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 The grass snake (Natrix natrix) and the adder (Vipera berus) 

lives in sympatry thoughtout most of their range in Great 

Britain. 

 Size sexual dimorphism is recognised in British specimens 

from both species as a mechanism to reduce intraspecific 

competition. 

 No sexual dimorphism was present in head shape of both 

snakes.  

  The head shape of the grass snake is strongly influenced by 

allometry so that larger individuals can produce stronger bite 

force. 

 The use of venom in Vipera berus explains the lack of 

allometric patterns in head shape recognised for the British 

specimens. 

ACCEPTED M
ANUSCRIP

T



3 
 

ABSTRACT 

The non-venomous grass snake (Natrix helvetica) and the venomous adder (Vipera berus) are two 

native species that are often found in sympatry in Great Britain and Europe. They occupy partially 

overlapping ecological niches and prey on small vertebrates, but use different feeding strategies. 

Here, we investigated the morphologies of grass snakes and adders from Dorset (UK) using two-

dimensional geometric morphometrics to assess the degree of sexual dimorphism in size and shape 

together with the relative impact of allometry and general body dimensions on head shape. Both 

species showed significant sexual dimorphism in head size, but not in head shape. We found a clear 

allometric pattern in N. helvetica, whereas allometry in V. berus was generally less pronounced.  

Body dimensions were strongly correlated with head shape in the grass snake, but not in the adder. 

The fact that V. berus is venomous appears to explain the lack of allometric patterns and the lack of 

an association between body dimensions and head shape. The high degree of size dimorphism 

identified in both species could originate from the advantages of reduced intraspecific competition 

that are conveyed by a partial differentiation in feeding morphology.   

 

Keywords: allometry; evolution; geometric morphometrics; morphology; snakes 

 

1. Introduction 

Allometry is one of the most pervasive components of vertebrate morphological variation 

and can be interpreted as the impact of size variation on different body parts (Calder, 1996; 

Klingenberg, 2013a). Different definitions of allometry have been used over the last century. Under 

the Huxley-Jolicoeur definition, allometry is considered to be the covariation between 

morphological traits (Jolicoeur, 1963) while Gould and Mosimann defined allometry as the 

covariation between size and shape (Gould, 1966; Mosimann, 1970; Klingenberg, 2016). The term 

‘static allometry’ is used to describe shape variation among individuals of the same age/sex. It is 
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distinct from both evolutionary allometry (size-shape changes between species) and from 

ontogenetic allometry (shape differences between age classes) (Klingenberg and Zimmermann, 

1992). Static allometry is of great interest for cross-species analyses because variation can be linked 

to ecological adaptations. For instance, Rodriguez et al. (2015) reported that sexual traits frequently 

show different allometric patterns between species and also vary among themselves, both in 

response to the type of selection (i.e., stabilizing or directional) and size-related differences in the 

net benefit of trait size (Kodric-Brown et al., 2006; Eberhard et al., 2009; Schulte-Hostedde et al., 

2011). 

Possibly because of their linear body plans, snakes have always been popular subjects for 

studies of allometry (e.g. Shine, 1994; King, 2002; Feldman and Meiri, 2013). Nevertheless, very 

few studies to date have applied geometric morphometrics (GMM) techniques to this group (but 

see, for example, Gentilli et al., 2009). GMM allows more detailed analyses of interactions between 

size and shape that can be related to other potentially co-evolved biological characteristics (Zeldich 

et al., 2004). More specifically, it extracts size and shape data from landmark Cartesian coordinates 

in order to describe the morphology of a biological structure (Adams et al., 2004, 2013; Slice, 

2007).  

Extant snakes (suborder: Serpentes) comprise over 3600 species and therefore represent 

36% of total squamate diversity (Figueroa et al., 2016). They show a wide variety of morphologies 

and ecologies. Two of the main characteristics associated with the evolution of the snake clade are 

the loss of ancestral limbs and the extreme elongation of the body. This latter trait followed the 

decoupling of primaxial and abaxial domains together with an increase in the number of vertebrae 

(Sarris et al., 2012; Head and Polly, 2015). Furthermore, snakes have evolved a kinetic skull for 

manipulation and ingestion of large prey items. The snake skull is divided into a “non-trophic” 

akinetic region associated with the braincase (Camilleri and Shine, 1990), which usually presents 

closely connected bones, and a “trophic” region involved in the feeding process, which is 

characterized by an extreme articular elasticity. Non-trophic structures are generally used in 
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systematics studies because they are less affected by morphological variation related to dietary 

adaptations (Gloyd and Conant, 1990). Snake mandibles do not present a fused symphysis which 

allows greater deformability of the feeding apparatus during ingestion of prey that are quite large 

relative to the snake itself (Cundall and Gans, 1979). Not surprisingly, previous investigations have 

identified strong associations between maximum prey size and head width and length, a good proxy 

for skull size and shape (Cundall and Greene, 2000; Meik et al., 2012). However, habitat selection 

and lifestyle (e.g. fossoriality) also seem to have a major influence on the evolution of snake head 

size and shape (Voris and Murphy, 2002; Fabre et al., 2016; Da Silva et al., 2018).  

