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ABSTRACT 

 

Freestyle snowsport has emerged as one of the fastest growing Winter Olympic 

sports in the past decade, despite this no countries/teams have published data 

explaining the sports biomechanical demands in training or competition. Information 

describing the kinetic, kinematic and muscular demands relative to jump landing 

actions has not been investigated with elite freestyle athletes.  

  

Data were collected from athletes of the Great Britain Park and Pipe team during an 

official team training session, conducted on an artificial landing slope. Five athletes 

were assessed over multiple trials in three jump landings completed in regular, 

switch, 360 degree (deg) rotation jump landings. Measures including; landing 

acceleration (g), knee flexion angle (deg), knee angular velocity (d/sec) and 

integrated electromyography (iEMG) in muscles of the upper-thigh (bicep femoris, 

rectus femoris, semitendinosus, vastus lateralis, and vastus medialis), in pre and 

post-initial contact (IC) phases of jump landings were recorded. 

 

Large peak board accelerations were found in the regular and 360 deg rotation jump 

landing conditions, which corresponded with increased knee flexion angle and knee 

angular velocity at the point of initial contact (landing) and post-IC phase. Group 

summed mean iEMG revealed higher overall muscle activation post-IC versus pre-

IC, and higher mean iEMG and peak % MVC recorded in the BF, RF, VL and VM 

muscles post-IC in the 360 deg rotation condition. Highest mean iEMG in the ST 

muscle was found post-IC in the regular jump landing condition. Elevated pre-

activation of hamstring (BF, ST) muscles was found in switch and 360 deg rotation 

conditions. And, higher mean and peak iEMG values were also observed post-IC in 

the quadricep (RF, VL and VM) muscles. 

 

This research can be used to inform practitioners of the biomechanical demands of 

snowboard jump landings, which is currently absent from the scientific literature. 

More specifically, the findings reveal the importance high muscular strength and rate 

of force development capabilities of hamstring and quadricep muscles, which should 

be targeted in athletic development programmes to assist lower-limb performance 

during snowboard landings. 
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GLOSSARY OF TERMS 

 
Rider – Abbreviated term for a snowboarder. 

 

Kicker – Name given to a large man-made slope used by snowboarders to perform 

aerial jumps. 

 

Regular – Refers to landing in a regular stance, e.g. same leading leg at the nose 

of the snowboard at take-off and landing. 

 

Switch – Refers to landing in a switch stance following a 180 degree spin. E.g. the 

rider jumps with their left leg leading, spins 180-degrees and lands with the right leg 

leading in a switch stance. 

 

360 degree (deg) rotation – An action requiring a rider to perform a flat spin through 

360 degrees landing in his/her regular stance, e.g. same leading leg at the nose of 

the snowboard at take-off and landing.
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CHAPTER 1. INTRODUCTION 

 

Freestyle snowsport has emerged as one of the fastest growing Winter Olympic 

sports in the past decade, with a record number of 5 freestyle events featuring at the 

2014 Winter Olympic Games in Sochi, Russia: Slopestyle (SS) and Halfpipe (HP) 

ski and snowboard, Mogul Skiing, Aerial Skiing and Ski and Snowboard Cross 

(SBX). Progressive aerial events, like SS and Big Air, have encountered the largest 

growth in professional sport participation and an increased total number of 

professional competitions and media attention in the past few years. More countries 

have produced athletes capable of competing on the international scene than ever 

before. As such, national performance programmes have rapidly expanded in size 

and resource, with more teams working to create freestyle-specific training facilities 

and performance services to produce more talent capable of performing on the world 

stage. Several national teams have already begun to invest in more conventional 

high-performance support services, including sport science and strength and 

conditioning to investigate were applied science can support and impact upon 

freestyle performance. Although to date, no countries/teams have published data 

from freestyle athletes in training or competition, leaving a void in empirical evidence 

of the sports key physical demands. Of concern currently, is the high prevalence of 

sports injuries impacting elite male and female freestyle athletes sustained during 

falls and crashes. Presently, information describing the biomechanical (kinetic and 

kinematic) demands relative to a large jump-landing has not been investigated with 

elite freestyle athletes, leaving a gap in the knowledge. Greater awareness of the 

training and competition activity facing these athletes would greatly increase 

understanding and ability to offer evidence-based injury prevention/ performance 

solutions. This chapter will discuss the current literature linked with freestyle 

snowsport and present rationale for the investigation of biomechanical assessment 

of elite freestyle snowboard athletes in training. 
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CHAPTER 2. LITERATURE REVIEW 

 

2.1 Background of freestyle snowsport 

 

Snowboarding originated in France as a recreational sport during the 1920’s (Tiburg 

and Surfing, 1996) and became more popular in the mid 1960’s with half of the 

world’s eight million snowboard riders alone reported in the US, competing in 

regional competitions (Kipp, 1998). At this time, European competitions ran parallel 

to the programs of alpine skiing under the governance of the International Ski 

Federation (FIS) with the first world cup season launched in 1994. Later, the 

International Olympic Committee (IOC) claimed their interest to competitive 

snowboarding and introduced two events, namely, parallel giant slalom (PGS) and 

half pipe (HP) to the Nagano, Japan Winter Olympic Games 1998 (FIS, 2013a.). 

Today the competition scene of elite snowboarding has grown substantially with a 

vast stream of European, World Cup, Winter X Games and Olympic competitions 

completing an 8-month competition season from September through to April each 

year.  

 

Snowboard events are categorized into two main disciplines, alpine (parallel slalom 

(PSL), parallel giant slalom) and freestyle (HP, slopestyle (SS) and big air (BA). Over 

time, the International Olympic Committee (IOC) has increased the number of events 

at Winter Olympic competition and a record high of five events took place at the 2014 

Winter Olympic Games, Sochi, Russia. Whilst the profile for competition, sport 

participation and media attention has grown considerably in the past century, 

scientific literature investigating the sport has been slow to evolve by comparison. 

Because of this, a true understanding of the sports physical demands is still absent 

from the literature and therefore knowledge of best methods to physically prepare 

athletes for international competition remains unavailable.  
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2.2 Slopestyle event characteristics 

 

Slopestyle snowboard competitions are characterised by explosive, ground and 

aerial free-flowing, acrobatic manoeuvres, including terrain features, rail slides and 

aerial boosting ‘kickers’ (Jumps) differing in shape and size (see Figure 1). A World 

Cup and Olympic course comprise of 6-8 features over 3 sections, interspersed with 

short, flat transitions allowing set-up time between tricks (see Figure 2). The layout 

of a SS course is designed to accommodate athletes increasing linear momentum, 

and so the features tend to increase in size as the course progresses, therefore 

increasing athlete flight time and velocity through latter parts of the course. Athletes 

compete individually in qualifying rounds through to finals comprising of 2-3 separate 

runs. The time between jumps in a single SS or HP run are brief, with 6-8 total 

features/jumps performed with full recovery (<15 minutes) between runs lasting 30 

seconds on average. Athletes may be expected to repeat this activity across a 2-3 

hour competition window depending on progress in each contest. Each contest 

includes 1-2 practice days, 1 qualification day, and a finals day. With travel to each 

competition event bookending practice and competition, fatigue is likely to impair 

athlete recovery and performance (Turnbull, 2013). Whilst there is some literature 

describing athlete demands during HP training and competition, there is no research 

available explaining time-motion or physical demands of athletes in SS training and/ 

or competition. Major differences exist between a HP and SS competition, such as 

course design, range of tricks and run duration performed by athletes. Given the 

differences listed, it is crucial that research is performed on SS athletes to add 

knowledge of demands currently absent from the literature. 

 

Like gymnastics, freestyle athletes compete to gain points awarded to riders that 

utilise challenging features in a sequential and creative manner. Athletes endeavour 

to produce a well-balanced run, incorporating qualities established by the 

International Ski Federation, and include variety, combinations, execution, difficulty 

and amplitude, each contributing to overall impression. Deductions are made for 

missed features, mistakes, stops and falls/crashes. High scoring runs require 

athletes to ride the most technical course line, utilising a range of novel and 

progressive tricks including ‘board grabs’ through on/off axis rotations. Athletes 

capable of achieving podium spots at competitions like ‘Dew Tour’ at Breckenridge, 

Colorado, and ‘X-Games’ held in Aspen, need to produce the most advanced and 



 4 

progressive range of tricks within the field. For example, versions of the ‘Triple Cork 

1620’, and the ‘Backside 1080’ (see Figure 2) (spinning backside 1080 degrees 

about their axis) has become increasingly common for athletes placed in the top 5 

of competition within the last 3 years. Performing highly technical aerial manoeuvres 

is not without risk. Falls and crashes can often result in injury associated with 

extreme trauma to athletes, such as fractures and/or brain concussions. Based on 

the inherent injury risks associated with the sport, through a diversity of sport-specific 

skills training, athletes and coaches endeavour to reduce errors and risk of injury by 

developing sound jumping and landing skills concomitant with snow skills to reduce 

the prevalence of falls and crashes during training and competition. 

 

The aim of this literature review is to discuss in the available literature describing the 

broad physical demands of SS athletes, more specifically, to critique information 

pertaining to the biomechanical demands linked to jumping and landing which 

underpin training and competition activity.  

 

Figure 1. The Sochi Winter Olympics 2014 Slopestyle course, consisting of the rails section 
(three initial features), and the jumps section (three progressively larger kickers toward the 
bottom of the course). Photo: Jenny Bletcher. 
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Figure 2. Diagrammatic representation of the Sochi Winter Olympics 2014 Slopestyle 
course. The initial 3 features are rail sections followed by 3 “kickers” (jumps) increasing 
progressively in size. 

 

 

Figure 3. “Backside 1080” trick; rotating backside 1080’ on a large kicker, Stubai, Austria. 
Athlete: Jamie Nicholls, GB Park & Pipe Team. Photo: Jenny Bletcher. 
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2.3 Physiological demands 

 

Literature investigating physiological demands of freestyle training and competition 

remains limited. Were information concerning SS demands is absent, sport science 

practitioners and coaches are forced refer to literature on snowboard SBX, HP and 

Alpine to gather missing information about the sport. To date, only two studies have 

examined the physiological activity of elite HP riders (athletes) in training (Kipp, 

1998, Turnbull et al., 2011). Kipp (1998) measured physiological markers from elite 

snowboard athletes during a HP training session. Three male athletes from the U.S 

snowboard national team were assessed during a single 60-minute snow training 

session. Blood lactate values of 2.9 mmol L-1 were reported at the end of every third 

training run throughout the 60-minute session. Riders heart rate responses showed 

peak elevations of 92% of snowboarder’s age predicted maximum, indicating 

significant anaerobic contribution. Session average heart rate measured 140 beats 

per minute (bpm), suggesting this HP training session was predominantly aerobic in 

nature. Commonly, snow-based sessions last in the region of 3-5 hours, with 10-20 

laps of the park completed. And also include extended periods of hiking between 

training runs, sometimes climbing steep alpine terrain, requiring significant aerobic 

fitness to sustain this activity for extended periods (Kipp, 1998, Żebrowska et al., 

2012, Turnbull, 2013).  While the data presented by Kipp (1998) limits our 

understanding of the cardiovascular demands, this study remains the only published 

work to show physiological markers obtained directly from elite snowboard athletes 

in the field. To date, there has been no reported data on heart rate (HR) responses 

on athletes in elite freestyle competition. 

 

The first study to perform a physiological profiling assessment on professional 

snowboard athletes was conducted by Platzer et al. (2009). Using 37 athletes (21 

men and 16 women) from the Austrian snowboard team competing in snowboard 

cross (SBX), parallel slalom (PSL), HP and BA the authors attempted to establish a 

relationship between performance in lab tests compared to results obtained in 

competition. The battery included tests measuring aerobic fitness, balance, jumping, 

core and leg power, upper-body strength and a snowboard start simulator. Overall, 

authors found the test battery to be a good predictor of SBX FIS points in female, 

but not male athletes. The strongest prognostic test was the maximum push-off 

speed, as measured by the snowboard start simulator, which is unsurprising given 
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the importance of this maneuver during SBX race starts. In addition, aerobic fitness 

recorded by analysing relative power from the last stage of the incremental bicycle 

ergometer test (3.48 W.Kg-1 for women, and 3.8 W.Kg-1 for men) was the best 

predictor for overall WC points across all performance disciplines. Similar values 

have also been seen by elite Polish snowboarders in the bicycle ergometer maximal 

aerobic capacity test (VO2max) for women (3.7 W.Kg-1) and men (4.4 W.Kg-1) 

(Żebrowska et al., 2012). This supports the consideration that snowsport athletes 

possess a well-developed aerobic system as proposed by Kipp (1998) probably 

acquired from long snow training sessions (<5 hours) incorporating brief periods of 

high-intensity. The bicycle ergometer test provides a good crossover to sport-related 

musculature and recruitment over treadmill running tests, further, the predominance 

of ankle and knee injuries in snow sport athletes make this a preferential test and 

training method over impact related methods, such as running (Turnbull et al., 2009). 

Unfortunately, the Platzer et al. (2009) investigation did not examine SS snowboard 

athletes and therefore does not offer consideration for differences between HP and 

SS snowboard athletes. Despite the lack of physiological studies to date, future 

investigations examining athletes in training are important to define SS snowboard 

demands. This information could be of great significance to sports coaches when 

designing physical training programs to prepare athletes for the demands of training 

and competition (Turnbull, 2013). 

 

Snow training often takes place at high altitude environments (<3000m above sea 

level) at venues like Breckenridge, Colorado, USA, where the reduced oxygen 

availability up-regulates glycolytic rates. This in turn reduces glycogen stores and 

strains the anaerobic system from supplying energy for high force dependent 

activities, like jump landings (Turnbull et al., 2009, Seifert et al., 2009). With this in 

mind, it should be considered that enhanced anaerobic and aerobic capacities, 

supporting fast twitch type II fibres, may reduce peripheral limitations placed on the 

leg muscles to prevent a decrease in performance of repeated jump landing tasks. 

It is currently unknown if concentrated snow-based training cycles provide sufficient 

conditioning stimulus for elite athletes competing in World Cup competitions.  
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2.4 Injury prevalence 

 

Despite a lack of knowledge around the physical demands of freestyle snowsport on 

male and female athletes, evidence reporting the type and frequency of sports 

injuries is readily available. Several epidemiological studies point out a greater 

number of injuries are sustained by riders than freeskiers (Torjussen, 2006, Flørenes 

et al., 2010, Flørenes et al., 2012). In addition, the evidence shows a consistently 

high prevalence of knee injuries above all other injured sites, across all freestyle 

disciplines. Knee and in particular ACL injuries account for 38% of all reported 

injuries in elite freestyle athletes (Flørenes et al., 2010). Injuries sustained to the 

head/face (concussion) injuries rank second highest, followed by chest/rib and 

shoulder injuries as the most frequently injured body parts amongst freestyle athletes 

(FIS, 2016). The frequency of total injuries sustained in training and competition are 

reportedly higher than alpine skiing (4.0 every 1000 days) with 4.1-6.3 injuries 

occurring every 1000 days on average (Flørenes et al., 2012). The frequency of head 

injuries from falls and crashes are reportedly similar across alpine skiing and 

freestyle disciplines, with findings ranging from 10-14% across groups (Steenstrup 

et al., 2014). With no information discussing injury related factors in freestyle athletes 

it is difficult to identify key threats facing this population. With a clearer understanding 

of the sports biomechanical demands, the role between athletic preparation in the 

prevention of injuries could be investigated. 

 

Currently it is unknown if the aerial requirements of freestyle pose greater risk to 

these athletes over Alpine Skiers, although the higher volume of training conducted 

on aerial features in terrain parks is undoubtedly an important risk factor for 

consideration. Given the high load, high eccentric force demands linked with jump 

landings (Berg et al., 1995a) it should be noted athletes with greater eccentric leg 

strength and rapid force absorption capabilities may have a greater capacity to 

absorb landings and reduce crashes over weaker individuals. Because females have 

reportedly lower eccentric leg strength than males during landing tasks (Lephart et 

al., 2002) it is logical to consider that females are at greater risk of injury than males. 

Evidence describing peak landing impact and muscular load associated with 

snowboard jump landings is essential to bring greater understanding to this area. 

