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ABSTRACT: The mechanism of CF3 transfer from R3SiCF3 (R = Me, Et, iPr) to ketones and aldehydes, initiated by M+X– 
(<0.004 to 10 mol%) has been investigated by analysis of kinetics (variable-ratio stopped-flow NMR and IR), 13C/2H KIEs, 
LFER, addition of ligands (18-c-6, crypt-222), and density functional theory (DFT) calculations. The kinetics, reaction 
orders, and selectivity vary substantially with reagent (R3SiCF3) and initiator (M+X–). Traces of exogenous inhibitors pre-
sent in the R3SiCF3 reagents, which vary substantially in proportion and identity between batches and suppliers, also 
affect the kinetics. Some reactions are complete in milliseconds, others take hours, others stall before completion. Despite 
these differences, a general mechanism has been elucidated in which the product alkoxide and CF3– anion act as chain 
carriers in an anionic chain reaction. Silyl enol ether generation competes with 1,2-addition and involves protonation of 
CF3– by the a-C–H of the ketone, and the OH of the enol. The overarching mechanism for trifluoromethylation by 1, in 
which pentacoordinate siliconate intermediates are unable to directly transfer CF3– as a nucleophile or base, rationalizes 
why the turnover rate (per M+X– initiator) depends on the initial concentration (but not identity) of X–, the identity (but 
not concentration) of M+, the identity of the R3SiCF3 reagent, and the carbonyl / R3SiCF3 ratio. It also rationalizes which 
R3SiCF3 reagent effects the most rapid trifluoromethylation, for a specific M+X– initiator. 

 
INTRODUCTION 
The inclusion of fluorine-substituents in organic molecules is 
of pivotal importance to developments in, inter alia, pharma-
ceuticals,1 agrochemicals,2 electronics,3 materials chemistry,4 
polymers,5 synthesis,6 and catalysis.7 The transfer of a for-
mally-nucleophilic CF3-moiety to an electrophile is a preemi-
nent method for the synthesis of trifluoromethylated com-
pounds.8 Conditions range from base-mediated reactions 
with fluoroform (CF3H),9 through to finely-tuned borazine-
based CF3-carriers recently reported by Szymczak.10 In 1989, 
Ruppert reported that TMSCF3 (1a)11 undergoes addition to 
aldehydes and ketones in the presence of 10 mol% KF.12 A 
faster process, using a soluble initiator (Bu4NF.xH2O; 0.6 
mol%, 'TBAF') was reported soon after, by Prakash and 
Olah.13 Acidic work-up affords the corresponding trifluoro-
methylated alcohols in good yield, Scheme 1. 
Scheme 1. Trifluoromethylation of ketones / aldehydes.12,13a 

 
This mild and selective process14 swiftly became adopted for 
the preparation of trifluoromethyl-carbinols,15 including en-
antioselective additions involving enantiopure ammonium 

salts as initiators.16 Indeed, over the last decade there has 
been an explosion of interest17 in CF3 transfer from TMSCF3 
(1a) to carbon (e.g. carbonyls,14-17 imines,18 vinylhalides19 and 
aromatics20) and to heteroatoms such as sulfur-,21 selenium-
,22 phosphorus-,23 boron-,24 iodine-,25 and bismuth.26 The for-
mal loss of fluoride from CF3 to facilitate electrophilic 
TMSCF2-transfer,27 or carbenoid CF2-transfer,28 has also been 
developed, as have numerous metal-mediated and catalyzed 
processes involving CF3 derived from TMSCF3 (1a).29 
Despite anion-initiated trifluoromethylation by 1a having 
become a mainstream synthetic method,17-26 surprisingly lit-
tle detail has emerged on the mechanism of CF3 transfer, un-
der the conditions of application, Scheme 1.30 Various mech-
anistic dichotomies, including, inter alia, fluoride-initiation 
versus fluoride catalysis, and siliconate versus carbanion23a 
pathways, have been noted by Denmark,30a and by Reich;30b 
both of whom emphasize the lack of salient kinetic data. 
Herein we report the first detailed study of the mechanism 
of anion-initiated CF3 transfer from TMSCF3 (1a) to ketone 
and aldehyde electrophiles.12,17 The in situ NMR/IR investiga-
tions include analysis of reaction kinetics, selectivity, and 
side reactions, and the contrasting behaviour of homologues 
TES- (1b) and TIPS- (1c). Throughout the investigation, the 
kinetic studies have both informed, and been directed by, 
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density functional theory (DFT) analysis of proposed inter-
mediates. What emerges is a nuanced kinetic landscape in 
which trifluoromethyl transfer proceeds via a carbanion 
pathway (CF3–), with the rate dictated by the identity of the 
electrophile, the concentration of the initiating anion, the 
identity of the initiator counter-cation, the electrophile / 
R3SiCF3 (1) concentration ratio, and the identity of the rea-
gent (1a-c). 
Scheme 2. Mechanisms (I–IV) for anion-induced trifluoro-
methylation of ketones using Ruppert's reagent (1a)11 and 
homologues. L = 18-c-6, crypt-222. See text for full discussion. 

 
RESULTS AND DISCUSSION 

1. Prior Studies. In early studies, a termolecular anionic 
chain-reaction (mechanism I, Scheme 2), was suggested for 
trifluoromethylation by 1a.13a This was later expanded to a 
two-step process (mechanism II), where a pentacoordinate 
alkoxy-siliconate (B) delivers CF3 to the ketone, and in doing 
so liberates the O-silylated product.14 Mechanism II has been 
extensively adopted in the design and interpretation of 
asymmetric trifluoromethylation.16,29,31 
In 1999, Naumann,32 and Kolomeitsev and Röschenthaler33 
independently reported on the reaction of a range of soluble 
fluoride sources (e.g. [Me4N]+F–) with TMSCF3 (1a) at low 
temperature. Detailed 1H, 13C, 19F and 29Si NMR analysis 
identified the products as pentacoordinate complexes 
[Me3Si(F)(CF3)]–M+ (C) and [Me3Si(CF3)2]–M+ (D). Both com-
plexes decompose above –20 °C.32,34 The speciation (C / D) is 

dependent on the stoichiometry (M+F– / 1a), and the structure 
of D was confirmed by single crystal X-ray diffraction. Addi-
tion of cyclohexanone at –60 °C, followed by hydrolysis, af-
forded the corresponding trifluoromethylated alcohol, 
mechanism III.32,35  

