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Abstract 

 

Regulatory toxicology in the 21st century is faced with the challenge of having to replace its use of 

experimental animals in chemical risk assessment with alternative methods. This is due to the 

introduction of the REACH legislation and the seventh amendment to the cosmetics directive. Such 

alternative methods include the use of in vitro (cell culture/tissue etc.), in chemico (chemical 

experiments e.g. determination of reactivity) and in silico (computational) approaches. Importantly, 

it is envisaged that data from all these alternative sources will be required for the prediction of the 

animal-based endpoints used in regulatory toxicology. One of the key computational approaches 

used for data gap filling is category formation and read-across. When using this approach to assess 

the potential toxicity of a chemical, a chemical category is best defined based on a common 

molecular initiating event e.g. the formation of a covalent bond with biological nucleophile via the 

same chemical mechanism. The structural features that define a chemical’s membership of such a 

category can be encoded computationally as structural alerts, which in turn, can be grouped 

together to form an in silico profiler.  

The work discussed in this thesis addresses the key shortcoming of traditional in silico profilers, this 

being that current in silico profilers provided no information about the rate of covalent bond 

formation for chemicals containing the same structural alert but with different substituents. The 

research within this thesis addresses this problem through the introduction of a fragment-based 

approach to in silico profiler development. This fragment-based approach introduces the use of 

calculated activation energies determined through the use of quantum mechanics calculations 

which enable chemical reactivity to be predicted. Chapter 3 outlines the development of the 

approach for α,β-unsaturated aldehydes, ketones and esters which form covalent bonds through 

Michael addition. Chapter 4 extends the work outlined in Chapter 3 demonstrating how the 

fragment-based profiler can be used to predict both chemical reactivity and skin sensitisation and 

toxicity to Tetrahymena pyriformis. Finally, Chapter 5 extends the approach to chemicals capable 



 

 
 

of reacting with proteins via an SN2 mechanism demonstrating the approach can be applied to any 

mechanistic domain for which data exist. Overall, this thesis outlines an approach for the 

development of novel fragment-based in silico profilers capable of quantitatively predicting 

chemical reactivity and by extension toxicity. It is envisaged that the work outlined in this thesis will 

be of use primarily in regulatory toxicology, within such tools as the OECD QSAR toolbox. 
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Chapter 1. Introduction 

1.1 Regulatory toxicology 

Regulatory toxicology is concerned with the risk assessment and management of chemicals that 

humans and the environment are exposed to (1). The regulatory frameworks specifies a series of 

toxicological endpoints that must be assessed – these being defined as the recorded observation 

as a result of exposing a chemical to a biological system (e.g. an organism, the environment or a 

whole population). The nature and number of the required endpoints differs depending on a 

chemical’s intended usage. For example, skin sensitisation is a key endpoint that must be assessed 

for chemicals used as ingredients in cosmetics, but is less significant for chemicals used in the 

formulation of drugs (although it could still be important depending on the intended route of 

administration). As might be expected, differing regulatory agencies are responsible for enforcing 

the relevant regulatory framework within different countries. For example in the US, the main 

regulatory agencies are the Environmental Protection Agency (EPA), and the Food and Drug 

Administration (FDA) (2). Whilst within the European Union, the main regulatory agencies are the 

European Chemical Agency (ECHA) for industrial chemicals and cosmetics and the European 

Medicines Agency (EMA) for medicines. The international nature of the cosmetics sector, and other 

chemical industries, requires a harmonised system of toxicological test guidelines suitable for 

assessing a given endpoint. This is provided by the Paris-based Organisation for Economic Co-

operation and Development (OECD) which allows its 35 member countries to agree test guidelines 

to enable the assessment of the different endpoints required under a given regulatory environment 

(3). The test guidelines provided by the OECD typically contain information on the dosing of test 

chemical used, the species and number of test animals to use, the duration of the test and the 

procedure. 

The majority of the endpoints defined by the OECD guidelines involve the use of laboratory animals.  

For example, there are four test guidelines for the determination of the skin sensitisation potential 
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of a chemical. These being test guidelines (TG): TG 406, TG 429, TG 442a and TG 442b (4-7). Where 

determining skin sensitisation is concerned, the preferred test guidelines are either the Guinea Pig 

Maximisation Test (GPMT, TG 406) or the Local Lymph Node Assay (LLNA, TG 429, TG 442a and TG 

442b). It is worth noting that although the OECD provide a set of harmonised test guidelines for the 

determination of toxicological endpoints, companies do not have to follow them in order to meet 

the regulatory criteria for a given chemical. However, such is the nature and acceptance of the 

OECD test guidelines that deviations need to be fully justified in order to be accepted by the 

relevant regulatory authority.  

Replacement of animal testing and legislation 

As previously mentioned, the majority of the OECD harmonised test guidelines involve the use of 

animals. However, the seventh amendment to the cosmetics directive required a complete ban on 

the testing of cosmetic products on animals within the European Union from March 2009. 

Additionally, this amendment also banned the marketing of products that have been tested on 

animals outside the EU (8, 9). This has led to an effective worldwide ban as the EU cosmetics market 

is the largest in the world consisting of over 500 million people and is worth in excess of €77 billion 

(10). The enforcement of the ban on animal testing was staggered over a number of years to allow 

alternative methods to be developed for the relevant endpoints (a summary of the endpoints 

affected is shown in Table 1.1) (11).  However, despite this staged process the number of endpoints 

for which suitable alternative testing methods exist is currently limited. 
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Table 1.1: The testing and marketing ban dates for toxicological endpoints as required by the 

cosmetic directive along with their respective OECD test guidelines, species and number of animals 

in the study (4, 12-27). 

Endpoint OCED 

guideline 

Species Number of animals Testing ban 

date 

Marketing 

ban date 

Acute toxicity 

TG 420 Rodent 
5 animals of one 

sex per dose group 

11 March 

2009 

11 March 

2009 TG 423 Rodent 

3 animals of a 

single sex per step 

(average 2-4 steps) 

TG 425 Rodent 5 maximum 

Skin 

sensitisation 

TG 406 Guinea pig 10 minimum 

11 March 

2009 

11 March 

2013 

TG 429 Mice 
4 minimum per 

dose group 

TG 442a Mice 
4 minimum per 

dose group 

TG 442b Mice 
4 minimum per 

dose group 

Sub-acute and 

sub-chronic 

toxicity 

TG 411 
Rodent / 

Mammal 

At least 10 of each 

sex at each dose 

level 11 March 

2009 

11 March 

2013 
TG 412 Rodent 5 of each sex 

TG 413 Rodent 10 of each sex 

Genotoxicity 

and 

mutagenicity 

TG 474 

Mammalian 

(rodent 

preferred) 

5 per sex 

11 March 

2009 

11 March 

2013 

TG 475 

Mammalian 

(rodent 

preferred) 

5 per sex 

TG 478 

Mammalian 

(rodent 

preferred) 

Sufficient amount 

to provide 

statistical power 

TG 483 

Mammalian 

(rodent 

preferred) 

5 males per group 

TG 488 Rodent 5 minimum 
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Endpoint OCED 

guideline 

Species Number of animals Testing ban 

date 

Marketing 

ban date 

Toxicokinetics 

and metabolism 
TG 417 

Same as that 

used in other 

toxicological 

studies 

performed 

with the test 

substance of 

interest 

 

 

4 minimum of one 

sex for each dose 

group 

11 March 

2009 

11 March 

2009 

Carcinogenicity 

TG 451 Rodents 

At least 50 animals 

of each sex per 

dose group 11 March 

2009 

11 March 

2013 

TG 453 
Rodent 

preferred 

At least 50 animals 

of each sex per 

dose group 

Reproductive 

and 

developmental 

toxicity 

TG 416 
Rodent 

preferred 

20 females 

minimum 11 March 

2009 

11 March 

2013 
TG 421 Rodent 10 per sex 

 

The Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) also places 

pressure on animal usage by ensuring all chemicals produced or imported into the EU in quantities 

of one tonne per annum (or more) are assessed for human and environment hazards (28). However, 

REACH does not ban animal testing but suggests that alternative methods should be used where 

possible. This means that there is a clear benefit for the application of such approaches to deal with 

the scale of information required by this legislation. As an example of the scale of the requirements, 

it has been estimated that there are up to 30,000 chemicals currently used in the EU that do not 

have data for a full safety assessment. Such safety assessment typically requires information from 

10 in vivo toxicity endpoints (Table 1.2).   
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Table 1.2: The toxicological and ecotoxicological in vivo endpoints required under the REACH 

legislation along with their respective OECD test guidelines with information on the species, 

number of animals and duration of the endpoint study (4, 12-14, 18-22, 26, 27, 29-33). 

Tonnes 

per 

year 

Toxicological endpoint 
OECD test 

guideline(s) 
Species 

Number of 

animals 
Duration 

1-10 

Skin sensitisation TG 406 Guinea pig 10 minimum 24 days 

Short-term toxicity on 

invertebrates 
TG 202 Daphnia sp. 

