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Abstract 

Modelling of nonlinear dynamics of air manifold and fuel injection in an internal combustion 

(IC) engine is investigated in this paper using the Volterra series model. The Volterra model-

based nonlinear model predictive control (NMPC) is then developed to regulate the air/fuel 

ratio at the stoichiometric value. Due to the significant difference between the time constants 

of the air manifold dynamics and fuel injection dynamics, traditional Volterra model is unable 

to achieve a proper compromise between model accuracy and complexity. A novel method is 

therefore developed in this paper by using different sampling periods, to significantly reduce 

the input terms while maintain the accuracy of the model. The developed NMPC system is 

applied to a widely used IC engine benchmark, the mean value engine model. Performance of 

the controlled engine under real-time simulation in the environment of dSPACE was 

evaluated. The simulation results show a significant improvement of the controlled 

performance compared with a feed-forward plus PI feedback control. 

 

Keywords 
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1 Introduction 

In the past decades, the air/fuel ratio (AFR) control of internal combustion (IC) engines has 
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attracted more interests (Balluchi et al., 2000; Nicolao et al., 1996). To meet the new 

environmental requirements of government legislation, car manufacturers have been seeking ways 

to reduce emissions and fuel consumption while maintaining the engine performance. To develop 

effective control strategy, nonlinearity and interactions between variables such as engine speed, 

engine torque, spark ignition timing, fuel injection timing, air intake, AFR and others have been 

considered (Butt, et al. 2013; Tan and Mehrdad, 2000; Vinsonneau et al., 2003). AFR is regarded 

as one of the most important engine variables because of its relationship with fuel efficiency, 

emission reduction and driveability (Manzie et al., 2001; Manzie et al., 2002).  The best balance 

between power output and fuel consumption can be obtained by maintaining AFR at the 

stoichiometric value of 14.7 with the three-way catalyst. Meanwhile, AFR is vital to emission 

control because of its ability to ensure the maximum efficiency of three-way catalyst (TWC) 

(Manzie et al., 2001; Manzie et al., 2002). For example, 1% change of AFR from the 

stoichiometric value will cause a significant increase in carbon monoxide (CO) and hydrocarbon 

(HC), and cause 50%
xNO  increment (Manzie et al., 2001; Manzie et al., 2002).  

 

In commercial electronic control unit (ECU), the AFR is controlled with a look-up table as feed-

forward controller and compensated by a PI feedback control. There are some advantages in this 

method. However, it cannot produce desirable accurate control performance for highly nonlinear 

spark ignition (SI) engines ((Manzie et al., 2001; Manzie et al., 2002; Choi and Hendrick, 1998). 

Several alternative methods have been proposed to tackle the problem. For example, the sliding 

mode control developed by Shah, et al. (2015). Choi and Hendrick (1998) proposed an observer-

based fuel injection control algorithm with sliding mode control to regulate the AFR. This method 

improved response speed and chattering of the AFR caused by sliding mode control, but the 

change of fuel film dynamics caused by aging or different fuel properties was not considered. 

Yoon and Sunwoo (2001) proposed an adaptive dynamic sliding-mode control to deal with the 

problems caused by engine uncertainties, but time-varying dynamics were not tackled.  

 

In recent years with the increased computing speed, the model predictive control techniques have 

been attempted in internal combustion engines. Manzie et al. (2001) developed a radial basis 

function (RBF) neural network model for fuel injection dynamics. They found that this model was 

able to predict future air mass flow into the cylinder. Wang et al. (2006a) further developed an 

adaptive RBF model for AFR and the model-based NMPC for AFR control. In a followed paper 

Wang et al. (2006b) used the MLP neural network to model the IC engine and achieved similar 

performance. However, the neural network model is a grey box, in which little information can be 

used for analysis. The training of a MLP network model is quite time-consuming and may be 

trapped in a local minimum with the back-propagation training algorithm. Moreover, neural 

network model may take considerable computing time for output prediction, and consequently 

cannot be used in the NMPC algorithm for plants with fast dynamics in real applications.  
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In comparison, Volterra model has a simpler structure and is easier to identify. Therefore, it has 

been widely adopted for dynamic system modelling. This is the motivation for us to adopt the 

Volterra model in the NMPC for AFR control of IC engines. In the literature, the Volterra model 

has been used to model plants with slow dynamics (Zhang et al., 2009). Bryon et al. (1996) used a 

second-order Volterra model in NMPC for a simulated multivariable polymerization reactor. 

