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Transpiration Efficiency of Amaranth (Amaranthus sp.) in Response to 

Drought Stress 

 

Abstract 

Drought is a major abiotic stress responsible for severe crop losses worldwide. Development 

of new crop varieties with increased drought tolerance is one way to increase crop productivity. 

The aim of the present study was to characterize the diversity of nine accessions belonging to 

Amaranthus tricolor and A. cruentus, in response to drought stress using a dry-down protocol 

to characterise the transpiration efficiency (TE). Plants were subjected to either a gradual dry 

down or well-watered conditions. Results showed that TE was significantly higher (P<0.01) in 

water-deficient (WD) plants compared to water-sufficient (WS) plants, 2.40 g kg-1-7.13 g kg-1 

and 2.19 g kg-1-4.84 g kg-1, respectively. There was no significant difference in the fraction of 

transpirable soil water (FTSW) threshold decline between the amaranth genotypes. TE was 

highly correlated with yield under both WS (r = 0.89, P<0.001) and WD conditions (r = 0.662, 

P<0.001), and negatively correlated with root to shoot ratio under both WS (r = -0.488, P<0.05) 

and WD conditions (r = -0.460, P<0.05). Significant genotypic differences were seen for 

growth rate and stress susceptibility index (SSI). The result obtained in this investigation 

underline the need to identify genotypic variation in water use efficiency in amaranth. 

 

Key words 

Abiotic stress, amaranth, transpiration efficiency, food security, underutilised crops, water use 

efficiency. 
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FTSW: Fraction of transpirable soil water; NTR: normalized transpiration rate; SSI: Stress 

susceptibility index; TE: transpiration efficiency; WHC: water holding capacity; WD: water-

deficient; WS: water-sufficient. 

 

Introduction 

Drought is a serious threat to agriculture, resulting in high annual crop yield losses worldwide. 

There is a global trend for the increasing frequency and severity of droughts which are expected 

to become more serious in the next 30-90 years (Dai, 2013). Rain-fed agriculture is particularly 

vulnerable to unpredictable rainfall patterns and drought, with higher yield losses recorded 

when compared to irrigated systems (Kurukulasuriya and Ajwad, 2007; Magombeyi and 

Taigbenu, 2008). Plants have various mechanisms to withstand drought, and their different 

morphological and physiological strategies for avoiding drought stress are reviewed in Kumar 

et al. (2012), and Chatterjee and Solankey (2015). 

One strategy to mitigate yield losses in a changing climate is diversification of crops 

away from reliance on staples such as maize (Zea mays), wheat (Triticum spp.) and rice (Oryza 

spp.), to include species that are better adapted and tolerant to environmental stress, such as 

minor and underutilized crops (Mayes et al., 2011).  Among these crops, amaranth 

(Amaranthus spp.) is increasingly being recognized as having the potential to grow in marginal 

lands and improve food security due to its adaptability to various environmental conditions and 

high degree of phenotypic plasticity (Achigan-Dake et al., 2014; Alemayehu et al., 2014). 

Amaranth is a food crop consumed as both a grain and leafy vegetable in large parts of Africa 

and Asia (Tucker, 1986; Brenner et al., 2000). It is popular among subsistence farmers because 

of its fast growth habit and ability to grow in a diverse range of soils and in varied climates 
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(Palada and Chang, 2003). Compared with staple crops, it has higher nutritive value and better 

quality of protein (Saunders and Becker, 1983), with a well-balanced amino acid profile 

(Gamel et al., 2006).  Amaranth is distributed globally however most species predominate in 

the warm temperate and tropical regions (Sauer, 1967). They are C4 plants and are adapted to 

bright light and warm conditions with a temperature range of 25oC-30oC (Schippers, 2000). 

More than 87 species of amaranth have been described, of which at least 17 edible leaf species 

and three grain species have been characterized (Mujica and Jacobsen, 2003; Grubben and 

Denton, 2004). Partly as a consequence of their C4 photosynthesis, amaranth species are able 

to tolerate relatively high heat and drought, and have been shown to recover well from soil-

water deficit by minimizing transpiration through wilting to conserve water (Whitehead and 

Singh 1992; Myers, 1996; Luoh et al., 2014). Grain amaranth has shown a 40-50% reduced 

water requirement compared with both wheat and maize (Kauffman and Weber, 1990),  whilst 

vegetable amaranth plants have been grown at 85% field capacity without a significant 

reduction in yield (Masariramb et al., 2012). 

  Genetic Phenotypic variation for drought tolerance has been exploited successfully in 

major crop species such as peanut (Reddy et al., 2001), wheat (Valkoun, 2001), maize 

(Bänziger et al., 2004) and rice (Zhang et al., 2006) to produce cultivars with improved yield 

under drought stress. Amaranth shows considerable genetic variability and plasticity for 

drought tolerance (Slabbert and Van der Hoever, 2007) with a high level of intra species 

variation compared to staple crops (Erum et al., 2012; Shukla, et al., 2010). The crop displays 

drought-tolerance mechanisms, such as osmotic adjustment (Liu and Stutzel, 2002a) and high 

root to shoot ratio (Liu and Stutzel, 2004) which could be exploited given the high level of 

genetic variability that exists between and within the species in the genus Amaranthus. 

Understanding the genotypic differences in amaranth responses to water deficit is crucial for 
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developing new water-use efficient cultivars. A deeper understanding of the different 

mechanisms of drought tolerance is also required.  