At least 20 at 

each test 

concentration 

14 days 

Acute toxicity: Oral 

TG 420 Rodent 

5 animals of 

one sex per 

dose group 

14 days 

TG 423 Rodent 

3 animals of a 

single sex per 

step (average 

2-4 steps) 

14 days 

TG 425 Rodent 5 maximum 48 hours 

 

 

 

 

 

 

 

10-100 

 

 

 

 

 

 

Eye irritation TG 405 Rabbit 3 8 hours 

Genotoxicity 

TG 474 

Mammalian 

(rodent 

preferred) 

5 per sex 
24-72 

hours 

TG 475 

Mammalian 

(rodent 

preferred) 

5 per sex 
39-45 

hours 

TG 478 

Mammalian 

(rodent 

preferred) 

Sufficient to 

provide 

statistical 

power 

until 

second 

half of 

pregnancy 

TG 483 

Mammalian 

(rodent 

preferred) 

5 males per 

group 
1 week 

TG 488 Rodent 5 minimum 
11 – 14 

weeks 

Acute toxicity: Inhalation TG 403 

Mammalian 

(rodent 

preferred) 

10 at each 

concentration 
14 days 
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Tonnes 

per 

year 

Toxicological endpoint 
OECD test 

guideline(s) 
Species 

Number of 

animals 
Duration 

 

 

 

10-100 

Short-term repeat dose 

toxicity 
TG 407 Rodent 

10 at each 

dose level 

14 or 28 

days 

Reproductive/developmental 

toxicity 

TG 416 Rodent 
20 females 

minimum 

21-24 days 

(duration 

of 

pregnancy) 

TG 421 Rodent 10 per sex 63 days 

Short term toxicity on fish TG 203 
Various fish 

species 

At least 7 at 

each test 

concentration 

96 hours 

 

In summary, the implementation of the seventh amendment to the cosmetic directive bans the use 

of laboratory animals for the testing and marketing of cosmetics products within the EU. In addition 

to this, REACH requires all chemicals produced or imported into the EU in quantities of one tonne 

per annum (or more) to be assessed for human and environmental hazards (28). It is clear that for 

differing policy reason both pieces of legislation necessitate the use of alternative testing methods 

rather than conventional animal-based OECD test guidelines. These methods cover the use of in 

vitro (cell culture/tissue etc.), in chemico (chemical experiments e.g. determination of reactivity) 

and in silico (computational) methods (34-36).  

1.2 Category formation 

One of the key computational alternative methods that has been suggested to assist in the 

reduction of animal based testing in toxicological risk assessment is category formation and read-

across (35, 37).  The OECD defines a category as “Chemicals whose physical-chemical, toxicological 

and ecotoxicological properties that are likely to be similar or follow a regular pattern as a result of 

structural similarity may be considered as a group or category” (38, 39). This is similar to the 

definition provided by ECHA, which defines a group as “substances that are structurally similar with 

physicochemical, toxicological, eco-toxicological and/or environmental fate properties that are 
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likely to be similar or to follow a regular pattern” (40, 41). The similarity of chemicals can depend 

on a number of factors. This may be defined by chemical shape, the presence of various functional 

groups or the mechanism through which the chemical initiates a toxicological response (the 

Molecular Initiating Event). The term read-across is used to describe a method of predicting a 

physicochemical property or toxicological endpoint for a chemical by using existing data from 

chemicals within the same group (42, 43). Read-across can be performed either qualitatively or 

quantitatively depending on the type of data available for the other category members. For 

example, the toxicity (for a hypothetical endpoint) of pent-2-enal can be predicted from the other 

members of the category shown in Table 1.3.   If the other category members only had categorical 

data associated with them (for the endpoint of interest) then it would only be possible to carry out 

a qualitative read-across prediction for pent-2-enal. However, if numerical data were available for 

the category members then it would be possible to perform a quantitative read-across prediction 

leading to the prediction of potency (an important consideration in risk assessment). Quantitative 

read-across predictions typically involve developing a local (or an MIE-based) QSAR which can be 

used to relate chemical properties (e.g. chemical reactivity, molecular weight, steric factors, 

electronic factors etc) to a given toxicological endpoint (42, 43). For example, a recent study was 

able to predict the skin sensitisation potency of 16 chemicals which were grouped into a category 

based on their ability to react with skin proteins via a Schiff base mechanism (44). This allowed a 

QSAR model to be developed relating Taft values (σ* - as a measure of reactivity) and 

hydrophobicity (LogP - as a measure of skin permeability) to skin sensitisation potency (expressed 

as pEC3 values, Equation 1.1). This QSAR model was subsequently used to predict skin sensitisation 

potency for a number of additional chemicals also acting via a Schiff base mechanism (e.g. 2-

hexenal, orange data point in Figure 1.1). 
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Table 1.3: Qualitative read-across for the prediction of toxicity for pent-2-enal 

Chemical prop-2-enal but-2-enal hex-2-enal pent-2-enal 

Structure 

    

Toxicity 
   ? 

Read-across 

prediction     

 

 

Figure 1.1: Quantitative read-across to predict the 2-hexenal (shown in orange) 

pEC3obs = 1.12 ∑σ∗ + 0.42 𝐿𝑜𝑔𝑃 − 0.62                                           (1.1) 

N = 16 R2 = 0.95 R2
adj = 0.95 

N = number of values, R2 = Coefficient of determination (how well the variation in the data is 

modelled by the regression line), R2
adj = Adjusted R2 based on the number of independent variables, 

R2
pred = how well the model predits the response for new observations (calculated by systematically 
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removing each observation in the dataset) S = the standard deviation of the distance between the 

data values and the fitter values, these statistical measurements will be used throughout this thesis. 

The key challenge with category-formation is defining the similarity that forms the basis for the 

group of chemicals. Common methods of defining similarity include: common physical chemical 

properties, common molecular fingerprints and common functional groups (45).  However, the 

method that is used most often for defining similarity is grouping chemicals based on ability to elicit 

a common MIE.  To recap, an MIE is defined as the initial interaction between a chemical and the 

biological system that leads to an adverse toxicological effect (often measured as an endpoint, as 

discussed previously). A number of classes of MIEs have been defined ranging from binding to key 

receptor sites on proteins and/or enzymes and the disruption of the electron transport chain in the 

mitochondria (46, 47). Additionally, the formation of a covalent bond between an electrophilic 

chemical (or an electrophilic metabolite) and a biological nucleophile (e.g. lysine, cysteine or DNA) 

has been shown to be a key MIE for a number of toxicities. Importantly, studies have demonstrated 

that knowledge of the chemistry that defines these covalent reactions can be used to build 

mechanism-based categories, within which QSAR and read-across can be utilised to predict 

endpoints such as skin sensitisation, respiratory sensitisation, acute aquatic toxicity and 

hepatotoxicity (48-53). Additionally, these investigations have also shown that the rate of these 

chemical reactions is key in the prediction of toxicological potency within such mechanism-based 

categories (43, 54-56). 

1.3 Covalent reaction chemistry 

As stated above, chemicals may be grouped into mechanism-based categories on their ability to 

form a covalent bond with a protein or DNA. Research has shown there to be six mechanistic 

domains relevant to toxicity through which such covalent bonds may be formed, these being: 

Michael addition, nucleophilic aromatic substitution (SNAr), bimolecular nucleophilic substitution 

(SN2), aliphatic unimolecular nucleophilic substitution (SN1), acylation and Schiff base formation (57-
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60).  Of these six mechanisms, two are the focus of this thesis: Michael addition and SN2. Chemicals 

that act via Michael addition (known as Michael acceptors) typically contain an alkene or alkyne 

group polarised by the presence of an electron-withdrawing group (e.g. carbonyl or a nitro group) 

(61). The presence of this group results in a partial positive charge on the β-carbon of the π-bond 

causing the chemical to be susceptible to nucleophilic attack at this position (57, 58). This 

nucleophilic attack results in a negative charge which is then stabilised through resonance with the 

electron-withdrawing group. The final step in the mechanism is protonation of the α-carbon (e.g. 

from the deprotonated thiol group or a deprotonated water molecule) to produce the final product 

(this mechanism is summarised in Figure 1.2). The key factors that influence the rate of the Michael 

addition reaction are: 

 The nature of the electron-withdrawing group: This pulls the electron density away from 

the alkene or alkyne resulting in the partial positive charge on the β-carbon. As such, an 

increase in electron-withdrawing ability results in an increased partial charge on the β-

carbon which, in turn, increases the rate of reaction (i.e. a nitro group is more reactive than 

a ketone). 

 Steric bulk at the β–carbon: the addition of alkyl and aryl groups at the β–carbon results in 

less accessible surface area around the site of nucleophilic attack. This leads to a lower 

number of potential reactive collisions between the electrophile and nucleophile resulting 

in a decrease in the rate of the reaction.  

