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Abstract: The Shipboard Automatic Identification System (AIS) is crucial for navigation safety
and maritime surveillance, data mining and pattern analysis of AIS information have attracted
considerable attention in terms of both basic research and practical applications. Clustering of
spatio-temporal AIS trajectories can be used to identify abnormal patterns and mine customary
route data for transportation safety. Thus, the capacities of navigation safety and maritime traffic
monitoring could be enhanced correspondingly. However, trajectory clustering is often sensitive
to undesirable outliers and is essentially more complex compared with traditional point clustering.
To overcome this limitation, a multi-step trajectory clustering method is proposed in this paper
for robust AIS trajectory clustering. In particular, the Dynamic Time Warping (DTW), a similarity
measurement method, is introduced in the first step to measure the distances between different
trajectories. The calculated distances, inversely proportional to the similarities, constitute a distance
matrix in the second step. Furthermore, as a widely-used dimensional reduction method, Principal
Component Analysis (PCA) is exploited to decompose the obtained distance matrix. In particular,
the top k principal components with above 95% accumulative contribution rate are extracted by
PCA, and the number of the centers k is chosen. The k centers are found by the improved center
automatically selection algorithm. In the last step, the improved center clustering algorithm with k
clusters is implemented on the distance matrix to achieve the final AIS trajectory clustering results.
In order to improve the accuracy of the proposed multi-step clustering algorithm, an automatic
algorithm for choosing the k clusters is developed according to the similarity distance. Numerous
experiments on realistic AIS trajectory datasets in the bridge area waterway and Mississippi River
have been implemented to compare our proposed method with traditional spectral clustering and
fast affinity propagation clustering. Experimental results have illustrated its superior performance in
terms of quantitative and qualitative evaluations.

Keywords: vessel trajectory clustering; the improved center clustering algorithm; DTW; PCA;
spectral clustering
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1. Introduction

Automatic Identification System (AIS) is used to identify and locate vessels by electronically
exchanging data with other nearby ships and Vessel Traffic Services (VTS) stations. To enhance
the maritime traffic safety, it is important to extract navigational characteristics and rules through
analyzing the maritime traffic patterns [1,2]. With the rapid development of shipboard AIS in practice,
data mining methods have been widely used to explore the maritime traffic patterns and maritime
situational awareness activities based on massive AIS datasets [3]. In particular, AIS data can be
effectively used to infer different levels of contextual information from the characteristics of ports and
off-shore platforms to spatial and temporal distributions of routes [4,5]. Global AIS networks as a
unity of satellite AIS and terrestrial AIS are consisted of AIS communication system all over the world,
which include a wealth of AIS trajectories. The AIS visualization technology is helpful to the dynamic
regulation and real-time monitoring of vessels, then realizing the seamless global tracking of vessels
throughout the world [6,7]. Visualization of different AIS information is shown in Figure 1.
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The original AIS data contains massive noise and redundant information. Supervisors need to
get effective and real-time AIS information to manage and regulate vessels. Captains also need to
know the movement status of the surrounding vessels to operate their vessels. Thus, how to extract
reliable and useful AIS trajectory features has become the critical problem [10,11]. Ways of extracting
real-time and accurate vessel information have also become a research focus [12]. AIS trajectory data
mining mainly contains five research contents: trajectory data collection, trajectory preprocessing,
trajectory indexing and retrieval, trajectory pattern mining and anomaly detection. The main theories
of trajectory data mining have been reviewed in detail [13]. The main research modules of trajectory
data mining are presented in Figure 2. Trajectory preprocessing is necessary to verify the accuracy of
data. Trajectory indexing and retrieval can compare the difference and measure the distance between
trajectories. Trajectory pattern mining can aid to the trajectory analysis, and also will further apply to
detect abnormal trajectory, plan the route and predict trajectory in the real world [14].
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AIS is a reporting system for ships that can broadcast accuracy locations and further ensure 
navigation safety and was originally conceived for collision avoidance [15]. At present, the domestic 
and foreign research on the application of AIS data mainly consist of five aspects. The most 
common applications are collision avoidance and anomaly detection. The other three applications 
are vessel behavior identification, the extraction of knowledge and the vessel tracking and 
prediction. Statheros et al. [16] have reviewed the reasons and research methods of ship collision 
avoidance clearly, and analyzed the human navigation ability and the different ship collision 
avoidance mathematical models. Mou et al. [17] proposed a linear regression model based on AIS 
data to study the traffic characteristics and avoid collisions in busy waterways, and eventually 
constructed a dynamic model to assess the risk. Bomberger et al. [18] and Rhodes et al. [19] 
developed refined models to learn the normal patterns and evaluate the behavior patterns, then 
predict the vessel location based on the artificial neural network method. Ristic et al. [20] analyzed 
historical AIS data to mine the motion patterns, and proposed an algorithm to detect anomalies 
based on the adaptive kernel density estimation, eventually to predict the vessel motion based on 
the Gaussian sum tracking filter. Mascaro et al. [21] proposed dynamic and static Bayesian network 
models for anomaly detection, which is based on the normal behavior and anomalous behavior 
information extracted from the typical AIS data. Mazzarella et al. [22] proposed an automatic 
extraction method to obtain real knowledge from historical AIS data and assess the behavior of 
fishing vessels, and thus automatically discover fishing areas. The non-spatial attributes speed and 
direction were taken into the clustering algorithm [23], and the DBSCANSD algorithm was 
proposed to extract the normal trajectories and discern the abnormal patterns, and eventually to 
mine the traffic patterns and monitor maritime traffic. Vespe et al. [24] introduced a density map to 
identify fishing activities and investigated the mapping fishing activities based on the use of AIS 
data to track vessels. The architecture and theory of the three AIS receivers in space were introduced 
clearly by Skauen [25], and a method of tracking and quantifying the tracking capability was also 
proposed. Pallotta et al. [26] explored the traffic routes in TREAD and proposed a useful prediction 
method based on the popular Ornstein-Uhlenbeck stochastic processes to locate vessels and predict 
the accuracy of vessel locations, thus further ensuring maritime security. AIS data contains a vast 
amount of information to aid navigation safety, vessel traffic services and maritime domain 
awareness [27]. Therefore, mining of AIS data is crucial to exploit the full potential of different 
applications. Certainly, there are many risks of spoofing and creating counterfeit messages in AIS to 
launch an attack. The theory of AIS systems and various AIS spoofing methods were described in 
detail [28], and the unique security evaluation of AIS was introduced. The novel software AISTX was 
proposed to further ensure and improve the security. 