In 2014, Prakash36 showed that the elusive37 trifluoromethyl 
anion(oid)38 can be detected in situ (13C, 19F NMR) at low tem-
peratures after addition of KOtBu / 18-crown-6 to 1a. With 
the much bulkier reagent TIPSCF3 (1c), the generation of ion-
paired [K(18-c-6)]+[CF3]– (E) proceeds quantitatively at −78 °C 
over a period of 30 mins. Subsequent addition of PhCOMe 
(11 equiv.) or PhCHO (4 equiv.) afforded CF3-addition prod-
ucts (22-68%) after quenching with H2O, mechanism IV.36 In 
2015, Grushin38 demonstrated that use of crypt-222 (L, 
Scheme 2) facilitates generation of the free CF3– carbanion; a 
THF solution-phase "noncovalently-bound ionic species".38 
The structure of the highly air- and temperature-sensitive 
salt, [K(crypt-222)]+[CF3]– (E), was confirmed by single crys-
tal X-ray diffraction.38,39 
The pioneering studies summarized above have been highly 
enlightening regarding the structure and stability of penta-
coordinate (trifluoromethyl)siliconates (C, D),32,33 and their 
ability to release the trifluoromethane anion(oid) (E) under 
specific conditions.36,38 However, they do not yield direct de-
tail on the kinetics and mode of transfer of CF3 from TMSCF3 
(1a) to a carbonyl electrophile, using a catalytic fluoride-
based initiator (M+X–), at ambient temperature.12,13 

2. Preliminary Investigations. We began by study of the 
reaction of TMSCF3 (1a) with aldehydes and ketones in THF, 
chlorobenzene, and DMF. After addition of catalytic quanti-
ties (0.1 to 1 mol%) of TBAF, 19F NMR readily facilitated anal-
ysis of the proportions of residual reagent (1a) and the [1,2]-
addition products. The reaction of 4-fluoroacetophenone (2) 
in THF at ambient temperatures proved ideal, the additional 
19F nucleus allowing simultaneous analysis of reagent (1a; 
0.48 M), substrate (2; 0.40 M), and product (3OTMS), Scheme 3. 
Scheme 3. Trifluoromethylation of ketone 2 (Ar = 4-F-C6H4). 

 
Reactions were assembled manually in 5 mm NMR tubes in 
the glove box prior to analysis in situ by 19F NMR. Three side-
products were identified: fluoroform (CF3H), the silylenol 
ether (4OTMS) and a homologated addition product 5OTMS. Re-
actions conducted in d8-THF proceeded analogously, and 
generated CF3H, not CF3D.40 The identity of 5OTMS, which was 
confirmed by independent synthesis, is consistent with 
difluorocyclopropanation of silylenol ether 4OTMS to generate 
10, followed by a known41 anion-induced ring-opening elim-
ination to give fluoroenone 11, and subsequent 1,2-selective12 
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trifluoromethylation. Addition of independently synthe-
sized42 10 to the reaction (Scheme 3) generated 5OTMS. 
Reaction rates, and extent of fluoroform generation (Scheme 
3), were found to vary significantly between batches of TBAF 
(1 M, THF, ~5 wt% H2O). Replacing TBAF with anhydrous 
[Bu4N][Ph3SiF2] ('TBAT')43 gave more reproducible data. 
However, the fast turnover precluded detailed kinetic analy-
sis; this aspect was addressed using stopped-flow methods, 
vide infra. Nonetheless, 19F NMR analysis revealed that CF3H 
is liberated in two distinct phases. The first is an initial burst 
of extremely rapid CF3H generation, and arises from TBAT-
catalyzed reaction of TMSCF3 (1a) with traces of adventitious 
water.44 The second phase of CF3H generation proceeds in 
concert with reaction of the ketone (2) and directly correlates 
with the rate of generation of silylenol ether (4OTMS), as con-
firmed by 2H-labelling (d3-2 ® CF3D + d2-4OTMS). The selectiv-
ity (3OTMS versus 4OTMS) is discussed later. 

3. Stability, Inhibition, and Tests for Radicals. The sta-
bility of the reaction system after complete consumption of 
the limiting reagent (ketone 2 or TMSCF3 1a) was found to 
depend on which one was in excess. Reactions in which 2 
was in excess, underwent turn-over on addition of further 
TMSCF3 1a, even after a period of many hours. In contrast, 
for reactions where 1a was in excess, additional 2 had to be 
added within a few minutes to fully reinstate turnover (see 
SI); consistent with the known instability of pentacoordinate 
(trifluoromethyl)siliconates, e.g C and D, at ambient temper-
atures.32-34 Further tests established that the reactions were 
not sensitive to exogenous water per se, as they rapidly self-
dehydrated via generation of CF3H + hexamethyldisiloxane, 
prior to reaction of the ketone (2).45 The rates were unaffected 
by visible light, by exogenous product (3OTMS), and by CF3H. 
Deliberate sparging of the normal reaction mixture (1a / 2 / 
TBAT 0.15 mM, 0.038 mol%, THF, Scheme 3) with air caused 
complete inhibition of turnover, but only when a sufficient 
volume of CO2 (~400 ppm) had been added to convert the 
active anion(s) into trifluoroacetate (i.e. [Bu4N][CF3CO2], de-
tected by 19F NMR). Separate controls confirmed that the rate 
of trifluoromethylation is unaffected by CO2-scrubbed air, 
and that [Bu4N][CF3CO2] is not effective as an initiator. 
Scheme 4. Tests for radical intermediates. 

  
a(Ar = 4-F-C6H4); ketone (2, 6, 7, 12, 0.40 M), 1a-c (0.48 M), THF, 
21 °C. bTBAT (0.04 mol%, 0.15 mM), cTEMPO (0.12 mol%, 0.45 
mM; up to 80 mM with 1b,c). dTBAF (4 mM, 1 mol%). 

However, the reactions were inhibited by addition of the per-
sistent radical, TEMPO. Indeed, just 0.45 mM TEMPO in-
duced complete inhibition of the reaction of 1a with 2, initi-
ated by 0.15 mM TBAT (Scheme 4, A). In contrast, TEMPO 
had negligible impact on reactions employing TES (1b) and 
TIPS (1c), even when present at much higher concentrations 
(80 mM TEMPO); the origins of this profound difference in 
behavior is discussed later. Nonetheless, further tests for dis-
crete radical intermediates46,47 were conclusively negative: 4-
F-benzophenone (12) exclusively underwent 1,2-addition 
(Scheme 4, B),48,49 cyclopropyl ketones (6/7) reacted without 
any trace of competing ring-opening50 (Scheme 4, C), and 
competition between ketone 2 and 4-biphenyl methylketone 
for limiting TMSCF3 (1a) favored 2 (krel = 1.93).51 

4. General Effects of Initiator on Rate and Selectivity. A 
range of initiators (M+X–) were tested and found to strongly 
impact the reaction outcome. In the majority of cases, the re-
actions initiated 'instantly' and the identity of X– had no in-
fluence on the rate52 or selectivity (3OTMS / 4OTMS). Specific ef-
fects were found to be dictated by the identity of the counter-
cation (M+), Table 1.  
Table 1. Examples of effect of initiator M+ and reagent (1a-c) 
on selectivity (3OSi /4OSi) and rate of trifluoromethylation of 2. 