The most common injury mechanism associated with head trauma results from an 

over/under-rotation in aerial jumping, causing the “backslap episode” were the upper 
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back and head make direct contact with the ground. Direct and rotational 

acceleration impacts have been recorded during backslaps in aerial skiers ranging 

between 27 to 92g (Mecham et al., 1999). There have been 2 fatal head injuries in 

International Ski Federation World Cup competition in recent years and therefore 

traumatic head injuries are an ongoing concern for the freestyle community. Athletes 

reportedly miss around 4 weeks of total training time after sustaining a head injury, 

with female athletes reportedly at 1.5 times greater risk of sustaining head injuries 

than males (Steenstrup et al., 2014). Whilst there are inherent risks facing freestyle 

athletes research that describes the biomechanical demands occurring in 

snowboard jumping and landing is warranted. It is currently unknown if skill errors in 

take-off, during flight or landing moments increase the risk of crashing and the 

potential for impact related injuries. Armed with more qualitative knowledge, coaches 

and physical preparation experts would have a deeper insight into how athletes 

perform landing actions, and the specific training required to enhance athlete 

capability. 

 

Most injuries associated with freestyle athletes are sustained from jump landings or 

falls/crashes following failed jumps/tricks (Robb, 2014). In freestyle skiers especially, 

one of the primary concerns for knee injuries during landings is the boot-induced 

anterior draw mechanism caused by the ski boot when landing in deep knee flexed 

positions (Flørenes et al., 2012). Freestyle skiers appear to “hang” on the back of 

their ski boots during deep landings and utilise the stiff ski-boot design to support 

lower-limb stiffness throughout the landing phase. Of concern, this position 

inadvertently decreases hamstring activity and increases anterior shear forces 

acting on the knee and specifically the ACL (Turnbull et al., 2011). Similar, 

observations of elite freestyle riders in training showed athletes largely adopt a knee 

dominant, flexed riding posture to maintain board control and generate compliance 

between the snow boot and the snowboard via the binding mechanism. This also 

appears to be the strategy riders adopt at jump take-off and landings. Riders flex 

their knees promoting excessive anterior tibia forward displacement creating high 

ankle dorsiflexion angles, this in-turn creates an over-reliance on quadricep 

(Malinzak et al., 2001) muscle groups and a decrease in the total contribution of 

hamstring muscle force (Renstrom et al., 1986). Consequentially, anterior knee 

shear force and the potential for ACL loading is increased. In addition, the classic 

snowboard technique also requires the rear leg (dominant leg) to form knee valgus 
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and hip internal rotation positions, which are well understood to increase knee joint 

torque and ACL loading (Norcross et al., 2010, Davies et al., 2009, Determan et al., 

2010). Numerous studies have linked injury risk with suboptimal limb kinematics and 

poor motor control during absorption of ground reaction force (GRF) during landings, 

in the laboratory setting (Norcross et al., 2010, Blackburn et al., 2013, Fox et al., 

2017) yet, the discussed techniques adopted by snowboarders are essential 

movement postures encouraged by coaches in the sport today. It is unclear exactly 

what knee angle is considered ‘excessive’ that impacts ACL loading in 

snowboarders, and exactly what limb kinematic characteristics predispose elite 

freestyle athletes to knee injuries. This information is absent from the literature. 

 

In review of the available literature to date, no research has been conducted on elite 

freestyle SS snowboarders in the training environment, nor has there been any 

attempts to identify the biomechanical demands of freestyle jump landings. For the 

reasons discussed, investigation into the kinetic and kinematic demands of 

snowboard SS jump landings would provide the sports coaches and sport scientists 

with key information effecting athlete preparation for their sport. This would allow 

improved evidence-based training to support performance and potentially decrease 

the risk of sport related injuries. 

 

2.5 Biomechanical demands 

 

Investigations examining body load and limb mechanics have assessed demands of 

the ankle joint complex during snowboard carving to understand the incidence of 

reported ankle ligamentous and fracture injuries in recreational snowboarders (Abu-

Laban, 1991, Davidson and Laliotis, 1996, Bladin et al., 2004). Delorme et al., (2005) 

assessed ankle motion in 4 recreationally experienced snowboarders during carved 

turns on a snow-based terrain. They showed ankles are asymmetrically rotated 

during toe-side and heel-side snowboard turns, were the front (lead leg) ankle is 

everted, and the back ankle is inverted. Caused by rotation of the upper body toward 

the nose of the snowboard allowing riders to have more control of the back leg during 

turns. From the results, they proposed stiffer snowboard boots might reduce ankle 

rotation and serve as protective aid against talus joint fractures, but not against 

anterior talo-fibular ligament strain injuries. It should be considered however, that 
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increased boot stiffness would reduce ankle mobility and likely effect the involvement 

of structures above the ankle joint, such as the knee and hip as seen in skiing, for 

example (Klous et al., 2014). To understand the impact increased boot stiffness has 

on knee, hip, trunk and upper-limb motion during riding and jumps, research that 

examines whole-body limb mechanics during said actions are important for the sport. 

 

Krüger and Edelmann-Nusser (2009) performed a landmark assessment of the ankle 

joint complex using 1 recreationally experienced snowboarder during a single ‘test 

run’ in a prepared snow park, in Austria. The subject was fitted with a full body inertial 

measurement suit (IMS) (Moven, Xsens Technologies, the Netherlands) designed 

to give a global impression of rider kinematics recorded during a small 8-meter jump 

in a snow park, based in Austria. The subject was also fitted with a bilateral insole 

measurement system (T&T Medilogic, Schoenfeld, Germany) consisting of two 

insoles, two amplifiers, a wireless data transmission unit, and a data logger, which 

was fitted into a backpack worn by the snowboarder. Authors found during sloped 

jump landings that the rear leg of the rider was exposed to 3020 Newton (N) force in 

a short loading time of 0.1 seconds, whilst in 25 degrees of ankle dorsiflexion and 8 

degrees external-rotation. This data has been compared to studies by Boon et al. 

(2001) and Funk et al. (2003) who showed loads of 2500 N applied with dynamic 

eversion and inversion actions 48-62 degrees caused fractures in 9 out of 10 

cadaveric leg specimens. Similar load values are reported by McAlpine and Kersting 

(2009) who found vertical external loads of 3521N and 2496N sustained to 2 subjects 

during landing impacts on a snowboard. It was reported that subjects landed in ankle 

inversion and moved into further inversion and dorsiflexion of the rear leg during the 

landing phase of a jump.  

 

These findings indicate that both the load tolerance and available range of 

movement of the ankle joint may be important considerations when determining the 

likelihood of joint or ligamentous injuries sustained from snowboard jump landings 

(Bladin et al., 2004). Only one study has reported peak knee joint moments (relative 

to bodyweight) during carved snowboard turns, Krüger et al. (2011) reported 3.91 

Nm/kg and 4.54 Nm/kg loads acting on the front and rear leg respectively. This 

confirms the majority of joint loading occurs on the rear leg during snowboard carved 

turns. It is therefore essential that studies are now conducted on elite freestyle 
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snowboard athletes in the training environment to discover joint loading demands 

during jump landings in the elite population. 

While the aforementioned studies provide insights for snowboard carving and a 

demands of a single jump, no studies have investigated activity demands of 

professional freestyle snowboard athletes. Turnbull et al. (2011) provided an in-

depth (although unvalidated) discussion about the kinetics and kinematics of 

landings in the HP. In summary, they noted a positive correlation between the height 

of each trick and the resulting kinetic energy (mass x velocity) riders experience on 

landing. Riders will, however land on a sloped surface, which reduces the normal 

landing forces compared to a flat landing surface (Determan et al., 2010). The 

magnitude of impact forces experienced are dependent upon the amount of 

absorption performed by the lower-limbs, how compact the snow is, gradient of the 

landing slope and rider fall line, and also the horizontal velocity of the rider prior to 

impact. An optimal landing will occur high on the eccentric wall and will involve a 

high degrees of muscle stiffness to maximise the transfer of gravitational potential 

energy to kinetic energy of the rider. Frederick et al. (2006) reported loads of 4-5 

times body weight during flat landings from a skateboard Ollie with a jump height of 

less than 0.5m. Whilst differences between body peak GRF during flat and sloped 

snowboard landings are currently absent from the literature, identifying load 

differences in these scenarios would help distinguish load demands placed on elite 

freestyle athletes training in snow parks and in competition.  

 

Based on the reported information, it is clear load demands seen during flat and 

sloped landings produce GRF loads which substantially exceed the body mass of 

investigated subjects. This insight presents a genuine injury threat and concern to 

elite freestyle athletes regularly training in snow parks and competing on kickers 

(jumps) ranging 15-25 meters in size. Anecdotally, athletes who are physically 

unprepared to tolerate landing impacts suffer joint compressive injuries from 

landings of a high amplitude. No information is currently available that explains the 

nature or range of forces involved during landings from freestyle aerial manoeuvres. 

Information about rider peak GRF’s is essential to understand load demands placed 

on elite SS snowboarders. It is now essential to translate this research into freestyle 

snowsport to discover kinematic and kinetic demands placed on freestyle SS riders 

and discuss how this information could be useful to athletes and coaches in the 

applied setting. 



 13 

2.6 Snowboard jump landing demands 

 

Much of our understanding about the jump landing demands in freestyle snowsport 

has been derived from research in Alpine Skiing and other aerial based sports like 

Gymnastics. For example, in Alpine Skiing, studies have shown that the predominant 

muscle forces are eccentric in nature (Berg et al., 1995b). It is well known that 

quadricep and hamstring muscle groups have particular importance during the jump 

and landing phase, with differing activation loads reported to effect the external 

abduction moments at the knee (Lloyd and Buchanan, 2001) which contribute to 

anterior cruciate ligament (ACL) injury. The extent of muscular contribution during 

freestyle snowboard landings however, has not been investigated. From 

observation, HP and SS riders move into unique landing postures which are held for 

longer durations compared to alpine skiers. In particular, aerial jumps incorporating 

spins and corked tricks likely increase the rotational landing forces acting about the 

body. During landings, riders dynamically load into twisted and flexed spinal postures 

that significantly increase spinal load (Yamakawa et al., 2001). Extreme ranges of 

motion occurring at the spine are usually associated with forceful ankle pronation 

and knee valgus positions to achieve pressure and torsion on the board for effective 

board control during landing and takeoff (Turnbull et al., 2011). Attempts to maximise 

landings by manipulating body position into extreme range, under rapid deceleration 

moments is likely to increase the overall contribution of musculoskeletal tissues in 

response to three-dimensional (3D) GRF’s during sloped landings. This may see 

riders maintain joint loaded positions at extreme ranges of motion for lengthy periods 

of time in effort to stabilise and avoid falls in landings. Furthermore, differences in 

muscle activity, limb position and magnitude of GRF’s may exist between jumps in 

regular (straight), switch (irregular), and flat spins. Although, this has not yet been 

investigated with elite freestyle athletes. 

 

There is substantial research investigating the effect of drop jump height on specific 

muscle activity during landings from plyometric jumps, showing with increasing jump 

height from 20-60cm yields differing activation of the quadricep and hamstring 

muscle groups in drop jump landings. With increasing drop-heights, the activation of 

quadricep muscles increase, whereas activity of the hamstrings specifically Bicep 

Femoris (BF) was similar throughout all drop heights (Peng et al., 2011, De Britto et 

al., 2014). Adequate co-contraction of knee extensor (quadricep) and flexor 
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(hamstring) muscles are understood to balance forces acting on the knee joint, 

compressing the joint to control high knee flexion/extension and abduction torques 

immediately after ground contact. Were decreased activation of the hamstring to 

quadricep ratio may alter dynamic knee stability and may increase risk of ACL injury 
(Hewett et al., 1996, Hewett et al., 2005). Presently, no information is available 

indicating the magnitude of maximal voluntary contraction (MVC) seen by elite SS 

riders during different jump landing heights or tasks performed in snow-based 

training sessions. Nor are there any validated, evidence-based recommendations 

regarding trained muscular or mechanical strategies to augment landing 

performance during snowboard landing tasks. Considering the scarcity of evidence 

surrounding the biomechanical demands of elite SS athletes in training, research is 

needed to provide understanding about the physical demands of jump landing 

movements performed in the sport.  

 

Resistance training, administered through a well-designed training programme, 

could be used to enhance intra and inter-muscular coordinative ability, as well as 

maximal isometric and eccentric strength to sustain the magnitude of forces during 

riding and jump landing actions (Turnbull et al., 2011). Although, it is currently 

unknown how absolute leg strength may influence the ability to tolerate GRF from 

high landings. Based on the positive relationship between muscular strength, 

neuromuscular capacity and the positive relationship with jump landing performance, 

combining sport specific coordination training with high load resistance training 

would enhance neuromuscular capacities in freestyle snowboard athletes (Secomb 

et al., 2015, Secomb et al., 2016). Identifying the exact muscular activity, load 

demands and movement behavior during SS snowboard jump landings, would 

enable coaches and practitioners to improve upon current generic training 

recommendations administered to elite freestyle athletes. This advancement could 

potentially increase athletic capacity and reduce the prevalence of injuries sustained 

in landings from poor athletic preparation. It is therefore essential to investigate the 

biomechanical demands of freestyle jump landings to bring evidence to this area. 

 

Whilst the aforementioned studies provide some insight into activity demands during 

snowboard carving and a single recorded jump, no peer reviewed research has 

investigated the biomechanical demands of professional SS athletes in training. 

Knowledge of the total muscular and joint demands during aerial jump landings is 
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paramount to grow understanding of the physical capacities required to perform jump 

landings in the sport. Were the significance of error and injuries are most severe 

during landings (Frederick et al., 2006, Hewett et al., 1996, Turnbull et al., 2011) and 

in particular, knee joint injuries sustained in training and competition are more 

significant than any other reported injury.  

 

2.6.1 Quantifying snowboard jump landings 

 

To date, advancements in microtechnology have enabled scientists to measure 

aspects of aerial manoeuvres, global movement kinematics and joint load kinetics 

during snowboard jumps. For example, total air-time and average degree of rotation 

values were investigated in elite HP athletes in training (Harding et al., 2008) and 

during staged competition (Harding and James, 2010). In the 2008 study, ten HP 

riders wore a body mounted tri-axial accelerometer (100 Hz ± 6 g) with a tri-axial rate 

gyroscope (100 Hz ± 1200 deg/s) and video footage panning each HP run was 

collected using a Sony 3CCD 50 Hz digital video camera. Data integration by a 

summation technique proved successful identifying acrobatic rotation of riders 

performing 180, 360 degree (deg), 540 and 720 degrees of rotation, in a single axis. 

Although, the same method was not successful in identifying athlete rotation across 

three-axis at one time, and therefore lacked specificity to identify typical off-axis 

acrobatic maneuvers in HP and SS training and competition. This study did not make 

reference to the involved landing forces or describe differences in athlete landing 

strategy during filmed landings. This information is still absent from the scientific 

literature.  

 

2.6.2 Quantifying joint kinematics 

 

The research to date has investigated 3D joint kinematics in skiing and snowboard 

carved turns in the field (Delorme et al., 2005, Kurpiers et al., 2009, Krüger et al., 

2011, Klous et al., 2012, Klous et al., 2014, Kondo et al., 2014) although, just two 

studies have presented data from non-elite subjects in snow-based environments 

(McAlpine and Kersting, 2006, Krüger and Edelmann-Nusser, 2009). The four high 

speed camera SIMI motion system (Unterschleisshelim, Germany) used by 

McAlpine and Kersting (2006) enabled data capture in a fixed volume 3 x 1.5 x 1.5 
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meters. To calibrate the volume of space for data capture, authors used a wand-

cube technique (motion analysis corporation, Santa Rosa, USA) which increased 

accuracy through a reduction of maximum absolute errors. This method proved 

superior to the standard cube calibration technique and is a reliable method for 

testing kinematics in future investigations. Moreover, the full body IMS (Moven, 

Xsens technologies, Enschede, The Netherlands) used in the Krüger and Edelmann-

Nusser (2009) study has an advantage over the optical camera method in terms of 

capture volume, measurement preparation, and analysis time. For these reasons, 

the full body IMS has also gained popularity with other investigations (Harding et al., 

2008, Brodie et al., 2008, Krüger et al., 2011) and has since become commercially 

available. Although, despite the IMS advantages for use in the applied setting, the 

total net weight of the suit including data loggers amounted to 2.2 kg, which is an 

additional weight cost to the rider and would likely contribute to increased impact 

loads upon landing, and potentially increase injury risk. Further development of this 

technology is required to enable data capture of freestyle athletes without restrictions 

during aerial maneuvers.  

