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Abstract—Mechanisms of time-dependent-dielectric-breakdown 

(TDDB) in non-filamentary a-Si/TiO2 RRAM cell (a-VMCO) have 

been examined in this work, including defects generation in the 

grain boundary, defects clustering and different defects 

generation rates in a-Si and TiO2 layers.  The unique feature of a 

bimodal Weibull distribution at low resistance state (LRS) and a 

single shallow slope distribution at high resistance state (HRS) 

cannot be explained by the above mechanisms. By using a 

combination of constant-voltage-stress (CVS), time-to-breakdown 

Weibull distribution and random-telegraph-noise (RTN) based 

defect profiling in devices of various sizes, layer thickness and 

processes, it is revealed that the defect profile is modulated when 

switching between HRS and LRS and the correlation of defect 

profile modulation with local defect generation rate can explain 

the difference in Weibull distributions at HRS and LRS. The 

transition from bimodal distribution at LRS to a single-steep- 

slope with thinner a-Si layer, and the good area scaling of Weibull 

distribution at HRS but not at LRS, can also be explained. The 

critical layers affecting the TDDB in a-VMCO are identified, 

providing useful guidance for device performance improvement.  

 
Index Terms—Time-to-breakdown, TDDB, Si, TiO2, a-VMCO, 

Dielectrics, RRAM, Weibull Distribution, RTN. 

I. INTRODUCTION 

 

esistive switching memory is a promising emerging 

non-volatile memory [1-8]. Good characteristics have 

been achieved in various binary metal-oxide based 

devices (RRAM), such as NiO [2], TiO2 [3, 4], HfO2 [5, 6], and 

Ta2O5 [7, 8]. In filamentary type RRAM, forming operation is 

normally needed to create a conductive filament first, and the 

switching between high resistance state (HRS) and low 

resistance state (LRS) can be considered as a progressive ‘soft 

breakdown’ and “recovery” process, controlled by oxygen 

vacancy modulation in the filament constriction [2-10]. 

Reliability issues in these devices such as retention, endurance 

and variability have been extensively studied [5-10]. Time- 

dependent-dielectric-breakdown (TDDB) has also been used to 

investigate the forming, switching and breakdown mechanisms 

[11-13]. Degradation of the critical filamentary constriction 

region will lead to endurance failure such as memory state stuck 

at either HRS or LRS or breakdown [6-13].    

In contrast, resistance switching in the non-filamentary type 

RRAM has been attributed to the uniform defect profile 

modulation at the interface either with the electrode [14] and/or 

between two dielectric layers [15-16]. The vacancy modulated 

conductive oxide RRAM (a-VMCO) has demonstrated good 

non-filamentary properties, such as area-dependent resistance 

switching, larger than 10 resistance window, self-rectifying 

and self-compliance [15-16]. Its reliability issues such as 

retention, noise and the differences from the filamentary 

RRAM have been discussed in detail [17]. Further optimization 

was explored, for example, by using higher set/reset voltage to 

improve the resistive window, but this leads to degradation and 

causes device breakdown [18]. The breakdown mechanism in 

a-VMCO RRAM has not been characterized in detail yet. 

The time-to-breakdown Weibull plot has been extensively 

used to analyze the dielectric breakdown mechanism [19-21]. 

In addition to the well accepted percolation model with random 

defect generation, further investigations have been carried out 

recently to explain the bimodal Weibull distribution observed 

in nanoscale dielectrics, for example, by the localized defect 

generation in grain boundaries of polycrystalline materials [22- 

24], defect clustering effect in SiO2 or high-k oxide materials 

[12], or different defect generation rates in dual dielectric layers 

[25,26]. In this work, we will investigate the TDDB mechanism 

in non-filamentary a-VMCO by using the constant voltage 

stress (CVS) combined with Weibull plot and random telegraph 

noise (RTN) based defect profiling technique. In the following 

sections, its unique features of TDDB dependence on voltage 

polarity, dielectric layer thickness and cell areas will be studied 

to identify the breakdown mechanism. 

 

II. DEVICES AND EXPERIMENTS 

As shown in Fig. 1a, a-VMCO devices were fabricated with 

a CMOS-compatible process: The active stack consists of an 8 

nm PVD amorphous silicon (a-Si) layer and on top of it, an 8nm 

ALD TiO2 layer crystallized in anatase phase [15]. The stack is 

sandwiched by TiN bottom electrode (BE) and top electrode 

(TE). The TiO2 layer serves as resistive switching layer and the 

a-Si acts as the barrier and oxygen-scavenging layer.  