 
M+  [M+X–]0 

mM 
TMS 1a 

3/4a 
(time)b 

TES 1b 
3/4a 

(time)b 

TIPS 1c 
3/4a 

(time)b 

[Bu4N]+ 1.5 
12 / 1 

(<90 s) 
1.5 / 1 
(<90 s) 

1 / 1 
(30 min.) 

     

[K]+ 0.15 
36 / 1 

(<90 s) 
3.0 / 1c 

(30 min.) 
NR 

     

[K(L)]+ d 1.5 
6.6 / 1 

(6 min.) 
2.4 / 1 
(<90 s) 

1 / 1 
(3.6 min.) 

aSelectivity 3OSi/(4OSi+CF3H) measured in situ by 19F NMR 
after manual assembly in an NMR tube; selectivity is in-
dependent of X–. btimes indicated are for >97% conver-
sion of 2, at 300 K. c 85% conversion.d [K(L)]+ = K(crypt-
222)]+, generated in situ from KOPh + crypt-222. 

 
Reactions where M+ = K+, Cs+ proceeded rapidly to comple-
tion, with higher selectivity for 3OTMS / 4OTMS compared to 
Bu4N+. Reactions stalled when the cation was Li+ or Na+.53 For 
the K+-mediated system, the rate was strongly attenuated by 
addition of 18-crown-6, or crypt-222, with the latter causing 
turnover to become slower and less selective (3OTMS / 4OTMS) 
than reactions initiated by TBAT (counter-cation Bu4N+). The 
identity of M+ was also found to affect the degree of charge-
development (r ranging from 1.8 to 3.0) in the ketone (R = 
Me, Scheme 5) at the product-determining transition state for 
CF3 transfer. Benzaldehydes (R = H) behaved analogously. 
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Scheme 5. Effect of initiator M+ on reaction constant (r). 

 
ai) 4-Z-C6H4COR (0.2 M), 2/13 (0.2 M), 1a (0.04 M), PhF (0.4 M), MX 
(0.00015 M; 0.038 mol%). Z = Ph, OMe, CF3, Me, Br. Hammett rho 
values calculated from product ratios, see SI. 

5. Effect of Silyl Reagent on Rate and Selectivity. To fur-
ther probe the CF3 transfer process, we compared TMSCF3 
(1a) with TESCF3 (1b) and TIPSCF3 (1c), Table 1. The effects 
of changing the reagent were counter-intuitive and initially 
misleading regarding the mechanism of CF3 transfer, vide in-
fra. Reactions employing TESCF3 (1b) gave lower selectivity 
(3OTES / 4OTES » 1.5 / 1) and proceeded very rapidly, even at 
low TBAT concentrations (150 µM, 0.0375 mol%; below this, 
reactions failed to initiate). In contrast, reactions employing 
TIPSCF3 (1c) proceeded very slowly, requiring high initiator 
concentrations to proceed efficiently (> 1.5 mM, 0.375 mol%) 
and gave even lower selectivity (3OTIPS / 4OTIPS » 1 / 1). 
 

 
Figure 1. Competition between TMSCF3 (1a) / TESCF3 (1b); 
see text for full discussion. Reaction conditions: 2 (0.4 M), 1a 
(0.24 M), 1b (0.24 M), PhF (internal standard, 0.4 M), TBAT (75 
µM, 0.019 mol%); 19F NMR analysis, manual assembly. 
Further insight was afforded by reaction of a 50/50 mixture 
of TMSCF3 (1a) and TESCF3 (1b), initiated by TBAT (75 µM, 
0.019 mol%), Figure 1. The first 4 minutes of reaction is dom-
inated by turnover of TMSCF3 (1a) to generate 3OTMS/4OTMS 
and upon near-complete consumption of 1a, turnover accel-
erates substantially as the TESCF3 (1b) is engaged to generate 
3OTES/4OTES.The data indicate that the less-hindered reagent 
(1a) monopolizes the anion, but undergoes slower turnover. 
Under conditions where anion-induced reactions of TMS 
(1a), TES (1b) and TIPS (1c) with 2 could be conducted slowly 

enough to be accurately monitored in situ by 19F NMR, the 
ratios of enol / addition product (4OSi / 3OSi) were all constant 
throughout the reaction evolution, Figure 2. A further dis-
tinction originated from the impact of the addition of crypt-
222 to KOPh-initiated reactions. As noted above, for TMSCF3 
(1a) the incarceration of the K+ in the crypt-222 ligand sub-
stantially attenuates the rate and selectivity. In stark contrast, 
for TIPSCF3 (1c), turnover is substantially accelerated by addi-
tion of crypt-222 to inhibit K+ / anion pairing. 

 
Figure 2. Constant-ratio of [4OSi]t / [3OSi]t. Conditions: 2 (0.4 
M), 1a-c (0.48 M), PhF (internal standard, 0.4 M), MX (TBAT 
150 µM for 1a; KOPh 0.15 mM for 1b, TBAT 1.5 mM for 1c). 
Reactions with labelled ketone (aryl-d4-2; CD3-2; 13CO-2) 
were also instructive, Table 2. Reaction of TMSCF3 (1a) with 
2 initiated by TBAT (0.15 mM) proceeds with a very low 13C 
kinetic isotope effect (KIE), determined by competition with 
aryl-d4-2, after normalizing for the effect of aryl deuteration.  
Table 2. KIEs and 2H-exchange in the reaction of ketone 2a,b 

 
aKetone (2 / 2H3-2; 0.40 M), 1a-c (0.48 M), THF, 300 K. TBAT 
(0.04 mol%, 0.15 mM), bSelectivity 3OSi/(4OSi + CF3H/D) and ex-
change measured in situ by 19F NMR analysis. cKIE deter-
mined by competition with aryl-d4-2. d 2HKIE induced by 
aryl-deuteration, determined by competition with unla-
belled 2. 
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In contrast, a substantial primary 2H KIE, determined from 
[CF3D] versus [d3-3OSi], as in Figure 2, increases the addition 
/ enol selectivity (kH/kD = 6.4). Reactions of mixtures of 2 and 
d3-2 proceeded with no detectable scrambling of D/H be-
tween 2 / D3-2 during turnover, provided that [1a]0 > [2]0, and 
again proceeded with a high KIE (kH/kD = 6.1). With TESCF3 

(1b) a moderate KIE (kH/kD = 3.1) was observed, with a trace 
of D/H exchange between 2 and D3-2 on co-reaction, and thus 
into products dn-3/dn-4. With TIPSCF3 (1a) there was no sig-
nificant KIE and a statistical mixture of isotopologues of dn-
2/3 (n = 0–3) was evident immediately after initiation of the 
reaction.54 

6. Variable-Ratio Stopped-Flow NMR and IR.  Detailed 
exploration of the kinetics of the trifluoromethylation by 1a 
required techniques for rapid acquisition of kinetic data 
(some systems had formal turnover frequencies well in ex-
cess of 5,000 s-1, vide infra) in a time- and material-efficient 
manner. Stopped-flow techniques are ideal for rapid and re-
producible initiation and analysis of these reactions. How-
ever, the classic fixed-ratio dual input mode of operation (A 
+ B; Figure 3a) requires separate solutions to be prepared for 
every variation in conditions. For a three-component process 
such as R3SiCF3 (1) + ketone 2 + initiator (M+X–), a very large 
number of stock solutions are required to study reactions 
with different concentrations of reactants and initiator. 

