velocity shown in Chapters Four and Five extend these findings into imitation 

learning research, as well as corroborate the suggestion that there is a difference in information 
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processing based on the biological nature of the observed stimuli (Kilner et al., 2007; 

Vangeneugden, Pollick & Vogels, 2009). 

 Biological tuning is supported by neurophysiological research that has shown that 

observation of biological motion leads to greater neural activation in regions of the brain 

associated with mirror neurons, compared to observation of non-biological motion (Tai et al., 

2004; Costantini, Galati, Ferretti, Caulo, Tartaro, Romani et al.., 2005; Oberman, McCleery, 

Ramachandran & Pineda, 2007; Engel, Burke, Fiehler, Bien & Rosier, 2008; Miura, Sugiura, 

Takahashi, Sassa, Miyamoto, Sato et al., 2010). For example, when observing a hand making 

a grasping action towards a cylindrical object, regions of the left premotor cortex in humans 

show stronger activations when the grasping action is performed by a human model displaying 

biological motion, compared to when the action is performed by a robot displaying non-

biological motion (Tai et al., 2004). Greater activation of the premotor cortex following 

observation of biological, compared to non-biological motion hand actions demonstrates 

biological tuning of the premotor cortex, which extended neuroimaging research that had 

shown premotor activation during observation of hand and arm movements (Decety, Grezes, 

Costes, Perani, Jeannerod, Procyk et al., 1997; Grezes, Armony, Rowe & Passingham, 2003; 

Hamzei, Rijntjes, Dettmers, Glauche, Weiller, & Buchel, 2003), as well as 

electrophysiological recordings from monkey showing mirror neuron containment within 

premotor cortex (Di Pellegrino, Fadiga, Fogassi, Gallese & Rizzolatti, 1992; Gallese et al., 

1996). Therefore, the biological motion coding demonstrated in the current thesis could be 

interpreted as the detection of typical biological motion activating the biologically tuned 

premotor cortex during observation, such that mirror neurons contained within the premotor 

cortex mapped the visual representation of biological motion formed through observation onto 

a motor representation that incorporated temporal coding of the movement to be used when 
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imitating the typical biological motion kinematics (Gangitano et al., 2001). Moreover, the 

reproduction of existing sensorimotor representations rather than the underlying kinematics 

following observation of the constant velocity model is consistent with the suggestion that 

non-biological motion induces less activation of premotor cortex and the mirror neurons 

contained within it (Tai et al., 2004). 

 Although a difference between biological and non-biological motion coding had been 

established, these findings do not examine whether the underlying kinematics of biological 

motion are coded during imitation learning. Therefore, Chapters Two, Four and Five included 

an atypical biological motion model to examine whether observing a model with kinematics 

different to those of the constraints of the task and not already part of an existing motor 

repertoire would result in differences in imitation from the typical model. Results across all 

three chapters consistently showed that imitation of the atypical model produced a greater 

magnitude of peak velocity that occurred earlier in the movement when compared with 

imitation of the typical model. For example, Chapter Two showed that when imitating the 

atypical model, peak velocity was 0.28 mm/ms and occurred at 32% of the movement time. 

Conversely, imitation of the typical model produced peak velocity of 0.19 mm/ms, which 

occurred at 45% of the movement. This is consistent with previous research that has shown 

learning and imitation of novel atypical biological motion kinematics following periods of 

observational practice (Hayes et al., 2014) and although the present thesis has not measured 

observational practice, it has been suggested that similar processes are recruited during 

observation practice and imitation learning (Vogt et al., 2007; Heyes, 2011). 

More specifically, biological motion kinematics have been examined during imitation 

learning through observation of hand movements that are either “fast”, “medium” or “slow” 

(Wild et al., 2010; Stewart, McIntosh & Williams, 2013). Results showed that observation of 
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faster hand movements elicited faster imitation attempts compared with observation of slower 

hand movements. These results are corroborated by the imitation data shown in Chapters Two, 

Four and Five, which show imitation that is scaled relative to the respective models e.g. 

observation of the atypical model resulted in a peak velocity that had greater magnitude and 

occurred earlier in the movement when compared to the typical or constant velocity models. 

However, the models in the current thesis were manipulated to display explicit kinematic 

structures (e.g. atypical model had a peak velocity of 0.2 mm/ms that occurred at 18% of the 

movement), as opposed to non-specific movement speeds (e.g., Wild et al., 2010) and more 

importantly, those kinematic features were used to examine imitation accuracy. Therefore, by 

reproducing peak velocity and percentage-time-to-peak-velocity that reflected those of 

atypical biological motion, it is likely that participants were coding the underlying kinematics 

contained within the atypical model during observation that formed the representation used 

for imitation.  

To confirm what features of the atypical model were being represented during 

imitation learning, further examination of the atypical biological motion was required. 

Therefore, Chapter Three included a second atypical biological motion model, which allowed 

for the direct comparison of two novel, atypical kinematic models – atypical17 and atypical26. 

By using two different atypical models, neither can be imitated simply by reproducing an 

existing motor repertoire, as with the typical model, and thus differences in imitation of 

atypical17 and atypical26 would confirm the coding of the underlying atypical biological 

motion kinematics. If imitation of atypical biological motion, relative to the typical biological 

motion, is based on detecting a faster acceleration or different movement speed, it would be 

expected that imitation of atypical17 and atypical26 produced similar kinematics during 

imitation. as the differences in acceleration between the models was lower than the 20-25% 
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required to perceptually discriminate the changes in velocity (Babler & Dannemiller, 1993; 

Brouwer, Brenner & Smeets, 2002). Results showed that imitation of the atypical17 model 

produced a peak velocity of 0.24 mm/ms that occurred at 22% of the movement time, whereas 

imitation of the atypical26 model produced a peak velocity of 0.19 mm/ms that occurred at 

29% of the movement time. Here then, rather than showing differences in imitation of two 

structurally dissimilar models (atypical and typical), the imitation data from Chapter Three 

shows that imitation of two comparable kinematic structures embedded within separate 

atypical biological motion models are scaled to the respective models. Scaled imitation of 

both atypical models could not have occurred without the kinematic features of both 

atypical17 and atypical26 being coded during observation, such that the motor representations 

formed for imitation featured the peak velocity and percentage-time-to-peak-velocity 

information of each model respectively. Taken together, these data suggest that biological 

motion is coded during imitation learning and importantly, biological motion coding is a 

function of the kinematic features of the observed stimuli being represented for motor 

execution.   

 

6.3.2. How biological motion is coded? 

 As discussed above, the primary findings from Chapters Three, Four and Five suggest 

that biological motion is coded during imitation learning, but they do not explain how this 

coding occurs. The process of imitation is a product of reproducing the underlying kinematics 

of an action through lower-level processes (Iacoboni et al., 2001; Rizzolatti et al., 2001; 

Buccino et al., 2004), but can often be attributed to the reproduction of the spatial properties 

of the observed movement, termed spatial compatibility (Brass et al., 2000; Sturmer et al., 
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2000; Catmur & Heyes, 2011). When imitation engages implicit lower-level processes, direct 

associations are formed between the observed action and the to-be-executed action (Iacoboni, 

1999; Roberts et al., 2012), such that the visual information provides a visual description that 

is used for subsequent action coding (Heyes & Ray, 2000). Conversely, when imitation is a 

product of spatial compatibility, top-down modulatory processes related to spatial and 

anatomical compatibility are engaged that drive the process of imitation (Heyes, 2011; 

Roberts et al., 2012). In the context of the current thesis, if imitation was a function of spatial 

compatibility it would be spatial positioning of the cursor relative to the environment (e.g. the 

point at which peak velocity occurred on the monitor), rather than the way in which the cursor 

is moving (e.g. the kinematics of the models). The ability to differentiate them is therefore 

important to correctly understand the nature of imitation.  

Therefore, Chapter Two controlled for imitation effects being interpreted as the 

reproduction of the spatial coordinates at which peak velocity occurred by requiring imitation 

of both spatially compatible and incompatible model stimuli. This was experimentally 

controlled by spatially decoupling observation and imitation trials such that spatially 

incompatible imitation trials required a visual transformation. Reproduction of kinematics that 

were closer to that of the model stimuli during spatially compatible, compared to incompatible 

trials, would suggest that imitation was a function of reproducing the spatial properties of the 

observed movement; however, similar reproduction of kinematics during both spatially 

compatible and incompatible trials would suggest the kinematics were coded through lower-

level visuomotor processes. In addition to showing that observation of the atypical model 

produced greater magnitude of peak velocity that occurred earlier in the movement compared 

to imitation of the typical model, the imitation data from Chapter Two showed these imitation 

effects were not modulated by the spatial compatibility between the observed and executed 
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movements. That is, when the stimuli were observed moving in a different direction (right to 

left) or orthogonal plane (top to bottom, bottom to top) to the execution requirements (left to 

right), imitation of both the atypical and typical models were scaled to the respective models. 

For example, after observing the atypical model move from left to right, spatially compatible 

imitation produced average peak velocity of 0.29 mm/ms that occurred at 32% of the 

movement; after observing the atypical model move from top to bottom, spatially 

incompatible imitation produced peak velocity of 0.29 mm/ms that occurred at 31% of the 

movement.  

By controlling for the spatial compatibility between the observed and executed 

movements, spatially incompatible imitation is unlikely to be a function of reproducing the 

spatial coordinates of the visual representation (e.g. movement from right to left where the 

peak velocity occurs towards the right side of the movement) based on the visuomotor 

situation (Hommel & Lippa, 1995) and instead, isolates the coding of visual stimuli to lower-

level visuomotor processes (Press et al., 2008). Therefore, similar imitation of spatially 

compatible and incompatible biological motion models shown in Chapter Two demonstrates 

that the coding of atypical biological motion is likely to be a function of lower-level 

visuomotor processing. The lower-level coding of kinematics suggests the perception-action 

system maps specific characteristics (e.g. movement kinematics) of the observed stimulus 

onto a sensorimotor representation that is directly activated during imitation trials (Buxbaum 

& Kalenine, 2010; Cisek & Kalaska, 2010; Heyes, 2011), which may indicate the visual 

description produced during observation incorporates temporal coding into the representation 

(Gangitano et al., 2001). Temporal coding has been demonstrated by measuring MEPs in the 

finger that were induced by TMS during observation of a reaching-grasping action, where the 

amplitude of MEPs was modulated by the amount of observed finger aperture; that is, response 
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facilitation was tuned relative to specific kinematic landmarks contained within the observed 

movement.  