The a-VMCO features forming free, self-compliance, and 

analogue switching characteristics [16], as shown in the DC I-

V characteristics in Fig. 1b. The on/off window can be 

enhanced by increasing the reset voltage (Vreset), but further 

increase will lead to degradation and cause hard breakdown 

[17]. In order to investigate the defects’ profile and their impact, 

RTN measurements are carried out at incremental biases for 

both LRS and HRS, and the typical RTN measurement 

procedure and results are given in Fig. 2a-2c. Details of the 

defects and profile extraction methods and considerations can 

be found in refs. [18, 28]. Constant voltage stresses (CVS) are 

carried out to characterize the TDDB performance, which is 

interrupted at pre-set internals by RTN measurements to 

analyze the defect profiles. For each bias condition, 40-50 

devices with the same size were stressed and the current was 

measured until reaching hard breakdown. To avoid the resistive 

switching during stress, CVS were applied with negative bias 

polarity when the cell is intrinsically at LRS, and with positive 
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polarity after it has been reset to HRS first. Table 1 summarizes 

the devices being used. 

 

 

 

 

 

 

 

 
Fig. 1 (a) TEM cross-section of a-VMCO RRAM with 1-nm SiOx interfacial 

layer (IL). (b) DC switching I-V at increased Vreset. Vread=3V. Cell size 40nm. 
 

 

 

 

 

 

 

 

 
All the above samples have sizes ranging from 40nm*40nm to 

170nm* 170nm. Specific sizes used in each figure are given in 

the respective captions. More detailed device information can 

be found in refs. [15-18]. 

III. RESULTS AND DISCUSSIONS 

A. Polarity and material dependent TDDB 

TDDB of the standard a-VMCO cell with 8nm a-Si/8nm TiO2 

stack (W1/P1) is examined first. The time-to-failure at hard 

breakdown, tBD, are extracted and its Weibull plot is shown in 

Fig.3a&b at opposite stress polarities, respectively [11-13].  
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For negative CVS (LRS), it exhibits the bimodal distribution 

behavior. For positive CVS (HRS), a single-shallow-slope 

Weibull distribution is observed, which is similar to the shallow 

one of the negative CVS. This voltage polarity dependence of 

breakdown and Weibull slopes have not been observed in the 

dielectrics in MIM capacitors or MOSFETs [11-13, 19-26].  

It is generally well accepted that a percolation path will be 

gradually formed during the stress through random defect 

generation, leading to an abrupt hard breakdown and the 

conventional single Weibull slope with good area scaling, as 

observed in thicker dielectric layers [19-21]. Bimodal slopes 

have also been reported in nanoscale dielectrics, and several 

different explanations have been provided [12, 22-26]. In 

dielectrics with grains and grain boundaries (GB) [22-24], the 

steep Weibull slope at the lower percentile was attributed to 

breakdown at GBs leading to early device failure, and the upper 

percentile was mostly related to grain breakdown. Similar 

bimodal distribution has been observed in dual-layer structures 

with a transition from a steep Weibull slope at low percentiles 

to a shallow slope at high percentiles [25-26], and has been 

explained by the difference in defect generation rates in the two 

layers [26]. Defect clustering model has also been developed to 

explain the bimodal distribution in nanoscale dielectrics, by 

introducing the non-uniform clustering defect generation [12]. 

However, the co-existence of single and bimodal distributions 

at opposite stress polarities in a-VMCO devices in Fig. 3 has 

not been observed in other devices. It cannot be explained by 

the above mechanisms, either.  
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    To further investigate the failure mechanism responsible for 

the bimodal distribution at negative CVS in a-VMCO (Fig.3a), 

Metal-(a-Si)-Metal (MSM) devices consisting of a single 

amorphous-Si layer with the same thickness as the a-Si barrier 

layer in a-VMCO RRAM cells [29] are stressed at negative bias. 

As shown in Fig. 4, the tBD Weibull distribution for a-Si MSM 

has a single slope, which is the same as the shallow slope in Fig. 

3a and in Fig. 3b, suggesting that the a-Si layer is responsible 

for the shallow slope breakdown in all these cases and the 

presence of TiO2 reduces the early breakdown probability and 

causes the early steep slope at LRS. This seems agreeing well 

with the explanation in ref. [26] that the defect generation rate 

in the a-Si layer may be substantially lower than that in the TiO2 

layer, leading to the bimodal distribution in Fig. 3a. If this is 

the case, question remains as why it cannot be applied to TDDB 

at HRS (Fig. 3b) where a single shallow slope dominates.     