 

2.6.3 Quantifying joint kinetics 

 

So far, there are just two peer reviewed studies to present kinetic findings during 

snowboard jumps and aerial maneuvers. McAlpine and Kersting (2009) used two 

snowboard mounted force platforms situated underneath each binding, with six 

unidirectional force transducers. The prototype measured 40 mm thick with a mass 

of 2kg. These amendments would significantly impact a rider’s board control and 

freedom of normal movement in aerial tasks, which questions the authenticity of data 

presented in this study for elite populations. Authors noted a concern for increased 

injury risk using this technology in normal conditions and so opted to restrict the 

scope of their investigation to a straight forward jump landing. Refinement of this 

technique is required to assess aerial tasks in future investigations. Later, research 

by Krüger and Edelmann-Nusser (2009) used a bilateral insole measurement system 

(T&T Medilogic, Germany) with 120 Hz to detect GRF during a 360 deg indie grab, 

during a single test run in a prepared snowboard park. The insole measurement 

system was able to detect peak take-off (930 newton [N]) and (3020 N) peak landing 

forces, however the accuracy of the measurement system is limited with a root mean 

square error of 28% (± 6.6%) with reference to a force plate. Given the lack of validity 
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found, the reported data should be considered as an estimate and not true 

representation of load demands during freestyle snowboard jump landings.  

 

In view of the weaknesses discussed with the aforementioned technologies, an 

alternative, non-intrusive method should be considered for examination of aerial 

based maneuvers. Currently absent from the snowboard literature is the use of a tri-

axial accelerometer unit to measure jump landing impacts. Accelerometers have 

previously been used in the assessment of joint loading (Tran et al., 2010) and have 

also gained popularity in team sports due to their ease of use and advantage to 

measure athletes without concern of restriction to normal movement. Typical “off the 

shelf” devices used in team sport settings generally sample data at lower frequencies 

(100Hz) than laboratory setting devices (1500-3000Hz) (Zhang et al., 2008). 

Therefore, an accelerometer with at least 1500Hz would be required to accurately 

detect peak accelerations upon landing. Given the gaps in the literature for a valid 

assessment of GRF in jump landings, a tri-axial accelerometer could be considered 

for the kinetic assessment of freestyle jump landings in the field. 

 

2.6.3a Assessment of muscle function 

 

EMG analysis is a well-established, reliable method to measure total muscle activity 

during ballistic landing tasks (Goodwin et al., 1999, McKenzie et al., 2010) with 

proven sensitivity to detect changes in peak muscle MVC across different landing 

heights (Peng et al., 2011, De Britto et al., 2014). A plethora of investigations exist 

reporting the use of electromyography (EMG) measuring muscle activity during jump 

landings in the lab, across several sports (Walsh et al., 2012, Jordan et al., 2016, 

Malfait et al., 2016). Although, to date just two EMG studies investigating elite 

snowsport athletes in the training environment exist. Of note, Virmavirta and Komi 

(1991) conducted a landmark EMG investigation in the training setting with four elite 

world class aerial skiers. Authors used a telemetric EMG unit (Medinik AB Model 1C-

600) with a gain of 1000 and a band pass frequency of 10-1800 Hz/-3 dB to detect, 

transmit and receive EMG activity. EMG analysis was conducted on five muscle 

groups (VM, VL, Gluteal, Tibialis Anterior and Gastrocnemius) of the dominant 

takeoff leg during a ski jump with no errors noted in data collection. Findings showed 

mean relative integrated EMG (iEMG) of knee extensor groups were highest during 

jump take-off, with gluteal and gastrocnemius groups reported highest during the 
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jump landing phase in comparison to other muscle groups. Based on the importance 

of quadricep to hamstring (Q:H) coactivation, inclusion of knee flexor muscle 

(hamstring) activity should be assessed in future investigations to provide a 

comprehensive insight into knee joint and upper-thigh musculoskeletal demands. 

Further, the assessment of knee joint kinematics should also be considered to 

support overall assessment of jump landing severity.    

 

Back et al. (2013) assessed one elite alpine snowboarder and one elite snowboard 

cross athlete perform carved turns on an experimental slope including 24 gates on 

a giant slalom course. Bilateral muscle groups of the VM, VL and lateral 

gastrocnemius were assessed with analysis conducted on the best 5 turns from a 

potential 24. Subjects mean, and peak EMG activity showed outputs relative to each 

phase of the carved turn; front-side and backside maneuvers. Further, EMG % 

appeared highest during moments of increased knee flexion. No mention was made 

to limb kinematics in this investigation. Knee angle and angular velocity 

measurements would be useful to determine the overall involvement of lower-limb 

musculature in snowboarding tasks. 

 

2.6.3b. Impact of landing height 

 

The impact of landing height and its relationship on recorded EMG musculature 

within the literature is clear. Generally, studies report an increase in mean and peak 

muscle EMG with increasing jump landing heights, with a predominant increase seen 

in quadricep over hamstring peak muscle activity (Zhang et al., 2000, Zhang et al., 

2008, Peng et al., 2011, De Britto et al., 2014, Ford et al., 2011). Commonly, world 

class freestyle SS courses include jumps ranging 18-23 meters in height, propelling 

riders up to 30 meters in the air. At a total jump height of 65 meters, Virmavirta and 

Komi (1991) reported iEMG landing data 8 times the value of relative iEMG jump 

take-off. Despite the lower amplitudes seen in SS training and contests SS/HP 

athletes compared to aerial skiing athletes’ ability to absorb very large GRF under 

rapid loading times is paramount from a performance and injury risk perspective. 

Based on our understanding of the impulse-momentum relationship, SS riders must 

create a change in momentum upon landing, with the capacity to rapidly dissipate 

GRF with a high production of muscle MVC through isometric and eccentric force 

actions (Turnbull et al., 2011). Short contraction times require high degrees of limb 
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stiffness prior to and upon landing to maintain board control and correct posture 

preventing a loss of control and potential crashes (Frederick et al., 2006). Presently 

a working knowledge of neuromuscular demands during snowboard landings from 

large jump heights in elite freestyle athletes is currently absent from the scientific 

literature. 

 

2.6.3c. Impact of unstable surface landing 

 

There is a large body of evidence acknowledging the impact of unstable surface 

landings with drop/fall height, fast and slow plyometric jumps and muscular 

contraction with reference to the corresponding muscle activity (EMG). Although, to 

this authors’ knowledge studies investigating jump landing assessments in the field 

have not discussed the impact of unstable and changing snow surfaces and the 

influence this may have upon the reported GRF, joint kinematics, and/or muscle 

EMG activity reported. Anecdotally, freestyle snowsport coaches note athletes fall 

most often due to a sudden loss of balance and become unstable because the 

ski/board loses ideal contact with the snow during landing. Athletes may “catch an 

edge” (ski/board edge catches the surface of the snow) which interrupts compliance 

between ski/board and the snow. Possibly due to bumps, divots and contours in the 

surface, athletes will attempt to rapidly adjust their body position to regain control, 

which usually forces a change in arm and trunk posture and a rapid and 

simultaneous extension at the knee and hip. Clearly then, unstable and changing 

surfaces are an external, environmental factor that should considered within the 

context of physical demands. 

 

In a study involving vertical drop landings onto an unstable surface (BOSU ball), 

subjects whom landed with greater landing apprehension adopted an upright trunk 

and knee extension posture, which was found to increase lateral hamstring activation 

and decrease overall quadricep involvement in comparison to stable surface jumps 

(Shultz et al., 2015). In contrast, Prieske et al. (2013) reported increased GRF during 

vertical drop jumps onto an unstable surface, but this was not associated with 

increased muscle EMG activity during the preactivation phase of landings. Moreover, 

a study assessing subjects performance during depth jumps and countermovement 

jumps on a sand surface found increased quadricep EMG activity after a period of 

training (Mirzaei et al., 2013). Authors noted an increase in ankle joint dorsiflexion in 
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conjunction with higher motor unit recruitment and rate of force development in 

quadriceps placing more tension on the musculoskeletal tissues as subjects 

attempted to generate tension throughout landing and push off phases. From this, it 

would appear that a change in muscle activity and GRF is relative to the surface type 

and jump/landing action. Practitioners and researchers working with snowsport 

populations seem to have an awareness that external factors such as the snow is a 

risk inherent to elite snowsport (Jordan et al., 2017) yet an understanding of how this 

exactly impacts landing tasks has not been reported in the scientific literature.  

 

2.6.3d. Pre-post contact landing differences 

 

Several researchers have identified impact forces that occur in less than 30-50 

milliseconds (ms) as passive impact forces, which imply a rapid response to impact 

loading from the human skeletal system (DeVita and Skelly, 1992). Ford et al. (2011) 

showed within the first 100ms of landing, the maximum GRF and estimated peak 

ACL force typically occur, making this the most hazardous phase of jump landing. In 

addition, Frederick et al. (2006) reported peak vertical ground reaction force (VGRF) 

loads during skateboard ollie jump-landing within similar loading frames of 30-80ms. 

With this in mind, the ability to reduce high impact forces rapidly must suggest there 

is some preactivation of skeletal tissues prior to the instance of landing. The concept 

of preactivation is described by a number of texts showing increased muscle 

preactivation of knee extensors combined with high joint stiffness, to enable stiffer 

landings (DeVita and Skelly, 1992, De Britto et al., 2014). A stiffer, more upright 

landing pattern characterised by reduced knee and hip flexion, provides a more 

hamstring dominant landing strategy during the pre and initial contact loading phase 

(Blackburn et al., 2013). While increased hamstring activation, in particular medial 

hamstrings, is considered advantageous to reduce anterior tibial shear force and 

provide knee joint compression (Blackburn et al., 2013). Research by Walsh et al. 

(2012) implies proximal anterior tibial shear force, knee valgus and knee rotation 

moments are all reduced during more knee flexion based landing strategies. Malfait 

et al. (2016) showed that knee and hip flexed landing patterns are generally 

accompanied by higher mean and mean peak medial/lateral quadricep and 

hamstring activation. The same author also found reduced hip flexion angles 

produced a quadricep dominant strategy during the peak loading phase of landing, 

with greater peak medial hamstring activity seen prior to landing. Authors suggest 
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preactivation could be explained by the feedforward strategy, which could further 

explain large increases in quadricep activity found during landing moments in effort 

to constrain high landing forces. The anticipation of landing is suggested to enhance 

the tension applied to the musculotendinous structures in the foot, ankle and 

adjoining structures to assist the dissipation of GRF throughout the phases of landing 

(Zhang et al., 2000).  

 

Commonly, the amount of hip and knee joint flexion used by snowboarders during 

landings from a kicker <25m will increase in effort to constrain GRF and maximise 

high joint stiffness (Turnbull et al., 2011). Increased knee flexion angle prior to 

landings has been linked with increased ACL injury risk, possibly because of 

increased landing heights (Zhang et al., 2008). And so, a preferential momentary 

knee extension prior to landings appears to be an effective strategy to increase knee 

Q:H coactivation during landing phases and maximise gluteal maximus involvement 

alongside Q:H muscle activation (Walsh et al., 2012). As pointed out by Zhang et al. 

(2000), joint specific movement behaviours appear to vary largely in relation to jump 

height. Ankle and knee contributions appeared greatest during small jumps (<1.0m) 

which may be more related to the dynamic rails and box jump features performed in 

SS. In contrast, the contribution of larger, proximal joint structures (knee and hip) 

increased in conjunction with height (>1.0 m) and increased mechanical loading. 

Similar to the landing techniques seen by snowboarders transitioning from smaller 

to bigger jumps, generally the bigger the jump (height), the greater the overall 

amount hip flexion and flexed body postures are observed on landing. Again, this 

theory is supported by the work of Walsh et al. (2012), linking increased landing 

height with higher peak muscle EMG activity, although this insight has not been 

explored with elite freestyle snowboard athletes to date. 

 

2.6.3e. Differences during three-dimensional landings 

 

While the reviewed evidence provides insight around the biomechanical 

characteristics of sagittal plane jumping and landing tasks, this offers little 

significance to the 3D snowboard jump-landing demands. Very few peer reviewed 

studies have investigated 360 deg rotation jumps and landings. A study by Bai et al. 

(2011) showed peak timings of EMG activation in hamstrings occurred before peak 

timing of quadriceps during a standing 360 deg vertical jump landing. Both mean 
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peak quadricep and hamstring activity occurred after initial contact, which coincides 

with the research discussed here previously. Authors also found medial 

(semitendinosus) and lateral (bicep femoris) hamstrings acted to prevent valgus 

knee moments during the 360 deg jump landing. Later, work by Bai and Fukumoto 

(2013) measured 10 females perform an 180 and 360 degree vertical jumps on the 

spot, with arms folded. Findings showed earlier hamstring preactivation during the 

180 over 360 deg jump landings. And also, earlier timing of medial (SM) and lateral 

(BF) hamstrings before quadricep muscle groups (VM, RF, VL) in both the 180 and 

360 deg conditions. In the quadricep groups alone, preactivation timing tended to be 

earlier in the 360 deg landing than the 180-degree landing. Moreover, an applied 

study involving elite roller skaters, reported increased BF, gastrocnemius, VL, RF 

and GM activation during ‘triple apes’ (3 rotations) during propulsion and flight 

phases, compared to tricks involving less rotations (Pantoja et al., 2014). The study 

reported more complex rotational tasks were associated with greater lateral 

hamstring involvement during the flight phase. While limb kinematics were not 

reported in this study, it could be suggested that increased preactivation of 

hamstrings prior to landing is a feedforward mechanism to achieve landing efficacy 

and motor control in complex landing tasks (Riemann and Lephart, 2002). Because 

the feedforward mechanism is largely driven by visual feedback about the 

environment and task, it could be considered that athletes performing complex 

rotational maneuvers in freestyle snowboarding may exhibit more hamstring 

preactivation in tricks requiring more rotations. Though this has never been explored 

with elite snowboard athletes. 

 

A number of publications have cited an improvement in hamstring activation during 

dynamic stabilisation tasks (including jumping) following windows of focused 

neuromuscular training (Chimera et al., 2004, Medina et al., 2008, Zebis et al., 2009). 

Based on the process of neuromuscular adaptation, it could be suggested athletes 

with greater skill-based experience, and whom perform technical jumping tasks 

regularly (such as 360 deg landings) may be more capable at achieving better Q:H 

preactivation and timing of hamstring preactivation during more complex jumping 

tasks than less experienced individuals. Although, this knowledge is currently 

missing from the scientific literature.  

 



 23 

In review of the discussed, it would appear landing strategies are adopted relative to 

the perceived landing task and environment. The relationship between the 

considered EMG literature to freestyle snowboard jump-landings bears little 

relevance due to a number of factors inherent to the sport, being; landing height, 

horizontal velocity upon landing, landing with a snowboard strapped to the feet, 

landing on an angled and unstable/changing surface, and forces acting in 3 planes 

at one time. The range of factors listed have not been investigated concurrently by 

any published work in existence. Furthermore, much of the available literature 

presents findings with non-athletic populations done in the laboratory, which is far 

removed from the applied freestyle snowsport environment. For these reasons, 

research must be conducted with elite freestyle athletes in the applied setting to 

discover the biomechanical demands of jump landings. 

 

2.7 Summary 

 

Professional freestyle SS snowboarding is an acrobatic, skill-based sport, 

comprising of short-term, explosive jump landing actions which impose extreme 

physical loading to the body linked to sports injuries. To date, research investigating 

kinetic and kinematic activity of athletes has shown microtechnology can be used to 

evaluate aspects of locomotion, joint and muscle kinetics and movement kinematics 

in the sports environment. Although, no evidence is available that describes the 

biomechanical demands of snowboard jump landings with elite SS snowboarders in 

training or competition. Moreover, no studies have attempted to investigate, in 

combination, landing impact (acceleration), magnitude of muscular activity, and 

related movement characteristics during jump landing manoeuvres performed 

regularly in the sport. This information will allow technical and physical preparation 

coaches to understand the global physical demands placed on athletes following 

tricks performed regularly in training and competition. Moreover, this information will 

enable elite athletes and coaches to ensure appropriate steps are taken in the 

physical preparations for athletes partaking in professional competition to enhance 

athletic preparation and attempt to reduce risk of landing related injuries. Therefore, 

this thesis will for the first-time present kinetic, kinematic and muscular demands 

during jump landings collected from elite British freestyle SS snowboarders during a 
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training session. The knowledge gained from this is unrivalled by any study in this 

area to date. 

