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The exploitation of fresh remains by Dermestes maculatus De Geer (Coleoptera, 

Dermestidae) and their ability to cause a localised and prolonged increase in 

temperature above ambient 
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ABSTRACT 

This article discusses the ability of adults of the coleopteran beetle Dermestes 

maculatus (De Geer) to colonise fresh remains. It also considers whether colonisation 

results in localised thermogenesis in a similar manner to that induced by blowfly 

larvae. 

In the laboratory, adult D. maculatus instantly colonised fresh killed rats and mice. 

The adults entered the oral cavity within 1-2 hours and the eyes and ears were among 

the first parts of the body consumed. Egg laying occurred on the torso and head within 

an hour of death and eggs hatched within 3-4 days. The larvae remained on the body 

whilst the adults (>70%) rested in the surrounding wood chippings when not feeding 

or laying eggs. Larvae grew rapidly on the dead bodies and some were starting to 

pupate within 28 days.  

The dermestids consumed the corpses predominantly from the head downwards and 

weight loss correlated with the number of larvae produced.  In both rats and mice, 

colonisation of the abdominal region was associated with an increase in temperature. 

The maximum abdominal temperature and the length of time the temperature 

remained 1oC or more above ambient correlated with the number of larvae produced. 

This rise in temperature would probably be sufficient to increase the rate of 

development of dermestid larvae and that of any other invertebrate or microbe in the 

region. In the absence of dermestids, the internal temperature rarely rose 1oC above 

ambient.  

Although there are previously published accounts of dermestid beetles consuming 

fresh corpses, they are reputed to favour older desiccated remains. This paper 

confirms that D. maculatus rapidly consumes and reproduces on fresh remains. The 

fact that dermestid beetles are seldom found on fresh remains under field conditions is 

therefore probably a result of inter-specific competition among decomposing insects 
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rather than food preference. This information could be useful when determining the 

forensic significance of D. maculatus recovered from dead bodies. 

 

Keywords 

Dermestes; Coleoptera; decay; thermogenesis; forensic entomology. 

 

1. Introduction 

 

The family Dermestidae currently contains over 1000 species and includes many 

common household and stored product pests [1,2] but most of the dermestid beetles 

recovered from dead humans belong to just a few species of the genus Dermestes 

[3,4]. Members of the genus Dermestes are often referred to as skin beetles whilst 

their larvae are known as ‘wooly bears’ as a consequence of their numerous long 

setae.  In France, it was found that in 81 cases in which dermestid beetles were 

recovered from dead bodies, Dermestes frischii (Kugelmann) and Dermestes 

undulatus  (Brahm) accounted for the majority of infestations (42% and 35.8% 

respectively) [3]. Similarly, in Turkey, D. frischii and D. undulatus are the most 

common dermestid beetles on pig carcasses [5]. 

Dermestes maculatus (De Geer) is a cosmopolitan species that occurs in 

Europe, North and South America as well as Asia. In common with many dermestid 

beetle species, it requires a warm climate to complete its development. It takes an 

average of 27 days to reach adulthood at 30oC and 74 days at 20oC [6]. Consequently, 

it occurs usually within buildings and human dwellings in the UK and Northern 

Europe. It is well known as a pest of stored dry animal products and is common in 

both domestic and commercial settings. The frass and larval setae may cause allergic 

reactions [7]. D. maculatus are sometimes recovered from human remains and have 

occasionally been used as indicators of the post-mortem interval [8]. In countries with 

cool temperate climates D. maculatus are usually associated with bodies found 

indoors.  For example, in Germany Schroeder et al. [9] describe a case in which the 

body of an adult man was skeletonised by dermestids within 5 months of him dying in 

his apartment. They assumed that this was subsequent to his body mummifying 

although as will be discussed later, colonisation may actually have begun a lot earlier. 

By contrast, in countries with hot climates such as South Africa and Brazil D. 
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maculatus is also likely to colonise bodies exposed outside in the natural environment 

[10, 11].  

