
Outcomes of Cardiac Screening in Adolescent Soccer Players.

http://researchonline.ljmu.ac.uk/9109/

Article

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/
Outcomes of Cardiac Screening in Adolescent Soccer Players

BACKGROUND
Reports on the incidence and causes of sudden cardiac death among young athletes have relied largely on estimated rates of participation and varied methods of reporting. We sought to investigate the incidence and causes of sudden cardiac death among adolescent soccer players in the United Kingdom.

METHODS
From 1996 through 2016, we screened 11,168 adolescent athletes with a mean (±SD) age of 16.4±1.2 years (95% of whom were male) in the English Football Association (FA) cardiac screening program, which consisted of a health questionnaire, physical examination, electrocardiography, and echocardiography. The FA registry was interrogated to identify sudden cardiac deaths, which were confirmed with autopsy reports.

RESULTS
During screening, 42 athletes (0.38%) were found to have cardiac disorders that are associated with sudden cardiac death. A further 225 athletes (2%) with congenital or valvular abnormalities were identified. After screening, there were 23 deaths from any cause, of which 8 (35%) were sudden deaths attributed to cardiac disease. Cardiomyopathy accounted for 7 of 8 sudden cardiac deaths (88%). Six athletes (75%) with sudden cardiac death had had normal cardiac screening results. The mean time between screening and sudden cardiac death was 6.8 years. On the basis of a total of 118,351 person-years, the incidence of sudden cardiac death among previously screened adolescent soccer players was 1 per 14,794 person-years (6.8 per 100,000 athletes).

CONCLUSIONS
Diseases that are associated with sudden cardiac death were identified in 0.38% of adolescent soccer players in a cohort that underwent cardiovascular screening. The incidence of sudden cardiac death was 1 per 14,794 person-years, or 6.8 per 100,000 athletes; most of these deaths were due to cardiomyopathies that had not been detected on screening. (Funded by the English Football Association and others.)
SUDDEN CARDIAC DEATH IN A SEEMINGLY
healthy athlete invariably prompts discus-
sion about possible preventative screening
strategies. The absence of a systematic registry of
deaths in young athletes (<35 years old) has been
a major obstacle to ascertaining the precise inci-
dence of sudden cardiac death in this group; estimates vary between 0.5 and 13 deaths per
100,000 athletes, depending on the population
studied and methods of data collection used. Furthermore, data on outcomes in adolescent
athletes who have been screened for cardiovas-
cular disease in a well-defined cohort are lacking.

The English Football Association (FA) has run
a mandatory cardiac screening program for ado-
lescent athletes in the United Kingdom since
1997, with a total of more than 11,000 athletes
screened since its inception. The aim of this
study was to determine the incidence and causes
of sudden cardiac death in this well-defined
population of previously screened soccer players.

METHODS

SCREENING PROGRAM
Between January 1, 1996, and December 31, 2016,
a total of 11,168 soccer players at clubs affiliated
with the FA underwent mandatory cardiovascular
screening. The program encompassed all youth
academy players (15 to 17 years of age) across
the 92 professional clubs in the soccer league
system who had excelled within the preceding
5 years. All such high-ranking players were of-
ered a formal remunerated scholar contract
(usually at the age of 16 years) with a view to
progressing to a professional senior career.
Written informed consent for screening was ob-
tained from each player by the team doctor.
Written informed consent from a parent or
guardian was required for athletes younger than
16 years of age, in accordance with the FA gov-
erness department.

Athletes underwent assessment with a health
questionnaire (Fig. S1 in the Supplementary Ap-
pendix, available with the full text of this article
at NEJM.org), physical examination, 12-lead elec-
trocardiography (ECG), and echocardiography.
Mobile screening units staffed by accredited
sonographers visited the clubs to conduct the
evaluations, and the results were reviewed by an
expert regional cardiologist who was a member of
the FA-approved cardiology consensus panel.