 Three snakes are native to Great Britain with the two most widespread species being the 

adder (Vipera berus) and the grass snake (Natrix helvetica) (Arnold et al., 1978). The latter (family 

Natricidae) can grow to an average length of 120 cm and is found in a wide variety of habitats, 

including meadows, dry woods and hedgerows. They are strong swimmers and eat mainly 

amphibians, especially frogs, that are killed with a single bite and without constriction. Females are 

the larger sex, as in most other Colubroidea (Shine, 1994; Borczyk, 2007; Baier and Wiedl, 2010). 

The size dimorphism is thought to cause divergent selection pressures that are reflected in both 

ecological and morphological traits (Madsen, 1983). Female N. helvetica have a comparatively 

larger head and appear adapted to predate larger prey than males (Borczyk, 2015). In contrast, V. 

berus (family Viperidae) is a much smaller species, growing to an average length of 65 cm 

(although it can reach 90 cm). It often occupies habitats such as moorlands, heaths and open 

woodlands (Presst, 1971; Arnold et al., 1978). It is venomous and feeds mainly on small mammals, 

but also takes birds, amphibians, lizards and invertebrates. Females usually reach larger body sizes 

than males, which is not entirely expected given that males engage in combat for access to females, 

with success being dependent on male body size (Andrén and Nilson, 1981; Madsen, 1988).  

 Here we obtained samples of N. helvetica and V. berus with the primary aim of comparing 

intraspecific sexual dimorphism and static allometry between snake species. The nature of our 

samples, which were collected at similar times within the same area (Dorset, UK), and the fact that 
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we included venomous and non-venomous species with different feeding strategies, make our study 

quite unique. We specifically examined the following questions through use of GMM analyses of 

photographs of the heads of both species: 1) Do N. helvetica and V. berus exhibit different degrees 

of sexual dimorphism in size and shape? 2) To what extent do these species show static allometry in 

the head? 3) What is the degree of covariation between head shape and metrics that quantify relative 

body dimensions? 

 

2. Materials and Methods 

 

2.1 Specimens, Landmarks and PGMM 

All specimens were from the World Museum Liverpool (WML) collection. Adult Vipera berus 

specimens (38 females and 30 males) had been collected from 1958 to 1962, whereas adult N. 

helvetica (39 females and 33 males) had been collected in 1962. All specimens were preserved in 

alcohol. 

Two linear measurements were recorded from each specimen: tail length (TL) and body 

length (BL), intended as snout-vent length. Following Lawing et al. (2012), the index lnBL/lnTL 

was calculated to describe relative locomotory adaptations in both species. A meta-analysis of 

North American crotalids demonstrated that this index correlates with degree of arboreality as well 

as aquatic behaviour (Lawing et al., 2012). Linear measurements, index and catalogue number of 

the sample are provided in the supplementary material (Table S1). 

Photographs of the heads of N. helvetica and V. berus in dorsal view were taken using a 

digital SLR camera (Nikon D5300; lens focal length: 18-140mm). The camera was positioned 

directly above the specimen using a horizontal tripod in order to prevent image perspective 

alterations (see Muir et al., 2012). The correct alignment of both the camera and the specimen (i.e., 

camera lens and specimen both parallel to the ground) was checked using a spirit level. 
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Using the photographs, anatomical landmarks were placed at the junctions of scales for each 

individual with the software TPSDig (v. 2.21, Rohlf, 2015) (Fig.1). The landmarks that we used are 

optimal for detecting shape differences between taxa and also cover functionally relevant head 

components such as relative jaw width and length (Ruane, 2015). Size and shape data were obtained 

from the Cartesian coordinates of landmarks using Procrustes-based geometric morphometrics 

(PGMM - Adams et al., 2004, 2013; Cardini, 2013). The procedure for separating shape from size 

data is known as Procrustes superimposition (Rohlf and Slice, 1990). Size was estimated as centroid 

size (CS) which is the square root of the sum of squared distances of landmarks from their 

barycentre. Shape data were obtained in three steps: 1) the standardization of size (division of the 

landmark Cartesian coordinates of each specimen by its centroid size), 2) the removal of 

translational variation (barycentres from all specimens are superimposed) and 3) the minimization 

of rotational differences (least-square minimization of the sum of squared distances of 

corresponding landmarks in a sample) (Rohlf and Slice, 1990). The asymmetric component of 

shape data was discarded because it was negligible in our sample (2.3%). Shape differences were 

visualized using wireframe diagrams, in which straight lines (links) connect the anatomical 

landmarks in order to represent the structure being measured (Klingenberg, 2013b).  