 Fig. 2 (a) Illustration of the energy band diagram of a-VMCO. (b) A typical 

RTN signal. (c)  Typical RTN time constants extracted against VTE [18, 28]. 

Table 1:  Summary of devices used in this work 

Sample # Layer & thickness Process 

Standard a-

VMCO RRAM 

W1 

8nmTiO2 /8nm a-Si 

 

Standard 

W2 Improved PDA  

W3 
Additional pre-TiO2 

deposition cleaning 

a-Si MSM W4 5nm a-Si Standard 

Thin a-VMCO W5 8nmTiO2 /5nm a-Si Standard 

Thin a-VMCO W6 8nmTiO2 /4nm a-Si Standard 

Thin a-VMCO W7 8nmTiO2 /3nm a-Si Standard 

 

 

 

Fig. 3 Weibull distribution of time-to-failure for (a) Negative CVS of -3.5V at 

LRS (on-state) (b) Positive CVS of +6.6V at HRS (off-state). Vstress is applied 

on a fresh device at -3.5V for LRS and at +6.6V after reset to HRS. Device 

structure: W1, 8 nm a-Si/8 nm TiO2. Cell size: 40 nm. 

Fig.4 Weibull distribution of time-to-failure for the MSM devices 

with a single 8-nm amorphous-Si layer (W4), stressed at -2.0 V. 

Device size: 40 nm. 
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B. Area and thickness dependent TDDB 

   Conventionally, time-to-failure follows the same Weibull 

distribution after area-scaling [19-20]. To further examine the 

Weibull slopes and the responsible failure mechanism, negative 

and positive CVS were performed in a-VMCO devices with 

different sizes and a-Si layer thickness (W2, W5-W7). The tBD 

of large cells are scaled to the reference tBD of the minimal cell 

by a vertical shift of ln(Ai/ARef) in the Weibits plots, where ARef 

is minimal cell area (40*40nm) and Ai is the area of larger cells.  
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The area scaling results at negative CVS (LRS) with different 

a-Si thickness are shown in Figs. 5a-5d. Devices with 8nm a-

Si do not scale well with area, but it improves for thinner a-Si 

and the distribution becomes dominated by the steeper slope. In 

contrast, devices stressed at positive CVS (HRS), as shown in 

Figs. 5e, scale well with area, exhibiting the shallow slope only. 

It is clear that the stress polarity has a significant impact on the 

Weibull distribution and also on how the device size and layer 

thickness affects the breakdown mechanism. This cannot be 

explained by the previously proposed mechanisms. Next we 

will first describe in Section III.C the defect profile difference 

between HRS at positive CVS and LRS at negative CVS, and 

also the physical process of bimodal TDDB caused by different 

defect generation rates. Based on their correlation, we will then 

investigate the TDDB polarity dependence in Section III.D.    

C. Defect profile modulation and TDDB process    

Defects profiles have been extracted in our precious work for 

both HRS and LRS using RTN signals in an unstressed a-VMCO 

device [18], as shown in Fig. 6a. Defects exist in both TiO2 and a-

Si layers. At HRS, there is defects-‘less’ region at TiO2 side of 

TiO2/a-Si interfacial layer (IL), which does not exist at LRS, 

suggesting that defect profile modulation occurs predominantly at 

TiO2 side of IL. The resistance states, represented by the read out 

current at VTE = 3 V, are correlated well with the ‘defects-less’ 

region, as it becomes wider at HRS and narrower at LRS, as 

illustrated in Fig. 6b, confirming that the defect profile modulation 

in TiO2 near the IL is responsible for the resistive switching. Note 

that this defect profile modulation is caused by the movement of 

pre-existing defects in un-stressed devices which have uniform 

spatial distribution in the lateral direction as shown in Fig. 6b [15-

18], instead of by those defects generated by the stress. The nature 

of the defects responsible for resistive switching in a-VMCO 

device has been investigated in our previous works [15-18]. 