Gruber and Oliva (2012) had extended the application of the method in (Bryon et al., 1996) to the 

greenhouse temperature control. In further, Gruber et al. (2011) extended the application of 

Maner’s method to control a PEM fuel cell using different training data. A literature search 

revealed that no research has been reported on Volterra modelling for AFR of IC engines. The 

main reason is that in AFR dynamics, air flow dynamics are slow while the fuel injection is very 

fast. This will need a big number of terms in the input of Volterra model, which is nearly 

impossible for an engine with fast dynamics. 

 

A second-order Volterra model is used to model air manifold and fuel injection dynamics of a IC 

engine in this paper. The novel method proposed in this paper is to modify the conventional 

Volterra model by introducing different sampling times. In this way the truncation order can be 

selected relatively low to achieve a trade-off between the model accuracy and the model 

complexity. Then, the modified Volterra model-based NMPC is developed for AFR regulation 

against the dramatically and frequently change of throttle angle in air manifold. This is the major 

contribution of the paper. The model is developed using the input/output data from a nonlinear 

benchmark of IC engines, the mean value engine model (MVEM) (Hendricks et al., 1996). The 

modified Volterra model is on-line updated, so that the time varying effects of the engine physical 

parameters caused by aging, mechanical wear, etc. would be compensated. The developed control 

system is evaluated by the real-time simulation using dSPACE in conjunction with 

Matlab/Simulink. 

 

In the remaining of the paper, IC engine dynamics are described in Section 2. Section 3 presents in 

detail the proposed novel modification to the traditional Volterra model. The modified Volterra 

model based NMPC is then presented in Section 4. The implementation of the developed method 

and the real time simulation results are described in Section 5. Finally some conclusions are drawn 

in Section 6.     

2 SI engine dynamics 

A widely used benchmark for engine modelling and control, the well-known MVEM developed by 

Hendricks et al. (1996) is used in this work. The configuration of an expanded MVEM is shown in 

Fig. 1 (where the AFR block and time delay block are added to the original model of Hendricks by 
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the authors). The model is decomposed into three sub-models: the first one describes the air intake 

manifold dynamics including manifold pressure and temperature, the second one describes 

crankshaft speed dynamics, and the third one describes the fuel injection dynamics. There are two 

inputs in this simulation model, the throttle angle )(tV  and the injected fuel mass flow rate )(tm fi
 , 

and one output AFR. All the variables in this section are defined in the nomenclature at the end of 

the paper. The configuration of the expanded MVEM is displayed in Fig.1. 

 

 

Fig. 1 The expanded MVEM in Simulink 
 

2.1 Intake manifold filling dynamics 

The intake manifold filling dynamics are analysed from the viewpoint of the air mass conservation 

inside the intake manifold. Two nonlinear differential equations are used to present the dynamics 

of manifold pressure )(tPi
and manifold temperature, respectively. The manifold pressure )(tPi

 is a 

function of air mass flow rate past throttle plate )(tmat
 , the air mass flow into the intake port

)(tmap
 , the exhaust gas recirculation (EGR) mass flow rate )(tmEGR

 , the EGR temperature )(tTEGR
, 

the manifold temperature )(tTi
, and ambient temperature )(tTa

 as shown in (1). 

)( EGREGRaatiap

i

i TmTmTm
V

R
P  


  (1) 

The manifold temperature )(tTi
dynamics are presented in (2). 

)]()()1([ iEGREGRiaatiap

ii

i

i TTmTTmTm
VP

RT
T                   (2) 

Here EGR mass flow rate is set to zero because it is not considered in this simulation. In 



5 
 

equations (1) and (2), the air mass flow dynamics in the intake manifold can be described as 

follows. The air mass flow past throttle plate atm  is related with the throttle position and 

manifold pressure. The air mass flow into the intake port 
apm  is represented by a speed–

density equation as below: 

0211 )()(),( atr

a

a

atiat mPv
T

P
mPvm                            (3) 
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i
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120
),(     (4) 
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and 0atm , 1atm , 0v , cP  are constants. In addition, it is easier to generate ii P , the quantity of 

normalised air charge, than to model the volumetric efficiency i  directly. The normalised air 

charge can be obtained from the test of engine in the steady state and it is approximated with 

polynomial equation (8). 

)()( nyPnsP iiiii                               (8) 

where )(nsi  and )(nyi are positive, weak functions of the crankshaft speed, n, and iy ≪ is . 