In this paper, we mainly extract the characteristics of AIS data by trajectory clustering, then find 
customary routes and discern the abnormal trajectories. The clustering analysis of vessel trajectories 
can provide a theoretical basis for the design of route planning and management system. It is also 
helpful to strengthen the dynamic monitoring of ships and improve the efficiency of maritime 
supervision. 
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centers; (2) the improved center clustering algorithm can automatically select the centers based on 
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AIS is a reporting system for ships that can broadcast accuracy locations and further ensure
navigation safety and was originally conceived for collision avoidance [15]. At present, the domestic
and foreign research on the application of AIS data mainly consist of five aspects. The most
common applications are collision avoidance and anomaly detection. The other three applications
are vessel behavior identification, the extraction of knowledge and the vessel tracking and prediction.
Statheros et al. [16] have reviewed the reasons and research methods of ship collision avoidance clearly,
and analyzed the human navigation ability and the different ship collision avoidance mathematical
models. Mou et al. [17] proposed a linear regression model based on AIS data to study the traffic
characteristics and avoid collisions in busy waterways, and eventually constructed a dynamic model
to assess the risk. Bomberger et al. [18] and Rhodes et al. [19] developed refined models to learn
the normal patterns and evaluate the behavior patterns, then predict the vessel location based on
the artificial neural network method. Ristic et al. [20] analyzed historical AIS data to mine the
motion patterns, and proposed an algorithm to detect anomalies based on the adaptive kernel
density estimation, eventually to predict the vessel motion based on the Gaussian sum tracking
filter. Mascaro et al. [21] proposed dynamic and static Bayesian network models for anomaly detection,
which is based on the normal behavior and anomalous behavior information extracted from the
typical AIS data. Mazzarella et al. [22] proposed an automatic extraction method to obtain real
knowledge from historical AIS data and assess the behavior of fishing vessels, and thus automatically
discover fishing areas. The non-spatial attributes speed and direction were taken into the clustering
algorithm [23], and the DBSCANSD algorithm was proposed to extract the normal trajectories and
discern the abnormal patterns, and eventually to mine the traffic patterns and monitor maritime traffic.
Vespe et al. [24] introduced a density map to identify fishing activities and investigated the mapping
fishing activities based on the use of AIS data to track vessels. The architecture and theory of the
three AIS receivers in space were introduced clearly by Skauen [25], and a method of tracking and
quantifying the tracking capability was also proposed. Pallotta et al. [26] explored the traffic routes in
TREAD and proposed a useful prediction method based on the popular Ornstein-Uhlenbeck stochastic
processes to locate vessels and predict the accuracy of vessel locations, thus further ensuring maritime
security. AIS data contains a vast amount of information to aid navigation safety, vessel traffic services
and maritime domain awareness [27]. Therefore, mining of AIS data is crucial to exploit the full
potential of different applications. Certainly, there are many risks of spoofing and creating counterfeit
messages in AIS to launch an attack. The theory of AIS systems and various AIS spoofing methods
were described in detail [28], and the unique security evaluation of AIS was introduced. The novel
software AISTX was proposed to further ensure and improve the security.

In this paper, we mainly extract the characteristics of AIS data by trajectory clustering, then find
customary routes and discern the abnormal trajectories. The clustering analysis of vessel trajectories can
provide a theoretical basis for the design of route planning and management system. It is also helpful
to strengthen the dynamic monitoring of ships and improve the efficiency of maritime supervision.

In conclusion, the main contributions of this paper can mainly be summarized by the following
three aspects: (1) the dimension reduction method is introduced to determine the number of cluster
centers; (2) the improved center clustering algorithm can automatically select the centers based on



Sensors 2017, 17, 1792 4 of 26

the distance between trajectories; (3) fusion of Dynamic Time Warping (DTW), Principal Component
Analysis (PCA), and the proposed center clustering algorithm can better deal with the trajectory
clustering. The good performance of our proposed AIS trajectory clustering method was confirmed by
numerous experiments.

The remainder of this paper is organized as follows: in Section 2, we provide a literature review
of trajectory clustering methods and briefly describe the traditional clustering methods. In Section 3,
the multi-step clustering method to analyze the spatio-temporal AIS trajectories is proposed and
described clearly. In Section 4, numerous experiments on realistic AIS trajectory datasets have illustrated
the necessity and effectiveness of the proposed method in practical applications. Finally, we conclude
this paper by summarizing our contributions and pointing out some future work directions in Section 5.

2. Literature Review of Clustering Methods

Clustering is one of the important research methods of data mining, which is conducive to
obtaining pattern information about vessels. The clustering process is known as an unsupervised
learning method, for which no prior knowledge about the data is needed. It groups data with
different clustering algorithms [29–31]. Recently, a large number of clustering algorithms have
been proposed, for example k-means [32], spectral clustering [33], Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) [34], Balanced Iterative Reducing and Clustering using
Hierarchies (BIRCH) [35] and so on. In recent years, clustering methods have attracted increasing
attention of researchers in the fields of data mining and pattern recognition. Up to now, the current
clustering methods could be roughly divided into five categories, i.e., partitioning methods [36,37] (e.g.,
K-means, K-mediods), hierarchical methods (e.g., BIRCH), density-based methods (e.g., DBSCAN [38]),
grid-based methods [39] (e.g., STING [40]), and model-based clustering methods [41].

Specifically, partition-based clustering techniques [42] firstly create an initial partition, then
positioning technology is repeatedly adopted to optimize the clustering results. The optimization
criterion is based on the variation of objects in different partitions. The optimal partition is not achieved
until the partition result satisfies the minimum objective function value. The partition criterion is that
the similarity of any two objects in the same cluster be as large as possible, and the similarity of the
data objects of different classes be as small as possible.

Hierarchy-based clustering algorithm [43] can be further divided into three kinds, bottom-up
algorithms or condensation algorithms [44] (e.g., CLIQUE, MAFIA and ENCLUS), top-down
algorithms or decomposition algorithms [45] (e.g., PROCLUS and ORCLUS) and compound algorithms
(e.g., BIRCH and CURE). The traditional algorithms BIRCH and CURE are not applicable due to the
large amount of computation.

The essence of density-based clustering algorithms is that the high density areas are separated by
low density areas. The density algorithms are different from each other because of the different definitions
of high and low density areas. Typical algorithms are DBSCAN, OPTICS [46], CLIQUE and so on.

Grid-based clustering algorithms will form a grid structure by quantifying object space to a
finite number of cells. Then all of the clustering operations are performed on the grid structure
(i.e., the quantization space). Grid-based clustering algorithms mainly include Statistical Information
Grid-based method (STING), Clustering with Wavelets (WaveCluster) [47], Clustering In QUEst
(CLIQUE) and so on. Grid-based clustering algorithms are suitable for clustering in large datasets,
however they are sensitive to the input parameters, and also are difficult to find an effective method
for setting the parameters in theory.

The basic idea of model-based clustering algorithms [48] is to find the best match between
the given data and a mathematical model. Model-based clustering algorithms are used to handle
the dataset containing the noise data and isolated points. They can reflect the distribution of data
points by constructing the effective density function and automatically obtain the number of clusters.
Which makes them a robust clustering method. Model-based clustering methods mainly include
statistics-based clustering methods [49].
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The primary purpose of this paper is to discover the movement patterns and discern anomalous
trajectories, then establish the traffic rules and maintain maritime security. The traffic flow patterns
detected by the clustering method from the original trajectories data have provided a solid foundation
for further research on trajectory visualization [50,51]. This can be used for mining customary routes
and establishing safe routes [52]. It is well known that trajectory data is essentially different from
traditional point data. The commonly used point clustering algorithms cannot be directly adopted
to handle trajectory clustering [53–55]. There are many basic questions that need to be considered
for trajectory clustering. For instance, how to consider the whole trajectory length, how to extract
the useful traffic flow information from AIS trajectories, how to choose the appropriate points in AIS
trajectories, how to directly measure the similarity between different trajectories and so on [56].