Moreover, in demonstrating similar imitation during spatially compatible and 

incompatible trials, the findings in Chapter Two corroborate previous automatic imitation 

research that suggests imitation is not a function of spatial compatibility (Brass et al., 2001; 

Bertenthal et al., 2006; Catmur & Heyes, 2011; Heyes et al., 2005). For example, reaction 

times were similar when imitating a finger raising or tapping movement that was observed 

either in the same orientation as required for imitation (spatially compatible) or when the hand 

was flipped and presented upside-down (spatially incompatible). Flipping the observed finger 

tapping or raising such that they were observed upside-down decoupled the direction of the 

movement required for imitation (e.g. finger tapping when flipped had the same spatial 

compatibility as finger lifting). Likewise, reaction times have been shown to be similar when 

observing hand grasping and opening movements where the hand was observed in the same 

(spatially compatible) or orthogonal (spatially incompatible) orientations, where the stimulus 

hand was observed vertically and imitation hand was horizontal, to that which was required 

for imitation (Heyes et al., 2005). Observing the hand opening or closing in an orthogonal 

plane decoupled both the direction of movement and the plane in which the stimulus was 

observed (e.g. horizontal finger tapping produces a downward movement; orthogonal finger 

tapping produces a right or left movement), such that the observed and executed movements 

did not have the same spatial alignment or orientation.   

Controlling for spatial compatibility by requiring imitation of observed stimuli that 

were both spatially compatible (left to right), as well as incompatible in both the direction 

(right to left) and plane (top to bottom and bottom to top) of the movement, therefore suggests 

that imitation of the biological motion models is based on the extraction of the kinematic 
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properties that define each model –  for example, magnitude and timing of peak velocity. The 

extraction of these kinematics could be facilitated by the tracking of the model during 

observation, as visual attention has been demonstrated to be a crucial feature of biological 

motion coding through use of point-light displays (Johansson, 1973; Bidet-Ildei, Orliaguet, 

Sokolov & Pavlova, 2006) and selective attention (Hayes et al., 2014; Longo & Bertenthal, 

2009). Therefore, Chapter Four controlled for visual attention by recording eye movements 

during imitation. As seen in Figure 4.8, the eye movement velocity data is similar to the 

kinematic structures of each of the model stimuli respectively. For example, observing typical 

biological motion results in eye movement behaviour that produced the expected bell-shaped 

velocity profile of the typical model, whereas observing the atypical model generated a greater 

magnitude of peak eye velocity that also occurred towards the beginning of the movement. 

As the eye velocity data reflects the kinematic structures of the respective models, these data 

suggest that participants were attempting to track the cursor during the observation phase of 

the experimental task and moreover, that the visual description supplied to the perception-

action system contained all the kinematic data underpinning the models. Therefore, 

participants had the opportunity to process all underlying kinematic data contained within the 

model stimuli and thus, project accurate representations of each model onto the motor system 

that resulted in scaled imitation of the respective models (Costantini, Ambrosini, 

Cardellicchio & Sinigaglia, 2013; D’Ausilio, Gredeback, Falck-Ytter & Fadgia, 2013).  

Having controlled for spatial compatibility (Chapter Two) and confirmed eye 

movements are directed to the stimuli during observation (Chapter Four), the imitation of 

biological motion reported in the current thesis corroborates neurophysiological research on 

mirror neurons and the perception-action system (Buccino et al., 2004; Iacoboni et al., 1999). 

Within the perception-action system, it is commonly held that the ‘core circuit’ for imitation 
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includes the posterior IFG, vPMC and IPL (Iacoboni & Dapretto, 2006), while frontal regions 

also show consistent activation during observation and imitation in relation to higher-order 

control processes (Molenberghs, Cunnington & Mattingley, 2009). It is suggested that 

observation of biological motion kinematics activated the pSTS, which produced a visual 

description of the observed stimulus (Allison et al., 2000) that was supplied to the temporal 

regions of the perception-action system where a visual representation of the observed stimulus 

was formed for subsequent action coding (Cattaneo et al., 2010; Rizzolatti & Fadiga, 2014). 

If goals were present during the observation trial (e.g. end-state-targets in Chapters Three and 

Four) the visual representation would most likely be processed by IPL, which is associated 

with processing the top-down components of visual information (Southgate & Hamilton, 

2008) such that the goal of the action (e.g. imitating a stimulus that finishes on a red target) 

would have been incorporated into the visual description to become part of the motor 

representation used for imitation (Fadiga et al., 1995; Casartelli & Moteni, 2014). If there 

were no goals present during action-observation (e.g. Chapter Two), atypical biological 

kinematics would have most likely been processed in IFG, which is associated with the lower-

level coding of visual information (Rizzolatti & Sinigaglia, 2010) and biological motion 

(Saygin et al., 2004). IFG facilitates the understanding of the motoric components of an action 

such that the underlying kinematics of the stimuli would have been represented as a motor 

representation. This direct connection between the visual description produced by STS and 

motor representation for imitation is termed visuomotor processing (Bastiaansen, Thioux & 

Keysers, 2009; Brass, Ruby & Spengler, 2009), which is known to contain neural substrates 

that facilitate imitation (Iacoboni, 1999; Rizzolatti et al., 2001) and is likely to explain the 

coding of unmodulated atypical biological motion reported in Chapter Two. 
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In line with the visuomotor processing substrates contained within the perception-

action system, atypical biological motion coding could be interpreted as the visual 

representation of atypical biological motion directly linking with the subsequent reproduction 

of the same representation, such that subsequent reproduction of the same atypical kinematics 

formed a link between the observed and executed action that resulted in imitation of atypical 

biological motion regardless of spatial compatibility (Catmur et al., 2009; Cavallo et al., 

2014). The mechanisms underpinning visuomotor processing of biological motion are also at 

the basis for the associative sequence learning (ASL) theory of imitation (Heyes & Ray, 2000; 

Heyes, 2001; Brass & Heyes, 2005). ASL suggests that excitatory links or associations 

connect sensory and motor representations of the same action (Heyes & Ray, 2000), which 

are formed during learning and development (Schultz & Dickinson, 2000, Catmur & Heyes, 

2011). This learning occurs when the observed movement and executed movement are 

correlated, which engages regions of the brain with mirror properties that enable action 

understanding (di Pellegrino et al., 1992; Ferrari et al., 2003). This effect has been 

demonstrated using countermirror protocols, where periods of training have been shown to 

reconfigure the mirror system (Catmur et al., 2007) and improve automatic imitation effects 

of non-biological stimuli (Press et al., 2007). For example, in the Catmur et al. (2007) study, 

participants underwent incompatible training periods where they executed index-finger 

adductions following observation of little-finger adductions and vice versa, as well as 

compatible training periods where the observed and executed finger movements were the 

same. Using TMS to measure MEPs in the musculature of the respective fingers, results 

showed that incompatible training reversed the mirror effect such that observation of the 

index-finger adduction primed the musculature in the little finger and vice versa and 

demonstrates that sensorimotor experience plays a critical role in imitation. The ASL model 

suggests the proposed visuomotor processing in the current thesis is facilitated by matching 
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vertical associations connecting sensory and motor representations of the same action during 

development and learning, which occur when the sensorimotor experience of the observation 

and execution of an action, in this case observing and imitating atypical biological motion, are 

correlated (Catmur et al., 2009). As such, sensory representations of atypical biological 

motion activated by movement observation are more likely to be active during motor 

representations of atypical biological motion than during motor representations of any other 

movement (e.g. typical biological motion/ constant velocity). 

   

6.3.3. Modulatory Factors 

 Although Chapter Two demonstrates lower-level processing of atypical biological 

motion by controlling spatial compatibility and manipulating biological motion, it did so in 

an unmodulated context; that is, during observation and imitation the only visual information 

available was that of the cursor containing kinematic information of each of the model stimuli 

and there were limited environmental factors that could have created top-down modulatory 

effects e.g. end-state-targets (see “true imitation”; Tomasello, Savage-Rumbaugh & Kruger, 

1993). While that is important in understanding whether biological motion is coded and how 

that process might take place, imitation also recruits general top-down processes that can 

result in modulation (Bekkering et al., 2000; Chong et al., 2008; Wang & Hamilton, 2012). 

Therefore, Chapters Three and Five examined the contribution of end-state-targets (Chapter 

Three) and social primes (Chapter Five) to imitation of biological motion during imitation 

learning. 

 

6.3.3.1. End-state-targets 
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 Chapter Three examined the influence of end-state-targets on imitation of biological 

motion. End-state-targets have been shown to modulate imitation in both a behavioural 

(Wohlschlager et al., 2003; Hayes et al., 2008) and neurophysiological (Hamiton, 2008) 

research. For example, when children observe ipsilateral (cross-hemisphere) arm movements 

that touch an ear (e.g. right hand touches left ear), they often imitate by making a contralateral 

(same hemisphere) arm movements (e.g. left hand touches left ear) as they are the most 

efficient means of achieving the goal (touch the ear). However, when the ipsilateral arm 

movement is made to a space beside the ear (e.g. right hand moves to space by left ear), 

children imitate the way in which the arm moves as there is no clear observable end goal 

(Bekkering et al., 2000). Goal-directed modulation occurs when the observed movement is 

encoded through hierarchical processing, where goals are prescribed primary importance and 

achieved at the expense of the underlying movement kinematics. Therefore, having 

established biological motion is coded during imitation learning in Chapter Two (e.g. the 

means), the purpose of Chapter Three was to manipulate end-state-targets to examine whether 

they modulated the coding of biological motion during imitation learning. 