 
Figure 3. Schematic representations of: (a) classic fixed-ratio 
dual input stopped-flow; (b) a variable-ratio triple-input de-
sign; (c) variable-ratio stopped-flow NMR with thermostatic 
pre-magnetization of reactants (A,B,C), for >5 ´ T1 at >90% 
(B0). 
To address this issue, we constructed a stopped-flow system, 
in which the delivered volumes of three solutions (A, B, C) are 
independently variable,55 using a computer-controlled triple 
stepper-motor system, Figure 3b. This set-up allowed sys-
tematic analysis of the kinetics across a wide range of initial 

conditions, using just four stock solutions: mixing {i + iii + iv} 
varies [2]0; mixing {ii + iii + iv} varies [1]0; and mixing {iii + iv 
+ THF} varies [M+X–]0, whilst keeping the other species con-
stant; see SI for full details. The new system was imple-
mented in two modes: IR and NMR.56 The former simply re-
quired adaptation of our recently developed thermostatted 
ATR-FTIR stopped-flow cell,57 replacing the dual mixing 
stage with a triple mixer and a gated reaction volume. The 
analogous set-up for variable ratio stopped-flow NMR56a re-
quired bespoke construction. The principles for continuous-
flow NMR recently reported by Foley et al.58 were employed 
for the basic design, such that the reaction vessel and associ-
ated components can be installed simply by insertion of the 
device into the sample transit of a standard unmodified 
NMR spectrometer. Nuclei pre-magnetization is facilitated 
in three independent reservoirs (A, B, C) located as close as 
possible to the magnetic field center, Figure 3c. The reser-
voirs connect at a tripodal-geometry mixer that discharges 
via a 0.5 mm i.d. glass capillary into a 3 mm external diame-
ter 300 µL glass NMR flow-cell. The tube terminates at the 
base of the cell, with the waste outlet at the top. A fourth in-
put to the mixer allows the system to be flushed with solvent 
between runs. Thermostatting is achieved by passage of a 
heat-transfer medium (aq. ethylene glycol), using an exter-
nally controlled recirculator, through an umbilical contain-
ing all stages of the stopped-flow circuit, except for the glass 
flow-cell which is located within the spectrometer-thermo-
statted probe head; precalibration ensures temp1 = temp2. 
During a typical stopped-flow 'shot', a total of 600 µL is de-
livered through the flow-cell at a rate of 1–2 mL s-1, fully dis-
placing the previous contents and replacing it with 300 µL of 
freshly-assembled reaction mixture; charging requires 70-
130 msec (measured independently by UV-Vis), with high 
quality NMR spectra (N2-cryoprobe) achievable immediately 
thereafter. Control of the timing of the NMR pulse sequence 
is achieved by a trigger-signal, sent to the spectrometer con-
sole from the computer-controlled triple stepper-motor sys-
tem, immediately after the 300 µL flow-cell has been freshly 
charged. 

7. Kinetics of Trifluoromethylation by TMSCF3 (1a) and 
TIPSCF3 (1c) The kinetics of reactions initiated by M+X–, 
where M+ = Bu4N+, K+, and Cs+, were studied in detail by SF-
IR and SF-NMR across a wide range of concentrations of 1a, 
2 and [M+X–]0. For FTIR, the decay in the IR C-F stretching 
mode (1056 cm-1) of the TMSCF3 (1a) and the growth in C–F 
stretching mode (1165 cm-1) of 3OTMS were collected at scan-
rates of 14 or 28 s-1 with a resolution of 2 or 8 cm-1, respec-
tively. 19F NMR analysis allowed detailed analysis of the re-
action components, but was naturally more-limited in terms 
of temporal resolution. For faster reactions, a technique in-
volving the interleaving of a series of spectra from a sequence 
of stopped-flow NMR 'shots' was employed, affording a 
higher virtual temporal resolution. 
A key component in analysis of the kinetics was the depend-
ence of the temporal-concentration evolution of the product 
(3OTMS) on the concentration ratio of ketone 2 and TMSCF3 
(1a). Systematic studies of initial rates using TBAT led to an 
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empirical rate equation for turnover frequency (TOF) in 
which the initiator (Bu4N+X–) and ketone 2 are first order, and 
the TMSCF3 (1a) reagent approximately inverse first order 
(equation 1).59 Control experiments in which the reactions 
were run in the presence of exogenous product (3OTMS) con-
firmed that it does not act as an inhibitor. 

 
The inhibitory effect of the TMSCF3 reagent 1a (Ki1; equation 
1) results in very distinctive temporal concentration profiles 
for the reaction, simulations of which are presented later. For 
example, when the initial ratio of reactants is equal ([2]0 = 
[1a]0) their ratio remains constant ([2]t/[1a]t = 1) throughout 
the reaction. What arises is an apparent pseudo zero-order 
consumption of the reactants (TOF = kobs) for the majority of 
the reaction evolution. Conversely, when there is an excess 
of ketone 2 over 1a the rate of turnover rises as a function of 
conversion, becoming very rapid in the final phases of reac-
tion where [2]t/[1a]t >> 1. 
Systematic studies using M+X– (M+ = Li+, Na+, K+, Cs+) which 
induce very rapid turnover, proved more challenging. Reac-
tions where M+ = Li+, Na+, stalled before completion and were 
not reproducible. KOPh and CsOPh initiated at very low 
concentrations, without an evident induction period, pro-
ceeded to completion, and provided reproducible kinetics. 
Study of the initial rates suggested higher-order dependen-
cies on TMSCF3 ([1a]0, again inverse) and on [M+X–]0, with the 
ketone 2 remaining first-order. However, the reactions evolve 
with near-identical behaviour to those initiated by TBAT 
(equation 1).59 The dichotomy is indicative of the presence of 
exogenous inhibitor(s) in low concentration in the TMSCF3 
(1a) reagent, that are not consumed during reaction. Increas-
ing the initial concentration of the reagent ([1a]0), or decreas-
ing the initiator concentration ([M+X–]0), both cause a greater 
mol-fraction of exogeneous inhibition (xEI), equation 1.59,60 
Addition of [K]+[(C6F5)4B]–, to provide an additional soluble 
K+ source with a non-nucleophilic counter-anion, had no im-
pact on the kinetics of reactions initiated by KOPh, indicative 
that the rate is dependent on the initiating anion concentration 
and the counter-cation identity (but not its concentration).61 
Addition of potassium-binding ligands attenuated the rates 
substantially, and with crypt-222, the system underwent 
turnover slower than with Bu4N+ (a 3 orders of magnitude 
rate-reduction compared to free K+). 
The kinetics of trifluoromethylation of 4-fluorobenzaldehyde 
(13) by 1a were also explored using TBAT as initiator. The 
aldehyde undergoes significantly faster trifluoromethylation 
than ketone 2 (kald / kket  » 80, at 21 °C) requiring lower initial 
TBAT concentrations, and causing the traces of exogeneous 
inhibitor(s) in 1a to complicate the kinetics.59 Competing ke-
tone 2 with aldehyde 13 (9 / 1 ratio) using stopped-flow 19F 
NMR to analyze the transient substrate ratio (2/13) during 
the first 5-30 seconds of reaction indicated that the relative 