 

2.2 Measurement Error 

In order to assess the repeatability of the chosen landmark configuration, one of the authors (DT) 

digitized landmarks twice, with a 10 day interval between the first and second replicate 

measurements (Viscosi and Cardini, 2011; Fruciano, 2016). Differences between these replicates is 

expected to be negligible, relative to intraspecific variation, and was analysed using the software 

PAST (v. 2.17c - Hammer et al., 2001). Differences in size estimation were evaluated by calculating 

product-moment correlation coefficients between CS values obtained from the first and second 

replicates. Shape differences were compared using a cluster analysis based on Procrustes distances 

between replicates. If the configuration is repeatable then it is expected that, for size, the correlation 
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between CS values should be very close to one while, for shape, the two replicates should cluster 

together within individuals.  

 

2.3 Size and Shape dimorphism 

The presence of both interspecific and intraspecific (between-sex) size and shape dimorphisms were 

tested with two-way (species and sex) Procrustes Analyses of Variance (Procrustes ANOVA: 

Klingenberg and McIntyre, 1998; Klingenberg et al., 2002). We performed a univariate Procrustes 

ANOVA on each of the available body dimensions (lnCS, lnTL, lnBL and the index). Shape was 

analysed using a multivariate Procrustes ANOVA based on Procrustes coordinates as shape 

dependent variables. All ANOVAs were performed using the R package geomorph v. 3.0.3 (Adams 

and Otárola-Castillo, 2013). 

Species-related differences and sexual dimorphism for each of the size variables were 

visualized using boxplots. An additional estimate of sexual size dimorphism (SSD) was obtained 

using an SSD index, which was equal to the difference between the mean female size and the mean 

male size, divided by mean female size (Cardini and Elton, 2008; Porobić et al., 2016). Hence an 

SSD value of zero indicates no sexual dimorphism.  

In order to assess shape variation across all individuals, a Principal Components Analysis 

(PCA) of Procrustes coordinates (Rohlf, 1993) was performed using MorphoJ (v. 1.06d, 

Klingenberg, 2011). Due to notable interspecific shape divergence, the PCA was performed using 

the pooled within-species covariance matrix in order to reduce the distances between the two groups 

(see Meloro et al., 2014). A sexual shape dimorphism index was then calculated for each species: 

the Procrustes distances between mean female and mean male measurements within species were 

divided by the maximum Procrustes distances between males and females. Sexual dimorphism in 

shape was also evaluated by performing two regressions, one for each species. The dependent 

variable (i.e., Procrustes coordinates) was regressed onto a dummy variable coding for sex (i.e., 0, 1 

variable) (see Cardini and Elton, 2008). 
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2.4 Static allometry and covariation between size and shape variables 

Static allometry was tested by regressing shape coordinates onto four different size variables: 1) the 

natural logarithm of centroid size (lnCS), 2) the natural logarithm of tail length (lnTL), 3) the 

natural logarithm of body length (lnBL) and 4) an index related both to TL and BL (index = 

lnBL/lnTL). Natural logarithms were used because the ranges of sizes were quite large 

(Klingenberg, 2016). The allometric regressions were first performed within each species (mixed 

sexes) but then replicated with the sexes separated. Because the same null hypothesis (absence of 

allometry) was tested multiple times, the usual 5% threshold for statistical significance was 

corrected using a Bonferroni adjustment (see Tamagnini et al., 2017).  

The allometric trajectories from the regressions were compared by computing the angle 

between pairs of them (Klingenberg and Zaklan, 2000; Klingenberg and Marugán-Lobón, 2013). 

For each size predictor, we obtained the angle between species (sexes pooled), between sexes 

within species and between species within sexes. A more complex (three-way) Procrustes ANOVA 

was additionally calculated in order to summarize the previous analyses: in this model we tested 

simultaneously the effects of body metrics, sex, species and their mutual interactions. 

 

 A two-block Partial Least Squares (PLS) approach was used to determine the degree of 

covariation between head shape and general body size (here described by lnCS and the other three 

body dimensions) in both species (see Meloro and Jones, 2012). PLS extracts pairs of vectors that 

maximise covariation between two blocks of multivariate variables (Rohlf and Corti, 2000). In the 

present study, six PLS analyses were performed in order to evaluate the covariation between size 

and shape variables in each species. These analyses were initially carried out across both sexes and 

then with males and females separate. The degree of covariation in each PLS was evaluated using 

the correlation between first pair of PLS1 scores and also using the RV coefficient. The latter is a 
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similarity coefficient between positive semi-definite matrices (Escoufier, 1973). All analyses were 

performed using MorphoJ. 