Imitation data from Chapter Three showed that in addition to atypical biological 

motion coding, the presence of end-state-targets modulated imitation such that, relative to the 

model movement time of 1700 ms, movement time was less accurate when end-state-targets 

were present (2294 ms) compared to when they were absent (2156 ms). An interpretation of 

these findings could be that, in line with GOADI, the presence of end-state-targets results in 

greater importance being placed on goal attainment such that less attention is placed on 

achieving the movement time goal of the task (Ondobaka & Bekkering, 2012). However, 

contrary to recent imitation learning research (Wild et al., 2010), the results from Chapter 

Three did not demonstrate the attenuation of kinematics when end-state-targets were present. 
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Wild et al. (2010) showed that imitation was modulated by the speed of the observed action 

only when end-state-targets were absent, which resulted in a difference between imitation of 

the “fast” and “slow” models that was not reported when end-state-targets were present and 

corroborates both GOADI (Bekkering et al, 2000) and the dual-route model (Rumiati & 

Tessari, 2002). It was suggested that when end-state-targets were present, they were perceived 

as the most important feature of the movement (GOADI), which resulted in less visual 

attention being given to the movement trajectory of the model’s limb during observation such 

that small movement details containing kinematic information were not processed. In the 

study by Wild et al. (2010) visual attention was quantified by recording eye movements during 

observation of the stimuli and showed that participants made more saccades towards the end 

of the movement when end-state-targets were present.  

Conversely, when end-state-targets were absent, each trial was without an obvious 

end-point and as confirmed by the eye movement data, visual attention was orientated to the 

stimulus such that the movement trajectory was tracked during observation. In tracking the 

movement trajectory throughout the duration of the observation trial, all the kinematic 

information contained within the movement trajectory was observed and could be coded. Here 

then, the results from Chapter Three show that imitation of biological motion kinematics 

occurs regardless of the presence of end-state-targets but movement time is modulated when 

end-state-targets are present, which contradicts the suggestion than top-down modulatory 

factors associated with goals are perceived as most important within a hierarchy and instead, 

requires a different explanation for the findings.   

 An interpretation for the goal-directed modulation of movement time, but not 

kinematics, could be related to a mechanism that integrates top-down attentional processes 

and lower-level visuomotor processes based on the goal of the task (Roberts et al., 2012; 
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Andrew et al., 2016). A complimentary relationship between lower-level and higher order 

processes has been shown using motor training that required a 3-segment movement sequence 

to be acquired under varying levels of feedback (no knowledge of results [KR], high-

frequency KR and two reduced-frequency KR) prior to an imitation phase (Andrew et al., 

2016). The imitation phase required imitation of models similar to those used in the current 

thesis (atypical biological motion, typical biological motion and constant velocity) across a 

single-segment movement that had the same movement time (1700 ms) as the movement 

learned during motor training but displayed different movement kinematics, thus examining 

the higher-order processes associated with representing movement time and the lower-level 

processes associated with kinematic coding. Results showed imitation of biological motion 

kinematics was similar across all groups, but movement time was more accurate following 

reduced-frequency knowledge of results (KR), compared to high-frequency KR or no KR 

groups and suggests that although top-down cognitive processes and lower-level sensorimotor 

processes are distinct, they must operate together to facilitate both the imitation of biological 

motion kinematics and modulation of movement time accuracy. Therefore, an appropriate 

inference of the imitation data from Chapter Three, which shows coding of biological motion 

kinematics and goal-directed modulation of movement time, could be that complimentary 

lower-level and top-down systems are active during imitation learning that facilitate the 

coding of biological motion whilst also representing the temporal components of the observed 

action relative to end-state-targets.  
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6.3.3.2. Social Primes 

Chapter Five examined the influence of social primes on imitation of biological 

motion. Images displaying either neutral, direct or averted eye gaze primes were shown prior 

to observation of the model stimuli that were designed to convey neutral, pro- or anti-social 

context respectively (Wang et al., 2011a). While the effects of social modulation have been 

examined in the context of automatic imitation (Leighton et al., 2010; Wang et al., 2011a; 

Wang & Hamilton, 2012), these effects have not yet been examined in the context of imitation 

learning of biological motion kinematics. From a social psychology perspective, social 

interaction has been identified as an evolutionary function of humans that defines how 

imitation occurs, as demonstrated by the chameleon effect (Chartrand & Bargh, 1999), which 

refers to the nonconscious mimicry of various interactive behaviours (e.g. postures, facial 

expressions and mannerisms) such that behaviour changes to match that of those within the 

social environment. Social psychology has also shown social modulation of performance 

based on subjective features such as attractiveness (van Leeuwen et al., 2009; Kuleza, 

Szypowska, Jarman & Dolinski, 2014) and social status (Landers & Landers, 1973; 

McCullagh, 1986). For example, McCullagh (1986) showed that when young girls were cued 

with women of high (cheerleader) and low (woman in street clothes) social status prior to 

completing a ladder task, performance of the task was better following observation of the 

cheerleader.  

Imitative behaviour changes can facilitate learning (Bandura, 1977) and/or promote 

feelings of liking and affiliation amongst those engaged in the imitation (Chartrand & van 

Baaren, 2009). It is suggested that these feelings of affiliation occur as a result of the perceived 

positive social consequences (e.g. pro-social priming), which relative to imitation, exert top-

down control that modulates visual information processing such that imitation is controlled to 



 154

meet the social goal (Hamilton, 2008).  Conversely, perceived negative social consequences 

(e.g. anti-social priming) exert control that down-regulates visual information processing such 

that imitation becomes worse (Tiedens & Fragale, 2003). These up- and down-regulatory 

effects have been demonstrated in automatic imitation of hand opening/ closing movements 

after completing neutral, pro- or anti-social word scrambles (Leighton et al., 2010). Results 

showed that pro-social priming produced a larger automatic imitation effect (e.g. the 

difference between compatible and incompatible reaction times was greater) and anti-social 

priming produced a smaller automatic imitation effect (e.g. the difference between compatible 

and incompatible reaction times was lesser) when compared to the neutral prime, which 

suggests a bidirectional relationship between social primes and imitation. Therefore, the 

purpose of Chapter Five was to investigate how pro- and anti-social eye gaze primes 

modulated the coding of biological motion kinematics in the context of imitation learning. 

In addition to confirming biological motion coding, imitation data from Chapter Five 

showed that social primes modulated imitation. In relation to imitation accuracy, following 

observation of both the atypical and typical biological motion models, imitation of peak 

velocity was more like the respective model when primed with the anti-social prime, 

compared to the pro-social and neutral primes. Improved imitation effects following anti-

social priming could be interpreted as evidence of the active-self theory (Wheeler, Demarree 

& Petty, 2007), which suggests the direction of the prime-to-behaviour effect is relative to 

how the primes are processed in relation to one’s self. For example, while priming with the 

word “smart” is likely to induce an assimilative self-concept (e.g. I am smart) and therefore 

behaviour (e.g. better performance in an intelligence task), priming with distinct examples of 

intelligence (e.g. Einstein) induce contrasting self-concepts (e.g. I am not Einstein, therefore 

I am not smart) and therefore behaviours (e.g. bad performance on an intelligence test 
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(Dijksterhuis, Spears, Postmes, Stapel, Koomen, van Knippenberg et al., 1998). As the social 

primes in the Chapter Five were observed from a third-person rather than a first-person 

perspective, they may have prompted a contrasting self-concept, which meant that rather than 

pro-social primes exerting top-down control that up-regulated information processing 

(Leighton et al., 2010), the third-person anti-social primes may have induced opposing 

modulatory effects to those characteristically associated with the pro- and anti-social primes, 

which resulted in the upregulation of peak velocity during imitation (Roberts et al., 2016). 

Upregulated imitation following anti-social priming from a third-person perspective has been 

demonstrated using word scrambles prior to completion of an imitation task (Wang & 

Hamilton, 2013), where up-regulation and improved imitation was reported when completing 

pro-social word scrambles in the first person (e.g. “unnatrual am trying to help), as well as 

anti-social word scrambles in the third person (e.g. “the white sphere is trying to hinder). 

Conversely, down-regulation and weaker imitation was reported when completing anti-social 

word scrambles in the first-person (e.g. “I am trying to hinder) and pro-social word scrambles 

in the third person (e.g. “the white triangle is trying to help).  

As well as imitation accuracy being modulated by social priming, variability data 

indicated imitation performance was significantly more consistent, and less variable, 

following observation of both pro- and anti-social primes, compared to no prime. For example, 

percentage-time-to-peak-velocity and movement time were less variable following 

presentation of the pro- and anti-social primes, compared with presentation of the neutral 

prime. Percentage-time-to-peak-velocity had a variability of 17% following neutral prime, 

compared with 15% and 12% following the anti-social and pro-social primes respectively. 

Similarly, movement time had a variability of 517 ms following the neutral prime, compared 

with 441 ms and 419 ms following the anti-social and pro-social primes respectively. These 
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findings corroborate previous research that has shown reduced variability of online imitation 

following observation of social primes (Roberts et al., 2016). Prior to observing horizontal 

(control condition) or curvilinear arm movements while executing cyclical horizontal arm 

movements, participants completed pro-or anti-social word scrambles to influence the social 

context of the imitation task. Results showed that in addition to greater contagion during 

observation of curvilinear, compared to horizontal arm movements, completing the anti-social 

primes increased contagion further during observation of the curvilinear arm movements, 

relative to the pro-social primes and thus, demonstrates reproduction of a movement more like 

that which was observed. As only the anti-social prime up-regulated and decreased movement 

variability, the findings were attributed to the self-active theory as discussed previously 

(Dijksterhuis et al., 1998; Wang & Hamilton, 2013). However, the variability findings in the 

current thesis demonstrate that it is the observation of a social prime in general, rather than 

anti-social specifically, that modulates and reduces movement variability during imitation and 

therefore, a different interpretation of these results should be considered.  