A trajectory is composed of a series of points, and has a linear or nonlinear structure with respect
to time. The different trajectories of moving objects have their own unique attributes, so trajectory
clustering analysis is more complex than traditional point clustering. There are generally two ways to
study trajectory clustering, one is to regard the trajectory as a whole, and the other is to partition the
trajectory into a set of line segments.

The trajectory can be taken as a whole, and scholars have reported some research findings in this
area. Gaffney et al. [57] proposed a trajectory clustering method based on the probabilistic model and
the mixed regression model. The maximum likelihood principle and the expectation-maximization
algorithm were applied in trajectory clustering. Nanni et al. [58] proposed dynamic trajectory clustering
based on density, where the similarity between trajectories was measured with the average distance
between the nodes in trajectories. Gaffney et al. [59] developed a probabilistic clustering technique and
a regression mixture model to describe the geographic location and track trajectories. Pan et al. [60]
proposed a new trajectory clustering algorithm called TRASAD based on sampling and DBSCAN
to cluster the whole trajectory, and the entropy theory and the heuristic algorithm were chosen to
select the parameters. However, how to choose the fit similarity measurement method to measure the
distance between trajectories is the critical problem in the whole research method. Moreover, how to
select the number of cluster centers and the clustering algorithm are also problems.

The partition method can divide the trajectory into similar sub-trajectories based on the geometric
features and structural similarity. Then the sub-trajectories can be clustered by traditional clustering
methods. Lee et al. [61] proposed a partition-and-group framework based on the minimum description
length, then developed the TRACLUS algorithm based on DBSCAN. In this method, the trajectory is
divided into a set of sub-trajectories, and TRACLUS is used to cluster the sub-trajectories. Lee et al. [62]
proposed a novel partition-and-detect framework and two steps trajectory partitioning strategy to
discern trajectory outlier. The algorithm firstly divided the trajectory into sub-trajectories, and then
detected the outlying sub-trajectories. Lee et al. [63] improved the TRACLUS and constructed the
feature generation framework TraClass, which can generate the hierarchical features based on the
trajectories segmentation. Yu et al. [64] proposed a clustering algorithm CTraStream based on density
to cluster the sub-trajectory data stream and update the online trajectories. However, the partition
method also have some problems, for example how to determine the length of sub-trajectories, how to
measure the distance between the sub-trajectories and so on.

3. Proposed Method

3.1. The Proposed Multi-Step Clustering Algorithm

In order to preserve the full shape and structure features of the trajectories, every trajectory is
taken as a whole in this paper. To improve the accuracy of distance calculation between different
trajectories, DTW has been introduced as a trajectory similarity measurement method [65]. When the
distance matrix is received, the clustering algorithm based on distance matrix should be chosen.
A novel method for determining the number of cluster centers is introduced, which is based on
the dimensional reduction method PCA [66]. PCA was then introduced to reduce the dimension of
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distance matrix and calculate the top k principal components. The clustering number k is determined
by the accumulative contribution rate of the top k principal components. At last, the improved center
clustering algorithm was implemented to perform AIS trajectory clustering with the known cluster
number k. The proposed multi-step framework could significantly improve the clustering accuracy of
AIS trajectories.

A trajectory is composed of a large number of points, and the trajectory similarity measurement
method can measure the distance between trajectories. Many methods have been proposed to measure
the distance between different points [67,68]. Previous works of different scholars have proposed many
popular distance measurement methods. For instance, simple Euclidean distance, Hausdorff distance,
Hidden Markov Model (HMM), DTW, Longest Common Subsequence (LCSS) and so on. The length of
all trajectories must be equal in Euclidean distance. Hausdorff distance has no demand for the length
of trajectory, however it is time-consuming. HMM distance gives each trajectory a statistical model,
however it has high time complexity. The scholars have verified both Hausdorff and HMM have poor
performance [69]. Compared with location similarity, LCSS pays more attention to shape similarity
and has high time cost. DTW is easier to find the shape similarity of the trajectory, and is warping the
route from feature to feature. Therefore, DTW is chosen as the similarity measurement method in this
work to calculate the distances between trajectories.

DTW [70] is an algorithm for measuring similarity between two time series, and the essence is
warping the route from feature to feature. DTW is a kind of nonlinear programming techniques based
on the time programming and distance test. It can be used to calculate the similarity between two
time series, and eventually find the shortest distance [71–73]. DTW can find an optimal path with
a minimum cost based on dynamic programming.

As a classical data dimension reduction algorithm, PCA can not only reduce the dimension of high
dimensional data, but also remove the noise and find the hidden pattern in the data. The number of
clusters can be obtained by selecting the top k principal components whose accumulative contribution
rate is greater than 95%. From the point of view of image recognition, the top k principal components
whose accumulative contribution rate is more than 95% contain most of the image information.
The top k principal components of the distance matrix are orthogonal and linear independent, then the
similarity between the top k principal components is very low.

Each trajectory is regarded as a whole, then the trajectory clustering problem is transformed into
an abstract point clustering problem. The trajectory is composed of many points and other information,
and can visualize the motion of the vessels. The multi-step clustering algorithm is proposed to solve the
trajectory clustering problem, eventually to ensure the safety and security of maritime traffic, detect
anomaly behavior and avoid collision. Our proposed multi-step clustering method can not only reduce
the data dimensionality, but also provide a better clustering effect without increasing the time complexity.

The proposed multi-step clustering algorithm can receive the AIS trajectories clustering results to
analysis the mobility patterns and discover the characteristics of moving vessels. The technical flow
chart of the fusion algorithm is illustrated in Figure 3.
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3.2. The Improved Center Clustering Algorithm

K-means clustering is a kind of partition-based clustering methods, which needs to set k points
as the clustering centers. This algorithm randomly selects k points as the cluster centers, then the
remaining points are assigned into the nearest cluster according to the distance between the remaining
points and the center of each cluster [74]. The K-means algorithm takes the mean value of the points in
one cluster as a center, which may not be the actual data point.

Spectral clustering is based on the spectral graph partition theory; its essence is transforming the
clustering problem of sample space into an optimal graph partition problem. Spectral clustering
can divide the graph into several subgraphs, which have no intersection between each other.
Spectral clustering can identify the sample space with arbitrary shape and converge to the global
optimal solution. However, it is not suitable for the datasets with many clusters. The basic idea of
spectral clustering is to classify the feature vectors, which is received by the feature decomposition.

