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Abstract 
 

Bias Temperature Instability (BTI) is one of the most important reliability concerns for 

Metal Oxide Semiconductor Field Effect Transistors (MOSFET), the basic unit in 

integrated circuits. As the development MOSFET manufacturing technology, circuit 

designers need to consider device reliability during design optimization. An accurate BTI 

lifetime prediction methodology becomes a prerequisite. 

 

Typical BTI lifetime standard is ten years, accelerated BTI tests under high stress voltages 

are mandatory. BTI modelling is needed to project BTI lifetime from high voltages 

(accelerated condition) to operating voltage. The existing two mainstream BTI models: 1). 

The Reaction-Diffusion (R-D) framework and 2). The Two-Stage model cannot provide 

accurate lifetime prediction. Quite a few fitting parameters and unjustifiable empirical 

equations are needed in the R-D framework to predict the lifetime, questioning its 

predicting capability. The Two-stage model cannot project device lifetime from high 

voltages to operating voltage.  

 

Moreover, the scaling down of MOSFET feature size brings new challenges to nano-scale 

device lifetime prediction: 1). Nano-scale devices’ current is fluctuating due to the impact 

of a single charge is increasing as MOSFET scaling down, repetitive tests need to be done 

to achieve meaningful averaged results; 2). Nano-scale devices have significant Device-

to-Device variability, making the lifetime a distribution instead of a single value. 
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In this work a comprehensive As-grown Generation (A-G) framework based on the A-G 

model and defect centric theory is proposed and successfully predicts the Time Dependent 

Variability and lifetime on nano-scale devices. The predicting capability is validated by 

the good agreement between the test data and predicted values. It is speculated that the 

good predicting capability is due to the correct understanding of different types of defects.  

 

In the A-G framework, Time Dependent Variability is experimentally separated into Within-

Device Fluctuation and the averaged degradation. Within-Device Fluctuation can be directly 

measured and the averaged degradation can be modelled using the A-G model. The averaged 

degradation in the A-G model contains: Generated Defects, As-grown Traps and Energy 

Alternating Defects. These defects have different kinetics against stress time thus need 

separate modelling. Various patterns such as Stress-Discharge-Recharge, multi-Discharging-

based Multiple Pulses are designed to experimentally separate these defects based on their 

different charging/discharging properties. Fast-Voltage Step Stress technique is developed to 

reduce the testing time by 90% for the A-G framework parameter extraction, making the 

framework practical for potential use in industry. 
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1 Introduction of Bias Temperature Instability (BTI) 

Lifetime Prediction 
 

 A review of BTI lifetime prediction 1.1

 

Nowadays electronic products are widely used in daily life from all aspects. Reliability is 

one of the most important parameters for electronic products. Product failures due to 

circuit malfunction can result in excessive warranty costs and severe brand damage to any 

integrated circuit company. In 2011, for example, Intel was about to launch their Sandy 

Bridge processor when a potential reliability problem was detected. The problem, which 

was not spotted during extensive functional testing, was a gradual performance reduction 

and even total failure of the serial-ATA channels in about 5% of the manufactured 

integrated circuits [1]. Unfortunately, this is not rare. A similar event also happened to 

Cisco, costing $655 million to fix [2]. 

 

As semiconductor manufacturing technology node migrates, the complexity of circuits 

nowadays requires the reliability to be evaluated while design optimization before the 

fabrication. One example is the circuit operating voltage Vdd selection. Higher Vdd can 

enhance MOSFET drive current and increase the switching speed to achieve a higher 

performance, but the degradation will also be higher. To make a trade-off between 

performance and reliability, a lifetime prediction model becomes a prerequisite. 

1 
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1.1.1 Introduction of BTI 

 

Bias Temperature Instability (BTI) is a key reliability issue in MOSFET. It describes a 

phenomenon that degrades the performance of a device when a bias is applied on the gate 

of the MOSFET and turns on that channel. BTI on one hand, will cause device threshold 

voltage |Vth| to increase, resulting in a reduction of device driving current |Id| (Fig. 1.1a) 

and circuit operating frequency; on the other hand, BTI will enhance the absolute “off” 

current |Idoff| (Fig. 1.1b) and Gate Leakage |Ig| (Fig. 1.1c), resulting in the increase of 

circuit power consumption. BTI is normally characterized by threshold voltage shift 

(|ΔVth|) against stress time. Elevated temperature will accelerate BTI. 125oC is the 

temperature people normally used to do BTI tests, which is also used hereafter if not 

specified. 
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Fig. 1.1 MOSFET Id-Vg (IV) curves show both |Vth| (a) and |Id_off| increases under NBTI stress.  (c) 

Ig-Vg measurements show gate leakage (Ig) also increases. 

 

https://en.wikipedia.org/wiki/MOSFET
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Most integrated circuits suffer from BTI degradation. A typical example is a 

Complementary Metal Oxide Semiconductor (CMOS) inverter, which is the basic logic 

cell in integrated circuits. Fig. 1.2 shows pMOS/nMOS suffers from Negative/Positive 

Bias Temperature Instability when the CMOS inverter is operating. 

 
Fig. 1.2 (a) Illustration of the operation condition of a CMOS inverter in circuits. (b) With input 

0/1 (GND/Vdd), output is 1/0 (Vdd/GND) and the pMOS/nMOS device (top/bottom) is under 

uniform negative/positive gate bias towards its bulk in the marked phases.   

 

The complexity of circuit fabrication increases geometrically with MOSFET feature size 

scaling down and circuit integration goes up. Circuit designers need to consider the circuit 

lifetime as soon as they start to design the circuits before fabrication. One example is use-

bias Vdd selection. Higher Vdd means higher circuit performance, but meanwhile the 

degradation will also be higher and lifetime is sacrificed. To make a proper trade-off 

between performance and reliability, lifetime prediction is needed. As one of the most 

important reliability mechanism, BTI lifetime prediction becomes a necessity for industry.  
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1.1.2 Origin of BTI 

 

BTI is caused by the creation or filling of traps in gate dielectric. The extra charges in gate 

dielectric will impose an inverted electric field in terms of gate voltage, resulting |Vth| to 

increase. Created traps will also assist carrier hopping thus |Ig| also increases. 

 

Traps and charges in gate dielectric are usually classified into four categories (Fig. 1.3), as 

suggested by B.E. Deal [3] in 1980. They are: 1). Interface states NIT and trapped charges 

QIT, which are located at the Si-SiO2 interface with energy states within the silicon 

forbidden bandgap and can exchange charges with silicon in a short time; Interface traps 

can possibly be produced by excess silicon (trivalent silicon), broken Si-H bonds, excess 

oxygen and impurities; 2). Fixed oxide charges Qf, which are located at or near the 

 

Fig. 1.3 Names and locations of charges associated with thermal oxidized silicon [3]. 
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interface and are immobile under an applied electric field; 3). Oxide trapped charges QOT, 

which can be created, for example, by X-ray radiation or hot-electron injection; these traps 

are distributed inside the oxide layer; 4). Mobile ionic charges Qm, such as sodium ions, 

which are mobile within the oxide under BTI stress condition. 

 

When BTI was first observed in 1967 [4], it was mainly caused by ionic contamination [5, 

6] and electrically active surface states passivation at Si-SiO2 interface [7, 8] from the 

immature fabrication technology. With the development of semiconductor manufacturing 

[9-11], ionic contamination and pre-existing interface states can be well controlled, now 

it’s mainly the creation of interface states and oxide traps that are responsible for BTI 

degradation. 

 

With the scaling down of MOSFET feature size, the status of BTI compared to other 

reliability mechanisms has been changing at different stages. In the 1970s, Hot Carrier 

Aging (HCA) was the most important as circuits are driven by a high Vdd; in 1980s with 

Vdd scaling down with feature size HCA was much alleviated, while the thin gate oxide 

makes Time Dependent Dielectric Breakdown (TDDB) start to be a major problem; in 

2000s High-κ material is widely used to suppress TDDB. High-κ material can have the 

same amount of capacitance with a much larger thickness, TDDB is no longer a major 

problem then.  But High- κ material will enhance BTI degradation [12, 13], and BTI starts 

to become one of the most important sources of reliability concern [14, 15]. 
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1.1.3 Accelerate characterization of BTI  

 

 The standard criteria of BTI lifetime is that |ΔVth| will not exceed a certain level (typically 

100mV) after device reaches its lifetime. Typical device lifetime is 10 years, which is too 

long to reach in a lab. Accelerated BTI test by applying a much severer stress (higher Vg) 

than operating condition is mandatory. The device lifetime under operating voltage is then 

projected from the accelerated tests within acceptable testing time (<106 seconds) using a 

time-evolution model. Predicting capability of the model can be tested by comparing the 

predicted value with test data under operating condition, as shown in Fig. 1.4.  

101 102 103 104 1051

10
stress under |Vg-Vth|=0.9V

Operating condition

Lines: Prediction 
Pts: Test data, for A-G model verification

 |∆
Vt

h|
 (a

.u
.)

(b)

Pts: Test data, for A-G model extraction
Lines: Fitting 

 

Stress time (s)

100 1.5V
1.7V
1.9V
2.1V

PREDICTION

FITTING

 

 

|∆
Vt

h|
 (a

.u
.)

(a)

Accelerated tests

Stress under |Vg-Vth|=

 

Fig. 1.4 An example of BTI lifetime projection from accelerated tests to operating condition. (a) 

Test data under high |Vg-Vth| (accelerated stress) condition is used to extract model parameters and 

predict device lifetime. (b) The accuracy of the prediction is usually verified by the comparison of 

test data under use-bias and model prediction. Note the test data in (b) should not be used to 

extract model parameters. 
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Typical BTI kinetics follow a power law against both stress time and overdrive voltage 

|Vg-Vth|, and can be described in Equation (1.1),  suggested by the Joint Electron Device 

Engineering Council (JEDEC) [16].  

∆Vth = A ∙ (�Vg − Vth�)m ∙ tstrn  (1.1) 

Where tstr is BTI stress time, A, m, and n are fitting parameter from accelerated tests. 

 

Equation (1.1) works well for slow DC BTI characterization (detailed in section 2.3.1), as 

shown in Fig. 1.5.  
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Fig. 1.5 BTI kinetics measured by the slow DC characterization can be well described by Equation 

(1.1). NBTI is adopted as an example here. |ΔVth| kinetics under different |Vg-Vth| stress (a) can be 

well fitted by power law with the same time exponent n (b), |Vg-Vth| power exponent m can then 

be extracted from fitted |ΔVth|@1s against |Vg-Vth| (c). 

 

However, after the fast characterization method was introduced, people realize slow 

characterization can only capture a small portion of BTI due to fast recovery. The time 
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exponent n, is sensitive to the measurement condition, resulting in that Equation (1.1) is 

no longer applicable to predict BTI lifetime. 

 

1.1.4 BTI Recovery  

 

BTI degradation contains a lot of fast recoverable traps, which will recover once the stress 

voltage is removed. Due to the fast recovery, the measurement result is highly dependent 

on BTI characterization speed. In early BTI works, due to the limitation of measurement 

facilities, slow DC measurements were adopted to measure BTI degradation, which 

usually took hundreds milliseconds to several seconds to measure one IV curve and 

extract the |ΔVth|. During the measurement most of the fast recoverable traps have already 

escaped, resulting in an underestimation of the total BTI degradation, as shown in Fig. 1.6. 
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Fig. 1.6 NBTI stress (a) and recovery (b) kinetics measured by fast pulse IV measurement and 

slow DC measurement. For each data point, the hollow one is measured in 3 microseconds while 

the solid one is measured in 100 milliseconds. Slow DC measurement only captures the slow traps 

induced |ΔVth| thus underestimates the total |ΔVth|. Refer to section 2.3 for details. 
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With the development of measurement facilities, nowadays people can measure BTI 

kinetics within several microseconds. Fig. 1.6 shows the comparison between the fast 

pulse measurement results and slow DC measurement results under the same |Vg-Vth| 

stress. More than 75% of the total |ΔVth| has been underestimated in the stress phase (Fig. 

1.6a) with slow DC measurements.  Unless specified, all the BTI degradation is measured 

by fast pulse measurement hereafter. 

 

 A review of Bias Temperature Instability modelling 1.2

 

BTI modelling is indispensable to project the lifetime from accelerated stress condition to 

operating condition. Various models [17-21] have been proposed, among them the most 

important two models are the Reaction-Diffusion model and the Two-Stage model. 

 

1.2.1 Reaction-Diffusion (R-D) model 

 

The origin of the Reaction-Diffusion (R-D) model can be traced back to 1977. K. O. 

Jeppson et al [11] reported interface states in the oxide were an important source of the 

BTI degradation. A hydrogen-diffusion controlled mechanism was proposed to explain the 

creation and annihilation of interface states, corresponding to the degradation and 

recovery observed in the experiments, as shown in Fig. 1.7 
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Fig. 1.7  Schematic illustration of the R-D model to interpret interface trap generation. 

 

Along with this thinking, S. Mahapatra [20] and M. Alam [22] proposed the R-D model to 

interpret the broad experimental dataset [11, 23, 24] from previous people’s work and to 

provide a physics-based analytical model to predict BTI lifetime. 

 

The R-D model assumes that when a bias is applied on the gate, a field-dependent reaction 

will be initialized at the Si/SiO2 interface, where the passivated Si-H bonds are broken and 

interface traps are generated (Fig. 1.7) [25]. High temperature will weaken the existing Si-

H covalent bond hence will also increase BTI. Meanwhile the generated H will also react 

with the Si- bond and neutralize it, so it is a competing process. 

 

At stress phase, 

Si − H ↔ Si ∙ +H (1.2) 

The generated hydrogen will accumulate near the interface and inevitably diffuse away 

from the interface, leaving behind a positively charged interface state (Nit). The R-D 

model is described by a group of differential equations (1.3)-(1.6). The meaning of these 

parameters is given in Table 1.1. 
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dNit/dt = kF(N0 − Nit) − kRNHNit  (x = 0)  (1.3) 

dNit/dt = DH(dNH/dx) + (δ/2)dNH/dt  (x < δ)  (1.4) 

DH(d2NH/dx2) = dNH/dt  (δ < x < TPHY)  (1.5) 

DH(dNH/dx) = KPNH  (x > TPHY)  (1.6) 

 

                             Table 1.1 Explanation of parameters used in the R-D Model 

x Distance towards the gate, 0 means at the interface 

Nit Numbers of interface states at any given x 

N0 Initial number of unbroken Si-H bonds 

NH Hydrogen concentration at any given x 

kF Oxide field dependent forward dissociation rate 

kR Recombination rate 

DH Hydrogen diffusion coefficient 

δ Interface thickness 

TPHY Oxide thickness 

kP Surface recombination velocity at oxide/poly interface 
 

By solving the Equations (1.3)-(1.6) the solutions suggest there are five different regimes 

of time-dependent interface trap generation at the stress phases, as shown in Fig. 1.8. 

 
Fig. 1.8 Five phases obtained from the general solution of the R-D equations during NBTI stress 
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At the very beginning, both Nit and NH are negligible compared to N0, so it is reaction 

dominated, thus by Equation (1.3),  

Nit = kFN0t  (1.7) 

As time passes, more Nit and NH are generated, the reaction rate kF(N0-Nit) decreases 

while the recombination rate kRNHNit increases, a dynamic equilibrium is reached and 

Equation (1.3) becomes 

dNit/dt = kF(N0 − Nit) − kRNHNit = 0 (1.8) 

On the other hand, the generated NH does not have time to diffuse from the interface yet, 

which suggests  

NH = Nit (1.9) 

Substitute Equation (1.9) into Equation (1.8), the solution of Nit becomes 

Nit = �
kFN0

kR
�
0.5

 
(1.10) 

In state-of-the-art modern MOSFETs, all these phases will take place in sub-

microseconds, thus are not observed in most measurements [25]. 

 

As stress time lapses, hydrogen diffusion starts to take over the control of the interface 

trap generation, under the approximation that the very slow trap generation is negligible 

compared to the diffusion [25], the solution to Equations (1.3)-(1.6) will be 

Nit~(kFN0/kR)1/2(DHt)1/4  (1.11) 

For most advanced devices, before the end of this regime the diffusion length x = (DH*t)1/4 

is already in the poly region, so this n = 1/4 regime only needs to be considered for very 

thick oxides. 
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Once the hydrogen arrives at the oxide/poly-interface, part of the hydrogen will reflect 

back and the other part keeps diffusing in the poly layer, which has a different diffusion 

coefficient from the oxide. Under the approximation that the trap generation rate is slow 

compared to the generation and annealing fluxes in Equation (1.5) (i.e., dNit/dt~0), the 

solution to Equations (1.3)-(1.6) will be [26]:  

Nit = A ∙ (kFN0/kR)1/2(DHt)1/2  (1.12) 

The final case n=0 means all the Si–H bonds have been broken, Nit ~ N0 = Constant, 

which is hard to observe during measurements, since before device reaches this regime 

other failure mechanisms like TDDB have caused the oxide breakdown. 

 

Equations (1.3)-(1.6) can also be used to solve the recovery phase with assigning kF=0. A 

typical simulation result of a stress-recovery NBTI is given in Fig. 1.9a. 

 

The R-D model soon became widely accepted since it explains the two key features of 

NBTI: the power law dependence against stress time and the recovery phenomenon. 

However, different values of time exponent n were reported by different groups, which 

differ from any of the value in Fig. 1.8. [15, 27-29]. Great efforts have been made to 

reconcile the gap between the measured data and the theory. For example, it is found that 

by changing the type of hydrogen species, the time exponent can be adjusted:, 1). either 

the neutral H or the H2 only is involved in diffusion and thus leads to the 0.17 and 0.25 

respectively; 2). H+ can be affected by both diffusion and drift or H2 or maybe all of them 

are responsible for the degradation [30-32]. By combining multiple types of species, thus 

modification is capable of explaining any time exponent observed in the experiment.  
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The R-D model is assumed to be absolutely correct since the bulk of literature appeared to 

be unanimously supportive of this model [22, 34, 35]. A break of the R-D model 

correctness was brought by the fast recovery investigation using fast pulse measurement, 

which directly contradicts the prediction from any variants of R-D theory [36, 37]. A 

comparison of the test result of BTI recovery and the R-D model predicted value is shown 

in Fig. 1.9. The BTI recovery is too fast to be explained by the R-D theory. 
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Fig. 1.9. (a) The R-D model based simulation of a BTI stress-recovery-stress procedure. (b) Test 

data on HK45 1x1um pMOS. (c) Plot the data from (b) in log scale. It’s unlikely that almost half 

of the hydrogen diffused in 10 seconds will diffuse back in less than 1 millisecond.  
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To fill the gap between measurements and theory, the R-D model added hole traps (ΔNHT) 

and oxide traps (ΔNOT) to reconcile the fast BTI recovery. These three components are 

uncorrelated with each other. The name of the new model also changed to “the R-D 

framework” [21, 38]. 

 

The R-D framework extracts parameters by fitting the experiment data with [21]: 

∆Vth = − q
COX

∙ (∆Nit +  ∆NHT + ∆NOT)  (1.13) 

∆NHT = B ∙ �Vgov�
Γ_HT ∙ e−

EA_HT
kT ∙ (1 − e−�

tstr
τs

�
βHTS

)  
(1.14) 

Γ_HT = Γ_IT, EA_HT = 0.03eV, τs = τ0s ∙ e−(EA_τs
kT )   

B, τ0s, and βHTS are device dependent parameters  

∆NOT = C ∙ (1 − e−�
tstr
n �

βOT
)  

(1.15) 

ƞ = 5e12,βOT = 0.36eV,Γ_OT = 9, n = ƞ ∙ �Vgov�
Γ_OT ∙ e−

EA_OT
kTβOT  

 

C is device dependent parameters  

 

 

As there are so many device dependent parameters in the fitting, mathematically there will 

always be a good fitting, as shown in Fig. 1.10a&b. To validate the predicting capability 

of the R-D model, the comparison between the test data which is not used for the 

parameter extraction and the predicted value should be used. Fig. 1.10 shows the R-D 

framework cannot predict the lower stress voltage NBTI, questioning its predicting 

capability under operating voltage at device lifetime. 
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Fig. 1.10 The R-D framework prediction on 2 different processes of pMOSFETs. Parameters are 

extracted by fitting the experiment data and R-D framework prediction (upper), however they 

cannot predict the NBTI behavior under a much lower voltage (lower). 

 

 

1.2.2 Two-Stage Model 

 

The two-stage model was proposed by T. Grasser [32, 36] from an energy-level 

perspective to explain NBTI recovery. Most of the publications [36, 37, 39, 40] showed 

the clear existence of two components during NBTI stress:  a fast recoverable component 

“R” and another “permanent” or slowly recovering component “P” [41, 42]. Experiments 

showed the degradation of the drain current obtained at different temperatures and 

voltages can be made to overlap using simple scaling, which suggests “R” and “P” in fact 
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are not in parallel but act in series and are therefore two facets of a single degradation 

mechanism proceeding in steps [19]. 

 

The two-stage model considers the Si-H systems as having two closely coupled energetic 

minima, the equilibrium and a slightly higher second minimum separated by an energy 

barrier [43, 44], which may be excited by thermal excitation quantum-mechanical 

tunnelling[44, 45]. The introduction of the electric field will lower the second minimum 

below the equilibrium minimum, making it the preferred energetic state. A time-

dependent transition between the two wells is observed, depending on the transition 

mechanism and the statistical distribution of these barrier energies. Once the electric field 

is removed, the equilibrium well will be occupied again, which commonly involves long 

recovery transients, as shown in Fig. 1.11. 

 

Fig. 1.11 The Si-H dissociation from energy-levels perspective. Hydrogen is released from a Si-H 

bond over a barrier into transport states (tetrahedral interstitial sites, bond center sites, etc.). 

Emission may occur via thermal emission or, at very low temperatures, via tunneling [46]. 

 

Fig. 1.12 shows the quantitative impact of the electric field on energy level in two wells 

based two-stage model, and the final degradation |ΔVth| can be deducted from a series of 

quantum mechanics calculation [46]: 
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∆Vth = −
q ∙ N
COX

∙ (
1

1 + exp�
V3,m − �V1,m + 2∆�

σ3
�
−

1

1 + exp �
V3,m − V1,m

σ3
�

) (1.16) 

Experimental data is then used to fit the parameters in Equation(1.16).  

 

 
Fig. 1.12. Impact of the electric field on energy level in double well model. In equilibrium, the 

first well (V1) is the energetically preferred configuration, application of the electric field tilts the 

wells favoring the second well (V3) [46]. 

 

The Two-stage model explained data under lower temperatures well. But the high 

temperature calculation deviates from the experiment data and the permanent/slow 

component cannot be explained. By increasing the number of the wells, which means 

there are multi energy-level for hydrogen transition, both the stress and recovery traces 

can be well explained under different temperatures. But again, although physically 

possible, more wells will need more fitting parameters, which makes the model more 

complex and less convincing. 

 

As a physics-based model from in-depth study of NBTI recovery, the two-stage model 

itself cannot be directly adopted to do a lifetime prediction. Based on the defect 

spectroscopy extracted from Time Dependent Defect Spectroscopy (TDDS) technique, 

CET mapping method is proposed to evaluate the device lifetime prediction. CET 
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mapping predicts |ΔVth| follow the sum of two error-functions, which results in 

increasingly lower n with increasing stress time until complete saturation. However, 

currently there is no evidence which shows BTI will reach saturation before it reaches the 

lifetime. Some publications report the decreasing time exponent as stress time increases, 

but it’s already been proved that that is due to the contamination of recoverable 

components or the deduction of the electric field under a constant gate voltage stress. 

 

1.2.3 As-grown Generation (A-G) Model 

 

The R-D framework, although taking both components into consideration by adding ΔNHT 

and ΔNOT, cannot project the measurement data beyond the voltages which are used for 

parameter extraction (Fig. 1.10). The Two-stage model cannot project device lifetime 

from high voltages to operating voltage. 

 

The A-G model is proposed under such circumstances. The basic underlying idea of the 

A-G model is that there are different types of defects involved under BTI stress and these 

need to be understood and modelled separately. The idea itself is not brand new as most 

people now accept that BTI consists of a fast recoverable component “R” and a 

“permanent” component “P”, they follow different time evolution kinetics thus need 

separate modelling. The main novelty of the A-G model is defects separation based on 

their charging/discharging behaviors. By applying the specified test pattern, different 

types of defects can be experimentally separated and modelled respectively, instead of 

using the ambiguous Recoverable Component “R” and Permanent Component “P”.  
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For the simplest case: DC NBTI stress, the A-G model can be described by a simple 

equation  

∆Vth = A + Gtstrn  (1.17) 

Where A is the saturation level of As-grown Traps and Gtstrn  is the defect generation. 