Demonstrating that both pro- and anti-social primes improve imitation by reducing 

variability suggests rather than the explicit nature of the prime (e.g. anti-social prime up-

regulates imitation of peak velocity) or observing no social prime at all (e.g. neutral prime), 

there is a general priming effect that is related to the observation of any social prime. A general 

priming effect of imitative variability suggests that social primes are influencing imitation at 

an intrinsic level (Meltzoff, 1996), such that movement execution is facilitated e.g. imitation 

is less variable. The general priming effect on variability in Chapter Five challenges the 

classic understanding of social control of imitation, termed STORM (social top-down 

response modulation; see Wang & Hamilton, 2012), which suggests that during ‘successful’ 

pro-social priming, the observer subconsciously forms a positive social affiliation that 
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enhances and up-regulates the processing of the observed action such that subsequent 

imitation is improved (van Overwalle & Baetens, 2009). Conversely, if anti-social priming is 

‘successful’, the observer forms negative affiliations that diminish and down-regulate the 

processing of the observed action such that imitation is impaired (Leighton et al., 2010). 

A general effect of social priming could be explained by the neural commonalities that 

imitation and social modulation share. The active regions during observation of both 

biological motion and social primes have been explored through the functional connectivity 

and arrangement of the amPFC, associated with social information processing, and the 

IFG/vPMC of the perception action system, associated with imitation (Wang & Hamilton, 

2011; Spunt and Lieberman, 2012). To ensure participants engaged in observation of the 

social primes, prior to the experiment they were instructed that observing the images was 

required during each trial and they were to direct their attention to the images when they were 

presented on the monitor. Relative to Chapter Five, the primes containing eye gazes displayed 

either direct (pro-social) or averted (anti-social) gaze, which were modified from previous 

research that has shown both images to activate regions of the brain associated with the STS 

and the detection of biological motion, as well as the IFG and mPFC that have mirror 

properties (Wang et al, 2011b). Though the data from Chapter Five does not examine 

neurological activity during the imitation task, it is conceivable that the neurological links 

between eye gaze priming and imitation of biological motion influenced the way in which the 

visual stimuli were processed and represented. Based on the neurological associations 

biological motion and social primes share, it could be suggested that the commonalities 

between the eye gaze primes and observed stimuli could have created a biological sensitivity 

(see biological tuning; Blakemore & Frith, 2005), where a biological social prime (pro- and 
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anti-social) would upregulate the detection and processing of biological motion (atypical 

model) representations such that imitation was less variable. 

 

6.4. Models of Imitation 

 The findings discussed throughout the current thesis provide an insight into biological 

motion coding during imitation learning and corroborate the concept of imitation being a 

complex process which varies greatly based on the visual information available (Oztop, 

Kawato & Arbib, 2006; Heyes, 2011, Campbell & Cunnington, 2017). Primarily, all 

experimental chapters show biological motion is coded during imitation learning, either by 

demonstrating a difference in imitation between typical and constant velocity models 

(Chapters Four and Five), atypical and typical models (Chapters Two, Four and Five) or 

atypical17 and atypical26 models (Chapter Three). Moreover, by spatially decoupling the 

observed and imitated trials in Chapter Two, scaled imitation of spatially incompatible 

atypical biological motion isolates the coding of biological motion to lower-level visuomotor 

processing. As imitation was similar during spatially compatible and incompatible trials, 

results confirm that biological motion coding is not a function of top-down control based on 

reproducing the spatial coordinates of kinematic features e.g. peak velocity occurring at the 

left side of the monitor, but the lower-level processing of the underlying movement 

kinematics.  

In addition to these primary findings, which provide insight into the broader 

understanding of biological motion coding during imitation learning, Chapters Three and Five 

were designed to examine the modulatory influences on biological motion coding. For 

example, the imitation task in Chapter Three included end-state-targets to examine the coding 



 159

of biological motion during goal-directed imitation (Bekkering et al., 2000). Imitation data 

showed that in addition to biological motion coding, the presence of end-state-targets impaired 

the accuracy of movement time imitation relative that of the models (1700 ms). These results 

demonstrate that the lower-level processes involved in biological motion coding operate 

cooperatively with top-down attentional processes associated with end-state-targets to 

facilitate imitation that incorporates different features (e.g. kinematics, goals) of the observed 

stimuli (Roberts et al., 2012; Andrew et al., 2016). In addition to end-state-targets modulating 

imitation, Chapter Five shows that social primes modulate the coding of biological motion 

such that imitation of peak velocity is closer to that of the models following observation of an 

anti-social prime, relative to a pro-social or neutral prime. Anti-social up-regulation of 

imitation could be interpreted as evidence of the active-self theory (Wheeler et al., 2007), 

where the perception of the prime relative to one’s self influences how the prime modulates 

imitation e.g. observing an anti-social prime in the third-person generates an up-regulation of 

information processing (Wang & Hamilton, 2013).  

In addition to the anti-social up-regulation of peak velocity, imitation of movement 

time and percentage-time-to-peak-velocity was less variable following observation of both 

pro- and anti-social primes, compared with neutral primes. The reduction of variability 

following observation of both a pro- and anti-social prime suggests that social modulation is 

a product of a general priming effect, rather than the explicit nature of the social prime (e.g. 

pro-social or anti-social), which modulates the efficacy of the representation formed during 

observation at an implicit level (Meltzoff, 1996). 

While there are many individual theories that posit explanations for how imitation 

occurs (see “theoretical models of imitation”, Chapter One), the current thesis demonstrates 

there are many levels of information processing that underpin imitation, which may be better 
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explained by a combination of theories. Fundamentally, the current thesis shows that 

biological motion is processed during imitation learning (all chapters) and that this processing 

can be modulated by the presence of end-state-targets (Chapter Three) and social primes 

(Chapter Five). While previous research has suggested that action-goals are prioritised 

through hierarchical coding (Bekkering et al., 2000; Wohlschlager et al., 2003), Chapter 

Three shows the end-state-target modulation of movement time as well as the coding of 

movement kinematics, which suggests there may be an embedded system where lower-level 

coding of biological motion and top-down modulatory control of higher-order cognitive 

processes operate cooperatively to facilitate successful imitation based on the environmental 

context and visual information available (Andrew et al., 2016).  

The complimentary relationship between lower-level and higher-order systems is 

consistent with the suggestion that multiple routes within the brain underpin imitation 

(Bekkering et al., 2000; Di Dio et al., 2013; Hamilton, 2008; 2015; Rumiati et al., 2009; 2014). 

Relative to Chapter Three, the kinematic features of the atypical biological motion model are 

suggested to be coded by visual areas (temporal gyrus; STS) and IFG (Gallese et al., 2002; 

Kilner et al., 2009; Molenberghs, Cunnington & Mattingley, 2012; Rizzolatti & Sinigaglia, 

2010), whereas the goal of the action (e.g. completing imitation of the atypical biological 

motion model by reaching an end-state-target) is processed by a parietal route (Chong et al., 

2009; Hamilton, 2008). These areas are known to contain mirror neurons and as such, parietal, 

premotor and frontal regions of the brain are considered to form the ‘core circuitry’ within the 

perception-action system and operate together to facilitate the imitation of novel actions such 

as atypical biological motion (Hamilton, 2015; Iacoboni & Dapretto, 2006). It is suggested 

that the ‘core circuitry’ of the perception-action system may function as a network for visual 

to motor transformations (Hamilton, 2015) that is facilitated by the process of imitation 
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learning (Heyes, 2011) and may have formed links between the observed atypical biological 

motion kinematics and an appropriate motor output (Cisek & Kalaska, 2010). This ‘core 

circuitry’ is also engaged by non-imitative tasks, as demonstrated through sensorimotor 

training that required participants to perform a hand movement while observing a foot 

movement, and perform foot movements while observing a hand movement (Catmur et al., 

2008). Results showed that the perception-action system could be reconfigured such that 

observing a hand movement activated regions of the brain associated with foot movements 

and vice versa. While the perception-action system can be reconfigured by sensorimotor 

training, the current thesis suggests that in the context of imitation learning, the perception-

action system is also configured to represent the underlying features (e.g. kinematics) of novel 

actions (atypical biological motion).  

Chapter Two provided further support to the suggestion that atypical biological motion 

coding is a function of lower-level processing by decoupling the spatial compatibility between 

the observed and executed movements. Results showed imitation of atypical biological motion 

was similar when the atypical model was observed in spatially incompatible and compatible 

orientations. Given the spatially compatible trials involved the stimulus moving from left to 

right, the spatially incompatible trials controlled for movements in opposite direction but same 

horizontal orientation e.g. observing the stimulus move right to left (Brass et al., 2001), as 

well as orthogonal orientation e.g. top to bottom or bottom to top (Heyes et al., 2005). 

Reproducing topologically similar atypical biological motion kinematics during spatially 

incompatible imitation isolates the coding of biological motion to lower-level visuomotor 

processes as it cannot be a function of reproducing the spatial coordinates through higher-

order cognitive processes (Heyes, 2011). Coding biological motion kinematics through lower-

level processes supports the associative sequence learning (ASL) theory of imitation (Heyes 
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& Ray, 2000; Heyes, 2001; Brass & Heyes, 2005), which suggests that excitatory links or 

associations connect sensory and motor representations of the same action (Heyes & Ray, 

2000), which are formed during learning and development (Schultz & Dickinson, 2000, 

Catmur & Heyes, 2011). In line with ASL theory, the coding of spatially incompatible atypical 

biological motion could be a function of the observed and executed movements being 

correlated e.g. observing atypical biological motion and imitating atypical biological motion, 

which is suggested to engage regions of the brain with mirror properties that enable action 

understanding (di Pellegrino et al., 1992; Ferrari et al., 2003). 

 The general finding of biological motion coding shown throughout all chapters of the 

current thesis supports the widely-held view that biological motion is coded and represented 

during observation of a stimulus (Cross et al., 2013; Cutting & Kozlowski, 1977; Grossman, 

Donnelly, Price, Pickens, Morgan, Neighbor et al., 2006; Johannson, 1973; Kilner et al., 2003; 

Saygin, Wilson, Hagler, Bates & Sereno, 2004). Further, the coding of all atypical biological 

motion models (atypical model – Chapters Two, Four and Five; atypical17 and atypical26 

models – Chapter Three) is consistent with research that has shown imitation of velocity 

kinematics following observation of biological motion (Bisio et al., 2010; Wild et al., 2010). 

The adaption from a pre-existing movement pattern (typical biological motion) to a novel 

movement pattern (atypical biological motion) suggests that the lower-level visuomotor 

processes associated with direct coding of movement kinematics (Hayes et al., 2009; 2010) 

are engaged during the imitation learning protocol used in the current thesis.  