The improved center clustering algorithm is proposed herein to cluster AIS trajectories, and it
is based on the essence of K-means algorithm and spectral clustering. It can automatically select the
cluster centers. The algorithm combines with PCA to define the number of clusters based on the
top k principal components and the accumulative contribution rate. Then cluster analysis is carried
out to mine the hidden patterns and characteristics according to the distance matrix. The principal
components of distance matrix denote the main features, and it’s effective to extract the trajectory
information and remove low correlation information.

Assume that m denotes the number of the trajectories in database, then there are C2
m distances, all

the distances are sorted in descending order. di+1 , i = 1 , · · · , C2
m represents the ith distance value.

ξi =
∣∣di − di+1

∣∣, i = 1 , · · · , C2
m is the absolute value of difference between two adjacent distances.

The threshold value is ξ = (
C2

m
∑

i=1
di)/C2

m. The improved center clustering algorithm steps describe

as follows.

Algorithm 1. The Improved Center Clustering Algorithm

1: Input: k //the number of clusters
2: ξ //the threshold value
3: li, i = 1, . . . , m //the label of every trajectory
4: Output: the cluster results
5: /*Abnormal trajectories detection*/
6: (a) IF ξi ≥ ξ

7: then li = 0, the trajectory perhaps is abnormal.
8: /*Identifying abnormal trajectories*/
9: if SOG = 0, or SOG > 2Vaverage, or COG[(ti − ti+1) > 2min] > 30◦

10: // Vaverage = (
C2

m

∑
i=1

Vi)/C2
m, Vi, i = 1, . . . , m denotes the speed of every vessel.

11: // ti − ti+1 means the time difference.
12: then delete the abnormal trajectories.
13: else
14: modify li = 1.
15: end
16: (b) ELSE
17: then li = 1, normal trajectories, enter the next step.
18: end
19: /*The clustering center automatic selection algorithm*/
20: for k = 2 to m do
21: (a) IF k = 2
22: then the two trajectories corresponding to the maximum distance are taken as the clustering centers.
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23: end
24: (b) ELSE
25: find the top k maximum distance
26: if the top k maximum distance are the distance among k trajectories,
27: then the k trajectories are taken as the clustering centers.
28: end
29: if the top k distance are formed by the [k + 1, 2k] trajectories,
30: then choose the k trajectories which are repeated most often as the cluster centers.
31: end
32: end
33: /*Cluster analysis and trajectory pattern mining*/
34: (a) The trajectories are grouped into k clusters
35: // Trajectory clustering according to the known k centers.
36: (b) Cluster analysis
37: // Find the custom routes and make safety routes.

4. Performance Analysis

To verify the accuracy and efficiency of the proposed method, numerical experiments were
performed based on realistic AIS trajectory datasets in the Bridge Area Waterway and Mississippi
River. The Bridge Area Waterway is a research focus of inland waterways. Once a vessel collision
happens in the bridge area, it will not only have a serious impact on inland waterway traffic, but also
potentially lead to serious consequences such as bridge collapse. On the other hand, the complex
and changeable waters of vessel traffic flow are also the research focus. Therefore, AIS trajectory
clustering and visualization become the research focus, which can discover customary routes and
detect abnormal behavior to reduce accident rates and prevent accidents.

4.1. Experimental Setup

In this paper, the proposed multi-step clustering algorithm is compared with spectral clustering
and fast affinity propagation clustering with specific cluster centers on realistic AIS trajectory datasets
from the bridge area waterway on the Yangtze River and the Mississippi River. All numerical
experiments were performed using 64-bit Windows 10 on a 2.60 GHz Intel Core i7-5600U CPU
equipped with 8 GB memory. We implemented multiple clustering methods using MATLAB R2016a.
The experimental data was collected from the AIS base station in Wuhan section in the Yangtze
River and the Mississippi River. The bridge area waterway datasets include AIS trajectory data
of 187 vessels with 29,015 points. The Mississippi River datasets include 106 AIS trajectories, and
2442 points altogether.

The experimental procedure was as follows:

• Step 1: Trajectory data acquisition and preprocessing.
• Step 2: The similarity measurement of AIS trajectories by DTW.
• Step 3: Dimension reduction processing and the selection of cluster number.
• Step 4: The selection of the clustering centers based on the improved center clustering algorithm.
• Step 5: Clustering analysis based on the improved center clustering algorithm is carried out to

receive the best cluster results.
• Step 6: The clustering performance comparison and analysis of different algorithms.

The experimental flowchart of the multi-step clustering algorithm (without data preprocessing)
is shown in Figure 4. The original AIS trajectories of vessels are displayed, and subsequently the
similarity measurement method DTW is introduced to calculate the distance. The 2D and 3D image are
displayed in Figure 4, which is conductive to visualize the abnormal trajectories. Then PCA is used to
decompose the distance matrix, and the top k principal components whose accumulative contribution
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rate over 95% are received. Then the number of clusters k is determined. It can clearly see the
accumulative contribution rate of top seven principal components, and the accumulative contribution
rate 95% is between the top two accumulative contribution rates and the top three accumulative
contribution rates. In order to ensure the validity of the experiments, the clustering results of k = 2
and k = 3 are compared in Figure 4. Finally, the improved center clustering algorithm is used to define
k centers and cluster the trajectories to analyze customary routes and detect abnormal trajectories.
The clustering results of the improved center clustering algorithm are clearly shown in Figure 4, the
clustering performance of k = 2 is better than k = 3, however the accumulative contribution rate of
k = 2 is less than 95%. The main reason is that the raw trajectory data has not been pretreated, and all
the abnormal trajectories in Figure 4 are incomplete trajectory data, therefore data preprocessing is
necessary for trajectory clustering. The following experiments are implemented on the basis of data
preprocessing to verify the effectiveness of our proposed multi-step clustering algorithm.
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4.2. Clustering Analysis of AIS Trajectories in the Bridge Area Waterway

4.2.1. Visualization of the Distance Matrix

The hydrodynamic interactions between bridges and vessels make bridge area waterways a high
risk area. Our research can realize the visualization of AIS trajectories in bridge area waterways,
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and further can deal with abnormal trajectory and discover customary routes by clustering analysis.
Then find the vessel traffic flow model and detect abnormal trajectories.

Data cleansing is the basic step of trajectory visualization, and it can delete erroneous data and
repair incomplete data. The incomplete and invalid trajectory data are deleted by judging the original
abnormal trajectories according to the trajectory acquisition time and time interval. The original
abnormal trajectories have many different types. For instance a trajectory may have only one point or
two points, or the trajectory was only recorded during the first half of the time, or lacks coordinate data
and so on. In the end 161 trajectories of different vessels in the bridge area waterway were preserved
after data cleansing.