 

Equation (1.17) is succinct but it can only deal with DC stress on big devices, as the 

understanding of different types of defects improves, the A-G model can be further 

extended to more complicated stress conditions, as detailed in chapter 5 & 6. 

 

 Challenges in predicting BTI lifetime on nano-scale devices  1.3

 

As semiconductor manufacturing technology migrates to nanometre scale, variability in 

nano-CMOS transistors start to become a challenge for further scaling down [47]. The 

challenge in predicting nano-scale devices BTI lifetime is two-fold: Device to Device 

Variability and Within Device Fluctuation, as detailed in the following two sections. 

 

1.3.1 Device-to-Device Variability 

 

As the feature size migrates to sub-65 nm, there are only a handful of defects in one 

device. Originating from various sources during the fabrication, including random discrete 

dopants, line edge roughness, polysilicon granularity and oxide thickness fluctuations [48], 

the fresh threshold voltages |Vth0| at time zero illustrates a Gaussian distribution instead of 

a constant value. As shown in Fig. 1.13. Fig. 1.13 is a normal probability plot generated 
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by Matlab. The purpose of a normal probability plot is to graphically assess whether the 

data follows a normal distribution. If the data are normal the plot will be linear. Other 

distribution types will introduce curvature in the plot.  Quite a few normal probability 

plots will be used in chapter 6. This |Vth0| variability is independent of stress thus called 

Time-zero Variability.  

 

Fig. 1.13 Fresh threshold voltages |Vth0| measured on 50 HK45 90x70nm pMOSFETs follow a 

normal distribution.  

 

Time Dependent Variability, as a process of filling and generating new defects, also 

shows stochastic behaviour and varies with devices [49]. As a consequence, BTI kinetics 

and device lifetime becomes a stochastic distribution instead of a single value with 

MOSFET size scaling down, as shown in Fig. 1.14. For the convenience of discussion 

hereafter, “big device” is used to represent MOSFET whose size is larger than 

(including) W*L=1um*1um, “nano-scale device” is used to represent MOSFET 

smaller than W*L=0.1um*0.1um (in this work 90nm*70nm MOSFET is used). 

Variability on “big device” is negligible but significant on “nano-scale devices”. 
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Fig. 1.14 Simulated BTI kinetics against stress time on different size of pMOSFETs (a-c) based on 

the defect centric theory in [50]. 50 devices are simulated for each size, a criteria of |ΔVth|=100 is 

adopted to extract the lifetime of all 50 devices and their distributions are plotted in (d). It is 

clearly shown that as device size scaling down, Device-to-Device Variability of BTI kinetics 

becomes larger, resulting in a wider spreading in lifetime for each device. This is because large 

device contains many defects and their random properties average out.  

 

Industry normally uses “n·σ” standard to define the lifetime of nano-scale devices, which 

means after stressing under use bias for device lifetime, the Cumulative Distribution 

Function (CDF) at “n·σ” of a standard normal distribution will pass the lifetime criteria, 

for example “3σ” lifetime criteria means at circuit lifetime, at least 99.87% of devices in 

this circuit should pass. Typical “n·σ” corresponded CDF values are shown in Table 1.2. 
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        Table 1.2 Cumulative Distribution Function (CDF) in a standard normal distribution 

standard σ 2σ 3σ 4σ 5σ 
CDF 84.13% 97.72% 99.87% 99.9968% 99.999971335% 

 

1.3.2 Within Device Fluctuation 

 

With the scaling down of device geometry, the number of defects within the dielectric 

becomes smaller. Based on the simple charge sheet approximation, the impact from each 

single defect on |ΔVth| is expected to increase, as shown in Table 1.3.   

 

                    Table 1.3 Impact of a single trap as the scaling down of MOSFET size [49] 

Device size (in um) 
Wide Narrow Minimal 

W L W L W L 
10 0.1 0.2 0.12 0.11 0.1 

Number of carriers in channel at 
Vg=Vth-0.2 

15,000 370 170 

Number of #Nit at a density 
DNit=1e11/cm2 

1,000 24 11 

ΔDit causing a |ΔVth|=50mV (in cm-2) 4.9e11 4.9e11 4.9e11 
Makes a number Δ#Nit 4,900 120 50 

|ΔVth| caused by a single trapped 
carrier (at interface) 

0.01mV 0.43mV 1.0mV 

 

In practice, both the defect numbers and their impact on |ΔVth| are found to be stochastic, 

contributing to the large current fluctuation. The variation of the impact of one single trap 

is normally explained with the percolation path theory, which was firstly proposed by H.S. 

Wong et al [51] in 1993, they used atomic simulation to show channel current fluctuations 

can be caused by the percolation paths in a non-uniform profile. Many people use 

percolation paths theory to explain their experimental results [52-54]. 
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As the impact of a single defect is increasing and the defect number in a single device is 

decreasing with device scaling down, Id fluctuation caused by individual defect on nano-

scale devices cannot be averaged out, resulting in a Within Device Fluctuation 

phenomenon. Repeated tests need to be done on nano-scale devices to achieve meaningful 

results, as detailed in chapter 6. 

 

 Defect centric theory 1.4

 

Defect centric theory was firstly proposed by B. Kaczer [55] in 2010 from the statistical 

analysis of vast numbers of defects. Their experimental data shows that the impact of a 

single defect on a nano-scale device follows an exponential distribution [52], and the 

average impact 𝜂𝜂, is inversely proportional to the device area ([52], Fig. 1.15). The 

number of traps on different nano-scale devices follows a Poisson distribution. 
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Fig. 1.15 Average impact of a single defect (𝜂𝜂) values extracted on 3 different sizes of HK45 

pMOSFETs show an inverse proportional relation against device area W*L. 
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𝜂𝜂 can be extracted from the standard deviation (σ) against the average (μ) of |ΔVth| 

relationship in equation (1.18):  

σ2(|∆Vth|) = 2 ∙ η ∙ µ_∆Vth (1.18) 

Equation (1.18) is derived from the assumption that the number of the defects (ΔN) 

charged/generated under BTI stress follows a Poisson distribution. Variation of a Poisson 

distribution equals to its average value: 

Variation(∆N) = σ2(∆N) = µ_∆N (1.19) 

On nano-scale devices, the variation in ΔN is only part of the |∆Vth| variation, the random 

spatial distribution of the charges also plays an important role. This was shown by Asenov 

[56] through simulation of random dopant distributions. 

 

To reconcile with the results in [56], an empirical factor of 2 [57] needs to be added in the 

denominator to convert |∆Vth| to ∆N: 

∆N =
|µ_∆Vth|

2η
 

(1.20) 

Substitute Equation (1.20) into Equation (1.19), 

σ2(|∆Vth|)
4η2

=
|µ_∆Vth|

2η
 

(1.21) 

Equation (1.21) is equivalent to Equation (1.18) and is verified by experiment data from 

different groups [58, 59]. 

 

Based on equation (1.18) η can be extracted by 

η =
σ∆Vth2

2 ∙ µ∆Vth
 

(1.22) 

Equation (1.22) is used to extract the 𝜂𝜂 of different types of defects in chapter 6. 
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As a summary of statistical analysis of traps during recovery phase, defect centric theory 

alone cannot predict device lifetime, but it’s a very useful tool. With defect centric theory, 

people can use monte-carlo simulation to construct the Time Dependent Variability of 

each single device from the mean value and Device-to-Device Variability, as detailed in 

chapter 6. 

 

 Organization of this thesis 1.5

 

A brief review of BTI and its modelling for lifetime prediction is discussed in chapter 1. 

 

In chapter 2 the standard characterization method and some specialized techniques used in 

this work will be introduced. 

 

In chapter 3 a novel Stress-Discharge-Recharge technique is developed to investigate the 

defect generation under BTI stress. The newly developed Stress-Discharge-Recharge 

method captures the entire Generated Defects by adding a recharge phase and makes the 

time exponent independent of measurement condition. 

 

Pre_Existing defects are investigated in chapter 4. Pre_Existing defects related tests need 

to be done on heavily stressed devices on which Generated Defects’ distortion is 

suppressed. Experiment data shows the existence of two types of Pre_Existing defects: 

As-grown Traps and Energy Alternating Defects. By applying so-called multi-
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Discharging-based Multiple Pulses technique, these two types of defects can be separated 

and then modelled respectively. 

 

In Chapter 5 the As-grown Generation (A-G) model is proposed base on the defect 

generation in chapter 3 and Pre_Existing defects in chapter 4. Good predicting capability 

has been verified under both NBTI and PBTI stress on big devices. In addition, a new fast 

wafer-level test scheme for parameter extraction is developed, reducing test time to one 

hour per device and significantly improving the efficiency for variability tests of 

nanoscale devices.  

 

In chapter 6 a comprehensive A-G framework is proposed based on the A-G model in 

chapter 5 and defect centric theory to do the lifetime prediction on nano-scale devices. 

The framework has excellent predictive capability, as validated by comparison with 

experimental data. After that the framework is implemented into a commercial simulator 

and its applicability for circuit level simulation is demonstrated.  

 

Finally the conclusion and future work are given in chapter 7. 
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2 Characterization methodology  
 

 Introduction 2.1

 
BTI was discovered almost 50 years ago [4] and people now still haven’t reached an 

agreement on its underlying mechanism and modelling. One major difficulty causing this 

is the BTI characterization. In early works which use slow DC measurements, |ΔVth| is 

underestimated to a large extent, due to 1). In Measure-Stress-Measure (MSM) scheme, 

BTI will recover instantly once stress is removed, before the measurement is taken [60]. 

2). In On-The-Fly scheme, fresh reference is contaminated by the fast charging once stress 

is applied, resulting in a smaller |ΔVth|. In the early stage of switching from slow DC 

measurement to fast BTI characterization people were puzzled by the inconsistency of 

results from different characterization methods.  

 

This chapter is organized into eight sections: sample information is firstly given in section 

2.2. Typical electric characterization methods are introduced in section 2.3 and BTI-

related characterization schemes are introduced in section 2.4. After that an energy 

profiling technique, Discharging-based Multiple Pulses (DMP) technique is introduced in 

section 2.5, which is widely used in the As-grown Generation (A-G) model parameter 

extraction. In section 2.6 two mainstream characterization methods of variability on nano-

scale device: Random Telegraph Noise (RTN) technique and Time Dependent Defect 

Spectroscopy (TDDS) technique are briefly reviewed. Repetitive tests need to be done on 

2 
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multiple nano-scale transistors for variability statistical analysis, which is time-consuming.  

The fast wafer-level characterization is usually used. Two popular fast BTI parameter 

extraction techniques: Voltage Ramp Stress and Voltage Step Stress are introduced in 

section2.7. Finally a summary is drawn in section 2.8. 

 

 Sample preparation in this work 2.2

 

The sample information used in this work is summarized in Table 3.1. Both 

nMOSFET/pMOSFET fabricated by five different processes from two suppliers: 1). 

Interuniversity Microelectronics Center (IMEC) and 2). CSR plc (formerly Cambridge 

Silicon Radio, acquired by Qualcomm in 2015). The CSR sample is manufactured in 

Taiwan Semiconductor Manufacturing Company (TSMC) with its most profitable 28nm 

technology nodes. 

                                                    Table 2.1 Test sample information 

Sample name HK45 HK22 SiON FF CSR 

Gate Material Metal Metal Poly-Si Metal Metal 

Dielectric HK stack HK stack SiON HK stack HK stack 

EoT (nm) 1.45 1 2.5 1 1.2 

Technology Nodes (nm) 45 22 45 22 28 

Structure Planar Planar Planar FinFET Planar 

Supplier Interuniversity Microelectronics Center 
(IMEC) 

CSR plc (acquired by 
Qualcomm in 2015) 

 

Samples listed in Table 3.1 cover a wide range of fabrication conditions: from immature 

processes under development (HK45, HK22, SiON and FF from IMEC) to mature 
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commercial processes (CSR). The versatility of a proposed model can be guaranteed if it 

is applicable to all the processes. Device structure and the corresponding energy band 

diagram during NBTI stress condition are given in Fig. 2.1. 

 

Fig. 2.1 Device structure and the corresponding energy band diagram during NBTI stress 

condition of High-k Metal Gate (a) and Poly-Si Gate SiON (b). 

 

 Typical electric characterization method  2.3

 

2.3.1 Id-Vg (IV) measurement 

 

As BTI is normally characterized by “threshold voltage shift” |ΔVth|, Id-Vg measurement 

and Vth extraction is the basic element in BTI characterization.  

 

IV sweep measurement is the most conventional characterization method with commercial 

Source Measure Units (SMUs) [61]. The test waveform and typical results are shown in 

Fig. 2.2. An SMU supplied gate voltage (Vg) sweep is applied to the MOSFET gate, while 
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the drain is biased under a constant drain voltage (Vd). Both voltage and current values are 

measured during each Vg level. The typical measurement speed for one Id measurement is 

from several to hundreds of milliseconds, making the full IV Sweep testing time from one 

to ten seconds, thus this method is also called as quasi-static or slow DC measurements.  

 

Fig. 2.2 Test waveform of IV sweep measurement. An SMU supplied Vg sweep is applied on the 

gate while another SMU supplied constant drain voltage Vd is applied on the drain. Both voltage 

and current can be captured simultaneously by the SMUs. Measurement time for each point is 

from several to hundreds of milliseconds. 

 

IV sweep provides the most accurate measurement results (sub-pA) due to the high 

resolution of SMU. Gate leakage and sub-threshold current can be accurately measured. 

But because of the slow measurement speed, IV sweep cannot capture the “real” |ΔVth| or 

“real” fresh Id reference (Id0), resulting in an underestimation of BTI degradation in both 

Measure-Stress-Measure (MSM) measurement scheme and On-The-Fly measurement 

scheme, as detailed below:  

 

People normally use 0V as Vgstart. In MSM scheme if IV sweep is used to measure |ΔVth|, 

at the starting Vg=0V measurement, stress is interrupted and most of the fast-recoverable 

traps have already discharged after tens of milliseconds measurement, resulting in an 

underestimation of total BTI degradation [60, 62]. In On-The-Fly scheme a “real” fresh 

Vgstart 

Vgstop 
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Id0, free from any trap, under stress Vg is needed as reference. However, if Vgstop is set 

equal to or higher than the stress voltage, during that Id0 measurement, a lot of fast traps 

have already been charged and the measured Id0 is already degraded.  

 

To overcome the shortages of the IV sweep measurement fast IV measurement becomes a 

necessity. Spot IV measurement is one of the widely used fast IV characterization 

methods. The test waveform is shown in Fig. 2.3. The measurement is taken at the flat 

region of each pulse and the typical measurement time is about microseconds or sub- 

microseconds, depending on the accuracy requirement. Unlike IV sweep in which Vg is 

monotonic and incremental, Vg in Spot IV will drop to 0 after each measurement to avoid 

unintentional traps to be charged during the measurement. 

 

Fig. 2.3 Test waveform of Spot IV measurement. After each measurement Vg firstly drops to zero 

and then rise to the next level to avoid potential stress during the measurement. Pulse units are 

adopted in spot-IV measurements so the measurement time for each point can be as low as (sub-) 

microseconds.  

 

With the development of commercial semiconductor analyzers, high speed measurement 

enables the full monitoring of Id current during a pulse on the gate of MOSFET. This is 

the pulse IV measurement, as shown in Fig. 2.4. 

0 
Vgstart 

Vgstop 

Vgstep 

Vd 



Chapter 2 Characterization methodology 33 

 

-6 -4 -2 0 2

0.0

0.2

0.4

0.6

0.8

1.0

Time lag

 

Time (us)

Vg
 (V

)

(b)

HK45 1x1um 
    nMOS 0

10

20

30

40

50

Id (uA)

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

50

edge does
not agree

Before correction
IV from

 After correction

IV
 fr

om
 tr

ail
ing

 ed
ge

IV
 fr

om
 le

ad
ing

 ed
ge Leading 

 Trailing 

Time lag correction(c)
 

Vg (V)
Id

 (u
A)
 

Fig. 2.4 (a) Typical waveform of a Pulse IV measurement.  (b) Typical results of pulse IV. Dash 

lines are drawn at the switching point of both Vg (black) and Id (blue), clearly Id measurement is 

lagging compared to Vg measurement. This time lag results in a gap between the two IV curves 

measured from the leading and trailing edge of the Vg pulse, as show in (c). This gap can be 

corrected by shift Id data forward against time to offset the time lag, as the green line shows in (c). 

 

Pulse IV can be used to measure both fresh and stress IV curves as the entire measurement 

only takes several microseconds thus most of the degradation is “frozen”.  

 

Note in a pulse IV Id measurement is lagging to the Vg measurement (Fig. 2.4b). This 

results in a gap between the pulse IV from the leading edge and from the trailing edge. 

The gap can be corrected by shifting the Id data to offset the lagging time in terms of Vg, 

as shown in Fig. 2.4c. 
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After measuring the Id-Vg curve Vth needs to be extracted to get |ΔVth|. Various methods to 

extract Vth from an IV have been proposed [63], here only two mainstream methods are 

discussed: max-gm method and constant current method. 

 

Max-gm method is one of the most popular Vth extraction methods. The following is the 

procedure: Firstly transconductance, gm,  of the IV curve is calculated by first derivative 

(slope), secondly Vg  at max-gm (“o”) is determined, after that, a tangent line through Vg  

at max-gm point on the IV, whose slope is the max-gm value, will intercept Vg axis at 

threshold voltage Vth, as shown by the “□” symbol in Fig. 2.5. 

 

Fig. 2.5 Max-gm (blue dash lines) and constant current (black dash line) method extracted Vth. 

Here Idcc is properly selected to intercept at the same Vth as max-gm method on a fresh device. 

 

Constant current is another widely used method to extract Vth due to its simplicity, 

versatility and better accuracy compared with max-gm. The procedure is also shown in  

Fig. 2.5: firstly draw a line Id = constant drain current (Idcc), whose typical value is 

100nA·W/L, where W and L are the Channel width and Channel Length, respectively. 

The Vg value of the cross point of this line and IV curve is Vth. 
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Both max-gm and constant current method have their advantages and disadvantages. Max-

gm extracted Vth is a definite value, while in the constant current method the extracted Vth 

is dependent on the Idcc selection, which is an arbitrary value. But as a sacrifice of first 

derivative, max-gm extracted |ΔVth| is less accurate compared to the constant current 

method. Moreover, for some IV curves whose Vg stops at |Vth|+0.1 or |Vth|+0.2V, the max-

gm method cannot be applied as Vg point at max gm is beyond the measurement, as shown 

in Fig. 2.5, max-gm is located at |Vth|+0.23V. 

 

To combine the advantages of these two methods, in this work the following procedure is 

used to extract Vth if not specified: Firstly, measure a fresh IV curve from zero to 

operating voltage; secondly use the max-gm method to extract the fresh Vth0; thirdly, 

calculating the Id value on the IV curve corresponding to |Vth0|, and use this Id value as Idcc 

for CC method for all the rest |Vth| extraction. In this way, the constant current method 

will extract the same Vth0 on fresh device as max-gm, which is of physical meaning, and 

retain all the benefits of  constant current method. 

 

2.3.2 Split Capacitance Voltage (CV) measurement 

 

Split CV measurement is widely used to evaluate the defect properties in MOSFETs [64-

66]. “Split” means Gate-Channel capacitance (Cgc) and Gate-Bulk capacitance (Cgb) need 

to be measured separately, as shown in Fig. 2.6a&b. It was firstly proposed by J. Koomen 

[67] in 1973 to extract the charge trapped in interface states in weak and intermediate 

inversion bulk doping density. 
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Fig. 2.6 Typical configuration and waveform for MOSFET split CV measurements. (a) Drain and 

Source are both grounded to measure Cgb, (b) Bulk is grounded, Drain and Source are connected 

together to measure Cgc. (c) Illustration of the Vg waveform applied on the gate for both Cgb and 

Cgc. A Vg-sweep signal is applied on the gate to form the MOS capacitor, then a high frequency 

(10kHz~10MHz) and small amplitude (~30mV) AC signals are added on top of each Vg level, the 

AC current through the capacitor is then measured and capacitance is calculated.    

 

Lots of useful information can be extracted from the split CV such as flat band voltage, 

bulk doping, surface potential (φs) etc. A physics based CVC simulator [68] including 

polysilicon depletion and surface quantum mechanical effects is used in this work to 

extract all these device parameters, as shown in Fig. 2.7b.  The  CVC simulator needs only 

two inputs from the user: measured full CV data and MOSFET geometry (Width and 

Length),  a theoretical CV which best fits the measured data is then generated with all the 

fitting parameters related to CV, as listed in Table 2.2.  
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Vth can also be extracted from split CV [63], but due to the split CV is even slower than 

IV sweep, and Cgb & Cgc need different measurement configuration, it is not used to 

measure BTI |ΔVth| in this work. It is the φs~Vg relationship, one of the outputs from CVC 

simulator, mainly used in this work. φs~Vg relationship can be used to convert the Vgdisch 

to Ef-EV, as detailed in section 2.5. Note if split CV test is carried out on a heavily stressed 

device, Generated Defects and stress induced gate leakage will affect the measurement 

results. Pre_Existing defects’ charging won’t affect the CV, as shown in Fig. 2.7d. 
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Fig. 2.7 (a) Split CV results on a HK45 WxL=10x10 micrometers pMOS. Note gate leakage starts 

to become comparable to CV current when Vg exceeds 1V, thus only |Vg|<1V data is used for 

CVC fitting in (b). (b) CVC simulator provided in [68] is used to fit the experiment data. (c) 

Surface potential against Vg relationship is generated by the CVC simulator with fitting parameters 

from (b). (d) A comparison of split CV results on fresh and stress device. 
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Table 2.2 MOSFET parameters extracted from fitting the measured CV with the CVC simulator 

parameters value 

Flat band voltage (V) 0.578 

Surface doping density (cm-3) 2.0e17 

Effective oxide thickness (nm) 1.45 

Oxide capacitance (pF) 2.11 

Bulk doping (cm-3) 2.0e17 

Interface charge density (cm-3) 5.85e12 

Bulk potential (V) -0.426 

Threshold voltage(V) -0.42 
 

Note |Vth|=0.42V is extracted from the split CV results. This agrees very well with max-gm 

extracted |Vth|=0.417V from the IV measurement, supporting the correctness of the fitting 

from the CVC simulator.  

 

2.3.3 Charge pumping measurement 

 

Charge pumping is one of the most conventional methods to measure interface states 

density. A typical charge pumping configuration is shown in Fig. 2.8a, gate is applied a 

high frequency (~MHz) AC square pulses while charge pumping current is measured at 

the substrate. J.S. Brugler et al first [69] used such a configuration to investigate MOSFET 

switching behavior in 1969. They observed a net DC “pumping current” on the bulk when 

applying periodic pulses to the gate. The current was found to be proportional to the gate 

area and the frequency of the applied gate pulses. J.S. Brugler showed that the current 

originates from recombination of minority and majority carriers at traps at the Si-SiO2 
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interface, but he did not provide a quantitative formula to depict the pumping current and 

interface states, which limited the use of this method.  

 

Fig. 2.8 (a) Typical configuration of the charge pumping measurements on nMOSFET. (b) Fixed 

base charge pumping Vg waveform. (c) Fixed Amplitude charge pumping Vg waveform.  

 

A breakthrough was made by G. Groeseneken et al [70] in 1984 for a thorough 

investigation and correct explanation of the charge pumping measurement. After that it 

has become a routine test to measure interface states ever since. A brief introduction and 

explanation of the charge pumping test and how to calculate the interface states are given 

hereafter. For more details please refer to [70]. 

 

Depending on the Vg pattern, charge pumping tests can be clarified as Fixed Base charge 

pumping (Fig. 2.8b) and Fixed Amplitude charge pumping (Fig. 2.8c). The former one is 

used in the first charge pumping paper and the latter one is firstly proposed by A.B.M 

Elliot [71] in 1976. For both Vg patterns there must be a Vg phase in which Vghigh is higher 

than Vth while Vglow is lower than flatband voltage, ICP will reach its max value under this 

condition, as explained below: 
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When the gate is biased under Vghigh, the nMOSFET is pulsed into inversion, the surface 

becomes deeply depleted and electrons will flow from the N+ source and drain regions 

into the channel to build the inversion layer, where some of the electrons will be captured 

by the interface states. 