A formal report was sent to the FA medical de-
partment, in which each athlete was classified in
one of three categories on the basis of the evalu-
ation: normal; further evaluation needed, if an
anomaly was detected that required further
investigation to confirm or refute the presence
of cardiac disease; or cardiac disease detected.
The last category was subclassified into disorders
that are associated with sudden cardiac death or
those encompassing congenital septal and valvu-
lar conditions.

Further investigations were performed at re-
gional specialist centers. Athletes with T-wave
inversion, abnormally enlarged cardiac dimen-
sions, or a low ejection fraction and those fulfill-
ing echocardiographic criteria for left ventricular
noncompaction underwent maximal exercise stress
ung, 24-hour Holter monitoring, and cardio-
vascular magnetic resonance imaging (MRI).
Athletes with a prolonged QT interval under-
went exercise stress testing and 24-hour Holter
monitoring, and athletes with a Wolff–Parkinson–
White ECG pattern were risk-stratified on the
basis of an exercise test and an electrophysiologi-
cal study. From 2012 onward, there was sufficient
evidence indicating that among black athletes,
T-wave inversion was a common variant
that was not associated with structural heart dis-
 ease or serious cardiac arrhythmias; therefore,
asymptomatic black athletes with this repolariza-
tion abnormality did not undergo further investi-
gation unless the echocardiogram was abnormal.
In 2013, we ceased to investigate athletes who
fulfilled echocardiographic criteria for left ven-
tricular noncompaction but had a normal ECG
and normal cardiac function. The results of all
the investigations were reported back to the FA
headquarters and reviewed independently by the
first and last authors.

DIAGNOSIS OF DISORDERS ASSOCIATED
WITH SUDDEN CARDIAC DEATH
The diagnosis of hypertrophic cardiomyopathy
was based on a left ventricular wall thickness of
15 mm or greater in any myocardial segment on
echocardiography or cardiovascular MRI in the
absence of another condition capable of produc-
ing left ventricular hypertrophy. The diagnosis
of dilated cardiomyopathy was considered if the
patient had a dilated left ventricle (a left ventricu-
lar end-diastolic dimension of >59 mm in males
and >53 mm in females) and a reduced ejection
The diagnosis of arrhythmogenic right ventricular cardiomyopathy was based on published criteria. The diagnosis of long-QT syndrome was based on a corrected QT (QTc) interval of 500 msec or greater or of 470 to 490 msec in association with notched T waves in at least three leads, paradoxical prolongation of the QT interval with exercise, or a positive genetic test. Identification of the Wolff–Parkinson–White ECG pattern was based on findings of a short PR interval and a slurred upstroke to the QRS complex.

RECOMMENDATIONS FOR FOLLOW-UP ASSESSMENTS OR EXCLUSION FROM PLAY

Some of the screened athletes had abnormal T-wave inversion but structurally normal hearts, and others had borderline-abnormal cardiac dimensions but no other features to support the diagnosis of cardiomyopathy. These athletes were investigated with ECG and echocardiography performed every year and cardiovascular MRI performed every 2 years. Athletes with congenital valvular abnormalities or septal defects were monitored with annual ECG and echocardiography. Athletes with cardiac disorders that are associated with sudden cardiac death were advised not to compete and were discharged into the care of the National Health Service. Decisions to disqualify such athletes were made by the FA cardiology consensus panel after discussions in accordance with current exercise recommendations of the European Society of Cardiology and the American Heart Association. The decision was relayed to the player in the presence of the player’s parent or guardian and the club doctor by the regional cardiologist.

OUTCOMES

Calculation of the follow-up period per athlete was based on the number of years of competition within the FA, which was determined from the FA registry of players. Deaths among athletes were ascertained through the development of a database that was compiled from voluntary reports to the FA. A second method to ascertain the number of deaths was through a secure survey that was sent to health professionals at each of the 92 FA-affiliated clubs, asking specifically about deaths from any cause. In addition, regular Internet searches had been performed since 2005, with the use of three different search engines (Google, Yahoo, and MSN search [Bing]) and at least 16 keywords (student, athlete, collapsed, died, death, heart, cardiac, arrest, attack, soccer, running, school, unknown, college, defibrillator, and saved).