DTW is implemented to calculate the distance between trajectories. The 161 × 161 distance matrix
is received, and the visual display of the 161 × 161 distance matrix is shown in Figure 5. The 2D image
visualization of distance matrix is shown in Figure 5a. The 161 × 161 distance matrix is symmetric, and
half of the elements are repeated. To clearly see the distance distribution between all the trajectories,
the bar chart and the statistical histogram of all the non-repetitive distances in 161 × 161 distance
matrix are also shown in Figure 5b,c. The bar chart shows the distribution of all the values and
provides the visualization of distance matrix, which is conductive to analysis the abnormal trajectories.
The trajectories corresponding to these peaks that are much larger than others may be abnormal
trajectories. The statistical histogram is conductive to finding the distribution of all the distances.
The distances are mainly distributed in [0, 0.4] and [0.4, 1], which indicates that the trajectories are
relatively centralized.
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4.2.2. Visualization of the Clustering Number

PCA is conducted to reduce the dimensions of the distance matric and decompose the distance
matrix. Then k is chosen according to the accumulative contribution rate. The top 10 eigenvalues of the
distance matrix and the corresponding accumulative contribution rate are listed in Table 1. It’s obvious
that the accumulative contribution rate of the top two eigenvalues is 96.67%, which is more than 95%.
Therefore the number of cluster is set to be k = 2 in the proposed multi-step clustering algorithm, and
k = 2 is also taken as the number of clusters in the improved center clustering algorithm. Certainly the
experiments will compare the clustering performance when k = 2 and k = 3 to verify the accuracy of
the number of clusters.

Table 1. The top 10 eigenvalues (EV) and the corresponding accumulative contribution rate (ACR)
with PCA.

EV 114.732 40.9095 2.94698 1.30154 0.42465 0.20297 0.17504 0.09430 0.05381 0.03565

ACR 71.26% 96.67% 98.50% 99.31% 99.57% 99.70% 99.81% 99.87% 99.90% 99.92%
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4.2.3. Visualization of Clustering Results in the Bridge Area Waterway

Experiments were carried out to compare and analyze the performance of three algorithms: the
proposed multi-step clustering method, spectral clustering and affinity propagation clustering.

In this experiment, the number of the clusters is set to be 2 according to PCA, and the centers are
selected from the distance matrix. Through sorting the distance between all the trajectories, there are
C2

161 = 12, 880 distances between 161 trajectories. di, i = 1, · · · , 12, 880 represents the ith distance value.
ξi =|di − di+1| , i = 1, · · · , 12, 880 , which is the absolute value of difference between two adjacent
distances. ξ denotes the threshold value. AIS trajectory in the inland river is more regular and smoother
than the open seas. The threshold is the average value of all the distances, herein the threshold value

is set to ξ = (
12880

∑
i=1

di)/12880 = 0.4235. ξi > 0.4235 expresses that the corresponding trajectories may

be abnormal trajectories. Then the corresponding trajectories are further confirmed whether they are
abnormal trajectories according to Course Over Ground (COG) or Speed Over Ground (SOG).

Through sorting the distance in descending order between all the trajectories, we can clearly see
the maximum and minimum distance. The top 10 distances between trajectories are shown in Table 2,
and the minimum distance is 0.0077. It can be seen that the values ξi < ξ from Table 2, however the
maximum difference may not have occurred yet.

Table 2. The top 10 distances (TD) and the difference ξi between two adjacent distances.

TD 4.1610 3.9106 3.7622 3.1241 2.9842 2.9264 2.9071 2.8873 2.8560 2.8220

ξi 0.2504 0.1484 0.6381 0.1399 0.0578 0.0193 0.0198 0.0313 0.0340 0.0051

Then all the distances between trajectories are sorted in descending order, and the top k maximum
distances may be anomalous trajectories. To further identify the abnormal trajectories, the differences
between distances are applied to find the hidden abnormal trajectories.

The commonly used average value method is to visualize the average value of each column in the
distance matrix of 161 trajectories. The top k maximum trajectories may be the abnormal trajectory.
The visualization display is shown in Figure 6. The average value of each column in the distance
matrix of 161 trajectories is shown in Figure 6a, and there are three values obviously larger than other
values. The trajectories corresponding to the top three average values are shown in Figure 6b, which is
conductive to flag abnormalities. This method can directly discern the obvious anomalous trajectories,
but it is difficult for it to find hidden abnormal trajectories.

To find the hidden abnormal trajectories, the visual display of all the distances among the
161 trajectories and the corresponding trajectories in the bridge area are shown in Figure 7.
The descending order map of all the distances is shown in Figure 7a, which can clearly see the
variation trend of the distances. The maximum distance is 4.160986 in Figure 7a. The distance
difference between two adjacent distance values is shown in Figure 7c. The difference ξi = 0.638066
between the third distance and the fourth distance is the largest. It can be seen from Table 2 and
Figure 7 that maxξi > ξ, and the top k trajectories corresponding to the maximum distance perhaps
the anomaly trajectories. Then it is further confirmed if the top k trajectories are abnormal trajectories
based on COG and SOG. The COG and SOG don’t satisfy the abnormal conditions, so the top three
trajectories are not anomalous trajectories. The trajectories corresponding to the top three distances are
displayed in Figure 7b, and the trajectories displaying the corresponding maximum distance difference
are shown in Figure 7d. The visual displays of all the distances and the differences in Figure 7 are
further conductive to find the abnormal trajectories. Therefore the distance judgment method and the
differences judgment method are chosen in this paper.
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The visual display of AIS trajectories of 161 vessels in the bridge area are shown in Figure 8,
where there are three bridge openings and two bridge piers in the visual display. The vessel trajectories
converge before entering the bridge opening and after leaving the bridge opening in the left trajectories.
The proposed multi-step clustering algorithm is compared with the spectral clustering and affinity
propagation clustering, the experimental comparison results of three clustering algorithms are shown
in Figure 8.
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The clustering result with multi-step clustering algorithm when k = 2 is shown in Figure 8a.
The trajectories are divided into two classes, where red and green represent different classes, and black
trajectories are the cluster centers. Certainly there is no intersection of clustering results, therefore the
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performance is good. The clustering result with spectral clustering when k = 2 is shown in Figure 8c.
The result is the same with multi-step clustering algorithm, however the result doesn’t show the cluster
centers. The clustering performance of the affinity propagation when k = 2 is shown in Figure 8e, and
the misclassification trajectories are green in the red trajectories. As can be seen in Figure 8a,c,e, the red
and green trajectories denote the different classes. The accuracy of the multi-step clustering algorithm
and spectral clustering are both 100%, while the affinity propagation clustering has a green trajectory
in red trajectories. The multi-step clustering algorithm has the better clustering performance when
clustering center k = 2, see Figure 8a,c,e.

In order to further verify the clustering number accuracy and the effectiveness of the proposed
algorithm, we compared the clustering result of three algorithms when k = 3. The visual displays of
the multi-step clustering algorithm, spectral clustering and affinity propagation when k = 3 are shown
in Figure 8b,d,f. The red, blue and green trajectories represent different classes, respectively. As can be
seen clearly in Figure 8b,d,f, the multi-step clustering algorithm has better clustering performance than
the other two algorithms when k = 3. There is no other trajectory in the green trajectories in Figure 8b.
The multi-step algorithm of fusion with DTW, PCA and the improved center clustering algorithm can
make up for the shortcomings of traditional clustering algorithms, and also promote the performance
of the clustering results.

