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ABSTRACT
A fundamental bimodality of galaxies in the local Universe is apparent in many of
the features used to describe them. Multiple sub-populations exist within this frame-
work, each representing galaxies following distinct evolutionary pathways. Accurately
identifying and characterising these sub-populations requires that a large number of
galaxy features be analysed simultaneously. Future galaxy surveys such as LSST and
Euclid will yield data volumes for which traditional approaches to galaxy classifica-
tion will become unfeasible. To address this, we apply a robust k-means unsupervised
clustering method to feature data derived from a sample of 7338 local-Universe galax-
ies selected from the Galaxy And Mass Assembly (GAMA) survey. This allows us to
partition our sample into k clusters without the need for training on pre-labelled data,
facilitating a full census of our high dimensionality feature space and guarding against
stochastic effects. We find that the local galaxy population natively splits into 2, 3,
5 and a maximum of 6 sub-populations, with each corresponding to a distinct ongo-
ing evolutionary mechanism. Notably, the impact of the local environment appears
strongly linked with the evolution of low-mass (M∗ < 1010 M�) galaxies, with more
massive systems appearing to evolve more passively from the blue cloud onto the red
sequence. With a typical run time of ∼ 3 minutes per value of k for our galaxy sample,
we show how k-means unsupervised clustering is an ideal tool for future analysis of
large extragalactic datasets, being scalable, adaptable, and providing crucial insight
into the fundamental properties of the local galaxy population.

Key words: galaxies: general - galaxies: statistics - galaxies: evolution - methods:
statistical

1 INTRODUCTION

Understanding the diversity of galaxies in the Universe is a
crucial part of understanding how galaxies form and evolve.
Achieving this necessitates the use of a classification scheme
to segregate galaxies in an astrophysically meaningful way.
Galaxies have traditionally been morphologically classified
using the Hubble sequence (Hubble 1926; Sandage 2005).
Morphological classification schemes like the Hubble se-
quence describe a dichotomy of galaxies, distinguishing pri-

? E-mail: s.turner1@2012.ljmu.ac.uk

marily between disk-dominated, clumpy, “late” type galax-
ies, and spheroid-dominated, smooth, “early” type galax-
ies. A significant success of morphological classifications is
that they have enabled an understanding of the influence
of the environment that a galaxy inhabits upon its evolu-
tion. The observed correlation of morphology with environ-
ment (Dressler 1980; Postman & Geller 1984) reveals how
environmental processes like major mergers (Barnes 1992;
Naab & Burkert 2003), minor mergers and tidal interactions
(Toomre & Toomre 1972; Park et al. 2008), and harassment
(Moore et al. 1996) change the structures of galaxies from
late type to early type.

© 2018 The Authors
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2 Sebastian Turner et al.

Dichotomies (or bimodalities) of galaxies have also been
identified in star formation rate vs. mass (Smethurst et al.
2015), size vs. mass (van der Wel et al. 2014), colour vs. size
(Kelvin et al. 2014), Sérsic index vs. colour, Sérsic index
vs. mass (Lange et al. 2015), star formation rate vs. Sér-
sic index (Schiminovich et al. 2007), and most commonly,
colour vs. mass/magnitude (Baldry et al. 2004; Peng et al.
2010; Taylor et al. 2015) feature spaces, among others. All of
these bimodalities have been studied in detail individually,
and many have been used to reveal the evolution of galax-
ies toward redder colours, higher masses, lower star forma-
tion rates, larger sizes, and higher Sérsic indices over time.
In particular, the colour vs. mass plane has revealed the
evolution of galaxies from the blue sequence to the red se-
quence (e.g. Salim et al. 2007). That all of these bimodalities
broadly align with one another and with the morphological
bimodality suggests the existence of an overall, fundamen-
tal bimodality of galaxies in the Universe (e.g. Driver et al.
(2006)). In order to uncover the exact nature of this funda-
mental bimodality, any potential substructure thereof, and
the evolutionary processes that drive it, all of these features
(or a careful, representative selection thereof) must be con-
sidered together.

Meanwhile, approaches to the task of classifying sam-
ples of galaxies have evolved as sample sizes have increased
over time. Historically, this task was reserved for expert as-
trophysicists who would use schemes like the Hubble se-
quence to morphologically classify the 102−4 galaxies that
would constitute a typical catalogue (e.g. Sandage 1961;
Fukugita et al. 2007). More recently, the Galaxy Zoo project
(Lintott et al. 2008, 2011; Willett et al. 2013) crowd-sourced
morphological classifications for 105−6 galaxies from the
Sloan Digital Sky Survey (York et al. 2000). While both
of these approaches have been useful, neither will scale to
the data volume expected from the unprecedentedly large
extragalactic surveys of the future (e.g. Euclid, from which
photometry for > 109 galaxies is expected; Laureijs et al.
2011). Instead, fast and automated methods for galaxy clas-
sification will be required. There are two machine learning
approaches that are suitable for this: supervised and unsu-
pervised methods.

Much of the focus in the astrophysics literature has
been on developing supervised classification methods, which
assign unlabelled observations to a set of existing classes.
In order to generate a model for this purpose, classifica-
tion algorithms require training on pre-labelled observa-
tions. The model may also be validated using a second set
of pre-labelled observations. Artificial neural networks have
been proven to perform as well as expert observers in as-
signing Hubble type classifications (Lahav et al. 1995; Ball
et al. 2004) based on sets of photometric features, and sup-
port vector machines have been shown to be able to distin-
guish between galaxy morphologies (Huertas-Company et al.
2008, 2011) via the CAS morphological parameters (concen-
tration, asymmetry, smoothness; Conselice 2003). Convolu-
tional neural networks have been tested directly on pixel
data (Dieleman et al. 2015; Huertas-Company et al. 2015).

The stronger the relationship between the classes and
features, the more accurate the classification model. Ideally,
classes are defined directly by the features, though this is not
always the case. Schemes that depend on very large num-
bers of features, or whose dependence on features is poorly

defined (e.g. the Hubble sequence), rely on the use of small
sets of summary features (e.g. CAS) that correlate with their
classes to act as a proxy. Workarounds like this often incur a
loss of classification accuracy. Additionally, the accuracy of
the classifications improves with the size and representative-
ness of the training sample, so large numbers of pre-labelled
observations are required for the best results. A particular
benefit of the use of supervised classification methods is the
ease with which the accuracy of the classification model may
be externally validated against pre-labelled observations.

Unsupervised clustering methods are less prevalent in
the astrophysics literature. These methods are more ex-
ploratory in nature in that they search for groups of ob-
servations that are similar to one another, called clusters.
Clustering algorithms do not use an existing classification
scheme to segregate the observations and hence do not re-
quire training on pre-labelled observations. The clusters that
are found may, however, be used as training labels for a su-
pervised classification algorithm, thereby forming the basis
of a new classification scheme. Previous examples of schemes
generated in this way for the classification of galaxies in-
volve large numbers of features and observations (Sánchez
Almeida et al. 2010; Hocking et al. 2018), resulting in a large
number of highly uniform classes. Ellis et al. (2005) apply a
series of unsupervised methods to find a fundamental split
of the galaxy population into two clusters which is dictated
mostly by morphology. Barchi et al. (2016) use five mor-
phological parameters to test clustering algorithms on their
ability to find two distinct morphological classes. Siudek
et al. (2018) use a Fisher-Expectation-Maximisation algo-
rithm (Bouveyron & Brunet 2012; similar to the k-means
method which is a simple Expectation-Maximisation algo-
rithm) to define 12 different classes of galaxy via their ab-
solute magnitudes in multiple bands and their redshifts.

Unsupervised clustering methods are attractive because
they are descriptive. They model the structure of data di-
rectly without using any explicit prior notion of classes that
might exist. Choice of features and algorithm will, however,
implicitly influence the clusters that emerge. Features must
offer sufficient discriminating information to the model while
avoiding redundancies and overfitting. Algorithms vary in
their definitions of a cluster and of similarity, and will find
different clusters accordingly. Hence, it is necessary to se-
lect an appropriate combination of features and algorithm
for a given clustering situation. Domain-specific knowledge
(pertinent scientific theory) may also be used to inform these
choices. Clusters are difficult to validate given the absence of
truth labels to compare with. Instead, clusters are evaluated
internally using some measure of cluster quality. Clusters
may also be evaluated by comparison with other, existing
classifications.

Limited by the need for visualisation, the data struc-
ture of the galaxy population (and the bimodality thereof
in particular) has been well studied in feature spaces of up
to three dimensions. An unsupervised clustering approach
enables the study of the data structure of galaxies in fea-
ture spaces of higher dimensionalities, at which visualisa-
tion becomes more difficult. The specific approach we apply
to do so is the k-means method, selected for its conceptual
simplicity, speed, and popularity in the clustering literature
(Jain 2010). The method assumes that clusters are com-
pact and spherical. We adopt an exploratory stance in our

MNRAS 000, 1–23 (2018)
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work, aiming to determine whether a higher dimensionality
of feature space leads to previously unknown associations be-
tween features, whether these associations enable a deeper
understanding of the fundamental bimodality of galaxies,
and whether these associations engender a clustering struc-
ture in the feature data beyond the known bimodality of
galaxies. We also aim to describe and explain this cluster-
ing structure in the context of current theories of galaxy
formation and evolution.

We test the viability of the k-means method as a galaxy
classification solution for the next generation of extragalactic
surveys and as a tool to explore feature spaces of high dimen-
sionalities using a redshift- and magnitude-limited sample of
7338 galaxies from the GAMA survey. We represent our sam-
ple using a preliminary selection of five features. While our
feature selection is preliminary and imperfect, we comment
on how it influences the clusters that we find in our sample
and how the selection might be improved for future studies.
Cluster identities are discussed in terms of the input cluster-
ing features, by comparison with Hubble-like morphological
classification, and in relation to the local environmental den-
sities of the galaxies they contain.

The remainder of this paper is structured as follows. In
section 2 (supplemented by appendix A) we describe our k-
means implementation and our cluster evaluation method.
In section 3 we outline our sample, feature selection, and
data preparation. In section 4 (supplemented by appendices
B and C) we present and analyse clustering results, and in
section 5 we summarise, conclude, and consider directions
for future work. Where required, we assume a (H0, Ωm, ΩΛ)
= (70 km s−1 Mpc−1, 0.3, 0.7) cosmology. We note that while
the term “cluster” already has an established meaning in ex-
tragalactic astrophysics and cosmology, referring to groups
of galaxies that are close in physical space in the Universe,
we use it in this paper to refer to groups of galaxies that are
close in feature space.