Death certificates were obtained from the U.K. government for all deceased persons in the cohort to ascertain the causes of death, which were categorized broadly as accidental, suicide, drug-related, cancer, or cardiac causes. Autopsy data were available in all cases of sudden cardiac death, and diagnoses were based on previously established pathological criteria in conjunction with consultation with an expert cardiac pathologist.

Data on survival status during the screening program over the 20-year period among athletes who had diagnoses of cardiac disorders that are associated with sudden cardiac death were obtained from attending cardiologists, most of whom were part of the expert FA consensus panel.

RESULTS

FURTHER EVALUATION AFTER SCREENING

The mean (±SD) age of the 11,168 soccer players who underwent cardiovascular screening was 16.4±1.2 years; 10,581 (95%) of the athletes were male. In the entire cohort, 830 athletes (7%) underwent further investigation after preliminary assessment. Among these athletes, 104 (0.9%) reported symptoms that were deemed noncardiac in origin after assessment by a cardiologist. Among the remaining 726 athletes, 292 (3% of the total cohort) underwent investigation for T-wave inversion (anterior [153], inferior or lateral [114], or widespread [25]). A total of 25 athletes (0.2%) underwent investigation for a prolonged QTc interval. A further 409 athletes (4%) underwent cardiovascular MRI because of ventricular remodeling consistent with cardiomyopathy. Specifically, 229 athletes (2%) had a left ventricular wall thickness of 13 mm or greater; 106 (0.9%) had an enlarged left ventricular cavity with a borderline-low ejection fraction (of 50 to 52%); 80 athletes (0.7%) had a suspected right ventricular regional wall-motion abnormality, and 19 (0.2%) had increased left ventricular trabeculation and a mildly reduced ejection fraction (of ≤50%). Twenty-five athletes had abnormal T-wave inversion and enlarged cardiac dimensions.
Outcomes of Cardiac Screening in Soccer Players

11,168 Adolescent athletes underwent screening
10,581 Were male
587 Were female

10,338 Did not have abnormality detected at screening

830 Underwent further evaluation

42 Had disorder associated with sudden cardiac death
 - 5 Had hypertrophic cardiomyopathy
 - 2 Had arrhythmogenic right ventricular cardiomyopathy
 - 1 Had dilated cardiomyopathy
 - 3 Had long-QT syndrome
 - 2 Had coronary artery anomaly
 - 3 Had bicuspid aortic valve with either aortic root enlargement or severe aortic regurgitation
 - 26 Had Wolff-Parkinson-White electrocardiographic pattern

225 Had other disorder
 - 68 Had bicuspid aortic valve
 - 62 Had atrial septal defect
 - 13 Had ventricular septal defect
 - 29 Had aortic regurgitation
 - 24 Had mitral-valve prolapse
 - 18 Had patent ductus arteriosus
 - 9 Had pulmonary stenosis
 - 2 Had coarctation

276 Had no diagnosis
 - 256 Had T-wave inversion
 - 12 Had left ventricular hypertrophy
 - 8 Had enlargement of left ventricular end-diastolic dimension

287 Did not have abnormality detected at further evaluation

10,625 Did not have abnormality detected

15 Died from noncardiac cause
 - 5 Had cancer
 - 7 Had road traffic accident
 - 2 Had drug overdose
 - 1 Committed suicide

6 Died from cardiac-related cause
 - 1 Had hypertrophic cardiomyopathy
 - 1 Had idiopathic left ventricular hypertrophy
 - 2 Had arrhythmogenic right ventricular cardiomyopathy
 - 1 Had dilated cardiomyopathy
 - 1 Had sudden arrhythmic death syndrome