rate of trifluoromethylation is independent of [TBAT]0 (96–
384 µM) and 1a (0.08 to 0.48 M). Overall, the data is indicative 
that aldehyde 13 follows the same general kinetics as ketone 
2, i.e. equation 1.59,60 The rate of trifluoromethylation of ke-
tone 2 using TIPSCF3 (1c) was much slower than with 1a. 
Again, the kinetics were impacted by exogenous inhibitor(s) 
in the reagent ([1c]0), the effect of which (xEI) varied from 
batch to batch of 1c, see SI. Using TBAT as initiator, the reac-
tions evolve with a first order dependency on the initiator, 
and on the reagent ([1c]t), with inhibition by the ketone (Ki2; 
equation 2). In other words, the kinetic dependencies are the 
opposite to that found for 1a (compare equations 1 and 2) 
with reactions accelerating when there is an excess of 1c over 
2. Reactions of 2 with 1c initiated by KOPh were slower than 
those initiated by TBAT, and were accelerated on addition of 
crypt-222; the opposite phenomena to those observed with 
1a. 

8. Stopped-Flow 19F NMR Analysis of Siliconate and 
Alkoxide Intermediates, Exchange Dynamics with 
TMSCF3, and Initiator Regeneration. By use of 4-F-benzo-
phenone (12; δF −107.0 ppm), which reacts slower than 2, and 
reducing the reaction temperature to 275 K, the temporal 
speciation of the initiator-derived species (10 mol% TBAT) 
was monitored using stopped-flow 19F NMR, Figure 4. The 
known but unstable hypervalent bis-CF3-siliconate (D; δF 
−63.3 ppm)32-34 is generated instantly. Integration against 
fluorobenzene (internal standard, δF −113.2 ppm) shows D to 
be present at 10 mol%, and thus the predominant anion-spe-
ciation. A key feature in the time-series is the dynamic line-
broadening in D that is constant throughout the reaction, but 
develops in the substoichiometric TMSCF3 (1a) reagent (δF 
−66.6 ppm) as its concentration is depleted by the overall re-
action with ketone 12. In parallel with this is a marked accel-
eration in product generation (14OTMS, δF −72.4 and −113.7 
ppm), consistent with equation 1. After 6 seconds, the 
TMSCF3 (1a) is fully consumed and TBAT (δF −97.4 ppm) is 
regenerated from Ph3SiF / Me3SiF. The dynamic-line broad-
ening in D / 1a can be satisfactorily simulated using a 3-spin 
exchange process in which D is in rapid dissociative equilib-
rium (kexch ~180 s-1; DG‡ ~13 kcal mol-1) with 1a and a low 
concentration of (unobserved) [Bu4N][CF3] (E).62 At 300 K, 
the line-broadening is very extensive and D short-lived. 
Analogous experiments using TIPSCF3 (1c) gave a very dif-
ferent outcome. Reactions conducted with 1c at 275 K were 
slow enough to be followed using ketone 2 (δF −106.7 ppm), 
Figure 5. The 19F NMR signal for 1c remains sharp until 2 has 
been fully consumed. In contrast to reactions with 1a (Figure 
4) the alkoxide (3O–; δF −118.4) is present in significant con-
centration and exhibits dynamic-line broadening (see inset to 
Figure 5). The signal for ketone 2, also exhibits dynamic-line 
broadening, immediately after addition of the TBAT. On 
complete consumption of 2 (~120 s) the signals for remaining 
1c and CF3H are broadened, presumably due to indirect ex-
change involving CF3–. After a further 300 s, 1c is fully con-
sumed and the CF3H doublet becomes sharp again. 
 

 krxn[M+X–]0[1]t (1 – xEI)
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Figure 4. Selected spectra from stopped-flow 19F NMR analysis of the reaction of 4-F-benzophenone 12 (0.20 M) with 1a (0.19 M) 
in THF at 275 K after initiation by 10 mol% TBAT. Inset: overlay of selected simulations62 (black) of dynamic line-shape for D / 
1a with experimental spectra (red); E (δF −18 ppm) is undetected. (*) C6H5F internal standard. 

 
Figure 5. Selected spectra from in situ 19F NMR analysis (manual assembly) of the reaction of 4-F-acetophenone 2 (0.20 M) with 
1c (0.2 M) in THF at 275 K after initiation by 10 mol% TBAT; (t = 0, no TBAT). Inset: line-broadening in ketone 2 and alkoxide 
3O–. (*) C6H5F internal standard. (x) = 3O–. Free 4O– not located, possibly due to degenerate exchange with 2. Ph3SiF is not observed. 