 The nature of the α-group: as the negative charge of the intermediate (partially) resides on 

the α-carbon (resonance stabilised by the electron-withdrawing group), the presence of 

substituents at this position has a significant effect on the rate of reaction. The addition of 

an electron-withdrawing group (e.g. cyano) increases the amount of resonance stabilisation 

of the intermediate. This results in an increase in the rate of reaction. In contrast, the 

presence of an electron-donating group (e.g. an alkyl) has the opposite effect, decreasing 

the rate of the Michael addition reaction. 
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Figure 1.2. The mechanism for the Michael addition reaction between prop-2-enal and methyl 

thiolate 

The second mechanism discussed in this thesis is bimolecular nucleophilic substitution (SN2). This 

typically occurs at an aliphatic carbon, nitrogen, sulphur or halogen atom with an electronegative 

leaving group attached (e.g. a halogen). The SN2 reaction involves the formation of a covalent bond 

between the nucleophile and the reactive centre in the electrophile. This occurs simultaneously 

with the breaking of the bond between the reactive centre and the leaving group. Therefore, the 

SN2 reaction has a single transition state connecting the reactants and the product (mechanism is 

summarised in Figure 1.3). The key factors that influence the rate of the SN2 reaction are: 

 Nature of the leaving group: the SN2 reaction cannot occur unless a suitable leaving group 

is attached to the reactive centre. The ability of the leaving group to leave depends on the 

strength of its conjugate base, where the weakest bases are considered as the best leaving 

groups. The strength of the conjugate base depends on electronegativity, as 

electronegativity decreases, the strength of the conjugate base decreases. Therefore, for 

the halogens, iodine is considered the best leaving group with fluorine being the poorest.  

 Steric bulk around the reactive centre: Increased steric bulk makes it difficult for the 

nucleophile to attack the reactive centre of the electrophile resulting in a decrease in the 

rate of reaction (for example, CH3Cl > CH2RCl > CHR2Cl >> CR3Cl, in order of most to least 

reactive where R = alkyl or aryl groups). It is worth noting that tertiary carbons atoms (e.g. 

CR3Cl) are frequently considered as reacting via an SN1 mechanism rather than SN2. 

H+

α-group

β–carbon
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Figure 1.3. The mechanism for bimolecular nucleophilic substitution (SN2) between chloroethane 

and methyl thiolate. Note that the electrophilic atom can vary (e.g. carbon, nitrogen, sulphur or 

halogen) 

Although they are not the focus of this thesis, there are an additional four mechanisms associated 

with covalent bond formation relevant to toxicity (SNAr, SN1, acylation and Schiff base formation) 

(57-60). Nucleophilic aromatic substitution (SNAr) occurs between a nucleophile such as cysteine or 

lysine group and an activated aromatic system. This mechanism is analogous to the SN2 reaction 

apart from that the reactive carbon is part of an aromatic ring. Chemicals capable of undergoing an 

SNAr reaction typically contain electron-withdrawing groups on the aromatic ring located in one, or 

more, of the 2-, 4- or 6- positions (relative to the electronegative leaving group). In contrast to the 

SN2 mechanism, the SNAr reaction occurs in two steps, the first being nucleophilic attack at the 

carbon attached to the electronegative leaving group. This results in the formation of a resonance-

stabilised carbanion intermediate. The second step of the reaction is the subsequent loss of the 

leaving group and the reformation of the aromatic ring (the mechanism is summarised in Figure 

1.4). The key factors that influence the rate of the SNAr reaction are: 

 Activating groups: the presence of activating groups at either the 2-, 4- and/or 6- positions 

to the electronegative leaving group. This is due to the stabilisation of the resonance-

stabilised carbanion intermediate (Figure 1.4). A greater electron-withdrawing ability of the 

group at the 2-, 4- and/or 6- positions results in an increase in stabilisation (and therefore 

reactivity). Additionally, the more electron withdrawing substituents there are the greater 

the stabilisation is (i.e. 2- and 4- is better than 2- alone). Activating groups at the 3- and 5- 

‡



 

13 
 

position to the electronegative leaving group have significantly less effect on resonance 

stability. Contrastingly, electron-donating groups (e.g. alkyl groups) have a deactivating 

effect on reactivity due to their ability to destabilise the resonance-stabilised intermediate. 

This results in a decreased rate of reaction. 

 Nature of the leaving group: an increase in electronegativity results in an increase in 

stabilisation of the carbanion intermediate resulting in an increase in reactivity. As such, 

fluorine is the most reactive halide and iodine is the least reactive. It is worth nothing that 

this is the opposite of what is seen with SN2 reactivity.  

 Steric bulk around the reactive site: an increase in the steric bulk around the reactive site 

results in a lower number of potential collisions which, in turn, decreases reactivity. 

 

Figure 1.4. The mechanism for nucleophilic aromatic substitution (SNAr) between 2-4-dinitro-

chlorobenzene and a methyl thiolate 

Unimolecular nucleophilic substitution (SN1) is similar to the SN2 mechanism in that it occurs at an 

aliphatic carbon with an electronegative leaving group attached (e.g. halogen).  In contrast to the 

SN2 mechanism, the SN1 mechanism occurs in two steps with the rate limiting step being the 

formation of a three coordinate carbocation species. This species then undergoes nucleophilic 

attack producing the final product (the mechanism is summarised in Figure 1.5). The key factors 

that influence the rate of the SN1 reaction are: 

 Nature of the carbocation species: the more stable the carbocation intermediate, the faster 

SN1 reactivity will be. The reactivity of electrophilic carbon groups is the inverse of SN2 
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reactivity (i.e. CR3Cl > CHR2Cl > CH2RCl >> CH3Cl, where R = alkyl or aryl groups). Additionally, 

the carbocation species can be stabilised if the carbocation is next to a double bond or 

aromatic system. This is as it allows for the delocalisation of the charge to produce multiple 

resonance structures resulting in an increase in rate of reaction. 

 Nature of the leaving group: reactivity increases with increasing leaving group ability. 

Leaving group ability for SN1 chemicals follows a similar trend to SN2 chemicals with iodine 

being the most reactive halogen leaving group and fluorine being least reactive halogen 

leaving group. 

 

Figure 1.5. The mechanism for unimolecular nucleophilic substitution (SN1) reaction between a 2-

chloro-2-methyl-propane and methyl thiolate 

Chemicals capable of reacting via an acylation mechanism have a carbonyl group (or carbonyl type 

moiety) adjacent to an electronegative leaving group. The mechanism is an addition-elimination 

reaction, with the first step involving nucleophilic attack at the carbon of the carbonyl group. This 

results in the formation of a tetrahedral structure featuring a negatively charged oxygen atom. The 

electrons from this negative charge then reform the carbonyl double bond resulting in the expulsion 

of the leaving group (the mechanism is summarised in Figure 1.6). The key factors that influence 

the rate of the acylation reaction are:  

 Nature of the leaving group: the reactivity of chemicals reacting via acylation is primarily 

dependent on the leaving group ability, which is related to the strength of its conjugate 
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acid. For example, considering the halides as leaving groups results in the order F > Cl > Br 

> I due to the decreasing acid strengths (i.e. HI is a much weaker acid that HF). 

 Steric bulk around the reactive site: an increase in the steric bulk around the reactive site 

results in a lower number of potential collisions which, in turn, decreases reactivity. 

 

Figure 1.6. Acylation reaction between acetyl chloride and methyl thiolate  

The final mechanism relevant to toxicity is Schiff base formation. This mechanism is different from 

the others that have been outlined as it only occurs between an aldehyde or a ketone and lysine (a 

nitrogen based biological nucleophile). The mechanism involves a two-step process, with the first 

step involving nucleophilic attack by nitrogen on the carbonyl group of either an aldehyde or a 

ketone. A proton transfer then occurs resulting in the formation of an enolamine. This species then 

undergoes a further proton transfer and the loss of water to produce the final Schiff base (Figure 

1.7). The key factors in Schiff base formation reactivity are: 

 The nature of the substituents attached to the aldehyde or ketone: any substituents that 

pull electron density away from the carbon increases reactivity. Contrastingly anything that 

donates electron density decreases reactivity. 

 Steric bulk around the reactive site: an increase in the steric bulk around the reactive site 

results in a lower number of potential collisions that lead to a reaction which, in turn, 

decreases reactivity. 



 

16 
 

 

Figure 1.7. The mechanism for Schiff base formation between a propan-2-one and methylamine 

1.4 Structural alerts, in silico profilers and category formation  

As discussed previously, the key challenge in category formation is the need to define chemical 

similarity. If the above mechanistic information is to be used to define chemical similarity then it 

needs to be encoded computationally. One key in silico method that achieves this is in the 

development and use of structural alerts. Generally speaking, a structural alert is a chemical 

fragment or substructure associated with a particular measured property (biological or otherwise). 