Whilst not as commonly recorded on bodies as blowflies, dermestid beetles 

were found in 7.5% of 1,093 cases investigated by French forensic entomology 

laboratories [3]. Drug residues are detectable in dermestids that have fed on remains 

containing them and therefore they may have potential in entomotoxicology [12]. 

Unfortunately, larval dermestids cannot provide the same level of accuracy for the 

determination of the minimum time since death as can the larvae of blowflies. This is 

because the larvae lack morphological indicators of instar number and, at least in 

some dermestids (e.g. Trogoderma glabrum Herbst), a reduction in food supply can 

result in ‘regressive moults’ in which the larvae become progressively smaller [13] 

whilst in others, such as Dermestes lardarius (L.), adverse conditions can result in 

extra instars and prolonged development times [14]. Consequently, it is impossible to 

determine a larva’s instar or age from its size.   

The aims of the present study were to assess whether D. maculatus would 

colonise fresh remains and whether their feeding induced localised thermogenesis.  

 

2. Methods 
 

2.1. Beetles and Rearing Conditions 

Culture conditions: The colonies of D. maculatus used in these experiments had 

been in laboratory culture for 48 months. The insects were maintained in clear plastic 

tanks (30cm length x 19cm width x 19cm height) in an indoor insectary maintained at 

23 + 1oC and a 12h:12h light: dark regime. There was a 2cm layer of wood chippings 

at the base of the tanks and polystyrene packaging provided a medium into which the 

mature larvae could burrow when they were ready to pupate.   

 

2.2. Colonisation of freshly dead rats and mice 

Adult male rats (399.16-521.97g) and female mice (19.56-24.06g) were 

humanely euthanized using carbon dioxide and then weighed. There was no 

significant difference in the average weights of rats (ANOVA, F2,11 = 0.756, P = 

0.493) and mice (ANOVA, F1,10 = 0.091, P = 0.769) used in the different treatment 

groups.  
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Each rat had a lead from a HOBO® U23-003 PRO V2 temperature data logger 

inserted via the rectum into the hindgut to record abdominal temperature. Owing to 

their smaller size, the abdominal temperatures of the mice were recorded using 

Elitech® RCA-4 Mini Temperature Data Loggers. The loggers recorded the 

temperature every 10 minutes. Separate data loggers recorded the ambient air 

temperature in the insectary.  

The experiments took place within clear plastic tanks kept in the same 

insectary as the culture colonies. The dead rats were placed in 30cm length x 19cm 

width x 19cm height tanks whilst the mice were placed in tanks measuring 20cm 

length x19cm height x 19cm width. Both types of tank had a 2cm layer of wood 

chippings at the base and a cloth placed over the top to prevent escapes and other 

insects accessing the dead animals.  

Adult, mixed sex, D.  maculatus were added to the tanks 15 minutes before the 

dead animals were introduced. Either 50 (3 replicates) or 100 (6 replicates) adult 

beetles were added to the rat tanks and 20 (4 replicates) to each of the mouse tanks. 

Controls consisted of dead rats (5 replicates) and mice (8 replicates) without 

dermestid beetles set up in an identical manner at the same time as the experimental 

tanks.  

The tanks were re-weighed after 6 hours and then every 24 hours for either 28 

days (rats) or 24 days (mice). At the time of weighing, observations were made on the 

state of decay and the activities of the insects. The mice were observed for a shorter 

duration because by day 24 the dermestids had completely skeletonised their corpses.  

At the end of the observations, the numbers of insects in each tank were counted.  

 

2.3. Statistical analysis 

Descriptive statistics, ANOVA, and Spearman’s Rank correlation analyses were 

performed using SPSS (version 24). Because the rats and mice were observed for 

different lengths of time, direct statistical comparisons between them are not 

appropriate. 