2.2 Crankshaft speed dynamics 

The crankshaft speed is derived based on the conservation of rotational energy on the crankshaft.  

          
dfiiubipif tmnPHnPnPPnPPn    ,,

In

1
,,

In

1
          (9) 



6 
 

The friction power
fP and pumping power

pP  are related to the manifold pressure iP and 

crankshaft speed n . The load power bP  is a function of the crankshaft speed n . The volumetric 

efficiency i  is a function of the manifold pressure iP , crankshaft speed n  and air fuel ratio . 

2.3 Fuel injection dynamics 

In Hendricks’ model (Hendricks et al., 1996), the engine port fuel mass flow 
fm  is stated as, 

th

ap

f
L

m
m


                                       (10) 

This means that the simulation model works in an ideal condition, where the AFR value is always 

equal to its stoichiometric value. Instead of using this ideal simulation of the injection system, a 

more practical fuel flow dynamic sub-model is considered (Hendricks, 2000). 

)(
1

fifff

f

ff mXmm  


                            (11) 

fiffv mXm  )1(                                    (12) 

fffvf mmm                                       (13) 

This model represents the fuel flow dynamics of manifold injection engine by considering the fuel 

evaporation occurs in the intake manifold. The parameters in the model are the time constant for 

fuel evaporation 
f  and the proportion of the fuel which is deposited on the intake manifold or 

close to the intake valves
fX . These two parameters are operating point dependent and can be 

expressed in terms of the states of the model as 

56.0)15.006.0()825.0()68.1672.0(35.1),(
2

 nPnnP iif      (14) 

68.0055.0277.0),(  nPnPX iif
                          (15) 

2.4 Air-fuel ratio measurement 

In this simulation model, the AFR is calculated by using equation (16) as below. The air mass flow 
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into intake port 
apm  is the output of intake manifold sub-model. The engine port fuel mass flow 

fm  is the output of fuel injection sub-model. 

f

ap

m

m




                                         (16) 

There are three causes of time delay for injection systems:  

1) the two engine cycle delays between the injection of fuel and the expulsion from the exhaust 

valves; 

2) the propagation delay for the exhaust gases to reach the oxygen sensor;  

3) the sensor output delay.  

It is found that the engine speed has more influence on these three delays than the manifold 

pressure. Therefore the following equation is used to represent the delays of injection systems 

(Manzie et al., 2001; Manzie et al., 2002).   

n
td

10
045.0                                       (17) 

3 Modified Volterra model and engine modelling 

3.1 Volterra model 

A single-input single-output (SISO) second-order Volterra model, with the truncation order tN , is 

defined as follows (Doyle et al., 2001). 

 
  


t t tN

i

N

i

N

ij

uu jkuikujibikuiahky
1 1

0 )()(),()()()(           (18) 

Equation (18) corresponds to a linear convolution model with additive nonlinear terms. In this 

model, )(ky  and )(ku represent the measured output and input of the system at the current 

sampling instant k. The offset is denoted by h0 and the coefficients of the linear and nonlinear 

terms are )(ia and ),( jib , respectively. 

 

Similarly, the 
th

i output of a second-order Volterra model for a q inputs p outputs system is given 

as, 
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
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,0 )()()()( , pi ,,1     (19) 

where tN  denotes the truncation order. There are no cross terms in the right hand side of 

equation (19). The term parameters of the linear and nonlinear terms for lu are denoted with 
i

jla ,

and
i

nljlb ,,, , respectively. 0ih  is a bias term that can be fitted using input-output data.  

3.2 Different response speeds in engine dynamics 

For the AFR model to be developed one input is the injected fuel and one measured disturbance 

is the throttle angle. The Volterra model is therefore built with the two inputs and a single output. 

It is noted that the dynamics from the fuel injection to the AFR has a significant speed difference 

from that of the throttle angle to the AFR. This has been tested and clarified by applying a step 

change to each of the two inputs to the MVEM model and recorded the AFR responses. The test 

results are shown in Fig. 2(a) and 2(b). In Fig. 2(a) the applied fuel injection has a step change at t 

= 10 sec from 0.0005 kg/sec to 0.003 kg/sec, and the throttle angle is kept constant at 40 degrees. 