2 k-MEANS AND CLUSTER EVALUATION

The k-means method is an unsupervised clustering approach
that aims to partition a sample of N observations, repre-
sented in a D-dimensional feature space, into k compact,
spherical clusters. Each of the clusters (a set of observations
C) is characterised by its centroid (c̄); its arithmetic mean
in each of the D features. The standard k-means implemen-
tation (“k-means”; MacQueen 1967; Lloyd 1982) is a simple,
fast algorithm comprising three steps:

(0) Initialise: k initial centres are selected (e.g. uniformly
at random) from the observations.

(1) Assign: the observations are assigned to their nearest
centre (by Euclidean distance); these assignments are clus-
ters.

(2) Update: the centroid of each assignment is calculated;
these become the new, updated centres.

Steps 1 and 2 are iterated until the algorithm converges;
until there are no further differences between subsequent it-
erations. The convergence of k-means to a clustering solu-
tion is provably always finite (Selim & Ismail 1984), with a
complexity O(NDki) and generally requiring far fewer itera-
tions (i) than there are observations (Duda et al. 2000). The

final assignment of the observations may be taken as a clas-
sification scheme. The resultant partition of the sample is a
Voronoi tessellation based on the final centroids. The final
centroids are cluster archetypes: a k-point characterisation
of the sample.

By iteratively recalculating the centroids, k-means in-
herently minimises the Sum of SQuare residuals Within
(SSQW ; equation 1; i.e. variance within) each of its clusters.
The k-means definition of a cluster follows: clusters are data
structures that are compact and separated (and therefore
accurately characterised by their centroids), such that they
have a lower SSQW . The total SSQW of a set of k-means clus-
ters, φ (equation 2), may be applied as an overall measure of
their clustering quality. A consequence of the minimisation
of φ is that k-means tends to produce clusters of similar sizes
in feature space. This is called the“uniform effect” (Liu et al.
2010), and it acts equally in all dimensions, leading also to
spherical (rather than extended) clusters. It is common to
normalise data to mitigate the influence of this effect on the
results of k-means.

SSQWj =
∑
c∈Cj

| |c − c̄j | |2. (1)

φ =

k∑
j=1

SSQWj =

k∑
j=1

∑
c∈Cj

| |c − c̄j | |2. (2)

k-means is a local search heuristic: the behaviour of the
centres as the algorithm iterates is dictated by those obser-
vations in their vicinities. Therefore, the outcome of k-means
is dependent on the input initialisation. A common initiali-
sation technique is to select k observations from the sample
uniformly at random. However, different such random ini-
tialisations may result in different, locally optimal clustering
solutions. It is computationally impractical to search for the
global optimum in all of the kN clustering permutations of a
large sample. Hence, when presented with different solutions
generated from different runs of k-means with the same k
on the same sample, it is standard practice to select as the
optimal solution that with the lowest φ.

To mitigate the local dependency of k-means, we apply
the random initialisation technique of Arthur & Vassilvitskii
(2007) in all of our runs of the algorithm. It spreads out the
initial centres, making the subsequent results of k-means

more competitive with globally optimal solutions. The first
of the k centres is selected from the sample with uniform
probability. Subsequent centres are then selected with an
increasing probability at larger distances from all preceding
centres. This encourages optimisation to separated clusters.
Whilst this initialisation is slower than a uniformly random
initialisation, it generally yields a faster convergence over
the iteration steps, resulting in a lower overall computation
time for k-means.

2.1 Stability

A key consideration with applying k-means is the use of a
suitable value of k; this is required as an input to the algo-
rithm. k-means will always converge to a solution, even in
the absence of clustering structure in the sample. Assuming
the sample has a clustering structure, it is generally the case

MNRAS 000, 1–23 (2018)
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that ktrue, the true number of clusters in a given sample, is
not known. It may even be that the true clusters in a sam-
ple have a hierarchical structure, such that there are several
unknown values of ktrue. Hence, it is common to trial clus-
tering on a sample at several values of k and identify good
values for modelling the true clustering structure of the sam-
ple post-clustering. Comparing these results necessitates an
additional, alternative measure of clustering quality; φ de-
creases systematically as k increases because more clusters
occupy the same sample.

We identify good values of k based on the stability of
their clustering solutions (Lisboa et al. 2013; von Luxburg
2010). Specifically, we examine the stability of solutions in
spite of random initialisations, which may result in different
clustering solutions. Solutions at some values of k may be
more or less different to one another than solutions at other
values of k. Those values of k at which solutions are more
similar to one another are more stable; k-means consistently
converges to similar results, which implies a clustering struc-
ture in the sample at those values of k.

Stability may be understood by considering the be-
haviour of the k-means centres as the algorithm iterates. A
key expectation is that if there is at least one centre in each
of the ktrue clusters at initialisation, then the centres will re-
main within those true clusters as k-means proceeds (Bubeck
et al. 2012). For k = ktrue, the centres will then settle to the
centroids of the true clusters, in accordance with the algo-
rithm’s inherent minimisation of φ. For k > ktrue, this key
expectation means that true clusters containing more than
one centre at initialisation will be split. For k < ktrue, where
this key expectation does not hold, centres may move be-
tween true clusters and lead to mergers. The exact splits
and mergers that occur are dependent on the locations of
the centres at initialisation and will therefore change with
different initialisations. It is important to note that when
k = ktrue, our choice of initialisation technique facilitates
the ideal situation in which the ktrue clusters contain one
centre each at initialisation. We demonstrate these concepts
using a simple 2D simulation in appendix A.

To measure the difference between a pair of clustering
solutions at the same k, we use Cramér’s V index of associ-
ation (Cramér 1946):

V =

√
χ2

N · (k − 1) . (3)

Here, χ2 is the chi-squared value for two clustering so-
lutions (categorical variables A and B) on the same sample,
each consisting of the same number (k) of unique labels. It is
calculated (equation 4) using a k×k contingency table (a.k.a.
cross tabulation), comparing the observed frequency of ob-
servations (o) in each cell (a, b) with its expected frequency
(e = N/k2; equal in every cell) given a null hypothesis of
independence of the two solutions. We provide examples of
contingency tables and the calculation of their correspond-
ing χ2 and V values in appendix A.

χ2
A,B =

∑
a,b

(oa,b − ea,b)2

ea,b
. (4)

Cramér’s V index is normalised, reporting χ2 as a

square-root-scaled fraction of its maximum possible value
given N (the number of observations in the sample) and
k. It ranges from 0 for no agreement (i.e. the solutions are
independent; agreement is consistent with uniform random
chance) to 1 for perfect agreement. In practice, k-means can-
not produce solutions that disagree to the extent that V = 0.
We assess the stability of an individual clustering solution
by calculating its median V with respect to other solutions
at the same k. We assess the stability of a set of clustering
solutions at the same k by examining their distribution in
median V (see figures 5, A5, and B1). Stability also enables
us to determine whether there is no clustering structure to
our sample (i.e. no ktrue), as no particular value of k will
stand out from the others as being particularly stable.

3 DATA

We use data from phase II of the Galaxy And Mass As-
sembly (GAMA) survey (Driver et al. 2009; Liske et al.
2015). The main aim of the survey is to study cosmic
structure on scales of 1kpc to 1Mpc in the context of cold
dark matter models of the Universe. The survey is struc-
tured around its spectroscopic campaign, conducted at the
Anglo-Australian Telescope using the AAOmega spectro-
graph, and based on an input catalogue defined by Baldry
et al. (2010). The spectroscopy provided reliable heliocen-
tric redshifts for 238000 objects to a limiting r-band Pet-
rosian magnitude of 19.8 and across five regions covering a
total area of 286 deg2. It has been supplemented with repro-
cessed imaging in 21 bands from a variety of other surveys
(e.g. the Sloan Digital Sky Survey; York et al. 2000) that
overlap with the GAMA spectroscopic campaign footprint
(the Panchromatic Data Release; Driver et al. 2016). Data
derived from these spectra and images are listed in tables
hosted at http://www.gama-survey.org/.

We derive our sample from the well-characterised sam-
ple of Moffett et al. (2016) (listed in the GAMA survey table
VisualMorphologyv03) with a view to facilitating the inter-
pretation of clustering results, particularly by comparison
with results from other, previous GAMA survey studies. It is
a flow-corrected-redshift- (0.002 < z < 0.06) and magnitude-
(rPETRO < 19.8) limited sample of 7556 local objects that
have been morphologically classified using the method of
Kelvin et al. (2014). Note that while we aim to compare
clustering results with these visual, Hubble-like morpholo-
gies (see section 4), we do not aim to reproduce them.

The Kelvin et al. (2014) method assigns classifications
by the consensus of three expert observers, whose visual
inspection of optical three-colour images of the galaxies is
guided by a decision tree. The tree discriminates galaxies
firstly as being either spheroid- or disk-dominated, and sec-
ondly as consisting either of a single component or of multi-
ple components. The tree goes on to discern multiple com-
ponent galaxies with bars from those without, but we ignore
this distinction in our study due to the relatively low num-
bers of barred galaxies in our sample (∼ 4 per cent of all of
the galaxies have bars). We intend to examine bars in the
context of our clusters in a future study, however, due to
the significant role they play in the evolution of any barred
galaxy, particularly in terms of quenching star formation
(e.g. Sheth et al. 2005).

MNRAS 000, 1–23 (2018)
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The two levels of the tree that we do consider lead to
four morphological types: E, S0-a, Sab-Scd, and Sd-Irr. A
fifth type, “Little Blue Spheroid” (LBS), is identified sepa-
rately at the top level of the tree. As star-forming, spheroid-
dominated, blue dwarf galaxies, they have been likened to
the blue early type galaxies of Schawinski et al. (2009) in
that they defy typical galaxy trends with colour or mor-
phology. Contaminants are also identified at the top level of
the tree. There are 25 in the sample, which are mostly satel-
lite galaxies, partial galaxy structures, or star-galaxy blends.
We remove them from the sample, leaving 7531 galaxies.

We then retrieve feature data for the galaxies in the
sample. There are hundreds of features available in the
GAMA database with which to characterise the galaxies in
the sample. One may be tempted to find clusters in the
sample using all of them at once, in order to “provide the
algorithm with as much information as possible”. However,
as the dimensionality of the feature space containing the
sample increases, the observations become more sparse, and
k-means (or any clustering algorithm) overfits its clusters to
the observations. Representing the sample using a smaller
subset of features instead results in clusters that are more
readily generalisable to the overall galaxy population.