In terms of covalent reaction chemistry, structural alerts can be used to define the structural 

boundaries associated with each of the mechanisms outlined i.e. used to identify chemicals that 

have the right structural features to undergo a particular reaction. For example, the structural alert 

for α,β-unsaturated aldehydes which have the potential to form covalent bonds with biological 

nucleophiles through a Michael addition mechanism (Figure 1.8). The presence of a common 

structural alert within a database of chemicals enables them to be identified and subsequently 

grouped into a mechanism-based category. Clearly, in order to define the wide range of potential 

structural features associated with the chemistry discussed above requires a large number of 

- H2O

Enolamine

H+ Transfer

H+ Transfer
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complex structural alerts. It is these collections of structural alerts that have been termed in silico 

profilers and encoded into a number of tools such as the OECD QSAR Toolbox that may be used 

within regulatory toxicology (62). The OECD QSAR toolbox being the key software tool that is used 

by regulatory agencies and the chemical industry to fill data gaps. The OECD QSAR toolbox operates 

using a sequential workflow composed of various modules, these being in order: chemical input, 

profiling, endpoints, category definition, filling data gaps and report.   

 

Figure 1.8 Development of a mechanistic category for α,β-unsaturated aldehydes using structural 

alerts 

Given the relevance of covalent bond formation to toxicity, it is perhaps unsurprising that the 

chemistry detailed above has been incorporated into the OECD QSAR Toolbox as a number of in 

silico profilers (48, 53, 57, 58, 63-68). Additionally, a number of studies have demonstrated that 

experimental reactivity data (i.e. the rate at which chemicals form covalent bonds) can be used to 

predict toxicological potency. For example, glutathione reactivity data has been used in previous 

studies to predict aquatic toxicity and skin sensitisation for chemicals acting via Michael addition 

Chemicals 
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(43, 56, 69, 70). Importantly, these studies highlighted that potency was highly correlated with the 

rate of the Michael addition reaction. Related computational studies have also shown that 

calculated descriptors based on either activation energies or electrophilicity are also capable of 

predicting potency for both of these endpoints for chemicals acting via Michael addition (9, 49, 52, 

71-76). These studies are discussed in depth in Chapter 3, Section 3.1. The key limiting factor for 

these computational studies is the need for complex and time consuming Quantum Mechanics 

(QM) calculations (requiring proprietary software). This limits the inclusion of these approaches in 

freely available tools such as the OECD QSAR toolbox. With this in mind, the key aims of this thesis 

were to develop an in silico profiler capable of predicting reactivity and toxicity for two mechanistic 

domains (Michael addition and SN2). The approach being based on a fragment method in which a 

database of pre-calculated energy of activation values are used within the in silico profiler, thus 

removing the need for the end-user to perform QM calculations. 

1.5 Endpoints studied in this thesis 

There are two toxicological endpoints that are the focus of the predictive modelling within this 

thesis. These being: skin sensitisation, as determined in the LLNA and aquatic toxicity, as 

determined in the Tetrahymena pyriformis growth impairment assay. The prediction of these 

endpoints is discussed in Chapter 4 (chemicals causing skin sensitisation and toxicity to 

Tetrahymena pyriformis via Michael addition) and Chapter 5 (chemicals causing toxicity to 

Tetrahymena pyriformis via an SN2 mechanism). 

1.5.1 Skin sensitisation and the local lymph node assay  

As discussed previously, one of the key animal tests by which a chemical’s ability to cause skin 

sensitisation can be assessed within the EU is the LLNA (49). Compared to the other available animal 

assays for skin sensitisation (the GPMT assay) the LLNA has the advantage of providing a 

quantitative estimation of potency. This estimation is based upon the measurement of proliferative 

responses of lymphocytes induced in the draining lymph nodes following topical exposure of a test 
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chemical to mice (77). Typically, these are expressed as EC3 values, this being the amount of test 

chemical needed to elicit a three-fold increase in proliferative activity when compared to vehicle 

controls (78). The greater the skin sensitisation potency, the lower the EC3 value, with chemicals 

that do not elicit a three-fold increase in proliferation of lymphocytes in the lymph nodes being 

considered as non-sensitisers. Additionally, pEC3 values are recorded that are based on molar 

concentrations rather than by weight (calculation through Equation 1.2) (9). When attempting to 

predict skin sensitisation potency, it is important to note that there is an inherent two-fold 

repeatability error associated with the LLNA (equivalent of 0.3 log units when using pEC3 values) 

(79). Chemicals can be assigned to one of five potency-based classes based on their EC3 value. 

These being: 

LLNA EC3% Potency Category 

EC3 < 0.1 Extreme 

0.1 ≤ EC3 < 1.0 Strong 

1.0 ≤ EC3 < 10.0 Moderate 

10.0 ≤ EC3 < 100.0 Weak 

100.0 ≤ EC3 Non-sensitizer 

 

pEC3 = Log (EC3 Molecular weight)                                          ⁄ (1.2) 

The protocol for the LLNA is as follows (80): 

1. Day 1: The mice are initially treated with a solution of sodium lauryl sulphate. After 

one hour either the appropriate dilution of the test substance, the vehicle or a 

positive control is then applied to the dorsum of each ear. 

2. Days 2, 3: Sodium lauryl sulphate and the test chemical is reapplied (or 

vehicle/positive control) to the dorsum of each ear. 

3. Days 4 and 5: The animals undergo no treatment. 
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4. Days 6: The mice are injected with radioactive 3H-thymidine (3H-T). Five hours later 

the animals are sacrificed and the auricular lymph nodes are drained. 

5. The extent of lymphocyte proliferation is determined by quantification of 

radioactive 3H-T incorporation in the draining lymph nodes. 

 The mechanistic detail of the LLNA is sufficiently well understood that the key steps have been 

detailed in an AOP (summarised in Figure 1.9).(81) An AOP details the knowledge linking the initial 

chemical interaction (the MIE), through a series of biological key events to the adverse effect (in 

this case sensitisation of the skin) (82). The AOP for the LLNA can be summarised as:  

1. The test chemical is exposed to the skin 

2. The test chemical (if not already electrophilic) is then activated (through metabolism 

and/or oxidation) to produce an electrophilic substance 

3. This active substance then covalently binds with either a cysteine or lysine moiety (acting 

as biological nucleophiles). This has been denoted as the MIE in the AOP 

4. This results in the activation of keratinocytes and dendritic cells which causes lymphocyte 

proliferation. These have been denoted as key events in the AOP 

5. The culmination of these steps (the adverse effect) leads to skin sensitisation  
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Figure 1.9: Summary of the AOP for skin sensitisation as determined in the LLNA 

1.5.2 Tetrahymena pyriformis growth impairment assay 

The assessment of environmental toxicity is an important aspect of all risk assessment legislation. 

One of the key endpoints associated with environmental toxicity is the ability of a chemical to cause 

acute aquatic toxicity. To this end, the Tetrahymena pyriformis growth impairment assay was 

developed  as a quantitative estimation of  a chemical’s acute aquatic toxicity potency (83). The 

assay measures the growth impairment of Tetrahymena pyriformis after exposure to a test 

chemical where population growth impairment is the reduction in population density (i.e. cells per 

unit volume) under specified conditions (time, temperature etc.). Toxicity is typically quantified as 

the IGC50 (impairment growth concentration for 50% of control populations). This is achieved by 

exposing the ciliate to varying concentrations of the test chemical dissolved in a stock solution over 

a 40 hour period. Growth inhibition data is then collected either spectrophotometrically or by 

electronic particle counting (an instrument that counts the number of physical particles or cells). 

The Tetrahymena pyriformis growth impairment assay offers several advantages over traditional in 

vivo fish assays in that Tetrahymena can be cultured both easily and economically and that the 
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toxicity of chemicals can be quantified rapidly. This has led to the development of a database 

containing 2072 chemicals with toxicity to Tetrahymena pyriformis data. Importantly, values 

generated from the Tetrahymena pyriformis growth impairment assay have been shown to 

correlate well with data from the fathead minnow lethality test (which involves live fish) for a 

dataset of 250 chemicals covering a wide range of common mechanisms (83). The majority of 

chemicals cause toxicity through (polar or non-polar) narcosis which is the nonspecific disturbance 

of cell membranes as a result of the accumulation of toxicants in biological membranes. Because of 

this, baseline toxicity normally scales with the ability of a chemical to permeate cell membranes 

and therefore their hydrophobicity (67, 68). However, there are various reactive mechanisms 

associated with aquatic toxicity that are analogous to those for skin sensitisation (e.g. Michael 

addition). Chapters 4 and 5 of this thesis outline how calculated reactivity data can be utilised to 

predict toxicity to Tetrahymena pyriformis for chemicals acting via Michael addition and the SN2 

mechanism respectively. 