Fig. 2(b) depicts the AFR response when the fuel injection is maintained at 0.0015 kg/sec and the 

throttle angle has a step change at t = 10 sec from 20 to 60 degrees. It is measured that the 

transition time ts in Fig. 2(a) is 8 sec (The AFR response to the step change of the fuel injection is 

composed of two parts. One part is very fast response while the rest is very slow response), while 

in Fig. 2(b) the transition time st  is 0.8 sec. Therefore, the sampling time was chosen to be 

sec2.010/4/10/  ss tT  for fuel injection, and sec02.010/4/10/  ss tT   for the 

throttle angle. 

 

Figure 2(a) Air-fuel ratio response to a step change of fuel injection 
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Figure 2(b) Air-fuel ratio response to a step change of throttle angle 

 
 

The value of truncation order tN  has to be chosen carefully in relation to the dynamics of the 

engine, which is important for the modelling purpose. A small value of tN  will cause dynamic 

information in the data to be lost. On the other hand, if the value of tN  is too big then it will 

increase computing load dramatically. In this work, tN  is selected as 40. In order to avoid 

enormous computation, while to ensure the traditional Volterra model to cover every input 

dynamics, sec2.0sT  is chosen. For throttle angle input, where the transition time is 0.8sec, 

only 4 data samples are generated for the whole sampling process and this causes significant loss 

of interested dynamic information. A modelling simulation of a traditional Volterra model with 

sec02.0sT  and 
tN = 40 is conducted, and the modelling results are shown in Fig. 3 in Section 

3.6. It can be observed in Fig. 3 that the traditional second-order Volterra model is not appropriate 

to represent theICengine dynamics with the same sampling period for the two inputs. Thus, in this 

work, a modified Volterra model with different sampling periods is developed to model the 

dynamics with significant speed difference. 

3.3 Modified Volterra model 

As discussed in the previous section, the significant response speed difference between the two 

input variables causes difficulty in choosing sampling time and truncation order. In order to 

improve the performance of Volterra model, different sampling periods have been selected for 

these two inputs. Here ut  denotes the transition time of the fuel injection and vt  denotes the 

transition time of the throttle angle. This can be implemented by modifying the Volterra model 

equation (19) to the following equation. 
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 (20) 

where 10
v

u
u

t

t
T . 

Firstly, the sampling time is chosen in this work as 0.01sec to ensure the high precision of the 

modified Volterra model. Besides, different sampling periods for the respective fuel injection is 

selected due to its longer transition time. For example at sample instant k, the samples 

),3(),2(),1(  kvkvkv  of throttle angle are selected according to equation (20), while the 

samples )1(  uTiku of fuel injection are selected. As such, the fuel injection samples 

),21(),11(),1(  kukuku  will be used at sample instant k , and samples  

),20(),10(),(  kukuku  will be used at sample instant 1k , until all samples have been 

selected. This modification enables the Volterra model to be implemented in short truncation order, 

while not losing necessary dynamic information. 

 

3.4 Data collection  

To excite the system covering all frequency spectrum and amplitude distributions of the nonlinear 

dynamics, the random amplitude sequences (RAS), the variable amplitude pseudo-random binary 

sequence (PRBS), the variable amplitude M-sequence signal, and Gaussian white noise were all 

used as the excitation signals to the engine model to acquire their own input/output data sets. The 

two engine inputs were the injected fuel and the throttle angle, while the one output was the 

air/fuel ratio. Each data set was used to identify a Volterra model with the same truncation order. 

Then, the mean squared modelling errors (MSE) of the test data set for each model were compared. 

It was found that the RAS as excitation signal gave the minimal MSE. So, the RAS was chosen 

and used in this work. In the data acquisition, the lower and upper bounds of the throttle angle was 

set as 20 and 60 degrees, while that for the injected fuel mass flow rate was set as 0.0005 and 

0.003 kg/sec, which sufficiently cover the input operating space. The resulted air/fuel ratio output 

signal also covered the output operating space. The sampling period, Ts = 0.02 sec, was used, 

which was considered appropriate for the engine dynamics. In this work, 20,000 input/output data 

samples were acquired.  