Feature selection may involve both domain-specific
knowledge and statistical considerations. We select features
that capture intrinsic properties of galaxies, relating to their
formation and evolution, and aim for a selection that ex-
presses most known aspects of these processes. The redun-
dancy of features - the extent to which they provide the same
information as other features - may be assessed statistically,
such as by calculation of their Spearman rank-order correla-
tion coefficients. A higher correlation between features im-
plies greater redundancy. Redundant features exert a higher
influence over the clusters that k-means finds in that they
lead to a projection of the feature space in which the sample
is highly extended in one direction over others (e.g. figure 3).
k-means will therefore tend to split the data along the ex-
tended direction of the data due to the uniform effect. While
it is common to discard such features to avoid this bias, re-
taining them could instead serve to strengthen a desirable
pattern in the data.

Table 1 lists the feature data we retrieve and the main
GAMA survey tables we access to do so. Stellar masses
(M∗) and gigayear-timescale specific star formation rates
(SSFR) are taken from MagPhysv06, generated by Driver
et al. (2016) from a run of MAGPHYS (Da Cunha et al. 2008)
on all 21 bands of foreground extinction-corrected photom-
etry listed in LambdarCatv01 (Wright et al. 2016). MAG-

PHYS calculates spectral energy distributions (SEDs) from
input redshifts, fluxes, and flux errors using star and dust
emission template spectra, and corrects for light-attenuation
by dust within galaxies. Restframe u − r colours come from
StellarMassesLambdarv20, derived from the same photom-
etry (Taylor et al. 2011). We select u − r colour for its abil-
ity to express the galaxy bimodality in the colour vs. mass
plane. Unlike M∗ and SSFR, it does not include corrections
for dust attenuation, meaning our clustering results will be
influenced in some capacity by the presence of dust in some
of the galaxies in our sample. We take r-band Sérsic in-
dices (n) and half-light radii (R1/2) from SersicCatSDSSv09,
whose derivation is described in Kelvin et al. (2012) and
is based on reprocessed Sloan Digital Sky Survey imaging

(York et al. 2000; Hill et al. 2011). The accuracy of Sérsic
indices is expected to be consistent throughout our sample
due to the low redshifts of the galaxies therein (Vika et al.
2013).

Matching for data in all features leaves 7516 galaxies
in the sample, with 15 lost due to incompleteness. We note
that this feature selection is preliminary. Our use of features
derived primarily from broad-band photometry facilitates a
comparison of clustering results with a wide range of other
surveys. We comment on the consequences of our feature
selection for clustering later in this section and in section 4,
and the potential for optimising feature selection in section
5.

The half-light radii listed in SersicCatSDSSv09 are pre-
sented in units of arcseconds, which are a function of the dis-
tances to the galaxies as well as their intrinsic sizes. We use
flow-corrected redshifts (DistanceFramesv12; Baldry et al.
2012) to convert them to intrinsic kiloparsec radii.

We apply a series of transforms to standardise the data,
with the intention of avoiding unintuitive partitions due to
the uniform effect, and of granting equal weight to all of
the features. The distributions of all of the features except
u−r colour are strongly skewed. The centroids that k-means
iteratively recalculates are sensitive to the uneven tails of
skewed distributions. We therefore ensure that all features
are represented in logarithmic units (see table 2). Addition-
ally, these features are all commonly represented in logarith-
mic units in the astrophysics literature.

Outliers in the sample are more readily apparent when
examining the distributions of each of the features in loga-
rithmic units. In order to mitigate the influence of outliers
on the calculation of centroids by k-means, we truncate the
sample in each of the features, removing galaxies that lie
outside given limits. The limits we impose are listed in table
2. While some of these limits have been set simply by in-
spection of histograms of the sample in each of the features,
others have also involved astrophysical considerations. For
example, the limits in Sérsic index have been set to elimi-
nate subcomponent fits, or fits affected by light from sources
near the galaxy that was fitted. Removing 198 outliers from
the sample leaves 7338 galaxies.

This now constitutes our final sample, which we profile
in figure 1. We use histograms and scatter plot projections
to show the distribution of our sample in 1D and 2D fea-
ture spaces. These distributions reveal a dominance of low
mass, blue, star-forming galaxies with low Sérsic indices in
our sample. Most features exhibit significant secondary com-
ponents to their distributions. The bimodality of galaxies is
visible in several of the scatter plot projection panels.

We include dashed lines in figure 1 that mark “classical”
distinctions from the literature that have been made between
the two main populations of galaxies. The line in the colour-
mass panel is based on equation 11 of Baldry et al. (2004).
We use a solar r-band absolute magnitude of 4.71 and equa-
tion 12 from the same paper to adapt it from applying to
magnitudes to applying to masses. While the original line
was calculated using SDSS model magnitudes, the LAMB-

DAR apertures were set using Source Extractor (Bertin &
Arnouts 1996; see also section 6.1 of Wright et al. 2016).
Model magnitudes report redder colours than magnitudes
derived using tophat apertures: we calculate an approximate
mean offset of −0.15 over the range of colours in our sam-
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6 Sebastian Turner et al.

Table 1. The features we use to characterise galaxies, and the survey tables from which we retrieve them.

Feature Unit Table Version Column Reference

Stellar mass M� MagPhys 6 mass stellar best fit Driver et al. 2016

u-r colour mags StellarMassesLambdar 20 uminusr Taylor et al. 2011

Sérsic index - SersicCatSDSS 9 GALINDEX r Kelvin et al. 2012
Half-light radius kpc SersicCatSDSS 9 GALRE r Kelvin et al. 2012

Specific star formation rate yr−1 MagPhys 6 sSFR 0 1Gyr best fit Driver et al. 2016

Figure 1. A profile of our sample. It is represented using histograms and scatter plot projections. The dashed lines mark “classical”

distinctions between the two main populations of galaxy (see text). We also list the mean ( f̄ and standard deviation (σ̄) of the sample
in each feature in the top-right of the figure, in the units shown on the axes.

ple and adjust the line accordingly. The lines in the scatter
panels involving Sérsic indices and u − r come from Lange
et al. (2015). We apply a similar colour offset of +0.4 as the
u − r colours in Lange et al. (2015) are corrected for dust
attenuation. The line for SSFR is taken from Pozzetti et al.
(2010); specifically, we take their distinction between passive
and non-passive galaxies.

Figure 2 shows the distribution of Kelvin et al. (2014)

morphologies in our sample. The histogram reveals a domi-
nance of late-type morphologies in our sample. The morpho-
logical types are ordered from highest (E) to lowest (LBS)
mean mass.

Some features span larger numerical ranges in logarith-
mic units than the others. For example, M∗ spans 6 orders of
magnitude (base 10) while n spans 1.8. Given that k-means

minimises φ in all dimensions, it will tend to split our sample
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Table 2. The limits for truncation that have been imposed on
each of the features. The truncated histograms are viewable in

figure 1. Limits marked with an asterisk do not actually exclude

any galaxies.

Feature Units Lower Upper

M∗ log10(M�) 6 ∗12
u − r mags 0.3 2.7
n log10(n) −0.6 1.2
R1/2 log10(kpc) −1.0 ∗1.5
SSFR log10(yr−1) −14 −8

Figure 2. Histogram showing the distribution of Kelvin et al.
(2014) and Moffett et al. (2016) morphologies in our sample. Our

sample is dominated by late-type morphologies. LBS stands for

“Little Blue Spheroid”.

along any direction in which it is extended. To mitigate any
bias of k-means for or against any of our features on this ba-
sis, we code the data in each of the features using Z-scores.
They are more strongly influenced by the centres of the fea-
ture distributions than their extremities (which normalisa-
tion techniques alternatively are). Hence, they weighted to-
ward the majority of galaxies near the feature distribution
means, rather than the minority of outliers. Here (equation
5), f is the value of an observation in a given feature, f̄ is
the mean value of that feature, σf is its standard deviation,
and Z f is the Z-score of f :

Z f =
f − f̄
σf

. (5)

Having been standardised, we assume that k-means will
now be able to recover clustering structure in our sample
that reflects the astrophysics involved in the formation and
evolution of the galaxies therein. We assess our feature selec-
tion pre-clustering. In table 3 we show the Spearman rank-
order correlation coefficients for pairs of the five features we
use to represent our sample. We note that u − r colour is in-
volved in the two strongest correlations of features (with M∗
and SSFR) for our sample, suggesting redundancy. We opt

Table 3. Spearman rank-order correlation coefficients for the fea-
tures we use to represent our sample.

Feature M∗ u − r n R1/2 SSFR

M∗ 1.00
u − r 0.72 1.00
n 0.35 0.40 1.00
R1/2 0.55 0.25 −0.04 1.00
SSFR −0.61 −0.83 −0.38 −0.19 1.00

Table 4. Results of a principal component analysis of our sample.

Feature PC1 PC2 PC3 PC4 PC5

M∗ 0.51 −0.28 −0.02 −0.63 −0.51
u − r 0.53 0.15 −0.32 −0.22 0.74
n 0.37 0.40 0.84 0.07 0.04
R1/2 0.29 −0.80 0.21 0.44 0.19
SSFR −0.49 −0.30 0.39 0.18 0.40
Relative Variance 0.59 0.21 0.12 0.05 0.03

to retain it, however, to strengthen the bimodal structure of
the data and because it includes information about the dust
content of the galaxies in our sample, which SSFR does not.
We expect that strengthening the bimodality will encourage
k-means to search for more clusters within the two peaks of
the bimodality at higher values of k. Other correlations that
exist among our selection of features are weaker and do not
suggest any further significant redundancies.

We also conduct a principal component analysis of our
sample, to gain insight into its covariance structure and to
anticipate clustering results. We list the results of this anal-
ysis in table 4. The results reveal that the structure of our
sample is dominated by the first principal component (PC1),
which encompasses 59 per cent of our sample’s variance. This
tells us that the sample has an elongated shape in the five-
dimensional feature space. PC1 is defined mostly by those
features that reflect aspects of the stellar populations within
galaxies (i.e. M∗, u − r, and SSFR), so we expect that these
features will most strongly dictate the clusters that k-means
finds. R1/2 and n are most strongly associated with PC2 (en-
compassing 21 per cent of the variance in the sample) and
PC3 (12 per cent) respectively. We expect them to play a
role in dictating clusters at higher values of k, at which the
use of additional centroids enables the algorithm to explore
subtler, more local structure within our sample. These rela-
tionships are clearly apparent in figure 3, which shows our
features and sample as functions of the first two principal
components.