 

2.8 Aims of thesis 

 

The overall aims of this thesis are to investigate the biomechanical demands of 

professional freestyle snowboarders during jump landing maneuvers on a 

snowboard. Investigated measures will be collected directly from athletes of the 

Great Britain (GB) Park and Pipe Team and performed at UK based training centers. 

Information collected will inform professional coaches of the specific physical 

demands of snowboard landings, and further provide knowledge currently absent 

from the scientific literature. These aims will be achieved by specifically addressing 

the following objectives: 

 

1. To assess the severity of snowboard jump landings completed by an elite SS 

snowboarder on an artificial dry slope in training. As part of a pilot study, 

investigated measures will be obtained directly from an elite SS athlete (n=1) 

conducted during a GB Park and Pipe team training session in the UK (pilot 

investigation, see methodology).  

2. To assess the key biomechanical (kinetic, kinematic and muscular) demands 

during landings from a staged drop onto a sloped landing in elite snowboarders. 

Athletes will perform three specific landings in regular, switch and 360 deg 

rotation. Investigated measures were obtained directly from elite athletes (n=5) 

during a GB Park and Pipe team training session, held at a UK indoor snow dome 

venue.  

3. To critically evaluate group and individual differences during pre and post landing 

phases between the 3 jump landing conditions (regular, switch and 360 deg 

rotation) utilising the data obtained from these elite snowboard athletes.  
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2.9 Hypotheses 

 

The following set of hypotheses are drawn based on an understanding of the 

biomechanical demands relating to drop landings from the reviewed scientific 

literature: 

1. Higher peak resultant board acceleration (g) at initial contact (IC) measured 

during complex technical landings, in order of; 360 deg rotation (1), switch (2) 

and regular landing (3). 1 being the largest, and 3 being the smallest. The level 

of anticipation of the instant of landing (and thus preparation for landing would 

likely diminish in that order). 

2. Greater knee angle and knee angular velocity measured at the point of IC and 

post-IC moments for the switch and 360 deg landings, compared to the regular 

landing condition. It is theorized knee angle and angular velocity will increase as 

the subjects attempt to manage bigger forces from increased rotational landing 

demands. 

3. Higher overall muscle (EMG) activation in post versus pre-IC phase of landing 

across all 3 landing conditions. And, higher overall pre and post muscle (EMG) 

activation in switch and 360 deg rotation landings compared to the regular 

landing condition. It is theorized muscle activation prior to landing would increase 

as a protective strategy to prevent knee buckling. Also, the athletes are 

anticipating higher landing severity and therefore will likely activate muscles more 

after landing. 

4. Higher quadricep and hamstring iEMG preactivation during the more technical 

landing trials, e.g. 360 deg and switch landings compared to the regular landing, 

as subjects attempt to constrain increased frontal and transverse plane knee joint 

loading in said conditions.  
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CHAPTER 3. GENERAL METHODS 

 
 

3.1 Subjects 

 
Data collected in this thesis was taken from elite slopestyle and halfpipe snowboard 

athletes of the Great Britain (GB) Park and Pipe Team, over two training sessions 

held at separate locations: 1) pilot investigation; outdoor dry ski slope (Halifax, 

United Kingdom) and, 2) Main investigation; indoor snowdome facility conducted on 

an artificial slope (Snow Factor, Braehead, United Kingdom). Each athlete was 

regarded free of illness, any known injuries and fully available to partake in the 

planned training sessions. All athletes and coaching staff were informed verbally and 

in writing about the nature of this study. Written and informed consent was obtained 

by the coaching staff and snowboard athletes prior to participation and the John 

Moores University Ethics Committee granted ethical approval. A summary of subject 

characteristics can be seen in table 1. 

 

Table 1. Mean (±SD) of subject characteristics which participated in this thesis 

 

 

 

 

 

Study (N) Gender Age 
(years) 

Height 
(cm) 

Body 
Mass 
(kg) 

Experience 
Years 

 

Discipline 

Pilot (1) 1 Male 19 178 67 12 Slopestyle 

Main (2) 5 4 Male,  

1 Female 

19.6 ± 

3.65 

173.6 ± 

8.20 

67.9 ± 

8.19 

13.0 ± 3.81 Mixed; 4 slopestyle, 

1 halfpipe 
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3.2 Assessment of snowboard jump landings 

 

3.2.1 Familiarisation 

 

All athletes that took part in the investigation regularly attend training at outdoor and 

indoor snowdome and snow-park facilities and perform jump landing manoeuvres as 

part of their sport. All testing was conducted as part of a normal team training 

session, were subjects were selected individually to perform repeat jump landings 

on selected jump features which differ between each study as outlined here. Detailed 

instructions were given to all participants, and the assessments were monitored by 

the lead researcher and the GB Park and Pipe coaching and medical team members. 

 

3.2.2 Developing the methods – pilot investigation 

 

Data collected during the pilot investigation was conducted during a single visit to a 

GB Park and Pipe team training session which took place on an outdoor artificial dry 

ski-slope at the Halifax Ski and Snowboard Centre (Halifax, United Kingdom). The 

study took place in the summer of July 2014, weather conditions were mild with a 

temperature of 14 Degrees Celsius, and moderate winds. The primary aim of the 

pilot investigation was to assess the magnitude of landing impacts (acceleration) 

sustained by an elite male (n=1) slopestyle snowboarder during in a single training 

session. The secondary aim was to identify if the tri-axial accelerometer was capable 

to measure snowboard acceleration impact forces during rapid jump landing 

moments. One male snowboarder was fitted with two tri-axial accelerometers (GPS 

Viper units) (STATsports, Northern Island) collecting at 100hz. One unit was fitted to 

the athlete’s upper-back using a manufactured STATsport vest, the other was 

mounted to the centre of the snowboard using adhesive tape (see figure 4). Each 

GPS viper unit weighed less than 50 grams. The subject completed a self-led, 

standard snowboard based warm up for 15 minutes, before being instructed to 

perform five separate jump trials on a single, small sized jump - specifications; height 

of jump 1.5 meters, length of run prior to take-off 25 meters, amplitude achieved; 

around 3.9 meters (see Figure 5). Of the five jumps, four jumps were completed in 
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regular jump-landings (straight air take-off and landing), and one 360 deg front-side 

jump landing (regular take-off, 360 deg front side flat spin, landing in regular). Each 

jump was interspersed by 2-3 minutes rest. Following each jump the subject was 

asked to provide the primary investigator with subjective verbal feedback in response 

to the question; “how hard did the landing feel?”. The subject could respond with one 

of the following answers; “Easy”, “Moderate”, or “Hard”. The information was 

gathered to compare the subject’s perception of landing severity against the 

objective peak acceleration data taken from the tri-axial accelerometer.  

 
 

 

Figure 4. Tri-axial accelerometer (GPS Viper unit) mounted to the centre of the snowboard 
using adhesive tape for the pilot investigation. 
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Figure 5. Illustration of the jump used during the pilot investigation. Artificial dry ski-slope at 
the Halifax Ski and Snowboard Centre (Halifax, United Kingdom). 

 

3.2.3 Analysis of the data – pilot investigation 

 

Data recorded by two GPS accelerometer units was downloaded using STATsport 

software (version 2.7.1.1.57, STATsport, Northern Island) and then exported to 

Microsoft Excel software package for further analysis. Peak acceleration values 

recorded during the landing phase, along with subjective feedback after each landing 

was collected for all five snowboard jump landings, which can be seen in Figure 6. 

Peak vertical acceleration captured by the snowboard accelerometer ranged 25.5–

30.5g. Accelerometer values recorded by an accelerometer worn inside a vest and 

located on the upper-back were comparably smaller, ranging 4.9–9g. On review, 

there was no clear relationship between acceleration values recorded by the 

snowboard and the upper-back. Interestingly, there appeared to be some 

association between accelerations recorded by the upper-back (accelerometer) and 

the subjective rating of landing severity. High and low peak acceleration values 

corresponded with high and low subjective rating to landing severity. Based on this, 

it is possible accelerations measured at the upper-body may serve as an 

assessment to indicate jump landing severity. In addition, this finding also coincides 

with evidence in the literature which has found the trunk/upper-body to play a 
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significant role in energy absorption during jump landing tasks which supports lower-

limb performance in said tasks (Kulas et al., 2008, Iida et al., 2012). Future studies 

should look to assess upper-limb involvement alongside the lower-limbs during 

snowboard jump landing tasks. 

 

 

 
 
Figure 6. Peak vertical acceleration taken during the landing phase, measured by two tri-
axial GPS accelerometers fitted to the snowboard and upper-back during five individual jump 
landings. Includes subjective perception to landing severity for each landing. 

 

 

The GPS tri-axial accelerometers provided an insight into peak vertical acceleration 

during the landing phase (moment when the snowboard made initial contact with the 

ski-slope). Analysis of the raw data showed that the unit specification was not high 

enough to capture a complete signal to accurately represent landing acceleration 

during snowboard jump landings. Figure 7 illustrates a wave curve acceleration 

signal of 100Hz sampling rate, with an amplifier band setting of 10Hz which was too 

low for the maximum frequency in trials resulting in aliasing effects (Konrad, 2006). 

Based on this, a decision was made to employ an accelerometer with at least 

1500Hz sampling capacity for the main investigation. 
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Figure 7. Peak acceleration(g) during single snowboard jump landing on outdoor artificial 
dry-ski slope (pilot). Shows a wave curve taken from a 100 Hz tri-axial accelerometer 
mounted to a snowboard; 10 data points captured within 100ms during landing phase (n=1). 

 

3.2.4 Design of an artificial landing slope 

 

Jump landings recorded in the main investigation were performed on a specially 

designed landing slope, constructed of artificial snow and was situated on the 

training slope of an indoor snowdome facility (see Figure 8). The landing slope was 

designed by the head snowboarding coach of the GB Park and Pipe team and 

shaping technicians of the Snow Factor facility. The landing slope dimensions were 

designed to replicate a ‘steep landing’, comparable to that of a large kicker found on 

World Cup and Olympic SS. The landing slope dimensions were; length 4.5 meters, 

height 6.2 meters, width 2 meters. A large scaffold (total height of 15.2 metres) with 

a wooden drop platform was positioned parallel to the rear of the artificial landing 

slope. The drop platform allowed athletes to “jump” from the scaffold directly onto 

the landing slope to enable assessment of a snowboard landing (see Figure 9). 

Distance from platform to the point of landing (on the slope) was 2.0 meters. The 

scaffold and landing ramp provided consistency in drop height, distance to landing 

and jump angle between athletes across jump landing trials. 
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Figure 8. Illustration of the artificial landing slope, including the scaffold structure and motion 
capture cameras situated around the landing slope. 
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Figure 8. Illustration of a subject jumping off the wooden drop platform from the scaffold onto 
the artificial landing slope (distance 2.0 metres) during one of the landing trials. 

 

3.2.5 Protocol 

 

Out of the 5 subjects tested, the 4 male athletes performed three types of jump 

landings consisting of; regular jump landing, a switch jump landing and a 360 deg 

jump landing (see figure 10). Each subject performed three trials of each jump 

landing condition. In addition, one female subject also performed three trials of only 

the regular and switch landing conditions. A regular jump landing required the 

athletes to land in a regular stance, with their left foot leading on the snowboard. In 

contrast the switch landing describes athletes landed on the landing slope with their 
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right foot leading. The 360 deg jump landing meant athletes rotated 360 deg in the 

air prior to landing on the with their left foot leading (regular stance). The start of the 

jump landing was initiated when the athletes snowboard first made contact with the 

landing slope, and the end of the jump landing was determined when the athletes 

completed the landing by arriving at the foot of the landing slope. Testing was 

completed during a normal team training session and therefore athletes were already 

sufficiently warmed up prior to jump testing. Before the jump landing trials 

commenced, athletes performed a standardised movement sequence that consisted 

of three squats, three squat-pause-jumps, and three counter-movement jumps. This 

enabled a standard assessment of muscular activity of the upper-thigh and served 

as reference to EMG data collection for comparison in the different types of jump 

landings. 

 

Figure 10. Illustration of the snowboard stances examples investigated during the main 
investigation: regular, switch and 360d rotation.  
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3.2.6 Assessment of kinematics and muscle activity 

 

An 8-camera motion capture system (Qqus 300; Qualisys, Gothenburg, Sweden) 

collecting at 500 Hz was used to record whole body movement for during each 

landing condition. Retro-reflective markers were attached to each subject, on the 

following sites; upper and lower sternum, right and left acromioclavicular joint, right 

and left greater trochanter, right and left on both the medial and lateral knee 

epicondyles and the right and left medial and lateral ankle malleolus. Markers were 

also attached on the left and right boots of each subject over first meta tarsal and 

the heel. Four markers were placed on the front and back of the snowboard near the 

edges. In addition, a 4-marker plate cluster were attached to the left and right thigh 

and shanks of each participant (see figure 10). In synchronization with the motion 

capture system a DTS 3D tri-axial accelerometer (24g, TeleMyo DTS Telemetry 

system; Noraxon, Scottsdale, AZ) capturing at 1500 Hz was mounted on the center 

of each subject’s snowboard. The accelerometer was attached to the snowboard 

using strong adhesive tape, with the y axis arranged parallel with the snowboard 

(see figure 11). 

 

Surface EMG from each subject’s vastus medialis, vastus lateralis, rectus femoris, 

bicep femoris and semimembranosus muscle groups were recorded in each jumping 

landing using a wireless Noraxon system (TeleMayo DTS Telemetry system, 

Noraxon, Scottsdale, AZ). The surface EMG data were collected at 1500Hz and was 

in synchronization with the motion capture and acceleration data. In accordance with 

SENIAM guideline recommendations, biopolar Ag/AgCI alloy dual surface 

electrodes (Noraxon Dual EMG electrode) with a spacing of 2 cm were placed on 

each muscle belly avoiding the innovation muscle sites (Hermens et al., 2000). The 

surface electrodes were also aligned parallel to the muscle fibres. To reduce skin 

impedance, each subject’s skin was prepared by removing hair with a sterile razor, 

abrading with sand paper and cleansing the location with an alcohol swab. 

Placement of electrodes was verified before testing by observing EMG signals as 

the subjects performed knee extension and flexion actions to activate the involved 

muscles. Electrodes and wires were secured with elastic tape to reduce sensor 

movement and were worn under the subject’s normal clothing to avoid restriction to 

movements performed in the trials (see Figure 12).  
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Figure 9. An example of the reflective marker placement on a subject and snowboard (main 
investigation). 
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Figure 10. A DTS 3D tri-axial accelerometer mounted on the centre of each subject’s 
snowboard (between the feet). 

 

 
Figure 11. An example of EMG electrodes positioned on the rectus femoris of the upper 
thigh, on a male subject. 
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3.2.9 Data analysis 

 

All marker data were labeled and tracked using Qualisys Track Manager Software 

(Qualisys) and then exported to Visual3D (Version 6; C-Motion, Germantown, MD) 

for further processing and analysis. A 6DoF body model consisted of a torso, pelvis, 

left and right thighs, shanks and feet segments. In addition, we also created a 

snowboard 6DoF segment using markers that were placed on the front and end of 

the snowboard. Lower extremity 3D joint kinematics joint angles in the sagittal plane 

(joint angles and joint angular velocities) were calculated using an X-Y-Z Euler angle 

rotation sequence. Euler sequence represented flexion/extension, abduction/ 

adduction, and axial rotation. All joint kinematics were represented about a joint 

coordinate system with the distal relative to the proximal segments (Grood and 

Suntay, 1983). Segments inertial properties were based on data from Dempster 

(1955) and represented as geometric volumes (Hanavan and Ernest, 1964). The 

joint kinematic waveforms for each jump landing trial began with start event of 0.3 

seconds prior to initial contact (landing) between the snowboard and the landing 

slope. The end event occurred 0.4 seconds after the initial contact point. These 

intervals are similar to the event time points used elsewhere in the literature (Bai and 

Fukumoto, 2013). Knee joint peak angle was calculated at the moment of landing 

impact (initial contact). 

 

All analogue signals were adjusted to align EMG, accelerometer and motion data to 

the moment of impact that occurred between the snowboard and the landing ramp. 