 

When the gate is biased under Vglow (Vgbase in Fig. 2.8b&c), nMOSFET is pulsed from 

inversion into accumulation from inversion, the mobile electrons in the channel drift back 

to the source and drain, but the electrons trapped in the interface states will recombine 

with the holes from the P+ substrate and give rise to a net DC current through the substrate. 

This is the charge pumping current ICP. The charge interface states, Qit, which will 

recombine is then given by 

Qit = AG ∙ q ∙ �Dit(E)dE (2.1) 

Equation (2.1) can also be expressed as  

Qit = AG ∙ q ∙ Dit ∙ ∆φs (2.2) 

Where 

AG        is the channel area of the nMOS 

Dit(E)       is the interface states density at energy level E 

Dit             is the mean interface states density averaged over the energy level swept by Ef 

Δφs       is the total sweep of surface potential 

 

The total amount of interface states density across the full energy level Nit is 

Nit = Dit ∙ ∆φs (2.3) 

Substitute Equation (2.3) into Equation (2.2), 
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ICP = f ∙ q ∙ AG ∙ Nit (2.4) 

Nit = ICP/(q ∙ f ∙ AG) (2.5) 
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Fig. 2.9 Typical results of (a) Fixed Amplitude charge pumping and (b) Fixed Base charge 

pumping measurements on a HK45 10x10um nMOSFET. 

 

 Typical BTI Characterization scheme 2.4

 

2.4.1 Measure-Stress-Measure (MSM) characterization method 

 

Most of the conventional BTI characterization methods follow a straightforward Measure-

Stress-Measure (MSM) scheme, as shown by the flow chart in Fig. 2.10. Before applying 

any stress, fresh characteristics such as IV, split CV, charge pumping etc. is firstly 

measured as fresh reference [10]. Note the fresh measurements must not bring any 

degradation, otherwise the lifted reference will lead to an underestimation of total BTI 

degradation. After that, the device is then stressed for a preset period of time whose 
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interval can be either linear or logarithmic time based. For the tests aiming at the end-of-

life prediction, due to the fact that many decades in time have to be covered with these 

characterization procedures, a logarithmic time base is more frequently employed. When 

the specified time is reached, the stress condition will be interrupted, and the same 

measurement on fresh is repeated. This MSM sequence will continue until the total stress 

time reaches the preset value. If necessary, a post-stress measurement can be carried out to 

gather more information about the BTI degradation, like discharging kinetics, recovery 

after annealing etc. 

 

Fig. 2.10 Flow chart of a Measure-Stress-Measure (MSM) test scheme. 

 

 

Fig. 2.11 shows a typical charge pumping MSM test to study the interface states 

generation under NBTI stress. |Vg-Vth|=2.0V NBTI Stress is interrupted by a fixed 

amplitude charge pumping measurement at the pre-defined log incremental stress time to 

measure the interface states generation kinetics. After all the charge pumping tests are 
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finished, the device is floating for one day, the post-stress measurement: another charge 

pumping measurement is carried out on the stressed device, which shows interface states 

will not be discharged. 
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Fig. 2.11 (a) Typical test data of fixed amplitude charge pumping MSM on a HK45 10x10um 

nMOSFET under |Vg-Vth|=2.0V PBTI stress. (b) Plot the max value of each line from (a) against 

stress time, indicating the interface states generation during NBTI stress. After stress the device is 

floating for one day, and then re-do the charge pumping. This is so-called “Post stress 

measurement”. Results show interface states generated under NBTI will not be discharged. 

 

Charge pumping MSM characterizes the interface states generation during BTI, but 

interface states are just parts of BTI degradation. The total BTI degradation needs to be 

characterized by |ΔVth|. Depending on the |ΔVth| extraction method, BTI MSM can be 

classified as IV sweep MSM, Spot Id sense MSM, Extend Id sense MSM, ultrafast sense 

MSM, as detailed below: 

IV sweep MSM was the most conventional characterization method. It can be used to 

extract almost all the information such as Vth, transconductance gm, sub-threshold swing 

(SS), etc. A typical result of IV sweep MSM is shown in Fig. 2.12. 
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Fig. 2.12 Typical IV sweep MSM measurement results under |Vg-Vth|=2.0V NBTI stress on a 

HK45 1x1um pMOS. (a) The linear plot of all the IVs during stress, constant Idcc=1uA is used to 

extract all the |Vth| values. (b) A replot of data in (a) but in log Id scale to show SS region is well 

captured by IV sweep measurement. (c) Plot |ΔVth| from (a) against stress time. 

 

The pitfall of IV sweep MSM has been mentioned in section 2.3.1, the slow measurement 

speed cannot capture the fast recoverable traps, resulting a big underestimation of the 

“real” |ΔVth| [60, 62], epically for NBTI on pMOSFETs, which usually contains a lot of 

fast recoverable traps (refer to Fig. 1.6).  

 

After realizing the underestimation due to the fast recovery during the slow IV sweep 

MSM, people started to develop new techniques to minimize the recovery and 

characterize total BTI. A straightforward thinking is reducing the measurement time. 

Spot-Id sense MSM is proposed to achieve this purpose [72]. A schematic depiction of the 

test waveform of Spot Id sense MSM is illustrated in Fig. 2.13a. A Spot IV measurement 

is firstly carried out on a fresh device to measure the reference, then the stress is applied 

on the gate. When the preset stress time is reached,  Vg is lowered down to the sensing Vg 

(Vgsense) to measure only one Id value instead of a full IV, |ΔVth| is then extracted by the 

comparison of Id and fresh Id0 (Id at Vgsense on fresh IV), as shown in Fig. 2.13b.  
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Fig. 2.13. (a) Test waveform of Spot Id sense MSM method. (b) Illustration of |ΔVth| extraction of 

Spot Id sense MSM measurement.  

 

The Spot Id sense MSM method reduced the measurement time to microseconds or sub 

microseconds by using the pulse measurement and only measure one Id, hence the entire 

degradation can be captured. But the |ΔVth| extraction method contains uncertainty. Note 

in Fig. 2.13b |ΔVth| is sensing under a constant sensing Vg (Vgsense) instead of a constant Id. 

As |ΔVth| increases, a change of charged traps in the gate dielectric will change the 

substrate surface potential, so that the |ΔVth| are actually measured at different surface 

potential. As can be seen in Fig. 2.14, if the degradation is small (<30mV), |∆Vth| 

extracted from constant Vgsense and constant Id is comparable. However, when |∆Vth| 
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Vgstress 
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further increases, degradation from constant Vgsense method becomes lower than constant 

Id method. This is because high |∆Vth| lowers Ef if Vg is kept constant.  

 

10-6 10-4 10-2 100 102 1040
20
40
60
80

100
120
140
160
180

         |Vg-Vth|=1.2V
HK22 1x1um pMOS

 Constant Voltage
 Constant Current

 

 

∆V
th

 (m
V)

stress time (s)

2 extraction methods 
applied on one 
set of data

 

Fig. 2.14. The impact of different sensing techniques on the degradation. The increase of |∆Vth| 

will reduce the surface potential if the constant sensing Vg is used and thus leads to the lower 

degradation when compared with sensing at the constant current level which is approximately at 

the same surface potential. 

 

A solution is proposed to overcome this problem as depicted in Fig. 2.15. A Pulse IV 

MSM test is firstly carried out prior to the Spot Id sense MSM. From the Pulse IV 

measurements both |∆Vth| from constant current and ∆Id/Id0 at a constant sensing Vg can be 

achieved. |∆Vth|~∆Id/Id0 is plotted in Fig. 2.15. It is shown that the correlation between 

them is irrespective of stress conditions and can be fitted by a cubic equation well. As 

long as this unique correlation is set up, it can be used to convert the ∆Id/Id0 measured 

under a constant sensing Vgsense to the corresponding |∆Vth| measured at the same surface 

potential (constant current).  
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Fig. 2.15. Experimental extracted unique relationship between ∆Id/Id0 and |∆Vth|. ∆Id/Id0 is taken 

from the constant Vgsense and the |∆Vth| is from constant current method. This relationship is 

independent of stress condition and can be used to convert ∆Id/Id0 into |∆Vth|. 

 

As a key feature, BTI recovery will help people to understand BTI mechanism thus is 

worthwhile to investigate. Extended Id sense MSM method is proposed to study the BTI 

recovery kinetics [73]. A schematic illustration of this technique is given in Fig. 2.16.  

 

Fig. 2.16 Test waveform illustration of the extended Id sense measurement technique. The 

waveform is very similar to spot-Id MSM, except extended Id sense technique takes multiple 

measurements instead of one at the Vgsense level. 

 

Extended Id sense MSM method is very similar to the Spot Id sense MSM. The only 

difference is Extended Id sense MSM measures multiple Id values under Vgsense at a preset 

discharging time sequence to monitor BTI recovery kinetics.  
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With the development of semiconductor analyzers, such as high-speed oscilloscope, 

microseconds or sub-microseconds measurements become available. This is the so-called 

“ultrafast sense” measurement. 
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Fig. 2.17. (a) Test configuration of ultrafast sense measurement technique. (b) Impact of 

measurement speed on |ΔVth|, inset shows the pulse IV waveform with different measure time. It is 

shown that on SiON pMOS 20 microseconds is capable to capture the entire NBTI degradation 

 

The first ultrafast sense technique was proposed in [74], the fast speed is achieved by a 

high speed current-voltage Amplifier which can convert the Id current driven by a 

~microseconds pulse on the gate, to voltage, thus can be monitored by a high-speed 

oscilloscope. Fig. 2.17a shows the “ultrafast sense” measurement configuration used in 

this work.  
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As a sacrifice of the fast measurement speed, the accuracy of the “ultra-fast sense” MSM 

will decrease with higher speed. Fig. 2.17b shows the impact of measurement speed on 

|ΔVth|, it is found that on SiON process, as long as the “ultrafast” pulse IV is taken within 

20 microseconds, the entire |ΔVth| can be captured. Considering the process difference and 

the accuracy of the facilities used in this work, 3 microseconds “ultra-fast” pulse IV is 

adopted to measured |ΔVth| hereafter if not specified.  

 

2.4.2 On-the-Fly (OTF) characterization method 

 

Apart from reducing the testing time, another way to suppress the recovery is to avoid 

interrupting the stress while measuring Vth. On-The-Fly characterization method was 

proposed [75, 76] following such thinking. A typical On-The-Fly test pattern is depicted 

in Fig. 2.18. The stress voltage Vg is always applied on the gate, when it reaches the 

specified stress time, ΔId current will be monitored right at Vg to extract |ΔVth| by dividing 

the local transconductance gm, which is calculated from the Id measurements at another 

two voltages close to Vg, Vg-ΔV, Vg+ΔV, as illustrated in Fig. 2.18. 

 

Fig. 2.18 On-The-Fly characterization method illustration [12]. |ΔVth| is calculated by ΔId/gm. To 

measure the real-time gm another two Vg levels Vg+ΔV and Vg-ΔV is applied on the gate.  ΔV is 

very small so the impact on the stress condition is negligible. 
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One important issue for this On-The-Fly technique is the selection of the reference Id0. 

Since all the |ΔVth| is converted from ΔId/gm = (Id0-Id)/gm, this means that a wrong Id0 will 

affect all the |ΔVth| results [60, 62]. Slow DC measured Id0 cannot be used because it has 

already been contaminated by the charging of fast recoverable BTI traps during tens or 

hundreds of milliseconds Id0 measurement under stress Vg.  Fast measurement like pulse 

IV or spot IV has to be used to get the “real” fresh reference Id0. 

 

On-The-Fly method can eliminate the recovery completely compared to MSM as the 

stress has never been removed. By using the proper fresh reference, |ΔVth| sensing at stress 

Vg can be reliably extracted. However, On-The-Fly method extracted |ΔVth| is sensing at 

the stress Vg instead of real Vth0, for NBTI on silicon devices, due to mobility degradation, 

|ΔVth| sensing at stress Vg is usually much larger than sensing at Vth0, as shown in Fig. 

2.19.  
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Fig. 2.19 (a) Illustration of |ΔVth| extracted at different sensing Vg. Pulse IV MSM is carried out on 

HK22 1x1um pMOSFET under |Vg-Vth|=1.2V 1ks NBTI stress. (b) |ΔVth| against Vgsense plot. 

|ΔVth| extracted from Vgsense=1.5V is 2.5 times higher compared to Vgsense=-0.4V. 
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The phenomenon in Fig. 2.19 is called “Vg-Effect” as detailed in [60]. The solution is to 

use |∆Vth|~∆Id/Id0 correlation measured from pulse IV MSM to convert ∆Id/Id0 into |∆Vth|, 

as shown in Fig. 2.15. 

 

Another simplified On-The-Fly pattern is as shown in Fig. 2.20. Constant stress Vg is 

applied on the gate and constant Vd is applied on the drain. Id is continuously monitored 

against stress time. This On-The-Fly measurement can capture Id fluctuation continuously 

thus is widely used on nano-scale devices. The conventional Within Device Fluctuation 

measurement in chapter 6 is using this pattern. Fresh gm at stress Vg from fresh device is 

divided by ΔId to get |ΔVth|, which also suffers from “Vg-Effect”. In this work, 

ΔId/Id0~|ΔVth| relationship is used to convert ΔId to |ΔVth|, as detailed in section 6.3.1. 

 

Fig. 2.20 Test waveform of the simplified On-The-Fly measurement scheme. Id is continuously 

monitored under a constant Vg stress. 

 

 Discharging-based Multiple Pulse (DMP) technique 2.5

 

2.5.1 Conventional DMP technique 

 

Defects in gate dielectric play an important role during BTI stress, the characterization of 

these defects’ energy distribution is very useful for both process qualification in industry 
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and better understanding for modelling. A Discharge-based multi-pulse technique (DMP) 

technique was proposed to do this by X. Zheng et al in 2010 [77]. The typical waveform is 

shown in Fig. 2.21. Note nMOSFET is demonstrated in Fig.2.21, for pMOSFET all the Vg 

should be in the opposite polarity.  
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 Fig. 2.21 Test waveform of the conventional DMP technique when (a) |Vgdisch|>|Vth| (b) 

|Vgdisch|<|Vth|. A charging voltage |Vgch| is firstly applied to fill all the chargeable traps, |Vg| is then 

lowered down step by step to discharge the traps at different energy location. Ultrafast pulse IV is 

adopted to capture |ΔVth|.  

 

Although the DMP technique is proposed for electron trap energy distribution probing for 

Flash memory application, it is also applicable to both n-type and p-type MOSFETs [78, 

79]. The principles of DMP on a pMOSFET are shown in Fig. 2.22:  
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Fig. 2.22 The energy diagram to show the principles of the DMP technique on a pMOSFET. When 

Vgdisch was stepped toward positive direction each time, a shaded area with an energy depth of Δφs 

at the interface falls below Ef and the positive charges within it start discharging. 

 

A negative Vgch is firstly applied on a pMOSFET to fill the hole traps and form the 

positive charges. Then |Vg| will be lowered to |Vgdisch,1|, some of the charged positive 

charges will fall below Fermi level, Ef, as marked by the grey shade in Fig. 2.22. As a first 

order approximation [78-81], below Ef, positive charges are assumed to be neutralized 

throughout the oxide given a sufficient discharge time. When the Vgdisch moves further 

towards positive for each step, the energy level of positive charges is lowered against the 

substrate, bringing a new dash area below Ef for discharging. Through monitoring the 

|ΔVth| during each Vgdisch step, the profile of the positive charges can be evaluated. 

 

2.5.2 Spot Id DMP technique 

 

Due to the complexity of the pattern, conventional DMP pattern cannot be directly 

transferred to a mainstream semiconductor analyzer like Keithley 4200A-SCS, thus 
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making it unsuitable for industry use. To conquer this difficulty a simplified Spot Id DMP 

technique is proposed as shown in Fig. 2.23. 

 

A typical result of the Spot Id DMP technique is given in Fig. 2.24. A charging Vg Vgch=-

1.6V 10,000 seconds stress is apllied on a HK22 1x1um pMOSFET to filled all the 

chargeable defects. Vg is then stepping down and the filled postive charges in the gate 

dielectric start to discharge. Most of the positive charges will discharge within 20 seconds, 

the discharing trace after 20 seconds is a flat line compared to the obvious drop of |∆Vth| at 

the beginning. 

 

The profile of the positive charges induced |∆Vth| can be extracted by plotting the |∆Vth| 

after 20 seconds discharging against the corresponding Vgdisch, as shown in Fig. 2.24b. 

|∆Vth| is then converted into the effective charge density [82, 83] with Equation (2.6) and 

(2.7): 

∆NOX = |∆Vth| ∙ COX/q (2.6) 

COX = ε0 ∙ εSiO2 ∙ W ∙ L/EoT (2.7) 

  

Where ε0 is the vacuum permittivity, εSiO2 is the SiO2 dielectric constant, W/L is the 

channel Width/Length and EoT is the effective oxide thickness. 
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 Fig. 2.23. Test waveform of the Spot Id DMP technique. 
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Fig. 2.24. (a) Typical results for discharging kinetics under different Vgdisch, The discharge time is 

the time under a given Vgdisch as marked in Fig. 2.23. The device is stressed at -1.6 V for 10 ks 

before the discharging. (b) Profile of the positive charges induced |∆Vth|. 

 

The number of positive charges |ΔNox| is plotted against Vgdisch in Fig. 2.25a. |ΔNox| 

extracted from different discharging time overlaps, indicating the impact of discharging 

time is negligible. The impact of interface states (Nit) is also evaluated as shown in Fig. 

2.25b, which shows Nit is also negligible. 
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To obtain the energy distribution, Vgdisch must be converted to the energy level Ef relative 

to Ev, i.e. Ef-Ev. As shown in Fig. 2.25(c), Ef-Ev = Eg/2+ φB- φS. A theoretical (Ef-Ev) ~ Vg 

curve is first calculated using the CVC simulator [68]. By shifting the theoretical curve 

towards the left until Ef-Ev=Eg/2-φB (i.e. the strong inversion condition) occurs at the 

measured Vth, the Ef-Ev versus Vgdisch relation is obtained and then used to convert Vgdisch 

into Ef-Ev. Fig. 2.26a plots ΔNOX against Ef-Ev. By differentiating ΔNOX against Ef-Ev, the 

energy density, ΔDOX, is also obtained as shown in Fig. 2.26b. 
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Fig. 2.25 (a) A comparison of the positive charge density ∆Nox extracted at different discharging 

time. (b) A comparison of ΔNOX before and after Nit correction. (c) Illustration of the Ef-Ev versus 

Vgdisch relation extraction. The dashed curve is the theoretical (Ef-Ev) ~ Vg, calculated from the 

CVC simulator. By aligning Ef-Ev=Eg/2- φB to the threshold voltage of stressed device, the solid 

line is obtained with which Ef-Ev can be found for a given Vg=Vgdisch. The inset of (c) shows the 

relationship between Ef-Ev and surface potential, φs and φB. 
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Fig. 2.26 (a) Energy profile ∆NOX of the positive charges against their energy level. (b). Energy 

density ΔDOX calculated by differentiating the data in (a). 

 

 Variability characterization method 2.6

 

2.6.1 Random Telegraph Noise (RTN) technique 

 

Id on nano-scale devices is fluctuating under a constant gate voltage due to the charging 

and discharging of a handful of defects in the gate dielectric. Sometimes when Vg is 

properly biased (normally around Vth), one trap will dominate the current fluctuation and 

an RTN signal can be observed, as shown in Fig. 2.27. 

 

RTN on deeply scaled MOSs was observed and well modelled in 1989[84, 85]. As the 

scaling down of feature size, single trap impact on Id becomes larger and larger as 

MOSFET’s size scaling down [55]. IBM reported a single RTN can already reach device 

lifetime criteria in 2011 [86]. Meanwhile as the voltage scales down, BTI is much 

alleviated resulting in RTN playing a more and more important role in modern circuits. 
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RTN has three basic parameters: amplitude, capture time and emission time. RTN 

amplitude reflects the impact of the RTN trap, the averaged capture time (τc) and emission 

time (τe) can be used to extract the trap’s energy information according to Equation (2.8). 

 

 

 

Fig. 2.27 (a) RTN measured on a HK45 90x70nm nMOS. Vg is biased at Vg=Vth+0.2=0.7V, drain 

is biased at constant Vd= +100mV, sampling rate=1MSa/s to capture the fast RTN signal. (b) 

Enlarge the data marked in black rectangle from (a) to show a clear RTN is observed. (c) RTN 

information: Amplitude, tc and te extraction. (d) tc and te follow a good exponential distribution. 
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τc
τe

= exp (
ET − EF

kT
) (2.8) 

Where ET is the RTN responsible trap energy, EF is the fermi level. 

 

Once enough RTN traps are captured and statistically analyzed, people will be able to 

evaluate the behavior of these traps under actual operating conditions. 

 

Fig. 2.28 (a) RTN measurement and analysis on the same device under Vg=0.8V, clearly tc 

decrease and te increases under a higher Vg compared to Fig. 2.27c. (b) τc and τe under 0.8V also 

follow a good exponential distribution. 
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Fig. 2.29 RTN τc and τe dependence on Vg. Trap energy information can be extracted from this. 
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2.6.2 Time Dependent Defect Spectroscopy (TDDS) technique 

 

T. Grasser et al [87] proposed the Time Dependent Defect Spectroscopy (TDDS) 

technique after in-depth study of recovery behavior on nano-scale devices.  
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Fig. 2.30  (a) Test waveform of the Time Dependent Defect Spectroscopy (TDDS) technique. (b) 

Typical TDDS measurement results, each step represents a single defect emission, the amplitude 

and emission time of this defect is then extracted. (c) By repeating the TDDS measurements a 

defect spectroscopy in terms of emission time and amplitude can be extracted. 
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TDDS test pattern illustration is shown in Fig. 2.30a. A stress Vg is firstly applied to 

charge up multiple traps, charge time is very short to avoid defect generation, |Vg| then 

lowers down close to |Vth| and monitor the Id recovery continuously. For some nano-scale 

devices the discharging traces can have clear steps, the emission times τe of these steps 

can then be captured. Finally all the traps will be discharged and then the same procedure 

is repeated to gain another group of τe, finally a defect spectroscopy can be extracted and 

Time Dependent Variability can be evaluated. 

 

Compared with RTN technique, TDDS can extract multiple traps at one time, and it can 

also capture some traps which have long capture time thus cannot be captured by RTN. 

The sacrifice is that the capture time information cannot be extracted in TDDS. 

 

 Accelerated BTI parameter extraction technique 2.7

 

Traditional BTI degradation follows a power law, which can be described as: 

∆Vth = A ∙ (�Vg − Vth�)m ∙ tstrn  (2.9) 

According to JEDEC. Time exponent n can be extracted through Constant Voltage Stress 

and multiple stress voltages are used to extract A and m values, the testing time usually 

takes a few days. In industry, the fast BTI parameter extraction method is always preferred 

in lots of circumstances, like fast wafer screening, process optimization etc. Moreover, as 

nowadays most circuits are fabricated with nano-scale devices. Nano-scale devices need 

multiple devices average to get meaningful results, fast BTI parameter extraction methods 
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become a necessity. In this section two popular accelerated BTI parameter extraction 

methods are introduced: Voltage Ramp Stress and Voltage Step Stress technique. 

 

2.7.1 Voltage Ramp Stress technique 

 

Voltage Ramp Stress test waveform is shown in Fig. 2.31. In terms of BTI 

characterization method it belongs to Spot Id MSM measurement as previous discussion. 

Instead of a constant stress voltage and a log-incremental stress time, the Voltage Ramp 

Stress technique employs a linear-incremental stress voltage and a linear-incremental 

stress time. Since the m value in Equation (2.7) is usually much larger than n value, 

voltage acceleration is a much more effective way to accelerate BTI compared to stress 

time, thus the testing time is reduced. Vgsense is selected around Vth and measurement delay 

is one millisecond, |ΔVth| is extracted by interpolation to the reference IV on fresh.  

 

Fig. 2.31 Test waveform of the Voltage Ramp Stress (VRS) technique. 