Finally, we also retrieve environmental data for the
galaxies in our sample in order to probe the role of envi-
ronment in dictating the clusters we find via its influence
on our features. We adopt the surface density Σ5, defined
using the projected comoving distance from a galaxy to its
fifth nearest neighbour, as a measure of local environmental
density (via EnvironmentMeasuresv05; Brough et al. 2013).
This feature is only available for 4195 of the 7338 galaxies in
our sample if we filter for a SurfaceDensityFlag of 0, which
ensures that the fifth nearest neighbour of a given galaxy lies
within the GAMA survey footprint. Nearly all of the other
3143 galaxies in our sample have a SurfaceDensityFlag of 2,
indicating no neighbours within a velocity cylinder of ±1000
km s−1, meaning they occupy particularly low density envi-
ronments.
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Figure 3. Our features as functions of the first two principal
components of our sample. The axes are scaled to show the rela-

tive variance that each principal component encompasses. We also

represent our sample using a scatter plot projection. The size of
the sample in this 2D principal component space is normalised to

fit within the area shown. M∗, u−r , and SSFR are most strongly
associated with PC1, while R1/2 is most strongly associated with

PC2. n is evenly balanced between the two, but is most strongly

associated with PC3, which we do not show.

We note that these 3143 galaxies are not evenly dis-
tributed in feature space. Most are blue, low mass, and have
low Sérsic indices, large radii, and high specific star forma-
tion rates, consistent with the Gómez et al. (2003), Bamford
et al. (2009), and Peng et al. (2010) findings that such galax-
ies tend to occupy lower density environments. We comment
on the consequences of this incompleteness for our examina-
tion of local environmental densities within clusters where
relevant in section 4. Naturally, our confidence in the conclu-
sions we come to based on this data would be greater were
this data available for the entirety of our sample.

Figure 4 shows our sample projected onto the u − r vs.
M∗ plane. In the left panel, points are coloured by their
measured Σ5, taken directly from EnvironmentMeasuresv05.
In the right panel, the local environmental densities have
been smoothed using a nearest-neighbour-averaging algo-
rithm. We apply this smoothing to capture the average trend
of environment with colour and mass for later analyses. We
note that this smoothing inhibits the range of Σ5 for our sam-
ple in the right panel compared with the left. The colour bar
levels have been set in order to distinguish galaxies in inter-
mediate density environments from those in low and high
density environments. Both panels show that our sample is
dominated by galaxies in low density environments. Inter-
estingly, we note that the Baldry et al. (2004) dashed black
line, intended as a separator of the blue and red sequences of
galaxies in this feature plane, traces intermediate densities.

4 RESULTS

We combine stability and compactness (see section 2) to
evaluate k-means clusters in our sample, adapting the ap-
proach of Lisboa et al. (2013). We do not assume a value
of ktrue (other than k = 2, corresponding to the bimodality
of galaxies), so we trial k-means clustering at k = 2 through
k = 15, initialising 200 times at each k using the Arthur &
Vassilvitskii (2007) technique. We first identify stable values
of k, at which there appears to be a clustering structure in

Figure 4. Our sample, projected onto the u − r vs. M∗ plane,
with points coloured by their measured (left panel) and smoothed

(right panel) local environmental densities (Σ5). The small grey

points represent those galaxies for which Σ5 is not available; their
bias toward lower masses and bluer colours is apparent. The

dashed black line marks the Baldry et al. (2004) distinction be-

tween the blue and red sequences of galaxies.
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Figure 5. Stability map of k-means clustering for our sample at

k = 2 through k = 15. We calculate the median V of each solution
with respect to all other solutions at the same k. The distributions

of all 200 medians at each k are represented using histograms
plotted along each of the horizontal black baselines. The heights of

the histograms are normalised. Additionally, we show the means

of these distributions as vertical red lines. Solutions at k = 2, 3, 5,
and 6 are particularly stable.

our sample, using V (a measure of the strength of associa-
tion between two clustering solutions; equation 3). We then
select the optimal solution at each of our stable values of k
by considering compactnesses.

In figure 5 we map the stabilities of solutions at different
values of k. We calculate the median V of each individual so-
lution with respect to all other solutions at the same k. The
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distributions of all 200 medians at each k are represented
using histograms plotted along each of the horizontal black
baselines. The heights of the histograms are normalised. Ad-
ditionally, we show the means of these distributions as ver-
tical red lines. We note a gap across all distributions, ap-
pearing to separate two distinct regimes of solutions. We
demarcate these regimes using the vertical dashed black line
at median V = 0.9, but emphasise that this “threshold” is
a product of our sample and may differ for different sam-
ples. The key element for distinguishing between stable and
unstable values of k is the gap.

Values of k at which the distributions are concentrated
toward higher median V (i.e. at which more solutions are
more consistent) are more stable. The solutions at k = 2, 3, 5,
and 6 stand out as being particularly stable. All of the so-
lutions at each of these values of k have median V > 0.9,
except for a single solution at k = 3. The spread of solu-
tions at k = 6 corresponds to a maximum difference of ∼ 100
galaxies (∼ 1.5 per cent of our sample) between solutions.

The solutions at k = 4 occupy a highly-peaked bimodal
distribution, with a slight majority (123) at median V > 0.9.
The solutions at k = 7 are similarly distributed with 113 at
median V > 0.9, but with a larger spread in its secondary
peak. While both distributions exhibit stable components,
a significant number of solutions in each are unstable. We
focus presently on those values of k that are most uniformly
stable, and therefore exclude any solutions from k = 4 and
k = 7 from our analyses of clustering results.

The distributions of solutions at higher values of k are
centred at lower median V and have larger spreads, meaning
they are unstable. The additional centroids used by k-means

at these higher values of k are more strongly influenced
by the local structure within our sample at initialisation,
such that the algorithm is more likely to converge to locally
(rather than globally) optimal solutions. The ability of our
initialisation technique to mitigate the local dependency of
k-means becomes weaker as k increases. The spreads of the
solutions for these unstable values of k correspond to differ-
ences of thousands of galaxies between solutions. We note
that the general trend of decreasing stability at higher k
continues beyond the solutions at k = 15.

From each of the four values of k that we have iden-
tified as being most stable, we select as our final, optimal
solutions for analysis those with the lowest φ (a measure
of the compactness of the clusters in a solution; equation
2). We refer to these four “best” solutions as simply k = 2,
k = 3, k = 5, and k = 6. We note that these solutions at
these values of k retain their stability following application
of the bootstrap method to our sample (appendix B). We
note also that the stability map that results from clustering
for which u − r colour is omitted as an input feature has the
same general structure as figure 5, but the distributions of
solutions are systematically offset to slightly lower median
V at each value of k.

A hierarchy tree, mapping the interrelation of our best
solutions, is shown in figure 6. The clusters in each solution
are represented by text bubbles which state the number of
galaxies that they contain. The red lines express how closely
related clusters at different k are. The opacities of the lines
scale linearly with the fraction of galaxies in clusters at k +1
that are also found in clusters at k. Clusters are ordered
vertically at each k by the mean u − r colour of the galaxies

5222

2116

k = 2

2617

3070

1651

k = 3

1493

2744

1312

920

869

k = 5

1267

2454

952

1104

790

771

k = 6

Figure 6. Hierarchy tree showing the interrelation of k = 2, k = 3,

k = 5, and k = 6. The text bubbles, representing the clusters,
state the number of galaxies they contain and are ordered by the

clusters’ mean u − r colours from reddest at the top to bluest at

the bottom. The opacity of the red lines expresses how closely
related connected clusters at different k are. The dashed black

line separates the basic structure of two “superclusters” that we
find at all values of k.

they contain, with the reddest clusters at the top and the
bluest at the bottom.

It should be noted that solutions at different values of k
are calculated independently of one another, so hierarchy is
not imposed or assumed at any point in the clustering. De-
spite this, we find that our best solutions exhibit a broadly
hierarchical structure. Considering them in sequence, clus-
ters at higher values of k generally emerge as splits of clusters
at lower values of k. There is some mixing present, mean-
ing some clusters at higher values of k contain galaxies from
multiple clusters at lower values at k. This is especially no-
ticeable between k = 3 and k = 5, though it may be exag-
gerated due to the omission of a solution at k = 4 from the
plot. The highly peaked bimodal distribution of solutions in
median V at k = 4 (figure 5) arises as k-means settles into
one of the two splits that must occur between k = 3 and
k = 5. k = 5 is stable and includes both of these splits, so
no information is lost by the exclusion of a solution at k = 4
from our analyses.

Furthermore, we find a basic structure of two “super-
clusters” (separated by the dashed black line) at all values
of k, including the simplest partition k = 2. This indicates
the strength of the bimodality in the structure of our sample.
As k increases, k-means favours splitting the blue superclus-
ter apart over the red supercluster, due mostly to its spread
in our features and the higher number of galaxies in the
blue supercluster, in conjunction with the ”uniform effect”
of k-means.

We introduce a preliminary naming scheme for our clus-
ters based on their correlation with colour. The scheme is
intended as a quick way to identify clusters in the various
comparisons and analyses we conduct in this section, rather
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Table 5. A summary of all of the clusters in solutions k = 2, 3, 5, and 6. See the main text for an explanation of cluster names. The
uncertainties on the centroids are estimated by application of the bootstrap method to our sample; we outline this estimation in detail

in appendix B.