9. General Mechanism for Anion-initiated CF3 Transfer 
from R3SiCF3 to Ketones and Aldehydes. The data out-
lined in Sections 2 to 8 above (see SI for full details) indicate 
that the M+X– initiated trifluoromethylation of ketone 2 by 
TMSCF3 (1a) involves an electrophile-nucleophile reaction, 
in which the CF3 transfer is accompanied by M+. Enolsilane 
4OTMS is also generated (≤ 2% when M+ = K+ and 7% when M+ 
Bu4N+) with co-product CF3H (kH/kD = 6.1). Using TIPSCF3 
(1c), approximately 50% of the product is 4OTIPS and kH/kD = 
1.0. Contrasting kinetic behaviour is observed for 1a (equa-
tion 1) versus 1c (equation 2), with the roles of reactant for 
turnover, and inhibitor reversed between the two systems. 
These disparate sets of observations can easily be misinter-
preted as turnover for 1a versus 1c arising from different 
pathways, e.g. siliconate versus carbanion. However, analy-
sis of the kinetics, KIEs, and DFT calculations of a wide range 
of potential intermediates (see SI), eventually leads to the 
conclusion that the two reagents elicit contrasting kinetics, 

selectivity (3OSi/4OSi) and KIEs, by biasing one of two extremes 
in a single overarching mechanism. Calculations employed 
the M06L/6-31+G* level of theory, which was selected from a 
range of other functionals and larger basis sets that were con-
sidered,63 see SI, as it provided the best quantitative agree-
ment with experiment. All calculations were performed in 
Gaussian09,64 with THF solvation incorporated via a PCM 
single point at the same level of theory, and with T = 298 K 
and pressure at 24.45 atm to achieve a 1 M standard state.65 
Kinetic isotope effects were computed using the Kinisot pro-
gram.66 Some of the TES and TIPS bearing structures re-
quired the 'loose' settings during the geometry optimization, 
presumably because of the flat potential energy surface asso-
ciated with the long Si-CF3 bonds. 
The calculations permitted several possible structure types 
(such as hexacoordinate silicon dianions) to be excluded 
from consideration, and also revealed pronounced differ-
ences between intermediates based on TMS, TES, and TIPS, 
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where the increasing steric bulk substantially destabilizes the 
pentacoordinate anions, Figure 6. Extensive calculations 
were conducted to test for direct nucleophilic reactivity of 
the pentacoordinate anions B and D. All calculations re-
vealed that direct transfer of CF3 from the silicon centre to an 
electrophile requires concomitant inversion of the CF3, with 
a prohibitively large barrier (>100 kcal mol-1; in line with the 
barrier for inversion of the free CF3 anion).67 The pentacoor-
dinate siliconate anions thus act as reservoirs, not active nu-
cleophiles, liberating free (non-silicon coordinated) CF3– via 
dissociation. The transition state for addition of the CF3– an-
ion(oid) to the ketone formally involves movement between 
a non-classical hydrogen bonded complex and the addition 
product, a process that occurs with low calculated barrier 
(7.5 kcal mol-1) and well-represents the process that occurs 
once the two species are in contact. The calculations support 
the known preference for deprotonation (kCH) in the gas 
phase,68 and for addition (kCO) once solvation is introduced, 

as observed experimentally for TMSCF3 (1a). The loose addi-
tion transition state leads to a negligible 13C KIE (carbonyl) 
for addition, while a large primary 2H KIE is computed for 
C–H deprotonation. Relative rates computed from activation 
free energies suggest r = 2.0 for addition to acetophenones, 
and a lower barrier for addition to 4-F-benzaldehyde (13) 
versus 2 (DDG‡ 2.6 kcal/mol; krel = 81). All of these computed 
values are in excellent agreement with experiment. 
A general mechanism for the trifluoromethylation of ketones 
and aldehydes by R3SiCF3 reagents (1) in the presence of a 
catalytic quantity of initiator (M+X–) can thus be assembled, 
Figure 7. The one overarching mechanism, discussed below 
in the context of two extremes (Vi and Vii), rationalizes why 
the turnover rate (per M+X– initiator) for a given electrophile 
depends on the initial concentration (but not identity) of X–, 
the identity (but not concentration) of M+, the identity of the 
reagent (1a-c), and the electrophile / reagent ratio (2 / 1).  

 
Figure 6. Selected structures and energies (M06L/6-31+G*; PCM (THF); standard state, 1 M; 298 K) of naked anions in the reaction 
of ketone 2 with R3SiCF3 1a-c. Energies have been normalized to [CF3- + 1 + 2] = 0.00 kcal mol-1. See text, Figure 9, and the SI for 
discussion of the binding modes and effects of cations. The structures and energies of other potential intermediates examined, 
including hexacoordinate dianions and fluoride adducts, are provided in the SI. 

 
Figure 7. Mechanisms Vi and Vii: two extremes of general model V for the trifluoromethylation of ketones by R3SiCF3 reagents 
1a-1c, in the presence of a catalytic quantity of initiator M+X–, with acetophenone as a generic reactant. Turnover frequency 
(TOF) equations are simplifications of a global approximation, where k1 = kCO + kCH + kOH[2enol]/[2], and the mol-fraction of active 
anion quenched by unidentified exogenous inhibitor(s) in 1, is xEI. Initiation (Kinit) is not included in the rate equation. When 
M+X– is 'TBAT', initiation is reversible using 1a. For non-enolizable ketones and aldehydes, kCH, kOH, and K4 = 0. 
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10. Mechanism Vi. In this regime, which describes reac-
tions involving TMSCF3 (1a), the dominant anion speciation 
is the bis(trifluoromethyl) siliconate (D),32-34 generated in 
rapid equilibrium (K3) with CF3– (E)36,38 and 1a, as observed 
by NMR, Figure 4. The product-determining step (k1) in-
volves reaction of CF3– (E) with the ketone (2), (kCO + kCH), and 
the reagent (1a) thus acts as a reversible inhibitor. The 
stronger the association of M+ with CF3– (see Section 13) and 
with the carbonyl oxygen, the faster the turnover rate: Bu4N+ 
< [K(crypt-222)]+ < [K(18-c-6)]+ < K+. The initial concentration 
ratios of the reactant versus the reagent dictate the temporal 
evolution of the reaction. When [2]0/[1a]0 = 1, pseudo zero or-
der kinetics are obtained, whereas when [2]0/[1a]0 ≥1 the rate 
rises throughout the reaction, becoming very fast (asymp-
toting to k-3[D]) in the final stages. The kinetics of trifluoro-
methylation of ketone 2 by TMSCF3 (1a), can be satisfactorily 
simulated, Figure 8, using a truncated form of mechanism Vi 
that retains relationships required for TOF modulation as the 
temporal concentration ratio [2]t/[1a]t evolves. 