Switching in a-VMCO devices has been attributed to the 

distribution modulation of positively charged oxygen vacancies 

in the TiO2 switching layer, through field-accelerated drift of 

the defects. This profile modulation of pre-existing defects 

provides a foundation for analyzing the TDDB mechanism in a-

VMCO RRAM 

 

 

 

 

 

 

 

 

 
   For the physical process of bimodal Weibull distribution, 

Raghavan et al [24, 25] reported that it could be explained and 

modelled by the much higher new defect generation rates (DGR) 

in localized grain boundaries in high-k layer. The bimodal 

distribution occurs only in small size devices due to the random 

distribution of GB where some devices may have many GBs while 

others may only have a few, as shown in Figs. 7a&b. For large size 

devices, the average distribution of GB across the HK film leads to 

a single slope, hence an overall area scaling is not valid [25]. This 

seems to agree well with Fig. 5a. Wu et al further developed the 

non-uniform defect clustering generation model to explain the 

bimodal distribution [12]. As shown in the TEM image in Fig. 

1a, there indeed exists grains and grain boundaries in the TiO2 

layer, which may intrinsically lead to localized or clustered 

defect generation and higher generation rates, and contribute to 

the bimodal distribution. 

    Nigam et al [26] demonstrated that the difference in defect 

generation rates of the two layers can also change the Weibull 

distribution from bimodal to a single slope. For devices in region 

1 in Fig.3a, the number of GBs and defects generated in the top 

TiO2 layer happens to be sufficiently high so that breakdown 

can take place anywhere through the top layer, which acts 

effectively as an electrode and the breakdown is controlled by 

the bottom a-Si layer only, as shown in Fig. 7a, resulting in the 

shallow slope.     

   For devices in region 2 in Fig.3a, GBs and defects generated 

in the top TiO2 layer is not sufficient to always warrant a 

conduction path when the bottom a-Si layer breaks down, as 

illustrated by the dashed green arrow in Fig.7b. The top layer 

Fig. 5 (a)-(d) Area scaling results at negative CVS (LRS) with 

different a-Si thickness: (a) 8 nm (b) 5 nm (c) 4 nm (d) 3 nm. The 

TiO2 layer thinness is 8 nm. Device sizes range between 40nm, 60nm, 

90nm, 120nm and 170nm. The scaling of Weibull distribution at 

negative CVS improves with a-Si layer becomes thinner. Devices 

with thinner a-Si layers (W5-W7) are stressed under the same CVS 

voltage at -3.2 V. (e) Weibull distributions have good area-scaling at 

positive CVS showing a single shallow slope.  

Fig. 6 Defects profile extracted based on RTN at LRS (‘’) and HRS (‘’). 

(a) the distribution plotted vs resistance state by plotting  XT  (from BE) 

vs. Iread measured at VTE=3.0. Defect profile modulation predominantly 

occurs in a ‘defect-less’ region in TiO2 near IL. (b) ‘Defect-less’ region 

becomes wider at HRS, resulting in higher resistance.  
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here can provide additional protection, so that the breakdown 

probability at low tBD reduces in region 2 in Fig.3a, resulting in 

the steep slope that deviates from the shallow slope in region 1. 

In another word, the breakdown at low tBD is controlled by both 

layers, as illustrated by the black arrow in Fig.7b. 

 

 
   The results in ref. [26] can be briefly summarized in Figs. 7c 

&d as, (1) TDDB distributions are bimodal when defect 

generation rate is significantly different in the two layers (Fig. 7c 

A:B=102~104), where the shallow TDDB slope is limited by the 

more robust layer B and the Weibull slope is that of B (Fig. 7a); 

The steep slope occurs in devices that TDDB is limited by lucky 

events in both layers (Fig. 7b) and the slope is that of the entire 

thick stack; (2) When the difference in DGR is small (1~102), only 

steep slope can be observed (Fig. 7c); (3) When the difference is 

huge (>104), only shallow slope can be observed (Fig. 7c); (4) A 

thinner layer B leads to further decrease of the shallow slope, and 

an increase of the Weibit value where the transition occurs so that 

smaller sample sizes are required to observe the  shallow part of 

the TDDB distributions due to area scaling effect (Fig. 7d) [19-20].  

   In the next section, we will examine the correlation between 

defect profile modulation in a-VMCO and the DGR difference 

as proposed above, and analyze its impact on the polarity, area 

and thickness dependence of Weibull distribution observed in 

a-VMCO devices. 

D. Correlation between defect profile and DGR 

Since a-VMCO is at HRS when stressed at positive CVS, and is 

at LRS at negative CVS, the difference in pre-existing defect 

profile should have a significant impact on the breakdown process 

and mechanism, as illustrated in Figs. 8(a-c) by a picture of 

TDDB mechanism in a-VMCO RRAM. The pre-existing defect 

profile modulation occurs predominantly at TiO2 side of IL, 

leading to the switching between HRS and LRS. Defect 

generation by CVS (●) will form a percolation path leading to 

the breakdown [18]. The different Weibull distributions 

observed in a-VMCO can be explained as follows.  