 

3. Results 

 

3.1.  Colonisation of freshly-dead rats and mice 
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Adult beetles investigated the dead rats and mice almost immediately and began 

feeding within 5 minutes. The oral cavity and ear canals were invariably explored and 

the eyes were often consumed within 24-48 hours. Feeding was usually communal 

with several insects feeding in close proximity to one another. The foot pads and ear 

lobes were also attacked within the first 48 hours although it was common for just one 

ear lobe or foot pad to be extensively consumed whilst the other(s) were not touched 

until several days later. Although adult beetles fed around the anus, penis, and 

testicles in the rats and the anus and vagina in the mice, they consumed the bodies 

primarily from the head downwards. The first holes chewed into the body were 

always in the throat and upper thorax.  The abdominal region was not exposed until 

after the body had deflated and the upper body was becoming skeletonised. The 

beetles chewed numerous slits into the skin rather than extending a single large entry 

point (Fig. 1a). In rats, the presence of dermestids significantly reduced the length of 

the bloat stage of decomposition (ANOVA F2,13 = 20.14, P <0.001). In the control 

rats, the duration of the bloat stage was prolonged (12.2 + 0.58 days, Tukey post hoc 

P<0.001) and their skin surface remained unbroken for the duration of the experiment. 

There was no difference (Tukey post hoc P>0.05) between the time until the onset of 

deflation between starting densities of 50 adult dermestids (9.3 + 0.33 days) and100 

adult dermestids (7.8 + 0.48 days). However, there was a negative correlation between 

the time until the onset of deflation and the number of larvae produced (Spearman’s 

correlation rho = -0.927, P<0.001, Fig. 2).  Unfortunately, the time taken until 

deflation was not recorded for the mice. In all rats and mice, the rise in internal body 

pressure associated with bloat caused the expulsion of fluids from the mouth and 

anus.  
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a     b 

 

Fig. 1. (a) Post-mortem wounds in a dead rat caused by the feeding activity of 

Dermestes maculatus. Note the thin flecks of moist frass rather than long thin strands 

normally associated with dermestid beetles. (b) D. maculatus feeding and laying eggs 

on a rat that was dead for 24 hours and entering the bloat stage of decomposition. 

 

 
 

Fig. 2. The influence of the total number of Dermestes maculatus larvae produced on 

the time taken until the onset of deflation (end of the bloat stage) of dead rats. Dotted 

line = linear trend line. 

 

Most of the adult beetles spent their time resting in the wood chippings and 

only accessed the rats and mice when feeding, mating, or laying eggs (Fig. 3). Similar 

proportions of beetles were observed on both the rats and mice over the first 10 days. 

On rats, at a starting density of 100 beetles, it was impossible to count the number of 

adult insects beyond day 15, whilst at a starting density of 50 beetles they could be 

counted up until day 17. Counting became impossible because of a combination of 

insects entering the body cavity and them being obscured by fur detaching from the 

body. However, in both cases there was a drop in the number of adults present on the 

corpses in the preceding days. On mice, it was not possible to count accurately the 

adult beetles on the bodies after day 16. 
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Fig. 3.The median percentage + interquartile  range of adult Dermestes maculatus 

observed on rat and mouse corpses during the initial decay period under laboratory 

conditions. Rats had a starting density of either 50 or 100 adult beetles.  The mice had 

a starting density of 20 adult beetles. Day 0 = 6 hours after introducing the corpses to 

the beetles. Recording ceased when the corpses were too decomposed to count the 

beetles accurately. 

 

3.2. Weight loss 

After 28 days, the control rats lost a median of 36.1% (IQ range = 10.55) of 

their initial weight and were starting to dry out. The control mice dried out much more 

rapidly and by day 24 they had lost a median of 59.9% (IQ range = 10.55) of their 

body weight. By the end of the observations, the rats exposed to 100 adult dermestids 

and the mice exposed to 20 dermestids were almost completely skeletonised and had 

lost medians of 61.6% (IQ range = 4.6) and 70% (IQ range = 1.9), respectively of 

their initial body weight. The rats exposed to 50 adult dermestids lost a median of 

55.5% (IQ range = 11) of their body weight over 28 days. On both the rats and the 

mice, the loss of weight correlated with the number of larvae produced: rats: 

Spearman’s correlation rho = 0.838, P = <0.01, n = 14; mice: Spearman’s correlation 

rho = 0.649, P = <0.05, n = 12, Fig. 4 a,b).  