  

3. Results 

3.1 Measurement error 

The two digitization replicates for CS were very highly correlated (r = 0.999). For shape variables, 

138 out of 140 (98.5% of the total) replicate measurement pairs taken from the same specimen 

clustered together. 

 

3.2 Size and shape dimorphism 

Species and sex variation was found to be significant for all size variables with the exception of 

lnTL (univariate Procrustes ANOVAs: see Table 1). A significant interaction between species and 

sex was also detected for all variables except for lnBL (Table 1), which indicates that degrees of 

SSD generally differ between the two species. 

Boxplots showed greater values in N. helvetica than in V. berus, for all the size descriptors 

except for the index (lnBL/lnTL) (Fig. 2). Females were larger than males, with the exception of 

lnTL for V. berus. These findings were confirmed by relatively high SSD indices (Table 2).  

Significant shape differences were detected between species but not between sexes 

(multivariate Procrustes ANOVA: see Table 1). The pooled within-species PCA confirmed strong 

shape overlap between sexes but not between species. PC1 (27.6% of total variance) stressed 

greater head width and reductions in the rostral region on negative scores (Fig. 3) but did not 

discriminate between species or sexes. All V. berus specimens showed positive scores on PC2 

(14.3% of variance) which were associated with a relative reduction in frontal and parietal scales 

(Fig. 3). Sexual shape dimorphism was very similar between species (9% in N. helvetica and 8% in 

V. berus) confirming the general findings of the PCA (Table 2). Furthermore, regressions of 
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Procrustes coordinates onto sex (represented as a dummy variable) were not significant for either N. 

helvetica or V. berus (p = 0.108 and p = 0.572, respectively) with sex predicting only a small 

proportion of the shape variance (2.4% and 1.2%, respectively). 

  

3.3 Allometric regressions and PLS 

Results of the 24 allometric regressions performed on nested subsets of the data are shown in Table 

3. In general, regressions on sexes-pooled data showed largely congruent results to the ones 

performed with the sexes separate. N. helvetica regressions showed clear allometric patterns, with 

11 significant p-values out of 12 (91%). Ten of these p-values (83%) were still significant after 

application of a Bonferroni adjusted significance level (in the present case equal to p = 0.0021). The 

range of shape variance explained by each size variable in N. helvetica was between 10-15% with 

the exception of two regressions performed using the index lnBL/lnTL as the shape variation 

predictor).  

Figure 4 shows the pattern of shape change relative to lnCS variation in the grass snake. Specimens 

with low values of lnCS have a relatively shorter rounder head, associated with a bigger frontal 

scale and a relative reduction of head width in the area anterior to the eye. In contrast, individuals 

with higher lnCS values show an arrowhead-like shape, with an increased relative head length. No 

differences were detected between male and female patterns of allometric shape variation. 

Vipera berus regressions were generally not significant, showing an overall lack of allometry in this 

species: only three p-values were significant out of 12 (25%) and none of these were significant 

when a Bonferroni correction was applied. Two out of the three cases of significant allometry 

applied to males only. Similarly, the percentage of shape variance explained by size predictors 

differed greatly between the two sexes: values for females were always below 3%, while values for 

males were always greater than 5%. Individual V. berus with lower lnCS values exhibited wider 

heads, despite a slight reduction in relative head length (Fig. 5). Scale pattern exhibited relatively 
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little size-related variation. No between-sex differences in the allometric shape patterns were 

observed, except for the magnitude of shape variation. 

   Angles between allometric trajectories are shown in Table 4. Comparisons of N. helvetica 

and V. berus allometric trajectories revealed a significant deviation from an angle of 90° in only two 

cases out of 12 (without Bonferroni correction). Furthermore, angles were greater than 65° in 10 of 

these cases strongly supporting the hypothesis that the trajectories are not parallel. For comparisons 

between sexes within each species, angles significantly differed from 90° in six out of eight cases 

indicating parallelism (Table 4). Figure 6 provides visual representations of allometric trajectories 

for each size variable across species and sexes for cases in which all specimens are analysed within 

the same morphospace. A three-way Procrustes ANOVA model confirmed the differences in 

allometric trajectories between species and sexes (Table 5). 