Cluster NC log10(M∗/M�) u − r log10(n) log10(R1/2/kpc) log10(SSFR/yr−1) log10(Σ5/Mpc−2) Loss %

Ra2 2116 10.022+0.007
−0.006 2.018+0.004

−0.004 0.373+0.003
−0.003 0.506+0.002

−0.001 −11.35+0.01
−0.01 0.16 30

Ba2 5222 8.611+0.004
−0.004 1.240+0.002

−0.002 0.0565+0.0004
−0.0002 0.300+0.001

−0.001 −9.579+0.004
−0.003 −0.21 48

Ra3 1651 10.072+0.007
−0.011 2.101+0.005

−0.011 0.445+0.005
−0.008 0.472+0.002

−0.002 −11.64+0.04
−0.02 0.23 30

Bb3 3070 9.14+0.02
−0.04 1.391+0.009

−0.018 0.035+0.005
−0.007 0.528+0.006

−0.005 −9.80+0.03
−0.02 −0.15 38

Ba3 2617 8.21+0.01
−0.01 1.150+0.006

−0.001 0.093+0.008
−0.006 0.091+0.008

−0.014 −9.443+0.004
−0.011 −0.26 57

Rb5 869 10.46+0.02
−0.04 2.2309+0.0008

−0.0081 0.575+0.006
−0.012 0.60+0.02

−0.03 −11.91+0.04
−0.02 0.18 29

Ra5 920 9.19+0.08
−0.08 1.86+0.04

−0.07 0.262+0.013
−0.007 0.181+0.010

−0.007 −11.3+0.2
−0.1 0.29 29

Bc5 1312 9.77+0.04
−0.06 1.61+0.03

−0.03 0.102+0.005
−0.011 0.656+0.007

−0.014 −10.03+0.04
−0.03 −0.15 37

Bb5 2744 8.64+0.03
−0.03 1.196+0.006

−0.007 −0.011+0.007
−0.007 0.42+0.01

−0.01 −9.497+0.010
−0.009 −0.22 45

Ba5 1493 8.12+0.02
−0.03 1.14+0.01

−0.02 0.16+0.02
−0.02 −0.038+0.006

−0.005 −9.41+0.03
−0.03 −0.28 61

Rb6 771 10.50+0.01
−0.05 2.236+0.011

−0.008 0.601+0.005
−0.013 0.629+0.004

−0.032 −11.91+0.03
−0.11 0.17 29

Ra6 790 9.32+0.03
−0.11 1.94+0.01

−0.05 0.26+0.02
−0.03 0.201+0.004

−0.017 −11.69+0.19
−0.03 0.37 27

Bd6 1104 9.90+0.13
−0.06 1.68+0.07

−0.03 0.11+0.03
−0.02 0.66+0.01

−0.01 −10.11+0.03
−0.09 −0.12 37

Bc6 952 8.51+0.07
−0.28 1.30+0.02

−0.09 0.359−0.007
−0.100 0.04+0.03

−0.10 −9.67+0.15
−0.03 −0.21 49

Bb6 2454 8.79+0.12
−0.06 1.24+0.04

−0.03 0.00+0.03
−0.01 0.47+0.04

−0.02 −9.58+0.04
−0.05 −0.20 41

Ba6 1267 7.98+0.15
−0.03 1.059+0.032

−0.006 −0.04+0.04
−0.03 0.06+0.12

−0.06 −9.272+0.009
−0.051 −0.32 65

than as a full description or explanation of cluster identities.
This scheme is not to imply that colour is entirely respon-
sible for the clustering outcomes (though it clearly plays
a strong role). Cluster names consist of three parts in the
format “XyZ”. The first part, either “R” (for red) or “B”
(for blue), corresponds to the supercluster (upper and lower
respectively in figure 6) to which the cluster belongs. The
second letter ranks the cluster by its mean u − r colours in
comparison with other clusters within the same supercluster
at the same value of k. Rankings begin at “a” for the bluest
cluster, and follow on alphabetically until all clusters within
the supercluster are named. The third part, a number, indi-
cates the solution (i.e. the value of k) to which the cluster
belongs.

k-means clusters are defined by their centroids. Table
5 summarises the clusters in our best solutions (k = 2, 3, 5,
and 6). The leftmost section lists the clusters and the num-
bers of galaxies that they contain (NC). The middle section
contains the cluster centroids as coordinates in each of the
features, along with uncertainties estimated by application
of the bootstrap method to our sample. The rightmost sec-
tion lists the “environment centroid” of the clusters (i.e. the
mean Σ5 of the galaxies they contain; not a feature used in
the clustering), and the percentage of galaxies lost from each
of the clusters due to incompleteness of environmental data.
Sorting the clusters by their mean colour means they are
also correlated with SSFR and M∗ in all four solutions. This
is consistent with our expectation that PC1 (with which
these features are most strongly associated) would dictate
much of the clustering. We note that Siudek et al. (2018)
also find a strong correlation of their galaxy classes (via an
unsupervised method) with colour and star formation activ-
ity. n and R1/2 do not correlate as strongly with our clusters

(when sorted by colour), particularly at higher k, indicat-
ing that these features only play a role in dictating clusters
as the number of clusters increases. The broad correlations
of these features with the clusters at lower values of k are
due to their correlations with our PC1 features. We also
find a correlation of environmental density with the clus-
ters (when sorted by colour), indicative of the strong role of
environment in galaxy evolution.

In order to understand cluster structures, we reprise
the panels of figure 1. We omit the original histograms to
avoid visual clutter, especially at higher values of k. We
use coloured histograms and coloured contour projections
to show the distribution of our clusters in 1D and 2D fea-
ture spaces. The contours are drawn to enclose 75 percent of
the galaxies in each cluster. This level is chosen to strike a
balance between generality and accuracy, given that clusters
are best characterised by points near their centres. Cluster
centroids are plotted as filled circles of the same colour. We
retain the classical dividers for comparison with clusters.

In the following sections we describe each of the solu-
tions in detail.

4.1 k = 2

Figure 6 shows that k = 2 forms the basic structure of two su-
perclusters into which the clusters at higher values of k may
also be divided, indicating the influence of the bimodality on
the clustering. Table 5 reveals that the clusters in k = 2 rep-
resent two distinct populations. Ra2, which contains fewer
galaxies than Ba2, is made up of galaxies with higher masses,
redder colours, higher Sérsic indices, larger radii, and lower
SSFRs on average. This is consistent with established no-
tions of an overall bimodality of galaxies. Cluster Ra2 has
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Figure 7. A profile of k = 2. Clusters are represented using coloured histograms and contours, and their centroids are marked using filled
circles of the same colour.

larger uncertainties on its centroid in all features in com-
parison with those of Ba2 because it less dense in feature
space.

The k = 2 cluster projections in figure 7 are best sepa-
rated in panels involving u− r, SSFR, and M∗. These are the
features that are most strongly associated with PC1, which
dominates the covariance structure of our sample in feature
space and hence dictates much of the clustering. The k = 2
cluster projections overlap more in panels involving R1/2 and
n, which are more strongly associated with PC2 and PC3 re-
spectively. These features play a lesser role in the clustering
in k = 2.

Cluster Ra2 spans the classical dividers (dashed black
lines) in all panels of figure 7. While appearing to represent
red sequence galaxies (Baldry et al. 2004; Taylor et al. 2015)
and quiescent (negligible SSFR) galaxies (table 5), it extends
well onto the blue sequence (u − r vs. M∗) and star-forming
main sequence (SSFR vs. M∗). This is because the cluster

boundary that k-means draws between its two centroids is
a hyperplane, equidistant from them both and perpendic-
ular to the line connecting them. The uniform effect of k-

means, which produces clusters of similar sizes, essentially
bisects our sample through PC1, along which the centroids
are evenly spaced. This gives a coarse partition of our sam-
ple. More clusters are needed to properly “resolve” the true
structure and boundary of the bimodality of galaxies.

In figure 11, we use a bubble plot to visualise agree-
ment between our clusters and the Kelvin et al. (2014) and
Moffett et al. (2016) morphological classifications. The plot
shows a considerable overlap of morphologies between the
two clusters, verifying the relative weakness of n and R1/2 in
the clustering in k = 2. This effect is also seen in figure 7,
which shows that cluster Ra2 is indiscriminate with respect
to Sérsic indices in comparison with our classical divider.
The broad correlation of clusters with morphological types
(e.g. that earlier type morphologies are more likely to be
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Figure 8. A profile of k = 3. Clusters are represented using coloured histograms and contours, and their centroids are marked using filled

circles of the same colour.

found in cluster Ra2; figure 11) arises as a result of the cor-
relation of morphology with our PC1 features. This effect is
apparent in figure C1, which shows that the galaxies in Ra2
have smoother and more concentrated morphologies.

The mean local environmental densities (table 5) of the
k = 2 clusters reveal that the galaxies in Ra2 occupy denser
environments on average than those in Ba2. We note that
this is mostly a reflection of the basic correlation of galaxy
mass, colour, and star formation activity with environment,
due to the coarse partition of our sample. A greater fraction
of galaxies are lost from Ba2 than Ra2, such that this dif-
ference is likely to be underestimated. The panels in figure
12 project the cluster onto the u − r vs. M∗ plane. Points

are coloured by their smoothed local environmental densi-
ties (Σ5; see section 3). Ba2 consists mostly of galaxies in
low density environments. We note a gradual increase of Σ5
with u − r within Ba2. Ra2 exhibits more of a spread in Σ5,
but with a preference for higher density environments. This
suggests that environmental processes are the more common
mechanism by which galaxies acquire redder colours.

4.2 k = 3

Figure 6 shows that k = 3 is hierarchical with respect to
k = 2; only ∼ 6 per cent of the galaxies in our sample do not
follow a clean hierarchy between the two solutions. There-
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Figure 9. A profile of k = 5. Clusters are represented using coloured histograms and contours, and their centroids are marked using filled
circles of the same colour.

fore, much of the cluster structure of k = 3 is derived from
that of k = 2. The red supercluster remains relatively un-
changed between the two solutions. Ra3 contains ∼ 76 per
cent of galaxies that Ra2 contains, and table 5 shows that
both clusters share similar identities. The placement of Ra3
with respect to the classical dividers is improved in most
panels, particularly those involving our PC1 features (M∗,
u − r, and SSFR), indicating the strength with which they
still dictate the clustering in k = 3. This improvement is en-
abled by the split of the blue supercluster, which has evened
out the cluster sizes. The uncertainties on the centroid of
Ra3 are generally less than or equal to those of Ba3 and Bb3
except for in SSFR, which is due to the spread in SSFR of
the quiescent galaxies in Ra3 (see figure 8).

The main change in k = 3 from k = 2 is that k-means

splits the blue supercluster apart into two clusters: Ba3 and
Bb3. The split happens due to the larger number of galaxies
within the blue supercluster. The main features that distin-

guish these clusters are R1/2 and M∗, in which the centroids
(table 5) differ by 1.42σ and 1.03σ respectively (as opposed
to the < 0.50σ differences in other features). Here, σ is the
standard deviation of our sample in a given feature. Figure 8
shows that the distributions of the clusters are most distinct
in these features as well. Ba3 and Bb3 exhibit very similar
distributions in n and SSFR. While differing in mass and size,
galaxies in both Ba3 and Bb3 are generally star-forming and
have diffuse light profiles.

The use of an additional centroid has enabled k-means

to explore the subtler variance in our sample (and in partic-
ular, in the blue supercluster) that PC2 encompasses. The
particularly low masses and sizes of the galaxies in Ba3 sug-
gest a distinction by k-means between dwarf galaxies and
larger, more massive galaxies in the blue supercluster. Figure
13 appears to confirm this, showing that the more evolved
spiral galaxies in our sample are more likely to be found
in cluster Bb3. Figure C2 shows that the galaxies in Bb3
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Figure 10. A profile of k = 6. Clusters are represented using coloured histograms and contours, and their centroids are marked using

filled circles of the same colour.

have more prominent disks. The clusters still exhibit signif-
icant overlap in morphologies and cluster Ra3 is still indis-
criminate with respect to n, indicating a continuing relative
weakness of n in dictating the clustering at k = 3.

