A Source and Drain Transient Currents Technique for Trap Characterisation in AlGaN/GaN HEMTs

1Department of Electronics and Electrical Engineering, Liverpool John Moores University, Liverpool, United Kingdom
2Nanoelectronic Devices Computational Group, College of Engineering, Swansea University, Swansea, United Kingdom
3Institute of Electronics, Microelectronics and Nanotechnology, University of Lille 1, Villeneuve d’Ascq, France.
4Laboratoire Nanotechnologies & Nanosystèmes, University of Sherbrooke, Sherbrooke, QC Canada.
5s.duffy@2011.ljmu.ac.uk

Abstract—The source/drain and gate induced charge trapping within an AlGaN/GaN high electron mobility transistor is studied, under normal device operation, by excluding self-heating effects, for the first time. Through direct measurement of current transients of both source and drain terminals, a characterisation technique has been developed to: (i) analyse the transient current degradations from μs to seconds, and (ii) evaluate the drain and gate induced charge trapping mechanisms. Two degradation mechanisms of current are observed: bulk trapping at a short time (<1ms); and surface trapping and redistribution (>1ms). The bulk charge trapping is found to occur during both ON and OFF states of the device when Vds>0V; where its trapping time constant is independent of bias conditions. In addition, the time constant of the slower current degradation is found to be mainly dependent on surface trapping and redistribution, not by the second heat transient.

Keywords—AlGaN/GaN HEMTs; Transient Currents; Traps Characterisation; Self-Heating Effects.

I. INTRODUCTION

AlGaN/GaN High Electron Mobility Transistors (HEMTs) are predicted to significantly improve efficiency and to dominate applications, e.g. high-power, high-frequency, low-noise, ultra-wide-band communication, ultra-scaled high-temperature, wireless sensors, etc., because of III-Nitrides’ wide-bandgaps, high electron saturation velocities and good thermal conductivities [1], [2]. In recent years, these devices have been steadily improving and new record performances have been reported each year [3], [4]. However, their reliability issues persist due to a lack of understanding of physics and mechanisms of charge trapping, self-heating and polarisation [5]–[8].

Several studies investigating the current degradation in AlGaN/GaN HEMTs have resulted in differing conclusions [8]–[10]. It is widely agreed upon that transient current degradation involves self-heating and charge trapping, [11]–[14]. Some studies of transient drain current suggest that two mechanisms of current degradation of different time constant are caused by both bulk and surface trapping [8], [9]. Other investigations suggest that the two current degradation trends are proportional to self-heating effects that occur at two different times [10]. With the significant impact of the current degradation time constant and magnitude on device reliability and RF performance, it is vital to address its mechanisms and origins.

The aim of this work is to gain insights into the degradation mechanisms of AlGaN/GaN HEMTs, focusing on both source and drain transient current measurements and analyses. We confirm that two current degradation mechanisms occur. At a short time scale (<1ms), the RF performance is restricted by both bulk trapping and self-heating effects. At a longer time scale (>1ms), the dynamic ON resistance degradation is limited mainly by surface trapping accumulation and redistribution. The used device structure and experiment methodology are summarised in Section II, while Section III outlines the results on source and drain current transient measurements, I_s and I_d, for both degradations. Conclusions are drawn in Section IV.

II. DEVICES AND EXPERIMENTAL PROCEDURE

A. Device Structure and Fabrication

The investigated epi-structure of the AlGaN/GaN HEMT was grown by molecular beam epitaxy (MBE) on HP-Si [11] substrate of a resistivity of 2000Ω.cm, as shown in Fig. 1a. MBE was performed using NH$_3$ for the Nitrogen precursor. The HEMT structure consists, from the substrate to the top, of low-temperature AlN/GaN/AlN (250/250/40nm) nucleation layers, a 1.1μm GaN back-barrier and 1nm AlN exclusion layer to reduce alloy scattering and to improve the carrier confinement of the 2-D Electron Gas (2DEG). A 25nm undoped Al$_{0.25}$Ga$_{0.75}$N barrier and, finally, a 1nm undoped GaN cap layer. Room temperature Hall measurements yields a sheet resistance of R=340Ω/sq, an electron sheet density of 1.25×1012/cm2, electron mobility of 1480cmV$^{-1}$s$^{-1}$, and
dislocation density of $\sim 5 \times 10^6 \text{cm}^{-2}$. The gate metallisation scheme is Ni/Pt/Ti/Mo/Au (5/25/25/30/250nm), where Ti/Al/Ni/Au (10/200/40/100nm) multilayers were used for the source and drain terminals. The contact resistance and specific resistivity are 0.39Ωmm and 3.8$\times 10^3 \Omega \cdot \text{cm}^2$, respectively. The fabrication process flow is similar to that in [15] with additional SiNx passivation. The I_{DS}-V_{DS} at $V_{DS}=20$V and I_{DS}-V_{GS} at $V_{GS}=0$V characteristics of the used AlGaN/GaN HEMT are plotted in Fig. 1a.