 The six PLSs performed in the present study showed clear trends (Table 6). The three PLS 

performed within N. helvetica subsets exhibited highly significant p-values and RV coefficients that 

were great than 0.3. In contrast, each PLS performed on V. berus showed a non-significant p-value 

and an RV coefficient lower than 0.2, indicating a lack of covariation between size and shape 

matrixes. Correlations between PLS1 scores of shape and size matrix were very high and significant 

in the grass snake (r > 0.85 in all cases), while in the adder none of these correlations were 

significant (r < 0.65 in all cases). The angle between Block1 PLS1 in N. helvetica for the 

comparison of males and females was lower than 50° (p < 0.05) which indicates parallel 

trajectories, i.e., a similar pattern of covariation between shape and body size in both sexes. Shape 

variation associated with PLS1 in the shape matrix (N. helvetica, sexes pooled) is shown in Fig. 7. 

Positive scores along this axis are associated with an increase in body length (lnBL vs PLS1, r = 

0.66) relative to tail length (lnTL vs PLS1, r = 0.60) and centroid size (lnCS vs PLS1, r = 0.43), 

which is associated with an expansion of head width and rostral area followed by a reduction of the 

frontal scale and orbital region. Specimens with negative values along this axis had a more rounded 

head. 
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4. Discussion 

There are notable differences in head size and shape between N. helvetica and V. berus. In our 

Dorset samples, the grass snake always showed higher values for measures of relative size than the 

adder, especially when considering tail length. These differences can be the result of differences in 

ecological niche between the two species. Despite being sympatric, the grass snake is much more 

aquatic than the adder and the relatively longer tail appears likely to be an adaptive component 

related to swimming. Lawing et al. (2012) made similar observations in crotalid snakes. Our results 

therefore reinforce the hypothesis that relative tail length plays an important adaptive role in snakes. 

Differences in size between the grass snake and the adder size might be associated with 

divergent prey selection which would reduce interspecific competitive interactions within a 

community. This appears to have been important in shaping snake guilds (MacArthur, 1970; 

Schoener, 1983; Toft, 1985). There is evidence that interspecific interactions can influence body 

size in snakes. The North American coachwhip snake (Coluber flagellum) appears to reach smaller 

sizes in areas that the related Coluber constrictor is present, relative to similar habitats in which it is 

the only Coluber species (Steen et al. 2012). Presst (1971) found that the commonest V. berus food 

items in low-lying damp meadows in Dorset (UK) were small mammals (shrews, voles and mice). 

Adders appear to be specialised small mammals feeders in other parts of their European 

geographical range (Luiselli and Anibaldi, 1991; Forsmann, 1991). Grass snakes in southern 

England more commonly eat anurans (Gregory and Isaac, 2004). Luiselli (2006) carried out snake 

community meta-analyses (including adder-grass snake-smooth snake community) and concluded 

that sympatric species differ considerably in their feeding habits. This corroborates our suggestion 

that general size differentiation relates to different diets in sympatric N. helvetica and V. berus 

although more updated ecological data are required to validate this pattern on a broader 

geographical scale.  
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In terms of shape, the very divergent evolutionary histories of the two genera are highlighted 

by the completely different scale shapes in the “non-trophic” region of the head: in particular both 

the frontal and the parietal scales occupy a smaller area in V. berus relative to N. helvetica. A 

broader head in N. helvetica is compatible with anurophagy, as observed previously in the 

Natricidae (Hampton, 2011). A relative reduction in the width of the anterior region of the N. 

helvetica head is also explained by the need to overcome hydrodynamic constraints, as observed in 

other aquatic snakes (Segall et al., 2016).  

 Sexual dimorphism in both species showed a different trend in size compared to shape. SSD 

analyses confirmed the generally larger size of females (with the only exception being tail length in 

V. berus) which is in agreement with many studies of the Natricidae and Viperidae (Madsen, 1983; 

Shine, 1994; Gregory, 2004; Maritz and Alexander, 2011; Andjelković et al., 2016). Larger female 

size is expected to occur in many snake species due to its association with increased fecundity 

(Shine, 1986, 1989). In addition, developmental studies have shown that testosterone has an 

inhibitory effect on head growth of male snakes (Shine and Crews, 1988). The degree of SSD 

differed between the two species for lnCS, lnTL and the index (lnBL/lnTL) and each SSD index 

differed from others between species, indicating a non-homogeneous degree of dimorphism among 

different body parts. The region of the body mostly affected by SSD seems to be the head (sexual 

size dimorphism in the head exceeds 10% in both species). These results are similar to the ones 

available in the literature (see for example Gregory and Isaac, 2004). The increased range of 

variation in head size between males and females is easy to explain if it arises from divergent 

feeding habits (gape size affects swallowing performance: Forsman and Lindell, 1993; King, 2002) 

which reduce the intraspecific competition for food  (Vincent and Herrell, 2007). A different trend 

was observed in the shape dimorphism of both species. Neither multivariate Procrustes ANOVA 

nor multivariate regression revealed significant sexual dimorphism in the head shape of either 

species. Andjelković et al. (2016) previously found shape dimorphism in some elements (i.e., 

braincase, nasal and maxilla) of the grass snake skull, while no significant dimorphism was 
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detectable in the pterygoid or the quadrate bones, which differed slightly from our findings. The 

pattern described for V. berus mirrors that described for the related Vipera aspis which also shows a 

weak sexual shape dimorphism in the skull (Gentilli et al., 2009).  