The galaxies in Ra3 occupy denser environments on av-
erage than those in either Ba3 or Bb3 (see table 5). Figure 14
shows that clusters Ba3 and Bb3 are similarly distributed in
Σ5. Both are dominated by low density environments and ex-
hibit tails towards higher density environments. For Bb3 we
note that galaxies in low density environments are found at
all masses, suggesting that some galaxies are able to evolve
to higher masses without any significant change in their mor-
phology (see figure 13) due to, for example, major mergers.

The dwarf-like galaxies in Ba3, on the other hand, are more
likely, as satellites, to be affected by their environments dur-
ing infall, such that they do not evolve to higher masses in
low density environments.

4.3 k = 5

k = 5 is not as cleanly hierarchical with respect to k = 3 as
k = 3 is with respect to k = 2 (figure 6). There is mixing
between the red and blue superclusters and within the blue
supercluster, which involves ∼ 21 per cent of the galaxies
in our sample. This indicates that k-means has probed an
alternative structure of our sample in feature space to that
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E S0-Sa Sab-Scd Sd-Irr LBS

Morphological Classifications

Ba2

Ra2

945 3226 809

683 734 463

Figure 11. Bubble plot comparing k = 2 with the Kelvin et al.
(2014) and Moffett et al. (2016) morphological classifications. All

bubbles containing more than 5 per cent of the galaxies in our

sample are labelled with the number of galaxies that they contain.
The dashed black line separates the two superclusters that k-

means finds.

Figure 12. Our k = 2 clusters, projected onto the u − r vs. M∗
plane, with points coloured by their smoothed local environmental
densities (Σ5). The small grey points represent the remainder of

our sample, as well as those galaxies for which Σ5 is not available

(including those within the clusters highlighted in each panel).
Cluster names are shown in the bottom right of each panel. The

mean Σ5 of each cluster is shown in the top left of each panel.

The dashed black line marks the Baldry et al. (2004) distinction
between the blue and red sequences of galaxies.

which it finds in k = 2 and k = 3. Our exclusion of a solution
from k = 4 due to instability (figure 5) may exaggerate the
apparent mixing. The bimodal stability of solutions at k =
4 emerges as k-means settles into a split in either the red
or the blue supercluster, rather than splits in both as in
k = 5. Both of these splits must be made in order to achieve

E S0-Sa Sab-Scd Sd-Irr LBS

Morphological Classifications

Ba3

Bb3

Ra3

1576 782

1043 1745

642 667

Figure 13. Bubble plot comparing k = 3 with the Kelvin et al.
(2014) and Moffett et al. (2016) morphological classifications. All

bubbles containing more than 5 per cent of the galaxies in our

sample are labelled with the number of galaxies that they contain.
The dashed black line separates the two superclusters that k-

means finds.

stability, suggesting genuine differences between the galaxies
occupying these clusters.

The red supercluster is split into two clusters: Ra5 and
Rb5. The features that distinguish these clusters are M∗,
R1/2, and n, with differences of 1.41σ, 1.35σ, and 1.19σ
respectively in their centroids (see table 5). We note that
they are also separated in the SSFR vs. u − r plane. Rb5
consists mostly of evolved galaxies with the highest masses
and reddest colours in our sample. Enabled by the use of
additional centroids to probe subtler variances in the sam-
ple, k-means has also now made a morphological distinction
between galaxies such that Rb5 contains galaxies with the
highest Sérsic indices as well. This is also apparent in fig-
ures 15 and C3, which respectively show that Rb5 is made up
mostly of early type galaxies and of concentrated, smooth,
spheroid-dominated galaxies.

Ra5 has a weaker cluster identity. While Rb5 contains
galaxies from only one cluster in k = 3, Ra5 contains galax-
ies from three. Its centroid has larger uncertainties in most
features than those of the other k = 5 clusters (table 5), and
it exhibits a large spread in figure 9, spanning the red and
blue sequences and including both star-forming and quies-
cent galaxies. The galaxies Ra5 contains have red colours and
low specific star formation rates like those in Rb5, but not
to the same extent, suggesting that they are not as evolved.
Figure 15 reveals that it also contains a range of morpholo-
gies, with even E and Sd-Irr type galaxies being grouped
together. This suggests a lack of morphological information
in our feature selection, despite the role n is now playing in
dictating cluster Rb5. We also note an apparent inability of
k-means to properly distinguish E and S0-Sa type galaxies.
Nolte et al. (2018) find a similar inseparability of these mor-
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Figure 14. Our k = 3 clusters, projected onto the u − r vs. M∗
plane, with points coloured by their smoothed local environmental

densities (Σ5). The small grey points represent the remainder of
our sample, as well as those galaxies for which Σ5 is not available

(including those within the clusters highlighted in each panel).

Cluster names are shown in the bottom right of each panel. The
mean Σ5 of each cluster is shown in the top left of each panel.

The dashed black line marks the Baldry et al. (2004) distinction
between the blue and red sequences of galaxies.

phological classes in the same sample using both supervised
and unsupervised methods.

The blue supercluster is split again in k = 5. The mix-
ing between k = 3 and k = 5 within the blue supercluster
means the clusters in each solution do not correspond as
strongly to one another. The galaxies in Ba5 and Bb5 have
been distinguished from those in Bc5 by their masses, in
which their centroids both differ from that of Bc5 by > 1σ.
Ba5 and Bb5 are similar in terms of the colours and specific
star formation rates of the galaxies they contain. The main
distinction between them is in their sizes (> 1σ). Figure C3
shows that Bb5 contains more galaxies with extended disks,
while Ba5 contains more galaxies that are compact. Ba5 con-
tains the vast majority of LBS galaxies in our sample (figure
15), while Bb5 contains a significant number of more evolved
spiral galaxies.

Bc5 differs from the other two clusters in the blue su-
percluster, containing relatively massive and large galaxies
with reduced star formation. The intermediate colours of the
galaxies in Bc5, and its location in the colour-mass plane in
particular are consistent with previous descriptions of green
valley galaxies (Salim et al. 2007; Schawinski et al. 2014).
The low Sérsic indices of the galaxies in Bc5 in comparison
with those of the galaxies in the red supercluster are due to
the presence of prominent disks (see figures 15 and C3). Bc5
contains spiral galaxies at the later stages of their evolution.

Just as the use of additional centroids has enabled k-

E S0-Sa Sab-Scd Sd-Irr LBS

Morphological Classifications

Ba5

Bb5

Bc5

Ra5

Rb5

670 706

431 2205

762

378

466

Figure 15. Bubble plot comparing k = 5 with the Kelvin et al.
(2014) and Moffett et al. (2016) morphological classifications. All

bubbles containing more than 5 per cent of the galaxies in our

sample are labelled with the number of galaxies that they contain.
The dashed black line separates the two superclusters that k-

means finds.

means to make finer distinctions between galaxies in terms of
the features we use to describe them, it has also led to a finer
view of the role of environment in influencing our clusters.
The galaxies in clusters Ba5, Bb5, Bc5 mostly occupy low
density environments (table 5 and figure 16). Meanwhile,
clusters Ra5 and Rb5 generally contain galaxies in higher
density environments. Notably, the average local environ-
mental densities of galaxies in clusters Bc5 and Ra5 differ,
despite that these clusters are adjacent in all panels of figure
9 and span both the blue and red sequences in figure 16.

We suggest that these “green valley” clusters, Ra5 and
Bc5, each mostly contain galaxies on different evolutionary
pathways. The evolution of galaxies in Ra5, whose distribu-
tion in Σ5 is skewed toward higher densities, is dominated by
external processes (i.e. environment quenching; Peng et al.
2010), which both transform their morphologies and inhibit
their star formation on short timescales. Examples of exter-
nal processes include major (Barnes 1992), and minor merg-
ers (Toomre & Toomre 1972). These processes are likely re-
sponsible for the early type morphologies (figures 15 and
C3), red colours, and inhibited star formation rates (figure
9) in Ra5.

Cluster Bc5, which is dominated by galaxies in lower
density environments, contains galaxies that are dominated
in their evolution by internal processes. Internal processes in-
clude mass quenching, in which feedback from stars (Geach
et al. 2014) and AGN (Croton et al. 2006) scales with galaxy
stellar mass and drives star forming gas out of galaxies, and
morphological quenching (Fang et al. 2013), in which bulges
at the centre of late-type galaxies stabilise their disks against
collapse and thereby prevent further star formation. The
high masses (figure 9) and prominent bulges (figure C3) of
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Figure 16. Our k = 5 clusters, projected onto the u − r vs. M∗
plane, with points coloured by their smoothed local environmental

densities (Σ5). The small grey points represent the remainder of
our sample, as well as those galaxies for which Σ5 is not available

(including those within the clusters highlighted in each panel).

Cluster names are shown in the bottom right of each panel. The
mean Σ5 of each cluster is shown in the top left of each panel.

The dashed black line marks the Baldry et al. (2004) distinction

between the blue and red sequences of galaxies.

the galaxies in Bc5 seem to confirm the dominance of these
internal processes in their evolution.

The differences in the morphologies of the galaxies in
Ra5 and Bc5 is consistent with Schawinski et al. (2014),
who find a morphological dichotomy of galaxies in the green
valley. The spread in morphologies in Ra5 may arise due to
both its large spread in Σ5, and the short timescales of mor-
phological transformations. The dominance of galaxies with
high Σ5 in Rb5 suggests a preference of external processes
for moving galaxies onto the red sequence over time. The
additional presence of galaxies in low density environments
in Rb5 suggests that galaxies evolving mostly via internal
processes will also converge on the red sequence, though.

E S0-Sa Sab-Scd Sd-Irr LBS

Morphological Classifications

Ba6

Bb6

Bc6

Bd6

Ra6

Rb6

924

508 1854

493

655

424

Figure 17. Bubble plot comparing k = 6 with the Kelvin et al.
(2014) and Moffett et al. (2016) morphological classifications. All

bubbles containing more than 5 per cent of the galaxies in our

sample are labelled with the number of galaxies that they contain.
The dashed black line separates the two superclusters that k-

means finds.

4.4 k = 6

k = 6 is once again more strongly hierarchical with respect
to k = 5 than k = 5 is with respect to k = 3; ∼ 15 per
cent of galaxies mix between k = 5 and k = 6. Clusters are
more readily comparable with those in k = 5, from which
most of their structure is derived. The clusters in the red
supercluster retain their identities in terms of their centroids
(table 5), distributions (figure 10), and morphologies (figure
17) between k = 5 and k = 6 and remain mostly unchanged.
Similarly, Bd6 matches well with Bc5, as does Bb6 with Bb5.