3.5 Parameter estimation and model updating  

The data set obtained has been normalised into a bounded range of (0, 1) using the linear scale (21) 
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before the data is used for identification. Then, the control variable optimised in the control 

algorithm is scaled back to normal data using (22).  

minmax

min

xx

xx
xscaled




  (21) 

minminmax )( xxxxx scaled   (22) 

where maxmin ,, xxx are data, minimal and maximal values within the data set respectively. In 

model identification, the parameters vvuu babah ,,,,0  in model (20) need to be estimated. The 

recursive Least Squares (RLS) algorithm was used to estimate these parameters. Firstly, the 

parameters are collected to form a parameter vector 
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As vector )(k is a matrix of measurement data, parameter vector ŵ can be solved from (23) 

using the Least Squares algorithm. A RLS is used in this work for identification, which is not 

shown her as it can be found in a typical text book such as (Ljung, 1999).  
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3.6 Simulation results 

As mentioned above, among the 20,000 collected data samples the first 15,000 samples are used 

for identification and the last 5,000 samples are used for model validation. The following initial 

values are used in the RLS algorithm.  

nn IP
8

10)0( , 
1

8
10)0(ˆ




 nUw , 999.0  

where nnI  is an identity matrix, 13
2

 tt NNn  and 1nU is a vector with random entries. 

The modelling result of the modified Volterra model is shown in Fig. 4. For comparison, the same 

data set has also used to train a traditional Volterra model and the model prediction is displayed in 

Fig.3.  

 

Figure 3 Test data and traditional Volterra model output 

 

 

Figure 4 Test data and modified Volterra model output (MAE=0.0112)  

 

It can be seen in Fig.3 and Fig.4 that the modified Volterra model outperformed the traditional 
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Volterra model. 

4 NMPC based on modified Volterra model 

4.1 System configuration 

The strategy of NMPC for IC engines is shown in Fig. 5. Here the developed Volterra model is 

used to predict the future output, then the optimisation mechanism is used to determine the 

optimal control sequence, which minimise the objective function

  
 


2

1

22
)()(ˆ)(

N

Ni

N

kj

u

juiyirJ  . Finally the first element in the optimal control sequence is 

used to control the process, and the same procedure repeats at the next sampling period. The 

detailed procedure is given in the following sections. 

  

 
 

Figure 5 The adaptive modified Volterra model-based predictive control strategy 

 

4.2 Model prediction 

The modified Volterra model is used to predict the future behaviour of the IC engine considering 

the varying values in the inputs of throttle angle and fuel injection. This type of model can be 

considered as a logical extension of the models that are widely used in predictive controllers. At 

the control instant 1k , the future output of the identified nonlinear model (20) with the 

prediction horizon
yN , control horizon uN , and truncation order tN  (

uyt NNN  ) can be 

calculated in a matrix form (Doyle et al., 2001) (in the rest of this Section, the reference to the 

traditional Volterra model based prediction control equations are all in (Doyle et al., 2001), if there 

is no special notice, the references will be omitted).  
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)1()1()()1(  kkkGk uu cfuy                                     (24) 

Here the predicted output vector yN
k  )1(y and the future input sequence tN

k )(u are 

defined as follows, 

 T
yNkykykyk )(,),2(),1()1(  y  

 TuNkukukuk )1(,),1(),()(  u                       

And, 
uy NN

uG


 is the linear part of the future fuel injection input, the vector yN

u k  )1(f

contains the future–future cross terms of the input sequence )(ku . The term yN
k  )1(c

contains only terms which do not depend on the current or future inputs and is defined as,  

)1()1()1()1( 0  kkkk vu dhccc   (25)
 

with 

)1()1()1(  kkHk upuu guc             (26) 

and  

)1()()1()1()1(  kkGkkHk vvvpvv fvgvc        (27) 

where 
yN

u k  )1(c represents the constant term depending on the vector of past first input 

values; yN

v k  )1(c is the vector containing the terms of the future second input values. The 

vectors yN
0h and yN

k  )1(d include the offset of the identified model (20) and the 

estimation error in the prediction, and are defined as 
T

hh ][ 000 h and 

T
kdkdk ])()([)1( d , respectively. The terms )1( kH puu with ty NN

uH


 and 

yN

u k  )1(g are the linear and nonlinear parts of the past input values, respectively. 