 

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

M
ed

ia
n 

%
 a

du
lt 

de
rm

es
tid

s 
on

 c
or

ps
e

Day number
Rat, 50 Rat, 100 Mouse, 20



8 
 

 
 

 
a 

 
b 

Fig. 4. The influence of the number of Dermestes maculatus larvae produced on 

weight loss of dead rats (a) and mice (b). Dotted line = linear trend line 

 

3.3. Reproduction 

In some cases, oviposition occurred within 5 minutes of the adults gaining 

access to the dead animals. The female beetles inserted their ovipositor into the skin 

and laid their eggs immediately beneath the skin surface (Fig. 1b). Oviposition 

occurred on all rats and mice within 48 hours and the first larvae were seen on day 3. 

The larvae remained on the dead bodies and fed communally. At the end of the 

observation period, on both the rats and the mice, there was a mixture of larval sizes. 
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These included a small proportion of larvae that had recently hatched (rats: median = 

1.6%, IQ range = 1.84; mice: median 9.3%, IQ range = 10.79).   On all the rats, by 

day 28, most larvae were large (>12mm) (median = 74.0%, IQ range = 23.47) and 

some were starting to pupate (median = 3.3%, IQ range = 3.45). Insects that were 

ready to pupate moved away from the dead bodies and burrowed into the polystyrene 

packing provided. On the mice, on day 24, all the larvae were of medium size (8-

12mm) or smaller.  

The number of larvae produced per adult by the dermestids feeding on mice 

was lower (average + SE = 3.3 + 0.79) than that produced by 50 and 100 adults per rat 

(average + SE = 10.7 + 0.76 and 10.1 + 1.04 respectively). However, because the rats 

and mice were exposed to beetles for different lengths of time, direct statistical 

comparisons between them are not appropriate. On rats, there was no difference in the 

number of larvae produced per adult (T test t = 0.412, df = 7, P>0.695) by the two 

initial adult densities of dermestids. 

 

3.4. Abdominal temperature 

In the absence of dermestids, the abdominal temperature of dead rats (Fig. 5a) 

and mice (Fig. 6a) rarely rose 1oC above ambient and the maximum was reached 

within the first few days: rats = 3.8 + 1.17 days; mice = 2.0 + 0.87 days. Indeed, the 

abdominal temperature was usually slightly below ambient. By contrast, in the 

presence of dermestids, in both rats (Fig. 5 b,c) and mice, (Fig. 6b) there was a rise in 

the abdominal temperature towards the end of the observation period. This rise 

coincided with the consumption of the abdominal region by the insects. In both rats 

and mice the maximum abdominal temperature correlated with the number of larvae 

produced: rats: Spearman’s correlation rho = 0.942, P = <0.01, n = 14; mice: 

Spearman’s correlation rho = 0.828, P = <0.01, n = 12 (Fig. 7 a,b). The duration over 

which the abdominal temperature remained at least 1oC above ambient also correlated 

with the number of larvae produced: rats: Spearman’s correlation rho = 0.847, P = 

<0.01, n = 14; mice: Spearman’s correlation rho = 0.97, P = <0.01, n = 12 (Fig. 8 a, 

b). In rats and mice exposed to dermestids, maximum abdominal temperature was 

reached after 22.8 + 0.71 days and 22.6 + 0.70 days respectively.  If the zero 

dermestid  controls were excluded, there was no correlation between the number of 

larvae produced and time taken to reach maximum temperature in both rats and mice 

(Fig. 9 a,b).  
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c 

Fig. 5. The influence of the abundance of Dermestes maculatus larvae on abdominal 

temperature in decaying rats. (a) = zero dermestids; (b) = 50 adult dermestids at the 

start; (c) = 100 adult dermestids at the start.  The numbers indicate the total number of 

larvae present on the body at the end of the observation period. 
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b 