1.6 In chemico methods 

In chemico assays involve the use of chemistry-based experiments. For example, the quantification 

of chemical reactivity between a chemical and a biological nucleophile. The major concept behind 

the use of in chemico assays is that chemical reactivity and toxicity are linearly related for chemicals 

whose MIE is covalent binding to a biological macromolecule. 

1.6.1 Glutathione depletion assay 

The glutathione (GSH) depletion assay is a kinetics based in chemico assay which utilises the reactive 

peptide GSH which comprises glutamate, cysteine and glycine (Figure 1.10). The functional group 

of GSH that is responsible for the formation of covalent bond with an electrophilic chemical   is the 

thiol of cysteine (57). This is useful as glutathione models the effects of biological nucleophiles 

(therefore mimics the effects of an in vivo system). The protocol for the glutathione depletion assay 

is as follows: 
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1. Varying concentrations of test chemicals are dissolved in a stock solution containing DMSO 

2. A buffered GSH solution is then introduced into the mixture 

3. After 60 minutes, the remaining GSH is quantified from its reaction with 5,5-dithio-bis-2-

nitrobenzoic acid (DTNB) 

4. The difference between initial GSH concentration and that quantified with DTNB represents 

how much GSH has reacted with the electrophile 

Values are typically expressed as EC50 (mmol) or RC50 (mmol) which means the effective 

concentration (for EC50 or reactive concentration for RC50) which results in 50% of GSH being 

depleted in 120 minutes (84). Studies have shown a direct correlation between GSH kinetic rate 

data (kGSH) and GSH depletion data (RC50). This shows that GSH reactivity data can be used as a 

surrogate for kinetic rate data (56). However, this study also highlights that the GSH depletion assay 

is a lot less sensitive to chemicals in the low and high reactivity ranges (i.e. GSH depletion data isn’t 

able to distinguish extremely fast reacting chemicals from one another as well as is observed when 

using kinetic rate data). In addition to glutathione, the depletion of other reactive peptides (e.g. 

lysine) has also been studied (72, 85, 86). Lysine reactivity data is likely to be useful for investigating 

the Schiff base domain (as Schiff base formation only occurs with nitrogen based nucleophiles) and 

for the investigation of respiratory sensitisation (63).  

 

Figure 1.10: Glutathione (GSH) with the reactive centre of cysteine (thiol group) highlighted.  
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1.7 Concluding remarks 

In this chapter, the current regulations that are the drivers of the need for non-animal test methods 

in regulatory toxicological have been outlined, these being the seventh amendment to the 

cosmetics directive and REACH. One of the key in silico methods that is being promoted to address 

these challenges is category formation and read-across. For a number of endpoints the key 

approach for the development of such chemical categories is grouping chemicals based on their 

ability to form covalent bonds with biological nucleophiles. Research has shown there to be six 

mechanistic domains relevant to toxicity through which such covalent bonds may be formed. This 

chapter highlighted how this mechanistic information can be encoded computationally as an in 

silico profiler enabling category formation and read-across predictions to be made. Finally, the 

biological assays which are the focus of this thesis were outlined. These being the in vivo LLNA, the 

in vitro Tetrahymena pyriformis growth impairment assay and the in chemico glutathione depletion 

assay. Chapter 2 outlines the theory behind the quantum mechanical methods used to 

computationally model chemical reactivity within this thesis. Chapters 3, 4 and 5 outline the use 

and development of in silico methods (through the use of QSAR models) for the prediction of 

chemical reactivity for these endpoints.  
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Research aims of this thesis 

The overall aim of this thesis was to develop a fragment-based in silico profiler for chemicals acting 

via the Michael addition and SN2 mechanisms and demonstrate the utility of the approach for the 

prediction of thiol reactivity and toxicity. The specific objectives to achieve this were: 

 To develop fragments for chemicals that react with proteins via Michael addition 

o This involved the identification of suitable descriptors capable of predicting 

chemical reactivity (the results being outlined in Chapter 3)  

 

 To validate the fragment-based in silico profiler for Michael addition  

o This involved investigating the ability of the fragment-based in silico profiler to 

predict chemical reactivity as determined in a glutathione-based depletion assay, 

the prediction of skin sensitisation potency as determined in the local lymph node 

assay and, finally, toxicity to Tetrahymena pyriformis (the results being outlined in 

Chapter 4) 

 

 To extend the fragment-based approach to other mechanistic domains relevant to 

toxicology  

o This involved extending the approach to chemicals capable of reacting with 

proteins via an SN2 mechanism. As for Michael addition, this profiler was validated 

via an investigation into its ability to predict glutathione reactivity and toxicity to 

Tetrahymena pyriformis  
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Chapter 2. Theoretical background of quantum mechanics calculations 

In this thesis quantum mechanics methods were applied to predict the glutathione reactivity and, 

in turn, toxicity for chemicals acting via Michael addition and SN2 mechanisms (Chapters 3 and 4 for 

Michael acceptors and Chapter 5 for chemicals acting via an SN2 mechanism). In this chapter, the 

theory behind the quantum mechanics methods used will be outlined.  The chapter will begin by 

discussing one of the fundamental equations in quantum mechanics - the Schrödinger equation 

(Section 2.1.1). The Born-Oppenheimer approximation, Hartree-Fock theory and the use of Linear 

Combinations of Atomic Orbitals (LCAO) will then be discussed as approaches towards 

(approximately) solving the Schrödinger equation (Sections 2.1.1 – 2.3). The limitations behind 

these methods will also be discussed. Finally, an alternative approach to solving the Schrödinger 

equation, density functional theory (the method for calculations used in Chapters 3-5) will be 

presented (Section 2.3 onwards). The information within this chapter was taken from several 

literature sources (87-90). 

2.1 Molecular orbital calculations 

There are various quantum theories for the treatment of molecular systems. One of the most widely 

used is molecular orbital theory which describes the distribution of electrons in molecules in a 

similar way to how atomic orbitals describe the distribution of electrons in atoms.  One of the key 

fundamental concepts of molecular orbital calculations is that electrons within orbitals can be 

expressed as moving through space like a wave, this wave is represented by the wave function (Ψ). 

The wavefunction is used in the Schrödinger equation and contains all information that can be 

determined experimentally for a molecule, such as dipole moments and polarizability, although the 

wave function itself is not experimentally measurable. The following sections outline the 

Schrödinger equation and the various approximations that are required in order to solve it for multi-

electron systems.  
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2.1.1 The Schrödinger equation  

In 1926, Erwin Schrödinger proposed that if the motion of a particle (for example, an electron) 

behaves like a wave, it should be possible to describe it using a wave equation. This led to the 

development of the Schrödinger equation (Equation 2.1).  

{−
ℏ2

2𝑚
 (

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2) + 𝑣} Ψ(𝐫, t) = 𝑖ℏ
𝜕Ψ(𝐫, t)

𝜕𝑡
                         (2.1) 

This equation refers to a single particle of mass (m) moving through space with position (r =  position 

vector with coordinates x, y and z) over time (t) under the influence of an external field (v). ħ refers 

to Plank’s constant divided by 2π and i is the square root of -1. Assuming that the potential energy 

v does not change with time, this results in the time-independent Schrödinger equation: 

{−
ℏ2

2𝑚
 ∇2 + 𝑣} Ψ(𝐫) = 𝐸Ψ(𝐫)                                                   (2.2) 

where:  

∇2=  
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
                                                            (2.3) 

It is usual to abbreviate the left side of the equation to H known as the Hamiltonian operator: 

ℋ = −
ℏ2

2𝑚
∇2 + 𝑣                                                                (2.4) 

The concept of an operator in quantum mechanics is important. An operator is a mathematical 

representation of measurable parameters within a physical system. For example, quantitative 

values (such as energy, position or linear momentum) can be determined by using the appropriate 

operator. The Hamiltonian is one of the most commonly used operators which can be used to 

determine the energy of a system. This is determined by calculating the following integral (note 

that Ψ∗ means the wave function may be a complex number): 
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𝐸 =  
∫ Ψ∗ ℋΨdt

Ψ∗Ψdt
                                                                  (2.5) 

As a result, it is possible to simplify the time-independent Schrödinger equation to: 

 ℋΨ = 𝐸Ψ                                                                      (2.6) 

In order to solve the Schrödinger equation the values of E and function Ψ need to be determined. 

This equation takes on the standard eigenfunction form where an eigenfunction is a function that 

is “operated” on by an operator to produce a value (also called an eigenvalue) multiplied by the 

eigenfunction. In this case, the Hamiltonian operator acts on the Ψ (eigenfunction) operator, the 

equation returns the wave function multiplied by the energy (eigenvalue). The Schrödinger 

equation cannot be solved exactly for systems that involve three or more interacting particles 

(meaning that it can only be solved exactly for a hydrogen atom which has a single electron and a 

single proton). This is because many methods that aim to solve the Schrödinger equation do not 

account for the interactions between electrons (electron-electron correlation; for example, 

Hartree-Fock theory - see Section 2.2). Therefore, any solution for systems with two or more 

interacting electrons can only be an approximation to the true solution of the Schrödinger equation. 