Analogously, )1( kH pvv with ty NN

vH


  and 
yN

v k  )1(g represents the linear and 

nonlinear terms of the past second input values. Furthermore, )(kGv v  with 
uy NN

vG


 and 

yN

v k  )1(f denote the linear and nonlinear terms of the future second input values. The past 

first input vector tN

p k  )1(u and the past second input vector tN

p k  )1(v are defined 

as 

 T
tp Nkukukuk )(,),2(),1()1(  u   



15 
 

  


  


uu TT

p kvkvkvkvkvkvk ),2(,),2(),2(,)1(,),1(),1([)1( v  

T

T

vutvutvut

u

ttNkvttNkvttNkv ])/(,),/(),/(,
  

         (31) 

The future values of the throttle angle input are assumed constant. The vector uN
v  , are 

defined by 

T
kvkvkv )](,),(),([ v                                 (32) 

As a consequence, the linear and nonlinear terms vvG and vf  that depend on the future values of 

the throttle angle input are calculated with the current values of the throttle angle input. In order to 

expand the explanation in this algorithm, the terms uG , vG , uH , vH , uB , vB , )1( kuf , 

)1( kvf , )1( kug , )1( kvg  are described as follows. With },{ vum  , the matrix mG is 

given as, 
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                     (33) 

Similarly, the matrix mH with },max{ vum  represents the linear term of the past inputs and 

are defined generally as, 
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The vector yN

u k  )1(f contains the future-future and future-past cross terms of the fuel 

injection input, and is given in the following equations.  

 

T

t

uu

Nkukukuikuiku

Bkuikuikuikf

])3()1()()2()1([

]00)()2()1([)(
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




  

yNi ,,1
 

                   (36) 

In this project for the inputs with different varying speeds, the vector yN

v k  )1(f needs to be 

changed as, 
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yNi ,,1
       (37) 

where  )2()1()( kvkvkv , and yN

u k  )1(g contains the past-past cross 

terms and is defined as below, 

 

T
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u
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BNkukukukg
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 (38)
 

In the same way as equation (35), yN

v k  )1(g can be written as: 
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    (39)
 

The matrix tt NN

mB


 with },{ vum   used above is defined as, 
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With the above definitions and detailed explanation, the future output prediction can be 

calculated following these equations. 

4.3 Optimal control algorithm 

The developed modified Volterra model is used as the internal model to predict future output of 

the engine for the model predictive control. The objective function for the optimization is set as, 
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where yy NN 
1Λ and uu NN 22

2


Λ  are the weight matrices that are positive definite, the

maxmin , uu are the lower and upper bounds of the input imposed by the actuator. Substituting (24) 

into (41) we have,  
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where )1()1()(  kckfskr u , 21  u

T

u GGH and u

T
GkrG 1)(2 

 

The constraints are linear inequality, 
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Now, we have a standard optimization problem of quadratic programing, 

 

  )()()(
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1
)( kGukHukukJ

T
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subject to  ptQu )(  (44) 

 

 

For the quadratic programming two developed methods, the active set method and the interior 

point method have been typically used. It was reported that between the two the active set method 

is faster for small and medium size systems (Coen et al., 2008). Therefore, the active set method is 

used in this study to find out optimal control. As the method has been well developed it will not be 

described in detail here. Due to the two reasons: one is that only the inequality constraint will be 

applied in the optimization, and the other is that it is preferred to execute the optimal programme 

as fast as possible, the active set strategy is briefly presented to help understand the programing.     

 
  

The active set method starts from an initial feasible point that is as close to the optimal solution as 

possible. At the same time an active set Ak (a set of active constraints, i.e. those for which the 

solution points are on the boundaries) is formed and updated in every iterative step. The necessary 

and sufficient conditions for u to be the global optimum for convex QP problem are given by the 

Karush-Kuhn-Tucker (KKT) condition (Fletcher, 1987). The active set method, after calculating 

the initial feasible point, will determine a series of feasible points that converge to the optimal 

solution. The search direction u is calculated to minimize the objective function while to be 

remained on the any active constraint boundaries. The feasible subspace for u is formed from a 

basis Zk whose columns are orthogonal to the estimate of the active set Ak. Thus, u can be 

formed from the basis vectors of the null space of Ak. 

A linear combination of the vectors of the null space Zk is used as below 

 

kk qZku  )(          (45) 

where kq  is the coefficient vector. Then, we substitute the search direction (45) into objective 

function (43), and view the objective function as a function of coefficient vector p. 