2 Died from hypertrophic cardiomyopathy

23 Died from any cause

8 Died from cardiac-related cause

501 Underwent continued clinical surveillance

Figure 1. Outcomes in the Football Association Cardiac Screening Program.
Table 1. Clinical Features and Outcomes in Athletes with Cardiac Conditions That Are Associated with Sudden Cardiac Death.*

<table>
<thead>
<tr>
<th>Condition, Sex, and Age</th>
<th>Race†</th>
<th>History and Examination</th>
<th>ECG Result</th>
<th>Echocardiography Result</th>
<th>LGE on Cardiac MRI</th>
<th>Exercise Test Result</th>
<th>Genetic Test Result‡</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M, 16 yr White</td>
<td>White</td>
<td>Negative TWI (leads II, aVF, V2–V6)</td>
<td>LVWT 16 mm (asymmetric septal hypertrophy)</td>
<td>Yes</td>
<td>Normal</td>
<td>MYBPC3 mutation</td>
<td>Advised not to play</td>
<td></td>
</tr>
<tr>
<td>M, 15 yr White</td>
<td>White</td>
<td>Negative TWI (leads V2–V6), LAD, isoelectric ST segments</td>
<td>LVWT 15 mm (asymmetric septal hypertrophy)</td>
<td>No</td>
<td>Normal</td>
<td>MYBPC3 mutation</td>
<td>Advised not to play</td>
<td></td>
</tr>
<tr>
<td>M, 16 yr White</td>
<td>White</td>
<td>Negative TWI (leads II, III, aVF), ST depression</td>
<td>Apical hypertrophy</td>
<td>No</td>
<td>Normal</td>
<td>MYH7 mutation</td>
<td>Advised not to play</td>
<td></td>
</tr>
<tr>
<td>M, 16 yr Black</td>
<td>Black</td>
<td>Negative TWI (leads V1–V5), ST depression</td>
<td>LVWT 16 mm (asymmetric septal hypertrophy)</td>
<td>Yes</td>
<td>Normal</td>
<td>Negative</td>
<td>Advised not to play</td>
<td></td>
</tr>
<tr>
<td>M, 16 yr Mixed</td>
<td>Mixed</td>
<td>Negative TWI (leads V4–V6), isoelectric ST segments</td>
<td>Apical hypertrophy</td>
<td>No</td>
<td>Normal</td>
<td>Negative</td>
<td>Advised not to play</td>
<td></td>
</tr>
<tr>
<td>ARVC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M, 16 yr White</td>
<td>White</td>
<td>Palpitations TWI (leads V1–V3)</td>
<td>Reduced LV systolic function; dilated and aneurysmal RV</td>
<td>Yes</td>
<td>Ventricular ectopy of LBBB morphology</td>
<td>Negative</td>
<td>Advised not to play</td>
<td></td>
</tr>
<tr>
<td>M, 17 yr White</td>
<td>White</td>
<td>Negative Normal</td>
<td>Aneurysmal RV with hypokinetic free wall</td>
<td>No</td>
<td>Ventricular ectopy of LBBB morphology</td>
<td>PKP2 mutation</td>
<td>Advised not to play</td>
<td></td>
</tr>
<tr>
<td>DCM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M, 16 yr White</td>
<td>White</td>
<td>Dyspnea TWI (leads V1–V4), ST depression</td>
<td>LVEDD, 61 mm; EF, 45%</td>
<td>Yes</td>
<td>LV ejection fraction did not increase with exercise</td>
<td>Negative</td>
<td>Advised not to play</td>
<td></td>
</tr>
<tr>
<td>LQTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F, 16 yr White</td>
<td>White</td>
<td>Negative QTc, 510 msec</td>
<td>Normal</td>
<td>NA</td>
<td>QTc, >500 msec</td>
<td>KCNQ1 mutation</td>
<td>Advised not to play</td>
<td></td>
</tr>
<tr>
<td>M, 15 yr White</td>
<td>White</td>
<td>Negative QTc, 503 msec</td>
<td>Normal</td>
<td>NA</td>
<td>QTc, >500 msec</td>
<td>Negative</td>
<td>Advised not to play</td>
<td></td>
</tr>
<tr>
<td>M, 16 yr White</td>
<td>White</td>
<td>Negative QTc, 490 msec</td>
<td>Normal</td>
<td>NA</td>
<td>Paradoxical increase in QTc during recovery</td>
<td>KCNQ1 mutation</td>
<td>Advised not to play</td>
<td></td>
</tr>
<tr>
<td>CAA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M, 16 yr White</td>
<td>White</td>
<td>Negative Normal</td>
<td>Left coronary artery arising from right sinus of Valsalva</td>
<td>NA</td>
<td>Positive for myocardial ischemia</td>
<td>NA</td>
<td>Underwent corrective surgery and returned to play</td>
<td></td>
</tr>
<tr>
<td>M, 15 yr White</td>
<td>White</td>
<td>Negative Normal</td>
<td>Right coronary artery arising from left sinus of Valsalva with adverse course</td>
<td>NA</td>
<td>Normal</td>
<td>NA</td>
<td>Underwent corrective surgery and returned to play</td>
<td></td>
</tr>
</tbody>
</table>
Outcomes of Cardiac Screening in Soccer Players