 

     Transpiration efficiency has been shown to constitute a large source of yield variation in 

crops subjected to water deficit (Ratnakumar et al., 2009) and has been recognized as a key 

component of yield variation under drought stress in many crops, including bean (Ehleringer 

et al., 1991), peanut (Arachis hypogaea L.) (Krishnamurthy et al., 2007), grain sorghum 

(Sorghum bicolor (L.) Moench) (Thevar et al., 2010) and banana (Musa spp.) (Kissel et al., 

2015). Yield and biomass have been shown to be positively correlated with high water-use 

efficiency (WUE) in wheat (Ehdaie et al., 1991) and breeding for improved WUE has produced 

improved drought-tolerant genotypes (Condon et al., 2002). Relatively little data is available 

on the WUE and mechanisms of drought tolerance in amaranth. However, Liu and Stutzel 

(2004) reported that WUE in vegetable amaranth was unaffected by drought stress. 

 

     A detailed investigation into the water relations of vegetable amaranth in response to water 

deficit is needed to understand mechanisms of drought tolerance in this C4 plant. In this study, 

we sought to determine if genetic variation for transpiration efficiency under conditions of 

drought stress existed in nine vegetable amaranth genotypes.  

 

Materials and Methods 

Plant Material, Site Description and Growing Conditions 
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The plant material consisted of nine genotypes; which included three Tanzanian landraces of 

Amaranthus cruentus (B1: Black-seeded amaranth, B2: White-seeded amaranth and B3: 

Mixed-seeded amaranth). Six genotypes of Amaranthus tricolor, of which three were local 

Malaysian red-leaf vegetable varieties (C1: Amaranthus perfect red (var. BBS014), C2: Red 

amaranth and C3: Red amaranth (var. BBS027)), and three were local Malaysian green-leaf 

vegetable varieties (D1: Dark green pointed leaf (var. Bamboo Dance 008), D2: Green Special 

Round Leaf (var. 388) and D3: Green amaranth var. BBS024). 

Plants were grown under greenhouse conditions at The University of Nottingham 

Malaysia Campus, Semenyih, Selangor, Malaysia (latitude 2.940°N, longitude 101.8740°E) 

with an average daytime temperature of 36°C and average night-time temperature of 28°C, and 

average daily relative humidity of 66%. Seeds were sown in 14 × 10 cell trays (54 × 36 cm). 

Eleven days after  emergence, seedlings at the 3rd to 4th leaf stage were transplanted into plastic 

pots (16 cm × 12.5 cm × 14.5 cm) containing 2 kg of a black peat moss, mix (Holland Brand, 

Malayisa), with one plant per pot; 5 g fertilizer (N: P: K) per pot was applied once during 

establishment.  

 

Experimental Design 

The experimental treatment was conducted, and completed at the vegetative growth stage. Two 

treatments were imposed at 15 days after transplantation: drought stress (water-deficient, WD) 

and well-watered control (water-sufficient, WS). The experimental design was split plot in a 

randomized complete block design, with one initial set (T0) and two water treatments (water-

sufficient, WS and water-deficient, WD) as main plot and nine amaranth genotypes as sub-plot 

with four replications and three biological repeats. Prior to the onset of drought treatment, 

plants were irrigated daily to field capacity. On the first day of transpiration-efficiency 
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assessment, the initial set of plants was destructively harvested to estimate above-ground dry 

weight; this date was designated as time 0. The remaining plants were watered to maximum 

soil water-holding capacity (WHC) and allowed to drain freely for 24 hours. WHC was 

calculated as: 

 (Weight of saturated-drained soil (24h) - Weight of dry soil)/Weight of dry soil.  

After 24 hours, the pots were sealed with a plastic bag to prevent water loss, except by 

transpiration (Ray and Sinclair, 1998). Pots were then weighed and initial weight was recorded. 

Subsequently, pots were weighed every 72 hours. After each weighing, water was added back 

to the WS plants to return them to their maximum WHC. For the WD treatment, no further 

water was added to induce drought stress. Transpiration efficiency (TE) was calculated for each 

plant using the following equation:  

TE = (Mean shoot biomass at time 0 - Mean shoot biomass at time of harvest) / [(Initial pot 

weight - Weight of the pot at harvest) + Water added back to the pot]. 

Soil water status in the individual pots was expressed as fraction of transpirable soil 

water (FTSW). The daily value of FTSW was estimated as the ratio between the amount of 

transpirable soil water remaining in the pot and total transpirable soil water. Daily FTSW was 

calculated based on Ray and Sinclair (1998) as follows: 

FTSW = (Daily pot weight - Final pot weight) / (Initial pot weight - Final pot weight) 

Two normalizations were carried out to minimize daily variations in transpiration, 

according to Devi et al. (2009) and the experiment continued until the normalized transpiration 

rate fell below 0.1.  
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Chlorophyll analysis  

Total leaf chlorophyll content was measured at 2, 8 and 14 days after the imposition of drought 

treatment (DAT) (starting at 28 days after emergence when the plants were at the vegetative 

stage) using a portable Minolta Chlorophyll Meter SPAD-502 (Konica Minolta, Langenhagen, 

Germany). Readings were taken on the 3rd most fully expanded leaflet, avoiding the midrib 

section. Three readings were taken per leaf and averaged to give a final reading. As reference, 

chlorophyll content was determined destructively on 2cm2 leaf sections according to Bruinsma 

(1963). The absorbance of extracts was evaluated at 663.6 nm (A663.6) and 646.6 nm (A646.6) 

with a UV-VIS spectrophotometer (Perkin-Elmer, Lambda 5, Massachusetts, USA) according 

to the equations given in Porra et al. (1989) as follows: 

[Chl a] = 12.25 E663.6 – 2.55 E646.6 

[Chl b] = 20.31 E646.6 – 4.91 E663.6 

[Chl Total] = 17.76 E646.6 + 7.34 E663.6 

A linear function between chlorophyll content and SPAD values was established and used to 

calculate leaf chlorophyll content. Days to wilting were recorded as days after initiation of 

drought-stress treatment and wilting was recorded pre-dawn. 