 

      kkkk

T

k

T

k qGZqHZZqkJ 
2

1
)(         (46) 

Differentiating (46) with respect to kq yields 
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HZZ

GZ
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This leads to the search direction, 
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k Z
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GZ
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Thus, the optimal control can be updated in each iteration as follows, 
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)()()1( kukuku           (49) 

where is the step length. Due to the quadratic nature of the objective function, there are only two 

choices of , A step of unity along u is the exact step to the minimum of the function restricted 

to the null space of Ak, If such a step can be taken without violation of the constraints, then this is 

the solution to the QP. Otherwise, the step along u to the nearest constraint is less than unity 

and a new constraint is included in the active set at the next iteration. The distance to the 

constraint boundary in the direction u is taken as the step length, 

 

      mi
kuA

pkuA

i
i

ii ,,1,}
)(

])([
min{ 




      (50) 

The global optimal solution can be checked if the KKT condition is satisfied.  

 

5 Performance Evaluations 

 

The performance of the developed model predictive control has been assessed using both 

computer simulation with Matlab/Simulink, and real time simulation using dSPACE facilities. The 

first evaluation is to test if the developed method is effective in regulating the AFR to the 

stoichiometric value when the engine is subjected to changes of throttle angle. Whilst the second 

evaluation is to test if the developed method can be practically executed in the required time 

period and achieve similar results as that of the first evaluation when the engine is under the same 

disturbance. Due to the fact that our test engine is not equipped with alternative control injection 

function, the real engine test cannot be implemented in this work and will be done in the future 

with the test engine in other institute.  

 

In this paper, a real-timeICengine AFR control simulation platform based on dSPACE components, 

dSPACE MicroAutoBox and Matlab/Simulink is established. By using RTI software provided by 

dSPACE the MEVM Simulink model is downloaded to the DS1005PPC processor board to 

simulate the plant to be controlled. Download the control algorithm in this paper to the dSPACE 

MicroAutoBox (DS1401), and communicate with DS1005ppc processor board by RS232 to 

achieve the real-time AFR control. Simulation has been done in the real-time environment (as 

shown in Fig.6) with the sample period of 0.02s, by using ControlDesk software in the observer 

computer to display and record the dynamic signals.  
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Fig.6 Real-time simulation environment 

 

As the major disturbance the throttle angle of a near step change from 25 degrees to 50 degrees 

with 0.5 degree uncertainty is used in the evaluation. The disturbance is shown in Fig.7. As 

mentioned before, the stoichiometric value of AFR must be controlled in the boundary of 14.71%. 

The sampling time is chosen as 0.02s. Through several times tuning, the prediction horizon 
yN

=36 and the control horizon uN =15 are chosen. The weighting matrices 1 and 2 in the 

objective function (36) are chosen as two diagonal matrices with dimension of 
yN  and uN , and 

the amplitude of 1 and 0.1, respectively. With the chosen parameters above, the NMPC control has 

been successful and satisfactory simulation results were obtained. As the Matlab/Simulink 

simulation results are similar to that of the real-time simulation, only the real-time simulation 

results are displayed here. 

 

 

Figure 7 Throttle angle change during control 

 

The regulated AFR is shown in Fig. 8(a) and the optimal control, the injected fuel flow rate is 
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shown in Fig.9. In Fig. 8(a) the required AFR range, the stoichiometric value of 14.7 with 1% 

error, %)11(7.14   is drawn in red line. From the figures it is evident that the AFR achieved 

under the NMPC is well tuned and is within the boundary of %)11(7.14  . When the throttle 

angle has a step change, the AFR jumps out of the boundary a little bit and is tuned back into the 

boundary quickly. To have a clearer view for the dynamic tuning effects the AFR response at t=20 

sec and t=30 sec corresponding to the step change of the throttle angle are augmented and shown 

in Fig. 8(b) and 8(c), respectively. 

 

Figure 8(a) Air-fuel ratio control result of the NMPC using the modified Volterra model 

 
 

 
 

Figure 8(b) Augmented image of Figure 8(a) at t=20sec 
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Figure 8(c) Augmented image of Figure 8(a) at t=30sec 

 
 

 
 
Figure 9 The injected fuel mass flow rate produced by the NMPC 

 
  

In order to demonstrate the effectiveness of the proposed modified Volterra model-based NMPC, 

its performance is compared with that of a feed-forward plus feedback control. The feed-forward 

controller is implemented by a look-up table while the feedback control is implemented by a PI 

controller. The look-up table uses the throttle angle only as the input and the gains in the table are 

obtained from the MVEM Simulink model in the steady state. The digital PI controller of the form 

in (51) [14] is used. 
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The sampling time sT is 0.02s, which is the same as that in the NMPC. The feedback signal of the 
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system is the measured AFR value with time delay. Open-loop Ziegler-Nichols method is used to 

set initial PI controller parameters. After the fine tuning of the PI controller parameters, the 

performance and corresponding injected fuel mass flow rate are shown in Fig. 10 and Fig. 11 

respectively. The tuned controller parameters are the gain 4
1025.3


sK and the integral time

sec22.0I .  