This visuomotor processing of atypical biological motion supports neurophysiological 

research on the perception-action system, which suggests that the biological motion contained 

within the atypical model is likely to have been detected by the STS (Perrett et al., 1998; 

Jellema et al., 2000; Allison, Puce & McCarthy, 2000). The STS produces a visual description 
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of the model is then sent to the IFG and IPL where visual representation of the observed 

stimulus is formed for subsequent action coding (Cattaneo et al., 2010; Rizzolatti & Fadiga, 

2014). As such, the visuomotor processing of atypical biological motion demonstrated in the 

current thesis provides support to the EP-M model of imitation (Hamilton, 2008), which 

suggests the perception-action system constitutes an indirect, parietal route for goal emulation 

and planning (EP) and a direct, frontal route for mimicry (M). Unmodulated imitation of 

atypical biological motion (Chapter Two) is likely to have engaged the direct M-route, which 

suggests the MTG forms a visual representation of the kinematic features of the atypical model 

that is sent to the IFG and mapped onto a motor representations containing the underlying 

atypical kinematic profile (see also, ASL model; Heyes, 2001). In contrast, the goal-directed 

modulation of movement time (Chapter Three) is likely to have engaged the EP route, which 

as it incorporates higher-order cognitive processes into the visual representation of the 

observed stimulus. The E-route connects the MTG and IPL and allows for emulation and 

understanding of the goal of an action, which in this case was imitating the goal of reaching 

the end-state-target. The P-route connects the IPL and IFG, which facilitates action planning 

and calculates the best way to achieve the goal e.g. reproduce the kinematics to reach the 

target, or get there as efficiently as possible (Bekkering et al., 2000). Importantly, the 

kinematics of the observed stimuli are included in this motor planning, which corroborates the 

suggestion from the current thesis that lower-level and higher-order cognitive processes are 

complimentary and embedded within the same general system to facilitate imitation of 

complex movements. 

In addition to end-state-targets, the current thesis also demonstrates the top-down 

modulation of lower-level biological motion processing through social context in Chapter 

Five. Firstly, results showed that observing an anti-social eye gaze prime produced an up-
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regulation of peak velocity such that it became more similar to that of the model, relative to 

observing a pro-social or neutral prime. By demonstrating that social context can impart 

control on information processing such that it either inhibits or enhances imitation, these data 

support the STORM model (Wang & Hamilton, 2012). In line with STORM, it is likely that 

the social control produced by engaging in the social prime activated the mPFC, which in 

addition to eye gaze primes (Wang et al., 2011b), has been shown to respond to a wide range 

of social cues (Kampe et al., 2003; Zink et al., 2008; Teufal et al., 2010). For example, fMRI 

results showed that during a hand-opening/closing SRC task with eye gaze priming, 

performing the task activated regions of the brain associated with mirror neurons (STS and 

IFG) and the pro- and anti-social eye gaze primes engaged mPFC. In accord with 

neurophysiological research on the perception action system (Buccino et al., 2004; Iacoboni 

et al., 2001) and the EP-M route (Hamilton, 2008), it is suggested that observation of the anti-

social eye gaze prime up-regulated the mPFC prior to observation of the model stimuli such 

that it was primed for the visual representation of the atypical and typical biological motion 

models that were generated in the STS and IFG. 

Importantly, while social context modulated imitation of peak velocity, it did not 

modulate the relative coding of the atypical and typical biological motion models. That is, 

imitation of atypical and typical biological motion kinematics were still scaled relative to the 

respective models following observation of the social primes. The lower-level processing of 

biological motion shown that activates both STS and IFG (Iacoboni, 1999; Di Dio et al., 2013), 

and higher-order cognitive processes associated with top-down modulation controlled by the 

frontal regions of the perception-action system (Hamilton, 2015), have also been confirmed 

during social modulation of imitation through dynamic causal modelling (DCM). DCM 

examines the information processing strength between neural substrates and has confirmed 
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connectivity between STS and IFG during observation of biological motion (Wang et al., 

2011b). Moreover, DCM in the paper by Wang et al. (2011) confirmed the mPFC as the region 

that exerts top-down control on the mirror neuron system by demonstrating strong 

connectivity between mPFC and STS and IFG respectively.  

 

6.5. Concluding Remarks and Considerations for Future Research 

  

The experiments conducted within this thesis provides evidence as to the way in which 

biological motion is coded during imitation learning, and examines some of the attentional 

factors that modulate the process of imitation. As with most research, the answers that 

experiments produce often result in new questions being asked. For example, it would be 

interesting to translate the principles underpinning the imitation task used in the current thesis 

to more natural environments. All four experimental chapters were lab-based and 

computational, and were designed to minimise environmental context that may influence 

imitation. While the current thesis provides several examples of biological motion coding 

during imitation learning within these controlled contexts, the application of biological motion 

coding during imitation learning may be different in a real-world environment. For example, 

sports training in children requires periods of learning that can often involve observation of 

skills prior to physically practising them. It would be interesting to examine whether the 

environmental context of skill-based learning (e.g. observing an effector with biological 

properties, rather than a non-biological white dot) modulated the attention of the observer 

during acquisition of functional skills (Hayes et al., 2007). For example, eye movements may 

be more directed to an effector (Bach et al., 2007) when a skill is located to an area of the 
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body (e.g. hand/ foot) that contains social context, rather than observing the same movement 

performed by a non-contextualised geometric shape (e.g. white dot). Similarly, instructions 

may modulate what features of skills are acquired relative to what children believe they are 

learning (Stanley, Gowen & Miall, 2007), or what features of the movement those instructions 

direct attention towards (Posner, 1980; Safford et al., 2010).  

In addition to sports training in children, the coding of biological motion during 

imitation learning could be examined in children and adults with ASC. Deficits in imitative 

behaviour in children and adults with autism have been acknowledged for a long time (Ritvo 

& Provence, 1953) and more recently, it has been suggested that this deficit stems from 

reduced neural activity within the perception-action system (‘broken mirror hypothesis’; 

Ramachandran & Oberman, 2006; Williams, Whiten, Suddendorf & Perrett, 2001). While 

there is neurological (Oberman, Hubbard, McCleery, Altschuler, Ramachandran & Pineda, 

2005; Pelphrey, Adolphs & Morris, 2004) and behavioural (Williams, Whiten & Singh, 2004) 

support of the ‘broken mirror hypothesis’, there is also evidence that the neurological 

processes underpinning imitation of biological motion are intact within autistic people (Bird, 

Leighton, Press & Heyes, 2007; Grecucci, Brambilla, Siugzdaite, Londero, Fabbro, et al., 

2013; Sowden, Koehne, Catmur, Dziobek & Bird, 2016). Automatic imitation research 

suggests the underlying processing within the perception action system may be intact, which 

is corroborated by imitation learning research that has demonstrated the coding of movement 

time following observation of a stimulus and thus, engagement in the self-regulation of 

sensorimotor adaptations (Hayes, Andrew, Elliott, Gowen & Bennett, 2016). However, the 

imitation of biological motion kinematics has not yet been demonstrated in children or adults 

with autism (Hayes et al., 2016; Stewart et al., 2013; Wild, Poliakoff, Jerrison & Gowen, 

2012), which could suggest that attention is important during the processing of visual 
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information for people with autism. Chapter Five is integral to this potential area of research 

as it is the first example of discrete biological motion kinematics being modulated by social 

priming during imitation learning. Moreover, the imitation task used in the current thesis has 

consistently been shown to be a valid measurement of biological motion coding. By 

combining a robust protocol with social priming effects in participants who were exclusively 

neurotypicals, there is a strong foundation on which to develop research into people with ASC 

and compare imitative responses. By continuing to compare the ways in which neurotypicals 

and people with ASC process visual information, any differences that are discovered have the 

potential to highlight deficiencies or provide alternative solutions to facilitate learning by 

observing and imitating for people with ASC. 

 Data from Chapters Two, Three and Four provide evidence that not only is biological 

motion coded during imitation learning, but that the coding is a function of lower-level 

visuomotor processing. In Chapter Two, it was found that when observation and imitation are 

spatially incompatible, atypical biological motion kinematics are coded and imitated 

accurately, and relative to the model. Imitation accuracy is also consistent when trials are 

spatially compatible. For imitation to remain accurate in spatially incompatible trials, the 

underlying kinematics, rather than the spatial properties, of the observed stimulus must be 

coded directly such that they can be transformed onto a spatially incongruent motor output. 

Importantly, the visual information provided on the monitor during the imitation task was 

designed to create the most natural imitation responses possible and thus, examine the 

fundamental nature of biological motion processing e.g. non-biological motion cursor to 

display the model kinematics, black background. With the evidence that biological motion 

kinematics is coded through lower-level processing, the protocol could be modified such that 

it reflected more relatable, real-world environments. For example, rather than observing a 
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non-biological dot, the study by Wild et al. (2010) examined imitation of movement kinematic 

by observing a video clip of a human hand moving at different speeds (‘fast’ or ‘slow’). In 

both the current thesis, and the study by Wild et al., imitation required motor execution using 

the arm and hand; however, by replicating the effector in both observation and imitation, Wild 

et al. may have elicited motor priming (Bach & Tipper, 2007; Berger & Hadley, 1975) and 

consequently influenced imitation. Early neurophysiological research suggested non-

biological effectors (e.g. tools) do not activate areas of the brain associated with mirror 

neurons compared with biological effectors (Gallesse et al., 1996; Perrett et al., 1990) and 

thus, could influence the processes underpinning imitation. Conversely, more recent data has 

found it is the nature of the stimuli (e.g. biological/ non-biological motion), not the effector 

that displays it, that primarily influences imitation (Di Dio et al., 2013). These data suggest 

that while the protocol in the current thesis provides a more explicit means of examining the 

imitation of biological motion kinematics, observing a human hand that displays the 

underlying kinematics of the atypical biological motion model and then physically replicating 

the movement may influence the way in which the visual stimulus is processed and 

consequently, imitation.  