 

Growth analysis and stress susceptibility index 

Once the normalized transpiration rate fell below 0.1 plants were destructively 

harvested and separated into leaves, stem and roots and  total leaf area (TLA) was measured 

using a LI-3100 Area Meter (LICOR, Lincoln, Nebraska, USA). Dry weights were determined 
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after drying at 80°C in an oven for 72 hours. Specific leaf area (SLA) was then calculated using 

the following formula:  

 

SLA = Leaf area (cm2) / Leaf dry weight (g) 

 

Root to shoot ratio (R/S) was calculated as follows:  

R/S = Root dry weight (g) / (Leaf + stem dry weight (g)) 

 

Yield was calculated as follows: 

Yield = Leaf fresh weight (g) + stem fresh weight (g) 

 

A stress susceptibility index (SSI) for yield was determined as the difference between 

the results obtained under WD and WS conditions. The SSI was calculated according to Fischer 

and Maurer (1978) using the following equation:  

 

SSI = [1- (Yp / Ys)] / Stress intensity 

Stress intensity = 1- (MYs/MYp) 

where Yp is the mean value for yield under WS conditions, Ys is the mean value for yield 

under WD conditions, MYs is the mean yield value for all genotypes under WD conditions, 

and MYp is the mean yield value of all genotypes under WS conditions. 
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Data Analysis 

The effect of water treatments and genotypes was analysed using Genstat for Windows 16th 

edition (VSN International 2011). The data were subjected to analysis of variance (ANOVA) 

and correlation analysis with a split plot design. Mean separation among genotypes was carried 

out using Tukey’s pairwise comparison and significant differences were identified with letters 

and Least Significant Difference (LSD). The FTSW threshold at which NTR began to decline 

was calculated using a plateau regression procedure according to the methods of Ray and 

Sinclair (1998).  

 

Results 

Influence of Drought Stress on Growth and Physiology 

There were significant differences between the amaranth genotypes for leaf and stem fresh and 

dry weights under both WS and WD treatments (P<0.05). Genotypes B2 and B3 had the highest 

leaf fresh weight in both WS (25.01, 26.80 g respectively) and WD treatments (3.69, 4.12 g 

respectively). These two genotypes also recorded the highest percentage loss in fresh weight 

under WD treatments for all genotypes. In comparison, genotype C3 had the lowest reduction 

in leaf fresh weight under WD treatment (2.62 g) compared with the WS treatment (8.6 g) 

(Table 1). There was a significant difference in fresh weight of leaf, stem and root partitioning 

of individual genotypes in WS and WD treatments. For example, the fresh weight of genotype 

C3 was primarily partitioned into stem (20.28 g), followed by root (15.22 g) and leaf (8.61 g), 

under WS treatment, and primarily partitioned into roots (3.30 g), followed by leaf (2.62 g) and 

stem (2.23 g) under the WD treatment (Table 1).  
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The root to shoot (R/S) ratio did not change significantly with the WD treatment 

compared with the WS treatment (P=0.256). Genotypes under the WS treatment did not differ 

significantly with respect to R/S ratio, whereas there was significant difference recorded among 

genotypes under the WD treatment (P<0.05), with D2 recording the highest R/S ratio (0.80) 

and B1 the lowest (0.36) (Table 1). 

Total leaf area of WD plants was reduced by two-thirds compared with the WS plants 

(Table 2) (P<0.001). The highest reduction in TLA was in genotype D2 with an 85% reduction 

(611.35cm2 in WS to 76.90cm2 in the WD treatment), whilst the lowest was genotype C3 with 

a 58% reduction (403.53cm2 in WS to 168.43cm2 in the WD treatment). The reduction in SLA 

in WD plants was approximately 50% of the SLA of WS plants (P=0.003), with the exception 

of genotype D3, which was not significantly reduced under the WD treatment relative to the 

WS treatment (Table 2).  

Genotypes did not differ significantly with respect to days to pre-dawn wilting (ranging 

from 6 to10 days) (Fig. 1). The WD plants started to wilt at 6 DAT when the portion of 

remaining volumetric soil water available for transpiration dropped to 40% compared with WS 

plants as shown in FTSW (Fig. 2). The FTSW reached zero transpiration at 14 days after 

imposition of drought treatment for all genotypes. 

Total chlorophyll content did not differ significantly between amaranth genotypes 

under either WS or WD treatments at 2, 8 and 14 DAT (Table 3). However, the total chlorophyll 

content was reduced significantly (P<0.001) between 2 DAT and 14 DAT for both treatments. 

Chlorophyll-a content was higher than chlorophyll-b content in both WS and WD treatments 

at 2, 8 and 14 DAT. Under severe water deficit conditions (14 DAT), significant genotypic 

differences existed for chlorophyll-b content, with genotype B3 having the highest (13.85 

µgcm-2) and genotype C1 the lowest (4.14 µgcm-2). 
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The SSI varied significantly among genotypes, with the most drought- tolerant 

genotype, C3, recording the lowest SSI (0.83) (P<0.001), and the most drought susceptible 

genotype, D2, recording the highest SSI value (1.10) (P<0.001) (Fig. 3).  

 

Genotypic Variation in TE in Response to Soil-Water Deficit 

The total water transpired was significantly reduced under WD conditions compared with WS 

conditions in all nine genotypes (P<0.001) (Table 4). However, there were no genotypic 

differences for total water transpired under either treatment. The TE increased significantly for 

all genotypes in the WD treatment relative to the WS treatment (P<0.001) with the exception 

of D3 genotype where the TE was similar under both water treatments. There were no 

significant differences among genotypes with respect to final weight of soil water available for 

transpiration in pots at the end of WD treatment as FTSW reached zero with a range of 0.48-

0.53 kg. The relationship between NTR and FTSW for each amaranth genotype is shown in 

Fig. 4. The genotypes showed the same overall pattern for soil drying and there was no 

significant difference in the FTSW threshold of the NTR decline (Table 4).  