 

Figure 8. Simulation of experimental data (open circles, SF-
IR; [3OTMS + 4OTMS]t) based on simplified mechanism Vi, for 
reaction of ketone 2 with TMSCF3 (1a), initiated by 3.6 mM 
TBAT (Bu4N+X–). For [2]0/[1a]0 >1, [2]0 = 0.40 M and [1a]0 = 144, 
192, 248, 288, 336, 384 mM (i to vi). For [2]0/[1a]0 <1, [1a]0 = 0.48 
M and [2]0 = 400, 320, 240, 200, 160, 120, 80 mM (vii to xiii). 
Induction and turnover by 1a are set to arbitrary high values. 
Fitted parameters (k1, k3, k-3) as indicated; xEI = 0.59 

11. Mechanism Vii. In this regime, which describes reac-
tions involving TIPSCF3 (1c), the dominant anion speciation 

is a combination of the product alkoxide (30-), the enolate an-
ion (40-), and MX. Ketone (2) can reversibly H-bond (F) with 
oxy-anions 3/40-, as observed by NMR, Figure 5, leading to 
inhibition (K4).69 When [1c]0/[2]0 = 1 pseudo zero order kinetics 
are observed; reactions in which [1c]0/[2]0 >1 exhibit acceler-
ating rate in the last stages of reaction. The more strongly 
bound M+ to [3/40-], the slower the reaction with 1c, leading 
to rates increasing in the series: K+ < [K(18-c-6)]+ < Bu4N+ < 
[K(crypt-222)]+; i.e. the opposite order to Vi. When the non-
enolizable ketone 4-F-benzophenone 12 is employed, the ki-
netics show clean pseudo first-order decay in 1c, see SI, with 
no inhibition by 12 (i.e. Mechanism Vii, where K4 = 0; and 
equation 2, where Ki2 = 0). 

12. Competing Enolization. Also shown in Figure 7 is the 
generation of the enol ether (4OSi) and CF3H from ketone 2, 
for which the selectivity (4OSi / 3OSi) is dependent on M+ and 
the reagent (1a-c), Table 1. The major pathway for generation 
of 4OTMS in mechanism Vi is via C–H deprotonation (kCH) with 
an attendant large primary 2H-KIE.70,71 In contrast, for mech-
anism Vii, the significant concentration of [3/40-] allows keto-
enol equilibrium (pKenol ~8)72 in 2 to be approached, with at-
tendant intermolecular scrambling of 2H between ketone me-
thyl groups. Deprotonation (kOH) of the enol (2enol) is pre-
dicted (DFT) to be of very low barrier, and thus proceed with 
a negligible 2H-KIE.70 Despite their different origins (kCH ver-
sus kOH) mechanisms Vi, and Vii both lead to 4OSi / 3OSi ratios 
that are independent of the concentration of reactants (1, 2) 
and constant throughout reaction, Figure 2. 

13. Cation-CF3 Interactions. The interactions between the 
CF3– anion (free and Si-bound) and the counter-cations K+ 
and Me4N+ (as a model for Bu4N+) were explored computa-
tionally, with multidentate CF3 interactions found to be fa-
vored, e.g. Figure 9; see SI for details. 

 
Figure 9. Cation binding to free CF3 anion: (i) various modes 
of binding of K+ and Me4N+ cations; (ii) concept (schematic) 
for enantioselective addition beneath the quinuclidinium 
core of a cinchonidinium initiator. Inset: structure of TS for 
addition of [CF3–][Me4N+] to 2, see SI, with H-bonding inter-
actions to developing alkoxide anion. 
The indirect transfer of CF3 from reagent 1a to the ketone / 
aldehyde, i.e. via a silicon-free carbanion E, has implications 
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for the mode by which enantioselective catalysis can be 
achieved using chiral ammonium initiators, e.g. cinchoni-
dinium salts. The CF3-anion binding modes found computa-
tionally for Me4N+ (Figure 9i) show how an ammonium cat-
ion might simultaneously interact with a CF3– anion and con-
trol a developing alkoxide anion, Figure 9ii. Mechanism Vi 
contrasts most,16de,31 but not all,16f prior interpretations, 
where mechanisms II/III (Scheme 2) involving CF3-
siliconates bearing the initiating (C) or propagating (B) an-
ion, are proposed to play key roles in the enantioselective tri-
fluoromethylation step. 

14. Broader Mechanistic Aspects. The mechanistic fea-
tures elucidated in the current study extend beyond carbonyl 
trifluoromethylation. A number of corollaries follow for ge-
neric anion-initiated trifluoromethylation of an electrophile 
(E) by 1a, or deprotonation (R–H),73 via pathways analogous 
to mechanism Vi, and where [E, R–H]0 >>[M+X–]0. Thus, the 
initiator (M+X–) affects the rate of reaction in a number of 
ways. [X–]0 sets the initial concentration of the siliconate ([D]0 
= (1-xEI)[X–]0)60 which, in the absence of endogenous inhibi-
tors, is essentially constant throughout reaction. The insur-
mountable barrier for CF3 inversion67 means that, independ-
ent of the identity of the electrophile, E, or proton donor, R–
H, the siliconate is unable to effect direct anionic trifluoro-
methyl transfer, Figure 10i. In all cases, the reaction must 
proceed via a dissociative pathway, Figure 10ii, in which M+ 
plays a key role: the stronger the association of M+ with CF3 
the more favourable k-3. In contrast, efficient regeneration of 
the siliconate (k2, Figure 7) is favored by weaker interactions 
between M+ and the anionic co-product from trifluoromethyl 
transfer (CF3–E–; R–; or products thereof). When the anion is 
unable to react with 1a, stoichiometric initiation by [M+X–] is 
required.14-26 

15. Exogenous Inhibition. Trifluoromethylations initiated 
by low concentrations of (M+X–) are highly sensitive to traces 
of exogenous inhibitor(s). Species that generate of an anion 
(LG–) of insufficient reactivity towards 1a to propagate, will 
terminate the anionic chain reaction, Figure 10iii. In a series 
of control experiments, additives of the form Z-LG, (Z = H, 
R3Si, LG = Cl, Br) were found to function as powerful inhibi-
tors for the anion-initiated reaction of 2 with 1a. For example, 
the trifluoromethylation of 2 (0.4 M) initiated by 150 µM 
TBAT ceases immediately on addition of 150 µM TMSCl, see 
SI. Slower-onset irreversible inhibition is effected by the 
more hindered TIPSCl, which is also inhibits the reaction of 
TIPSCF3 (1c). Competing consumption of 1a is effected by 
other species in low-concentrations, including CCl4 (Cl-
transfer),74 Cl3CH (deprotonation / Cl–transfer),73b and TMS-
OH (deprotonation), but without significant chain termina-
tion. There was no detectable inhibition by DCE, CH2Cl2,73b 
TMS-O-TMS, Ph3SiF, Me3SiCF2H, or MeCN.73c 
In our experience, a diverse range of inhibitors, and compet-
itors (e.g. CCl4 and CHCl3) are present, in low concentrations 
and variable proportions, in commercial samples of TMSCF3 
(1a). This leads to substantial differences in reaction out-
come, depending on the supplier. For example, comparison 
of the reaction of 2 (0.40 M) with five samples of freshly-dis-
tilled 1a (0.48 M) revealed that the concentration of initiator 

(TBAT, KOPh) required to effect >99% conversion of 2 
ranged from 30 µM to 2.0 mM (0.0075 to 0.5 mol%); see SI. 