In conclusion, it’s obvious that the performance of the proposed multi-step clustering algorithm
is better than that of the other two algorithms. The experimental results verify the effectiveness of the
multi-step method. Certainly the vessel traffic flow pattern and customary routes can be easily found
in Figure 8. The two classes of vessels trajectories in the bridge area waters are clearly seen from the
AIS trajectory clustering visualization.

4.3. Clustering Analysis of AIS Trajectory in the Mississippi River

4.3.1. Visualization of the Distance Matrix

The Mississippi River is the longest river in the United States, and it is also the World’s fourth
longest river. The Mississippi River has convenient and cheap shipping resources, abundant mineral
resources and unique agricultural resources. Therefore, the complex traffic flow characteristics and
changeable environment condition have made the Mississippi River a focus of research. The experiment
dataset was collected in Mississippi River and includes 106 AIS trajectories, or 2442 points altogether.

Data cleansing is the first step of trajectory visualization, then the 67 trajectories (altogether
1532 coordinate points) of different vessels are preserved after data cleansing. The traffic flows are
complex, and the trajectories are rather messy. In order to clearly shown the performance of the
proposed method, the trajectories are divided into two classes according to the ship course. There are
37 trajectories of up-bound vessels and 30 trajectories of down-bound vessels, and certainly they
have the opposite course. In order to clearly mine the traffic flow characteristics and patterns, the
experiments are carried out on the trajectories of 37 up-bound vessels and 30 down-bound vessels,
respectively. The 37 trajectories consisted of 744 coordinate points, and the 30 trajectories consisted of
788 coordinate points.

The similarity measurement method DTW is implemented to calculate the distance, then the
37 × 37 dimensional matrix of up-bound vessels and the 30 × 30 dimensional matrix of down-bound
vessels are calculated, respectively. The visual display of the 37 × 37 distance matrix is shown in
Figure 9. As seen in Figure 9a, and 2D image visualization of distance matrix can clearly show the
symmetry of the distance matrix. The different colors express different values. The bar chart display
of all the non-repetitive distances in 37 × 37 distance matrix is shown in Figure 9b, which is helpful
to observe outliers. The trajectory is relatively smooth and regular from Figure 9b. The statistical
histogram of all the non-repetitive distances is shown in Figure 9c, which is conductive to finding
the distribution of all the distances. The range of the distances is [0, 2], and further indicates that the
trajectories are relatively smooth.
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rate are listed in Table 3. It’s clear that the accumulative contribution rate of the top three 
eigenvalues is 96.58% which is more than 95%, so the number of cluster is set to be k = 3 in our 
multi-step clustering algorithm. When the 37 trajectories are clustered, k = 3 is taken as the number of 
clusters in the improved center clustering algorithm. Certainly the experiment will compare the 
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Figure 9. Visualization of 37 × 37 distance matrix. (a) 2D image visualization of distance matrix;
(b) The bar chart of all the different values in 37 × 37 distance matrix; (c) The statistical histogram of all
the non-repetitive distances in 37 × 37 distance matrix.

The different visual display of the distance matrix of the 30 down-bound trajectories in the
Mississippi River are shown in Figure 10, which is helpful to further observe the distances and analyze
the abnormal trajectories. The 2D image visualization can clearly show the symmetry of the distance
matrix in Figure 10a. As shown in Figure 10b, the X-axis represents the distance label, and the Y-axis
represents the distance value. The Y-axis range is [0, 9], and the trajectory is relatively complex and
irregular from Figure 10b. The bar chart is conducive to distinguishing abnormal trajectories. As shown
in Figure 10c, the statistical histogram of all the non-repetitive distances is conductive to finding the
distribution of all the distances. The range of the distances is mainly [0, 2], however, there are many
large values. The statistical histogram can further indicate that the trajectories are relatively irregular.
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Figure 10. Visualization of 30 × 30 distance matrix. (a) 2D image visualization of distance matrix;
(b) The bar chart of all the different values in 30 × 30 distance matrix; (c) The statistical histogram of all
the non-repetitive distances in 30 × 30 distance matrix.

4.3.2. Visualization of the Clustering Number

The top 10 eigenvalues of the distance matrix and the corresponding accumulative contribution
rate are listed in Table 3. It’s clear that the accumulative contribution rate of the top three eigenvalues
is 96.58% which is more than 95%, so the number of cluster is set to be k = 3 in our multi-step
clustering algorithm. When the 37 trajectories are clustered, k = 3 is taken as the number of
clusters in the improved center clustering algorithm. Certainly the experiment will compare the
clustering performance when k = 2 and k = 3 to prove the effectiveness and feasibility of the proposed
multi-step algorithm.

Table 3. The top 10 EV and the corresponding ACR with PCA about 37 trajectories.

EV 20.4118 9.639 5.68566 0.61237 0.21397 0.12671 0.07561 0.06494 0.04029 0.02758

ACR 55.17% 81.22% 96.58% 98.24% 98.82% 99.16% 99.36% 99.54% 99.65% 99.72%
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The top 10 EV and ACR are listed in Table 4. It’s clear that the accumulative contribution rate
of the top three eigenvalues is 97.57% that is more than 95%, so the number of clusters is set to be
k = 3 in our multi-step clustering algorithm. When the 30 trajectories are clustered, k = 3 is taken as
the number of clusters in the improved center clustering algorithm. To further prove the effectiveness
and feasibility of the proposed multi-step algorithm, the experiment will compare the clustering
performance when k = 2 and k = 3.

Table 4. The top 10 EV and the corresponding ACR with PCA about 30 trajectories.

EV 22.2254 3.88804 3.1564 0.27695 0.23190 0.08530 0.04390 0.03991 0.01813 0.00976

ACR 74.08% 87.04% 97.57% 98.49% 99.26% 99.55% 99.69% 99.83% 99.88% 99.92%

4.3.3. Visualization of Clustering Results about 37 Up-Bound Vessels in the Mississippi River

The number of the clusters is set to be three according to PCA, and the centers of the cluster are
selected by the improved center selection algorithm. The distances between all the trajectories are
sorted in descending order. There are C2

37 = 666 distances between 37 trajectories, di, i = 1 , . . . , 666
represents the ith distance value. ξi denotes threshold value, and ξi =|di − di+1| , i = 1 , . . . , 666 is the
absolute value of difference between two adjacent distances. The average value of the distances

between the trajectories is set to the threshold value ξ = (
666
∑

i=1
di)/666. If ξi > ξ expresses the

corresponding trajectories may be abnormal trajectory, then further confirm whether they are abnormal
trajectories according course over ground (COG) and speed over ground (SOG).

The top 10 distances and the difference ξi between two adjacent distances are listed in Table 5.

The threshold value is ξ = (
666
∑

i=1
di)/666 = 0.6602, and the minimum distance is dmin = 0.0414. It can be

seen clearly that the maximum distance is dmax = 1.951599, and the maximum difference ξi is 0.08325.
The values ξi in Table 5 are all smaller than the threshold value.

Table 5. The top 10 TD and the difference ξi between two adjacent distances.