In order to solve the Schrödinger equation (Equation 2.6), a number of key parameters are required, 

determination of these two values allows the energy of a system to be calculated using Equation 

2.5. These parameters being: 

 The solution to the Hamiltonian (ℋ in Equation 2.6): This provides information on the 

kinetic energy of particles and interactions between particles (electrons and nuclei, see 

Section 2.2).  

 The solution to the electronic wavefunction: This is a mathematical function that describes 

the motion of the electron through space (related to atomic and molecular orbitals, see 

Section 2.1.3).  
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2.1.2 The Born-Oppenheimer approximation and the electronic Hamiltonian 

In order to solve the Schrödinger equation, one needs to define both the Hamiltonian and the 

wavefunction. This would enable the energy of the system to be calculated using Equation 2.5. The 

Hamiltonian is concerned with the interactions between electrons and nuclei. Electrons move much 

faster than the nuclei (as they are much lighter); therefore, wherever the nuclei are, the electrons 

will change their position almost instantaneously for those given nuclei. This disparity in motion 

leads to the Born-Oppenheimer approximation in which the nuclei are considered as fixed with only 

the motion of the electrons being considered in the Hamiltonian. Applying this approximation 

results in the electronic wavefunction which enables the Schrödinger equation to be solved (to a 

good approximation). Consequently, the total wavefunction of a molecule under the Born-

Oppenheimer approximation can be expressed as: 

Ψ(nuclei, electrons) =  Ψ(electrons)Ψ(nuclei)                              (2.7) 

where the total energy of the molecule is a sum of the nuclear charge (the electrostatic repulsion 

between positively charged nuclei) and the electronic energy (interactions between electrons with 

each other and with the nucleus): 

𝐸total =  𝐸nuc(nuclei − nuclei) + 𝐸(electrons − nuclei and electrons − electrons)    (2.8) 

As stated above, applying the Hamiltonian operator to the electronic wave function enables the 

energy of a multi-electron system to be determined. Applying the Born-Oppenheimer 

approximation allows for the definition of the electronic Hamiltonian operator for a molecule with 

nuclei A, B and electrons i and j (Equation 2.9, in atomic units). 

ℋ =  ∑
∇𝑖

2

2
𝑖

− ∑
𝑍𝐴

𝑟𝐴𝑖
𝐴,𝑖

+  ∑
𝑍𝐴𝑍𝐵

𝑅𝐴𝐵
𝐴,𝑖

+ ∑
1

𝑟𝑖𝑗
𝑖>𝑗

                                     (2.9)   

  Te                       Ven              Vnn                    Vee 
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where Te is the operator for the kinetic energy of the electrons, Ven is the operator for the Coulomb 

attraction between electrons and nuclei, Vnn is the repulsion between nuclei and Vee is electron 

repulsion. R represents the distance between the respective particles and Z represents the atomic 

number of the nucleus. Note that there is no term representing the kinetic energy of the nuclei as 

these are assumed static under the Born-Oppenheimer approximation, hence this is called the 

electronic Hamiltonian operator. This provides the solution to the electronic Hamiltonian (ℋ) as 

part of the Schrödinger equation (Equation 2.6). However, in order to calculate the energy of the 

system (Equation 2.5) and thus fully solve the Schrödinger equation a solution to the wavefunction 

must also be derived.   

2.2 The Wavefunction and Hartree-Fock theory 

So far,  the electron Hamiltonian under the Born-Oppenheimer approximation has been defined as 

part of the solution to the Schrödinger equation. The remaining portion that needs to be solved is 

the wavefunction, which involves determining a set of orbitals that corresponds to the minimum 

energy of the system. One method of determining the wavefunction for polyelectronic systems is 

through Hartree-Fock theory. The main difference between systems with a single electron and 

polyelectronic systems is the interactions between electrons. Three contributing interactions occur 

between particles in such a system: 

 Coulomb interactions - The potential energy from the interaction between charged 

particles (electrons with electrons and electrons with nuclei). This is dependent upon the 

distance between the interacting particles.  

 Exchange interactions – Exchange interactions occur through exchange (the changing of 

position) of indistinguishable electrons, for example electrons with the same spin. This 

results in a change in sign (+ / -) when expressing these electrons as part of a wavefunction 

(with respect to the anti-symmetric principle, see wavefunction section of Section 2.2). This 

is the basis of the Pauli exclusion principle which states that two or more electrons with 
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identical spin cannot occupy the same quantum state. This means that two electrons in the 

same orbitals must have opposite spins. 

 Core interactions – This describes the motion of a single electron moving in a field of bare 

nuclei and does not take into consideration electron-electron correlation. This is dependent 

on the distance between the electron and nuclei.  

When attempting to solve the electronic wavefunction for polyelectronic systems, all three 

contributions need to be taken into consideration. It is important to note that in the Hartree-Fock 

approach electrons in spin orbitals are assumed to be moving through an average charge 

distribution made up of the other electrons. As a result, the position of these electrons are assumed 

to not be influenced by other electrons. Therefore, Hartree-Fock methods do not take into account 

electron correlations, this is the key drawback with pure Hartree-Fock approaches. The solution to 

Hartree-Fock is obtained through the use of the Fock operator (𝑓) which is obtained through 

Equation 2.10. 

𝑓𝑖(1) = ℋ𝐶𝑜𝑟𝑒(1) + ∑{ℐ𝑗(1) − 𝛫𝑗(1)}

𝑁

𝑗=1

                                           (2.10) 

where ℋ𝐶𝑜𝑟𝑒 represents the core Hamiltonian interactions and ℐ𝑗(1) − 𝛫𝑗(1) represent 

contributions from coulomb (ℐ𝑗(1)) and exchanged (𝛫𝑗(1))  interactions. This can be simplified to: 

𝑓𝑖𝑥𝑖 = ∑ 𝜀𝑖𝑗𝑥𝑗(1)                                                              

 

𝑗

(2.11) 

This takes the standard eigenfunction form: 

𝑓𝑖𝑥𝑖 = 𝜀𝑖𝑥𝑖                                                                         (2.12) 

The Fock operator (𝑓) is a one-electron Hamiltonian for an electron in a polyelectronic system. The 

Fock operator acts on the molecular orbital 𝑥𝑖 (the eigenfunction) and returns a series of orbitals 

𝑥𝑖 multiplied by a set of (unknown) orbital coefficients 𝜀𝑖  (the eigenvalue).  Equation 2.12 is 
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obtained by defining the three terms for electrons (core, coulomb and exchange) which are present 

in the Hamiltonian operator. Considering an electron in orbital 𝑥𝑖 the Hamiltonian operator can be 

written using the three terms for the three different contributions to the energy: 

[−
1

2
∇1

2 − ∑
𝑍𝐴

𝑟𝑖𝐴

𝑀

𝐴=1

] 𝑥𝑖(1) + ∑ [∫ 𝑑𝜏2𝑥𝑗(2)𝑥𝑗(2)
1

𝑟12
]

𝑗 ≠𝑖

𝑥1(1) −  ∑ [∫ 𝑑𝜏2𝑥𝑗(2)𝑥𝑗(2)
1

𝑟12
]

𝑗 ≠𝑖

𝑥1(1)

=  ∑ 𝜀𝑖𝑗𝑥𝑗

 

𝑗

(1)                                                                                                           (2.13) 

Equation 2.13 can be simplified by introducing expressions for the three operators, these being: 

The core Hamiltonian operator ℋ𝐶𝑜𝑟𝑒(1): 

 ℋ𝐶𝑜𝑟𝑒(1) = −
1

2
∇1

2 − ∑
𝑍𝐴

𝑟1𝐴
                                                     (2.14)

𝑀

𝐴=1

 

The Coulomb operator (ℐJ(1)): 

ℐ𝑗(1) =  ∫ 𝑑𝜏2𝑥𝑗(2)
1

𝑟12
𝑥𝑗(2)                                                     (2.15) 

The exchange operator (ΚJ(1)): 

𝛫𝑗(1)𝑥𝑖(1) =  [∫ 𝑑𝜏2𝑥𝑗 (2)
1

𝑟12
𝑥𝑖(2)] 𝑥𝑗(1)                                      (2.16) 

This means Equation 2.13 can be re-written as: 

ℋ𝐶𝑜𝑟𝑒(1)𝑥𝑖(1) + ∑ ℐ𝑗(1)𝑥𝑖(1)

𝑁

𝑗 ≠𝑖

− ∑ 𝛫𝑗(1)𝑥𝑖(1) =

𝑛

𝑗 ≠𝑖

∑ 𝜀𝑖𝑗𝑥𝑗

 

𝑗

(1)                  (2.17) 

This results in following equation: 