Fig. 6. The influence of the abundance of Dermestes maculatus larvae on abdominal 

temperature in decaying mice. (a) = zero dermestids; (b) = 20 adult dermestids at the 

start. The numbers indicate the total number of larvae present on the body at the end 

of the observation period. 
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b 

Fig. 7. The influence of number of Dermestes maculatus larvae produced on 

maximum abdominal temperature of decaying rats (a) and mice (b). Dotted line = 

linear trend line. 
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b 

Fig. 8. The influence of number of Dermestes maculatus larvae on the duration with 

which the abdominal temperature of decaying rats (a) and mice (b) remains >1oC 

above ambient. Dotted line = linear trend line. 
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b 

 

Fig. 9. The influence of fecundity of Dermestes maculatus on the time taken to reach 

maximum abdominal temperature of decaying rats (a) and mice (b). 

 
4. Discussion 

 

Dermestid beetles are most commonly encountered as pests of dried stored 
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underneath or near to the larval food source rather than upon it [6]. Presumably, some 

of the variability will depend upon the nature of the food and that of the surrounding 

substrate.  In contrast to the sequence of colonisation and consumption observed in 

these experiments, on humans it is the head, hands, and feet of human corpses that are 

first consumed by dermestids and the chest is one of the last regions to be 

skeletonised [3]. This is probably a consequence of the very big differences in sizes of 

rodents and humans and therefore of the amount of food and physical challenges that 

the different parts of the body present. However, the abdominal cavity of human 

corpses infested by dermestids is also reduced to a ‘light brown humus’ [3].  

The lack of reports of dermestid beetles from fresh remains may be largely a 

consequence of them being outcompeted at this stage of decomposition by blowflies 

and other more mobile, less temperature sensitive and more rapidly reproducing 

species. This would therefore be an example of the difference between fundamental 

and realised ecological niche, sensu Hutchinson [23]. Although dermestid beetles are 

often associated with dry remains, low humidity can compromise their growth and 

reproduction. For example, Katz et al. [24] found that D. maculatus larvae developed 

to pupation within an average of 36.2 days at 65% relative humidity (r.h.) but took an 

average of 55.8 days at 35% r.h.. The results of the present experiments indicates that 

the larvae can develop even faster when they are feeding on fresh remains and this 

may be further facilitated by thermogenesis associated with masses of larvae feeding 

in close proximity. In addition to feeding on dry animal products, Dermestes ater (De 

Geer) also preys on the larvae and pupae of Musca domestica [25] and whilst it is 

likely that D. maculatus would exhibit similar predatory activity (it is certainly 

cannibalistic) it is not known whether it would affect the colonisation of remains by 

other insect species. 

Although dermestid adults and larvae are adapted for feeding on dry materials, 

they did not avoid moist tissues and the eyes were among the first tissues consumed 

whilst the tail was often one of the last tissues to be skeletonised. The author’s 

unpublished observations indicate that the eyes of recently killed birds and other 

vertebrates are also quickly located and consumed by D. maculatus. Dermestes 

maculatus modify experimental post-mortem wounds in pigs’ trotters [17] and it is 

therefore likely that they will do the same with fresh wounds. A characteristic feature 

of adult dermestids is the production of long thin dry frass contained within a 

peritrophic membrane and this has been used as a forensic indicator [26]. However, in 
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the work described in this paper those feeding on moist flesh always produced faeces 

in the form of short moist flecks.  

The negative correlation between the duration of the bloat stage of 

decomposition in rats and the number of larvae produced indicates that they play an 

important role in the speed of decay from an early age.  Clearly, the number of larvae 

present on the rats at the end of the bloat stage will be lower than the final number 

because eggs are laid throughout the decay period (as indicated by the presence of 

recently hatched larvae at the end of the experiments). However, by day 28 on the 

rats, the majority of larvae were large and some were starting to pupate. This indicates 

that in this study those eggs laid during the first few days of the decay period were 

most likely to complete their development. This would probably be at least partly a 

consequence of the adults inserting eggs beneath the skin of the dead animal. As the 

dermestid population grew and the dead body was consumed, there would be an 

increasing probability of eggs being eaten before they hatched.  