 

Ramp Rate (RR) in Fig. 2.31 is defined by: 

RR = ∆Vg/∆t (2.10) 

A, m and n extraction from the Voltage Ramp Stress pattern are shown as below: 

Vd 
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∆Vth(TCVS, VCVS) = A ∙ VCVSm ∙ TCVSn  (2.11) 

From RR definition: 

Vi = RR ∙ ∆t ∙ i (2.12) 

The ith Voltage Ramp Stress phase can be equal to device stressed under VCVS for 

effective stress time  

∆ti(VCVS) =
∆V
RR

∙ �
Vi

VCVS
�
m/n

 
(2.13) 

The total equivalent stress time under Constant Voltage Stress for the whole Voltage 

Ramp Stress procedure is: 

tCVS(VCVS) = � ∆ti(VCVS)
N

1
 

(2.14) 

Substituted Equation (2.11) into Equation (2.8),  

∆Vth(RR, Vi) =
A

(m/n + 1)n ∙
Vim+n

RRn  
(2.15) 

 

Fig. 2.32d-f show how m and n is extracted in the Voltage Ramp Stress technique. |ΔVth| 

against stress voltage is plotted in Fig. 2.32d, they also follow a power law before |Vg| 

goes beyond too high (1.9V) which may generate some unintentional traps. Fitted power 

law will intercept V=1V at ∆Vth at 1V, which is 

∆Vth(RR, 1) =
A

(m/n + 1)n ∙
1

RRn            n = −slope (2.16) 

A
(m/n + 1)n = ∆Vth at 1V|RR=1 (2.17) 

Power exponent in (d) is m+n, as long as n is extracted, m can be determined, A then can 

be easily calculated by substituting m and n value into Equation (2.17). 
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The Voltage Ramp Stress technique is trying to capture the total degradation (1 

millisecond measure delay) while the parameters are deduced from the power law. For 

some immature process which has a lot of As-grown traps the power law is no longer 

valid, resulting in the wrong parameter extraction, as detailed in chapter 5. 
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Fig. 2.32 A replot of the Voltage Ramp Stress technique results and analysis in [88] to show 

parameter extraction from the Voltage Ramp Stress technique. PBTI on nMOSFETs is adopted 

here. a-c show the test data and A,m,n extraction using conventional Constant Voltage Stress 

technique, d-f show the test data and parameter extraction of Voltage Ramp Stress technique. The 

agreement of parameters extracted from these two different techniques indicates the correctness of 

the Voltage Ramp Stress technique. 
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2.7.2 Voltage Step Stress technique 

 

Another fast BTI parameter extraction method is Voltage Step Stress technique, as 

illustrated in Fig. 2.33. Prior to stress, a reference IV curve is recorded. The device is 

stressed at |Vg| =|V1| for a pre-specified time, Δt and then |Vg| is then ‘stepped up’ to next 

|Vg| for another Δt. IV is measured at pre-defined intervals during each step. This 

procedure will continue until reaching the pre-set maximum N.  

 

Fig. 2.33 Voltage Step Stress test waveform illustration. 

 

Compared to the Voltage Ramp Stress technique which attempts to capture the whole 

|ΔVth|, the Voltage Step Stress method employs slow DC measurement to only capture 

defects which will not be discharged under 0V, thus the power law is valid for both 

mature and immature processes. Due to high accuracy brought by the slow DC 

measurement employed here, time exponent can be reliably extracted from the first |V1| 

stress phase, as shown in Fig. 2.34, meanwhile A(|V1-Vth|)m  is also achieved in the first 

stress phase, once m value is extracted, A can be easily calculated. 
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Fig. 2.34 Typical results of applying the Voltage Step Stress technique on a HK45 1x1um 

pMOSFET. Firstly BTI kinetics under Vg=V1 is used to extract A & n, the rest data under high Vg 

is then used to extract m. 

 

Stress time in the Voltage Step Stress pattern can be converted to equivalent stress time 

under Constant Voltage Stress at V1, which is 

∆teff = � �
Vi − Vth
V1 − Vth�

m/n

∙ ∆t
N

1
 

(2.18) 

|ΔVth|~Δteff after Equation (2.18) conversion should then follow the same trace as the first 

stress phase as if the devices is stressed under Constant Voltage Stress=V1 for a very long 

time. 

 

The analysis of A & m extraction from the Voltage Step Stress technique is shown in Fig. 

2.35. 
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Fig. 2.35 Stress time transformation with different voltage exponent, m. Only when the correct m 

is used, they agree well with the power law predetermined in the first step (dashed line). 

 

A guessed m value (any positive integer bigger than 1 is fine) is substituted into Equation 

(2.18) to calculate the effective stress time  ∆teff. Then check if |∆Vth|~∆teff follows the 

same power law as the first stress phase. Only when the correct m is found, can the power 

law be restored. Fig. 2.36a-c shows three cases with m = 2, 5, 7.7 respectively. If m is too 

far from its real value, the transformed curve deviates from the power law extended from 

step #1. The correct value of m can be obtained when the best agreement is reached.  

 

To check the convergence of the fitting and whether m extraction is unique, the least 

square error between measured |ΔVth| and  A(|V1 − Vth|)m∆teffn   is given in Fig. 2.36, 
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obviously the fitting is convergent and m is unique. As soon as m is extracted, together 

with  A(|V1 − Vth|)m value from the first stress phase, A is also extracted. 
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Fig. 2.36 Least Square Error between the transformed curve (the points in Fig. 2.35) and the 

dashed line extrapolated from the first step (dash line in Fig. 2.35). 

 

 Summary 2.8

 

In this chapter, mainstream methodologies for the reliability and variability of BTI 

characterization are discussed. Due to the fast recovery and also fast charging, slow DC 

measurement will result in a big underestimation of BTI degradation. Advanced fast 

measurement and OTF measurement are able to capture the majority of BTI degradation 

but the degradation needs to be converted to |ΔVth| sensing at a constant surface potential, 

namely a constant current.  

 

Energy profile is an effective way to understand BTI behavior. Discharging-based 

Multiple Pulses (DMP) technique can be used to achieve this purpose, but the waveform is 
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complicated and not easy to transfer to a mainstream analyzer like the Keithley SCS4200. 

The conventional DMP technique has been modified to be accommodated into the 

Keithley 4200. ΔId/Id0~|ΔVth| conversion is used to extract |ΔVth| to ensure the 

degradation is sensing at a constant surface potential. 

 

Time Dependent Variation brings an extra challenge to BTI characterization. On one hand 

the current is fluctuating and people normally use Random Telegraph Noise (RTN) or 

Time Dependent Defect Spectroscopy (TDDS) to characterize it. On the other hand, 

Device-to-Device Variability tests make the fast BTI parameter extraction method a 

necessity.  

 

Two popular fast methods, Voltage Ramp Stress and Voltage Step Stress are briefly 

introduced. Both methods use the power law to accelerate the parameter extraction.   
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3 Defect Generation under BTI stress 
 

 Introduction & Motivation 3.1

 

Defect generation under BTI can be traced back as early as 1977[11], K. O. Jeppson  et al 

suggested a hydrogen-diffusion controlled interface state creation is responsible for such 

degradation.  

 

With the development of measurement facilities, recovery within microseconds can be 

measured. Publications about NBTI recovery mushroomed in the past two decades. Now it 

is widely accepted that NBTI consists of a recoverable component “R” and a so-called 

“permanent” component “P” which is difficult to recover. However, due to the logarithmic 

discharging behavior of NBTI, there is no clear boundary of “R” and “P”, making it very 

difficult to study “R” and “P” respectively and understand their underlying mechanisms. 

 

In this chapter, defect generation is investigated by experimentally separating it according 

to its test behavior. The definition for Generated Defects is: Defects which do not exist on 

a fresh device. Test results show Generated Defects have two components depending on 

the measurement condition, one can repetitively charge/discharge, another one is very 

difficult to discharge even under a positive bias. The absolute amount of these 2 types of 

defects is related to the measurement condition, but if they were added together and form 

3 
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the entire Generated Defects, the total amount is a constant value independent of 

measurement condition.  

 

 Generated Defects under NBTI stress 3.2

 

3.2.1 Energy profile of Generated Defects: Cyclic Positive Charges 

(CPC) and Anti-Neutralization Positive Charges (ANPC) 

 

Based on the Discharging-based Multiple Pulses (DMP) technique introduced in chapter 

2, defect energy profile is extracted on a fresh and then stressed device as shown in Fig. 

3.1. Generated Defects, by its definition, can be extracted by subtracting the fresh from the 

stressed energy profile (Fig. 3.1b). -1.2V is selected as DMP charging voltage to avoid 

any potential generation on fresh device, which is confirmed in Fig. 3.1a that |ΔVth| return 

to zero at the end of DMP, the last discharging Vg, Vgdisch,end=+1.6V. The device is then 

stressed by a heavy stress Vgstress=-2.5V for 1,000 seconds, after that the same DMP 

procedure is repeated on the stressed device. 

 

From the energy profile point of view, Fig. 3.1b clearly shows Generated Defects are 

mainly located both within the Si bandgap and beyond Si conduction band. As observed in 

Fig. 3.1a, charging-discharging can be cycled by alternating Vg polarity for the defects 

within the bandgap, so that they are referred to as Cyclic Positive Charges (CPC) [89]. On 

the other hand, the defects above Si Ec are more difficult to neutralize and they are called 

Anti-Neutralization Positive Charges (ANPC).  
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Note in Fig. 3.1 the defect profile is in |ΔVth| instead of the density. The annotation in 

Fig. 3.1b “CPC” and “ANPC” actually represents “CPC induced |ΔVth|” and “ANPC 

induced |ΔVth|”. Considering the lifetime prediction only requires the |ΔVth| value, 

and also for the convenience of discussion, “CPC” and “ANPC” hereafter mean their 

induced |ΔVth| instead of the defects themselves hereafter. This applies for all the 

defects including: Generated Defects, As-grown Traps, Energy Alternating Defects, 

Pre_Existing defects. 
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Fig. 3.1 (a) A comparison of the energy profiles before and after stress, |ΔVth| impact on energy 

level Ef-Ev has already been taken into consideration. (b) By subtracting the fresh profile from the 

stressed one, the profile of Generated Defects was extracted. (c) Illustration of the energy range for 

the Cyclic Positive Charges (CPC) and the Anti-Neutralization Positive Charges (ANPC). Note 

the illustration is just a “rule-of-thumb” here for convenience, Ec and Ev is not the precise 

boundary to separate CPC and ANPC from energy location point of view.  
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3.2.2 Characterization method of CPC and ANPC 

 

As the definition in 3.3.1, unlike ANPC that can be measured after a certain delay time 

under a certain discharge Vg due to its “Anti-Neutralization” nature, CPC cannot be 

directly measured due to: 1). CPC shared the energy profile with part of the Pre_Existing 

defects (as detailed in chapter 4); 2). CPC’s repetitive charging discharging behavior is the 

same as Pre_Existing defects. Thus again, subtraction is used to extract the CPC 

components. 

 

Actually due to the non-saturation of ANPC discharging (Fig. 3.2) kinetics, CPC and 

ANPC here are “pragmatic” definitions. Any defect which cannot be discharged under 

+1.6V 10s will be ascribed to ANPC. 
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Fig. 3.2 Discharging kinetics under positive gate voltage in (a) linear time scale and (b) log time 

scale. Clearly the discharging won’t become flat although it looks so in linear time plot in (a). 

 

-1.2V/+1.6V is applied alternatively on a fresh device and then stressed device for CPC 

extraction. The device is already heavily stressed under -2.5V 1ks. Due to the power law 
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intrinsic of NBTI further defects generation is suppressed. -1.2V charging on this stressed 

device is a purely filling procedure. Since the Pre_Existing defects’ charging kinetics is 

independent of stress (as detailed in chapter 4), CPC charging kinetics can be easily 

extracted by: 

CPC = |∆Vth| − Pre_Ex − ANPC (3.1) 

Where Pre_Existing defects’ charging kinetics is measured on fresh device and ANPC is 

calculated by subtracting the fresh |Vth0| from local Vth measured after stress, as shown by 

the gap in Fig. 3.3b. 
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Fig. 3.3 (a) Test waveform and typical results for CPC extraction. Note ANPC is already 

subtracted as a reference for the charging kinetics on stressed device. (b) The averaged kinetics of 

CPC extracted from (a) in log time scale. 
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Clearly under -1.2V, CPC charging will saturate within a short period (10s in Fig. 3.4). If 

a higher charging voltage -1.4V is applied, which is still much lower than the stress 

voltage -2.5V, the total amount of CPC will saturate at the same level as -1.2V, but at an 

earlier saturation time. This can be understood by the fact that the filling efficiency 

increases due to the higher current. 

 

It is interesting to point out that the CPC can saturate after such short times under low 

voltage because they have been generated already. This means CPC have two different 

processes: first, they have to be generated/activated from their precursors; second, after 

the generation, CPC have a filling process shown in Fig. 3.4.  
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Fig. 3.4 Voltage dependence of CPC charging kinetics on stressed device. 

 

The repetitive charging and discharging behavior and non-existence on fresh device 

clearly prove CPC are Generated Defects; however, ANPC cannot be proved in this way 

as it is difficult to be neutralized at the end of the recovery period, due to the non-

saturation of ANPC discharging kinetics (Fig. 3.2).  
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To support that ANPC is also part of Generated Defects, the activation energy of CPC and 

ANPC are compared. Fig. 3.5 shows the same stress voltage applied for 1ks under 4 

different temperatures. The activation energy, Ea’, for both CPC and ANPC, can be easily 

extracted from the slope in Fig. 3.5a. It turns out Ea’ for both CPC and ANPC are around 

0.14eV, much larger than the Ea’ of ~0.04eV reported for Pre_Existing defects [90], 

supporting the hypothesis that defect generation is a different process from filling As-

grown traps. And also the extracted Ea’ of 0.14eV agrees well with the value reported in 

early generation-related works [91, 92]. What is worth noting is that in physics, the 

activation energy varies with different individual defect, therefore, the extracted effective 

activation energy represents the average effect on temperature activation. 
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Fig. 3.5 (a) The effective activation energy extraction for CPC and ANPC on HK45 1x1um 

pMOSFET after stress under DC |Vg-Vth|=1.9V for 1ks. Wherein, ANPC here is measured after 

+1.6V discharge 30s to remove all the non-GD component. After the ANPC measurement, Vgrech=-

1.2V is applied to get CPC amount. 5 devices are used for each temperature and the error bar is 

given. The corresponding activation energy, Ea’, can be obtained by Ea’/n = 0.7eV, where n is the 

time exponent (n=0.2 as shown in Fig. 3.14). (b) The extracted Ea' from another two processes: 

HK22 & SiON show similar results as HK45. 
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3.2.3 Speculation of the origin of CPC and ANPC 

 

Although the electronic measurements above do not give direct evidence for the physical 

origin of CPC and ANPC, a speculation based on the current results and past work [89, 

93] can be made here. Fig. 3.5 shows that CPC and ANPC have the same thermal 

activation. Based on the common thermal activation of CPC and ANPC, on one hand, one 

may speculate that they have the same chemical structure and a variation of properties, 

such as bond length/angle, which in amorphous oxides results in a distribution of energy 

levels. On the other hand, one may also speculate that they are different products of a 

common controlling aging process. Hydrogenous species are likely involved in the 

generation of both CPC and ANPC. For example, an increase of hydrogen exposure of the 

sample will significantly enhance the efficiency of CPC generation [89]. And in some 

samples under development, substantial CPC Pre-exist on fresh devices [93], possibly 

because of high exposure to hydrogenous species during fabrication. 

 

 ANPC and CPC generation kinetics  3.3

 

3.3.1 Novel Stress-Discharge-Recharge technique 

 

In previous sections the CPC and ANPC components can be extracted respectively on a 

stressed device, but the generation kinetics is still unknown. A novel Stress-Discharge-

Recharge test procedure is designed to investigate the kinetics of the entire Generated 

Defects. 
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Stress-Discharge-Recharge test procedure is shown in Fig. 3.6. After stressing under 

Vgstress, an opposite polarity of discharging Vg (Vgdisch) was applied to accelerate the 

discharging of Pre_Existing defects, as used in early works [94, 95]. The low use-bias 

under real operation Vgch (|Vgch|<< |Vgstress|) was then applied to refill all the traps that 

contribute under use condition. The pulse Id-Vg curves are recorded during each step with 

a measurement time of three microseconds.  The threshold voltage degradation is 

monitored by sensing at a constant Id of 500nA·W/L around threshold voltage.  

 

Fig. 3.6 The test follows a Stress-Discharge-Recharge sequence. At the end of each step, |ΔVth| 

was monitored from a corresponding IV, which was taken from the 3µs pulse edge with Vd = -

0.1V applied. |ΔVth| was extracted at a constant current of 500nA·W/L.  

 

To reliably extract the CPC and ANPC generation kinetics, the test parameters for the 

Stress-Discharge-Recharge waveform should be carefully chosen. First of all, Vgdisch 

should be high enough to remove all the Pre_Existing defects, meanwhile it cannot be too 

high to introduce any electron traps on a fresh device. Secondly recharge voltage (Vgrech) 

should be able to fill all the CPC components generated by the stress phase within a 

relatively short (no longer than ten seconds) time, otherwise the testing time will be too 

long as this recharge time (Trech) is needed in every stress phase. 
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Before applying the stress voltage to generate defects, Pre_Existing defects amount under 

Vgch needs to be measured, which later will be subtracted as a reference to get CPC on 

stressed device. This can be done be applying the Stress-Discharge-Recharge pattern with 

Vgstress=Vgrech for once. Although the Stress-Discharge-Recharge waveform is more 

complicated compared with how people normally measure the “permanent” component by 

introducing a delay at zero volt, the advantage of this pattern is it can give us a reliable 

time exponent of Generated Defects regardless of measurement condition, stress voltage, 

temperature, and frequency on different process, as detailed in section 3.5. 

 

Fig. 3.7 is a typical Stress-Discharge-Recharge pattern result with. Clearly both ANPC 

and CPC follow the power law, with the same time exponent 0.2, which further supports 

their generation intrinsic. Note ANPC is seven times higher than CPC on HK45 process, 

the ratio is similar for the other three processes used in this chapter. This ratio will be used 

in chapter 4 when measuring the kinetics of Pre_Existing defects. 
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Fig. 3.7  Both ANPC and CPC follow power law with the same power exponent, supporting they 

belong to the same type of defect.   
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3.3.2 Contribution between interface states and Oxide traps 

 

Note Anti-Neutralization Positive Charges (ANPC) contain the interface states, as 

interface states will not discharge. Interestingly, when the interface states generation 

kinetics measured by the charging pumping technique is subtracted from the kinetics of 

Generated Defects, a good 1:1 relationship is achieved between the interface states and the 

remaining generated oxide traps (Fig. 3.8). This well agrees with the reports in early 

works [4, 11, 96]. Noted in V. Huard’s work, gate current is used to characterize the NBTI 

degradation, early works show Pre_Existing defects charging/discharging will have 

negligible impact on gate current, it is speculated that Generated Defects which caused 

gate current increase. This is another evidence supporting that, Generated Defects, as a 

whole, is one type of defects, both CPC and ANPC are just two different facets in terms of 

a specific measurement condition.  
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Fig. 3.8 Interface states generation versus oxide trap generation. Generated Defects are measured 

using the Stress-Discharge-Recharge technique on a HK45 10x10um pMOSFET, while interface 

states are measures by charge pumping on another HK45 10x10um pMOSFET.  
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 Reliable NBTI Generated Defects’ time exponent 3.4

extraction 

 

3.4.1 Existing values of NBTI Generated Defects’ time exponent 

 

Power-law based extrapolation by JEDEC is the standard method for lifetime prediction of 

commercial circuits. With the introduction of the fast measurement into BTI 

characterization, since the whole NBTI is captured, the power law relationship is no 

longer valid for most of the state-of-the-art technique devices and circuits. To restore the 

power law, a common practice is to introduce a delay between the stress and measurement 

[97, 98], during which NBTI partially recovers [41, 62, 75, 98-101]. However, even if the 

test data can be fitted well with a power law after such a delay, the time exponent, n, 

depends on measurement condition (discharging voltage, measurement speed etc.) [98, 

102], as shown in Fig. 3.9. 

 

Due to the intrinsic nature of power law, a small change in time exponent will lead to 

unacceptable errors when extrapolated to 10 years. Fig. 3.10 shows for time exponent n 

changes from 0.16 to 0.2, the predicted lifetime can have a significant uncertainty as big 

as sixteen times. Thus there is a strong need to find the reliable and accurate time 

exponent of n for NBTI lifetime prediction. 
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Fig. 3.9 NBTI measured by conventional method under different discharge Vg (Vgdisch) and time 

(Tdisch). Different time exponents lead to substantial uncertainty in lifetime extraction when 

extrapolating to 50mV. The stress was under |Vg-Vth|= 1.2V. 
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Fig. 3.10 Fit the test data with/without assuming the n=1/6, respectively, and then extrapolated to 

10 years. Lifetime will be overestimated by 16 times if n is wrongly extracted as 1/6.  

  

3.4.2 Independent time exponent of Generated Defects  

 

The root of the confusion about the NBTI time exponent lies in ambiguous separation of 

different kinds of defects. Most people now agree that NBTI consists of a Recoverable (R) 

and a so-called Permanent (P) component, but due to the non-saturation of discharging 

behavior, P is very difficult to measure. In terms of the A-G model point of view, P is the 
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same as ANPC. Fig. 3.9 shows if different Vgdisch and Tdisch are applied, ANPC will be 

different, resulting in the big change on the time exponent. 

 

As discussed in previous sections, ANPC is just part of Generated Defects, there are also 

CPC generated on stressed device which can repetitively charge/discharge. The same 

activation energy (Fig. 3.5) and time exponent (Fig. 3.7) strongly support the hypothesis 

that they belong to the same type of defects. 

 

Note in previous sections the definition of Cylic Positive Charges (CPC) and Anti-

Neutralization Positive Charges (ANPC) is pragmatic. To get a reliable time exponent, the 

impact of discharge condition on CPC and ANPC needs to be clarified. 

 

In Fig. 3.11 different Tdisch (a&b) and Vgdisch (d&e) are applied on a heavily stressed 

device to evaluate their impact on ANPC (a&c) & CPC (b&e). ANPC are measured right 

after the given discharge condition, after that -1.2V 10s is applied to refill and extract the 

CPC. Note ANPC measured right before this -1.2V 10s are used as the reference in 

Equation (4.1). 

 

Interestingly, once both CPC and ANPC are included, Generated Defects become 

independent of the measurement conditions, i.e. the discharge time and voltage. This lays 

a solid foundation to extract the accurate time exponent of Generated Defects for reliable 

life time prediction when extrapolated to 10 years.  
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Fig. 3.11 Dependence on discharge conditions for (a&d) ANPC, (b&e) CPC and (c&f) 

GD=ANPC+CPC. Vgdisch= +1.6V for (a-c), Tdisch=30s for (d-f).  

 

3.4.3 Constant Vg and Constant Eox stress 

 

Although BTI is considered an electric-field driven phenomenon [103], the tests are 

usually performed under constant Vg throughout the entire test. The underlying 

assumption is that the total degradation, ∆Vth, is much smaller than the applied voltage 

and thus the electric field on the dielectric will not be disturbed. However, to investigate 

the time exponent usually long time stress needs to be carried out on the device, the 

impact of this effect will accumulate and make a big difference. Fig. 3.13 compared 

Generated Defects under the constant Vg and constant Eox condition, wherein, constant Eox 

is approximately achieved by consistently increasing stress Vg, by the amount of ∆Vth, 
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which is measured in the last step (Fig. 3.12). Unless specified, Generated Defects 

components discussed in this chapter are using constant Eox stress. 

 

Fig. 3.12 Illustration of the on-site constant Eox correction. Once a pulse IV is measured, |ΔVth| can 

be extracted instantly and then added to the initial Vgstress to calculate the next stress voltage, note 

the previous stress voltage is still applied during the pulse IV data saving and analysis. 
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Fig. 3.13 (a) Kinetics of Generated Defects measured under constant Vg and Eox NBTI stress. (b) 

The extracted time exponent n using data between 10s and variable end-time. n varies little after 

103s for constant Eox stress, in which the overdrive |Vgstress–Vth| is kept constant during the test. If 

the test is carried out under constant Vg stress, a gradual reduction can be observed.  

 

Vg 

Vg+ΔVth,1 
Vg+ΔVth,2 

Vg+ΔVth,i 
Vg+ΔVth,3 



Chapter 3 Defect Generation under BTI stress 86 

Similar to early works [37, 104, 105] reported, the constant Vg results also show a 

reduction of n as stress time increases caused Eox deduction, while the constant-Eox 

results follow a good power law in the whole time domain. It should be noted that this 

independent n from long stress time is achieved under 125oC and Generated Defects are 

within 200mV, if the temperature is high and the stress is heavy, device might be running 

out of defect-precursors, meanwhile the simultaneous annealing effect at the high 

temperature [96, 104-106] may also contribute to the n reduction.  