 
 

Figure 10 Air-fuel ratio control result of the feed-forward plus feedback control 

 

 
 

Figure11 The injected fuel mass flow rate produced by the feed-forward plus feedback control 

 

 

 The steady state response of the feed-forward plus feedback control is acceptable, as it 

converges to the stoichiometric value of 14.7. However, the performance in transient state is not as 

good as the NMPC. It exhibits large overshoot and relatively longer settling time. The step change 

of throttle angle at t=20sec caused the AFR value to reach 16.1, which is well exceed the required 

1% boundary. After that, the AFR recovers slowly and it takes approximately 1.3 seconds before 

returning to the required region %)11(7.14  . At time instant of 30 seconds, the step change of the 
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throttle angle caused the AFR value dropping to 13.4, which is out of required 1% boundary. The 

settling time for the AFR to settle back into %)11(7.14   region takes about 1.1 seconds.  

        

 Comparatively, the NMPC control has achieved much better performance than the feed-

forward plus feedback control in terms of the transient dynamics. From Fig. 8 and Fig. 9 above, it 

can be seen that the maximum overshoot at t=20s and the maximum undershoot at t=30s caused 

by the change in throttle angle are much smaller than the feed-forward plus feedback control. As 

shown in Fig. 8(b) the maximum overshoot is 14.75 and the maximum undershoot is 14.63. The 

settling time of the response is 0.4 seconds and during all this time the AFR remains within the 

%)11(7.14   region. And in Fig.8(c), on the t=30s onwards, the maximum overshoot is 14.95 

and minimum undershoot is at 14.42. It took around 1.1 seconds for the AFR to settle back within 

the %)11(7.14   region.  

6 Conclusions 

This paper investigates the application of the Volterra model to IC engine modelling and nonlinear 

model predictive control. A modified Volterra model is developed in this work to cope with the 

significant response speed difference to different engine inputs. With the modified Volterra model, 

the modelling error is kept the minimum while the truncation order is greatly reduced. With the 

modified Volterra model, the model prediction formulas in the NMPC algorithm are developed. 

The optimization in the MPC is solved using the active set method. The Volterra model is adapted 

on-line with the recursive Least Squares algorithm to model the time varying dynamics or post-

fault dynamics caused by any malfunction or mechanical wear of engine components. This is very 

important to avoid the control performance to degrade due to aging and environment change. By 

comparing with the feed-forward plus feedback control, it is shown that the NMPC based on the 

modified Volterra model performed much better than the feed-forward plus feedback control in 

transient response. Real-time simulations prove that the NMPC algorithm can be executed in real 

time within one sampling period. It proves that the modified Volterra model based NMPC is a 

promising control algorithm with potential to replace the feed-forward plus feedback control of the 

production ECU to control air-fuel ratio in IC engines. 
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 Appendix 

Notation 
fP  friction power ( kW ) 

iP  manifold pressure ( bar ) 

uH  fuel lower heating value ( kgkJ / ) 
pP  pumping power ( kW ) 

I  crank shaft load inertia (
2

kJm ) R  gas constant (here
5

10287


 ) 

thL  stoichiometeric air/fuel ratio (14.7) 
aT  ambient temperature ( K ) 

apm  air mass flow rate into intake port 

( skg / ) 
EGRT  EGR temperature ( K ) 
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atm  air mass flow rate past throttle plate 

( skg / ) 
iT  intake manifold temperature ( K ) 

EGRm  EGR mass flow rate ( skg / ) 
dt  time delay of fuel injection systems 

fm  engine port fuel mass flow rate 

( skg / ) 
V  throttle position (degrees) 

ffm  fuel film mass flow rate ( skg / ) 
dV  engine displacement 

fim  injected fuel mass flow rate ( skg / ) 
iV  Manifold + port passage volume 

(
3

m ) 

fvm  fuel vapour mass flow ( skg / ) 
i  indicated efficiency 

n  crankshaft speed ( krpm )   air/fuel ratio 

aP  ambient pressure ( bar ) 
d  injection torque delay time ( s ) 

bP  load power ( kW )   Ratio of the specific heats=1.4 for 

air 

 