[ℋ𝐶𝑜𝑟𝑒(1) + ∑{ℐ𝑗(1) − 𝛫𝑗(1)}

𝑁

𝑗=1

] 𝑥𝑖(1) = ∑ 𝜀𝑖𝑗𝑥𝑗

 

𝑗

(1)                               (2.18) 
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Equation 2.18 s then simplified to derive the Fock operator (Equation 2.10). Note that the electrons 

are assumed to be in a fixed field composed of nuclei and other electrons. This has important 

implications for the solution to the Hartree-Fock equation, as electrons will naturally affect the 

other electrons in the system (electron-electron correlation). This lack of a term for electron-

electron correlation in the Hamiltonian is the key drawback to Hartree-Fock theory. In order to 

solve the Hartree-Fock equation (Equation 2.12) the coefficient values (𝑐𝑖) that correspond to 

optimal orbitals (i.e. the minimum - the ones which are lowest in energy for a given geometry) need 

to be obtained. Additionally, there needs to be an appropriate method of describing the orbitals in 

order to solve the Hartree-Fock equation (Equation 2.12). Assuming that there is a way to describe 

the orbitals, the solution to finding the best set of coefficients can be determined by adopting a 

Self-Consistent Field (SCF) approach. This is an iterative process and works as follow: 

1. Orbital coefficients (𝑐𝑖) are initially estimated 

2. These are then used to calculate the Coulomb and exchange operators 

3. The Hartree-Fock equations are then solved, giving a second set of orbital coefficients (𝑐𝑖) 

4. The energy of the system is calculated 

5. Steps 1-4 are repeated until the energy of the system no longer decreases for consecutive 

sets of orbital coefficients. The wavefunction is said to be self-consistent at this point 

Having defined a method for determining a set of coefficients for a given set of orbitals, the next 

step is to find a method of describing the orbitals themselves that are used within the SCF approach. 

One solution is to express the wavefunction as a product of one-electron spin orbitals. This requires 

the following assumptions: 1) electrons do not interact with one another and 2) the total electronic 

wave function describing the motion of the two electrons is equal to the product of two hydrogen 

atom spin orbitals. However, in order to have a valid wavefunction, the wavefunction must also 

satisfy the antisymmetric principle. This states that the expression of electrons as wavefunctions 

must be antisymmetric with respect to the exchange of any two electron co-ordinates i.e. a change 
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in sign (+ to – and vice versa). This is the basis of the Pauli exclusion principle which states that two 

or more electrons with identical spin cannot occupy the same quantum state. This means that two 

electrons in the same orbitals must have opposite spins. Considering the electronic wavefunction 

in this way results in: 

Ψ(𝑋2, 𝑋1) = 𝑥1(𝑋2) 𝑥2(𝑋1) − 𝑥2(𝑋2) 𝑥1(𝑋1)                                (2.19)  

where X1 and X2 are electrons containing special co-ordinates including spin of the respective 

electrons and 𝑥1 and 𝑥2 are spin orbitals. This can be then be expressed as a Slater determinant 

with the general form: 

Ψ(𝑋1, 𝑋2 … 𝑋𝑛) =
1

√𝑁!
|

𝑥1(𝑋1) 𝑥2(𝑋1) …
𝑥1(𝑋2) 𝑥2(𝑋2) ⋯

⋮ ⋮ ⋱

    
𝑥𝑛(𝑋1)
𝑥𝑛(𝑋2)

⋮
𝑥1(𝑋𝑛) 𝑥2(𝑋𝑛) ⋯ 𝑥𝑛(𝑋𝑛)

|                             (2.20) 

where N is the number of electrons. Each column in the matrix denotes an orbital and each row 

denotes an electron such that each electron is associated with every orbital.   

This shows that the wavefunction can be expressed as a Slater determinant which is a product of 

one-electron spin orbitals (where spin orbitals are a product of special and spin functions). This 

provides a way of describing the orbitals whilst the Hartree-Fock equations (Equations 2.10 – 2.18) 

provide a method of determining which coefficient values correspond to the “best” orbitals. This is 

useful for describing atomic orbitals of atoms; however, in polyatomic molecules the atomic 

orbitals overlap and form molecular orbitals. In quantum mechanics molecular orbitals are 

accounted for by using a Linear Combination of Atomic Orbitals (LCAO) approach. In using the LCAO 

approach, each molecular orbital can be written as a summation in the following form: 

𝜓𝑖 = ∑ 𝐶𝜇𝑖𝜙𝜇

𝐾

𝜇=1

                                                             (2.21) 

where 𝜓𝑖 is a spatial molecular orbital, 𝜙𝜇 is one of K atomic orbitals and 𝐶𝜇𝑖 is a coefficient. For 

example the bonding molecular orbital (resulting from constructive interaction between atomic 
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orbitals) of a hydrogen molecule (labelled 1σg) can be expressed as a combination of two hydrogen 

1s orbitals (1SA and 1SB). The antibonding molecular orbital (labelled 1σu as a result of destructive 

interference of atomic orbitals) can be expressed as the difference in the two hydrogen 1s orbitals 

and is higher in energy than the bonding molecular orbitals:  

1σ𝑔 = A (1𝑆𝐴 + 1𝑆𝐵)                                                       (2.22)  

1σ𝑢 = A∗ (1𝑆𝐴 − 1𝑆𝐵)                                                       (2.23)  

where A and A* are normalisation factors. The one electron functions (𝜙𝜇) are commonly called 

basis functions and typically correspond to atomic orbitals. In accordance with variation theorem 

the coefficient values (𝐶𝜇𝑖) that are required are those which give the lowest energy wavefunction 

(i.e. when the energy is at a minimum). As previously, the solution to these coefficients can be 

found using the SCF approach. 

2.2.1 Basis set 

As shown by Equation 2.21 a linear combination of one-electron orbitals 𝜙𝑣 (also called basis 

functions) can be used to represent each spin orbital. The two commonly used basis functions in 

electronic structure calculations are: Slater Type Orbitals (STO) and Gaussian Type Orbitals (GTO). 

Slater type orbitals are more accurate but some of the integrals in STOs are difficult to solve and 

increase in mathematically complexity once several electrons are introduced. Fortunately, it is 

possible to model STOs using a linear combination of GTOs. Although a minimum of three times as 

many GTOs are required to reach a similar level of accuracy to a single STO. The number of GTOs 

included in the basis sets can vary which can have an effect on the level of accuracy of the basis set. 

The common ones being minimal basis set, double zeta basis set, triple zeta basis set or a split 

valence basis set. Additionally, there are functions that can be included to augment basis sets for 

example polarization and diffuse functions. These different basis sets and functions are discussed 

below. 
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2.2.1.1 Minimal basis set 

A minimal basis set is constructed using one basis function (STO or GTO) for each atomic orbital in 

the atom. For example, a hydrogen atom would consist of a 1s orbital requiring a single basis 

function. A carbon atom consists of 1s, 2s, 2px, 2py and 2pz orbitals meaning that a total number of 

five basis functions would be required. Therefore, a molecule such as methane (CH4) would use a 

total number of nine basis function, one for each hydrogen atom (1 x 4) and five for the carbon 

atom. Common minimal basis sets include STO-3G and STO-4G (generally STO-nG) where n is the 

number of GTOs used to represent each orbital. As stated previously, three times as many GTOs 

are required to properly represent each STO; therefore, STO-3G is considered the minimum sized 

basis set that can be used in ab inito molecular orbital calculations. Additionally, the computational 

effort increases with the number of functions in the Gaussian expression - meaning that using an 

STO-4G basis set requires more computational effort than using an STO-3G basis set. Typically, the 

choice of basis set is usually a compromise between accuracy and computational cost.  

2.2.1.2 Double zeta and triple zeta basis sets 

In comparison to a minimal basis set, a double zeta basis set doubles the number of all basis 

functions per orbital. Therefore, a hydrogen atom would use two basis functions, a carbon atom 

would use 10 basis functions and a methane molecule would use a total number of 18 basis 

functions. Similarly triple zeta triples the number of basis functions required (H = three basis 

functions, C = 15 basis functions, CH4 = 27 basis functions). 

2.2.1.3 Split valence basis set 

In many cases, it is too computationally demanding to calculate the number of functions required 

for every orbital when using a double or triple zeta basis set. Split valence basis sets are a variation 

of double zeta sets in that the number of functions used to describe the atomic orbitals is double 

for the valence orbitals only (rather than for all orbitals). This approach can be rationalised in terms 
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of the fact that chemical bonding occurs between valence orbitals only. For example, a double zeta 

split valence basis set for a hydrogen atom would still require two basis functions as there is only a 

single 1s valence orbital. A double zeta split valence basis set for the valence orbitals of a carbon 

atoms would require eight basis functions – two each for the n = 2 valence orbitals (2s, 2px, 2py and 

2pz). In contrast, the 1s inner shell only requires a single basis function (as it is being described using 

a minimal basis set). Thus, a double zeta split valence basis set for carbon has a total of nine basis 

functions. A molecule of methane (CH4) would require a total number of 17 basis functions using a 

double zeta split valence basis set reducing the computational effort required in comparison to a 

full double zeta basis set (which would require 18 basis functions).  