The main changes between k = 5 and k = 6 are at
the blue end of the blue supercluster. Ba6 and Bc6 both
have low masses and small radii. They differ most signif-
icantly in n (1.34σ), appearing to indicate a morphologi-
cal distinction between disk-dominated galaxies in Ba6 and
spheroid-dominated galaxies in Bc6. While figure 17 reveals
a significant degeneracy of morphological classifications in
these clusters, the distinction is more apparent in figure C4.
The classification degeneracy may arise partially due to the
difficulty incurred in visually classifying intrinsically faint
objects. We note that Bc6 contains some potentially spuri-
ous spheroid-dominated E type galaxies, which could explain
some of the difference in n between Ba6 and Bc6. Further
morphological information in our feature selection may lead
to a clearer distinction between galaxies at the blue end of
the blue supercluster.

Clusters Ba6, Bb6, and Bd6, which all contain disky
galaxies (figures 17 and C4) in mostly low density environ-
ments (figure 18), appear to form a continuum of galaxy
evolution along the blue sequence. This continuum is dic-
tated by internal processes, given the increase in mass and
bulge prominence along the sequence of consistently low Σ5.
The environments of the galaxies in Bc6 are also low density,
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Figure 18. Our k = 6 clusters, projected onto the u − r vs. M∗
plane, with points coloured by their smoothed local environmental

densities (Σ5). The small grey points represent the remainder of
our sample, as well as those galaxies for which Σ5 is not available

(including those within the clusters highlighted in each panel).

Cluster names are shown in the bottom right of each panel. The
mean Σ5 of each cluster is shown in the top left of each panel.

The dashed black line marks the Baldry et al. (2004) distinction

between the blue and red sequences of galaxies.

though they have an early type morphology, suggesting that
they may have formed differently. We note a significant tail
of this cluster toward intermediate densities, suggesting that
they may be in the early stages of morphological transfor-
mation due to environmental effects. Their origin and fate
is unclear (Schawinski et al. 2009).

We note that agreement of our clusters with the clas-
sical dividers has improved considerably as k has increased.
At k = 6, the clusters align particularly well with established
notions of a fundamental bimodality of galaxies, which we
express using the dashed black lines in figure 10. Cluster Ra6
still spans the dividers in some panels, though this may be
due to the rapid timescales of the morphological transfor-
mations that the galaxies it contains are likely undergoing,
such that they exhibit a larger spread in our features.

5 SUMMARY

We report the results of a test of the k-means unsupervised
clustering method as a galaxy classification solution for the
unprecedentedly large surveys of the future and as a tool
for exploring feature spaces of high dimensionalities. It is
tested on a redshift- and magnitude-limited sample of 7338
galaxies from the GAMA survey, which we represent using
a preliminary selection of five features: stellar mass, u − r
colour, Sérsic index, half-light radius, and specific star for-
mation rate. Analyses of correlations and covariances be-
tween features reveal that stellar mass, u − r colour, and
specific star formation rate dominate much of the structure
of our sample in feature space and hence dictate much of the
clustering. We rescale, truncate, and normalise our sample
ahead of clustering to mitigate a) the influence of outliers
on results, and b) bias toward any of the features based on
skewed distributions or large numerical ranges.

We apply the k-means method, which partitions data
into k clusters, in the context of a unique cluster evaluation
approach that enables us to robustly identify stable clus-
tering structure in spite of stochastic effects, including the
initialisation of k-means, and application of the bootstrap
method to our sample. We note that to examine the stabil-
ity of clustering in our sample at a single value of k takes just
∼ 3 minutes using a single core on a laptop computer. This
framework is therefore highly scalable. We find that the local
galaxy population is stably divisible into 2, 3, 5, and a max-
imum of 6 clusters. We select optimal clustering solutions
from each value of k for analysis. We reach the following
conclusions:

(1) Clusters in all four of our best solutions agree with es-
tablished notions of the bimodality of galaxies. Agreement
improves as k increases. The use of additional centroids to
model the data structure of our sample in feature space en-
ables a more detailed view of the bimodality via k-means.
At higher values of k, we find distinct clusters that appear
to follow different evolutionary pathways through the green
valley. While M∗, u − r, and SSFR dictate most of the clus-
tering structure in all four of our best solutions, n and R1/2
play an increasingly strong role at higher k as k-means uses
the additional centroids to explore subtler variances in our
sample.

(2) Though we do not aim to reproduce any existing clas-
sification schemes with our clusters, we find a general agree-
ment of our clusters with the Kelvin et al. (2014) and Moffett
et al. (2016) Hubble-like morphological classifications of the
galaxies in our sample. At low k, this agreement is mostly
due to the correlation of morphology with stellar mass, u− r
colour, and specific star formation rate, which dictate the
majority of the clustering. This suggests a relative lack of
morphological information among our feature selection. At
higher k, though, we find that k-means is able to explore
subtler variances in our sample and make genuine morpho-
logical distinctions between galaxies using Sérsic index. The
addition of further morphological features to our selection is
anticipated to improve these distinctions.

(3) Analysis of the local environmental densities of the
galaxies in the clusters in solutions k = 5 and k = 6 especially
suggests the differential roles of internal and external pro-
cesses in galaxy evolution. Those clusters containing more
galaxies in high density environments also contain more
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galaxies with early type morphologies, with their spreads
in morphologies indicating rapid morphological transforma-
tion and their reduced SSFRs indicating quenching. Clusters
containing galaxies in low density environments are found
along the whole blue sequence, such that some galaxies are
able to evolve to the highest masses while retaining a disky
morphology. Clusters in the blue sequence appear to form
an evolutionary continuum of clusters whose galaxies are
dominated in their evolution by internal processes. There
is an apparent preference for externally driven evolution of
low mass (M∗ < 1010 M�) galaxies onto the red sequence.
An availability of this environmental data for the entirety
of our sample would significantly strengthen these (or alter-
native) conclusions regarding the role of environment in the
evolution of galaxies.

We endorse k = 6 as being the most useful solution
for its ability to both capture the broad bimodal structure
of the galaxy population in feature space and identify finer
distinctions within this bimodality that highlight the differ-
ential role of environment in the evolution of galaxies.

While we caution against the use of too many features
due to issues such as overfitting and redundancy, it is clear
that our feature selection may be improved by the addition
of further information. We suggest that the inclusion of mor-
phological features like asymmetry or distance-independent
smoothness (Conselice 2003), the Gini coefficient (Abraham
et al. 2003), or those derived from two-component fits might
yield stronger cluster identities and further disentangle the
roles of internal and external evolutionary processes, par-
ticularly with respect to clusters Ra5 and Ra6 which both
contain a spread of morphologies. Wijesinghe et al. (2010)
show that morphological information from multiple bands of
photometry also incorporates information about the stellar
populations within galaxies. We anticipate that the inclusion
of spectroscopic features would also improve clustering re-
sults and cluster interpretation. In particular, emission line
ratios such as those used in BPT diagrams (Baldwin et al.
1981) could highlight the role of active galactic nuclei in
galaxy evolution, and the strength of the 4000 Angstrom
break Poggianti & Barbaro (1997) could include galaxy ages
in cluster identities. In general, it appears that an optimal
feature selection will consist of a combination of features
derived from both photometry and spectroscopy.

Our feature selection for the work in this paper is pre-
liminary, and based mostly astrophysical knowledge. While
some simple statistical consideration is applied (Spearman
rank-order correlations and a principal component analysis),
a variety of other methods are also available (see chapter 2 of
Aggarwal 2014 for a comprehensive review) for feature selec-
tion and feature extraction (i.e. the manufacture of features)
which may further improve clustering results.

Our sample is well-characterised by a number of pre-
vious studies, facilitating the interpretation of the clusters
that we find, but it is small and limited to low redshifts.
While our sample suffices for an initial test of k-means and
our cluster evaluation approach, a more thorough test would
be to apply the framework to a larger sample of galaxies
spanning a greater range of redshifts, constituting a more
complete representation of the diversity of galaxies in and
beyond the local Universe. The Sloan Digital Sky Survey
would be particularly suitable given the wealth of features

available, and especially given its overlap with the Galaxy
Zoo project which would enable more detailed study of mor-
phologies within clusters. Furthermore, clustering a sample
of galaxies spanning a greater range of redshifts, or a com-
parison of clusters in different redshift bins, invites the ex-
amination of the evolution of clusters themselves over cosmic
time.

We conclude by emphasising that our cluster evaluation
approach is malleable. It may readily be adapted for use with
any algorithm and any sample to identify stable clustering
structure. We test stability against random initialisations
and application of the bootstrap method to our sample, but
the approach may also be applied in the context of other
Monte Carlo methods.

Our k = 2, 3, 5, and 6 classifications are available in
a catalogue at http://www.astro.ljmu.ac.uk/~aststurn/

mstar_ur_n_hlr_ssfr_tlz_k2356.txt. A Python 3 script
containing functions that implement the k-means method
and our cluster evaluation approach is available at https:

//github.com/sebturner/stacopy.
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R. H., Nichol R. C., Szalay A. S., 2004, ApJ, 600, 681

Baldry I. K., et al., 2010, MNRAS, 404, 86

Baldry I. K., et al., 2012, MNRAS, 421, 621

Baldwin J. A., Phillips M. M., Terlevich R., 1981, PASP, 93, 5

Ball N. M., Loveday J., Fukugita M., Nakamura O., Okamura S.,
Brinkmann J., Brunner R. J., 2004, MNRAS, 348, 1038

Bamford S. P., et al., 2009, MNRAS, 393, 1324

Barchi P. H., da Costa F. G., Sautter R., Moura T. C., Stalder

MNRAS 000, 1–23 (2018)



20 Sebastian Turner et al.

D. H., Rosa R. R., de Carvalho R. R., 2016, Journal of Com-

putational Interdisciplinary Sciences, 7, 114

Barnes J. E., 1992, ApJ, 393, 484

Bertin E., Arnouts S., 1996, A&AS, 117, 393

Bouveyron C., Brunet C., 2012, Statistics and Computing, 22,
301

Brough S., et al., 2013, MNRAS, 435, 2903

Bubeck S., Meila M., von Luxburg U., 2012, ESAIM: Probability
and Statistics, 16, 436

Conselice C. J., 2003, ApJS, 147, 1

Cramér H., 1946, Mathematical Methods of Statistics. Princeton
Mathematical Series, Princeton University Press