 

Correlations 

     Correlation coefficients for all traits measured for WS and WD treatments are shown in 

Table 5. Under WS treatments, TE was positively correlated with leaf fresh weight (r=0.801, 

P<0.05), root dry weight (r=0.709, P<0.001) and total yield (r=0.89, P<0.001), and negatively 

correlated with R/S (r=-0.488, P<0.001). Under WD treatments, TE was positively correlated 

with leaf fresh weight (r=0.536, P<0.001), leaf dry weight (r=0.841, P<0.001), stem fresh 

weight (r=0.549, P<0.001), stem dry weight (r=0.790, P<0.05) and root dry weight (r=0.661, 
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P<0.001), and negatively correlated with R/S (r=-0.46, P<0.05), SLA (r=-0.668, P<0.001) and 

days to wilting (r=-0.525, P<0.001).   

 

Discussion 

This study was designed to determine the influence of water relations on adaptive strategies to 

drought in different amaranth genotypes. There is a need to resolve whether the genotypic 

variation in TE is an inherent consequence of basic physiological changes regardless of soil 

drying and subsequently identify suitable surrogate traits for TE as a drought-tolerance 

selection criterion in amaranth species. Liu and Stutzel (2002a) reported that in vegetable 

amaranth, transpiration during water deficit was regulated through the reduction of leaf 

expansion and stomatal conductance, and thus prevented leaf dehydration. Leaf area expansion 

in vegetable amaranths was identified as more sensitive to soil drying when compared with 

transpiration and stomatal conductance (Liu and Stutzel 2002b).  

In this experiment, total water transpired by the plants directly affected the TE value as 

higher total water transpired reduced the TE. There was a similar pattern of total water 

transpired in both WS and WD treatments among the nine amaranth genotypes, with WD plants 

showing a lower value for total water transpired. This was reflected in higher TE values in WD 

plants compared with WS plants with the exception of genotype D3 which had similar TE 

under both water treatments. The similar amount of total water transpired among all genotypes 

under both water treatments suggested that there were other physiological traits that influenced 

the variation in TE. Sinclair et al. (1984) stated that two critical variables accounted for 

variation in TE in WS plants, which were a difference in the composition of plant products and 

/ or the CO2 concentration maintained in the leaves.  
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The response of transpiration to soil water deficit has previously been described using 

a linear plateau model (Devi et al., 2009), which identified the critical soil water content at 

which transpiration rate started to decline. The FTSW represents the portion of remaining 

volumetric soil water available for transpiration, and at which threshold, the plants’ 

physiological processes start to decline (Liu and Stutzel, 2002a). In the present study, there was 

a wide range of FTSW threshold values at which the transpiration rate began to decline among 

the amaranth genotypes indicating genotypic differences in relation to soil drying. The range 

of FTSW threshold decline in A. cruentus in this experiment (0.32-0.38) was very similar to 

the range (0.22-0.48) reported by Liu and Stutzel (2002b). In contrast, a large difference was 

found in red A. tricolor (0.29-0.56) and green A. tricolor (0.41-0.52) in this experiment 

compared with the range of 0.29-0.44 recorded for A.tricolor by Liu and Stutzel (2002b), 

possibly as a consequence of the different genotypes used in these two studies. 

This linear plateau model has also been used as an indicator of stress (Ritchie, 1981). 

In a study of genotypic responses to transpiration in chickpea, despite no genotypic difference 

in total water extracted, differences in the pattern of water extraction from the soil profile were 

observed which consequently affected the pod yield (Ratnakumar et al., 2009). The present 

study showed that there was a difference in the pattern of water extraction, which influenced 

the TE value. For example, genotype C2 had a high FTSW threshold (0.56) with restricted 

transpiration during early soil drying which allowed the plants to conserve more water under 

water deficit conditions and produce a low TE value (4.01 g kg-1). In comparison, genotype B1 

had a low FTSW threshold (0.38) and transpiration continued with further soil drying, 

producing a high TE value (7.13 g kg-1). Genotype C1 had the lowest FTSW threshold (0.29) 

among all genotypes, indicating that transpiration declined upon progressive soil drying under 

relatively drier conditions. However, it is important to note that genotype D3 had high FTSW 

threshold decline (0.51), but also had similar TE and SLA values for both WS and WD 
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treatments, and a high R/S ratio under both WS and WD conditions. A possible explanation is 

the greater root density of D3 compared to the other genotypes, allowing it to sustain high water 

uptake at low soil-water content. D3 was able to extract higher amounts of water while 

sustaining an increased transpiration rate at low soil-water content under the WD treatment and 

resulted in a similar TE value under the WS treatment.  

Plants that perform better under water-deficit conditions are likely to have a high TE 

value and could be associated with a high threshold for decreased NTR (Devi et al., 2009). A 

higher FTSW threshold could allow the plants to conserve more soil water, better positioning 

them to endure drought stress (Johnson et al., 2009). In the present study, genotypes with a 

high FTSW threshold might have had an opportunity to fully utilize the soil-water content and 

maximize growth before the experiment was terminated. Genotypes such as these are 

positioned to conserve water during soil drying to the point where transpiration rate is 

restricted, (Gholipoor and Sinclair, 2012). In this study, it is difficult to conclude whether a 

high FTSW threshold gave a high TE value, as the value of FTSW did not correlate with the 

TE values.  Hence, there is a need to understand the role of TE as a component of the genotypic 

differences in the FTSW threshold.  

In the present study, a high FTSW threshold was associated with increased drought 

tolerance, as genotype D3 showed a similar TE value under both WS and WD treatments. 