  Allometric regressions detected different pattern between N. helvetica and V. berus. The 

grass snake displayed a clear allometric pattern with no substantial differences in the percentage of 

shape variation explained by body dimensions in males compared to females. All size variables 

generally explained more than 10% of shape variance. This trend is the same as that observed by 

Andjelković et al. (2016) and it can be interpreted as arising from the need for a stronger bite force, 

typical of frog-eating snakes. Nevertheless, as for V. aspis (Gentilli et al., 2009), the adder did not 

exhibit a clear allometric pattern. The absence of allometry can be a consequence of envenomation 

of prey items, which reduces the need for a strong bite in larger snakes. The primary function of 

snake venom is to facilitate rapid immobilization of prey, even if the prey manages to escape the 

initial predator bite (Barlow et al., 2009). However, the trend observed in male adders 

is slightly different from that in females: in the former all regressions explained more than 5% of 

shape variance (even when the regressions were non-significant), while in females the percentage 

was usually less than 3%. Such a discrepancy might be related to the presence of male-male 

combats for females, frequently observed in the family Viperidae (Madsen, 1988; Senter et al., 

2014).  

Sexual selection has been linked with static allometry in a multitude of studies (Green, 

1992; Tomkins and Simmons, 1996; Emlen and Nijhout, 2000): the resulting allometric pattern 

might be due to evolution of a large head due to sexual selection (Green, 1992; Bonduriansky and 

Day, 2003). Static allometry of surface areas (here, head surface) is favoured because it causes a 

magnification of apparent differences in individual sizes, facilitating the assessment of sexual 

competitiveness (Wallace, 1987). That is, a wider head shape might be advantageous in bigger 

adder males because it might be more effective during fighting and/or constitute a signal for male 

competitors. 
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Covariation between shape and size matrices was completely lacking in female V. berus 

(and subsignificant in males), which contrasts sharply with N. helvetica which showed covariation 

within all three analytical groupings (i.e., mixed sexes, males and females). Increased venom 

production in females has been noted in other venomous snakes could potentially play a role in 

explaining the complete lack of allometry in head shape of female adders (Furtado et al., 2006). 

In conclusion, we identified different trends regarding sexual size and shape head 

dimorphism in N. helvetica and V. berus. The degree of size difference between the sexes exceeded 

the shape-related divergence. With regard to size-shape covariation, the grass snake presented a 

static allometric pattern, while the adder did not (with a partial exception for male adders) 

supporting the hypothesis that mode of predation is likely to be a primary mechanism that drives 

phenotypic adaptations in snakes (Vincent et al., 2006). 
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Figure captions 

 

Fig. 1 Landmark configuration on head outlines of the grass snake (Natrix helvetica)(top) and the 

adder (Vipera berus)(bottom). Landmarked scales are indicated as frontal (F); and parietal (P). 

Scale bar is 1 cm in length. 

 

Fig. 2 Box-whisker plots of lnCS (a), lnTL (b), lnBL (c) and the index (d) across snake species and 

sexes. Limits on boxes (light males, dark females) correspond to the first and third quartiles, while 

the internal black line represents the median. Whiskers extend from minimum to maximum values. 

Circles represent outliers, asterisks are extreme outlies with values more than three times the height 

of the boxes. 

 

Fig. 3 Scatterplots showing variation on PC1 and PC2, which represent 27.6% and 14.3% of the 

total variance, respectively. PC scores are from the pooled within-species covariance matrix. 

Wireframe visualisations are presented at the extremes on each PC axis, showing relative shape 

variation (black) and mean configuration (grey). 

 

Fig. 4 Pattern of allometric shape variation in Natrix helvetica for (a) mixed-sexes, (b) males, (c) 

females. Mean shape is visualized in grey, while evaluated shape is visualized in black. 
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Fig. 5  Pattern of allometric shape variation in Vipera berus for (a) mixed-sexes, (b) males, (c) 

females. Mean shape is visualized in grey, while evaluated shape is visualized in black 

Fig. 6 Visualization of allometric trajectories across species and sexes when (a) lnCS, (b) lnB, (c) 

lnTL and (d) the index are used as a size predictor. V. berus specimens are shown as triangles, N. 

helvetica are shown as circles. Females are shown in black, males are shown in white. 