 

3.4.4 Voltage dependence under different temperature 

 

With the reliable time exponent by capturing the whole GD components under constant-

Eox stress, GD voltage dependence can be easily extracted under 125oC (Fig. 3.14a) and 

room temperature (Fig. 3.14b). The independent time exponent of GD n=0.2 regardless of 

temperature further supports their generation property. 

 

The NBTI kinetics given by JEDEC is: 

GD = g ∙ exp (Ea′/kBT)(|Vg − Vth)mtn (3.2) 

Ea’ is the activation energy of Generated Defects and can be extracted from Fig. 3.5, and 

g0, m, and n can be easily extracted from Fig. 3.14. Equation (3.2) was then used to 

predict Generated Defects under low stress conditions and Fig. 3.15 shows that the 

prediction agrees well with the experiment data. It should be pointed out the measured 

data in Fig. 3.15 themselves were not used for extracting the parameters in Equation (3.2). 
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Fig. 3.14 Kinetics of Generated Defects under different (a) stress voltages and (b) temperatures.  

The time exponents equal to 0.2 for all circumstances. 
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Fig. 3.15 Verification of Generated Defects calculated with Equation (3.2). Note the test data is 

not used for parameter extraction. 
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3.4.5 Generated Defects under AC NBTI stress 

 

In most of the commercial circuits, CMOS operates under AC conditions. To predict the 

device lifetime under AC stress, Generated Defects under AC stress conditions need to be 

modelled. 

 

To compare with DC, AC Stress-Discharge-Recharge waveform is developed by replacing 

the stress phase with Freq=10kHz, Duty Factor=0.5 AC stress, as shown in Fig. 3.16.  

 

Fig. 3.16 Test waveform of the AC Stress-Discharge-Recharge technique.  

 

Fig. 3.17 compared the DC and AC Stress-Discharge-Recharge measured Generated 

Defects results under the same |Vgstress-Vth|, which clearly shows Generated Defects are 

mainly driven by the Equivalent stress time [33] (i.e. stress time * duty factor). Later in 

the next section, Process Dependence, it is again shown that the activation energy Ea’ 

(Fig. 3.19) for CPC and ANPC, voltage exponent m (Fig. 3.20) is also independent of DC 

or AC stress. 
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Fig. 3.17 Generated Defects measured under DC and AC Stress-Discharge-Recharge method 

agrees very well. Equivalent stress time for AC is calculated by stress time*duty factor. 

 

3.4.6 Process dependence 

 

NBTI on different processes can have significant discrepancies, for example, the time 

exponent dependence on different processes, as shown by the time exponent n summary 

from early works in Fig. 3.18. However, in terms of Generated Defects, n shows a much 

smaller variation of process dependence, as shown by the measured n results on four 

different processes in Fig. 3.18.  

 

Moreover, on HK45, HK22 and SiON process, Activation energy Ea’ (Fig. 3.19) and |Vg-

Vth| exponent m (Fig. 3.20) extracted under DC & AC stress have the same values, further 

support that Generated Defects are driven by an equivalent stress time. 
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Fig. 3.18 A comparison of NBTI time exponent reported by early works [107-114] with Generated 

Defects’ time exponent values extracted using the SDR method. Multiple points for each process 

represent the values from different stress voltage and temperature. The inset shows results on the 

CSR sample.  
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Fig. 3.19 A summary of the activation energy Ea’ of ANPC and CPC under DC/AC NBTI stress 

condition on 3 different processes.  
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Fig. 3.20 |Vg-Vth| exponent m extraction. The data points (‘□’) is taken from Fig. 3.14a. The inset 

shows the extracted m value for DC and AC stress conditions across 3 different processes. 
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 Generated Defects under PBTI stress 3.5

 

Existence of defect generation under PBTI is actually much less debatable compared to 

NBTI. Similar to NBTI, experiment data shows PBTI on nMOS also have two 

components in Generated Defects: Cyclic Electron Traps (CET) and Anti-Neutralization 

Electron Traps (ANET). Again ANET time exponent is measurement condition related 

(Fig. 3.21a), by adding the CET part, the entire Generated Defects under PBTI illustrates 

an independent time exponent n=0.32 (Fig. 3.21b). It’s worth noting a similar time 

exponent n=0.3 is also observed by IBM [115], which is using gate current to characterize 

the PBTI degradation, and normally people believe Stress Induced Gate Current (SILC) is 

caused by defects generation. Due to the intrinsic of power law, the much larger PBTI 

time exponent will make PBTI increase much more quickly compared to NBTI as time 

approaches the device lifetime, as detailed in the next section. 
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Fig. 3.21 Typical results of Stress-Discharge-Recharge technique on nMOSFETs. The degradation 

is monitored by measuring pulse IV in 3us. It is clearly shown that Anti-Neutralization Electron 

Traps (ANET) vary with different |Vgdisch| and Tdisch (a) while the entire Generated Defects are 

independent of measurement condition (b). 
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 Evaluation of contribution from NBTI/PBTI Generated 3.6

Defects at device lifetime 

 

PBTI attracted much less attention in the past decades compared to NBTI due to the much 

smaller degradation within a feasible experiment time domain. The uncertainty of NBTI 

time exponent obscures the contribution of N/PBTI at device lifetime. By applying the 

newly developed Stress-Discharge-Recharge method, both N/PBTI defects generation 

time exponent can be reliably extracted independent of measurement condition, thus 

laying a solid foundation to evaluate the impact of N/PBTI defect generation at device 

lifetime. 
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Fig. 3.22 Generated Defects under different |Vg-Vth| PBTI stress also follow a power law but with 

a larger much time exponent n=0.32. Tests are following the Stress-Discharge-Recharge 

procedure, Vgdisch=-1V, Vgrech=0.5V. 

 

Fig. 3.23 shows the comparison between the calculated Generated Defects under the same 

oxide electric field Eox=5MV/cm N/PBTI stress. From Generated Defects point of view, 
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within a feasible test time (<107s), PBTI is far smaller compared to NBTI, but due to the 

much larger time exponent, PBTI eventually play a more important role than NBTI.  
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Fig. 3.23 Comparison of the kinetics of Generated Defects under oxide electric field Eox=5MV/cm, 

T=125oC N/PBTI stress. The inset compares Generated Defects under N/PBTI after 10 years. 

 

 Summary 3.7

 

In this chapter, defect generation under both NBTI and PBTI are investigated in detail 

from different aspects.  

 

NBTI is taken as the example. Firstly it is clarified that Generated Defects contain two 

categories of defects from the energy profile point of view: Cyclic Positive Charges (CPC) 

and Anti-Neutralization-Positive-Charges (ANPC). CPC are clearly generated while 

ANPC’s anti-neutralization property makes it difficult to investigate. The activation 

energy of CPC and ANPC extracted from different temperatures equals, and is much 
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higher than Pre_Existing defects reported by early work, strongly supporting that both 

CPC and ANPC are generated. 

 

A new Stress-Discharge-Recharge method was proposed study the kinetics of Generated 

Defects. By adding CPC and ANPC together, it is shown that the entire Generated Defects 

are independent of measurement conditions. In terms of the time exponent of Generated 

Defects, very similar n~0.2 is achieved across the four different processes, significantly 

bridging the spread of n reported in the early NBTI works. Based on the reliably extracted 

time exponent, voltage, temperature and process dependence is studied and they can be 

well described by a power law, NBTI under low stress 125oC and 35oC can be accurately 

predicted, validating the accuracy of the extracted time exponent. 

 

PBTI Generated Defects on nMOS is also measured with the Stress-Discharge-Recharge 

method. Time exponent n=0.32 is achieved regardless of discharge conditions. The much 

larger n in PBTI raises an alert for its reliability at device lifetime, highly likely its impact 

is underestimated, PBTI Generated Defects might be even larger at device lifetime 

compared with NBTI. 
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4 Pre_Existing defects under BTI stress 
 

 Introduction & Motivation 4.1

 

Most people now agree that NBTI contains two components: A “Permanent” component 

“P”, whose underlying mechanism is still under debate, and another recoverable 

component “R”, which Pre-Existed as the device is fabricated. In chapter 3 Generated 

Defects have been discussed in great details. From the definition in chapter 3 obviously 

the “P” part people normally measured is Anti-Neutralization Positive Charges (ANPC), 

while another component in Generated Defects, Cyclic Positive Charge (CPC)’s 

charging/discharging behavior is similar to “R” after being generated. To differ from other 

papers [105], and also as an echo to Generated Defects, “Pre_Existing defects” is used 

instead of “R” to represent defects which Pre-existed on a fresh device. Obviously, by 

definition, 

BTI = GD (Generated Defects) + Pre_Ex(Pre_Existing defects) (4.1) 

Equation (4.1) is used to build the A-G model in chapter 5. 

 

Although NBTI recoverable component has already been studied in great detail [36, 74, 

116, 117], it’s still of great importance to investigate Pre_Existing defects’ properties. 

Firstly Pre_Existing defects are needed to build up the complete A-G model to predict the 

lifetime. Secondly the underlying mechanism of Pre_Existing defects is still under debate. 

For example IMEC used to consider there is only one type of Pre_Existing defects but 

4 
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now they have to take two or even more types of Pre_Existing defects into consideration 

to fit the experiment data [118]. Ambiguous understanding of Pre_Existing defects makes 

it difficult to understand nano-scale devices behavior and predict its lifetime. As circuits 

operating voltage lowers down Pre_Existing defects become more and more important in 

nano-scale devices’ reliability, currently there is still no feasible model which can predict 

the lifetime on nano-scale devices within a tolerable testing time, one of the reasons lies in 

the lack of understanding on Pre_Existing defects, none of the existing models which 

work on big devices can be extended to nano-scaled devices by just doing multiple 

average. In chapter 6 the A-G model is extended to nano-scale devices and good 

predicting capability is achieved, which is due to the correct understanding of different 

types of defects. 

 

 Two components in Pre_Existing defects 4.2

 

Experiment data indicates Pre_Existing defects have two components: As-grown Traps, 

whose energy level will not change after charging/discharging; Energy Alternating 

Defects, whose energy will alternate while charging/discharging as the name suggests. 

 

4.2.1 Energy profile evidence for two components in Pre_Existing 

defects 

 

Fig. 4.1 shows the defect profile extracted from charge up and DMP. The DMP procedure 

has already been introduced in chapter 2. The charge up pattern, is the inverse direction of 
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DMP procedure, namely DMP |Vg| is stepping down while charge up |Vg| is stepping up. 

Charging time is ten seconds for each voltage during charge up, which equals to the 

discharging time during DMP. Generated Defects are negligible as |ΔVth| lowers down to 

zero under positive Vgdisch=1.6V, indicating all the defects in Fig. 4.1 belong to 

Pre_Existing defects. 
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Fig. 4.1 Pre_Existing defects’ profile extraction from charge up and DMP pattern. A big hysteresis 

is observed. 

 

As-grown Traps have been investigated in great details in past works [78, 119], they can 

charge/discharge rapidly under a constant |Vg| and cause current fluctuation on nano-scale 

devices [120], indicating its energy level is not changing during charging/discharging. 

Normally within one second As-grown Traps will be fully charged and reach saturation 

when the charging voltage (|Vgch|) is applied, or fully discharge once |Vgch| is removed. As-

grown Traps alone cannot explain the big hysteresis in Fig. 4.1. Clearly there are a certain 

number of traps whose energy is alternating. For example, when the discharging voltage 

(|Vgdisch|) equals to zero in the DMP trace (‘□’) there are still ~30 mV |ΔVth| cannot be 
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discharged after ten seconds, indicating their energy located below Ef@Vg=0V, if this is 

their original energy position they should be able to charge up under |Vgch|=0V, but none 

of defects are charged under this condition in the charge up trace (‘o’), the only 

explanation is these defects’ energy is pulled down after they are charged, these defects 

are named Energy Alternating Defects. 

 

4.2.2 Principle for multi-DMP (m-DMP) technique 

 

To avoid the distortion from Generated Defects, Pre_Existing defects’ kinetics is normally 

measured on stressed device. Fig. 4.2 shows the typical charging kinetics of Pre_Existing 

defects. A fresh device is firstly stressed under a heavy stress |Vg-Vth|=1.9V for 10s to 

prohibit Generated Defects’ distortion during later Pre_Existing defects’ charging, then a 

constant |Vg-Vth|=1.3V is applied to measure Pre_Existing defects’ charging kinetics. To 

confirm there is no Generated Defects’ distortion on the same device a second |Vg-

Vth|=1.9V stress is then re-applied for 10ks, charging kinetics under |Vg-Vth|=1.3V is then 

re-measured, the perfect agreement indicates Generated Defects are excluded in Fig. 4.2.  

 

Pre_Existing defects’ charging in Fig. 4.2 keeps rising as time evolves in log scale, a 

turning point is observed around one hundred milliseconds charging time, Early works [78, 

121, 122] show charging kinetics in Fig. 4.2 is a sum of a fast saturated As-grown Traps’ 

charging and a power law Energy Alternating Defects’ charging. 
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Fig. 4.2 Charging kinetics under the same |Vg-Vth|=1.3V after stressing under |Vg-Vth|=1.9V for 

10s and 10ks. Stressed Vth is used as reference so both kinetics starts from 0. The perfect 

agreement indicates the charging here is purely the filling of Pre_Existing defects, which is 

independent of stress time. 

 

 

Z. Ji et al in 2015 [122] proposed a multi-DMP (m-DMP) technique to extract the profile 

of As-grown Trap. The technique is based on the different behavior of trap energy during 

charging and discharging, as shown in Fig. 4.3. After 100 seconds charging under |Vgch|, 

all the chargeable As-grown Traps and Energy Alternating Defects under |Vgch| are 

charged. After being charged, As-grown Traps remain at the same energy level while 

Energy Alternating Defects’ energy alternates to a lower energy level. Thus in the DMP 

measurement, As-grown Traps will be discharged once |Vgdisch| lowers down,   while 

Energy Alternating Defects cannot be discharged under the same |Vgdisch| because its 

energy level has alternated. Moreover, alternated Energy Alternating Defects will distort 

As-grown Traps’ profile which locates at the same energy level as the alternated Energy 

Alternating Defects.  
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Fig. 4.3 Illustration of two components in Pre_Existing defects: As-grown Traps and Energy 

Alternating Defects. Charged As-grown Traps will be discharged once |Vg| lowers down, while 

charged Energy Alternating Defects cannot be discharged as its energy is alternating. For details 

about the DMP principle refer to section 2.5.  
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Fig. 4.4 (a) Illustration of the m-DMP test waveform. (b) Illustration of As-grown Traps’ profile 

extraction using the m-DMP technique. 
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m-DMP, as the name suggests, consists of multiple DMP tests. Test waveform of m-DMP 

technique is shown in Fig. 4.4a. The charging voltage, Vgch, in the first DMP, is set close 

to Vth. Due to Vgch,1 is too low, no traps will be filled thus the DMP profile is zero. Use the 

first DMP profile as the start of As-grown Traps’ profile. Vgch then will increase by a ΔV 

to Vgch,2. In the second DMP profile, the initial dischargeable defects, from Vgch,2 to Vgch,1, 

is As-grown Traps. This initial |ΔVth| drop in the second DMP profile, then will append to 

As-grown Traps’ profile. Repeat the same analysis, append the initial |ΔVth| drop from ith 

DMP profile to As-grown Traps’ profile. Finally the entire As-grown Traps’ profile can be 

extracted as the solid points in Fig. 4.4(b). Extracted As-grown Traps’ profile on HK45 

1x1um pMOSFET can be fitted by Equation (4.2): 

AT = p1 ∙ exp [p2 ∙ ��Vg − Vth��] (4.2) 

 

4.2.3 As-grown Traps and Energy Alternating Defects separation  

 

After As-grown Traps’ profile is extracted from the m-DMP technique, the saturated level 

in Pre_Existing defects’ charging kinetics can be calculated by interpolating |Vg-Vth| to 

As-grown Traps’ profile. As-grown Traps saturates within one second, by subtracting the 

saturated As-grown Traps from over one second Pre_Existing defects’ charging, Energy 

Alternating Defects’ kinetics is extracted and it follows a power law. Energy Alternating 

Defects under different |Vg-Vth| shows they can be well fitted by  

ΔVth_EAD = A2 ∙ (�Vg − Vth�)m2 ∙ tn2 (4.3) 
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Fig. 4.5 Charging kinetics extraction of two types of Pre_Existing defects. (a) Extract the profile 

of As-grown Traps (AT) using m-DMP technique. (b) The kinetics of Energy Alternating Defects 

(EAD) ('Δ') is obtained by subtracting the saturated AT in (a) from the total Pre_Existing trap over 

1s charging kinetics ('□'). AT kinetics ('o') is then obtained by subtracting Energy Alternating 

Defects’ power law kinetics (dashed line) from total ('□'). 

 

Although Equation (4.3) is exactly the same as Generated Defects’ kinetics, both time 

exponent and |Vg-Vth| exponent is different from Generated Defects thus Energy 

Alternating Defects must be separated for modelling. 
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Fig. 4.6 Energy Alternating Defects’ charging follows a power law (a) with a |Vg-Vth| independent 

time exponent (b). EAD also follows power law against |Vg-Vth| (c). 
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After all the Energy Alternating Defects’ parameters in Equation (4.3) are extracted, 

within one second Energy Alternating Defects’ charging can be extrapolated and As-

grown Traps’ charging kinetics is obtained by subtracting Energy Alternating Defects’ 

kinetics from Pre_Existing defects’ charging, as shown in Fig. 4.7. As-grown Traps’ 

charging under different |Vg-Vth| can be well normalized and described with Equation 

(4.4): 

f(tch) = 1 − e−�
tch
τ �

γ

 
(4.4) 
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Fig. 4.7 As-grown Traps’ charging under different |Vg-Vth| (a). (b) By normalizing against the 

saturated level at each |Vg-Vth|, the kinetics overlaps each other and follows stretched exponent 

kinetics as described by Equation (4.4). 

 

 Temperature dependence of As-grown Traps and Energy 4.3

Alternating Defects 

 

To further verify As-grown Traps and Energy Alternating Defects are two types of defects, 

temperature dependence of As-grown Traps and Energy Alternating Defects are 
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investigated. Fig. 4.8 shows the As-grown Traps’ profiling extracted with m-DMP 

technique under different temperatures. As NBTI recovery will slow down as temperature 

decreases, Tdisch=30s is used to ensure all the As-grown Traps will be fully discharged 

under room temperature. The perfect agreement shows As-grown Traps’ profile is 

independent of temperature, which agrees with the observation on III-V [122] and 

Germanium [123]. 
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Fig. 4.8 As-grown Traps’ profile extracted using m-DMP technique under different temperature. 

 

The charging kinetics of As-grown Traps and Energy Alternating Defects under different 

temperatures is also extracted as illustrated in Fig. 4.9. 

 

Fig. 4.9 shows although As-grown Traps’ profile is independent of the temperature, the 

charging kinetics will be accelerated under high temperatures. More Energy Alternating 

Defects will be charged under higher temperature. This again supports that As-grown 

Traps and Energy Alternating Defects are two different types of defects. 
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Fig. 4.9 (a) Pre_Existing defects’ charging kinetics at the same |Vg-Vth| under different 

temperatures. (b) Energy Alternating Defect (EAD) charging kinetics under different temperature, 

calculated by subtracting the same amount of saturated As-grown Traps (AT) from Pre_Existing 

defects’ charging kinetics in (a). Note under 75oC and 35 oC, AT charging is much slower 

compared to 125oC thus 1s is not long enough for AT charging to reach saturation. EAD power 

law parameters should be extracted from a much higher starting stress time under low 

temperatures, as shown in the dashed arrows. (c) Normalized AT charging kinetics after 

subtracting the extrapolated EAD kinetics fitted with the solid lines in (b). 

 

 

 Summary 4.4

 

In this chapter, Pre_Existing defects is investigated and modelled, to build up a complete 

BTI model together with Generated Defects as will be discussed in chapter 5. 
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Experiment results, both defect profile and charging kinetics, support that there are two 

types of Pre_Existing defects: As-grown Traps and Energy Alternating Defects. As-grown 

Traps’ energy will not alternate during charging/discharging while Energy Alternating 

Defects’ energy will alternate to a lower level after charging and restore after discharging. 

multi-Discharging-based Multiple Pulses (m-DMP) technique can be applied to extract 

As-grown Traps’ profile and separate As-grown Traps and Energy Alternating Defects’ 

charging kinetics. m-DMP and charging kinetics results show As-grown Traps’ profile is 

independent of temperature but more Energy Alternating Defects will be charged under 

higher temperature. As-grown Traps’ charging will quickly reach saturation, the speed is 

affected by temperature, charging is faster under higher temperature. 



Chapter 5 As-grown Generation (A-G) model under BTI stress 107 

5 As-grown Generation (A-G) model under BTI stress 
 

 Introduction & Motivation 5.1

 

As semiconductor manufacturing technology scaling down, reliability concerns such as 

BTI have already become a challenge and need to be considered during circuit design.  

 

Lifetime is an important standard for circuit designers. However, in existing mainstream 

BTI models, the R-D framework has an unsatisfactory predicting capability, the two-stage 

model fails to do the lifetime projection to long time under use-bias. Moreover, none of 

the existing models can predict the lifetime for nano-scaled devices, which is really what 

industry needs. 

 

The A-G model has solved these difficulties via modelling BTI based on understanding 

different types of defects. In this chapter, it is firstly shown how the framework works on 

a large device, in the next chapter a demonstration will be given how this framework can 

be further extended to nano-scale devices. 

 

This chapter is organized into six sections: in section 5.2 a brief review of the A-G model 

is given; In section 5.3 the application of the A-G model under NBTI stress is 

demonstrated. A fast characterization method is also given to reduce testing time, DC/AC 

NBTI under use-bias validates the predicting capability of the model; In section 5.4 the A-

5 
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G model is shown to be also applicable under PBTI stress; In section 5.5 a comparison 

between the A-G model with the Reaction-Diffusion model and Two-Stage model is 

made; section 5.6 summarizes this chapter. 

 

 A review of the A-G model 5.2

 

Although the A-G model was firstly proposed in 2013 [78], the underlying idea, defect 

separation, can be traced back to 2004 [124, 125]. Jian F. Zhang et al [124] report new 

hole trap generation under electrical stress apart from As-grown Hole Traps (AHT), that 

clearly shows generated hole traps consist of two components:  Cyclic Positive Charges 

(CPC) and Anti-Neutralization Positive Charges (ANPC). Generated mechanism of CPC 

& ANPC is discussed in [125], but very little modelling work was involved. Moreover, all 

the measurements here are slow DC measurements. After the fast pulse measurement was 

introduced, the recoverable component attracts most people’s attention.   

 

Fig. 5.1 First paper clearly separates hole trap generation into 2 parts: Cyclic Positive Charges 

(CPC) & Anti-Neutralization Positive Charges (ANPC) [124]. 
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After X. Zheng [77] et al proposed the DMP technique to investigate the energy 

information of defects on memory devices, the technique was then applied to pMOSFETs 

to study the energy profile of AHT, CPC & ANPC [79]. The energy profile of SiON 

samples with different nitridation shows AHT is insensitive to stress time and 

temperature, located below the valence band edge and is substantially higher in thermal 

SiON. Generated defects are above the valence-band edge, with CPC located within the 

bandgap and ANPC located above the conduction band edge. This laid a solid foundation 

for the separation of As-grown Hole Traps & Generated Defects. The same year, the A-G 

model was proposed by Z. Ji et al in IEDM, 2013 [78].  

 

Fig. 5.2 Illustration of energy location of As-grown Hole Traps (AHT), Cyclic Positive Charges 

(CPC) & Anti-Neutralization Positive Charges (ANPC) (a&b), based on the defect profile results 

(c&d) measured with Discharging-based Multiple Pulses (DMP) technique. 

 

(a) (b) 

(c) (d) 
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As the name suggests, the A-G model separates defects into two parts: As-Grown Hole 

Traps and Generated Defects. As-Grown Hole Traps are independent of stress and will 

saturate within a short time, while Generated Defects follow a power law. Excellent 

predicting capability was confirmed on two different processes under DC NBTI stress. 