Genotype D3 had a high FTSW threshold decline, with a lower TE value for WS and WD 

plants compared to the other genotypes. This implied that genotype D3 maximized water-use 

efficiency instead of utilizing the water for maximizing growth. Genotype D3 appeared to have 

a different mechanism for growth, as soil drying did not significantly alter the TE compared 

with the WS plants. One explanation could be that lower transpiration under WS conditions 

led to lower daily transpiration, which would logically drive the transpiration rate of drought 
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stressed plants upward, and consequently the NTR (Bhatnagar-Mathur et al., 2007; Kholova et 

al., 2010). Therefore, the maintenance of NTR under drought conditions at similar levels to 

WS plants results in a lower value for the FTSW threshold at which transpiration begins to 

decline. Alternatively, this may simply be a consequence of the lower rate of water loss per 

unit leaf area in the WS plants.  

The drought tolerance of the amaranth genotypes was expressed as SSI, (Fisher and 

Maurer, 1978). The tolerance of a genotype to drought stress is predicted to be higher if the 

SSI value is low (Zdravkovic et al., 2013). Despite genotype D3 displaying drought tolerance 

characteristics, it was considered susceptible to drought stress as it had a high SSI value and 

low yield. In comparison, genotype C3, which also had high FTSW threshold (0.51) and TE 

value under WD conditions, was considered tolerant to drought, as it had a low value of SSI 

for yield, which can be explained by the low reduction in TLA. The most susceptible genotype 

was D2, which had the highest reduction in TLA. Thus, a low or high FTSW threshold may 

not necessarily produce a desired amount of crop yield. Kholova et al. (2010) reported that two 

different hybrid lines of pearl millet had low FTSW thresholds. However, one hybrid line also 

had low yield similar to drought-sensitive lines, compared with high yield achieved by the 

drought-tolerant lines.   

     Jomo et al. (2016) reported that the total chlorophyll content of amaranth was significantly 

reduced in response to soil water deficit with A. tricolor recording the lowest reduction in 

chlorophyll compared to other amaranth species. However, the present study showed no 

significant difference in total chlorophyll between WS and WD plants after 14 days of drought-

stress treatment. Drought stress has been shown to alter the ratio of chlorophyll-a and 

chlorophyll-b content (Anajum et al., 2011). In the current study, chlorophyll-a content was 

higher than chlorophyll-b content under both water treatments, which was comparable to the 
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results of Jomo et al. (2016). Schlemmer et al., 2005, reported no effect of drought stress on 

chlorophyll content in maize, however in contrast, O’Neil et al. (2006) reported that 

chlorophyll was the only measurement affected by drought in maize. Therefore, it could be a 

trend for amaranth species to react differently to water deficit conditions and might be an 

adaptation strategy of C4 photosynthesis.   

Liu and Stutzel (2004) reported a negative correlation between WUE and SLA in 

amaranth. In the present study, the reduction of SLA in WD plants was similar for all 

genotypes, except for D3, demonstrating that SLA was not conclusively responsible for the 

differences in TE among the amaranth genotypes.   

Conclusions 

The FTSW threshold at which transpiration declined upon progressive soil drying influenced 

water relations in differing ways for the nine genotypes suggesting different adaptive strategies 

to drought. It is interesting to note that amaranth species  have similar growth performance 

relative to transpiration efficiency under water-sufficient and water-deficit conditions and high 

TE may not necessarily the best indicator for drought tolerance selection traits in amaranth 

genotypes.  
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Figure Captions 

 

Fig. 1 Days to pre-dawn wilting (DTW) for nine amaranth genotypes in water-deficient 

conditions (WD). The error bars indicate ± standard error of mean (SE) with n=6. 

 

Fig. 2 Fraction of transpirable soil water (FTSW) reached zero in water-deficient plants 

(WD) indicating no soil water was available for transpiration after 14 days imposition of  

drought  stress.  The error bars indicate ± standard error of the mean (SE) with n=6. 
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Fig. 3 Stress susceptibility index (SSI) for yield under drought for nine amaranth genotypes. 

An SSI>1 above-average susceptibility to drought stress.    

 

Fig. 4 A plateau regression to show the relationship between the normalized transpiration rate 

(NTR) and the fraction of transpirable soil water (FTSW) of nine amaranth genotypes. The 

FTSW threshold is indicated by the breakpoint of the plateau where transpiration starts to 

decline. R2 indicates the coefficient of determination between NTR and FTSW. 
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Table 1 Mean of fresh weight (FW) (g) and dry weight (DW) (g) of leaf, root and stem, and root to shoot (R/S) ratio of nine genotypes of 

amaranth under water-sufficient (WS) and water-deficient (WD) conditions, respectively with ± standard error of means (SE). 

Genotype Leaf FW (g) Leaf DW (g) Root FW (g) Root DW (g) Stem FW (g) Stem DW (g) R/S (g) 

 WS WD WS WD WS WD WS WD WS WD WS WD WS WD 

B1 18.09±1.04ab 3.26±0.27ab 3.87±0.15abc 2.79±0.29a 18.14±2.75a 4.45±1.57a 3.67±0.09ab 2.35±0.27ab 31.15±5.99ab 6.41±0.85a 6.72±1.52a ±3.950.50a 0.37±0.06a 0.36±0.05c 

B2 25.10±1.84a 3.69±0.31ab 4.78±0.45ab 2.91±0.22a 19.59±3.91a 4.51±0.35a 4.03±0.57a 2.37±0.29ab 32.79±2.44a 5.36±0.64ab 6.73±0.44a 2.98±0.51ab 0.35±0.03a 0.40±0.04bc 

B3 26.80±1.16a 4.12±0.26a 5.47±0.38a 3.35±0.27a 20.31±2.42a 4.00±0.40a 4.20±0.16a 2.86±0.33a 27.71±3.61ab 4.30±0.48abc 6.26±0.19ab 3.00±0.16ab 0.36±0.02a 0.46±0.08bc 