 

Fig. 7  Pattern of shape variation associated with Block1 PLS1 in pooled-sex Natrix helvetica 

sample. Mean shape is visualized in grey, while evaluated shape is visualized in black. 
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Tables 

 

Table 1  Univariate (for size) and multivariate (for shape) two-way Procrustes ANOVA to test the impact of species and sex (and their interaction) 

on head size and shape for 140 Natrix helvetica and Vipera berus specimens. Significance is highlighted in italics 

 

  
Size/Shape 

variable 
  df SS MS r² F p-value 

Size 

lnCS 

Sex 1 0.4919 0.49192 0.07458 16.871 0.001 

Species 1 2.022 2.02204 0.30657 69.347 0.001 

Sex:Species 1 0.1161 0.11611 0.0176 3.982 0.013 

Residuals 136 3.9656 0.02916     

Total 139 6.5956         

lnTL 

Sex 1 0.0377 0.0377 0.00151 0.5086 0.475 

Species 1 14.6939 14.6939 0.58645 198.013 0.001 

Sex:Species 1 0.232 0.232 0.00926 3.1271 0.006 

Residuals 136 10.0921 0.0742     

Total 139 25.0558         

lnBL 

Sex 1 1.9403 1.94025 0.16717 28.4374 0.001 

Species 1 0.3563 0.35633 0.0307 5.2225 0.014 

Sex:Species 1 0.0311 0.03112 0.00268 0.4561 0.481 

Residuals 136 9.2791 0.06823     

Total 139 11.6068         

Index 

Sex 1 0.9457 0.9457 0.06359 39.163 0.001 

Species 1 10.3769 10.3769 0.69772 429.726 0.001 

Sex:Species 1 0.2659 0.2659 0.01788 11.013 0.001 

Residuals 136 3.2841 0.0241     

Total 139 14.8726         

Shape 
Procrustes 

coordinates 

Sex 1 0.00473 0.00473 0.00225 1.6874 0.201 

Species 1 1.71019 1.71019 0.81523 610.079 0.001 

Sex:Species 1 0.00165 0.00165 0.00078 0.5871 0.002 
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Residuals 136 0.38124 0.0028     

Total 139 2.09781         
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Table 2  Size and shape sexual dimorphism indexes computed for Natrix helvetica and Vipera berus. Each index is also expressed as a percentage 

of size/shape difference between females (bigger) and males (smaller). Average and maximum Procrustes distance between the sexes is also 

provided as a measure of shape distance 

 

 Sexual size dimorphism (SSD) Sexual shape dimorphism 

  lnCS lnTL lnBL lnBL/lnTL 
Average Proc. 

Dist. 

Max. Proc. 

Dist. 
Percentage 

Natrix helvetica  22.4% 2.4% 6.8% 4.3% 0.0134801 0.15185 9% 

Vipera berus 12.5% -6.3% 5.4% 10.9% 0.01426545 0.18316 8% 

 

  

ACCEPTED M
ANUSCRIP

T



31 
 

 

Table 3  Allometric regressions with percentage of shape variance explained by each body metric and relative p-value. P-values are in italics when 

significant (p < 0.05) and underlined when still significant after a Bonferroni correction for multiple tests 

 

 

Species Sex Size Variable % predicted p-value 

Natrix helvetica 

Mixed 

lnCS 13.53% <.0001 

lnTL 11.60% <.0001 

lnBL 12.99% <.0001 

Index 5.51% 0.0025 

Female 

lnCS 16.52% <.0001 

lnTL 12.02% 0.0004 

lnBL 15.31% <.0001 

Index 5.14% 0.0631 

Male 

lnCS 14.64% 0.0003 

lnTL 16.37% 0.0003 

lnBL 16.35% 0.0002 

Index 15.01% 0.0003 

Vipera berus 

Mixed 

lnCS 4.28% 0.0052 

lnTL 1.64% 0.3457 

lnBL 1.95% 0.222 

Index 1.34% 0.5144 

Female 

lnCS 2.88% 0.3633 

lnTL 0.60% 0.9962 

lnBL 0.66% 0.9945 

Index 0.56% 0.9973 

Male 

lnCS 7.82% 0.0191 

lnTL 6.21% 0.0709 

lnBL 5.36% 0.1296 
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Index 6.73% 0.0453 
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Table 4  Angles between allometric trajectories between species and sexes, and p-values related to each comparison. P-values are in italics when 

significant (p < 0.05) and underlined when still significant after a Bonferroni correction for multiple tests 

 

