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Abstract 

Human parvovirus 4 (PARV4, family Parvoviridae, genus Tetraparvovirus) displays puzzling 

features, such as uncertain clinical importance/significance, unclear routes of transmission 

and discontinuous geographical distribution. The origin, or the general reservoir, of human 

PARV4 infection is unknown. We aimed to detect and characterize PARV4 virus in faecal 

samples collected from two wild chimpanzee populations and 19 species of captive non-

human primates. We aimed to investigate these species as a potential reservoir and alternate 

route of transmission on the African continent. From almost 500 samples screened, a single 
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wild Pan troglodytes schweinfurthii sample tested positive. Full genome analysis, as well as 

single ORF phylogenies, confirmed species-specific PARV4 infection.  

Keywords: PARV4, non-human primates, Africa, phylogeny 

Human parvovirus 4 (PARV4, genus Tetraparvovirus, family Parvoviridae) displays puzzling 

features, such as uncertain clinical importance/significance, unclear routes of transmission 

and discontinuous geographical distribution. The first primate tetraparvovirus probably 

emerged in the 1980´s together with the appearance of the HIV virus infection [1] and, so far, 

three phylogenetically distinct genotypes have been described in humans. Since first human 

PARV-4 description in 2005, the epidemiology data are growing and were recently reviewed 

by Matthews et al. [2].  Human PARV4 G1 and G2 are predominant in Europe, North 

America and Middle East [3–10], and are most often described in patients with a history of 

parenteral drugs application suffering from HIV, HCV or HBV infections [10, 11]. Genotype 

2 is also reported from Asia [6, 12]. Human PARV4 G3 is distributed across Africa [13, 14] 

and exhibits unique features of transmissibility. It has been detected in diverse cohorts in the 

absence of other blood-borne viruses and/or intravenous drug/therapy application history [13–

16], suggesting transmission routes other than parenteral infection. High frequencies of 

seropositivity in wild chimpanzee and gorilla serum samples also support the existence of 

another route of transmission of tetraparvoviruses in Africa [17].  

The origin, or the general reservoir, of the human PARV4 is unknown. Three independent 

transmission events, perhaps from chimpanzees or other primate species, could be the source 

of the three genotypes [1, 17] in humans. A limited number of sequenced non-human primate 

tetraparvoviruses have been found to be species-specific for chimpanzees and colobus 

monkeys [17, 18]. Despite evidence of frequent exposure of African hunters to non-human 

primate bush meat, no direct evidence of cross-species parvovirus transmission has been 

found [18]. 

All previously described tetraparvovirus sequences from NHPs were obtained from either 

blood or bush meat samples [17, 18]. Our aim was to detect and characterize 

tetraparvoviruses in fecal samples collected from chimpanzees and other NHP with different 

levels of contact with humans, based on samples from (i) a wild, non-habituated eastern 

chimpanzee population in Issa Valley (Tanzania), known to be SIV positive [19], (ii) a wild, 

habituated eastern chimpanzee population from Kalinzu Forest Reserve (Uganda), and (iii) 

captive African non-human primates from Czech and Slovak zoos.  
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In total, 202 unidentified faecal samples were collected from eastern chimpanzees, with very 

limited contact with humans, in the Issa Valley (Figure 1) in Tanzania (between March 2012 

and November 2013). The study site comprises approximately ~100 km2 and is one of the 

driest and most open chimpanzee habitats, situated east of Lake Tanganyika, in western 

Tanzania [20]. The population density of Issa chimpanzees is estimated to be ~0.25 

individuals/km2 [21]. Further faecal samples (in total 123, 1-10 per individual) were collected 

from 42 identified individuals of habituated eastern chimpanzees (20 males, 22 females), 

with daily distant contact with researchers, in the Kalinzu Forest Reserve (Figure 1) [22] 

during 

April–July 2014. The forest reserve (~137 km2) is one of the three largest forest blocks in 

Uganda, being located on the eastern ridge of the western Rift Valley. The chimpanzee 

population density is estimated to be ~1.67 individuals/km2 [23]. Captive primates, with daily 

intensive contact with keepers, were sampled in 13 Czech and Slovak zoological gardens; 25 

Pan troglodytes, 10 Gorilla gorilla and 118 faecal samples from 17 different species other 

African primates were obtained [24] (see Supplementary material). 