C1 19.39±1.76ab 3.06±0.38ab 3.95±0.38abc 2.57±0.33ab 17.93±2.11a 3.56±0.44a 2.86±0.32ab 1.54±0.15b 23.14±1.79ab 3.54±0.49bc 3.19±0.55bc 1.55±0.30bc 0.40±0.01a 0.38±0.03bc 

C2 18.24±3.23ab 3.61±0.35ab 3.74±0.70abc 2.52±0.47abc 19.14±4.40a 3.41±1.12a 2.72±0.47ab 1.56±0.43b 18.27±3.61ab 2.69±0.76c 2.35±0.68c 1.33±0.36c 0.49±0.09a 0.39±0.04bc 

C3 8.61±2.04b 2.62±0.28ab 1.94±0.18c 2.17±0.32abc 15.22±2.45a 3.30±0.86a 1.96±0.23b 1.63±0.20ab 20.28±2.27ab 2.23±0.32c 2.98±0.40c 1.38±0.17c 0.39±0.03a 0.46±0.03bc 

D1 18.43±2.52ab 2.52±0.53ab 3.62±0.45abc 1.79±0.47abc 18.89±1.91a 5.52±0.80a 3.05±0.32ab 2.16±0.26ab 25.31±3.11ab 3.20±0.53bc 4.06±0.46bc 1.93±0.24bc 0.40±0.02a 0.59±0.03abc 

D2 17.43±4.72ab 1.43±0.44b 2.76±0.54bc 0.97±0.21c 19.06±3.42a 5.11±1.11a 3.24±0.62ab 2.15±0.08ab 20.36±2.13ab 3.57±0.21bc 2.73±0.29bc 1.72±0.10bc 0.60±0.12a 0.80±0.05a 

D3 16.56±4.37ab 2.97±1.25ab 3.17±0.50bc 1.19±0.30bc 18.88±2.79a 3.61±0.56a 3.14±0.58ab 1.42±0.20b 16.76±2.99b 3.63±0.24bc 3.02±0.35c 1.18±0.26c 0.51±0.09a 0.62±0.10ab 

SED 2.854 0.556 3.242 0.512 3.349 0.733 0.077 

LSD 5.737 1.116 6.548 1.047 6.723 1.471 0.158 

P <0.001 0.002 0.002 0.019 <0.001 0.002 0.256 



† TLA is total leaf area and SLA is specific leaf area 

‡ SED is standard errors of difference between two means of water treatments 

§ LSD is least significant differences of means of water treatments 

¶ P is probability (P-value) of the water treatments significantly different at P<0.05  

# Values identified with same letter are not statistically different among genotype based on Tukey’s Pairwise method (P<0.05) 
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Table 2 Mean of total leaf area (TLA) (cm2) and specific leaf area (SLA) (cm2g-1) and total yield (g) ± standard error of means (SE) of nine 

amaranth genotypes under water-sufficient (WS) and water-deficient (WD) conditions. 

 TLA (cm2) SLA (cm2g-1) Yield (g) 

Genotype WS WD WS WD WS WD 

B1 470.84±119.91a 129.87±29.57a 121.31 ± 29.96ab 45.96±8.12a 121.31±29.96a 45.96±8.12a 

B2 784.27±54.25a 164.69±12.43a 165.96±10.68a 57.55± 5.79ab 165.96±10.68a 57.55±5.79a 

B3 800.66±30.82a 170.47±22.89a 147.48±6.12a 53.40± 10.59abc 147.48±6.12a 53.40±10.59a 

C1 739.23±82.72a 210.79±12.75a 186.79±8.16ab 85.77±12.06abc 186.79±8.16a 85.77±12.06a 

C2 714.72±115.82a 215.66±21.46a 243.04± 95.63ab 91.51± 11.31abc 243.04±95.63a 91.51±11.31a 

C3 403.53±73.82a 168.43±25.46a 202.29± 26.41b 79.91±12.56c 202.29±26.41a 79.91±12.56a 

D1 677.12±90.75a 140.71±42.30a 189.94± 20.67ab 97.71±42.79bc 189.94±20.67a 97.71±42.79a 

D2 611.35±156.89a 75.90±26.00a 218.84±45.69ab 73.27± 8.29c 218.84±45.69a 73.27±8.29a 

D3 540.72±157.66a 158.91±54.38a 168.71±40.62ab 128.55± 25.67abc 168.71±40.62a 128.55±25.67a 

SED 112.0 44.94 5.266 

LSD 225.2 90.21 10.573 

P <0.001 0.003 <0.001 



† SED is standard errors of difference between two means of water treatments 

‡ LSD is least significant differences of means of water treatments 

§ P is probability (P-value) of the water treatments significantly different at P<0.05  

¶ Values identified with same letter are not statistically different among genotype based on Tukey’s Pairwise method (P<0.05) 
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Table 3 Days to pre-dawn wilting with ± standard error of means (SE) of nine amaranth 

genotypes in water-deficient conditions (WD). 

Genotype Days to wilting 

 WD 

B1 9.00±0.00a 

B2 7.00±0.71a 

B3 6.00±0.87a 

C1 8.00±0.58a 

C2 9.00±1.00a 

C3 9.00±1.44a 

D1 8.00±1.41a 

D2 10.00±1.31a 

D3 10.00±1.31a 

SED 1.517 

LSD 3.112 

             P                  0.192 
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Table 4 Mean of total chlorophyll content, chlorophyll-a and chlorophyll-b (µgcm-2) ± standard error of means (SE) of nine genotypes of 

amaranth under water-sufficient (WS) and water-deficient (WD) conditions at 2 days after treatments (DAT), 8 DAT and 14 DAT 

 2 DAT 8 DAT 14 DAT 

 Total chlorophyll content (µgcm-2) 