Detection of Cardiac Disease

A total of 42 athletes (0.38%) were found to have cardiac disorders that are associated with sudden cardiac death (Fig. 1 and Table 1). Five (0.04%) had a diagnosis of hypertrophic cardiomyopathy, 2 (0.02%) of arrhythmogenic right ventricular cardiomyopathy, and 1 (0.01%) of dilated cardiomyopathy. Three athletes (0.03%) had a diagnosis of long-QT syndrome. Two athletes (0.02%) had a diagnosis of an anomalous origin of a coronary artery, and 3 (0.03%) were found to have a bicuspid aortic valve associated with either aortic-root enlargement of 50 mm or greater (1) or severe aortic regurgitation (2). A total of 26 (0.23%) athletes had the Wolff–Parkinson–White ECG pattern (Table S1 in the Supplementary Appendix).

Among the 42 athletes with cardiac disorders that are associated with sudden cardiac death, 2 (5%) had symptoms, 1 (2%) had an abnormality detected on cardiac examination, and 1 (2%) had both symptoms and an abnormality detected on examination (Table 2). Abnormal ECGs were obtained in 36 of these athletes (86%), and abnormal echocardiograms in 12 (29%).

There were 225 athletes (2%) with other cardiac disorders, including congenital septal and valvular abnormalities (Fig. 1). The diagnoses in all of these athletes were made with the use of echocardiography; 48 of the athletes (21%) had an abnormal ECG, and 74 (33%) had an abnormality detected on examination (Table 2).

Interventions and Outcomes

Athletes with a diagnosis of cardiomyopathy (8) or long-QT syndrome (3) were advised against participation in competitive soccer. None of the athletes with cardiomyopathy were deemed to have a sufficiently high-risk profile to warrant a prophylactic implantable cardioverter–defibrillator. The 3 athletes with long-QT syndrome began treatment with beta-blockers. Both athletes with anomalous coronary-artery origins underwent corrective surgery and returned to play. The 3 athletes with bicuspid aortic valves underwent surgical intervention for aortic-root dilatation (1) or severe aortic regurgitation (2) and returned to play (Table 1). All 26 athletes with the Wolff–Parkinson–White ECG pattern underwent risk stratification, and 24 underwent ablation before returning to play. The remaining 2 athletes with the Wolff–Parkinson–White pattern were deemed...
to have low-risk accessory conduction pathways that were not ablated, and they continued to compete (Table S1 in the Supplementary Appendix).

Of the 42 athletes who, during screening, received diagnoses of cardiac disorders that are associated with sudden cardiac death, 40 (95%) were alive at the end of the study period. Two athletes with a diagnosis of hypertrophic cardiomyopathy continued to compete despite medical advice and died subsequently during intensive exercise.