All faecal samples were preserved in RNAlaterTM (Ambion Inc., Austin, TX) and stored at −80 °C until further use. DNA was isolated by PSP® Spin Stool DNA Kit (Stratec, Germany)

according to manufacturer's instructions. DNA was screened by nested PCR based on a 

protocol published by Sharp et al. [17]. PCR products of the expected length of 295 nt were 

gel purified using QIAquick Gel Extraction Kit (Qiagen, Germany) according to 

manufacturer's instructions, cloned into pGEM®-T Easy Vector System (Promega, USA) and 

sequenced by Macrogen capillary sequencing services (MacrogenEurope, The Netherlands). 

Additional sets of primers located in conserved parts of primate tetraparvovirus and other 

tetraparvovirus genomes were designed to overlap each other. PCR products were purified, 

cloned and both strands sequenced as described above. 

All obtained sequences were carefully edited using Geneious 11.0.2 [25] and compared with 

those available in GenBank by the BLASTn algorithm 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). Sequence alignments were generated using the 

ClustalW algorithm. Phylogenetic trees were inferred by maximum likelihood method using 

IQ-TREE v. 1.6.beta4 [26]. A best-fit evolution model was then chosen based on the Bayesian 

information criterion (BIC) computed by ModelFinder [27]. Branch supports were assessed 

by the ultrafast bootstrap (UFBoot) approximation [28] and by SH-like approximate 
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likelihood ratio test (SH-aLRT) [29]. For detailed Material and Method see Supplementary 

material. 

A total of 478 faecal samples was screened by nested PCR. Only a single sample from P. t. 

schweinfurthii (labelled U55) originating from the Issa Valley was found to be tetraparvovirus 

positive. The nearly whole U55 parvovirus genome of 4955 nt in length was sequenced 

(acc.no. MH215556). U55 chimpanzee PARV4 genome contains two main open reading 

frames (ORFs) and two additional small ORFs (ARF1 and 2) of unknown function, not 

observed in other members of the family Parvoviridae [14, 30]. The first main ORF of 1992 nt 

in length (U55 position of 59-2050) is located at the 5´ end of the genome and encodes non-

structural protein NS1. The second main ORF is located at the 3´ end of the genome and 

consists of 2745 nt (positions 2147-4891), encoding two structural VP proteins (914 and 552 

amino acids). Following current International Committee on Taxonomy of Viruses  criteria, 

the U55 isolate belongs to the species Primate tetraparvovirus 1 (with an amino acid 

sequence of NS1 protein identity 91.3-98.8% to human and chimpanzee genotypes within this 

species, Table).  

In our phylogenetic analysis, the U55 sequence clusters together with other chimpanzee 

PARV4 sequences obtained from wild chimpanzees; P. t. troglodytes in Cameroon [17] and P. 

t. verus in Côte d‘Ivoire [18] in both NS1 (Figure 2) and VP genes as well as in whole genome 

analysis (Supplementary material). This chimpanzee PARV4 clade is situated as a close 

outgroup to human genotypes with strong bootstrap support in all analyses (Figure 2, 

Supplementary material). Sequences published from colobus monkeys [18] formed separate 

clusters distinct from human as well as from chimpanzee PARV4 viruses. To further analyze 

the chimpanzee PARV4 genome, we performed a recombination analysis in Simplot software 

with reference strains of all human PARV4 genotypes and non-human primate PARV4 

isolates other than chimpanzees. The analysis revealed no potential recombination sites that 

could have given rise to the novel chimpanzee PARV4 tetraparvovirus (data not shown). 