Raw EMG data was band-pass filtered using a 25 Hz 4th Order High-Pass 

Butterworth filter, and a 250 Hz 4th order Low Pass Butterworth (BW) filter. After 

which each EMG was full-wave rectified and then a 0.1 s moving root mean square 

window algorithm was applied to the EMG data to create a linear envelope. With 

EMG activity occurring during quiet standing we subtracted this EMG activity from 

the dynamic trials. EMG data during each jump landing trials were normalised to the 

maximum EMG amplitude in the countermovement jump (CMJ) trial and represented 

as a % of maximum muscle activation. Normalised EMG signal was used to calculate 

the average and peak magnitude for each individual muscle during the preparatory 

and post-landing (reactive) phases of landing. Mean EMG amplitudes were 

calculated from the vastus medialis, vastus lateralis, rectus femoris, bicep femoris 

and semimembranosus during the pre-impact landing phase (pre-IC) and the post-
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impact landing phase (post-IC). The pre-impact landing phase is defined by the total 

activity summed in the 200ms prior to initial contact (landing moment). And the post-

impact phase is defined by the total activity summed in the 200ms following initial 

contact. All mean muscle activations were summed during the pre and post contact 

landing phases and are represented by iEMG. 

 

Board acceleration data in the X, Y and Z directions first had the bias removed by 

subtracting the mean signal from the dynamic trials, then a 50 Hz 4th order low-pass 

BW filter was used to remove any unwanted high frequency noise. Peak resultant 

accelerations were then calculated from the three linear acceleration components 

during each landing and then represented in units of g’s (dividing by 9.81 m/s2). This 

was also used to define the instant of landing for type of jump. 
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CHAPTER 4. RESULTS 

 

4.1 Group mean landing acceleration 

 

The summed mean integrated EMG (iEMG) and standard deviation (±SD) resultant 

acceleration for each subject in all trials and conditions is presented in Table 8, 

Section 4.6. Note, subject 2 did not perform the 360 deg rotation landing trials and 

therefore this data is absent from the results. Group mean and ±SD resultant 

acceleration (g) across all 3 trials in the regular, switch and 360 deg rotation jump 

landing conditions are presented in Figure 13. Showing on average subjects 

recorded the largest mean peak acceleration values in the regular jump landing 

condition (21.99g ± 3.02), over the switch (19.91g ± 2.50) and 360 deg rotation 

(21.96g ± 1.66) conditions.  

 
Figure 12. Group mean (±SD) snowboard resultant acceleration (g) recorded during the 
landing phase for all trials, for all subjects (n=5) during regular, switch and 360 deg rotation 
jump landing conditions. 
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4.2 Group mean peak knee angle and knee angular velocity 

 

Knee angle of the lead and rear leg was assessed to examine the peak and change 

in knee angle between jump landings in the three landing conditions. Due to the 

difficulty collecting rear leg knee angle (as noted in the methodology) only lead knee 

angle data is presented here. Mean knee angle data of the lead leg is represented 

by; 1 subject in the regular condition, 3 subjects in the switch condition, and 3 

subjects in the 360 deg rotation condition, which can be seen in Figure 14. In the 

regular landing condition mean knee angle at the point of initial IC measured 19 

degrees (deg) of knee flexion, later increasing to 63 deg of flexion measured during 

the landing phase of the jump. In contrast, mean knee angle during the switch 

condition measured 48 deg of knee flexion at IC and increased to 64 deg flexion. 

The 360 deg rotation landing condition recorded the highest group mean knee flexion 

angle of 82 deg of flexion and increased to a peak of 88 deg of knee flexion. 

 

 
Figure 13. Mean knee angle measured in degrees per second (d/sec) during the post-IC 
phase of landing for the regular (n=1), switch (n=3) and 360 deg rotation (n=3) during the 
first 100ms of landing for each type of landing. 

 

Knee angular velocity data presented in Figure 15, shows data for 2 subjects in the 

switch and 360 deg rotation jump landing conditions. Data in the regular landing 

condition was not viable for inclusion in this investigation. Group mean knee angular 

velocity in the switch condition showed the highest magnitude of knee flexion angle 

Knee Flexion 

Knee Extension 
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measuring 347 degrees per second (deg/s) at the point of IC. In comparison the 360 

deg rotation condition showed a similar knee angular velocity of 323 deg/s at IC. 

 
Figure 14. Group mean knee angular velocity measured in degrees per second (deg/s) 
during the post-IC phase of landing, for the switch (n=2) and 360 deg rotation (n=2) during 
the first 100ms of landing for each type of landing. 

 

4.3 Group iEMG differences between conditions 

 

On average, subjects produced higher mean summed integrated EMG (iEMG) 

activity during post-IC landing phase compared to the pre-IC phase of landing in all 

conditions (see Figures 16, 17 and 18). With exception, higher pre-IC summed mean 

iEMG values were found in the ST and VL muscles for the regular and switch jump 

landing conditions only (Figures 16 and 17). iEMG values represent the summed 

mean of % MVC data obtained against the values found in the CMJ standardisation 

trials. Peak EMG values for each trial and condition can also be seen in tables 5, 6 

and 7 (section 4.6), and are presented as the maximum % of MVC against values 

found in the CMJ standardisation trials.  
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Figure 15. Group summed mean iEMG and (±SD) pre (200 ms) and post (200 ms) IC phase 
of landing, recorded over 3 trials for the BF, RF, ST, VL and VM muscles in the regular jump 
landing condition (n=5). 

 

Figure 16. Group summed mean iEMG and (±SD) pre (200 ms) and post (200 ms) IC phase 
of landing, recorded over 3 trials for the BF, RF, ST, VL and VM muscles in the switch jump 
landing condition (n=5). 
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Figure 17. Group summed mean iEMG and (±SD) pre (200 ms) and post (200 ms) IC phase 
of landing, recorded over 3 trials for the BF, RF, ST, VL and VM muscles in the 360 deg 
rotation jump landing condition (n=4). 

 

Group mean summed iEMG and SD± recorded in the involved muscle groups (BF, 

RF, ST, VL, VM) for regular, switch and 360 deg landing conditions can be seen in 

Figures 19 and 20. Findings between conditions revealed some consistencies in 

muscle iEMG activity for subjects. Of note, the BF was most active in the 360 deg 

rotation pre-IC condition (mean summed iEMG 13821) in comparison to all other 

muscle groups. In the regular pre-IC condition, the ST muscle recorded the highest 

summed mean iEMG of 15899, which was substantially higher than all other muscle 

groups. During the switch pre-IC condition, the VL muscle produced the highest 

summed mean iEMG of 15196 compared to all muscle groups. During the post-IC 

phase, group mean summed EMG in the RF, VL and VM groups showed a 

progressive increase across regular, switch, and 360 deg rotation landings. The VL 

also demonstrated an exponential increase in post-IC summed mean iEMG from 

regular (summed mean iEMG 15751) to 360 deg rotation (summed mean iEMG 

36122) jump landings. The reverse of this finding was observed by the ST muscle 

group, were a successive decline was recorded in group summed mean EMG from 

regular (26138 iEMG), to switch (17701 iEMG) and 360 deg rotation (16757 iEMG) 

during post-IC phase. The BF demonstrated almost identical summed mean iEMG 

values for the post-IC in the regular (15414) and 360 deg rotation (15599) conditions, 

with the lowest mean EMG seen in the switch jump landing (11674). 
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Figure 18. Group mean summed (±SD) iEMG for pre-IC landing phase (200 ms), recorded 
over 3 trials for BF, RF, ST, VL and VM muscles in regular, switch and 360 deg rotation jump 
landing conditions for n=4, and regular and switch landings for n=5 .  

 

Figure 19. Group mean summed (±SD) iEMG for the post-IC landing phase (200 ms), 
recorded over 3 trials for BF, RF, ST, VL and VM muscles in regular, switch and 360 deg 
rotation jump landing conditions for n=4, and regular and switch landings for n=5 . 

 

4.4 Differences between pre-IC and post-IC phases of landing 

 

Findings between subjects showed a high variability of summed mean iEMG activity 

pre and post-IC phase of landing, which can be seen in tables 2, 3 and 4. This finding 

was consistent across regular, switch and 360 deg rotation landing conditions, 

indicating muscle activity is highly variable to each subject. Figures 21, 22 and 23 
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provides an example of one subjects summed mean iEMG activity during pre and 

post-IC phases, in the regular, switch and 360 deg rotation landing conditions. 

 

Figure 20. Mean summed iEMG (integrated EMG) (±SD) of the BF, RF, ST, VL and VM; 
during pre (200 ms) and post (200 ms) IC phases in the regular jump landing condition (n=1). 

 

 

 Figure 21. Mean summed iEMG (integrated EMG) (±SD) of the BF, RF, ST, VL and VM, 
during pre (200 ms) and post (200 ms) IC phases in the switch jump landing condition (n=1). 
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Figure 22. Mean summed iEMG (integrated EMG) (±SD) of the BF, RF, ST, VL, VM, during 
pre (200 ms) and post (200 ms) IC phases in the 360 deg jump landing condition (n=1). 

 

4.5 Biomechanical findings by subject 

 

Some issues during the assessment of lower-limb kinematics were encountered as 

noted in the methodology, which has limited the scope of joint kinematic data 

available for each subject, in particular ankle angle and angular velocity were omitted 

from analysis. For this reason, knee angle, and were possible knee angular velocity 

is presented as the primary data set describing lower-limb kinematics at the knee, 

alongside peak resultant acceleration to illustrate the relationship between landing 

acceleration and joint kinematics. Figure 24 shows data recorded by subject 1 during 

the 360 deg rotation post-IC landing phase (200 seconds). Part A shows the 

maximum peak knee angle occurred in trial 1 at 81.3 deg of the right (lead) leg, mean 

average peak knee angle measured 76 deg of knee flexion across all trials. The 

highest peak resultant acceleration was achieved in trial 2 with 24.7g, average 

resultant acceleration for all 3 trials measured 23g (see part B). Summed mean 

iEMG measured for the 5 muscle groups of the left (rear) leg displayed varying 

results across trials; BF (14453) and RF (17965) muscles recorded the highest peak 

EMG values in trial 2, ST (3954) and VM (17080) in trial 3, and VL (16440) peak 

EMG was seen trial 1 (part C). Summed mean iEMG for all trials is also presented 

in part C.  
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Figure 23. Data recorded post-IC (200 ms) for subject 1 following 3 trials completed in the 
360 deg rotation jump landing condition; part A = knee angle (deg), part B = resultant 
acceleration (g), part C = mean summed iEMG and peak EMG per trial. 
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Figure 25 displays data recorded for subject 2 over 3 trials in the switch landing 

condition, in the post-IC landing phase (200 seconds). Part A shows peak knee angle 

of the right (lead) leg, trial 1 recorded the maximum peak angle at 77.19 deg, mean 

knee angle across the 3 trials was 61 deg. Part B displays resultant acceleration, 

peak acceleration occurred in trial 3 at 24.7g with an average resultant acceleration 

of 22g for the 3 trials. Part C shows summed peak EMG values recorded by the BF 

(12587), RF (28233), ST (33335) in trial 1. Summed peak EMG recorded by the VL 

(9431) and VM in trial 3 (12927), and also summed mean iEMG expressed for the 3 

trials.  
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Figure 24. Data recorded post-IC (200 ms) phase of jump landing for subject 2 following 3 
trials completed in the switch landing condition; part A = knee angle (deg), part B = resultant 
acceleration (g), part C = mean summed iEMG and peak EMG per trial. 
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Figure 26 shows data recorded by subject 3 during the switch post-IC (200 seconds) 

phase of landing. Knee angle results (part A) of the lead leg show the maximum 

peak knee angle occurred in trial 1 with 75 deg of knee flexion, mean knee angle for 

all 3 trials was 64 deg of knee flexion. Peak resultant acceleration (part B) was also 

recorded in trial 1 with 23.7g, and a mean resultant acceleration of 21.8g for all 3 

trials. Peak EMG values found in trial 1 included the BF (10000) and ST (12150) 

muscle groups. Whereas, peak EMG values for the VL (23325) and VM (5004) were 

recorded in trial 2, with peak RF (18212) EMG recorded in trial 3. Summed mean 

iEMG data for all trials is presented in part C. 
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Figure 25. Data recorded post-IC (200 ms) phase of jump landing for subject 3 following 3 
trials completed in the switch landing condition; part A = knee angle (deg), part B = resultant 
acceleration (g), part C = mean summed iEMG and peak EMG per trial. 

 

Figure 27 presents data recorded by subject 4 during the 360 deg rotation post-IC 
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knee angle of 100.4 deg across the 3 trials. Moreover, trial 2 produced the highest 

peak resultant acceleration at 24.4g, mean resultant acceleration was 24.0g after 3 

trials (part B). Peak EMG recorded between trials was achieved by the RF (47892) 

and ST (24542) in trial 2, while peak EMG for the BF (28773) occurred in trial 1. 

Peak EMG for the VL (94792) and VM (65343) muscles was found in trial 3. Summed 

mean iEMG across all trials is also presented in part C. 
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Figure 26. Data recorded post-IC (200 ms) phase of jump landing for subject 4 following 3 
trials completed in the 360 deg rotation; part A = knee angle (deg), part B = resultant 
acceleration (g), part C = mean summed iEMG and peak EMG per trial. 

 

Figure 28 includes data recorded by subject 5 during the post-IC phase (200 

seconds) for the switch jump landing condition. The largest peak knee angle (part A) 

was recorded in trial 3 by the lead (left) leg at 74.1 deg, mean peak knee angle was 
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70.1 deg after three trials. The largest peak resultant acceleration (part B) was seen 

in trial 3 with 22.2g, mean acceleration for the three trials measured 19.8g. Peak 

muscle EMG recorded in trials showed RF (19802), ST (19802), VL (14208) and VM 

(10633) muscle groups all reported peak activity during trial 3, while peak BF (4704) 

activity was recorded in trial 2 (BF activity for trial 3 was not available for analysis) 

(part C). Summed mean iEMG across all trials is also presented in part C. 

 

Figure 27. Data recorded post-IC (200 ms) phase of jump landing for subject 5 following 3 
trials completed in the switch condition; part A = knee angle (deg), part B = resultant 
acceleration (g), part C = mean summed iEMG and peak EMG per trial. 
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4.6 Summary of results 

 

While summed mean iEMG activity between subjects showed large individual 

variations, some trends can be seen in the iEMG values for individual muscle groups. 

For example, larger ST and BF muscle activation values were seen in 3 out of 5 

subjects during the regular pre-IC phase of landing, compared to the switch jump 

landing condition. Furthermore, higher BF, VL and VM activity was seen during the 

pre-IC phase for 3 out of 5 subjects during the 360 deg rotation jump landing 

compared to the regular and switch jump landing conditions. Subjects activated RF 

to a greater extent than any other muscle group during the pre-IC phase of the switch 

landing compared to all other landing conditions.  

 

During the post-IC phase, summed mean iEMG was higher in the ST muscle during 

the regular jump landing condition in 4 out of 5 subjects. The highest iEMG values 

were recorded by the VL muscle in both the switch and 360 deg rotation landing 

conditions by 4 out of 5 subjects. Mean iEMG in RF and VM muscle groups appeared 

to increase substantially in switch and 360 deg rotation post-IC landing conditions 

compared to the regular jump landing across subjects. In the hamstring muscle 

groups, the ST muscle exhibited large increases in mean peak activation during the 

post landing phase across all conditions. In contrast, mean iEMG values for the BF 

showed large fluctuations in activation across the three conditions, between 

subjects.  

 

The highest mean EMG in the regular landing condition was recorded by subject 4, 

during trial 1 by the VM muscle 77426 post-IC. This was accompanied by a resultant 

acceleration of 20.52g, the lowest resultant value recorded across the 3 trials. VM 

summed mean iEMG 64809, SD± 12767 was also the highest value recorded across 

subjects in the regular landing condition. Trial 3 of 3 showed the highest recorded 

resultant acceleration at 23.53g, although this did not correspond to higher peak 

EMG values. Knee angle and knee angular velocity data were not available for trial 

3. 

 

In the switch landing condition, the highest mean peak EMG was recorded by the 

VM muscle at 92483 post-IC, by subject 4 in trial 2 of 2. With data available for just 

2 trials by subject 4, VM activity was found higher than all other assessed muscle 
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groups. Mean peak EMG for the VM also corresponded with a larger resultant 

acceleration of 19.54g. Peak knee angle of the left (lead) leg was 73.8 deg of knee 

flexion and peak knee angle of velocity was measured at 130.23 deg/s. 