Fig. 1: (a) I_{DS}-V_{DS} and I_{DS}-V_{GS} characteristics at $V_{GS}=0$V and $V_{DS}=20$V, respectively, of the used AlGaN/GaN HEMT. (b) Schematic cross-section of the epi-structures grown on Si-HP[111] substrate. The source-to-drain distance and device width are 5µm and 100µm, respectively.

B. Experimental Methodology

In order to investigate the charge trapping involved in the AlGaN/GaN HEMT structure, we propose two experiments. The pulse waveforms, given in Fig. 2a, were used to characterise the bulk trapping mechanism. Here, $V_{DS}=0$V and $V_{GS}=0$V were pulsed to V_{DS1} and V_{GS1}, respectively, for a measurement time of $t_{\text{meas1}}=1$µs. The pulse waveforms, given in Fig. 2b, were used to investigate surface trapping behaviour. Quiescent biasing conditions, V_{DSQ} and V_{GSQ}, were set whereby pre-charging of surface trapping occurred. Measurements were then taken at $V_{DS2}=10$V and $V_{GS2}=0$V for a time $t_{\text{meas2}}=1$ms. An illustration is provided in Fig. 2c showing both bulk and surface trapping mechanisms.

![Image 350x405 to 515x617](image)

Fig. 2: Pulse waveforms used for I_{DS1} and I_{DS2} transient measurements for: (a) without traps pre-charging and (b) with traps pre-charging, where $t_{\text{meas1}}=1$µs and $t_{\text{meas2}}=200$ms. (c) The schematic diagram of bulk and surface trapping mechanisms are illustrated for a semi-ON-state at $V_{DS}=0$V.

III. RESULTS AND DISCUSSION

A. Bulk Trapping Mechanism

For the first time, experimental measurements of both source and drain transient currents were analysed to understand charge trapping kinetics under normal device operation. To attain this, the experiment illustrated in Fig. 2a was used. Fig. 3 shows the current transients, I_S and I_D, monitored at $V_{DS1}=20$V various gate biases, $V_{GS1}=0$V to -3V. Measurements were also taken for $V_{DS1}=10$V and $V_{DS1}=15$V (not shown). Under high V_{DS1}, a large peak in electric field at the drain-side of the gate is induced. As a result, electron trapping in the drain access region of the device increases channel resistance [16]. Considering this, the transient behaviour of I_S and I_D can be broadly split into two phases:

- **A fast initial charge trapping phase (≤1ms) – DEG1**: Bulk traps are identified as the fast charge trapping mechanism (DEG1) [6]. Electrons that exit the source terminal and become trapped within the bulk are not collected by the drain terminal, resulting in a difference between I_S and I_D. Whilst this occurs, the device heats up over time due to the applied electric field, causing both I_S and I_D to degrade proportionally. I_S and I_D difference is also seen when conditions of Fig. 2a are applied to an AlGaN/GaN Transmission Line Model (TLM) gateless device (not shown). This indicates that the difference between I_S and I_D is not caused by gate terminal.

- **A slow current degradation phase (>1ms) – DEG2**: During this phase, negligible difference between I_S and I_D is observed and, therefore, negligible bulk trapping occurs. The slow degradation of current (DEG2) is due to a surface trapping and/or a second phase of self-heating [10],[17]. For this reason, the impact of surface trap redistribution compared to the second self-heating mechanism is investigated in section B.