Our study was inspired by growing evidence for alternate routes of transmission for PARV4 in 

sub-Saharan Africa [30–32]. Here we prove virus shedding is detectable in faeces through the 

detection of chimpanzee tetraparvovirus DNA in a single faecal sample collected from wild 

chimpanzees (P. t. schweinfurthii) from an SIV positive community in the Issa Valley 

(Tanzania). The low positivity rate observed among the Issa chimpanzee community can be 

explained by combined influence of low amount of excreted virus (detected only by nested, not 

simple PCR protocols) and shedding of the virus in limited time.  Human PARV4 has been 

reported to be detected from faeces in a few cases, however, its shedding is very probably 
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intermittent or limited in time [13]. Detection of tetraparvoviruses in fecal samples and swabs 

was previously described in humans and NHP exclusively in sub-Saharan Africa [17, 18], 

suggesting this is either a unique characteristic of virus genotypes limited to Africa, or the 

impact of other factors unique to Africa, e.g. co-infection with other viruses/parasites (e.g. GI 

helminths), affecting tetraparvovirus shedding into the intestinal lumen. Repeated finding of 

PARV-4 virus in faeces is the first prerequisite to the faecal-oral route of transmission 

which deserves more attention as it implies a significant role in PARV4 infection spread in a 

period of acute infection in communities sharing territory and habits. 

Phylogenetic and p-distance analyses of chimpanzee tetraparvovirus U55 described here place 

it along with sequences previously derived from P. t. troglodytes [17] and P. t. verus [18].  

This fact, together with the lack of recombination sites detected in the genome proves the co-

evolution of chimpanzee PARV-4 with their hosts, supporting opinion about host specificity 

of tetraparvoviruses [18]. Importantly, existence of chimpanzee-specific clade of PARV-4 

suggests limited or nil possibility of zoonotic transfer of PARV-4 from chimpanzees to 

humans. 

Complementary sets of blood/ faecal/nasal/other samples both from humans and non-human 

primates would be necessary to definitively address whether alternate routes of transmission 

of African tetraparvovirus occur and whether there is an influence of geographically restricted 

factors on the epidemiology of resulting infections. 
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Table: Distance pairwise comparison of nucleotide and amino acid (boldface) distances of 

NS1 gene among strains belonging to the species Primate tetraparvovirus 1; cpzPARV4 – 

strains originating from chimpanzee, colPARV4 – strain originating from Colobus polykomos 

PARV4 G1 PARV4 G2 PARV4 G3 cpzPARV4 colPARV4 

EU546204  EU546205  EU874248  JN798203  U55 HQ113143 JN798211 

PARV4 G1 EU546204 8,99 7,99 18,02 17,82 18,62 35,59 

PARV4 G2 EU546205 2,56 8,4 18,17 17,77 18 36,41 

PARV4 G3 EU874248 2,85 2,7 17,83 18,08 18,06 35,35 

cpzPARV4 

JN798203 8,3 8,6 9,17 11,7 10,49 34,88 

U55 7,99 7,99 8,73 3,62 5,5 35,49 

HQ113143 8,43 8,43 9,17 1,34 3,15 35,36 

colPARV4 JN798211 32,43 32,43 33,01 32,43 32,28 32,41 

Figure 1: Map of study sites: Issa Valley (Tanzania) and Kalinzu (Uganda) 

Figure 2: Phylogenetic analysis of full-length coding sequences of NS1 of strains belonging 

to the species Primate tetraparvovirus 1 by maximum likelihood method using IQTREE 

software. Herein described strain is highlighted in red. Branch supports are displayed as % 

from 1000 replicates from SH-aLRT/UFBoot tests. Three different hokoviruses (EU200677, 

EU200669, JF504699) used as an outgroup are not displayed. Scale bar indicates a number of 

nucleotide substitutions per site. 
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