As shown in Fig. 8(a), at HRS (‘○’), the defects-‘less’ region 

at TiO2 side of TiO2/a-Si interfacial layer (IL) region, which 

does not exist at LRS, leads to 10 higher overall device 

resistance. The good agreement between the shallow slopes in 

a-VMMCO in Fig. 3b and in the single a-Si layer MSM device 

shown in Fig. 4 where the TiO2 layer is absent support the 

TDDB is controlled by the a-Si layer. The absence of pre-

existing defects in the TiO2/IL region under positive CVS at 

HRS widens the high-resistance “defect-less” region at TiO2 

side of IL, as shown in Fig. 5b. The much higher resistance in 

this TiO2 region leads to a very high internal electric field. Since 

defect generation generally follows a power law against the 

stress voltage and stress time, ΔN = A  Vm  tn, [23-26],  where 

ΔN is the amount of degradation induced by defect generation, 

m and n are the power factors for stress voltage and time, 

respectively, and A is a constant. Higher internal electric field 

significantly increases the DGR, so that the breakdown is 

dominated by a-Si as shown in Fig. 7a, and hence the single 

slope and good area scaling under positive CVS shown in Fig. 

3b & Fig. 5e. This also agrees well with the explanation in Fig. 

7c when the DGR ratio is larger than 104.  

 

 
In contrast, at LRS, the pre-existing defects move back to 

TiO2 side of TiO2/a-Si IL region (‘○’), as shown in Fig. 8(b), 

similar to that occurred in a fresh device (Fig. 6a), leading to 

10 lower device resistance, lower internal electric field in 

TiO2, and a relatively lower local DGR. The smaller difference 

in DGR between TiO2 and a-Si layers results in the bimodal 

Weibull distribution at LRS in Fig. 3a, as the shallow slope of 

the bimodal distribution occurs in devices with higher DGRs in 

TiO2 layer, in which the breakdown is controlled by the more 

robust a-Si layer, hence the shallow slope (Fig.7a). This is 

similar to what happened at positive CVS. The steep slope 

occurs in devices with less GBs and lower DGRs in TiO2, in 

which the breakdown is dominated by lucky events in the entire 

stack. The steep slope is determined by the full thickness of the 

complete stack, as shown in Fig. 7b and also in Fig. 7c when 

the DGR ratio is between 102 and 104.  

Fig. 7 Schematic illustration of the breakdown process for dual-layer 

dielectric stack (a) for devices in the region 1 in Fig. 2a and (b) in the 

region 2. The dashed green arrow indicates that the stack does not break 

down when the bottom layer is broken. The black arrow indicates the 

possible breakdown path of the stack. The impact of (c) DGR ratio in two 

layers and (d) a-Si layer thickness on Weibull distribution as in Ref.  [26].     

Fig. 8 The overall picture illustrating the failure mechanisms in a-

VMCO RRAM (a) at positive CVS, (b) at negative CVS and (c) for 

thinner a-Si stack at negative CVS.  
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 To further examine the above analysis, TDDB in devices 

with different process conditions that lead to different qualities 

in TiO2 layer and at its interface are measured. As shown in Fig. 

9a & b, W2/P2 has an improved overall processing condition 

with better quality in both TiO2 and a-Si layer than W1/P1. The 

tBD has improved ~10 times at both CVS polarities when 

compared to W1. The process of W3 is improved over W2 by 

adding a specific cleaning treatment prior to the TiO2 

deposition; hence improved the quality of the TiO2 only.  

Interestingly, as shown in Fig, 9a, further improvement of the 

TiO2 quality alone leads to a further improvement only in the 

steep slope region at negative CVS, where the value of steep 

slope is unchanged but the Weibit at the transition point from 

steep slope to shallow slope becomes higher. This agrees well 

with refs. [25, 26] that moderately less GBs and lowered DGRs 

in TiO2 layer will lead to longer TBD in the steep slope region 

only, as shown in Fig. 7c. Furthermore, the improvement of 

TiO2 quality in W3 is not sufficient enough to reduce its DGR 

significantly at the high local Eox under positive CVS, so that 

the TDDB at positive CVS in W2 and W3 is not affected and is 

still dominated by the a-Si, as shown in Fig. 9b. This result 

provides strong support for the correlation between defect 

profiles at HRS/LRS and defect generation rates during TDDB, 

and hence the different Weibull distributions.   
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The above correlation can also explain the different TDDB 

area and thickness dependence at positive and negative stress 

polarities observed in Fig. 5a-5e. At positive CVS, the higher 

defect generation rate in the wide “defect-less” region in TiO2 

leads to a single breakdown mechanism controlled by a-Si, 

hence the single shallow slope and good area scaling in the 

Weibull distribution even when the a-Si layer is thinner, 

because the overall defect generation rate in a-Si is much lower 

than that in TiO2.    