Croton D. J., et al., 2006, MNRAS, 365, 11

Da Cunha E., Charlot S., Elbaz D., 2008, MNRAS, 388, 1595

Dieleman S., Willett K. W., Dambre J., 2015, MNRAS, 450, 1441

Dressler A., 1980, ApJ, 236, 351

Driver S. P., et al., 2006, MNRAS, 368, 414

Driver S. P., et al., 2009, Astronomy and Geophysics, 50, 5.12

Driver S. P., et al., 2016, MNRAS, 455, 3911

Duda R. O., Hart P. E., Stork D. G., 2000, Pattern Classification

(2Nd Edition). Wiley-Interscience

Ellis S. C., Driver S. P., Allen P. D., Liske J., Bland-Hawthorn
J., De Propris R., 2005, MNRAS, 363, 1257

Fang J. J., Faber S. M., Koo D. C., Dekel A., 2013, ApJ, 776, 63

Fukugita M., et al., 2007, AJ, 134, 579

Geach J. E., et al., 2014, Nature, 516, 68
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APPENDIX A: STABILITY SIMULATION

To demonstrate the use of stability for selecting good val-
ues of k, we set up a simple simulation (figure A1). 5000
data points are distributed equally over five 2D Gaussian
functions, centred at the vertices of a unit regular pentagon.
The standard deviations of the distributions (σ = 0.3) are
set such that they overlap slightly. The value of ktrue for
this simulation is 5. We run k-means with k = 4, 5, and 6.
We initialise 200 times at each k using the Arthur & Vas-
silvitskii (2007) technique. We introduce a naming scheme
for the clusters that k-means finds in our simulation. Clus-
ter names consist of three parts in the format “XYZ”. The
first part, either “A” or “B”, corresponds to a particular so-
lution to which the cluster belongs, and is used to identify
solutions in the figures in this appendix. The second part,
a number, corresponds to the individual cluster, also shown
in the figures. The third part, another number, indicates the
value of k at which the solution was found.

Figure A2 shows two examples of the solutions found at
k = 4 < ktrue. In both cases, k-means merges two true clus-
ters: purple and blue in solution A on the left, and yellow
and green in solution B on the right. These mergers have af-
fected the accuracy of the neighbouring k-means clusters as
well in that they suffer from contamination (in terms of the
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Figure A1. On the left-hand side we display our simulation,
containing five true clusters. See the main text for information on

how it is generated. On the right-hand side we colour the points

by their truth labels; all points with the same colour belong to
the same true cluster, whose centroid is marked out by a large

filled circle, also of the same colour.

Table A1. Contingency table, comparing solutions A and B gen-

erated at k = 4 and shown in figure A2.

Cluster B14 B24 B34 B44
A14 330 0 830 0
A24 0 946 0 194
A34 808 0 1 839
A44 0 245 807 0

Figure A2. Examples of k-means clustering at k = 4 < ktrue .

The algorithm has merged the purple and blue true clusters in

solution A on the left, and the yellow and green true clusters
in solution B on the right. The k-means centres are marked by

filled white circles. The boundaries between k-means clusters are
marked by straight black lines.

true cluster structure). Table A1, a contingency table (a.k.a.
cross tabulation), shows that the solutions are only weakly
associated with one another. The chi-squared value (equa-
tion 4) for these two solutions (A and B), calculated using
the contingency table, is 6617.95. From this, using equation
3, we calculate V = 0.66 (with N = 5000 and k = 4).

Figure A3 shows two examples of the solutions found
when k = 5 = ktrue. While they appear identical, they actu-
ally differ by four points (see contingency table A1, which
shows the near-perfect association between the two solu-
tions). k-means has succeeded in finding the five true clus-
ters in both solutions. While is not impossible that k-means
might find an alternative structure in the simulation at k = 5
given more initialisations, the rate at which it would do so
would be so low (less than at most 0.5 per cent given figure
A3) that k = 5 would still stand out as being particularly

Table A2. Contingency table, comparing solutions A and B gen-
erated at k = 5 and shown in figure A3.

Cluster B15 B25 B35 B45 B55
A15 0 985 0 0 0
A25 0 3 0 0 1005
A35 0 0 0 993 0
A45 0 0 1013 1 0
A55 1000 0 0 0 0

Figure A3. Examples of k-means clustering at k = ktrue = 5.

The algorithm has correctly found the five true clusters in both

solutions A and B, which differ by only 4 points. The k-means
centres are marked by filled white circles. The boundaries between

k-means clusters are marked by straight black lines.

Table A3. Contingency table, comparing solutions A and B gen-

erated at k = 5 and shown in figure A4.

Cluster B16 B26 B36 B46 B56 B66
A16 0 0 658 0 0 8
A26 1 988 0 0 0 0
A36 258 0 0 0 0 658
A46 0 1 0 0 954 0
A56 148 3 0 844 0 0
A66 34 4 338 0 37 31

stable. For these two k = 5 solutions (A and B), we calculate
χ2 = 19960.03 and (with N = 5000, k = 5) V = 0.999.

Figure A4 shows two examples of the solutions found at
k = 6 > ktrue. The algorithm has split a true cluster in both
cases: green in solution A on the left, and yellow in solution
B on the right. The splits appear to have a lesser effect on
neighbouring k-means clusters than the mergers at k = 4, in
that there is less contamination overall. Contingency table
A3 reveals that the solutions are more strongly associated
with one another than those solutions found at k = 4, as the
split in one solution fits more cleanly into a whole cluster
in the other. For these two k = 6 solutions (A and B), we
calculate χ2 = 18017.03 and (with N = 5000, k = 6) V = 0.85.

We summarise these results using a stability map (figure
A5). We reemphasise that the key element of this plot for dis-
tinguishing stable and unstable values of k is the gap across
all distributions in median V . The distribution of solutions
at k = 5, showing that all 200 initialisations converged to the
same stable solution (within 4 points), is clearly indicative
of the true structure of the simulation. The distributions of
solutions at k = 4 and k = 6, indicating that they are unsta-
ble, reflect that there is no objectively correct way to divide
the five true clusters into four or six given the symmetry of
the simulation. The distribution at k = 6 is narrower because
splits affect the accuracy of the other k-means clusters less
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Figure A4. Examples of k-means clustering at k = 6 > ktrue .
The algorithm has split the green true cluster in the example

on the left, and the yellow true cluster in the example on the

right. The k-means centres are marked by filled white circles.
The boundaries between k-means clusters are marked by straight

black lines.
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Figure A5. Stability map of k-means clustering for the simulated

data set at k = 4, 5, and 6. We calculate the median V of each

solution with respect to all other solutions at the same k. The
distributions of all 200 medians at each k are represented using

histograms plotted along each of the horizontal black baselines.

The heights of the histograms are normalised. Additionally, we
show the means of these distributions as vertical red lines. The

solution at k = 5 stands out as being particularly stable, indicative

of the true structure of the simulation.

than mergers. With the benefit of knowing the true structure
of the simulation, we could remerge the splits at k = 6 and
achieve a better approximation to the k = 5 solutions than
if we were to split merges at k = 4. For more complicated
samples, involving more features, this effect would be more
difficult to discover and exploit.

Given that the same solution may arise several times
over a large number of initialisations, one may opt to select
the modal solution as the most optimal instead of that with
the lowest φ. In practice, we find that one criterion implies
the other; the most compact clusters tend to emerge most
often anyway (thanks to our choice of initialisation tech-
nique). We retain φ as our criterion for optimal clustering
at given values of k.

APPENDIX B: BOOTSTRAP EXPERIMENT

In order to estimate the uncertainties on the centroids re-
ported in table 5, we apply the bootstrap method to our
sample of galaxies. The method resamples our original sam-
ple with replacement, such that the same galaxy may be
selected more than once. We select 7338 observations in this
manner. We run k-means once on this new sample, retaining
the centroids, and then partition our original sample accord-
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Figure B1. Stability map of k-means clustering for our boot-
strapped sample at k = 2 through k = 15. We calculate the median

V of each solution with respect to all other solutions at the same

k. The distributions of all 7338 medians at each k are represented
using histograms plotted along each of the horizontal black base-

lines. The heights of the histograms are normalised. Additionally,

we show the means of these distributions as vertical red lines.
Solutions at k = 2, 3, 5, and 6 remain most stable following appli-

cation of the bootstrap method to our sample.

ing to these centroids. This whole process is itself repeated
7338 times. The stability map for the bootstrap experiment
is shown in figure B1.

The distributions of solutions at all values of k are
shifted to lower stabilities following application of the boot-
strap method. This is in comparison with the distributions
generated purely from the original sample, shown in figure
5. Solutions at k = 2, 3, 5, and 6 remain the most stable in
figure B1, though solutions at k = 6 exhibit a more signif-
icant reduction in stability than solutions at k = 2, 3, and
5 due to the increased local dependency of k-means with a
higher numbers of centres. Solutions at k = 4 retain their
bimodal structure in stability. The distribution of solutions
at k = 7, which exhibited a stable component in figure 5, is
now uniformly unstable to the same extent as the distribu-
tions at higher values of k, justifying our decision to exclude
solutions from k = 7 from our analyses in section 4.

For the lower and upper uncertainties in table 5, we
calculate the 16th and 84th percentiles respectively of the
7338 centroids, in each of the five features. From these, we
subtract the original centroids we calculate.

APPENDIX C: POSTAGE STAMPS

Here we present example postage stamps of galaxies in each
of the clusters in each of the solutions. The three-colour
stamps are made using r- and g-band imaging from the Kilo-
Degree Survey (de Jong et al. 2013), and a mean of the two
bands as the central colour channel. The stamps enclose each
galaxy to 2.5 times its Kron radius. The examples we choose
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are those that are best represented by the cluster centroids;
they are nearest to the centroids in our five dimensional
feature space.

This paper has been typeset from a TEX/LATEX file prepared by

the author.
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Figure C1. Example postage stamps of galaxies in each of the clusters in k = 2. The dashed black line separates the two superclusters

that k-means finds. See section 4.1 for discussion.
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Figure C2. Example postage stamps of galaxies in each of the clusters in k = 3. The dashed black line separates the two superclusters

that k-means finds. See section 4.2 for discussion.
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Figure C3. Example postage stamps of galaxies in each of the clusters in k = 5. The dashed black line separates the two superclusters

that k-means finds. See section 4.3 for discussion.
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Figure C4. Example postage stamps of galaxies in each of the clusters in k = 6. The dashed black line separates the two superclusters

that k-means finds. See section 4.4 for discussion.
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