The starting densities of the adult dermestids on rats did not affect the number 

of larvae produced per adult.  This, obviously, is a crude measure of fecundity 

because the proportion of male: female adults, their ages, and reproductive status were 

not controlled. However, because a large number of insects were used and the same 

random factors were applied to all treatments this probably did not unduly affect the 

results and the situation was similar to that which would affect the colonisation of a 

dead body in a crime scene scenario. It also suggests that for the duration of the 

experiments, the insects did not suffer undue competition. By contrast, the fecundity 

of the beetles on mice was much lower than on rats. It is possible that this was 

because there was relatively less food available per beetle but if this was the case the 

mice would have become skeletonised even faster. It is more likely that the larger 

surface area: volume ratio of the mice resulted in them drying out more rapidly. 

Consequently, the adult dermestids and their larvae had to consume relatively dry 

remains that were not as easy to chew and metabolise as the fresh rat tissue. The 

smaller body size may also have facilitated cannibalism of the eggs and young larvae. 

The rise in abdominal temperature at the end of the decomposition period only 

occurred when dermestid beetles were present. Furthermore, the maximum 

temperature and the duration over which the temperature was more than 1oC above 

ambient were correlated with the beetles’ fecundity. There was little change in the 

temperature of the controls throughout the experiment.  Indeed, for most of the time, 
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in both the controls and the experimental rats and mice, the temperature was at or 

slightly below ambient. The below ambient temperatures probably resulted from 

evaporative cooling. There was no increase in temperature associated with the bloat 

stage of decomposition when there is pronounced microbial decomposition in the 

abdominal region (and elsewhere) which suggests that the subsequent rise was not 

solely a consequence of microbial activity. Instead, the rise would appear linked to the 

exposure and consumption of the viscera by the dermestids.  By the time the 

abdominal cavity was exposed, the viscera were reduced to a thick brown paste.  

Any rise in temperature, and in particular the length of time it remains above ambient, 

will almost certainly speed up larval dermestid development. Blowfly maggot feeding 

masses are well-known for their ability to cause a localised increase in temperature 

that may exceed 20oC above ambient [27]. In this case, the rise in temperature is 

determined by a combination of the larval instar, the amount of food present, the 

volume of the maggot feeding mass and the temperature and heat transfer 

characteristics of the surrounding medium (e.g. whether the body is found on dry 

warm soil or cold wet concrete) [28]. The temperature rise associated with maggot 

feeding masses typically has a single peak and is associated with large numbers of 

larvae reaching the late 2nd/ early 3rd instar. The actual cause of the rise has been 

attributed to ‘exothermic digestive processes’ [29], although precisely what these are 

remains uncertain. It has also been suggested that large numbers of maggots could 

promote aerobic bacterial decomposition which is more thermogenic than anaerobic 

decomposition [30]. It is probable that the dermestid larvae have a similar effect when 

feeding on rats and mice. That is, the exposure of the viscera coupled with the 

physical churning of the remains by the larvae facilitates the access of oxygen and 

therefore aerobic microbial decomposition. If the temperature probe is inserted into 

the thorax then a similar increase in temperature is found associated with the feeding 

of large numbers of dermestid larvae in this region (unpublished obs.). Whether the 

dermestid larvae have a direct influence on the rise in temperature (rather than 

through stimulating microbial growth) awaits further study.  

 

5. Conclusion 

The data indicate that Dermestes maculatus will feed and oviposit upon dead bodies 

that are less than 1 hour old. They can complete their larval development on a fresh 

body and rapidly skeletonise it in the process. There is a localised increase in 
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abdominal temperature associated with the exposure and consumption of the viscera 

by larval dermestids. The rise in temperature and its duration correlates with the 

number of larvae present. 
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