In addition to restricting the perceived environmental context, the protocol used in the 

current thesis allowed for explicit top-down modulation to be controlled. For example, 

Chapter Two displayed only the model stimuli to examine coding of biological motion at its 

most fundamental level. However, Chapters Three, Four and Five were modified such that 

end-state-targets (Chapters Three and Four) and social primes (Chapter Five) were displayed 

to examine the top-down influences on the lower-level processing on imitation of biological 

motion. The most interesting of these findings was that social primes modulated the 

variability, but not accuracy, of imitation. Whilst social primes have previously been shown 
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to decrease variability (Roberts et al., 2016), the data from Chapter Five demonstrates that 

social primes modulate biological motion coding during imitation learning differently to 

automatic imitation (Brass et al., 2001; Lakin et al., 2003; Wang, et al., 2011a; Bisio et al., 

2010) and it is important to understand the context in which the social primes have induced 

modulatory effects e.g. by influencing the efficacy of the representation formed during 

observation; by up/ down-regulating the regions of the brain associated with coding visual 

stimuli. It was suggested in Chapter Five that this may be related to the more complex 

processes underpinning imitation learning, compared with automatic imitation (Heyes, 2011) 

but the social primes (e.g. eye gaze, word scrambles) also modulate imitation differently. This 

may be due to eye gaze primes providing a subtler social context compared to word scrambles, 

where the words contain explicit connotations that suggest their intent (Heyes, 2011). For 

example, while direct- and averted-gaze were used as the pro- and anti-social primes in the 

current thesis, it is unknown as to whether they were observed as ‘positive’ and ‘negative’ 

primes. Therefore, a means of confirming social primes have the desired effect would be to 

issue short questionnaires upon the completion of the imitation task. This would provide 

quantifiable evidence that the primes did, or did not, influence imitation in line with the 

purpose of the experiment.  

 

6.6. Summary 

 

To conclude, the current thesis used a novel behavioural protocol to examine the 

coding of biological motion during imitation learning. The protocol required participants to 

observe, then imitate a combination of biological and non-biological motion models that 
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displayed both novel and existing movement patterns to examine whether biological motion 

was coded, what underlying processes were involved in the coding, and whether the 

underlying processes could be modulated during imitation learning.  

Primarily, the current thesis demonstrated that biological motion is coded during 

imitation learning by showing differences in imitation between the typical and constant 

velocity models (Chapters Four and Five), atypical and typical models (Chapters Two, Four 

and Five) and atypical17 and atypical26 models (Chapter Three). Key within these findings 

was the coding of atypical biological motion, which displayed a novel movement pattern that 

was not already part of the motor repertoire and could not be imitated through recruitment of 

existing motor patterns (e.g. typical model) or chance. Scaled imitation of atypical17 and 

atypical26 models confirmed that the coding of biological motion was not a function of 

strategy based on detecting faster movements that occurred towards the start of the movement, 

but the explicit kinematic structures of the respective models (e.g. different magnitudes of 

peak velocity that occurred at 17% and 26% of the movement respectively).  

In addition to imitating the respective model kinematics, Chapter Two confirmed that 

the coding of biological motion kinematics was isolated to lower-level visuomotor processes 

by spatially decoupling the observed and imitated movements. If imitation was governed by 

higher-order cognitive processes associated with spatial compatibility, imitation would have 

been more accurate during spatially compatible, than incompatible trials. That imitation of the 

atypical biological motion kinematics was similar during spatially incompatible and 

compatible trials demonstrated the processing of the visual stimuli was not related to the 

spatial positioning of salient movement features (e.g. peak velocity occurred on the right-side 

of the monitor), but the underlying kinematics contained within the models. As such, the 

representations formed during observation of the stimuli could be visually transformed to 
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produce scaled imitation of atypical biological motion kinematics during spatially 

incompatible trials. 

As well as demonstrating the lower-level processes involved in biological motion 

coding, Chapters Three and Five suggested that higher-order cognitive processes operate 

alongside lower-level processes to modulate features of imitation. Chapter Three included 

end-state-targets to examine whether goal-directed imitation would influence the underlying 

processes involved in biological motion coding. Results showed that while the coding of 

kinematics was not attenuated, movement time became less accurate when end-state-targets 

were present during observation and imitation of the model stimuli. As movement time was 

modulated, but not at the expense of coding the biological motion kinematics, the imitation 

data from Chapter Three demonstrated a complimentary relationship between lower-level 

visuomotor processing and higher-order cognitive control. Similarly, Chapter Five 

demonstrated that observing social primes prior to observation of the stimuli modulated the 

processing of the visual stimuli. Observation of the anti-social prime generated up-regulatory 

effects where imitation of peak velocity was closer to that of the models and corroborated the 

active-self theory, which suggests the perspective from which a prime is observed relative to 

one’s self influences the way in which the prime interacts with the information processing. In 

addition, the observation of both pro- and anti-social primes reduced the variability of 

imitation such that the percentage-time-to-peak-velocity and movement time became more 

like the respective models, which suggests that a general priming effect, rather than the 

specific nature of the prime, could modulate the efficacy of the representation formed during 

observation of biological motion.  

When taken together, the results in the present thesis contribute to an extension of the 

current literature in several ways. Firstly, the protocol used in all four experimental chapters 
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provided a more applicable measurement of biological motion coding by incorporating 

discrete kinematic markers into the design of the models that were also used in the analysis of 

imitation accuracy. Second, results showed that unmodulated biological motion kinematics is 

coded through lower-level visuomotor processes, which suggests that the way in which 

movements are performed are incorporated into visual representations that are mapped 

directly onto motor outputs for imitation, thus improving the understanding of how visual 

information is processed. This improved scientific understanding can inform anyone who 

implements learning by observing (e.g. coaches, teachers) in their daily life. Similarly, 

demonstrating top-down modulation of lower-level processing both extends the current 

imitation learning literature by demonstrating a complimentary relationship between the two 

and has the potential to inform learning techniques that involve goals or social context. In 

addition to extending the current literature and informing practical learning, the social priming 

study also represents the conception of a body of research examining biological motion coding 

in people with ASC, which has the potential to be highly impactful. 
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1. Introduction 

 

Imitation is a powerful mechanism that supports human interaction. In familiar social settings, 

imitation involves the automatic activation of a motor response triggered by observing a 

similar motor action (Chartrand & Bargh, 1999; Heyes, 2001, 2011; Heyes et al., 2005). For 

example, individuals execute faster pre-specified movements (e.g., finger tapping) when 

observing biologically compatible (finger tapping), compared to incompatible (finger lifting), 

movements (Brass, Bekkering, & Prinz, 2001; Stürmer, Aschersleben, & Prinz, 2000). The 

shorter motor reaction times occur independent of task instructions, which suggests 

involvement of automatic sensorimotor processes linking perception and action (Brass & 

Heyes, 2005; Prinz, 1997). 

To understand if the automatic sensorimotor effects are developed through experience, and 

linked to a general mechanism incorporating processes associated with perception, action and 
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attention (Leighton, Bird, & Heyes, 2010), studies have examined automatic imitation 

following correlated sensorimotor training (Bird, Brindley, Leighton, & Heyes, 2007; Catmur, 

Mars, Rushworth, & Heyes, 2011; Catmur, Walsh, & Heyes, 2007, 2009; Cavallo, Heyes, 

Becchio, Bird, & Catmur, 2013; Heyes et al., 2005). For example, individuals performed a 

countermirror protocol that required compatible or incompatible sensorimotor training 

(Catmur et al., 2007). During compatible training, individuals executed index-finger 

movements, whilst simultaneously observing index-finger movements. During incompatible 

training, individuals executed index-finger movements, whilst simultaneously observing 

little-finger movements. After incompatible training, TMS-induced MEPs recorded from the 

little finger abductor muscle were greater during observation of index-finger movement 

compared to a little-finger movement. These findings demonstrate the sensorimotor system 

was reconfigured during correlated sensorimotor training, and thus indicate imitation is 

associated with a general mechanism involving lower-level visuomotor processes that 

represent biological motion, as opposed to a specialized mechanism that mediates (Meltzoff 

& Moore, 1997) the translation of visual information into a motor action. 

Of primary interest to the present study is the suggestion that similar sensorimotor processes 

operate during automatic imitation and imitation learning (Brass & Heyes, 2005; Buccino et 

al., 2004; Heyes, 2011; Iacoboni, 2009). Like the countermirror principle, imitation learning 

often requires the sensorimotor system to represent a novel biological motion across 

consecutive imitation trials. Although there is strong evidence that biological motion is 

processed during automatic imitation (Brass, Bekkering, Wohlschlaeger, & Prinz, 2000; 

Heyes et al., 2005; Press & Heyes, 2008) and interpersonal observation–execution imitation 

tasks (Kilner, Paulignan, & Blakemore, 2003), support from imitation learning studies has 

typically been based on protocols that manipulated the speed of the imitated movement (Bisio, 
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Stucchi, Jacono, Fadiga, & Pozzo, 2010; Hayes, Timmis, & Bennett, 2009; Wild, Poliakoff, 

Jerrison, & Gowen, 2010). 

Although participants have been shown (Wild et al., 2010) to imitate different movement 

speeds (e.g., slow, medium, and fast upper-limb aiming movements), it is notable that the 

observed stimulus was representative of typical aiming movements. Thus, it remains possible 

that imitation was limited to recognizing differences in movement speed between 

observations, as opposed to representing the underlying biological motion kinematics. In this 

case, the feedforward contribution to motor execution could have been associated with an 

individual recruiting and rescaling a preexisting motor representation of a familiar and 

meaningful aiming movement (Hayes, Roberts, Elliott, & Bennett, 2014; Hayes et al., 2009). 

This would imply imitation was based on higher-order semantic processes (Rumiati, Papeo, 

& Corradi-Dell'Acqua, 2010; Rumiati et al., 2005), as opposed to lower-level sensorimotor 

processes representing the observed biological kinematics. 