 WS WD WS WD WS WD 

B1 38.81±2.36a 33.25±2.43a 29.17±1.28a 18.36±2.37a 29.63±1.55ab 17.98±11.02a 

B2 37.01±1.95a 42.17±2.19a 31.70±2.59a 23.88±5.25a 20.10±4.36ab 22.48±5.56a 

B3 37.67±2.00a 39.67±1.06a 37.51±2.50a 42.47±2.67a 34.86±2.64a 39.50±9.77a 

C1 37.55±4.02a 42.28±2.33a 28.21±3.87a 31.52±10.59a 18.27±3.27ab 26.25±12.65a 

C2 45.95±1.96a 41.42±1.55a 38.09±3.76a 37.62±5.83a 24.37±2.95ab 43.41±5.99a 

C3 41.63±2.87a 38.74±1.86a 34.14±2.18a 34.35±7.12a 24.85±3.18ab 34.73±11.21a 

D1 37.26±1.98a 43.58±3.03a 37.74±3.97a 38.42±5.11a 31.12±2.12b 36.89±6.93a 

D2 33.14±2.47a 37.04±6.09a 32.86±2.29a 38.63±11.09a 30.63±3.47ab 32.61±17.16a 

D3 35.08±5.67a 40.47±3.17a 40.99±7.35a 35.44±11.61a 31.62±3.75ab 36.16±8.45a 

SED 4.386 8.420 10.47 

LSD 8.879 16.91 21.21 

P 0.467 0.707 0.636 

 Chlorophyll a (µgcm-2) 

B1 23.69±1.37a 20.45±1.42a 18.08±0.74a 11.78±1.38a 18.35±0.90ab 11.57±6.42a 

B2 22.65±1.13a 25.65±1.28a 19.55±1.51a 15.00±3.05a 12.80±2.54ab 14.19±3.23a 

B3 23.03±1.16a 24.19±0.62a 22.94±1.46a 25.83±1.55a 21.39±1.54a 24.09±5.69a 

C1 22.96±2.34a 25.71±1.36a 17.52±2.25a 19.45±6.17a 11.73±1.90ab 16.38±7.36a 

C2 27.85±1.14a 25.21±0.90a 23.27±2.19a 23.00±3.39a 15.28±1.72ab 26.37±3.49a 

C3 25.33±1.67a 23.65±1.08a 20.98±1.27a 21.10±4.14a 15.57±1.85ab 21.32±6.53a 

D1 22.79±1.15a 26.47±1.77a 23.07±2.31a 23.47±2.98a 19.22±1.24b 22.57±4.03a 

D2 20.39±1.44a 22.66±3.55a 20.23±1.33a 23.59±6.46a 18.93±2.02ab 20.08±9.99a 

D3 21.52±3.30a 24.66±1.84a 24.96±4.28a 21.73±6.76a 19.51±2.18ab 22.15±4.92a 

SED 2.554 4.902 6.093 



† SED is standard errors of difference between two means of water treatments 

‡ LSD is least significant differences of means of water treatments 

§ P is probability (P-value) of the water treatments significantly different at P<0.05  

¶ Values identified with same letter are not statistically different among genotype based on Tukey’s Pairwise method (P<0.05) 
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LSD 5.169 9.847 12.35 

P 0.467 0.707 0.636 

 Chlorophyll b (µgcm-2) 

B1 16.15±1.38a 12.90±1.42a 10.52±0.75a 4.19±1.39a 10.79±0.90ab 10.42a 

B2 15.10±1.14a 18.12±1.28a 11.99±1.52a 7.42±3.07a 7.16±2.32ab 9.62±1.71a 

B3 15.49±1.17a 16.66±0.62a 15.40±1.46a 18.30±1.56a 13.85±1.54a 16.56±5.71a 

C1 15.42±2.35a 18.18±1.36a 9.96±2.26a 11.89±6.20a 4.14±1.91b 15.37±5.94a 

C2 20.33±1.15a 17.68±0.91a 15.73±2.20a 15.46±3.41a 7.71±1.72ab 18.84±3.50a 

C3 17.80±1.68a 16.12±1.09a 13.43±1.27a 13.55±4.16a 7.99±1.86ab 13.77±6.56a 

D1 15.25±1.16a 18.94±1.77a 15.53±2.32a 15.93±2.99a 11.66±1.24ab 15.03±4.05a 

D2 12.84±1.44a 15.12±3.56a 12.68±1.34a 16.05±6.49a 11.37±2.03ab 29.49±5.31a 

D3 13.97±3.31a 17.13±1.85a 17.43±4.30a 19.15±6.54a 11.95±2.19ab 14.60±4.94a 

SED 2.565 4.924 6.121 

LSD 5.192 9.891 12.41 

P 0.467 0.707 0.636 



† SED is standard errors of difference between two means of water treatments 

‡ LSD is least significant differences of means of water treatments 

§ P is probability (P-value) of the water treatments significantly different at P<0.05  

¶ Values identified with same letter are not statistically different from each other based on Tukey’s Pairwise method (P<0.05) 
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Table 5 Mean of total water transpired (kg) and transpiration efficiency (TE) of nine genotypes of amaranth under water-sufficient (WS) 

and water-deficient (WD) conditions with ± standard error of means (SE), and mean of amount of soil water content in a pot at FTSW=0 of 

WD plants ± SE . FTSW threshold values for nine amaranth genotypes were calculated using the linear plateau regression model with ± 

SE and 95% confidence limit of the threshold. 