Species Sex Size Variable Angle degrees p-value 

Natrix vs Vipera 

Mixed 

lnCS 79.742 0.25468 

lnTL 68.34 0.07973 

lnBL 61.691 0.03174 

Index 77.798 0.216 

Female 

lnCS 83.71 0.34314 

lnTL 73.277 0.13991 

lnBL 54.635 0.00941 

Index 96.687 0.66621 

Male 

lnCS 79.485 0.24936 

lnTL 69.337 0.09003 

lnBL 67.173 0.0688 

Index 69.035 0.08681 

Natrix helvetica Female vs Male 

lnCS 42.933 0.00063 

lnTL 49.454 0.0032 

lnBL 47.58 0.00208 

Index 60.482 0.02625 

Vipera berus Female vs Male 

lnCS 35.463 0.00006 

lnTL 70.447 0.10257 

lnBL 54.636 0.00941 

Index 80.966 0.28069 
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Table 5 Three-way Procrustes ANOVA to test the impact of body metrics, species and sex (and their interaction) on head shape in the entire 

sample. Significance is highlighted in italics 

 

 Size variable  df SS MS r2 F Z p-value 

Shape 

lnCS 

lnCS 1 0.55356 0.55356 0.26387 209.7498 5.5516 0.001 

species 1 1.17484 1.17484 0.56003 445.1614 7.0572 0.001 

sex 1 0.0036 0.0036 0.00171 1.3632 4.3987 0.001 

lnCS:species 1 0.01058 0.01058 0.00504 4.0101 6.4996 0.001 

lnCS:sex 1 0.00179 0.00179 0.00085 0.677 3.0362 0.002 

species:sex 1 0.00385 0.00385 0.00183 1.4584 4.6458 0.001 

lnCS:species:sex 1 0.00122 0.00122 0.00058 0.4634 2.2133 0.015 

Residuals 132 0.34837 0.00264     

Total 139 2.09781      

lnBL 

lnBL 1 0.07241 0.07241 0.03452 26.9924 3.5445 0.001 

species 1 1.65538 1.65538 0.7891 617.0528 6.6776 0.001 

sex 1 0.00414 0.00414 0.00197 1.5438 4.5793 0.001 

lnBL:species 1 0.00407 0.00407 0.00194 1.5182 4.7 0.001 

lnBL:sex 1 0.00324 0.00324 0.00155 1.2086 4.1126 0.001 

species:sex 1 0.00243 0.00243 0.00116 0.9067 3.6302 0.001 

lnBL:species:sex 1 0.002 0.002 0.00095 0.7467 3.2027 0.001 

Residuals 132 0.35412 0.00268     

Total 139 2.09781      

lnTL 

lnTL 1 1.02448 1.02448 0.48836 380.4459 6.1774 0.001 

species 1 0.70058 0.70058 0.33396 260.1632 7.51 0.001 

sex 1 0.00492 0.00492 0.00235 1.8285 5.0125 0.001 

lnTL:species 1 0.00457 0.00457 0.00218 1.6964 4.7309 0.001 

lnTL:sex 1 0.00139 0.00139 0.00066 0.518 2.4792 0.005 

species:sex 1 0.00361 0.00361 0.00172 1.3417 4.3003 0.001 

lnTL:species:sex 1 0.00279 0.00279 0.00133 1.0375 3.8104 0.001 

Residuals 132 0.35546 0.00269     

ACCEPTED M
ANUSCRIP

T



35 
 

Total 139 2.09781      

Index 

Index 1 1.20839 1.20839 0.57603 442.5915 6.361 0.001 

species 1 0.50727 0.50727 0.24181 185.7959 8.1842 0.001 

sex 1 0.00706 0.00706 0.00336 2.5851 5.4843 0.001 

Index:species 1 0.00513 0.00513 0.00245 1.8805 4.9007 0.001 

Index:sex 1 0.00218 0.00218 0.00104 0.8003 3.2415 0.001 

species:sex 1 0.00418 0.00418 0.00199 1.5295 4.5872 0.001 

Index:species:sex 1 0.0032 0.0032 0.00152 1.171 3.9581 0.001 

Residuals 132 0.3604 0.00273     

Total 139 2.09781      
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Table 6  Summary of PLS analyses performed on each snake species separately, to test covariation between head shape and relative body metrics. 

p-values represent significance for the first pair of PLS vector extracted. P-values are in italics when significant (p < 0.05) and underlined when still 

significant after a Bonferroni correction for multiple tests 

 

Species Sex RV coefficient r PLS1 (p-value) p-value 

Natrix helvetica 

Mixed 0.3122 0.88 (<.0001) <.0001 

Female 0.3381 0.86 (<.0001) <.0001 

Male 0.3642 0.86 (<.0001) <.0001 

Vipera berus 

Mixed 0.0682 0.38 (0.3275) 0.1837 

Female 0.0262 0.25 (0.9961) 0.9936 

Male 0.174 0.62 (0.0525) 0.0507 
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