 

  

Fig. 5.3 Illustration of the A-G model proposed by Z. Ji et al [78]. (a) Independent As-grown Hole 

Traps’ profile of stress time. (b). |ΔVth| consists of a fast saturated As-grown Hole Traps 

component plus Generated Defects , which follow a power law. 

 

After DC verification, the A-G model was then extended to AC stress condition [33]. As 

discharging kinetics is needed for AC modelling, CPC and ANPC must be separately 

modelled due to their different discharging properties. A pragmatic Vg=0 is used in [33] as 

the criteria to separate CPC & ANPC, as circuits normally operate under an AC bias 

between operating voltage and zero. Although excellent predicting capability was proven 

under different frequency and duty factor, the complicated test pattern makes the testing 

time for parameter extraction very long: more than two days for a given process. This is 

not acceptable for nano-scale devices as repeated tests needs to done. Defect separation 

technique in [33] cannot be applied on single nano-scaled devices, as it is impossible to 

(a) (b) 
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find a constant gate voltage as the boundary of As-grown Traps & Generated Defects for a 

bunch of nano-scale devices which have stochastic fresh |Vth|. 

 

After Si devices, the A-G model was again applied on other material like Ge [121, 123] 

and III-V [122]. It was found that unlike SiON devices, Ge pMOSFETs have a significant 

amount of Energy Alternating Defects, which has not been considered in the A-G model 

proposed in [33]. Further investigation showed Si High-K devices also have this Energy 

Alternating Defects component. After taking this Energy Alternating Defects component 

into consideration, the up-to-date A-G model is illustrated in Fig. 5.4. In the following 

sections of this chapter, an A-G model with good predicting capability for various kinds of 

stress condition, NBTI & PBTI, DC & AC, Si & Ge, is proposed. In chapter 6 it is further 

shown the A-G model is capable of predicting the lifetime of nano-scale devices. 

 

Fig. 5.4 Illustration of the A-G model based on the understanding and separation of different type 

of defects. 
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 Application of the A-G model to NBTI  5.3

 

5.3.1 Generate Defects modelling 

 

Generated Defects, although widely observed [126], are usually ignored [87] because of the 

lack of a proper characterization method. Conventionally, Generated Defects are simply 

determined after discharging [105], which does not saturate, making the extraction sensitive to 

the discharging time. This is also applied in early A-G model: Generated Defects was 

extracted by discharging under a selected Vg level, which is determined from As-grown 

Traps’ profile results by parallel shift, and Tdisch=Tstress is used to discharge all the As-grown 

Traps [33]. However, there is no justification of this Tdisch and it’s difficult to understand why 

As-grown Traps & Generated Defects can have a clear boundary which separates them into 

blocks. In the updated A-G model in this chapter, Generated Defects are measured after 

discharging under a positive bias and then recharging under use bias, as detailed in chapter 3. 

By doing so the entire Generated Defects are extracted and the time exponent is independent 

of discharging time and voltage. Generated Defects’ kinetics under different overdrive 

voltage, |Vg-Vth|, is found to follow classical power law (Fig. 5.5) thus can be modelled with 

Equation (5.1) for long term prediction. 

 

GD = g1 ∙ �|Vg − Vth|�m1tn1 (5.1) 
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Fig. 5.5 (a) Kinetics of Generated Defects under different |Vg-Vth| stress condition. (b) Generated 

Defects’ time exponent n is independent from |Vg-Vth|. (c). |Vg-Vth| exponent extraction. 

 

5.3.2 Pre_Existing defects modelling 

 

As detailed in chapter 4, by exploring the different impacts of charging on the energy 

distribution of Energy Alternating Defects and As-grown Traps, their charging kinetics can be 

successfully separated. As-grown Traps saturate rapidly (Fig. 5.6a). The saturation level 

increases exponentially with |Vg-Vth| in Equation (5.2), and the normalized kinetics is 

independent of |Vg-Vth| (Fig. 5.6b) and can be described by Equation (5.3). Energy 

Alternating Defects’ charging follows power law in both time and voltage (Fig. 5.7a-c) and 

can be modelled with Equation (5.4). Note although both Generated Defects and Energy 

Alternating Defects follow a power law relationship, they have different time exponents of 

0.2 (Fig. 5.6b) and 0.1 (Fig. 5.7b) and thus need separate modelling.  
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AT = p1 ∙ exp [p2 ∙ �|Vg − Vth|�] (5.2) 

f(tch) = 1 − e−�
tch
τ �

γ

 
(5.3) 

                      EAD = g2 ∙ �|Vg − Vth|�m2tn2   (5.4) 
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Fig. 5.6 As-grown Traps’ charging under different |Vg-Vth| (a). (b) By normalizing against the 

saturated AT under different |Vg-Vth|, the kinetics overlaps each other and follows stretched 

exponent kinetics in Equation (5.3). 
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Fig. 5.7 (a) Energy Alternating Defects charging kinetics under different |Vg-Vth| on a heavily 

stressed pMOSFET. (b) EAD charging time exponent is independent of |Vg-Vth| and its value is 

much smaller compared to Generated Defects. Voltage exponent is given in (c). 
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5.3.3 Fast-Voltage Step Stress technique for the A-G model parameter 

extraction 

 

To accelerate NBTI stress, stress voltage is raised above its normal operation level. 

Accelerated test under Constant Voltage Stress scheme is normally applied with typical 

total testing time of a few days [78].  

 

This is tolerable for big devices, where Device-to-Device Variability is negligible. 

However, nano-scale devices require repetitive tests to retrieve statistical properties of 

Device-to-Device Variability and the task becomes laborious.  

 

The Voltage Ramp Stress methodology was proposed in 2009 [88, 127] to accelerate g1 

and m1 extraction and soon became widely used by industry, whose test pattern has 

already been introduced in chapter 2. It’s an efficient screening tool for comparing 

different processes, but the accuracy is less satisfactory. Fig. 5.8 shows there is a large gap 

between |ΔVth| measured by Constant Voltage Stress tests and prediction by the 

calculation with parameters extracted from the Voltage Ramp Stress tests.  

 

Voltage Step Stress is another fast characterization method proposed by Z. Ji et.al [128] in 

2014. Compared to the Voltage Ramp Stress pattern which attempts to capture the whole 

|ΔVth|, the Voltage Step Stress method uses DC slow measurements to ensure the power 

law and then extracts g1,m1,n1 on a single device. g1 & n1 is extracted from the first stress 

phase, the following phases then can be used to extract m1. 
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Fig. 5.8 (a) Typical results of applying Voltage Ramp Stress technique on HK45 pMOSFET. (b) 

Comparison of the test data measured under conventional Constant Voltage Stress with the 

Voltage Ramp Stress technique predicted value. 

  

Although the testing time has been reduced to within two hours by applying the Voltage 

Step Stress technique, there is still room to further accelerate this technique. Note g1 & n1 

are extracted from the first stress phase, the remaining 80% of the testing time, is trying to 

extract the m1 value. With a known time exponent n, it is unnecessary to stress 1,000 

seconds in the first phase to get n1 then. Actually the first stress phase is usually a light or 

moderate stress to leave room for accelerated |ΔVth| in latter step stress, thus the total 

|ΔVth| amount in the first stress phase will not be very significant, questioning the 

accuracy of g1 & n1 value. In chapter 3 a Stress-Discharge-Recharge technique has been 

proposed to get the reliable and accurate time exponent of Generated Defects regardless of 

discharging time, bias and temperature. Based on this apparent time exponent a further 

accelerated Voltage Step Stress technique Fast Voltage Step Stress is developed. 
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The test waveform used by Fast Voltage Step Stress is given in Fig. 5.9: |Vg-Vth| starts 

from a low value (i.e. -0.35V) and then gradually increases with a small step (typical value 

is ~20mV). Each step is applied for a pre-defined time, ∆t (10s here). At the end of each 

step, Generated Defects are monitored by the procedure in Fig. 5.9a.  

 

Fig. 5.9 Illustration of the Fast-Voltage Step Stress waveform. (a) The test procedure under each 

voltage step. A stress-discharge-recharge sequence is used. At the end of the recharge step, |ΔVth| 

was monitored from a corresponding IV, which was taken from the 3µs pulse edge with Vd=-0.1V 

applied. Tdisch and Tch have negligible impact on Generated Defects’ extraction [129]. In this 

work, Tdisch=Tch=10s is used. (b) The Vg waveform for the Fast-Voltage Step Stress technique.  

 

A typical result is shown in Fig. 5.10. Under low |Vg-Vth|, there is a flat plateau. This is 

because generation is negligible in 10 seconds when |Vg-Vth| is low. The |ΔVth| in this 

plateau actually comes from the As-grown Traps corresponding to the charging Vgch. As-

grown Traps will soon reach saturation and remain the same, so long as the same Vgch is 

applied. This explains the plateau.  

 

Tstr Trech 

  Tdisch 
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As |Vg-Vth| increases, Generated Defects induced |∆Vth| becomes higher, resulting in the 

rise in Fig. 5.10. By subtracting AHT in the plateau from the total (‘◊’), Generated Defects 

induced |∆Vth| under different |Vg-Vth| can be obtained (‘□’). According to equation (5.1) 

[18], to generate the same amount of Generated Defects induced |∆Vth|, a stress under a 

|Vg-Vth| for a time ∆t is equivalent to a stress under another overdrive voltage Vgeff for the 

effective stress time of  ∆teff: 

∆teff = �Vgov/Vgeff�
m/n ∙ ∆t (5.5) 
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Fig. 5.10 Typical results of Fast-Voltage Step Stress technique with |Vg-Vth| gradually increasing 

from 0.4V to 2.2V under 125 oC. Each volage lasts 10s and the voltage step of 20mV is used. The 

total degradation includes both As-grown Traps and Generated Defects. AT can be determined 

under low stress condition where Generated Defects are neglible. By subtracting AT from the total, 

Generated Defects induced |∆Vth| can be extracted. 

 

With the time exponent, n, extracted from the Constant Voltage Stress measurement (0.2 

for this process) [17], ∆t for each step in the Fast-Voltage Step Stress test can be 

converted to ∆teff under any given m value using Equation (5.5). To minimize the 

measurement inaccuracy, Only Generated Defects induced |∆Vth| over 5mV is used for the 

analysis. Fig. 5.11a shows that |∆Vth|~∆t (‘□’) is transformed to |∆Vth|~∆teff kinetics under 
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three different m. With the larger m value, the device takes longer to reach the same 

degradation, leading to smaller apparent time exponent, n’. Only when m is correctly 

determined, the n’ from the transformed kinetics equals the predetermined n. The 

corresponding parameter g0 can then be determined simultaneously, as shown in Fig. 

5.11b.  

 

When extracting the parameters in the power law, the Voltage Ramp Stress technique uses 

the total degradation, i.e. the sum of As-grown Traps and Generated Defects. As-grown 

Traps saturate quickly and will distort the power law of Generated Defects. This is the 

reason for the inaccuracy of the Voltage Ramp Stress method. The Fast-Voltage Step 

Stress method can reliably remove As-grown Traps and only fit Generated Defects 

induced |∆Vth| with the power law. This delivers the accuracy. 
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Fig. 5.11 (a) The measured degradation is plotted against time (‘□’). By assuming different m’, the 

real stress time under each stepping voltage can be transformed to effective stress time under a 

certain constant effective |Vg-Vth|  (1V used). (b) The extracted n’ and g0’ under given m’. The 

correct m and g0 corresponds to n=0.2. 
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To validate the Fast-Voltage Step Stress technique, the extracted parameters are used to 

predict Generated Defects under various constant |Vg-Vth| stress on two processes, as 

shown in Fig. 5.12, Generated Defects were measured under constant |Vg-Vth| and these 

data were not used to fit the g1 & m1. Good agreement has been achieved even when |Vg-

Vth| is as low as 0.9 V, validating the proposed Fast-Voltage Step Stress method. Note 

none of the data in Fig. 5.12 is used for parameter extraction.  
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Fig. 5.12 Validation of the extacted parameters using Fast-Voltage Step Stress technique. Constant 

|Vg-Vth| Stress measured data under different |Vg-Vth| is compared with F-VSS prediction. Good 

agreement is achieved on both HK45 and HK22 processes. 

 

5.3.4 Experimental Validation under both DC & AC 

 

For DC NBTI stress, the total |ΔVth| should be the sum of the |ΔVth| caused by Generated 

Defect, Energy Alternating Defects & saturated As-grown Traps. Note constant Eox stress 

is used to extract the framework parameters, while real circuits work under a constant 

operating Vg (Vgop). A flow chart as shown in Fig. 5.13 is used to calculate |ΔVth|. 
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Fig. 5.13 Procedure to calculate |ΔVth| under constant voltage stress with parameters extracted 

under constant |Vg-Vth|. 

 

Fig. 5.14 shows the good agreement between experiment data and the A-G model 

prediction under DC NBTI, as shown in Fig. 5.14. It should be noted that the time 

exponents of Generated Defects & Energy Alternating Defects extracted under constant 

Eox high gate voltages, voltage exponent is extracted using Fast-Voltage Step Stress and 

the experiment data in Fig. 5.14 has not been used in parameter extraction.  

Given a stress time vector Tstr[n] 

i=1, ΔVth=0 

Vg-Vth=Vgop-Vth0- ΔVth 

ΔVth=GD+EAD+AT 

i=i+1 

i<=n 

END 

N 

Y 
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Fig. 5.14 (a) Vg=-1.2V DC constant voltage stress experiment data can be well predicted by the A-

G model. The solid line total |ΔVth| is the sum of 3 dash lines corresponding to different 

components. Note AT is slightly decreasing against stress time, this is due to the |Vg-Vth| deduction 

as |ΔVth| increase. Another Vg=-1.1V is also given in (b). 

 

To clarify the different between the “prediction” and “fitting”, the Reaction-Diffusion (R-

D) framework “prediction” from [130] is replotted in Fig. 5.15 to compare with the A-G 

model’s prediction. Fig. 5.15(b) seems to show the agreement between the measured total 

|ΔVth| and the “predicted” values from the R-D framework, but in fact this is the 

“parameter extraction” instead of “prediction”. Because the measured total |ΔVth| data 

itself is used to extract the R-D framework parameters. The R-D Parameters are extracted 

by empirically adjusting the parameters to best fit the measured total |ΔVth|, a good 

“fitting” will be achieved anyway. In terms of the A-G model prediction, all the 
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parameters are extracted from different patterns and different accelerated stress conditions 

separately, the measured total |ΔVth| under much lower stress condition is then compared 

with the predicted values.  
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Fig. 5.15 A replot of the Reaction-Diffusion (R-D) framework predicting capability verification 

data from [130]. (a) Total |ΔVth| under -1.5V NBTI stress contains two components: interface 

states and Hole Traps induced |ΔVth|, the former one is fitted with time exponent n=1/6 and the 

latter one is fitted with the empirical equations, as detailed in section 1.2.1 Reaction-Diffusion 

framework. (b) Measured total |ΔVth| can be fitted the Reaction-Diffusion framework. 

 

Most of circuit work under AC stress. Unlike DC the stress is always applied thus Energy 

Alternating Defects follow a power law and As-grown Traps saturate, Vg is alternating 

between Vgstress and 0V according to the frequency and duty factor under AC stress. For 

Generated Defects, it is shown in chapter 3 that they are equivalent stress time (stress 

time*duty factor) driven process and follow the same kinetics under both DC and AC. For 

Pre_Existing defects, their charging kinetics under Vgstress and discharging kinetics under 0V 

of are needed to predict AC BTI kinetics [33].  
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Discharging kinetics of Pre_Existing defects under 0V can be directly measured on heavily 

stressed devices, on which further generation is negligible. Since there is Cyclic Positive 

Charges’ charging discharging on heavily stressed device, so before Pre_Existing defects’ 

kinetics measurement, |Vg-Vth|=0.35V is applied 100s to charge up the Cyclic Positive 

Charges and then its discharging kinetics under 0V can be directly measured. Results shown 

in Fig. 5.16 have already subtracted Cyclic Positive Charges’ discharging kinetics thus Cyclic 

Positive Charges’ impact have already been excluded. 

∆Vthtdisch = ∆Vthtdisch=0 ∙ �1 + B ∙ tdisch
β �

−1
 (5.6) 

The discharging of the total Pre_Existing defects after different charging times or voltages 

can be well scaled by a universal recovery curve in Equation (5.6).  
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Fig. 5.16 Discharging kinetics under 0V of the Pre_Existing defects after different charging 

voltage (a) and charging time (b). (c) They can be normalized and modelled by a universal 

recovery trace in Equation (5.6). 
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With the discharging kinetics parameters all the parameters for the A-G model have been 

extracted. By solving these coupled equations, DC/AC NBTI degradation under any 

operating voltage, Frequency and Duty Factor can be predicted. 

 

Fig. 5.17 shows the good agreement between experiment data and prediction. Stress time 

=1ks, Stress voltage is specially selected to make the total degradation |ΔVth| under 1kHz 

~30mV so |ΔVth| can be still observable under high frequency and small duty factor. On this 

process |Vg|=1.3V is used. Extracted parameters are given in Table 5.1. 
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Fig. 5.17 Verification of the A-G model with parameters extracted from F-VSS: the prediction 

(lines) agrees well with test data (symbols) for AC/DC NBTI (a&b). The test data here were not 

used for fitting the parameters.  The stress time is 1ks. 

 

Table 5.1 The A-G model parameters extracted on HK45 1x1um pMOS under NBTI stress. 

Defects GD EAD AT Discharge 

Parameters 

g1(mV) 0.69 g2(mV) 5.18 p1(mV) 1.65 τ (s) 5.8e-3 B 19.88 

m1 4.42 m2 2.30 p2 2.52 γ 0.36 β 0.24 

n1 0.20 n2 0.10       
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5.3.5 Evaluate each component contribution under use-bias at device 

lifetime 

 

With parameters in Table 5.1, |ΔVth| under DC/AC any given voltage can be calculated. 

An evaluation of each component contribution at 10 years is given in Fig. 5.17 (DC) and 

Fig. 5.18 (AC). 

 

Fig. 5.18 shows under DC NBTI stress condition, As-grown Traps still play an important 

role as all the chargeable As-grown Traps are filled under DC stress condition. Energy 

Alternating Defects are the dominating defects at device lifetime due to its much larger 

pre-factor (g2) compared with Generated Defects. The lower the operating voltage drops, 

the higher Energy Alternating Defects will contribute. This is due to the fact that 

Generated Defects have a much larger voltage exponent compared to Energy Alternating 

Defects thus will drop much faster as |Vg| lowers down.  

 

Fig. 5.18 (a) The A-G model predicted |ΔVth| of different types of defects after 10 years DC stress 

under different operating Vg. (b) The contribution of each type of defects  
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Fig. 5.19 The A-G model predicted |ΔVth| of different types of defects after 10 years AC stress 

under different operating voltage Vg. (b) The contribution of each type of defects 

 

Fig. 5.19 shows under AC NBTI stress, As-grown Traps are less important compared to 

DC as only a small portion can be filled under high frequency AC stress. Energy 

Alternating Defects are still important but no longer dominating. Generated Defects’ 

become an important component and cannot be neglected.  

 

 Application of the A-G model to PBTI 5.4

 

PBTI has attracted much less attention in the past decades due to the fact that PBTI |ΔVth| 

is much smaller within the feasible testing time (<107 s) compared to NBTI. Although 

some early works [107, 130] reported a big time exponent n for PBTI, the time exponent n 

values are dependent on the measurement condition thus had not attracted people’s 

attention. By Applying the Stress-Discharge-Recharge technique, Generated Defects are 

extracted under different |Vg-Vth| PBTI stress as shown in Fig. 5.20. Note that the 

extracted Generated Defects show the time exponent of 0.32 which is much larger than the 
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value reported by most groups [131, 132]. However it is very close to the value reported 

by IBM when electron trapping has been removed [133] or suppressed [134].  
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Fig. 5.20 Generated Defects measured by Stress-Discharge-Recharge technique under different 

|Vg-Vth| PBTI stress. Lines are fitted with power law to extract parameters of the A-G model. Note 

the time exponent here is much larger (0.32) compared to NBTI (0.2 as shown in Fig. 5.5a). 

 

Following the same test procedure and analysis as NBTI, Pre_Existing defects’ parameters 

in the A-G model under PBTI stress can be extracted as shown in Fig. 5.21. m-DMP 

technique is firstly applied to get As-grown Traps’ profile (Fig. 5.21a). Saturated As-

grown Traps induce |ΔVth| calculated from the profile is then subtracted from the over one 

second Pre_Existing defects’ charging kinetics to get Energy Alternating Defects charging 

kinetics (Fig. 5.21b). Energy Alternating Defects follow a power law against both 

charging time and charging |Vg-Vth| and can be well fitted with Equation (5.4). Within one 

second Energy Alternating Defects’ charging is then calculated by Equation (5.4) and is 

subtracted from Pre_Existing defects’ charging kinetics to get As-grown Traps’ charging 

kinetics under different |Vg-Vth|, as shown in Fig. 5.21d. By adding the kinetics of 

Generated Defects and Pre_Existing defects, |ΔVth| kinetics can be calculated under any 
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|Vg| DC PBTI stress. A comparison between the predicted value and test data under 

different |Vg| DC PBTI stress is shown in Fig. 5.22, Good agreements are achieved. 
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Fig. 5.21 Pre_Existing defects’ parameter extraction under PBTI. (a) As-grown Traps (AT) profile 

is extracted with the m-DMP technique. (b) Energy Alternating Defects (EAD) charging kinetics 

extraction. (c) EAD under different |Vg-Vth| m, note EAD time exponent is much smaller (0.2) 

compared to Generated Defects (0.32, Fig. 5.19). (d) AT charging kinetics under different |Vg-Vth|. 
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Fig. 5.22 DC PBTI stress under various Vg can be well predicted by the A-G model. The measured 

data (symbols) were not used for the A-G model parameter extraction.  
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To model the AC PBTI stress, discharging kinetics of Pre_Ex under 0V are measured after 

charging under different |Vg-Vth|, as shown in Fig. 5.23. They can be well fitted with the 

same Equation (5.6) as NBTI. The test data under |Vg|=1.3V different frequency and duty 

factor is well predicted by the A-G model, as shown in Fig. 5.24. 
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Fig. 5.23 Pre_Existing defects discharging kinetics under 0V after charging under different |Vg-

Vth| PBTI stress. 
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Fig. 5.24 |ΔVth| measured under |Vg-Vth|=0.9V AC PBTI stress for various frequency (a) and duty 

factor (b) can be well predicted by the A-G model.  
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                                    Table 5.2. The A-G model parameters under PBTI stress 

Defects GD EAD AT Discharge 

Parameters 

g1(mV) 2.75 g2(mV) 7.28 p1(mV) 0.29 τ(s) 2.0e-4 B 0.79 

m1 5.23 m2 3.28 p2 3.55 γ 1.0 β 0.13 

n1 0.32 n2 0.2       

 

With the NBTI parameters in Table 5.1 and PBTI parameters in Table 5.2, NBTI and 

PBTI degradation under use-bias is compared, as shown in Fig. 5.25. Contrary to People 

normally expect PBTI is less important compared with NBTI [58, 135, 136], PBTI could 

be as important or even more important at device lifetime due to its larger time exponent 

for both Generated Defects (PBTI:0.32 > NBTI:0.2) and Energy Alternating Defects 

(PBTI:0.2 > NBTI:0.1). 
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Fig. 5.25 NBTI & PBTI induced total |ΔVth| under operating condition Eox=5MV/cm predicted by 

the A-G model. Although PBTI(‘□’) is much smaller compared to NBTI(‘o’) within typical testing 

time (<106s), it increases much faster due to the much larger  time exponent of Generated Defects 

& EAD, and eventually surpasses NBTI at device lifetime 10 years. 
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 Comparison of the A-G model with other models 5.5

 

As a newly proposed model, it is worthwhile to have a comparison between the A-G 

model and two other popular models: the Reaction-Diffusion (R-D) model and the Two-

Stage model.  

 

The advantages of the A-G model are: 1) it can predict device lifetime accurately with 

parameters extracted within a short period of testing time; 2). Later in chapter 6 it will be 

shown this framework can also be well adopted on nano-scaled devices to do the lifetime 

prediction, which currently cannot be achieved by other models; 3). All the equations in 

the A-G model are succinct. No complex differential equations need to be solved. 