Genotype 

Total water transpired 

(kg) 

 

TE (gk-1) Soil water (kg) 

when FTSW=0 of 

WD 

FTSW threshold 

decline of WD 

95% CI for FTSW 

decline of WD 
 WS WD WS WD 

B1 2.28±0.05 0.94±0.026a 4.62±0.61ab 7.13±0.69a 0.52±0.02a 0.38±0.04a 0.31-0.51 

B2 2.41±0.10a 0.89±0.079a 4.79±0.34a 6.74±0.73a 0.52±0.01a 0.37±0.05a 0.29-0.59 

B3 2.42±0.09a 0.92±0.041a 4.84±0.19a 6.91±0.44a 0.49±0.01a 0.32±0.05a 0.24-0.47 

C1 2.46±0.12a 1.08±0.055a 2.92±0.40bc 3.78±0.36b 0.48±0.02a 0.29±0.01a 0.25-0.37 

C2 2.19±0.08a 0.95±0.031a 2.73±0.47c 4.01±0.77b 0.53±0.02a 0.56a 0.37-0.67 

C3 2.25±0.09a 0.98±0.003a 2.19±0.07c 3.60±0.28b 0.46±0.01a 0.51±0.09a 0.29-0.78 

D1 2.23±0.05a 0.92±0.048a 3.42±0.33abc 4.09±0.80b 0.49a 0.41±0.04a 0.33-0.52 

D2 2.36±0.18a 0.92±0.057a 2.34±0.25c 2.96±0.28b 0.49±0.01a 0.52±0.07a 0.39-0.79 

D3 2.43±0.08a 0.97±0.099a 2.41±0.46c 2.40±0.22b 0.51±0.04a 0.51±0.01a 0.06-0.79 

SED 0.137 0.667 0.021 0.1067 

LSD 0.274 1.360 0.044 0.2193 

P <0.001 <0.001 - - 
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Table 6 (a) Correlation coefficients (r) for traits associated with the water-sufficient (WS) treatment for the nine amaranth genotypes. 2 

Trait 
LeafFW 

(g) 
LeafDW 

(g) 
StemFW 

(g) 
StemDW 

(g) 
RootFW 

(g) 
RootDW 

(g) 
R/S 

TLA 
(cm2) 

SLA 
(cm2g-1) 

TLC2 
(µgcm-2) 

TLC8 
(µgcm-2) 

TLC14 
(µgcm-2) 

TWT 
(kg) 

TE 
(gk-1) 

Yield 
(g) 

LeafFW 1               

LeafDW 0.88** 1              

StemFW 0.559** 0.533** 1             

StemDW 0.562** 0.571** 0.857** 1            

RootFW 0.435* 0.551* 0.49* 0.482* 1           

RootDW 0.594** 0.642** 0.629** 0.724** 0.651** 1          

R/S -0.269 -0.325 -0.364 -0.435 0.029 0.105 1         

TLA 0.701** 0.587** 0.368 0.353 0.152 0.376 -0.001 1        

SLA -0.204 -0.424 -0.407 -0.474 -0.744** -0.6* 0.106 0.201 1       

TLC2 -0.325 -0.146 -0.195 -0.264 -0.085 -0.199 0.017 -0.305 -0.09 1      

TLC8 -0.11 0.002 -0.157 -0.124 -0.28 -0.116 -0.022 0.188 0.092 0.312 1     

TLC14 0.093 -0.021 0.038 0.099 0.029 0.042 0.232 0.251 -0.074 -0.208 0.087 1    

TWT 0.111 0.247 0.51* 0.368* 0.332 0.374 -0.128 -0.034 -0.435* -0.023 -0.063 -0.009 1   

TE 0.801* 0.837 0.739 0.867 0.515 0.709** -0.488** 0.491* -0.463 -0.223 -0.086 0.021 0.157 1  

Yield 0.874** 0.816** 0.857** 0.788 0.502** 0.687 -0.382* 0.595** -0.321 -0.278 -0.176 0.026 0.312 0.89** 1 
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Table 6 (b) Correlation coefficients (r) for traits associated with the water-deficient (WD) treatment for the nine amaranth genotypes.  3 

Trait 
LeafFW 

(g) 

LeafDW 

(g) 

StemFW 

(g) 

StemDW 

(g) 

RootFW 

(g) 

RootDW 

(g) 
R/S 

TLA 

(cm2) 

SLA 

(cm2g-1) 

TLC2 

(µgcm-2) 

TLC8 

(µgcm-2) 

TLC14 

(µgcm-2) 

TWT 

(kg) 

TE 

(gk-1) 

Yield 

(g) 
DTW 

LeafFW 1                

LeafDW 0.678** 1               

StemFW 0.318 0.398 1              

StemDW 0.304 0.484** 0.688** 1             

RootFW -0.057 0.163 0.383* 0.21 1            

RootDW 0.144 0.389* 0.510** 0.808** 0.320 1           

R/S -0.572** -0.649** -0.126 -0.142 0.138 0.262 1          

TLA 0.577** 0.392* -0.059 -0.149 -0.089 -0.189 -0.351 1         

SLA -0.105 -0.546** -0.461** -0.655** -0.236 -0.542** 0.286 0.474** 1        

TLC2 0.049 -0.001 -0.250 -0.160 -0.131 -0.078 -0.007 0.069 0.117 1       

TLC8 -0.094 -0.158 -0.282 -0.287 0.252 -0.274 0.017 -0.009 0.220 -0.014 1      

TLC14 -0.013 -0.089 -0.277 -0.273 0.268 -0.161 0.120 0.126 0.288 0.087 0.668** 1     

TWT -0.053 0.124 -0.123 0.022 -0.038 -0.024 -0.191 0.198 -0.038 0.170 -0.106 -0.246 1    

TE 0.536** 0.841** 0.549** 0.79** 0.197 0.661** -0.46** 0.136 -0.668** -0.072 -0.248 -0.110 -0.091 1   

Yield 0.755** 0.625** 0.815** 0.600* 0.219 0.404* -0.408* 0.335* -0.328 -0.145 -0.262 -0.220 -0.080 0.662** 1  

DTW -0.173 -0.424** -0.184 -0.413** -0.138 -0.55** 0.003 -0.238 0.238 -0.115 -0.039 -0.168 -0.042 -0.525** -0.232 1 

4 
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Figure 1 5 
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Figure 2  7 
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Figure 3 10 
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