![Image 37x141 to 278x685](image)

Fig. 3: Transient behavior of the drain, I_D, and source, I_S, currents, versus measurement time on log scale using the pulse waveforms given in Fig. 2a with $V_{DS}=20$V, at $V_{GS}=0$V to -3V. Two degradations of current are observed at different time constants, DEG1 and DEG2.
To analyse the effect of the bias conditions on the initial charge trapping phase (DEG1), the difference between I_S and I_D (I_S-I_D) under $V_{DS1}=10V$, 15V and 20V at different gate biases, $V_{GS1}=0V$ to $-3V$ were measured (Fig. 4a). We find that a significant increase in bulk trapped charge density, indicated by the increase of ($I_S-I_D)_{\text{max}}$ from 3.6mA/mm to 7.0mA/mm, is observed when V_{DS1} is increased from 10V to 20V (Fig. 4b). However, there is no change in trapped charge density upon increasing the magnitude of V_{GS1}. Also, bulk trapping time constant is shown to be independent of V_{DS1} and V_{GS1}.

With respect to the slow current degradation phase, DEG2, there is no change in bulk trapping as I_S is very close to I_D. Yet, a second current degradation is still observed, which could be a result of surface trapping and/or self-heating. In the following section, the mechanism of DEG2 is investigated.

B. Surface Trapping Mechanism

To investigate the effect of the bias conditions on DEG2, the saturation time, t_{sat}, of Fig. 3 is extracted and plotted in Fig. 5a. It is clear that t_{sat} can be influenced by both V_{GS1} and V_{DS1}. On one hand, the increase of V_{GS1} induces greater surface trapping density, leading to a larger time for redistribution. On the other, the required time to redistribute the trapped electrons at the surface and extend the ‘virtual gate’ towards the drain side reduces when increasing V_{DS1}. Larger V_{DS1}, higher electric field, provides more energy to surface traps to distribute quicker [18]. The redistribution of surface traps alter the potential distribution laterally in the device, which affects the channel resistance.

Taking advantage of the RC thermal model, it appears that the second phase of self-heating has no influence on t_{sat}, as illustrated in Fig. 5b [10], [19]. It is noted that $t_{\text{sat},\text{TH}}$ is temperature independent.

![Fig. 4: (a) I_S and I_D difference (I_S-I_D) versus the measurement time at $V_{DS1}=20V$ and 10V for different gate voltages ($V_{GS1}=0V$ to $-3V$); indicating the bulk trapping process (DEG1). (b) The impact of drain voltage, V_{DS1}, and gate voltage, V_{GS1} on ($I_S-I_D)_{\text{max}}$ given at t=30µs; unlike V_{GS1}, V_{GS2} shows a negligible impact on bulk trapping characteristics.](image)

![Fig. 5: (a) Saturation time of DEG2, t_{sat}, at $V_{GS1}=20V$, 15V, and 10V and $V_{GS1}=0V$ to $-3V$; showing the dependence of t_{sat} with both V_{GS1} and V_{DS1}. (b) transient heating at various power densities (P) using the RC thermal model [10], [19]. It is noted that $t_{\text{sat},\text{TH}}$ is temperature independent.](image)

![Fig. 6: Recovery of current, measured at $V_{GS2}=10V$ and $V_{DS2}=0V$ (Fig. 2b), after various pre-charging conditions are applied: $V_{GSQ}=-1V$, -5V, and -10V, at $V_{DSQ}=10V$, for a period $t_{0}=1\mu s$, 10ms, and 1s. The recovery in the current transients at $t_{0} \geq 10ms$ shows the dominance of surface trapping on device degradation over self-heating.](image)
example, at t0=1\textmu s, much less recovery is observed during measurement. Regardless, surface trapping is still shown to be dominant for pre-conditions where t\textsubscript{0}=10\textmu s and |V\text{GS}|=5V and it can cancel out self-heating induced current reduction at |V\text{GS}|=0V.

IV. CONCLUSION

In this paper, a new source and drain transient currents, I\text{S} and I\text{D}, technique for charge trapping characterisation in AlGaN/GaN HEMTs, under normal device operation, has been developed. Using this technique, charge trapping behaviours, with the exclusion of self-heating, have been analysed. Two types of charge trapping mechanisms have been identified: (i) bulk trapping occurring on a time scale of <1\textmu s, followed by (ii) surface trapping and redistribution beyond 1ms. The bulk trapping and surface trapping corresponds to fast and slow current degradations, respectively. Through monitoring the difference between I\text{S} and I\text{D}, bulk trapping time constant is shown to be independent of V\text{DS} and V\text{GS}. Although, V\text{DS} is found to affect the bulk trap density. Large V\text{DS} is found to be a cause of bulk charge trapping during both ON and OFF states of the device. The time constant of the slower current degradation is found to be mainly dependent on surface trapping and redistribution. This time constant increases with higher |V\text{GS}| and lower V\text{DS}.

REFERENCES