TD 1.9516 1.9230 1.8561 1.7729 1.7395 1.7096 1.6488 1.6352 1.6250 1.6124

ξi 0.0286 0.0669 0.0832 0.0334 0.0299 0.0608 0.0136 0.0102 0.0126 0.0250

In order to further see the variation trend of all the distances and find the hidden abnormal
trajectories, all the distances values and the distance differences among the 37 trajectories are displayed
in Figure 11. The descending order map of all the distances is shown in Figure 11a. The Y-axis range is
[0, 2], and the variation trend of the distances is slow. The trajectories corresponding to the top six
distances are shown in Figure 11b, and they may be abnormal trajectories. The distance difference
between two adjacent distance values is shown in Figure 11c, where the maximum value of the Y-axis
is 0.083250 and is less than 0.6602.

In order to further see the variation trend of all the distances and find the hidden abnormal
trajectories, all the distances values and the distance differences between 37 trajectories are displayed
in Figure 11. The descending order map of all the distances are shown in Figure 11a. The range of
Y-axis is [0, 2], and the variation trend of the distances is slow. The trajectories corresponding to
the top 6 distances are shown in Figure 11b, and they may be abnormal trajectories. The distance
difference between two adjacent distance values is shown in Figure 11c, the maximum value of Y-axis
is 0.083250 and is less than 0.6602. It can be seen from Figure 11a that the curve is relatively smooth.
The trajectories corresponding to the top three distance differences are displayed in Figure 11d. The
trajectories in Figure 11b,d are further confirmed whether they are abnormal trajectories based on COG
and SOG. The COG and SOG don’t satisfy the abnormal condition, then the trajectories in Figure 11b,d
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are not the anomaly trajectories. The visualization of distance and the distance difference can further
contribute to find the hidden anomalous trajectories.
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Figure 11. Visualization of the distance values and the distance differences between 37 trajectories,
(a) The descending order map of distance values; (b) The trajectories display corresponding to the top
6 distances; (c) The distance difference display between two adjacent distance values in (a); (d) The
trajectories display corresponding to the top three distance differences.

The dataset is collected from different vessels at the exit of Mississippi River Delta, where there
are many routes. A visual display of AIS trajectories in the Mississippi River using three algorithms is
shown in Figure 12, the experimental comparison results of the three clustering algorithms further
illustrates the effectiveness of the proposed multi-step clustering algorithm.

The clustering results with multi-step clustering algorithm, spectral clustering and affinity
propagation clustering when k = 2 are shown in Figure 12a,c,e. The trajectories are clustered into
two classes, where red and green represent different classes, respectively. It’s clear that the clustering
performance of the proposed multi-step algorithm is better than the other two algorithms when k = 2.

The performance of k = 3 are shown in Figure 12b,d,f. The trajectories are clustered into three
classes, where red, green and blue represent different classes, respectively. As shown in Figure 12d,
the misclassified trajectory appears as a red line in the blue trajectories. The misclassified trajectory is
the blue line in the red trajectories in Figure 12f. The experiment further verified the validity of the
proposed method. The three clusters are clearly seen from Figure 12b, and the customary routes in
the Mississippi River Delta exit can be easily found. The trajectories of the 37 up-bound vessels are
relatively smooth and regular.
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Figure 12. Visual display of different algorithms about 37 trajectories, (a) Multi-step clustering
algorithm (k = 2); (b) Multi-step clustering algorithm (k = 3); (c) Spectral clustering (k = 2); (d) Spectral
clustering (k = 3); (e) Affinity propagation clustering (k = 2); (f) Affinity propagation clustering (k = 3).

4.3.4. Visualization of Clustering Results of 30 Down-Bound Vessels in the Mississippi River

The number of clusters in 30 trajectories is set to be three according to PCA, and the centers
of the cluster are selected by the improved center selection algorithm. The distances between
all the trajectories are sorted in descending order. There are C2

30 = 435 distances between
30 trajectories, di, i = 1 , . . . , 435 represents the ith distance value. ξi denotes threshold value, and
ξi =|di − di+1| , i = 1 , . . . , 435 is the absolute value of difference between two adjacent distances.
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The average value of the distances between the trajectories is set to the threshold value ξ = (
435
∑

i=1
di)/435.

If ξi > ξ it expresses that the corresponding trajectories may be abnormal trajectories, and then further
confirm whether they are abnormal trajectories according to course over ground (COG) and speed
over ground (SOG).

The traffic flow in the Mississippi River Delta area is busy and complex, and sea routes are also
changeable. Then the distance difference between the trajectories will be relatively large. In this
experiment, the traffic flow in Mississippi River Delta exit is so complex that there are many routes
in different directions at the river exit. The top 10 distances and the differences ξi between two

adjacent distances are listed in Table 6. The threshold value is ξ = (
435
∑

i=1
di)/435 = 1.014, and the

minimum distance is dmin = 0.0594. It is obvious that the maximum distance is dmax = 8.76072, and
the maximum difference ξi is 0.678266. The values ξi in Table 6 are all smaller than the threshold value.
The difference ξi in Table 6 may not be the maximum difference between the trajectories, therefore all
the distances and the distance differences are visualized to further find the abnormal trajectory.

Table 6. The top 10 distances (TD) and the difference ξi between two adjacent distances.

TD 8.7607 8.5478 8.5184 8.5003 8.1277 7.5552 6.8915 6.8151 6.1368 6.0978

ξi 0.2129 0.0294 0.0181 0.3726 0.5725 0.6637 0.0764 0.6783 0.0390 0.3947

All the distances and the distance differences are shown in Figure 13. The descending order
map of all the distances is shown in Figure 13a. The Y-axis range is [0, 9] and the variation trend
is obvious. The trajectories corresponding to the top six distances are shown in Figure 13b, and
they may be abnormal trajectories. The distance difference between two adjacent distance values is
shown in Figure 13c, the maximum value of the Y-axis is 1.7040, which is further helpful to find the
hidden anomalous trajectories. The trajectories corresponding to the maximum distance difference
are displayed in Figure 13d. The trajectories in Figure 13b,d are further confirmed whether they
are abnormal trajectories based on COG and SOG. For maxξi > ξ from Table 6 and Figure 13, the
trajectories may be anomalous. However the COG and SOG don’t satisfy the abnormal condition,
so the corresponding trajectories are not anomalous trajectories. The maximum distance difference
between the 23rd distance and the 24th distance denotes the trajectories are relatively irregular.

The heavy and complex traffic flow in Mississippi River Delta leads to trajectories that are
irregulary and unsmooth compared with trajectories in inland waters, and thus it is not conducive to
clustering. Visual display of the AIS trajectories of three algorithms in the Mississippi River is shown in
Figure 14, where the experimental comparison results of three clustering algorithms further illustrate
the effectiveness of the proposed multi-step clustering algorithm.

The trajectories in the Mississippi River Delta are more irregular than the trajectories in inland
waters from Figures 8 and 14. The clustering result with the multi-step clustering algorithm, spectral
clustering and affinity propagation clustering when k = 2 are shown in Figure 14a,c,e. The trajectories
are clustered into two classes, where red and green represent different classes, respectively. It’s very
clear that the clustering performance of the proposed multi-step algorithm is better than that of the
other two algorithms when k = 2.