In the current study, we adopted a novel protocol that enabled us to directly examine biological 

motion processing during imitation learning. In addition to displaying a constant velocity 

control model, we manipulated the structure of two experimental models so that peak velocity 

in the aiming movements no longer occurred at the typical mid-point (40–60% of the total 

time) of the trajectory (Elliott, Helsen, & Chua, 2001). With such stimuli, imitation can be 

quantified according to timing and magnitude of velocity, which in combination would not 

reflect the kinematics of typical aiming movements (Hayes et al., 2014). Imitation in this 

context is not solved by merely recruiting an existing sensorimotor representation associated 

with a typical upper-limb aiming movement and rescaling (Schmidt, 1975) the representation 

to meet the goal movement time of 1700 ms. Instead, because the novel atypical biological 

motion profiles are unlikely to be represented in the sensorimotor repertoire of the participants 
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(Hayes et al., 2014), imitation requires the specific velocity profile to be represented. 

Following this logic, we compared imitation learning of two different biological motion 

models, in which percentage-time-to-peak-velocity occurred at 17% or 26% of the total 

movement time (henceforth atypical17 and atypical26), and thus earlier than normally 

expected when aiming to a target. By maintaining equal movement time and amplitude, 

magnitude of peak velocity also differed between the biological motion models 

(atypical17 = 0.37 mm/ms; atypical26 = 0.24 mm/ms). Finally, given that the lower-level 

processes that code biological motion kinematics are modulated by various top-down 

processes (Bekkering, Wohlschlaeger, & Gattis, 2000; Heyes & Bird, 2007; Leighton et al., 

2010; Rumiati et al., 2005; Southgate & Hamilton, 2008; Wang & Hamilton, 2012), we 

displayed motion stimuli as a non-human agent (a white dot) to control social context, and in 

the presence or absence of end-state-targets. The latter manipulation is important because 

previous work (Hayes, Hodges, Huys, & Williams, 2007; Wild et al., 2010) has shown that 

the imitation of biological motion is attenuated in the presence of an end-state-target. In this 

context, the end-target provides a salient task-relevant (Leighton et al., 2010) environmental 

visual cue that modulates attention so that this feature (target attainment) is prioritized and 

represented during imitation. The removal of end-state-targets in half of the present 

experimental trials enabled us to develop a protocol that examined biological motion 

kinematics during true imitation (Cook & Bird, 2012; Vivanti & Hamilton, 2014). 

With a behaviorally realizable but atypical biological motion (i.e., atypical17; atypical26), 

represented as a non-human agent, it was expected that participants would imitate in accord 

with the observed biological kinematics (Hayes et al., 2014) and thus produce movements 

scaled to both timing and magnitude of peak velocity. Because of the constraints on human 

movement imposed by the neuro-muscular system (Abend, Bizzi, & Morasso, 1982), we did 
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not expect participants to move with constant velocity having observed the constant velocity 

stimulus, or to execute a kinematic profile that resembled the atypical motion kinematics. 

Rather, we anticipated participants would recruit a pre-existing motor response and thus 

exhibit time of peak velocity that was similar to typical aiming movements. Finally, it was 

anticipated that imitation of atypical biological motion would be more accurate in the absence, 

compared to presence, of end-state-targets. In the absence of end-state-targets, there should 

be minimal contribution from top-down attentional processes, thus encouraging participants 

to focus on representing the characteristics of lower-level visual stimuli during imitation 

learning. 

 

2. Materials and methods 

 

2.1. Participants 

Data were recorded from twenty participants (age range 18–21 years) who volunteered for the 

study. All participants had normal or corrected-to-normal vision and gave written informed 

consent. The experiment was designed in accordance with the Declaration of Helsinki and 

was approved by the ethics committee of the host University. 

 

2.2. Apparatus and procedures 

The apparatus consisted of a PC (Dell Optiplex GX280), a 21-in CRT computer monitor 

(IIyama Vision Master 505), and a graphics tablet with a hand-held stylus (WACOM Intuos 

3). The CRT monitor operated with a spatial resolution of 1280 × 1024, and a refresh rate of 
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85 Hz. Visual stimuli were generated via MATLAB (The Mathworks, Inc), using Cogent 2000 

toolbox (www.vislab.ucl.ac.uk/cogent.php). 

Participants were required to observe and imitate the movement of a model (a white cursor, 

diameter = 8 mm) presented on the 21-in CRT monitor. The model displayed a single 

horizontal trajectory that originated from a home-target positioned on the left-hand side of the 

screen. The amplitude of the movement was 200 mm, with a movement time of 1700 ms, and 

ended on the right-hand side of the monitor. For the end-state-target condition, two red circles 

representing home-target and the end-state-target (diameter = 16 mm) were positioned at 

center-left (home) and center-right (end-state) of the monitor (Fig. 1A). To examine imitation 

of biological motion, three models were created: atypical (atypical17; atypical26) or constant 

velocity (Fig. 2). The atypical models displayed a velocity profile that was positively skewed 

so that peak occurred at 17% or 26% of movement time, and with a magnitude of 0.37 mm/ms 

and 0.24 mm/ms, respectively. The models were created by a human volunteer who practiced 

the two atypical goal-directed aiming movements using a hand-held stylus on a graphics tablet 

until a white cursor, which represented the stylus, moved from a left-hand home-target to a 

right-hand end-state-target in a movement time of 1700 ms. The displacement time-series data 

recorded from a successful practice trial for each model was selected to create the models. 

The method of using a human to generate the models was critical because it ensured the 

kinematics of the movement was biological in origin, and thus the movement was achievable. 

The model displaying constant velocity was created according to the amplitude (200 mm) and 

time (1700 ms) constraints associated with the task. The model displayed the exact movement 

time, but with a constant velocity trajectory that had no deviations in the perpendicular axis. 
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Fig. 1. A visual representation depicting a single trial in the end-state-target-condition (A) and 

no-end-state-target condition (B). The apparatus outlined in Panels A and B is a CRT monitor 

and a graphics tablet. The trial timeline arrows at the bottom of the figure indicate the 

Observation Phase and Imitation Phase. During the Observation Phase, the non-human agent 

model is positioned in the left-hand home target (A) and left-hand space (B). The model 

(atypical17 or atypical26 or constant velocity) displays a horizontal movement of 200 mm 

from the left-hand home target to an end-state-target (A) or end-space in the no-end-state-

target-condition. The model has a movement time of 1700 ms. The Imitation Phase 

commences with the white cursor positioned in left-hand home target (A) or left-hand space 

(B). A participant imitates the observed model by controlling a stylus on the graphics tablet. 
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Fig. 2. The velocity profiles for atypical17 model (light gray trace; peak), atypical26 model 

(dark gray trace), and constant velocity control model (black trace).  

 

Prior to the experimental trials, all participants completed a familiarization period that 

replicated the conditions of the imitation task. Participants sat on a chair in front of the CRT 

monitor and held the stylus in their preferred hand. The participants performed four 

familiarization trials; 2 trials representing the end-state-target condition (see Fig. 1A) 

performed in the imitation task, and 2 trials representing the no-end-state-target condition (see 

Fig. 1B) performed in the imitation task. Each trial commenced with the model being 

positioned in the center of the home-target. The participants observed the model display a 

movement from the home-target to an end-target (end-state-target condition), or end space 
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(no-end-state-target condition), with a constant velocity trajectory and a movement time of 

1700 ms. A constant velocity trajectory was used to ensure construct validity by preventing 

participants from experiencing biological motion before the imitation trials. Participants were 

not informed about the agency of the model or duration of the movement time. Following 

observation of the model, participants moved the cursor from the center of the monitor to the 

center of the home-target, and clicked the lower-button on the stylus. In an end-state-target 

condition, the two targets remained on the screen as the participant imitated the model. In a 

no-end-state-target condition, the two targets were removed before a participant imitated the 

model. To finish imitation, participants clicked the lower-button on the stylus a second time 

once the cursor was located in the end-state-target, or end-space in the no-end-state-target 

condition. After familiarization, all participants confirmed they understood the model, the 

end-state-target and no-end-state-target conditions, the instruction to imitate, and the 

sensorimotor association between the stylus on a graphics tablet, and the corresponding 

movement of cursor on the monitor. 

The imitation task comprised 14 blocks of 6 trials (84 trials). A block contained each of the 6 

combinations of target (end-state-target, no-end-state-target) and velocity model (atypical17, 

atypical26, constant) presented in random order. A trial commenced with an observation phase 

where the home-target (red) was displayed on the monitor for 1000 ms, before disappearing 

for 1000 ms, and being replaced by a model positioned in the same location. Depending on 

the trial type, the model moved to an end-state-target (Fig. 1A) or end-space in the no-end-

state-target (Fig. 1B) condition, with one of three velocity models. After observing the model, 

participants imitated the movement as per the instructions given in the familiarization period. 

 

2.3. Statistical analysis 
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To quantify imitation performance, and imitation of atypical biological motion, we extracted 

movement kinematics exhibited by the participants on each trial. The start of movement was 

defined as the time that the center of the cursor moved beyond the perimeter of the home-

target, and the end was calculated when the participant clicked the lower-button on the stylus. 

For each imitation attempt, the 2-dimensional displacement data were filtered using a low-

pass (8 Hz) autoregressive filter. These data were differentiated using a central difference 

algorithm to obtain velocity. A MATLAB routine extracted the primary movement occurring 

in the x-axis and identified the following dependent variables: movement time, peak velocity, 

and percentage-time-to-peak-velocity (i.e., time to peak velocity / movement time) × 100). 

The two velocity variables were chosen for analysis because they most reflected the difference 

between the two atypical biological motion models. Intra-participant means from the 14 trials 

per condition were calculated for each dependent variable and submitted to separate Model 

(atypical17; atypical26; constant velocity) x Target (end-state-target; no-end-state-target) 

repeated measures ANOVAs. Alpha was set at p < 0.05, follow-up testing used the Tukey 

post-hoc procedure, and partial eta squared (ηp2) expressed the size of the effect. 