 
Figure 10. Generic reactivity of siliconate D towards electro-
philes (E), carbon acids (R–H), and inhibitors (Z–LG). (i) di-
rect CF3 transfer from D is strongly disfavoured. Inset: TS for 
CF3-transfer to acetone, see SI; (ii) dissociative CF3 transfer, 
without CF3 inversion; (iii) termination of the anionic chain 
reaction by traces of exogenous inhibitor(s), or substrates 
that generate an unreactive anion, LG–. 
An major difference found between reactions involving rea-
gent 1a versus 1b,c is the impact of the persistent radical, 
TEMPO, which powerfully inhibits reactions involving 1a, 
Scheme 4A. The difference in behavior towards TEMPO can-
not arise from oxidation of the CF3 anion (E), as this is a com-
mon intermediate to all three reagents (1a-c), and the parti-
tioning of E between reaction with the ketone (2) versus 
TEMPO will be constant across the series, i.e. independent of 
the provenance of the carbanion E. Since the major difference 
between reagents 1a and 1c under the conditions of the reac-
tion, is the dominant anion speciation (D; mechanism Vi, 1a, 
versus alkoxides 3O– / 4O–; mechanism Vii, 1c), this suggests 
that reaction of siliconate D with TEMPO is responsible for 
the inhibition. We were unable to identify any products in 
situ, or by quenching, arising from TEMPO under the stand-
ard reaction conditions, see SI. Whilst siliconates of type D 
are also generated from 1b and 1c, they are a) only present 
as low concentration or transient species, thus reducing their 
net rate of reaction with TEMPO, and b) may be more re-
sistant to reaction with TEMPO due to their greater steric 
bulk. 
CONCLUSIONS 
The trifluoromethylation of ketones and aldehydes by 
TMSCF3 (1a), initiated by catalytic fluoride ion, has been em-
ployed in synthesis for three decades.12 Previous mechanistic 
work has focussed on stoichiometric reactions of R3SiCF3 
(1a,c) with anions at low temperatures, generating unstable 
trifluoromethyl siliconates (C,D)32-34 and carbanion(oids) 
(E),36-38 depending on conditions. Which of these two path-
ways is followed in catalytic reactions at ambient tempera-
ture has been a long-standing mechanistic dichotomy.30 A 
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variable-ratio stopped-flow NMR/IR approach (Figure 3) has 
been developed to facilitate time- and material-efficient anal-
ysis of a wide range of initiator (M+X–) and reactant concen-
trations. Change of reagent from TMSCF3 (1a) to TIPSCF3 (1c) 
has a profound impact on the reaction. For example, the con-
version of 4-F-acetophenone (2, 0.4 M) to 3OTMS by equimolar 
1a in THF at ambient temperature takes < 125 msec to com-
plete using 0.1 mol% KOPh initiator, and generates <2% of 
silylenol ether 4OTMS, whereas with TIPSCF3 (1c) and 3.75 
mol% KOPh, the reaction proceeds to just 60% conversion in 
16 hours, and generates 50% 4OTIPS. The rates of reaction are 
strongly affected by traces of inhibitors present in the rea-
gents (1), especially at the low concentrations of initiator 
(M+X–) employed for the fastest reacting systems, see equa-
tions 1 and 2.59,60 Nonetheless, whilst these render initial rate 
data misleading, study of the full reaction time-course, e.g. 
Figure 8, provides a coherent kinetics analysis. 
A unified mechanism (V) for the reaction of R3SiCF3 reagents 
(1a-c) with ketones and aldehydes under conditions of cata-
lytic anionic initiator (M+X–) is presented in Figure 7. The 
work confirms that the carbanion36-38 mechanism prevails 
under conditions of application (Scheme 1). Mechanism V al-
lows a number of initially confusing observations to be ra-
tionalized. The main difference between use of TMSCF3 (1a) 
versus TIPSCF3 (1c) reagents is an inversion in the major an-
ion speciation in the overall anionic chain reaction. This in-
version leads to opposing influences of electrophile and sili-
con reagent (mechanisms Vi and Vii), and to keto-enol equi-
libration (2 / 2enol) with 1c (Vii).  When TBAT is used as initi-
ator,75 TESCF3 (1b) effects the most rapid trifluoromethyla-
tion in the series 1a-c. The increased steric bulk in 1b reduces 
reagent inhibition (K3) relative to 1a, without the substantial 
kinetic penalty in k2 experienced by 1c. These factors shift the 
reaction with 1b closer to an 'ideal' catalytic cycle in which 
the intermediates are all connected by low TS barriers, with 
reduced off-cycle speciation. A consequence of adding 

TMSCF3 (1a) to TESCF3 (1b) is therefore to strongly inhibit 
turnover of 1b until all of 1a has been consumed, Figure 1. 
The overarching mechanism (V, Figure 7) for anion-initiated 
reactions of R3SiCF3 (1) with ketones and aldehydes should 
prove of utility in their application in synthesis. For example, 
in the context of the design and analysis of enantioselective 
trifluoromethylation processes,16,29,30a,31 mechanism V shows 
that control must be achieved by the CF3– / [M]+ ion pair, Fig-
ure 9ii, and not by a siliconate intermediate. Moreover, the 
key mechanistic features of the anion-initiated reactions of 1 
with carbonyl compounds (Figure 7) translate to reactions of 
1 with other electrophiles (E), 29-31 and proton donors (R–H to 
generate R–),73 Figure 10. Thus, all processes in which sili-
conate D or analogous species, formally acts as a nucleo-
philic or basic source of CF3, must proceed via a dissociative 
pathway (Figure 10ii). Siliconate D is inherently unstable, 
and decomposes at ambient temperature to generate, inter 
alia, complex perfluorocarbanions.34,38a The rate of anionic 
chain transfer, as dictated by the reactivity of the electrophile 
(E)29-31 or carbon acid (R-H)73 towards CF3–, as well as the 
presence of species able to attenuate decomposition (e.g. via 
CF2-capture, 4OSi ®10, Scheme 3), controls the formal lifetime 
of D, and in turn the minimum loading of initiator (M+X–) 
that will be required to achieve complete conversion of sub-
strate. Moreover, traces of exogenous inhibitor(s), (e.g. Z–
LG, Figure 10iii) ubiquitous in R3SiCF3 reagents (1), act to re-
duce the net active anion in the chain reaction, again increas-
ing the requisite loading of initiator (M+X–). Compounds em-
ployed in synthetic routes to reagents 1a-c, e.g. TMSCl and 
TIPSCl,11 function as powerful inhibitors. However, the iden-
tity and effect of the inhibitors in reagents 1a-c vary substan-
tially from batch to batch, and between commercial suppliers 
(see SI). Electrophiles or carbon acids (R–H) that react with 
CF3– to ultimately generate an anion of inherently low reac-
tivity towards 1, require stoichiometric initiator to proceed 
to completion.14-26 
 

______________________ 
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