Among the 225 athletes with other cardiac disorders, 7 with an atrial septal defect and 1 with a ventricular septal defect had hemodynamic indications to warrant percutaneous closure before returning to play. The remaining 217 athletes (97%) had mild disease and were permitted to compete. We could not establish a cardiac diagnosis in 276 athletes (2%) who had abnormal T-wave inversion or borderline abnormal cardiac dimensions. All these athletes continued to compete but remained under clinical surveillance.

All-Cause Mortality

Of the 92 professional clubs, 86 (93%) responded to the questionnaire regarding all-cause mortality. During a mean follow-up period of 10.6±8.3 years, there were 23 deaths. The causes of death included road traffic accidents (7 deaths [30%]), cancer (5 [22%]), drug overdose (2 [9%]), and suicide (1 [4%]). Cardiac disorders accounted for 8 deaths (35%), all of which were sudden and occurred during exercise (Fig. 2).

Sudden Cardiac Deaths

Autopsy data were available for all sudden cardiac deaths. Among the athletes who died from cardiac disorders, the mean time between screening and sudden death was 6.8 years (range, 0.1 to 13.2). Cardiomyopathies were the most common cause of death and accounted for 7 of 8 (88%) sudden cardiac deaths (Table 3). There were a total of 118,351 person-years of follow-up over the 20-year study period. The resulting overall incidence of sudden cardiac death among ado-

Table 2. Summary of Cardiac Conditions Detected According to Screening Tool.

<table>
<thead>
<tr>
<th>Condition</th>
<th>No. of Athletes</th>
<th>No. of Athletes with Abnormal Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any cardiac condition</td>
<td>267</td>
<td>6</td>
</tr>
<tr>
<td>Condition associated with sudden cardiac death</td>
<td>42</td>
<td>3</td>
</tr>
<tr>
<td>Hypertrophic cardiomyopathy</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Arrhythmogenic right ventricular cardiomyopathy</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Dilated cardiomyopathy</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Coronary-artery anomalies</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Bicuspid aortic valve–associated disease</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Long-QT syndrome</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Wolff–Parkinson–White ECG pattern</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>Other cardiac condition</td>
<td>225</td>
<td>3</td>
</tr>
<tr>
<td>Bicuspid aortic valve</td>
<td>68</td>
<td>1</td>
</tr>
<tr>
<td>Atrial septal defect</td>
<td>62</td>
<td>1</td>
</tr>
<tr>
<td>Aortic regurgitation</td>
<td>29</td>
<td>0</td>
</tr>
<tr>
<td>Mitral-valve prolapse</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>Patent ductus arteriosus</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>Ventricular septal defect</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>Pulmonary stenosis</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Cor triatriatum</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

* Bicuspid aortic valve–associated disease includes bicuspid aortic valve with either aortic-root enlargement or severe aortic regurgitation.
lescent soccer players was 1 per 14,794 person-years, or 6.8 per 100,000 athletes.

Of the 8 sudden cardiac deaths, 6 (75%) were in athletes who had normal findings during preliminary screening (Fig. 1 and Table 3). Variation in test interpretation could have accounted for the normal findings. Therefore, 50 deidentified ECGs and corresponding echocardiograms from the cohort were analyzed by two independent experts in inherited cardiac diseases who were unaware of the outcomes. The ECGs and echocardiograms were from 45 athletes whose results had been interpreted as normal, including the 6 decedents, and 5 athletes with abnormal results, including 1 athlete each with a diagnosis of arrhythmogenic right ventricular cardiomyopathy, dilated cardiomyopathy, hypertrophic cardiomyopathy, long QT interval, and the Wolff–Parkinson–White ECG pattern. Blind reading showed 100% agreement between the two reviewers for the 6 decedents with normal results (Table 3).