 

The R-D model is the traditional model. As detailed in chapter 1, the newest R-D 

framework also considered NBTI with three components, Nit, ΔNHT and ΔNOT. Unlike in 

the A-G model different components are separated and directly measured, in the R-D 

framework, ΔNit is measured by Direct-current current-voltage (DCIV) technique [137] 

and then used to determine the parameters in R-D theory differential equations. After that 

ΔNHT, ΔNOT are calculated by empirical equations to best fit the total |ΔVth|. This is 

questionable to validate the R-D framework predicting capability as the data itself has 

been used for model parameter extraction, as discussed in [33]. 
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The advantages of the R-D framework lie in its simplicity of test pattern and can be easily 

integrated with EDA tools. Although lots of studies are against this framework [37, 94], 

it’s still widely used in industry as there is no alternative solution. 

 

T. Grasser proposed the Two-stage model in 2009 [19] to interpret the universal recovery 

and temperature dependence of NBTI. Although it well explains NBTI recovery, this 

model is difficult to predict the device lifetime. Later T. Grasser developed Time 

Dependent Defect Spectroscopy (TDDS) technique to extract the properties of single trap 

on nano-scaled devices, based on TDDS. Capture Emission Time (CET) mapping method 

was then proposed to describe the dynamic behavior under BTI condition, however, 

cannot be extrapolated outside the measurement window for long term lifetime prediction 

[138].  

 

 Summary 5.6

 

In this chapter, a comprehensive As-grown Generation (A-G) model under BTI stress is 

proposed. By understanding different types of defects, the A-G model shows good 

predictive capability for both NBTI & PBTI. To accelerate the model parameter 

extraction, Fast-Voltage Step Stress method is developed to reduce the testing time and 

significantly improve the efficiency of model parameter extraction, which lays a solid 

foundation to extend the A-G model to nano-scale devices, as detailed in the next chapter. 
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6 Defect-induced Time Dependent Variability modelling 
 

 Introduction & Motivation 6.1

 

Device variability is emerging as a fundamental challenge to IC design in scaled CMOS 

technology as the technology node migrates to sub- 65nm [139-141]. Due to the profound 

impact on nearly all aspects of circuit performance, it must be considered for design 

optimization [142]. Compared with variability reduction in process improvement, the 

device/circuit co-design approach has recently been considered as an alternative and 

effective solution, in which the physical-based model with accurate predictive capability 

becomes a prerequisite [143-145].  

 

Time-zero Variability has been well understood and modelled [146]. Accurate modelling 

for ageing-induced Time Dependent Variability, however, is still a challenge [57, 118, 

138, 147]. Time Dependent Variability increases gradually with time and thus the 

assessment of the end-of-life variability is a necessity. In current Time Dependent 

Variability models, Capture-Emission-Time (CET) mapping model well describes the 

dynamic behavior under BTI condition, however, cannot be extrapolated outside the 

measurement window for long term lifetime prediction [138]; Defect-centric theory for 

Time Dependent Variability modelling has been proposed [57, 118], only one type of trap 

is considered in its classic unimodal model [55], although the model is recently 

generalized by taking two or more types into consideration [118]. Three key issues, 

6 
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however, remain unanswered: 1). how many types of defects should be taken into 

account? 2). how can the parameters for each type be extracted in an efficient way? 3). 

how reliable is the predicted Time Dependent Variability lifetime? These issues are 

resolved by a comprehensive As-grown Generation (A-G) framework based on the A-G 

model and defect centric theory proposed in this chapter. 

 

This chapter will be organized as follows: Firstly in section 6.2 a brief introduction of 2 

existing mainstream techniques of Time Dependent Variability characterization and 

modeling are given, secondly in 6.3 the Within Device Fluctuation (WDF) phenomenon 

on nano-scale devices is discussed. WDF is one of the main difficulties for nano-scale 

device characterization. An “Envelope” analysis [148] is used to capture the worst case of 

BTI degradation to predict device lifetime. Next in section 6.4 the averaged degradation of 

BTI is investigated. WDF is excluded by taking the averaged IV. It is found that, the mean 

value of the averaged degradation across multiple nano-scaled, behaves just the same as a 

big device thus can be well modeled by the A-G model; Device-to-Device Variability of 

both WDF and averaged degradation is modelled in section 6.5. In section 6.6 the 

procedure of Time Dependent Variability modelling based on the As-grown Generation 

(A-G) model together and defect-centric theory is given. The comprehensive modelling is 

named as “the A-G framework”. The A-G framework’s predicting capability is proven by 

the agreement of test data and prediction. After validation, the A-G framework is then 

implemented into a commercial simulator and its applicability for circuit level simulation 

is demonstrated in section 6.7. Finally a summary is wrapped up in section 6.8. 
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 Deficiency of existing techniques for Time Dependent 6.2

Variability characterization 

 

RTN and Time Dependent Defect Spectroscopy (TDDS) are two mainstream techniques 

to characterize Time dependent Variability. The test procedure and analysis of these two 

techniques have already been briefly introduced in section 2.5. Both techniques are really 

powerful and improve people’s understanding on Time Dependent Variability 

significantly. However, in terms of evaluating the lifetime of Time Dependent Variability 

on nano-scale devices, both techniques have their deficiencies, as detailed below: 

 

1). Both RTN and TDDS technique need to select devices. RTN tests must be carried out 

on devices which have clear RTN, TDDS tests also requires the devices to have clear 

discharging steps during the recovery trace. However, only a small portion of nano-scale  

  

Fig. 6.1 Most nano-scale devices show a stochastic current fluctuation (a) instead of a clear RTN 

(b). Sampling rate = 1MSa/s is used here. 
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devices can have clear RTN signals (Fig. 6.1) or Id drop during TDDS. This introduces 

uncertainty to the Device-to-Device Variability assessment; 

2). The Time Window (Tw), used in a typically RTN test is short (e.g. <=1 second [149-

151]) and cannot capture slow traps. Although RTN can be observed within a short Tw, 

increasing Tw gives a rising fluctuation which must be properly considered.   

3). Although many methodologies for modelling RTN have been proposed [1-8], their 

predictive capability is difficult to validate. 

4). Both RTN and TDDS technique are quite time consuming, and nano-scale devices 

characterization usually needs a lot of repeating tests, thus making these two techniques 

inefficient for industry use. 

 

Considering the above deficiencies, a test-proven model which can evaluate the lifetime of 

nano-scale devices within a practical testing time is still missing. A comprehensive A-G 

framework is proposed in this chapter to fulfill this task. 

 

 Within Device Fluctuation (WDF) technique on nano-scale 6.3

devices 

 

6.3.1 A review Within Device Fluctuation (WDF) technique 

 

As discussed in section 6.2, only a small portion of devices have clear RTN or Time 

Dependent Defect Spectroscopy (TDDS) discharging steps, questioning the Device-to-
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Device Variability of these two mainstream techniques. To characterize Id fluctuation on 

all the nano-scaled devices, M. Duan et al [148, 152] proposed a measurement technique 

called “Within Device Fluctuation (WDF)”, to capture the worst case of nano-scale 

devices BTI degradation. 

 

 

Fig. 6.2 (a) Test waveform of WDF measurement technique. Typical results are shown in (c), the 

green lines are measured raw data of Id fluctuation, the red and blue lines are extracted UE and LE 

based on Equation (6.1) & (6.2). (b) is plotted with part of WDF in linear time scale, indicating 

WDF is formed by a convolution of multiple RTN signals [148, 152]. 

 

The test waveform of WDF measurement in [152] is shown in Fig. 6.2a. Vg=-1.4V On-

The-Fly (OTF) measurement is carried out on a nano-scale fresh pMOS with Sampling 

Rate of 10MSa/s, Id fluctuation is continuously monitored against stress time. To analyze 

and model Id fluctuation, also to reduce the data storage, “Envelope” instead of raw Id data 
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is used to record the worst/best BTI degradation as Upper Envelope (UE) and Lower 

Envelope (LE), as shown in Fig. 6.2c. UE and LE in [152] are defined as 

UE(t’) = Maximum of ΔId/Id0 as time increases from0 to t’ (6.1) 

LE(t’) = Minimum of ΔId/Id0, as time decreases from t(end of stress) to t’ (6.2) 

WDF is then defined by: 

WDF = UE - LE (6.3) 

 

Fig. 6.2 shows the worst case of BTI degradation can be delivered by the Upper Envelope 

(UE). Some preliminary UE modelling work [120] has already been done based on the A-

G model. It is interpreted that the Lower Envelope (LE) is caused by Generated Defects 

due to it’s very difficult to discharge [129]. WDF is caused by As-grown Traps, as 1). As-

grown Traps can have a rapid charging/discharging under a constant Vg; 2). Both WDF 

and As-grown Traps show they are independent of stress [148, 152]. The averaged LE 

results across multiple devices can be modelled with a power law. The averaged WDF 

results are found to follow a logarithmic relationship against time window. The worst 

case, UE, is then the sum of LE and WDF. However, the modelling in [120] is inadequate 

to model Time Dependent Variability under use-bias, as 1). There is no Vg dependence for 

Time Dependent Variability, Vg=-1.4V is not the operating voltage; 2). The verification 

testing data itself in [120] is used to extract model parameter, questioning its predicting 

capability; 3).  Device-to-Device Variability results for both LE and WDF, have much 

smaller power exponent than 0.5, thus defect-centric theory cannot be applied to simulate 

Time Dependent Variability distribution. 
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To conquer these difficulties a new WDF measurement technique is developed in this 

chapter as shown in Fig. 6.3a. Vg is firstly applied on the device for 100 seconds to 

measure the device charging kinetics, each pulse IV (blue line in Fig. 6.3a) is the average 

of 30 IV measurements. WDF is averaged out by 30 time average thus the measurement 

results are called the averaged degradation. After 100 seconds charging the Id fluctuation 

is continuously monitored (red line in Fig. 6.3). Typical results of the new WDF 

measurement technique are given in Fig. 6.3b. After 100s charging, the device is already 

stabilized, most of the chargeable traps have already been filled thus further charging is 

suppressed, thus the new WDF measurement technique separate the charging kinetics and 

Id fluctuation. It will be shown later (in section 6.5) that new WDF Device-to-Device 

Variability can be fitted with a power law whose time exponent is 0.5, and defect centric 

theory can be applied.  To differentiate from the conventional WDF technique, “Uppder 

Envelope” is called “WDF+” and “Lower Envelope (LE)” WDF-, new WDF is defined by 

new WDF = WDF+ - WDF- (6.4) 

Unless specified, the terminology “WDF” stands for the “new WDF” in Equation (6.4) 

hereafter in this chapter.  

 

In the new WDF measurement technique, the worst BTI degradation is delivered by the 

sum of averaged degradation and WDF+.  

 

worst BTI = averaged degradation  + WDF+  (6.5) 
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Fig. 6.3 (a) Test waveform of the new WDF measurement technique. (b) Typical results of the 

new WDF technique. 

 

WDF+ in ΔId/Id0 needs to be converted into |ΔVth|. People normally use ΔId/gm to do this, 

however this could lead to a big (as high as 2.5 in [60]) overestimation of the real |ΔVth| 

[60]. The correlation between ΔId/Id0 and |ΔVth| measured during the charging kinetics is 

used to do this conversion, as shown in Fig. 6.4. 
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Fig. 6.4 |ΔVth|~ ΔId/Id0 relationship extracted from the charging kinetics on a HK45 90x70nm 

pMOS under different |Vg-Vth|. Note the conversion is device specified. 
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6.3.2 Sampling rate dependence 

 

WDF is dependent with measurement sampling rate, since current fluctuation is averaged 

out under low sampling rate, as shown in Fig. 6.5. When sampling rate < 1MSa/s, WDF is 

proportional to log(sampling rate). Note Fig. 6.5a is measured on a stressed device thus 

further BTI is suppressed, as Id remains constant.  However, it is found as sampling rate 

reaches 1MSa/s, WDF saturates vs high sampling rate, indicating 1MSa/s sampling rate 

can capture the entire WDF. In the following sections, SR=1MSa/s if not specified. 

100101102103104105106107108

0.1

0.2

0.3

0.4

0.5

0.6

Tw=1s

 

 

W
DF

_∆
Id

 (u
A)

Sampling Rate (Sa/s)

1MSa/s

(b)
Flat

 

Fig. 6.5 (a) Id fluctuation increases with sampling rate due to measurement results are averaged out 

under low sampling rate. Stressed device is used here to suppress further degradation during the 

measurement. (b). WDF in ΔId at 1 second time window (Tw) extracted from (a)  is plotted against 

sampling rate, which indicates 1MSa/s is capable to capture the entire WDF. 

 

6.3.3 Stress dependence 

 

M. Duan et al already shows the conventional WDF is independent of stress time [148, 

152]. This conclusion is still valid for the new WDF, as shown in Fig. 6.6. WDF under 
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Vg=-0.8V is firstly measured on a fresh HK45 90x70nm pMOS, the device is then stressed 

under |Vg-Vth|=1.7V for ten seconds (Stress #1), after that the device is floating for five 

minutes to stabilize and another WDF measurement under Vg=-0.8V is carried out on the 

stressed device. The same procedure is repeated with a second stress under |Vg-Vth|=1.7V 

for one thousand seconds (Stress #2). 

 

Note WDF increases with the measurement Time Window (Tw). A larger Tw allows 

capturing slower traps, leading to the increase of WDF. 
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Fig. 6.6 WDF measurement results on fresh and stress device show they are independent of stress. 

(a) Id fluctuation measured on fresh and stressed device and WDF extraction. (b) Extracted WDF 

from Id fluctuation in (a) is independent of stress condition.  
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WDF measurement as shown in Fig. 6.3a is only applicable to DC stress, as BTI kinetics 

cannot remains at a constant value under AC stress.  

 

An AC WDF measurement technique is developed as shown in Fig. 6.7b. To better 

describe the principles of the AC WDF measurement technique, illustration of the DC 

WDF is also given in Fig. 6.7a as a comparison. 

 

 

Fig. 6.7 Illustration of WDF extraction under DC (a) and AC (b) NBTI stress. WDF is obtained by 

subtracting average from total. DC WDF is continuously recorded. AC WDF can be formed by 

joining each “ON” phase.  
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AC WDF can only be captured in the ON phase since Id=0 in the OFF phase. Both DC and 

AC WDF measurement need to stabilize the traps before monitoring Id fluctuation. For 

DC case, after stabilization all the chargeable traps are filled thus further charging is 

negligible, WDF can be directly measured as illustrated in Fig. 6.3a. However, under AC 

stress condition, Vg is alternating all the time, traps are repetitively charge/discharge 

during the ON/OFF phase. To separate the charging and WDF during the ON phase, 

measured |ΔVth| raw data (converted from ΔId in the ON phase) from different AC cycles 

is averaged out to achieve an Averaged Charging kinetics (μ_Ch in Fig. 6.7). WDF is 

averaged out by doing this average. After μ_Ch is extracted, AC WDF in each cycle is 

then calculated by subtracting μ_Ch from the measured |ΔVth| raw data. WDF+ in all the 

cycles during one AC WDF measurement is then concatenated and plotted against 

equivalent time window (Time window * Duty actor). AC WDF+ is extracted.  

 

WDF+ is different with multiple measurements due to the stochastic (dis-)charging of the 

defects. Fig. 6.8a shows 100 AC WDF+ measurements (grey lines), the average value of  

these 100 results (μ_WDF+) follows a good logarithmic relation against time window. Fig. 

6.8b shows μ_WDF+ is independent of Frequency and duty factor, which indicates WDF+ 

under AC stress can be directly obtained from DC measurements after taking duty factor into 

account. It is speculated that this is due to the probability for charging a trap only depends on 

the accumulative time under a given |Vg-Vth|.  
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Fig. 6.8 (a) Multiple WDF+ measurements and their averaged value under AC NBTI. (b) Averaged 

WDF+ overlaps for DC and AC of different frequency and duty factor. 

 

6.3.5 Within Device Fluctuation (WDF) modelling 

 

DC WDF+ measurements under different |Vg-Vth| are carried out on 50 stressed HK45 

90x70nm pMOSFETs, as shown by the grey lines in Fig. 6.9a. The mean value of WDF+, 

μ_WDF+, as shown by the red circles, can be empirically fitted with Equation  (6.6). 

 

∆Vth_WDF+ = p3 ∙ exp�p4 ∙ |Vg − Vth|� ∙ log10(tw/t0) (6.6) 
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Fig. 6.9 (a) DC WDF+ measurement results from multiple HK45 90x70nm pMOSFETs and its 

average value under |Vg-Vth|=0.7V. (b) Mean value of  WDF+ (μ_WDF+) under different |Vg-Vth| is 

fitted with Equation (6.6).  

 

 Application of the A-G model on the averaged degradation 6.4

 

With the new measurement pattern and analysis of WDF+ as shown in Fig. 6.7, the worst 

case of BTI degradation is WDF+ plus the averaged degradation, under both DC and AC 

stress condition. Averaged degradation can be measured by averaging IV curves to 

exclude WDF. For simplicity, in the following contents, different types of defects like 

Generated Defects, As-grown Traps and Energy Alternating Defects on nano-scale 

devices represent their averaged degradation, the terminology “averaged degradation” are 

omitted. 
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6.4.1 Generated Defects modelling on nano-scale devices 

 

Normally on a mature process, multiple nano-scale devices BTI after averaging will have 

the same amount of |ΔVth| as a big device [153]. However, the sample tested in this 

chapter is a developing process and nano-scale devices show much higher |ΔVth| than big 

devices. But the time exponent of Generated Defects remains the same (Fig. 6.10), this 

also agrees with what IMEC reported that the time exponent, n, of Generated Defects is 

independent of device geometry [154]. With a known time exponent, Fast-Voltage Step 

Stress technique can be applied to reduce the testing time. 
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Fig. 6.10 A comparison of Generated Defects (GD) results on nano-scale devices and on a big 

device. Stress-Discharge-Recharge technique is adopted. It is shown that the averaged Generated 

Defects on nano-scale devices and has the same time exponent of 0.2 as on a big device. 

 

Fig. 6.11 shows typical results of applying Fast-Voltage Step Stress pattern (as detailed in 

section 5.3.3) on a single pMOS device. 100 IV curves are captured at the end of 

recharging phase with 100 milliseconds interval to save the data on oscilloscope. Vth 

fluctuation of these 100 IV curves reflects the WDF under the recharge Vg (Vgrech). 
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Probability plot of these 100 |ΔVth| after different |Vg-Vth| is given in Fig. 6.11a, the 

parallel shift again confirms the independency of WDF on NBTI stress. The flat plateau  
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Fig. 6.11 Typical results of Generated Defects (GD) measured on a SINGLE nano-scale device. (a) 

Statistical Within-Device-Fluctuation distrbiution of |ΔVth| from 100 IV curves measured after 

each |Vg-Vth| step. (b) The standard deviation for the data in (a) (‘o’) and the data from large 

device (‘x’). σ_WDF from nano-scaled device is much larger than the one from large device 

which is dominated by system noise. In addition, σ_WDF changes little with stress |Vg-Vth|, 

confirming that it is dominated by As-grown Traps (AT). (c) For each |Vg-Vth|, the 100 |ΔVth| were 

ploted as lines and their mean value as ‘◊’. Generated Defects (‘□’) were obtained by subtracting 

As-grown Traps in the flat plateau.  
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due to As-grown Traps under Vgrech is then subtracted to get Generated Defects induced 

|ΔVth|. 

 

The same test procedure in Fig. 6.11 is then repeated to measure Generated Defects on 

multiple nano-scale devices, as shown in Fig. 6.12. Their average value is then used to 

extract the parameters of Generated Defects. 
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Fig. 6.12 Generated Defects measured on  multiple HK45 90x70nm pMOSFETs. Each grey line 

represents Generated Defects kinetics in Fig. 6.11. The points show the average value of all the 

grey lines. 

 

With apparent time exponent n=0.2 from the big device, the same analysis procedure as 

described in section 5.3.1 can be applied on μ_ GD for g1 and m1 extraction, as shown in 

Fig. 6.13a&b. μ_ GD is then modelled by 

µ_GD = g1 ∙ �Vg − Vth�
m1tstr

n1  (6.7) 
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Fig. 6.13 (a) Generated Defects are ploted against real stress time (‘□’) and effective stress time 

(‘o’), defined by Eqn (2) which is a function of voltage exponent m. m is selected to give a time 

exponent of 0.2. (b) The apperaent time exponent, n’, prefactor, g0’ under any given voltage 

expoenet, m’. The real m and g0’ value can be determined when the apparent n’ equals to 0.2, 

which is the real time exponent extracted from big device. 

 

6.4.2 Pre_Existing defects modelling on nano-scale devices 

 

After applying the Fast-Voltage Step Stress technique to extract Generated Defects 

parameters, the Pre_Existing defects charging and discharging kinetics can be measured 

on these stressed devices whose further generation is suppressed. Fig. 6.14a&d show 

μ_Pre_Ex traps charging/discharging results after averaging on multiple HK45 90x70nm 

pMOSFETs, Fig. 6.14b/e show the |Vg-Vth| dependence of μ_Pre_Ex.  

 

Due to the stochastic behavior of nano-scale devices m-DMP technique cannot be applied 

on nano-scale devices, μ_AT profile in Equation (6.7) thus cannot be directly measured. 

But Energy Alternating Defects’ time exponent n2 is already known from big device. With 
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a known time exponent n2, Pre_Existing defects’ charging kinetics can be directly fitted 

with Equation (6.11). The discharging kinetics of Pre_Existing Defects can be described 

with Equation (6.12). The parameters of Pre_Existing defects are summarized in Table 6.1 

in section 6.6.  

µ_ AT = p1 ∙ exp [p2 ∙ �Vg − Vth�] (6.8) 

µ__ATtch = AT ∙ (1 − e−�
tch
τ �

γ

) 
(6.9) 

µ_ EAD = g2 ∙ �Vg − Vth�
m2tn2   (6.10) 

µ__Pre_Extch = µ_AD__ATtch + µ_AD_EADtch (6.11) 

µ_Pre_Extdisch = Pre_Extdisch=0 ∙ �1 + B ∙ tdisch
β �

−1
    (6.12) 
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Fig. 6.14 Measured Device-to-Device Variability from charging (a) and discharging (d) kinetics 

and their averaged value under different |Vg-Vth| (b&e). The normalized kinetics for charging (c) 

and discharging (f) can be well fitted with Equation (6.9) & (6.12), similar to the large devices.  
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 Device-to-Device Variability modelling  6.5

 

Nano-scaled devices show significant Device-to-Device Variability. People normally used 

the standard deviation (σ) versus average (μ) plot to characterize Device-to-Device 

Variability [59, 120, 153]. Both theoretical simulation [57] and experiment data [58, 59] 

shows σ~μ follows a power law and the power factor is 0.5. The single trap impact, η, can be 

extracted using Equation (6.13). 

 

η =
σ∆Vth2

2 ∙ µ∆Vth
 

(6.13) 

  

6.5.1 Device-to-Device Variability of WDF+ 

 

Device-to-Device Variability of WDF+ can be plotted as the σ value of WDF+ at different 

time window versus the corresponding μ value, as shown in Fig. 6.15b. Fig. 6.15a is a 

replot of Fig. 6.9a which is the source data of the σ and μ value in Fig. 6.15b. Power 

exponent of 0.5 is achieved for σ~μ, indicating WDF+ can be described by the defect 

centric theory and the average impact of a single WDF+  ηWDF+ can be extracted using 

Equation (6.13). WDF+ Device-to-Device Variability under different |Vg-Vth| can be fitted 

with the same line, indicating ηWDF+ is independent of |Vg-Vth|.  
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Fig. 6.15 (a) A replot of Fig. 6.9a. WDF+ measurement results (grey lines) against time window 

(Tw) under |Vg-Vth|=0.9V on multiple devices. (b) Plot the standard deviation (σ) of WDF+ from 

(a) against the average WDF+ to extract the average impact of a single defect (η) of WDF+. 

Another two measurement condition |Vg-Vth|=0.7V and 1.1V results are also plotted together with 

|Vg-Vth|=0.9V. The same fitting equation indicates η is independent of |Vg-Vth|. 

 

6.5.2 Device-to-Device Variability of the averaged degradation 

 

Following the same analysis as Fig. 6.15, Defects Device-to-Device Variability of 

Generated Defects can be extracted from the Fast-Voltage Step Stress, as shown in Fig. 6.16. 