At negative CVS, the difference in defect generation rate in a-

Si and TiO2 is smaller, but still exists, in the 8-nm TiO2 / 8-nm 

a-Si device (W2). This leads to the bimodal distribution and 

prevents the good area scaling [25]. When a-Si becomes thinner 

(Fig. 5b-d) and stressed under the same voltage, the steep slope 

becomes dominant and the area-scaling is improved. This is 

because Eox in both layers increases proportionally, so that the 

Eox value in a-Si increases much more due to its much higher 

resistance than the TiO2 at LRS, leading to a higher DGR in a-

Si (Fig. 8c), which is getting closer to that in TiO2 eventually in 

devices with 3-nm a-Si layer and the breakdown is controlled 

by the entire stack. The Weibull distribution becomes 

dominated by one single steep slope, and hence the better area 

scaling. This also agrees with Fig. 7d that reducing the 

thickness of the more robust layer in the dual layer structure 

leads to an increase of the Weibit value where the transition occurs 

and eventually a transition of Weibull distribution from bimodal 

slopes to a single steeper slope, as the dominating layer for 

TDDB shifts from the more robust layer to the entire stack [26].  

To further support this analysis, Weibull distributon at 

negative CVS with a-Si thichness ranging from 8 nm to 3 nm, 

all stressed under similar electric field, are compared in Fig. 10a. 

Reducing a-Si thickness leads to the steep slope becomes 

slightly shallwer when all thinner devices are stressed at the 

same Eox =-12.6 MV/cm, apart from the occasional early 

failures due to lower yield. This again agrees well with Fig. 7d, 

indicating that TDDB is controlled by the entire stack. 

Furthermore, tDB under the same Eox has sinificantly improved 

for thinner a-Si, as confirmed in Fig. 10b, indicating the better 

overall stack quality is achieved with thinner a-Si layer.   
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Based on the results obtained in this work, several factors and 

their correlations should be considered in order to improve the 

TDDB in a-VMCO, including the pre-existing defect profile 

modulation, its impact on local electric field and DGR, the 

thickness of the a-Si layer, the quality of the dieletric layers and 

their interface. The quality of a-Si layer determines the higher 

percentile at negative CVS and the overall performance at 

positive CVS, as the defect-‘less’ region in a-Si is the last strong 

hold before the device breakdown. Using thinner a-Si layer may 

improve the area scaling at negative CVS, and the resultant 

lower yield and higher DGR may need to be mitigated, possibly 

by keeping the same Eox in the a-Si layer. The quality of the 

TiO2 layer is also critical, because it, combined with the a-Si 

layer, determines the lower percentile of the bimodal Weibull 

distribution at negative CVS.      

IV. CONCLUSIONS 

TDDB characteristics and mechanism in non-filamentary a-

VMCO RRAM are investigated in this work by using CVS and 

Weibull distributions combined with the defect profile modulation 

obtained from the RTN technique. The unique feature of a 

bimodal Weibull distribution at LRS and a single shallow slope 

distribution at HRS,  including its stress polarity, device area 

Fig. 9 Comparison of Weibull distribution of time-to-failure in 

processes W1, W2 and W3 for (a) Negative CVS at -3.5V, LRS (on 

state) (b) Positive CVS at +6.6V, HRS (off state). Cell size is 40 nm.  

Fig. 10 (a) Time-to-failure Weibull distribution of devices with same 

Eox but different a-Si thickness, under negative CVS. Device size: 40 

nm; TiO2 thickness: 8 nm; a-Si thickness (from left to right): 8 nm 

(W1), 5 nm (W5), 4 nm (W6), 3 nm (W7); Thinner a-Si leads to steep 

slope and longer tBD at same Eox. (b) I-t curves comparison under the 

same negative electric field for thinner stacks in W5, W6 and W7.  
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and a-Si layer thickness dependence, can be explained by the 

correlation between defect profile modulation and different 

defect generation rates in different layers and in grain 

boundaries in TiO2. The critical layers affecting the TDDB 

performance are identified, which provides useful guidance for 

device performance improvement. 
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