Discussion

We report the outcomes of cardiovascular screening of adolescent soccer players, determined with the use of data from the FA in the United Kingdom. The prevalence of disorders associated with sudden cardiac death in young athletes was 0.38%, which is similar to that reported in other screening programs. Congenital septal and minor valvular disorders were detected in an additional 2% of the athletes, leading to an overall prevalence of 2.4% for all cardiac conditions.

In this cohort, electrical diseases accounted for 29 (69%) of the 42 cases of cardiac disorders that are associated with sudden cardiac death, whereas the primary cardiomyopathies accounted for only 8 (19%) of these cases. Anomalous coronary-artery origins accounted for 2 (5%) of the cases but were almost certainly underrepresented because of the limitations of echocardiography in detecting this type of disorder. The remaining 3 (7%) of the 42 cases were due to advanced aortic-valve disease. History, findings on physical examination, and ECG were abnormal in 7%, 5%, and 86%, respectively, of athletes with cardiac disorders associated with sudden cardiac death.

Hypertrophic cardiomyopathy was the most commonly detected cardiomyopathy, and all 5 athletes in whom this condition was detected had an abnormal ECG and echocardiogram. The prevalence of hypertrophic cardiomyopathy among these elite adolescent soccer players was 1 in 1861 athletes (including 1 case not detected by screening), which is considerably lower than that reported in the general population, raising the possibility that athletes with a more advanced phenotype at this age may have been selected out of competition because of reduced cardiorespiratory capacity. Age-related penetrance of hypertrophic cardiomyopathy is also an important consideration, since in many affected persons the disease is not expressed during adolescence. The prevalence of arrhythmogenic right ventric-
ular cardiomyopathy was 1 in 2792 athletes; this disorder has a highly variable clinical course, and the mean age at presentation is 31±13 years. Exercise has been shown to accelerate the phenotypic manifestations of this condition, and years of intensive training regimes may well contribute to the unmasking of phenotypes that could not be detected during adolescence.

Of the seven athletes who died suddenly from cardiomyopathy, five (71%) had a normal ECG and echocardiogram at a mean age of 16 years. Screening at this age seems logistically appropriate, given that most people will be postpubertal and will have overt evidence of any electrical or structural cardiac abnormalities. However, this study shows that screening during late adolescence will fail to detect a substantial proportion of athletes who have or will eventually have a cardiomyopathy, either because the disease is not yet manifest or because ECG and echocardiography are not sensitive enough to detect early disease in some adolescents.

This systematic study revealed that the incidence of sudden cardiac death among screened 16-year-old soccer players was approximately 1 per 14,800 person-years, or 6.8 per 100,000 athletes. This figure is considerably higher than previous estimates among athletes who have been screened with the use of history and physical examination alone or who have not undergone cardiac screening. Sudden cardiac death may be more common in some sports than in others; these results in adolescent soccer players are similar to findings previously reported in male basketball players. The National Collegiate Athletic Association in the United States adopted a policy in 2014 requiring all affiliated institutions to report cases of catastrophic injury or death. Such mandatory reporting initiatives across other sporting organizations would offer an important source of prospective data in already well-defined populations.

Several limitations of our study should be noted. For our data, we relied on voluntary reporting of sudden cardiac deaths by clubs and on retrospective recall. Although we confirmed all sudden cardiac deaths with death certificates and autopsy reports, it is possible that we did not capture all cases. Our results therefore represent the minimum incidence of sudden cardiac death among screened adolescent soccer players. The end point of our study was sudden death, and therefore we are unable to comment on the number of athletes in whom a quiescent cardiomyopathy may have developed after the initial screen or who survived a sudden cardiac arrest. Finally, our study included only adolescent soccer players of the highest ability and may underestimate the burden of cardiac disorders or prevalence of sudden cardiac death among non-elite or older players.