 

During the 360 deg rotation condition, the highest mean iEMG was seen by the VL 

muscle at 83725 post-IC, by subject 5. Trial 3 of 3 produced the highest mean peak 

EMG of 94792. VL activity was greater than all other EMG values recorded across 

the 5 muscle groups. Resultant acceleration recorded for trial 3 was 23.31g, which 

was slightly lower than the resultant acceleration found in trials 1 (24.40g) and 2 

(24.33g) respectively. Peak knee angle of the left (lead) leg recorded post-IC in trial 

3 was 93.63 deg of knee flexion. Peak knee angle of velocity data was not available 

for this trial. 
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Table 2. Trial summed mean EMG (iEMG) recorded for all 5 muscle groups in pre and post-IC phases, for the regular landing condition (n=5). 
 

Regular - EMG Pre-IC  Regular - EMG Post-IC  
Subject 1 TRIAL 1  TRIAL 2  TRIAL 3  AV / SD    TRIAL 1  TRIAL 2  TRIAL 3  AV / SD  

BF 6738.79 5942.71 5742.57 6141.36 ± 526.98 BF 18111.13 12410.11 15290.11 15270.44 ± 2850.56 

RF 7808.21 10488.48 5956.86 8084.51 ± 2278.41 RF 7974.16 8542.96 3946.61 6821.24 ± 2505.70 

ST 4429.86 6736.54 2504.43 4556.94 ± 2118.91 ST 5387.22 9422.26 4523.40 6444.29 ± 2614.91 

VL 6105.33 5064.38 4807.77 5325.82 ± 687.15 VL 5958.07 8038.15 3889.48 5961.90 ± 2074.34 

VM 2347.16 2805.86 1173.19 2108.73 ± 842.04 VM 3914.58 6728.77 2519.24 4387.53 ± 2144.24 

Subject 2                   

BF 3574.86 3155.31 0.00 2243.38 ± 1954.12 BF 4328.45 4178.88 0.00 2835.77 ± 2457.00 

RF 23841.32 25490.24 0.00 16443.85 ± 14264.64 RF 34647.96 36702.09 0.00 23783.34 ± 20622.57 

ST 15385.28 15510.86 0.00 10298.71 ± 8919.17 ST 50936.40 51303.50 0.00 34079.96 ± 29514.69 

VL 13631.50 14032.11 0.00 9221.20 ± 7988.31 VL 21802.12 21993.00 0.00 14598.37 ± 12642.92 

VM 13943.18 12601.35 0.00 8848.17 ± 7692.06 VM 25527.26 22807.50 0.00 16111.58 ± 14019.15 

Subject 3                   

BF 9517.45 14423.67 14423.67 12788.26 ± 2832.61 BF 10183.31 11292.35 17099.55 12858.40 ± 3714.57 

RF 3647.24 7446.93 2926.51 4673.56 ± 2428.69 RF 6230.02 6942.37 6602.69 6591.69 ± 356.30 

ST 12821.59 13627.00 20289.11 15579.23 ± 4098.70 ST 10628.73 20777.95 24880.48 18762.38 ± 7336.55 

VL 3330.96 4267.63 2688.30 3428.96 ± 794.21 VL 11789.86 9200.60 13644.62 11545.02 ± 2232.10 

VM 1000.21 1328.35 775.97 1034.84 ± 277.81 VM 2587.56 2307.64 3269.06 2721.41 ± 494.49 

Subject 4                   

BF 13892.24 12615.67 11235.72 12581.20 ± 1328.60 BF 19201.01 25650.56 20101.13 21650.90 ± 3492.92 

RF 3716.36 2891.53 3037.75 3215.21 ± 440.12 RF 28500.05 31673.42 33719.63 31297.70 ± 2629.99 

ST 22222.30 21473.86 19113.25 20936.46 ± 1622.69 ST 37774.52 26750.74 27250.36 30591.87 ± 6225.37 

VL 5750.89 3652.26 2768.89 4057.34 ± 1531.72 VL 37790.25 35466.34 31822.31 35026.30 ± 3008.21 

VM 9544.82 6964.39 7058.17 7855.79 ± 1463.49 VM 77426.38 65104.44 51896.98 64809.26 ± 12767.26 
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Table 2. Continued. 
Subject 5          

BF 10400.06 14564.56 12563.34 12509.32 ± 2082.78 BF 30451.94 23321.93 19596.86 24456.91 ± 5515.83 

RF 4512.76 4512.76 1772.93 3599.48 ± 1581.84 RF 12903.26 13319.52 8590.54 11604.43 ± 2618.40 

ST 33488.44 21451.21 29432.39 28124.01 ± 6124.35 ST 42966.47 43121.26 36352.78 40813.50 ± 3863.87 

VL 2274.87 1393.56 1762.88 1810.43 ± 442.57 VL 11370.78 14518.03 8994.46 11627.75 ± 2770.73 

VM 6814.65 2792.66 5203.63 4936.98 ± 2024.21 VM 5025.65 10194.12 5282.04 6833.93 ± 2921.83 

** = Data unavailable for trial 
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Table 3. Trial summed mean EMG (iEMG) recorded for all 5 muscle groups in pre and post-IC phases, for the switch landing condition (n=5). 
 

Switch landing – EMG Pre-IC  Switch landing - EMG Post-IC  
Subject 1 TRIAL 1 TRIAL 2 TRIAL 3 AV / SD   TRIAL 1 TRIAL 2 TRIAL 3 AV / SD 

BF 8594.28 4843.02 6241.06 6559.45 ± 1895.79 BF 7144.38 11596.59 12993.18 10578.05 ± 3054.54 

RF 6717.11 16604.30 14123.78 12481.72 ± 5144.06 RF 15048.87 3699.73 3271.16 7339.91 ± 6679.58 

ST 2412.05 1218.39 1087.29 1572.57 ± 729.95 ST 4099.96 3477.92 4134.46 3904.10 ± 369.50 

VL 9255.13 6525.04 7282.27 7687.47 ± 1409.43 VL 25286.18 27102.27 29346.04 27244.83 ± 2033.68 

VM 3678.77 1988.38 3156.71 2941.28 ± 865.54 VM 12640.79 13452.00 14177.25 13423.34 ± 768.63 

Subject 2                   

BF 7978.98 7775.05 7516.19 7756.74 ± 231.94 BF 12587.45 8820.48 9988.30 10465.41 ± 1928.28 

RF 9231.97 12516.50 13178.22 11642.23 ± 2113.41 RF 27205.76 24121.93 28233.89 26520.52 ± 2139.91 

ST 14931.25 9725.90 21864.41 15507.187 ± 6089.72 ST 33335.43 28137.18 32542.03 31338.21 ± 2800.41 

VL 5880.81 7768.35 2156.28 5268.47 ± 2855.70 VL 9359.87 5931.90 9431.08 8240.95 ± 2000.01 

VM 2591.38 4310.38 1506.85 2802.86 ± 1431.68 VM 7944.26 5270.12 12927.02 8713.79 ± 3886.02 

Subject 3                   

BF 2905.43 7866.90 2445.80 4406.04 ± 3005.99 BF 10000.77 7211.79 6646.71 7953.09 ± 1795.71 

RF 7620.02 12024.47 8658.03 9434.17 ± 2303.52 RF 6733.29 6906.52 18212.53 10617.44 ± 6578.11 

ST 1757.20 3818.85 792.53 2122.86 ± 1545.94 ST 12150.95 5002.82 3606.69 6920.15 ± 4583.47 

VL 1757.73 11137.51 795.91 4563.71 ± 5713.35 VL 8688.43 23325.81 13824.76 15279.66 ± 7426.36 

VM 756.22 2297.06 611.51 1221.59 ± 934.18 VM 1925.63 5004.22 3675.84 3535.23 ± 1544.11 

Subject 4                   

BF 5345.07 8511.01 ** 6928.04 ± 2238.66 BF 24482.30 27432.53 ** 25957.41 ± 2086.13 

RF 6505.85 13330.90   9918.37 ± 4826.04 RF 48483.60 64547.43   56515.51 ± 11358.84 

ST 2907.45 4512.35   3709.90 ± 1134.83 ST 41243.01 27610.93   34426.96 ± 9639.34 

VL 9342.20 15052.76   12197.47 ± 4037.98 VL 42902.95 64958.40   53930.67 ± 15595.56 

VM 12571.36 26269.34   19420.35 ± 9685.93 VM 61635.55 91483.98   76559.76 ± 21106.03 
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Table 3. Continued.  
Subject 5          

BF 3801.36 2930.24 ** 3365.80 ± 615.97 BF 2128.53 4704.49 ** 3416.50 ± 1821.48 

RF 5453.58 8342.61 7411.44 7069.21 ± 1474.61 RF 16456.04 20926.19 22692.15 20024.79 ± 3214.29 

ST 9977.64 14873.34 27245.62 17365.53 ± 8899.67 ST 6413.03 9542.14 19802.56 11919.24 ± 7004.13 

VL 893.79 1637.58 2145.74 1559.03 ± 629.66 VL 8432.97 13682.78 14208.51 12108.08 ± 3194.58 

VM 891.12 2236.81 4047.76 2391.90 ± 1584.02 VM 4948.99 9276.70 10633.22 8286.30 ± 2986.71 

** = Data unavailable for trial   
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Table 4. Trial summed mean EMG (iEMG) recorded for all 5 muscle groups in pre and post-IC phases, for the 360 deg rotation landing condition (n=4). 

360 deg rotation landing - EMG Pre-IC  360 deg rotation landing - EMG Post-IC  
Subject 1 TRIAL 1 TRIAL 2 TRIAL 3 AV / SD   TRIAL 1 TRIAL 2 TRIAL 3 AV / SD 

BF 15481.45 10349.24 8117.73 11316.14 ± 3775.88 BF 13007.54 14453.33 10974.63 12811.83 ± 1747.59 
RF 7240.08 5051.82 5867.74 6053.21 ± 1105.86 RF 12369.19 17965.62 7276.82 12537.20 ± 5346.38 

ST 6084.66 2133.87 3488.30 3902.27 ± 2007.67 ST 2197.86 2330.64 3954.25 2827.58 ± 977.97 

VL 3288.37 3229.47 6440.30 4319.38 ± 1837.01 VL 16440.16 15094.62 15207.71 15580.83 ± 746.35 

VM 2029.57 1927.09 3459.02 2471.89 ± 856.41 VM 12622.77 15196.35 17080.14 14966.41 ± 2237.56 

Subject 2                   

BF ** ** ** ** BF ** ** ** ** 

RF         RF         
ST         ST         

VL         VL         

VM         VM         

Subject 3                   

BF ** 16276.06 10597.41 13436.73 ± 4015.41 BF ** 10272.39 10233.56 10252.97 ± 27.46 

RF 4881.22 20174.28 23627.49 16227.66 ± 9976.85 RF 7587.69 33679.57 20067.37 20444.87 ± 13050.03 

ST 41668.39 24809.63 4529.34 23669.12 ± 18595.77 ST 20799.17 8304.53 7151.00 12084.90 ± 7568.78 
VL 19089.02 23244.78 7522.73 16618.84 ± 8146.90 VL 29602.71 28864.45 35342.86 31270.00 ± 3546.46 

VM 4387.63 2828.45 2221.15 3145.74 ± 1117.55 VM 7088.61 7394.53 7698.12 7393.75 ± 304.76 

Subject 4                   

BF 16035.11 23819.17 11528.47 17127.57 ± 6217.75 BF 28773.08 28277.71 25707.73 27586.17 ± 1645.53 
RF 9620.58 6351.62 4062.20 6678.13 ± 2793.54 RF 47892.30 28357.35 32790.36 36346.67 ± 10241.54 

ST 8840.22 9243.24 4474.78 7519.41 ± 2644.42 ST 24542.49 14001.47 20318.14 19620.69 ± 5305.01 

VL 17796.48 22125.25 11171.73 17031.15 ± 5516.72 VL 75079.96 81304.25 94792.36 83725.52 ± 10076.78 
VM 17641.15 24938.19 17605.76 20061.69 ± 4223.20 VM 65343.19 54349.42 54845.53 58179.37 ± 6209.00 
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Table 4. Continued. 

Subject 5          

BF 19212.65 7598.83 ** 13405.74 ± 8212.21 BF 10438.32 13056.92 ** 11747.61 ± 1851.63 

RF 9481.83 9786.76   9634.29 ± 215.62 RF 40064.49 25341.03   32702.75 ± 10411.05 

ST 11329.76 16812.81   14071.28 ± 3877.10 ST 37172.54 27822.93   32497.73 ± 6611.17 

VL 4456.01 4926.38   4691.19 ± 332.61 VL 15354.77 12468.53   13911.64 ± 2040.88 

VM 1454.14 3705.15   2579.64 ± 1591.71 VM 10352.73 6858.16   8605.44 ± 2471.04 

** = Data unavailable for trial 
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Table 5. Trial peak % MVC and mean MVC % recorded for all 5 muscle groups in pre and post-IC phases, for the regular jump landing. 

Regular jump landing - Pre-IC - Max % MVC   Regular jump landing - Post-IC - Max % MVC   
  TRIAL 

1 
TRIAL 2 TRIAL 3 Mean   TRIAL 1 TRIAL 2 TRIAL 3 Mean 

Subject 1                   
BF 97.14 67.00 78.90 81.01 BF 103.89 55.98 87.27 82.38 
RF 22.42 23.71 14.11 20.08 RF 69.35 58.53 69.17 65.68 
ST 32.90 56.73 26.32 38.65 ST 24.95 40.51 42.70 36.05 
VL 46.10 26.86 39.19 37.38 VL 80.04 59.46 77.15 72.22 
VM 19.63 20.07 11.94 17.21 VM 43.44 50.16 48.43 47.34 
Subject 2                   
BF 58.17 72.63 ** 65.40 BF 163.41 69.72 ** 116.56 
RF 73.59 116.17   94.88 RF 151.59 153.82   152.70 
ST 76.30 98.22   87.26 ST 112.99 189.98   151.48 
VL 81.80 63.25   72.52 VL 134.25 141.30   137.78 
VM 63.06 59.33   61.20 VM 116.54 111.78   114.16 
Subject 3                   
BF 102.21 101.76 121.33 108.43 BF 115.52 63.75 96.21 91.82 
RF 21.56 18.75 17.07 19.13 RF 71.07 48.12 51.23 56.81 
ST 110.05 145.34 128.99 128.12 ST 110.66 73.15 103.15 95.65 
VL 51.25 36.79 60.36 49.47 VL 102.91 86.44 75.96 88.44 
VM 27.50 25.94 51.04 34.83 VM 63.51 113.94 47.70 75.05 
Subject 4                   
BF 116.66 98.87 97.15 104.23 BF 89.53 188.10 71.33 116.32 
RF 91.80 67.62 46.82 68.75 RF 124.08 115.31 121.49 120.29 
ST 138.09 152.24 153.45 147.93 ST 125.50 116.06 110.77 117.44 
VL 95.18 89.67 62.19 82.35 VL 92.44 85.53 128.39 102.12 
VM 51.87 54.96 48.36 51.73 VM 68.81 71.63 106.36 82.27 
Subject 5                   
BF 56.42 51.67 45.19 51.09 BF 82.06 113.68 88.31 94.68 
RF 33.24 35.47 15.88 28.19 RF 61.38 73.34 82.20 72.30 
ST 64.18 62.27 55.09 60.51 ST 98.75 71.09 75.65 81.83 
VL 28.37 28.75 20.39 25.84 VL 82.66 70.24 60.54 71.15 
VM 32.54 26.20 20.77 26.50 VM 92.49 80.30 53.48 75.42 
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Table 6. Trial peak % MVC and mean MVC % recorded for all 5 muscle groups in pre and post-IC phases, for the switch jump landing. 
Switch jump landing - Pre-IC - Max % MVC   Switch jump landing - Post-IC - Max % MVC   
  TRIAL 1 TRIAL 2 TRIAL 3 Mean   TRIAL 1 TRIAL 2 TRIAL 3 Mean 
Subject 1                   
BF 88.05 115.54 74.55 92.71 BF 92.17 91.32 65.83 83.11 
RF 21.39 40.84 49.93 37.38 RF 63.05 49.74 52.18 54.99 
ST 80.31 76.87 79.73 78.97 ST 32.95 33.18 21.42 29.18 
VL 38.77 30.64 27.41 32.27 VL 76.97 87.98 65.93 76.96 
VM 15.04 18.06 11.16 14.75 VM 69.18 43.90 55.79 56.29 
Subject 2                   
BF 36.36 30.99 41.49 36.28 BF 68.50 51.17 98.37 72.68 
RF 59.39 57.26 42.55 53.06 RF 159.50 146.19 113.28 139.65 
ST 75.86 85.65 75.70 79.07 ST 87.86 107.38 129.35 108.19 
VL 74.50 100.38 70.73 81.87 VL 88.93 106.88 105.52 100.44 
VM 47.74 82.58 37.36 55.90 VM 77.83 76.87 81.76 78.82 
Subject 3                   
BF 131.20 116.35 103.15 116.90 BF 115.19 95.30 84.74 98.41 
RF 22.12 30.05 18.16 23.44 RF 59.72 72.09 68.77 66.86 
ST 151.15 120.69 51.98 107.94 ST 62.78 100.64 100.61 88.01 
VL 49.83 34.35 33.20 39.13 VL 85.69 94.39 89.76 89.95 
VM 34.34 25.61 27.71 29.22 VM 140.81 78.59 75.32 98.24 
Subject 4                   
BF 124.14 57.60 98.10 93.28 BF 89.44 122.48 177.44 129.79 
RF 32.81 36.76 27.53 32.37 RF 114.68 146.39 147.44 136.17 
ST 193.71 117.84 155.05 155.53 ST 102.43 118.57 92.41 104.47 
VL 45.02 86.24 65.33 65.53 VL 100.07 97.59 91.09 96.25 
VM 52.31 54.07 48.83 51.74 VM 130.40 190.76 187.17 169.44 
Subject 5                   
BF 52.18 50.46 ** 51.32 BF 103.36 121.27 ** 112.32 
RF 28.84 32.20   30.52 RF 137.56 172.15   154.85 
ST 50.99 56.02   53.50 ST 185.96 133.18   159.57 
VL 42.66 79.00   60.83 VL 113.22 184.08   148.65 
VM 18.83 37.18   28.01 VM 103.23 117.15   110.19 
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Table 7. Trial peak % MVC and mean MVC % recorded for all 5 muscle groups in pre and post-IC phases, for the 360 deg rotation jump landing condition 
(n=4). 