The performance of k = 3 is shown in Figure 14b,d,f. The trajectories are automatically clustered
into three classes, where red, green and blue represent different classes, respectively. As shown in
Figure 14d, the misclassified trajectories are the red lines in the blue and green trajectories. As shown
in Figure 14f, the misclassified trajectory is the green line in the blue trajectories. The three clusters are
clearly seen from Figure 14b, where the customary routes in the Mississippi River Delta exit can be
easily found. It can be seen that the trajectories in Figure 12 are more regular and smoother than those
in Figure 14. Obviously, the overall clustering performance of the proposed algorithm is also suitable
for dealing with irregular trajectories and more prone to cluster trajectories.
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Figure 14. Visual display of different algorithms about 30 trajectories, (a) Multi-step clustering
algorithm (k = 2); (b) Multi-step clustering algorithm (k = 3); (c) Spectral clustering (k = 2); (d) Spectral
clustering (k = 3); (e) Affinity propagation clustering (k = 2); (f) Affinity propagation clustering (k = 3).

4.4. Time Complexity Analysis

The time complexity of the proposed multi-step algorithm includes the calculation of the DTW,
PCA and the improved center clustering algorithm, the time complexity of DTW and PCA are both
O(n2), the time complexity of the improved center clustering algorithm is O(k·(n − k)), the time
complexity of spectral clustering is O(n2), the time complexity of affinity propagation clustering is
O(n2· log(n)), where n represents the number of AIS trajectories, k is the number of cluster centers.
The time and accuracy comparison results of different algorithms are listed in the Table 7.
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Table 7. The time and accuracy comparison results of different algorithms.

Multi-Step Clustering
Algorithm

Spectral
Clustering

Affinity Propagation
Clustering

Time complexity O(n2) O(n2) O(n2· log(n))

TD-B 495.599s 495.599s 495.599s
TB 1.834s 2.598s 3.517s

AB-2 100% 100% 99.5%
TD-M37 5.89s 5.89s 5.89s
TM37 0.836s 1.606s 1.194s

AM37-3 100% 97.3% 97.3%
TD-M30 2.075s 2.075s 2.075s
TM30 0.737s 1.139s 1.235s

AM30-3 96.67% 86.67% 96.67%

TD-B means the running time of DTW in the bridge area waterway, TB denotes the clustering time in the bridge area
waterway, AB-2 expresses the clustering accuracy in the bridge area waterway (k = 2), TD-M37, means the running
time of DTW of 37 trajectories in the Mississippi River, TM37 denotes the clustering time of the 37 trajectories in the
Mississippi River, AM37-3 express the clustering accuracy of the 37 trajectories (k = 3) in the Mississippi River, TD-M30,
means the running time of DTW about 30 trajectories in the Mississippi River, TM30 denotes the clustering time of
the 30 trajectories in the Mississippi River, AM30-3 express the clustering accuracy of 30 trajectories (k = 3) in the
Mississippi River.

As shown in Table 7, the running time of DTW in bridge area waterway is 495.599 s. The dataset
in bridge area waterway has 161 trajectories (altogether 25,678 coordinate points), so the running time
of DTW is relatively longer. The clustering time of the proposed method in bridge area waterway is
1.834 s, the spectral clustering is 2.598 s, and the affinity propagation clustering 3.517 s. The proposed
method saves 0.764 s and 1.683 s respectively, compared with the spectral clustering and the affinity
propagation clustering. The clustering accuracies of the three algorithms in the bridge area waterway
are 100%, 100%, and 99.5%. The time complexity and the running time of the multi-step clustering
algorithm are both less than the other two algorithms, moreover the clustering accuracy in the bridge
area waterway is better.

It can be observed that the trajectories of the 37 up-bound vessels consisted of 744 points and
the running time of DTW is 5.89 s. The clustering times of the three algorithms in the Mississippi
River are 0.836 s, 1.606 s, and 1.194 s, respectively. The clustering accuracies of the three algorithms
in the Mississippi River are 100%, 97.3%, and 97.3%. The time complexity and the running time of
the multi-step clustering algorithm are both less than those of the other two algorithms, moreover the
clustering accuracy in the bridge area waterway is better than that of the other two algorithms.

All the trajectories of the 30 down-bound vessels have 788 points. The running time of DTW
is 2.075 s. The clustering time of the three algorithms in the Mississippi River are 0.737 s, 1.139 s,
and 1.235 s, respectively. The clustering accuracy of the three algorithms in the Mississippi River are
96.67%, 86.67%, and 96.67%. The clustering accuracies of the three algorithms in the bridge waters are
100%, 100%, and 99.5%. Compared with the spectral clustering, the clustering time of the proposed
clustering algorithm is 0.402 s shorter and the clustering accuracy improves by 10%.

The time complexity and the running time of the multi-step clustering algorithm are both less
than those of the other two algorithms, moreover the clustering accuracy in the bridge area waterway
(k = 2) and the clustering accuracy in the Mississippi River (k = 3) are greater than the other two
algorithms, respectively. The proposed multi-step clustering algorithm has higher clustering accuracy
and lower time complexity both in the bridge area waterway and in the Mississippi River from the
Table 7. The time complexity analysis further demonstrates the effectiveness and clustering accuracy
of the proposed multi-step algorithm.
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4.5. Discussion

The multi-step algorithm fuses DTW, PCA and the improved center clustering algorithm, which
is very suitable for clustering AIS trajectories. The experiments have confirmed the validity and the
feasibility of the proposed method. DTW can effectively calculate the distance between trajectories,
and the improved center clustering algorithm has higher accuracy and lower time complexity than
spectral clustering and affinity propagation clustering. The experiment results have demonstrated
a huge potential of the proposed multi-step method for trajectories clustering. Moreover, the traffic
pattern and customary routes can be found from the clustering results. Fusion with PCA and the
improved center clustering algorithm are the innovative points of this paper. It can automatically
select cluster centers based on the distance between trajectories, and simultaneously improved the
clustering accuracy with lower time complexity.

5. Conclusions

In this paper, a new trajectory clustering method (termed the multi-step clustering method)
was proposed to find the customary vessel routes and detect abnormal trajectories. It effectively
integrated both PCA and the improved center selection algorithm into a unified mathematical
framework. The trajectory clustering problem was effectively solved by the multi-step clustering
method. Numerous experiments have been conducted on two realistic datasets of a bridge area
waterway and the Mississippi River to compare the proposed method with the other two state-of-the-art
clustering methods. The experimental results have demonstrated the superior performance of the
proposed method in terms of both quantitative and qualitative analysis. Therefore, the proposed
multi-step clustering method has higher accuracy and lower time complexity than the spectral
clustering and affinity propagation clustering with a specified cluster number. However, the improved
center selection algorithm must be selected according to the distance between different trajectories.
Thus, the next step in our future work is to study in depth the automatic method for selecting the
cluster centers based on the navigation direction. On the other hand, the automatic threshold selection
is also a next research focus.
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