In conclusion, we investigated the results of

<table>
<thead>
<tr>
<th>Athlete No.</th>
<th>Sex and Age</th>
<th>Race*</th>
<th>Years from Screening to Death</th>
<th>Diagnosis</th>
<th>Initial Screening Result</th>
<th>Blind Reading (Reviewer 1)</th>
<th>Blind Reading (Reviewer 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M, 16.8 yr</td>
<td>Black</td>
<td>0.1</td>
<td>Idiopathic left ventricular hypertrophy</td>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>2</td>
<td>M, 16.6 yr</td>
<td>Mixed</td>
<td>1.0</td>
<td>Hypertrophic cardiomyopathy</td>
<td>Abnormal ECG and echocardiogram</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>3</td>
<td>M, 16.6 yr</td>
<td>Black</td>
<td>3.3</td>
<td>Hypertrophic cardiomyopathy</td>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>4</td>
<td>M, 16.3 yr</td>
<td>Black</td>
<td>7.7</td>
<td>Dilated cardiomyopathy</td>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>5</td>
<td>M, 17.0 yr</td>
<td>White</td>
<td>7.9</td>
<td>Arrhythmogenic right ventricular cardiomyopathy</td>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>6</td>
<td>M, 17.2 yr</td>
<td>White</td>
<td>9.7</td>
<td>Arhythmogenic right ventricular cardiomyopathy</td>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>7</td>
<td>M, 15.7 yr</td>
<td>White</td>
<td>11.5</td>
<td>Hypertrophic cardiomyopathy</td>
<td>Abnormal ECG and echocardiogram</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>8</td>
<td>M, 16.8 yr</td>
<td>White</td>
<td>13.2</td>
<td>Sudden arrhythmic death syndrome</td>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
</tr>
</tbody>
</table>

* Race was reported by the athlete or the parent or guardian.
cardiovascular screening of a large cohort of adolescent soccer players in the United Kingdom. Diseases associated with sudden cardiac death, the majority of them electrical cardiac disorders, were identified in 0.38% of participants. The incidence of sudden cardiac death among these previously screened athletes was approximately 1 per 14,800 person-years, or 6.8 per 100,000 athletes. Most of these deaths were due to cardiomyopathies that were not detected on screening.

Supported by the English Football Association, Cardiac Risk in the Young (to Drs. Malhotra and Dhutia), and the Charles Wolfson charitable trust (to Dr. Finocchiaro). Disclosure forms provided by the authors are available with the full text of this article at NEJM.org.

We thank Kerrie Bayliss and Sue Cheadle for their administrative assistance.

APPENDIX

The authors’ affiliations are as follows: the Cardiology Clinical Academic Group, St. George’s, University of London (A.M., H.D., G.F., S.G., M.T., M.P., S.S.), the Department of Sports Medicine, Bartholomew’s and London Hospital (L.B.), and the Department of Cardiology, Imperial College NHS Trust (J.M., A.V.), London, the Football Association, Burton Upon Trent (A.M., C.C.), the Department of Cardiology, Queen Elizabeth Hospital, Birmingham (P.C.), the Department of Cardiology, Freeman Hospital, Newcastle Upon Tyne (A.K.), the Faculty of Science, Liverpool John Moores University (D.O., J.S.), and the Department of Cardiology, Liverpool Heart and Chest Hospital (D. Ramsdale), Liverpool, the Department of Cardiology, Good Hope Hospital, Sutton Coldfield (K.P.), Bristol Heart Institute, Bristol (G.P., G.S.), University Hospital Southampton, Southampton (D. Rakhit), the Department of Cardiology, Papworth Hospital, Papworth (L.S.), Nottingham City Hospital, Nottingham (J.W.), and the University Hospital of Wales, Cardiff (Z.Y.) — all in the United Kingdom.

REFERENCES

The NEJM Image Challenge app brings a popular online feature to the smartphone. Optimized for viewing on the iPhone and iPod Touch, the Image Challenge app lets you test your diagnostic skills anytime, anywhere. The Image Challenge app randomly selects from 300 challenging clinical photos published in NEJM, with a new image added each week. View an image, choose your answer, get immediate feedback, and see how others answered. The Image Challenge app is available at the iTunes App Store.