360 deg rotation jump landing - Pre-IC - Max % MVC 
  

360 deg rotation jump landing - Post-IC - Max % MVC 
  

  TRIAL 1 TRIAL 2 TRIAL 3 Mean   TRIAL 1 TRIAL 2 TRIAL 3 Mean 
Subject 1                   
BF 110.65 95.56 66.72 90.98 BF 85.89 85.44 76.72 82.68 
RF 20.97 11.30 18.12 16.79 RF 66.74 61.49 51.42 59.89 
ST 107.54 59.28 58.84 75.22 ST 21.71 53.50 51.85 42.36 
VL 32.21 16.72 34.09 27.67 VL 88.18 95.21 95.74 93.04 
VM 12.91 3.77 32.59 16.43 VM 57.93 42.75 59.02 53.23 
Subject 2                   
BF ** ** ** ** BF ** ** ** ** 
RF         RF         
ST         ST         
VL         VL         
VM         VM         
Subject 3                   
BF 139.90 113.07 98.70 117.22 BF 76.59 116.21 95.76 96.19 
RF 27.43 47.33 51.16 41.97 RF 83.11 68.11 67.29 72.84 
ST 168.55 99.12 179.03 148.90 ST 98.51 64.05 68.34 76.97 
VL 54.08 51.43 74.69 60.07 VL 113.10 130.12 94.36 112.53 
VM 39.32 23.85 16.06 26.41 VM 56.35 64.40 62.96 61.24 
Subject 4                   
BF 78.11 45.00 ** 61.56 BF 118.13 119.84 ** 118.99 
RF 76.91 68.27   72.59 RF 100.79 120.16   110.47 
ST 181.73 169.32   175.52 ST 125.76 134.27   130.02 
VL 72.04 88.98   80.51 VL 67.54 87.72   77.63 
VM 60.79 62.17   61.48 VM 68.94 124.67   96.80 
Subject 5                   
BF 114.12 100.30 57.48 90.64 BF 101.48 96.33 83.37 93.73 
RF 43.66 26.91 32.28 34.28 RF 135.94 96.02 97.39 109.78 
ST 41.72 28.97 21.49 30.73 ST 96.87 51.47 69.87 72.74 
VL 109.86 141.81 197.81 149.82 VL 313.34 352.69 403.35 356.46 
VM 30.37 31.62 33.26 31.75 VM 82.19 87.90 82.04 84.05 
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Table 8. Peak and mean resultant acceleration (g) recorded across regular, switch and 360 deg rotation jump landing conditions (n = 5). 

   
REGULAR 

(shown as g) 
 

 
SWITCH 

(shown as g) 
 

 
360 deg ROTATION 

(shown as g) 
 

  TRIAL 
1 

TRIAL 
2 

TRIAL 
3 

AV / SD TRIAL 
1 

TRIAL 
2 

TRIAL 
3 

AV / SD TRIAL 
1 

TRIAL 
2 

TRIAL 
3 

AV / SD 

Subject 1 22.04 24.7 22.59 23.11 ± 1.40 21.37 13.26 17.55 17.39 ± 4.06 20.82 20.27 22.18 21.09 ± 0.98 

Subject 2 24.93 19.65 ** 22.29 ± 3.73 21.47 20.20 24.78 22.15 ± 2.36 ** ** ** ** 

Subject 3 26.92 26.63 15.25 22.93 ± 6.66 19.82 21.87 23.76 21.81 ± 1.97 16.34 21.24 24.85 20.81 ± 4.27 

Subject 4 20.52 21.46 23.53 21.83 ± 1.54 17.12 19.54 ** 18.33 ± 1.71 24.40 24.33 23.31 24.01 ± 0.61 

Subject 5 17.91 20.04 21.42 19.79 ± 1.77 20.00 17.40 22.21 19.87 ± 2.41 22.49 21.39 ** 21.94 ± 0.78 

** = Data unavailable for trial. 
 

 

 

 

 

 

  



 68 

CHAPTER 5. DISCUSSION 

 

5.1 Introduction 

 

The main aim of the present study was to assess the biomechanical demands of 

regular, switch and 360 deg rotation snowboard landings in five elite freestyle 

snowboard athletes. And secondly identify differences between conditions and 

pre/post-IC landing phases. For the first time, results from this investigation will 

provide sport practitioners and coaches with an insight into the physical rigours 

facing elite freestyle athletes perform landings commonly seen in training and 

competition. This section will now provide a critical discussion of the key findings 

and rationale for the variance in results found between subjects and conditions. 

 

Amongst the three conditions the largest peak impact force (acceleration) measured 

during the landing phase was found in the regular (21.99g) and 360 deg rotation 

(21.96g) conditions. The switch (19.91g) landing produced marginally less impact 

force by comparison. Peak knee angle in the regular condition recorded the least 

amount of knee flexion at IC (19 deg) in comparison to the switch (48 deg) and 360 

deg rotation (82 deg) conditions. Yet, knee angle measured during the absorption 

phase of landing (post-IC) showed athletes performed greater overall mean knee 

flexion in the regular trials than in the switch and 360 deg rotation. Knee angular 

velocity indicated that the 360 deg rotation required the quickest and most rapid 

change in knee flexion angle (within <0.7ms) post-IC landing, which also links with 

high peak acceleration forces found. In contrast, knee angular velocity in the switch 

condition revealed knee flexion occurring over a longer time frame (<0.9ms) in 

comparison to 360 deg rotation condition, this also coincides with smaller 

acceleration forces found. Group summed mean integrated EMG (iEMG) revealed 

higher overall muscle activation post-IC versus pre-IC in the majority of muscles in 

all conditions, as hypothesised. Further, higher overall mean iEMG activity was 

recorded in the BF, RF, VL and VM muscles post-IC in 360 deg rotation, as 

hypothesised. Highest mean iEMG post-IC in the ST was found in the regular jump 

landing condition, which was unexpected. 
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Group mean activation patterns were observed in muscles between landing trials. 

For instance, higher mean iEMG ST activity was observed post-IC during regular 

landings, whereas higher overall quadricep (RF, VL, VM) activation was seen in 

switch and 360 deg rotation post-IC jump landings. In contrast, elevated hamstring 

(BF, ST) activation compared to quadriceps was found in the regular and 360 deg 

rotation trials pre-IC. Therefore, it could be implied that greater relative hamstring 

preactivation found in the rear stance leg during regular and 360 deg rotation 

landings was a preparatory mechanism for more severe landings found. Conversely, 

two out of the three quadricep (RF, VL) groups recorded superior values pre-IC in 

the switch landing condition in the lead snowboard leg. This also corresponded with 

higher mean RF, VL and VM iEMG activity post-IC in the switch landing. As well as, 

higher mean iEMG quadricep activity post-IC in the switch and 360 deg rotation 

trials. Another finding of this study was elevated muscle activity in the pre-IC phase 

corresponded with amplified muscle activity in the post-IC phase of landing. There 

was also a clear relationship between higher large peak acceleration forces on 

landing and greater muscle activation. 

 

5.2 Snowboard acceleration in response to landing 

 

Snowboard landing acceleration values ranging 13.26g to 26.92g are the first ever 

values reported during snowboard jump landings by an elite population, captured in 

a training session. The findings are similar to results published by Zhang et al. (2008) 

who reported 22.24g measured by the calcaneus during 30cm vertical drop landings. 

Also, a study conducted by Lundgren et al. (2016) observed elite surfers record up 

to 21.4g peak tibial accelerations during a jump-landing from a mini-trampoline onto 

a foam surfboard located on top of a soft-landing mat. Interestingly, authors matched 

peak tibial acceleration with peak vertical landing force during CMJ profiling and 

showed surfers sustained in excess of 6 times bodyweight during landings. Because 

higher peak accelerations were found in the current study in comparison to the 

values reported by Lundgren et al., (2016), it is proposed that subjects in the current 

study may have experienced forces in excess of 6 times body mass (relative) during 

snowboard landings. To substantiate this claim, future investigations assessing 

landings should incorporate force plate CMJ profiling to enable landing acceleration 

to be expressed relative to body mass. This is a common and helpful reference for 
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physical preparation coaches to quantify sport demands when designing training 

programmes (Determan et al., 2010).  

 

Interestingly, peak snowboard acceleration values obtained in the current study are 

in fact smaller than peak values noted in majority of vertical drop-landing studies with 

non-elite and athletic populations in the laboratory environment. It is well accepted 

landing height corresponds with greater peak acceleration cited in numerous papers 

(Zhang et al., 2008, Tran et al., 2010, Ali et al., 2014). Yet these studies reported 

data using significantly lower drop heights (30-90cm) and in many cases found 

significantly higher peak acceleration values compared with the current study. 

Moreover, the primary objective in the mentioned papers was to assess a vertical 

stuck landing with no horizontal velocity reported. Conversely, a sloped landing has 

been found to increase relative horizontal velocity at impact, resulting in less overall 

vertical impact (Turnbull et al., 2011, Hubbard and Swedberg, 2012). This may 

explain why reduced snowboard acceleration was seen in this study despite a larger 

landing height used against methods in the existing literature (Zhang et al., 2008, 

Tran et al., 2010, Lundgren et al., 2016). This consideration was also seen in 

skateboard ramp landings were mild relative impact loads of 4-5 were reported 

(Frederick et al., 2006). With this in mind, and in conjunction with findings recorded 

in the current study, it can be suggested that sloped landings increases snowboard 

horizontal acceleration, in comparison to vertical acceleration, which may be greater 

in flat landings. 

 

One of the key findings from this study was the difference in landing acceleration 

found between conditions. It was hypothesised landings of greater technical difficulty 

(rotation) would sustain higher peak acceleration, although this was not the case. 

Mean acceleration data reported in the regular (21.99g) and 360 deg rotation 

(21.96g) conditions were almost identical. A possible explanation for this is a number 

of subjects ‘knuckled’ the landing on their initial landing attempts. In other words, 

athletes landed on the upper edge of the landing ramp creating a large impact 

moment between the snowboard and landing slope, resulting in higher mean 

acceleration data reported. Feedback from Park and Pipe snowboard coaches 

indicate that knuckling a landing versus a more efficient landing is more physical 

severe by comparison. Additionally, the large knee flexion values recorded in the 

regular landing condition revealed subjects may have accommodated for suboptimal 
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landings by increasing overall knee flexion and work done by the legs. Similar impact 

reduction strategies are noted by other studies of which point out the influence of 

lower-limb kinematics as a method to attenuate landing impact force (Zhang et al., 

2008, Zhang et al., 2000). While unexpected, this finding demonstrates the 

increased severity involved during knuckled landings.  

 

5.3 Limb kinematics in response to landing 

 

Varying relationships were observed between knee joint angle and peak landing 

acceleration in this study. As hypothesised, subjects recorded increased knee joint 

flexion angle at the point of IC during switch and 360 deg rotation versus the regular 

landing condition. A reason for the increased knee joint flexion in the switch and 360 

deg rotation trials could be explained by the feedforward mechanism, were the 

neuromuscular system was prepared for a more complex landing task. This is 

consistent with many drop-landing studies were anticipatory movements were found 

to achieve a more preferential landing outcome (Walsh et al., 2012, Bai and 

Fukumoto, 2013). Further, the rapid increase in knee joint angle in the regular 

landing trial represents the bodies response to impact loading, were increased knee 

joint flexion was used to provide shock absorption against acceleration force on 

landing (Yeow et al., 2009). This finding is consistent with numerous other studies 

were increased knee joint flexion may assist in protecting the knee from valgus 

collapse during landing (Shultz and Schmitz, 2009). Of particular, concern is the 

combination of reduced knee flexion, combined with a hip adduction (internal) 

moment, which may increase stress on the knee structures, specifically the ACL 

(Norcross et al., 2010, Hewett et al., 2005). A decreased knee angle has been 

associated with increased risk to knee injuries at the time of initial contact (Bates et 

al., 2013). Probably due to decreased lower-limb stiffness and greater GRF 

occurring throughout the landing phase (Tillman et al., 2004). Together reduced 

knee flexion angle and increased rotary forces may augment quadricep activation 

(Walsh et al., 2012) and increase knee injury risk. It would appear then, increased 

flexion range at the knee is a useful mechanism for snowboarders to accommodate 

and dissipate higher ground reaction forces on landing. Which may also mitigate 

joint tissue loading and reduce knee injury risk. 
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Interestingly, peak knee angle recorded in the three jump landing conditions did not 

follow an inverse-relationship with peak snowboard acceleration on landing. Despite 

the highest peak acceleration impact recorded in regular landing condition (21.99g), 

the lowest peak knee angle was seen on average in the regular landing trials (63 

deg) at IC. Nonetheless, it would appear that high knee flexion angles are indicative 

of large landing impacts. For example, the largest peak knee angle was recorded in 

the 360 deg condition with 88d of knee flexion, with a peak snowboard acceleration 

of 21.96g. Similar findings are reported by other studies examining the relationship 

between acceleration and knee joint range on landing (Zhang et al., 2000, Zhang et 

al., 2008, Aizawa et al., 2016, DeVita and Skelly, 1992). It has been suggested peak 

knee angle at IC offers limited protection against impact, exposing limbs to greater 

shock  (Lafortune et al., 1996). Were an increasing range of motion in lower extremity 

joints enables musculature to attenuate landing impacts during the shock reduction 

process (Zhang et al., 2000, Cortes et al., 2012). 

 

Large peak acceleration impacts and rate of loading are key considerations to 

assess overall loading demands of landings. Knee angular velocity data presented 

in the current study showed all conditions imposed a high rate of loading to the body 

during landing. More specifically, angular velocity in the 360 deg rotation revealed 

subjects a rapid change in knee flexion during the first 7ms post-IC. This 

corresponds with higher peak acceleration forces recorded in the 360 deg condition. 

In contrast, angular velocity in the switch landing was comparatively higher than the 

360 deg rotation at the point of IC, but over a longer time frame (9ms). This finding 

alone points out that knee angular velocity at the instant of landing does not predict 

a passive change in knee angle/angular velocity in the initial moments of landing. 

Nor does angular velocity predict peak acceleration landing force (Yu et al., 2006). 

Nonetheless, the variance in knee angular velocity data between conditions points 

out the abrupt nature of landing seen in the 360 deg rotation landing. Knee angular 

velocity data could not be reported for the regular landing condition. 