 

3. Results 

 

3.1. Movement time 

As illustrated in Fig. 3, the presence of an end-state-target [F(1, 19) = 36.61, p < 0.05, 

ηp2 = 0.49] modulated movement time, with significantly shorter and more accurate 

movement times imitated in the absence (M = 2156 ms), compared to the presence 

(M = 2294 ms), of an end-state-target. Although there was no significant difference in 
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movement times when imitating the atypical17 (M = 2121 ms) and atypical26 (M = 2191 ms) 

models, the main effect [F(2, 38) = 17.90, p < 0.05, ηp2 = 0.66] indicated these two 

movement times were significantly shorter (ps < 0.05) and more accurate than imitating the 

constant velocity (M = 2362 ms) model. The interaction concerning model and target [F(2, 

38) = 3.51, p < 0.05, ηp2 = 0.16] indicated that significantly shorter and more accurate 

movement times were performed in the no-end-state-target compared to the end-state-target 

condition (ps < 0.05) when viewing atypical17 and atypical26 models. This effect was not 

significant when imitating constant velocity. 

 

.    

Fig. 3. Mean movement time data (ms) as a function of model (atypical17, atypical26 and 

constant velocity) and target condition (light gray = end-state-target; dark gray bar = no-end-

state-target). The criterion model data for atypical17 and atypical26 is represented in the black 

bars. Error bars (±) display the standard error mean. 
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3.2. Peak velocity 

An effect of Model [F(2, 38) = 59.56, p < 0.05,ηp2 = 0.76] indicated the magnitude of peak 

velocity was significantly greater when imitating the atypical17 model (M = 0.24 mm/ms) 

compared to the atypical26 (M = 0.19 mm/ms) and constant velocity (M = 0.15 mm/ms) 

models. Moreover, the magnitude of peak velocity was significantly (p < 0.05) greater when 

imitating the atypical26 compared to the constant velocity model. As illustrated in the left-

hand and center portions of Fig. 4, the magnitude of peak velocity executed by the participants 

in the atypical17 and atypical26 conditions (gray bars) was scaled (i.e., more similar) to peak 

velocity displayed by the model (black bar). However, peak velocity was not modulated by 

the presence or absence of an end-state-target [F(1, 19) = 1.48, p > 0.05, ηp2 = 0.07], 

irrespective of how it was combined with the model stimulus [F(2, 38) = 1.54, p > 0.05, 

ηp2 = 0.17]. 
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Fig. 4. Mean peak velocity data (mm/ms) as a function of model and target condition. The 

target conditions are displayed in the light gray bar (end-state-target) and dark gray bar (no-

end-state-target). The criterion model data for atypical17 and atypical26 is represented in the 

black bars. Error bars (±) display the standard error mean. 

 

3.3. Percentage-of-time-to-peak-velocity 

An effect of Model [F(2, 38) = 68.99, p < 0.05, ηp2 = 0.78] indicated peak velocity occurred 

significantly earlier in the movement when imitating the atypical17 model (M = 22%) 

compared to both the atypical26 (M = 29%) and constant velocity (M = 38%) models 

(ps < 0.05). As illustrated in Fig. 5, the gray bars indicate the temporal occurrence of peak 

velocity in the atypical17 and atypical26 conditions was scaled to peak velocity displayed by 

the model (black bar). This effect can also be seen from an exemplar velocity trace in Fig. 6. 

When imitating the atypical17 (dark gray trace) model, peak velocity occurred significantly 

earlier in the movement than the atypical26 (light gray trace) model. When imitating the 

constant velocity model, peak velocity occurred toward the midpoint of the movement (black 

trace). Although there was no main effect for Target [F(1, 19) = 1.58, p > 0.05, ηp2 = 0.08], 

there was an interaction concerning Model and Target [F(2, 38) = 11.40, p < 0.05, 

ηp2 = 0.35]. Percentage-of-time-to-peak-velocity occurred earlier in the movement in the end-

state-target condition compared to the no-end-state-target condition when imitating the 

atypical17 and atypical26 models (ps < 0.05). This effect was reversed when imitating 

constant velocity model. 
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.  

Fig. 5. Mean percentage-time-to-peak-velocity (%) as a function of model and target 

condition. The target conditions are displayed in the light gray bar (end-state-target) and dark 

gray bar (no-end-state-target). The criterion model data for atypical17 and atypical26 is 

represented in the black bars. Error bars (±) display the standard error mean. 
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Fig. 6. The velocity profiles are exemplar data from a representative participant imitating 

atypical17 model (light gray trace; peak), atypical26 model (dark gray trace), and the constant 

velocity control model (black trace) in the no-end-state-target (A) and end-state-target (B) 

conditions. The 1700 ms marker displayed on the x axis indicates the total movement time 

displayed by the three models. 

 

4. Discussion 

 

We examined the representation of biological motion kinematics during imitation learning 

using a novel protocol that systematically manipulated the structure of a model's kinematic 

profile. The percentage-time-to-peak-velocity data supported our expectations by indicating 

peak velocity occurred significantly earlier in the movement after imitating both the 

atypical17 and atypical26 models. Moreover, while movement time was similar in these 

conditions, the magnitude of peak velocity also differed in accord with the atypical biological 

motion models. Imitation of both atypical17 and atypical26 models was confirmed by the data 

showing participants exhibited peak velocity significantly later (38%) in the movement in the 
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constant velocity control condition. Moreover, and as displayed in Fig. 6 (black traces in A 

and B), the exemplar velocity profile(s) illustrates a relatively flat, and stable, trajectory that 

contains a number of discontinuities. The fact the velocity profile was not bell-shaped suggests 

participants attempted to imitate the constant velocity model, rather than recruiting a 

movement trajectory based on internal (pre-existing motor priors) and external (amplitude and 

speed of movement) constraints of the task. Moreover, the low peak, and discontinuities could 

be the result of error minimization using visual feedback (Elliott et al., 2001), and/or 

sensorimotor noise associated with anatomical and physiological constraints of the motor 

system (Abend et al., 1982). 

As expected, the findings also showed that imitation learning was modulated by the presence 

or absence of end-state-targets. Having observed the two atypical biological models in the 

absence of end-state-targets, participants exhibited shorter movement times, which were more 

accurate (M = 2156 ms) compared to when end-state-targets were present (M = 2294 ms). As 

suggested previously (Wild et al., 2010), this effect was unlikely to be associated with 

differences in movement amplitude, which was 6 mm shorter when end-state-targets were 

absent.1 Neither was it a function of greater average acceleration, which was less in the 

absence of end-state-targets (i.e., similar peak velocity but achieved later). Although not 

measured in the present experiment, an explanation for the less accurate imitation of 

movement time in the presence of end-state-targets is that participants paid more attention 

(Leighton et al., 2010) to target attainment and thus were more goal-directed during movement 

execution. As a consequence, it is likely they focused more on aiming to position the cursor 

in the end-target, which resulted in proportionately more time after peak velocity in the 

deceleration phase (Elliott, Hansen, Mendoza, & Tremblay, 2004). 

The specificity of the aforementioned goal-directed imitation effect is important from a 
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theoretical position because the decrease in movement time accuracy in the end-state-target 

condition did not lead to a concomitant decrease in the imitation of atypical biological motion 

kinematics. Also, there was an interaction between the biological nature of observed stimulus 

(biological motion versus constant velocity) and end-state-target condition. For instance, 

participants exhibited more accurate movement time in the absence of end-state-targets when 

observing biological motion but not constant velocity. This effect is somewhat consistent with 

the suggestion that multiple goals (kinematics; end-state-target-goal), as well as other salient 

factors in the environment (Leighton et al., 2010), are represented when imitating different 

movements (Bekkering et al., 2000; Hamilton, 2008). Unlike previous work that typically 

demonstrated an action-goal (to grasp an ear) was prioritized (hierarchal goal representation) 

at the expense of biological kinematics (Bekkering et al., 2000; Hamilton, Brindley, & Frith, 

2007; Hayes, Hodges, Scott, Horn, & Williams, 2007; Wohlschlager, Gattis, & Bekkering, 

2003), we showed the attainment of an end-state-target goal did not affect the representation 

of biological kinematics. Our findings build upon the aforementioned effects by indicating 

that top-down and lower-level processes operate within an embedded system that is less 

hierarchal, and perhaps more complementary (Buxbaum & Kalénine, 2010; de Lange, Spronk, 

Willems, Toni, & Bekkering, 2008; Heyes, 2011), with the contribution of these processes 

modulated by the nature of task context. When the biological movement kinematics are novel, 

as per our atypical biological motion, both processes operate to represent movement 

kinematics and the end-state-target goal. 

To minimize the potential modulation of biological motion processing by top-down factors 

associated with goal coding (Bekkering et al., 2000), attention/salience (Leighton et al., 2010), 

teleological reasoning (Csibra & Gergely, 2007) and social modulation (Wang & Hamilton, 

2012), the atypical biological models were observed as non-human agents in the absence of 
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end-state-targets. The finding of temporal correspondence (Gangitano, Mottaghy, & Pascual-

Leone, 2001) between observed (atypical17; atypical26) and imitated movement kinematics 

is therefore consistent with biological motion being processed through lower-level visuomotor 

processes operating in the human mirror-mechanism (Brass & Heyes, 2005; Casile et al., 

2010; Dayan et al., 2007; Press, Cook, Blakemore, & Kilner, 2011). Detection of biological 

motion is suggested to occur in a neural substrate associated with the posterior STS (Allison, 

Puce, & McCarthy, 2000), while coding the kinematic properties of an observed action 

(Hamilton, 2008; Iacoboni, 2009) is suggested to occur in the fronto-parietal mirror-system 

(Di Dio et al., 2013; Press et al., 2011). Within the fronto-parietal mirror mechanism, the 

premotor region has been associated with coding the temporal features of visual information 

through analysis of MEPs  during different phases of a grasping action (Gangitano et al., 

2001). Moreover, evidence that certain phases of movement are reflected in time-

synchronized neural activation (e.g., greatest activation during display of maximal grip 

aperture), has been suggested to indicate online visual processing during observation of 

biological motion. We concur with this reasoning and suggest the finding of temporal 

correspondence between the model and imitation of atypical biological motion was in part 

based on the online visual processing of such motion during each observation trial. Such 

findings of continual matching of action-execution with action-observation are consistent with 

our previous work on biological motion coding during observational practice (Hayes et al., 

2014). 

In summary, the findings in the present experiment showed atypical biological motion 

kinematics was represented during imitation learning, both in the presence and absence of 

end-state-targets. Imitation of biological motion kinematics involves top-down attentional and 

lower-level visuomotor systems, which operate as complementary processes. 
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