Pre_Existing defects’ Device-to-Device Variability can be extracted from the charging and 

discharging kinetics on stressed devices, as shown in Fig. 6.17. They can both be well fitted 

with a power law whose power exponent is 0.5, indicating they also follow the defect centric 

theory. 
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Fig. 6.16 (a) A replot of Fig. 6.12. Generated Defects results of Fast-Voltage Step Stress 

technique. (b) Plot σ~μ from (a) to extract η of Generated Defects. 
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Fig. 6.17 A replot of Fig. 6.14a Pre_Existing defects charging kinetics (a) and Fig. 6.14d 

discharging kinetics under 0V (b) σ~µ plot from both charging and discharging under different 

|Vg-Vth| is given in (c), which follow a power law well with an exponent of 0.5. 

 

η of Generated Defects, Pre_Existing defects and WDF+ are summarized in Fig. 6.18 under 

both NBTI and PBTI stress. Fig. 6.18 shows Generated Defects has a much larger η 
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compared to the Pre_Existing defects. It is speculated that this is because Generated Defects 

are more likely located above the current percolation path due to channel-carrier assisting 

defect generation, as illustrated in Fig. 6.19. η reported by Time Dependent Defect 

Spectroscopy technique on the same process [155] is similar to that of the Pre_Existing 

defects, because TDDS only captures the dischargeable traces which are dominated by 

Pre_Existing defects.  
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Fig. 6.18 Trap impact, η/η0, for Generated Defects, Pre_Existing defects and WDF+ for pMOS and 

nMOS. η0 is the impact of a single charge in the charge sheet approximation calculated by 

η0=q/COX, where q is the elementary charge and Cox the gate oxide capacitance in inversion. η/η0 

extracted using Time Dependent Defect Spectroscopy (TDDS) [29] is also plotted for comparison.  

 

 

Fig. 6.19 Illustration of a potential explanation for the larger average impact of a single defect (η) 

of Generated Defects compared with Pre_Existing defects. Generated Defects are more likely 

located above the current percolation path due to channel-carrier assisting defect generation, resulting 

in a higher η compared with the random distributed Pre_Existing defects. 

 

Fresh
AT&
EAD GDPre_Ex 



Chapter 6 Defect-induced Time Dependent Variability modelling 157 

 Time Dependent Variability modelling based on the A-G 6.6

model and Defect-Centric theory and experimental 

validation  

 

Defect-centric theory is proposed by B. Kaczer [55] in 2010 and has been widely adopted 

to evaluate the Time Dependent Variability [52, 54, 156]. The average impact of a single 

defect η is a fundamental parameter determining the variability of nano-scale devices. η is 

inversely proportional to device area and can be extracted from Device-to-Device 

Variability whose power exponent is 0.5. Impact of a single defect within a specific 

follows an exponential distribution and the trap number on multiple devices follows a 

Poisson distribution.  

 

Although defect centric theory is based on the observation of TDDS measured traps which 

does not include Generated Defects, Fig. 6.16b shows the Device-to-Device Variability of 

Generated Defects can also be fitted with power exponent of 0.5 hence defect centric 

theory is still applicable.  

 

The mean value of the averaged degradation on multiple nano-scale devices can be 

modelled by the A-G model, as detailed in chapter 5 on a big device. μ_WDF+ has already 

been modelled in section 6.3. Together with defect-centric theory, Time Dependent 

Variability on each device can be well modelled.  
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Generated Defects are firstly used as an example to show the procedure of constructing 

Time Dependent Variability on multiple pMOSFETs by statistical simulation. The same 

procedure is then repeated on Pre_Existing defects and also WDF+. By adding Generated 

Defects, Pre_Existing defects and WDF+ together, the worst case of BTI degradation is 

achieved and device lifetime can be extracted.  

 

The procedure for the statistical simulation of Generated Defects is illustrated in Fig. 6.20.  

 

Fig. 6.20 Procedure to construct Generated Defects’ distribution with the defect centric theory. 

This procedure is irrelavant to defect preoperty thus is also applicable to As-grown Trap, Energy 

Alternating Defects and WDF+. 
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With the experimentally extracted parameters in Table 6.1, µ_ΔVth_GD and its 

corresponding defect number µ_NGD at a given |Vg-Vth| and stress time can be calculated 

by Equation (6.13) and (6.14), respectively. 

µ_∆Vth_GD = g1 ∙ �|Vg − Vth|�m1tstr
n1  (6.14) 

µ_NGD = µ_∆Vth_GD/ηGD (6.15) 

In Fig. 6.20 M nano-scale devices are simulated. For each device, the number of 

Generated Defects is generated by randomly choose an element from a Poisson 

distribution with an average value of µ_NGD. For each defect on this device, the impact of 

this defect is generated by randomly choose an element from an exponential distribution 

with an average value of ηGD. The total Generated Defects for a single device is obtained 

by summing the impact of all the Generated Defects.  

 

A typical simulation result is given in Fig. 6.21a. Each '+' represents Generated Defects on 

a single nano-scale device under |Vg-Vth|=1.5V DC NBTI stress at the specified stress 

time. 3,000 devices are simulated as there are 3,000 '+' points for each stress time. The μ 

value of these 3,000 '+' points is plotted as 'o', which represents µ_ΔVth_GD kinetics. To 

verify the accuracy of the statistical simulation, µ_ΔVth_GD and σ_ΔVth_GD from the 

simulation is compared with the independently measured values in Fig. 6.21b&c. For the 

measurement, 20 nano-scale devices were stressed under a constant |Vg-Vth|=1.5 V using 

Stress-Discharge-Recharge technique.  Good agreement between the simulation and test 

data for both µ_ΔVth_GD (Fig. 6.21b) and σ_ΔVth_GD (Fig. 6.21c) justifies the simulation 

procedure and confirms the A-G model’s predicting capability on Generated Defects. 



Chapter 6 Defect-induced Time Dependent Variability modelling 160 

   

1 10 100 1000

10

15
20
25
30

Prediction

(c)
 

 

σ_
G

D 
[m

V]

Stress Time [s]

σ_Meas_GD

10

100 Prediction
µ_Meas_GDMeas_GD

 

 

G
D 

[m
V]

(b)

 

Fig. 6.21 (a) Simulated kinetics of Generated Defects (GD) under |Vg-Vth|=1.5V NBTI. Each ‘+’ 

represents one simulated device. The 'o' at each stress time is the average of 3000 devices. Good 

agreement is achieved between the test data and simulaton of (b) µ_ΔVth_GD and (c) σ _ΔVth_GD.  

 

Note the test data in Fig. 6.21b&c were not used for the A-G model parameter extraction. 

Probability plot of Fig. 6.21 comparison is also given in Fig. 6.22. Note the simulation can 

capture the “tail” in the distribution which is a big concern for circuit reliability. 

 
Fig. 6.22 Probability plot of data in Fig. 6.21a. The distribution of the test data (symbols) can be 

well predicted by the simulation results (lines).  
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Following the same procedure in Fig. 6.20, As-grown Traps, Energy Alternating Defects 

and WDF+ distribution can be simulated using the A-G model and defect centric theory. 

The worst case of Time Dependent Variability on nano-scale devices can be simulated 

following the procedure as shown in Fig. 6.23. This Time Dependent Variability 

modelling methodology based on the A-G model and defect centric is named as the “A-G 

framework”, as illustrated in Fig. 6.24. Extracted parameters on HK45 process is given in 

Table 6.1. 

 

Fig. 6.23 Procedure to simulate Time Dependent Variability on nano-scale devices based on the 

A-G framework. ”Defect Centric statistics” represent the entire procedure in Fig. 6.20.  

 

Fig. 6.24 Illustration of the comprehensive A-G framework based on the A-G model and defect 

centric theory. 

  

Vgop, Freq, DF, Stress time

Σ

A-G model

Defect Centric statistics

𝜇𝜇_∆Vth_GD 
Eq. (6.6) 

Eq. 
(6.7&6.8&6.11) 

𝜇𝜇_∆Vth_AT 

Eq. 
(6.9&6.11) 

𝜇𝜇_∆Vth_EAD 

Eq. (6.5) 
𝜇𝜇_WDF+   

|∆Vth_GD| 
  

|∆Vth_AT| 

|∆Vth_EAD| 

WDF+   

XN 

Eq. (6.12) 

+ 
  
+ 
  
+ 
  

𝜂𝜂 for each defect 
Generated Defects 

(GD) 

Energy Alternating 
Defects (EAD) 

As-grown Traps 
 (AT) Pr

e_
Ex

is
tin

g 
Tr

ap
s 

Ec 

Ev 

|∆Vth| 



Chapter 6 Defect-induced Time Dependent Variability modelling 162 

Table 6.1 Extracted parameters of the A-G framework under NBTI/PBTI stress on HK45 

90x70nm pMOSFET/nMOSFETs. All the |ΔVth| related parameters (g1, g2, p1, p3, ƞGD, ƞPre_Ex, 

ƞWDF+) are in millivolts and timing related parameters (τ, t0) are in seconds. 

Defects GD EAD AT Discharge WDF+ 

pMOSFET 
parameters 

  

g1 3.31 g2 10.0 p1 3.46 τ 5.80e-3 B 19.88 p3 0.76 

m1 3.24 m2 1.80 p2 2.89 γ 0.36 β 0.24 p4 1.28 

n1 0.2 n2 0.1       t0 1e-5 

ƞGD 3.13 ȠPre_Ex 1.62 ȠWDF+ 1.62 

nMOSFET 
parameters 

 

g1 0.38 g2 0.27 p1 2.71 τ 2.00e-4 B 0.79 p3 0.40 

m1 4.03 m2 5.65 p2 0.35 γ 1.0 β 0.13 p4 1.27 

n1 0.32 n2 0.2       t0 1e-5 

ƞGD 4.05 ȠPre_Ex 2.45 ȠWDF+ 2.45 

 

The predicting capability of the A-G framework needs to be verified by comparison 

between the prediction and test data. |Vg|=1.3V 10 kHz Duty factor=0.5 AC NBTI/PBTI 

stress is applied on multiple HK45 90x70nm pMOSFETs/nMOSFETs to measure the 

averaged |ΔVth|. Monto-Carlo simulation is performed to predict the degradation on 1,000 

nano-scale devices. Good agreement has been achieved for both averaged degradation 

(Fig. 6.25a&c) and its distribution (Fig. 6.25b&d), confirming the predicting capability of 

the A-G framework. Note 1). All the parameters in Table 6.1 were extracted from the 

measurements under accelerated DC constant |Vg-Vth| stresses only, and the AC test data 

in Fig. 6.25 is measured under constant |Vg| stress; 2). The test data is not used for model 

parameter extraction. 
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Fig. 6.25 Demonstration of the A-G frameowrk’s predicting capability on HK45 90x70nm devices 

under AC NBTI (a&b) and PBTI (c&d) stress.  a&c compare the averaged value (‘□’)from 

multiple device measurements (grey lines) and the prediction from 1000 Monto-Carlo simulation 

with the A-G framework considering both Time-zero Variability and Time Dependent Variability. 

b&d compares the distributions at different stress time.  
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predicted based on the A-G framework, as shown in Fig. 6.26. Note each line is calculated 

by adding a new component to the neighboring left line, so it is the gap between two 

curves represents the contribution of a specified component.  

 

Fig. 6.26 10-year degradation under AC NBTI (a) and PBTI (b) with contribution from different 

type of defects. |Vg-Vth|=0.5V, Freq=10kHz, Duty factor=0.5. 1000 Monto-Carlo simulations were 

performed.  

 

Fig. 6.26 shows WDF+ (blue-black) brings a significant |ΔVth| on top of the BTI averaged 

degradation. This agrees with people’s observation on RTN [86, 157] that Id fluctuation is 

becoming more and more important as MOSFET feature size scaling down and |Vdd| 

lowering down. Generated Defects (black-green), which is usually ignored, also plays a 

very important role after 10 years. This is due to their larger time exponent compared to 

Energy Alternating Defects. Energy Alternating Defects and As-grown Traps are 

supposed to be the majority defects studied in Time Dependent Defect Spectroscopy 
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(TDDS) technique. They are also very important in the total |ΔVth| after 10 years but not 

the dominating components. 

 

The proposed A-G framework is then implemented into the commercial circuit simulator 

HSPICE (Simulation Program with Integrated Circuit Emphasis) for variability-aware 

analysis. A 31-stage Ring Oscillator (RO) is used for demonstration. Time-zero Variability 

introduces fresh threshold voltage (Vth0) variation. By directly measuring Time-zero 

Variability distribution on multiple fresh devices [158], both Time-zero Variability and Time 

Dependent Variability are taken into consideration. The frequency distribution at fresh and 

10 years can be assessed, as shown in Fig. 6.27. It is also found that PBTI can introduce 

extra degradation and should be included in the simulation.  

 

Fig. 6.27 (a) A typical 31-stage Ring Oscillator (RO) circuit used for the HSPICE circuit 

simulation. (b) Snapshot of the waveform from one node of the RO before and after 10 years 

under the operating voltage Vdd=0.7V. 1000 run Monto-Carlo simulation is used. 
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Fig. 6.28 Probablity plot of the RO frequency before and after 10 years. The simulation with 

taking only NBTI into consideration is also compared with the simulation with both NBTI and 

PBTI. The difference reveals that PBTI should not be neglected. 

 

Increasing the circuit operating voltage Vdd to gain higher performance is widely used in 

circuit design. As shown in Fig. 6.29a, higher Vdd can enhance RO frequency effectively 

and meanwhile reduce Time-zero Variability impact, leading to the improvement of the 

circuit yield. However, higher Vdd will introduce larger degradation thus reduce circuit 

lifetime. Circuit designers need to make a tradeoff depending on the specified circuit 

requirements. Lifetime prediction under different Vdd is indispensable.  

 

The proposed A-G framework can fulfill this demand on nano-scale devices based 

circuits. Fig. 6.29 shows the RO frequency degradation distribution after 10 years under 

different Vdd can be predicted. With this Δf/f0~Vdd relationship, lifetime under any failure 

criteria can be extracted. Fig. 6.30 shows the max Vdd allowance predicted by the A-G 

framework with different failure criteria (from 6% to 10%). 
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Fig. 6.29 Simulation results of 1000 ROs based on HK45 90x70nm CMOS. (a) Distribution of the 

fresh RO frequency (f0) under different Vdd. By increasing Vdd, RO performance increases (higher 

f0) and the impact of Time-zero Variability becomes smaller (decreasing σ). (b) The RO frequency 

degradation (∆f/f0) after 10 years is increasing with higher Vdd.  
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Fig. 6.30 Max Vdd predicted by the A-G framework based RO simulation with different failure 

criteria (Δf/f0 from 6% to 10%). 
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 Summary 6.8

 

A comprehensive As-grown-Generation (A-G) framework for assessing Time Dependent 

Variation under AC BTI is proposed in this chapter. Compared with the traditional 

characterization techniques like Random Telegraph Noise (RTN) and Time Dependent Defect 

Spectroscopy (TDDS), which need to select devices, WDF+ measurements on all the devices 

is used in the A-G framework to capture the worst case of BTI degradation [120]. WDF can 

be excluded by measuring the averaged degradation, the degradation for scaled devices can be 

considered as the convolution of the averaged degradation and WDF+. 

 

Averaged degradation on multiple devices can be modelled by the A-G model as detailed 

in chapter 4. The Fast-Voltage Step Stress technique is used to reduce the test time and 

significantly improve the efficiency for model parameter extraction. By implementing the 

model into a commercial circuit simulator, the Time Dependent Variability analysis on 

circuit level can be made and the model should be helpful for the variability-aware circuit 

design in the nano-era. 
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7 Conclusions and future work 
 

 Conclusions 7.1

 

This project is targeted at the modelling of reliability and variability on modern nano-scale 

devices. Currently there is no practical model for nano-scale devices’ lifetime prediction. 

Based on the understanding of different types of defects, a comprehensive A-G framework 

is proposed and successfully achieved a test-proven lifetime prediction. Moreover, Fast-

Voltage Step Stress acceleration technique is developed to reduce the testing time by 90% 

for the A-G framework parameter extraction, making the model practical for potential use 

in industry. 

 

7.1.1 Conclusions on reliable time exponent extraction of long term BTI 

 

As BTI degradation follows a power law, a small change (0.170.2) in the time exponent 

will result in a big error (16 times underestimation) for lifetime prediction. The time 

exponent reported by different groups is spread over a wide range, and the value changes 

under different measurement conditions, questioning the accuracy of the predicted lifetime. 

 

The reason lies on the non-saturation of BTI discharging, which makes it very difficult to 

separate the “Permanent” component “P” and “Recoverable” component “R”.  

 

7 
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Instead of using ambiguous “P” and “R” to separate defects, the A-G framework classifies 

the defects into As-grown Traps, Cyclic Positive Charges (CPC) and Anti-Neutralization 

Positive Charges (ANPC), according to their behaviour during charging and discharging. 

Both CPC and ANPC are Generated Defects, their sum, Generated Defects, follow a 

power law and the time exponent is independent of measurement conditions. That is 

because, although ANPC decreases as discharging time increases, the extra dischargeable 

defects can be easily recharged under use-bias and give rise to a higher CPC. Based on 

this observation, “Stress-Discharge-Recharge” pattern is proposed to capture the entire 

Generated Defects; NBTI time exponents extracted from the Stress-Discharge-Recharge 

method on four different processes turns out to be ~0.2. 

 

The Stress-Discharge-Recharge technique is also applicable for PBTI, it is found PBTI 

has a much bigger time exponent (~0.32) compared to NBTI, which means at device 

lifetime, PBTI degradation is comparable or even larger than NBTI, although it’s much 

smaller than NBTI within a short time. 

 

7.1.2 Conclusions on the Fast-Voltage Step Stress acceleration technique 

 

Accelerated characterization methods are normally preferred or even indispensable for 

nano-scale devices as they need multiple devices average to get meaningful results. The 

Voltage Ramp Stress technique is one of the accelerated methods widely used by industry, 

however, the predicting capability is unsatisfactory due to this method using the total BTI 
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degradation and power law for parameter extraction. BTI degradation does not follow a 

power law, especially on immature processes which contain a lot of As-grown Traps. 

 

Voltage Step Stress improves the predicting capability by measuring “P” with slow DC 

measurements, due to the fact that “P” follows power law well, no matter whether on 

mature or immature processes. The testing time is around 2 hours for BTI power law 

parameter extraction and only one device is needed. 

 

Based on the conclusion in section 7.1.1, the Voltage Step Stress technique can be further 

accelerated and the Fast-Voltage Step Stress technique is proposed. The further 

acceleration is realized by the known time exponent. Meanwhile the Stress-Discharge-

Recharge method is applied to measure Generated Defects instead of slow DC 

measurement, which delivers the accuracy of BTI time exponent n. 

 

7.1.3 Conclusions on Pre_Existing defects 

 

Pre_Existing defects kinetics is investigated on heavily stressed devices on which further 

generation is supressed. It is found that Pre_Ex consists of 2 components: As-grown Traps, 

whose energy will not change during charging and discharging, and Energy Alternating 

Defects, whose energy will be pulled down after charging, and back to the original level 

after discharging. 
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Based on the different behaviour of As-grown Traps and Energy Alternating Defects, 

multi-Discharging-based Multiple Pulses (m-DMP) technique is developed to separate 

these two components, results show As-grown Traps will saturate within one second while 

Energy Alternating Defects follow a power law, but the time exponent is different from 

Generated Defects. 

 

7.1.4 Conclusions on the test-proved A-G framework lifetime prediction 

on nano-scale devices 

 

After Generated Defects and Pre_Existing defects are modelled, BTI under an arbitrary 

voltage, frequency, duty factor and stress time can be calculated according to the A-G 

framework. Good agreements between measurement data under low gate voltage on big 

devices and prediction, deliver the good predicting capability of this framework. 

 

Nano-scaled devices have two differences from big devices and make the lifetime 

prediction difficult: Within Device Fluctuation and Device-to-Device Variability. To 

predict the Time Dependent Variability of nano-scale devices, WDF is firstly excluded out 

of BTI by taking the averaged IV measurement. The results, averaged degradation, are 

collected across multiple devices. Device-to-Device Variability of the averaged 

degradation is then calculated as the standard deviation against the mean value on multiple 

devices. The mean value of the averaged degradation turns out to behave like a big device 

thus can be modelled by the A-G model. WDF, which is independent of stress, frequency 

and duty factor, is then directly measured on stressed nano-scale devices and modelled. 
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Together with defect centric theory, the A-G framework is able to simulate the behaviour 

of each nano-scaled device under any operating condition. Test data under a constant 

operating voltage on 30 devices is predicted well by the framework-based simulation, 

validating the predicting capability of the A-G framework. Lifetime is predicted under 

different criteria (2σ, 3σ etc.), a 31-stage ring oscillator constructed with HK45 

90nmx70nm devices is simulated and 10-year Vdd is predicted, which is one of the most 

important parameters for the circuit designers. 

 

 Future work 7.2

 

The A-G model predicts BTI lifetime based on the understanding of different types of 

defects, the underlying idea is defect separation according to their experimental behaviour, 

which is also applicable to other degradation mechanisms like Hot Carrier Aging (HCA). 

By employing the A-G model to other circumstances, a lot of interesting topics are 

worthwhile to investigate, including but not limited to, the following: 

 

7.2.1 BTI and Hot Carrier Aging (HCA) coupling 

 

Hot Carrier Aging (HCA) is another very important degradation mechanism in modern 

circuits. A lot of devices are under HCA stress condition instead of BTI while circuits 

operate, for example SRAM [159]. 
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Fig. 7.1 shows the voltages applied on each terminal while an MOS is under BTI and 

HCA stress, BTI is mainly caused by the filling and generation of defects uniformly 

across the gate dielectric while HCA is caused by the hot carrier injection on the drain side. 

Clearly BTI degradation also exists under the HCA stress condition, and it’s a non-

uniform BTI. The coupling of these two degradation mechanisms is worthwhile to 

investigate. Quite a few promising results have already been carried out by M. Duan et. al 

[160-162] on PBTI and HCA coupling on nMOSFETs. 

 

Fig. 7.1 Illustration of the MOSFET voltages under (a) BTI stress and (b) Hot Carrier Aging 

(HCA) stress. 

 

7.2.2 Within Device Fluctuation (WDF) simulation  

 

Fig. 7.2 shows WDF+ is the dominating component that limits nano-scale device lifetime, 

and the predicted lifetime is much shorter than people’s expectation. The reason lies in the 

definition of WDF+ is too rigid, as long as one point hit a higher WDF+, WDF+ will then 

remain at this value and never be back, and the device will fail once WDF+ exceeds the 

lifetime criteria. This is not true for real operating circuits, they can still work with a 

tolerable jitter.   
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Fig. 7.2 A replot of Fig. 6.26. 10-year degradation under AC NBTI (a) and PBTI (b) with 

contribution from different types of defects. |Vg-Vth|=0.5V, Freq=10kHz, Duty factor=0.5. 1000 

Monto-Carlo simulations were performed. 

 

One solution is to simulate WDF+ measurement results with a convolution of RTN signals, 

which has mature circuit simulation tools already. The A-G framework suggests WDF is 

mainly caused by As-grown Traps, whose energy profile and charging kinetics can be 

extracted as described in chapter 4. Based on As-grown Traps’ profile and defect centric 

theory, Monte-Carlo simulation can be used to construct multiple devices with As-grown 

Traps and mimic the |ΔVth| kinetics by adding every single trap induced RTN signals.   

τc = 1/(ns ∙ v ∙ σi ∙ e∆EB/kT) (7.1) 

τe = τc ∙ e(Ef−Et)/kT (7.2) 

Where σi is the average capture cross section, ns is the carrier density in the inversion 

layer,  v is the average velocity of the carriers,  ∆EB is the thermal activation barrier to 

capture a carrier, Ef is the fermi level and Et is the trap energy level [84].  

 



Chapter 7.Conclusions and future work 176 

Single trap induced RTN’s timing information is generated by Equation (7.1) & Equation 

(7.2), σi  and ∆EB  are the only parameters to be determined, they can be extracted by 

fitting the RTN with As-grown Traps’ charging kinetics. Some promising preliminary 

results have already been carried out as shown in Fig. 7.3. 
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Fig. 7.3 Measured WDF data on 60 devices (a) can be well reproduced by 100 Monte-Carlo WDF 

simulation (b). 

 

7.2.3 Circuit simulation 

 

Once the work in section 7.2.2 and section 7.2.3 can be done, the A-G framework can be 

employed to simulate the degradation of various types of circuits like Ring Oscillator 

(RO), Static Random-Access Memory (SRAM) etc, under real operating conditions 

instead of pure BTI.  
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