 

5.4 EMG activity pre and post-IC 

 

On average higher summed mean iEMG values were found post-IC versus pre-IC 

landing phase across conditions (see figures 7, 8 and 9). With exception, higher pre-
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IC summed mean iEMG values were found in the ST and VL muscles for the regular 

and switch jump landing conditions only (figures 7 and 8). This finding is in line with 

the published literature assessing muscle activity pre/post drop-landings (Bai et al., 

2011), but not in studies assessing jump-landings were EMG activity was reportedly 

higher in jump propulsion moments (Virmavirta and Komi, 1991). Furthermore, 

higher summed mean iEMG and peak % MVC were found in the majority of 

assessed muscles (BF, RF, VL, VM) in the 360 deg rotation jump landing. This is in 

agreement with the projected hypothesis, although higher iEMG values were found 

in the regular jump landing which was unexpected. There are several possible 

reasons for this finding. Firstly, this was the first-time subjects were exposed to this 

specific task, as mentioned previously subjects miscalculated distance to the landing 

slope from the drop and knuckled their first couple of landings, which produced a 

very large peak acceleration moment. Secondly, as subjects proceeded to complete 

repeat drop-landings its possible subjects altered their landing strategy to 

accommodate for the large impact landing force based on greater experiential 

learning about the task. In this instance, impact moderating behaviour provides an 

understanding for improved technique and motor behaviour following an experience 

of an abrupt landing task (Dyhre-Poulsen et al., 1991) which could have influenced 

EMG activity. Thirdly, large peak acceleration forces, combined with a small IC knee 

flexion angle, later increasing rapidly in response to landing impact, and greater 

EMG activity corresponds with findings also reported in the literature (Chappell et 

al., 2007, Zhang et al., 2008, Smith et al., 2009). The fact that a lower sum of mean 

iEMG was found in regular and switch conditions in comparison with the 360 deg 

rotation post-IC complies with the findings of other studies in the area. Greater initial 

knee flexion found at IC and greater quadricep (RF, VM, VL) activation was found to 

attenuate landing impact force (Zhang et al., 2000, Zhang et al., 2008). 

 

Reviewing individual muscle activity pre and post-IC offers a different perspective to 

the sum of iEMG, presented. It would appear that higher pre-activation of quadriceps 

(RF, VM, VL), combined with greater knee flexion angle at IC (see figure 5) in the 

switch and 360 deg rotation trials may have resulted in lower peak acceleration 

forces. These findings align with recommendations in the literature. Using a large 

range of joint flexion in multiple structures combined with high levels of muscle MVC 

applied rapidly resulting in effective joint stiffness, and a change in the impulse-

momentum relationship (Turnbull et al., 2011). In the current study, higher levels of 
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muscle preactivation pre-IC demonstrates subjects increased muscle force to 

constrain large impact forces on landing. The tenants of lower-limb strength and rate 

of force development capacities are essential to enable the body to tolerate high 

GRF during landings in short loading times (McNitt-Gray et al., 2001, Determan et 

al., 2010, Secomb et al., 2016). In the switch and 360 deg rotation jump landing trials 

subjects performed less overall knee flexion post-IC, versus the regular landing, and 

demonstrated larger changes in knee angular velocity. Which indicates subjects 

achieved greater overall knee stiffness in switch and 360 deg rotation versus regular 

landings via greater neuromuscular activation (Turnbull et al., 2011, Horita et al., 

2002). 

 

Higher iEMG medial (ST) and lateral (BF) hamstrings pre activity was seen in the 

regular and 360 deg rotation trials, in comparison to activity in the switch landing 

conditions. The concept of muscle preactivation prior to the instant of landing has 

been largely explained by the feedforward mechanism (Dyhre-Poulsen et al., 1991, 

McNitt-Gray et al., 2001, Shultz et al., 2015). Numerous studies have documented 

elevated muscle activity prior to landing as an anticipatory mechanism to prepare 

the body for landing (Chappell et al., 2007, Bai and Fukumoto, 2013, De Britto et al., 

2014). The source of this process is largely associated with visual sensory 

information providing the brain with feedback relating to external and internal 

environmental conditions. There are instances in which proprioceptive input is 

quicker than visual to enable a change in motor control, such as, in response to 

landing on an unstable surface (Prieske et al., 2013). Although, when this information 

is limited, it has been shown that an increase in hamstring activity during landing 

tasks occurs before joint loading in a feedforward control manner (Riemann and 

Lephart, 2002). This may lend some explanation for the elevated hamstring activity 

seen in the 360 deg rotation condition.  

 

In the current study, increased hamstring (ST, BF) preactivation over quadriceps 

during rotational landings was found, which is similar to the findings in other studies 

(Bai et al., 2011, Pantoja et al., 2014, Bai and Fukumoto, 2013). And also, greater 

lateral hamstring preactivation was seen during more complex rotational jump-

landing tasks in the current study (Pantoja et al., 2014). This finding also coincides 

with the study hypothesis of greater hamstring preactivation seen in rotational 

landings. Studies have also found increased lateral hamstring preactivation protects 
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against knee adduction (valgus) moments, and reduced knee rotational torque 

stress (Bai and Fukumoto, 2013, Pantoja et al., 2014). Further, elevated coactivation 

of medial and lateral hamstring muscles during regular and 360 deg rotation 

conditions pre-landing, is similar to findings elsewhere in the literature (Bai and 

Fukumoto, 2013). It is possible that the coactivation of medial and lateral hamstrings 

reduces knee rotational stress, which is advantageous based on greater knee and 

ACL loading associated with knee valgus postures (Norcross et al., 2010, Davies et 

al., 2009, Determan et al., 2010). 

  

The group mean responses post-IC across the three conditions indicate that. in the 

switch and 360 deg rotation landing trails, quadricep (RF, VL, VM) mean iEMG was 

higher than hamstrings, which corresponds with the kinematic and kinetic elements 

present on landing also reported in the current study. Interestingly, mean iEMG post-

IC in the regular condition revealed elevated quadricep (RF, VM) and medial (ST) 

hamstring activation. This finding is consistent with quadricep and hamstring EMG 

activity recorded in drop-landings performed in the sagittal plane by Malfait et al. 

(2016). Moreover, increased medial hamstring and quadricep activity was consistent 

with low knee flexion angles on IC (<15 deg), which is similar to the group knee 

flexion angle (19 deg) at IC found in this study. Reduced knee flexion angles in 

conjunction with higher medial hamstring activation is acknowledged as an effective 

mechanism to reduce anterior tibia loading, and in turn counteract the load/strain 

acting on the ACL (Malfait et al., 2016). What’s more, increased medial hamstring 

activation pre and post-IC suggests subjects used a feedforward strategy to control 

the high peak acceleration forces and anterior tibial forces possibly induced by the 

VM activity on landing. In any case, increased hamstring activity concomitant with 

quadricep activation indicates increased mechanical work being done by the knee 

extensors and flexors to meet the high impact force demand imposed on landing 

(Blackburn et al., 2013). 

 

Mean iEMG findings post-IC in switch and 360 deg rotation demonstrate a quadricep 

dominant strategy toward landings, as per the group average response. Figures 24 

and 27 show results from two different subjects who completed the 360 deg rotation 

trials. Both subjects landed with high average knee flexion (68 deg and 90 deg) and 

experienced similar acceleration force at IC (21g and 22.5g) but produced very 

different peak EMG % activation patterns. Results of three different subjects 
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following the switch landing trials again show distinctive mean iEMG activity 

indicating large a variance in muscle responses relative to landing conditions. In view 

of this, it is highly likely athletes possess different landing techniques acquired from 

personal experience which influenced the difference seen in knee angle at IC and 

corresponding muscle responses to impact loading. Moreover, differences in iEMG 

activity indicates muscle activation techniques are inherent to each subject’s landing 

strategy. Neuromuscular and kinematic considerations have been discussed and 

compared with other investigations which recognise useful strategies for safe and 

effective landings. Like the feedback feedforward mechanism and quadricep and 

hamstring coactivation which prepare the body for severe landings and in turn, may 

reduce the risk of knee injuries in sport performance. 

 

The discussion around muscle activity highlights clear differences between regular, 

switch and 360 deg rotation conditions, it should be reiterated that only one leg was 

fitted with EMG electrodes during the assessed jump landing trials. Therefore, 

readings obtained during switch landings in fact refer to activity of the lead 

snowboarding leg, while regular and 360 deg rotation landings denotes activity of 

the rear leg only. With this in mind, and in view of the reported findings, it could be 

implied manoeuvres performed in regular snowboard stance augments hamstring 

pre-activity of the rear snowboard leg, while switch landings produce greater 

quadricep preactivation in the lead snowboard leg. Strength asymmetries in elite 

snowboarders have been reported previously (Vernillo et al., 2015) which supports 

the notion that asymmetrical muscle activation patterns commonly occur in the sport. 

This is also supported by anecdotal reports from snowboarders who indicate the rear 

leg plays a more dominant role in jump take-off and landings. It’s clear based on the 

findings that a difference in muscle behaviour exists between lead and rear legs in 

snowboard landings and landing tasks.  

 

5.5 Recommendations for future work 

 

The basis of this investigation was to increase understanding of critical jump landing 

movements that determine performance in freestyle snowsport. The investigation 

therefore is of great applied importance to the GB national Olympic team, coaches 

and athletes. While the study design and sensitivity of findings could be improved, 
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the data collected in this study represents current challenges facing scientists 

working with elite snowboard teams and athletes. What this investigation may lack 

in scientific rigour, it provides the sport, coaches and athletes with invaluable 

information currently lacking in the sport which can be used to support knowledge 

and applied practice.  

 

A small cohort of elite riders were assessed in this investigation, increasing the total 

number of athletes involved would likely increase the strength of the data. Findings 

from a larger subject number may offer a better insight into athletic capabilities that 

reflect a stronger impression of jump landing demands in elite SS and HP riders. 

While the subject group in the current studies were small in number, the total number 

of subjects evaluated were at the time elite athletes representing Team GB at World 

Cup and Olympic competitions. Therefore, the number of subjects available is 

currently limited by total number of elite athletes which represent the Great Britain 

Park and Pipe team for elite slopestyle snowsport.  

 

Data collection from a single training session included several design issues in the 

main investigation which only became apparent during testing. Repeated data 

collection would have ensured data collection of kinematic data were resolved. For 

example, motion capture cameras had to be readjusted part-way through the 

recording of regular jump landing trails, which explains poor data availability pre and 

post-IC across conditions. Secondly, ankle kinematic data had to be discounted from 

final analysis due to issues with light markers falling off the athlete’s ankles, bindings 

and snowboard upon landing impact. A number of these issues could have been 

addressed with further pilot testing and solutions found to improve light marker 

contact with the body and equipment. Furthermore, because the indoor snowdome 

was occupied for public use throughout daylight hours this meant limited opportunity 

to perform reliability testing of the methods. Future investigations should also 

strongly consider the type of jump landing examined. The drop platform used in the 

current study allowed the landing phase to be isolated, providing discrete analysis 

of jump landing data. This insight was an important first step in undiscovered 

territory, bridging scientific analysis of performance actions done in the sport. Future 

assessments should look to incorporate analysis of a complete jump take-off and 

landing, providing a complete profile of a jump landing.  
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The kinematic results obtained in this study showed that elite freestyle snowboard 

athletes performed jump landing tasks with a specific movement strategy occurring 

at the knee joint. The differences shown between each landing task suggests that a 

greater amount of knee flexion, and therefore effort to absorb landing impact occurs 

in rotational jump landing manoeuvres. With this considered, and from the obvious 

differences found between subjects in response to snowboard jump landings, the 

question still remains – is there an ideal or optimal technical model for sloped 

snowboard jump landings? As discussed, the differences found during knuckled and 

non-knuckled snowboard landings indicates that landing on the sweet-spot (the area 

between the knuckle and flat) of a jump imposes significantly less landing impact 

(shock), and therefore is preferential. Moreover, an observation of riders during data 

collection showed that riders contacted the landing slope with the rear of the 

snowboard first, followed by the middle and front of the board in sequence order. It’s 

worth noting, that there are instances in the sport were the entire surface area of the 

snowboard will contact the ground/slope at the same time. But this tends to occur 

during non-sloped landings, such as, exiting from a flat rail. Encouraging contact with 

the slope using a rear to front board sequence enables the rider to sustain forward 

horizontal momentum of the snowboard and utilise the boards reflexive engineering 

to absorb and control landing impact along with use of the body’s limbs.  

 

As discussed, the kinematic behaviour of lower and upper limb structures plays a 

critical role in performing successful, controlled jump landing actions. Ideally, riders 

must possess sufficient active and passive joint mobility, and also a capacity for rapid 

joint loading to decelerate lower and upper limbs in synergy during landings. An ideal 

model for limb kinematics in snowboard landings would occur as follows: Upon initial 

impact with the snow, the lower-body must begin to actively transition from an 

extended to flexed lower-limb postures to counteract GRF acting on the body via the 

snowboard. While the lower-limbs undergo large, and rapid joint flexion, the upper-

limbs, and more specifically the trunk begin to flex and rotate toward the nose of the 

snowboard to aid the lower-limb structures and dissipate GRF loading throughout 

the kinetic chain. The lower and upper limbs continue work passively, and in unison, 

until the rider has created enough downward pressure into the snowboard, and the 

change in limb position has arrived at a controlled stop.   

Critically, riders must possess the ability to control three-dimensional joint impact 

loading at high loading speeds. This includes the rider’s ability to control rapid, high 
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knee joint flexion angles, and excessive knee valgus postures of the rear leg to 

achieve balance across the centre of mass, limb stiffness and board control. Whilst 

unfavourable, developing athlete’s ability to control these postures, initially under 

slow, purposeful loading rates would be advisable in preparation for rapid joint 

loading imposed by sloped jump landings. Physical preparation coaches should aim 

to develop rider’s passive knee joint control in positions which mimic loading 

requirements and positions of snowboarding. And also remain cognisant of the 

importance of developing dynamic knee joint control to reduce the risk of sport 

related knee injuries. 

 

In an attempt to assess movement characteristics of the knee joint during sloped 

snowboard jump landings, this study has discussed the findings of knee joint angle 

and knee angular-velocity measures. While the results provided some insight into 

knee joint flexion in response to rapid impact loading, the measures fail to provide 

an understanding of the rate of multiplanar loading acting at the knee during 

landings. With a large proportion of snowboard injury research discussing the 

prevalence of ACL injury linked to knee valgus postures, future investigations should 

look to incorporate a more specific assessment measure to examine three-

dimensional joint loading of the knee. With this in mind, the assessment of multi-

planar acceleration of the knee joint could be incorporated into future investigations 

with the use of advanced IMS technology. This would serve as a better indication of 

knee joint loading in all three planes of motion and therefore provide a greater 

understanding of the knee injury mechanism risk to snowboarders. This level of 

analysis should be incorporated into future biomechanical studies. 

 

In effort to describe the impact loading demands of regular, switch and 360d 

snowboard landing tasks, a tri-axial accelerometer was affixed to the center of the 

snowboard. The device successfully provided a measure of the snowboard’s peak 

acceleration, demonstrating the magnitude of impact during snowboard landings. 

This finding helps coaches and practitioners understand the rate of loading a 

snowboarder may experience during landings, and the relative acceleration 

imposed. In practice, this insight may assist coaches to understand the relative 

intensity of specific landing tasks, which would enable coaches to direct athletes to 

certain jumps and tricks to condition and prepare a rider to a level of landing intensity. 



 80 

From a perspective of grading the physical demand of landing tasks, future 

investigations may wish to consider additional kinetic measures such as, peak force 

and time to stabilisation landing measures. With lightweight snowboard mounted 

force platforms situated underneath each binding, these measures would provide an 

understanding of the landing force imposed on the lower-limbs and effort required to 

decelerate impact landing force. In addition, time to stabilisation would also enable 

practitioners to assess the rate of braking force required by front and rear legs, and 

also the performance capability of athletes during landing manoeuvres. Again, this 

information would provide a stronger set of key performance indicators for the 

investigated tasks and identify specific performance demands of snowboard jump 

landings. It is recommended that these measures are investigated in future studies 

to build upon the work performed in this thesis. 
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CHAPTER 6. CONCLUSION 

 

Results from this investigation represent novel information pertaining to the 

biomechanical demands in snowboard jump landings in elite freestyle snowboard 

athletes. Efforts were made to identify and evaluate key biomechanical demands, 

with analysis describing pre and post jump landing activity, and differences found 

between types of landing done in the sport. Because the methods examined have 

provided a likeness to the real-world sport actions, this information is of great applied 

significance to physical preparation coaches, technical coaches and scientists 

working with elite athletes in freestyle snowsport. Information gained from this 

research can be used to inform the prescription of injury prevention and athletic 

preparation programmes and provide coaches with a deeper understanding of the 

muscular and mechanical outcomes from snowboard jump landings. 
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