The notation for split-valence basis sets takes the form X-YZG where X = the number of GTOs used 

to describe the STOs for the core orbitals, Y = the number of GTOs used for the first STO and Z = the 

number of GTOs used in the second STO (recalling that two STOs are required per orbital in a double 

zeta basis set). For example, the 3-21G basis set uses three GTOs to describe the core orbitals. The 

valence orbitals are described with a combination of two GTOs for the first STO and a single GTO 

for the second STO. Common split-valence basis sets include 3-21G, 4-31G and 6-31G. This 

approach can be extended to produce split valence triple zeta basis sets where the valence orbitals 

are described using three GTOs e.g. 6-311G. 

2.2.1.4 Polarization functions 

The basis functions discussed so far have been centred on atomic nuclei. However, the charge 

distribution about an atom in a molecule is usually perturbed in comparison to a single atom. For 

example, the 1s orbital in the hydrogen atom is symmetrical. As this hydrogen atom approaches 

another atom (such as a carbon atom) the 1s orbitals will be polarized when mixed with the carbon 

atoms 2p orbitals upon bonding. This polarization is not described with the use of s-functions alone; 

however, the addition of p-orbital functions enables this process to be correctly accounted for. 

Similarly, d-orbital functions can be used to describe the polarization of p-orbitals and f-orbital 
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functions for the polarization of d-orbitals (Figure 2.2). The use of polarization basis functions is 

indicated by the use of an asterisk (*). For example, a 6-31G* basis set uses a double zeta split 

valence basis set with polarization being taken into account for the p-orbitals. An additional asterisk 

(e.g. 6-31G**) indicates that polarization has also been taken into account for the s orbitals. These 

polarized basis sets can be additionally expressed as 6-31G(d) for 6-31G* and 6-31G(d,p) for 6-

31G**. 

 

Figure 2.2: The addition of d type orbital functions (orbital 3dxy) into p orbitals (2pz). 

2.2.1.5 Diffuse functions 

All of the basis sets discussed so far fail to deal with species such as anions and molecules containing 

lone pairs of electrons. These systems have a significant amount of electron density far away from 

the atomic nucleus. To resolve this, diffuse functions can be added to the basis set. The use of 

diffuse functions is indicated with a “+” for a set of s and p type GTOs e.g. 6-31+G, whilst “++” 

indicates that diffuse functions are included for hydrogen atom as well as heavy atoms e.g. 6-

31++G.  

2.2.2 Summary of Hartree-Fock theory 

Hartree-Fock theory provides a way of determining which orbitals result in the “best wavefunction” 

(i.e. that with the lowest energy). This is achieved by using the SCF method where the solution is 

iteratively refined to achieve the “best” set of orbital coefficients (i.e. those which result in the 
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lowest energy) until further iterations result in no change (at this point it is said to be self-

consistent). The use of Hartree-Fock theory assumes that electrons in spin orbitals are moving 

through an average charge distribution of other electrons. Although this provides a suitable means 

of solving the Schrödinger equation, it fails to account for electron-electron correlation. This has 

led to the development of alternative methods to account for electron-electron correlation, the 

primary example being density functional theory. 

2.3 Density functional theory 

So far, this chapter has discussed methods that provide an approximate solution to the Schrödinger 

equation, primarily Hartree-Fock theory.  In Hartree-Fock theory, the electrons are assumed to be 

moving in an average potential of other electrons and the position of these electrons are assumed 

to be uninfluenced by other electrons. Importantly, Hartree-Fock methods do not take into account 

electron-electron correlation. Density Functional Theory (DFT) attempts to deal with these 

shortcomings by replacing the many-body electronic wavefunction with the electron density.  In a 

similar way to how Hartree-Fock is constructed from a set of N single-electron wavefunctions, DFT 

considers single-electron functions. The idea of DFT was developed with the underlying concept 

that there is a relationship between the total electron energy and the overall electronic density. 

This concept is supported by a study by Hohenberg and Kohn in 1964 that shows that ground state 

energies along with other properties of a system can be uniquely defined by the electron density. 

This can be expressed by stating that energy is a function of electron density p(r). This is called a 

functional (a function of a function). In DFT, the energy functional is written as a sum of two terms: 

𝐸[𝑝(𝑟)] = ∫ 𝑉𝑒𝑥𝑡(𝑟)𝑝(𝑟)𝑑𝑟 + 𝐹[𝑝(𝑟)]                                         (2.24) 

The first term (Vext(r)) represents the interaction of the electrons with the external potential 

(typically Coulombic interactions with the nuclei). Whilst the last term 𝐹[𝑝(𝑟)] is the sum of the 

kinetic energy of the electrons and the contribution of interelectronic interactions. Similar to 
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Hartree-Fock, the lower the energy value is, the closer it is to the true energy of the ground state 

structure. This allows a variation approach to be used to achieve the best functional i.e. the lower 

in energy the better. However, the key problem with this equation is that it is unknown what the 

function 𝐹[𝑝(𝑟)] is. It was proposed by Kohn and Sham in 1965 that 𝐹[𝑝(𝑟)] could be approximated 

as a sum of three terms.(91) 

 𝐹[𝑝(𝑟)] =   𝐸𝐾𝐸[𝑝(𝑟)] +   𝐸𝐻[𝑝(𝑟)] + 𝐸𝑋𝐶[𝑝(𝑟)]                              (2.25) 

where 𝐸𝐾𝐸[𝑝(𝑟)] represents the kinetic energy, 𝐸𝐻[𝑝(𝑟)] is the electron-electron Coulombic 

energy and 𝐸𝑋𝐶[𝑝(𝑟)] is the contribution from electron-electron exchange and electron-electron 

correlation. It is important to note that the first term 𝐸𝐾𝐸[𝑝(𝑟)] is defined as the kinetic energy of 

a system of non-interacting electrons: 

𝐸𝐾𝐸[𝑝(𝑟)] = ∑ ∫ 𝜓𝑖(𝑟) (−
∇2

2
) 𝜓𝑖𝑑𝑟

𝑁

𝑖=1

                                         (2.26) 

The term 𝐸𝐻[𝑝(𝑟)] (also known as the Hartree electrostatic energy) arises from interaction 

between two charge densities resulting in: 

𝐸𝐻[𝑝(𝑟)] =
1

2
∬

𝑝(𝑟1)𝑝(𝑟2)

|𝑟1 − 𝑟2|
𝑑𝑟1𝑑𝑟2                                            (2.27) 

 

Substituting Equations 2.26 and 2.27 into Equation 2.25 and adding an additional term for the 

electron-nuclear interaction results in: 

𝐸[𝑝(𝑟)] = ∑ ∫ 𝜓𝑖(𝑟) (−
∇2

2
) 𝜓𝑖𝑑𝑟 +  

1

2

𝑁

𝑖=1

∬
𝑝(𝑟1)𝑝(𝑟2)

|𝑟1 − 𝑟2|
𝑑𝑟1𝑑𝑟2 +  𝐸𝑋𝐶[𝑝(𝑟)]                           

−  ∑ ∫
𝑍𝐴

|𝑟 −  𝑅𝐴|
 𝑝(𝑟)𝑑𝑟

𝑀

𝐴=1

                                                                                         (2.28) 
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Importantly, the above equation defines the contributions of the exchange-correlation energy 

function 𝐸𝑋𝐶[𝑝(𝑟)] and the contribution due to the difference between the true kinetic energy of 

the system 𝐸𝐾𝐸[𝑝(𝑟)]. 

The electron density p(r) of a system can be represented as a sum of one-electron orbitals: 

𝑝(𝑟) =  ∑|𝜓𝑖(𝑟)|2 

𝑁

𝑖=1

                                                         (2.29) 

Using this expression and applying the appropriate variational conditions results in the one-electron 

Kohn-Sham equation: 

{−
∇𝑖

2

2
+ 𝑣(𝑟) + ∫

𝑝(𝑟2)

𝑟12
𝑑𝑟2 + 𝑉𝑋𝐶[𝑟1]} 𝜓𝑖(𝑟1) = 𝜀𝑖𝜓𝑖(𝑟1)                     (2.30) 

where 𝑣(𝑟) is the external potential, the orbitals’ energies are expressed as 𝜀𝑖  and  𝑉𝑋𝐶  is the 

exchange-correlation function which is related to the exchange correlation energy by: 

𝑉𝑋𝐶[𝑟] = (
𝛿𝐸𝑋𝐶[𝑝(𝑟)]

𝛿𝑝(𝑟)
)                                                         (2.31) 

This allows the total electronic energy to be calculated using Equation 2.28. 

Similar to the solution of Hartree-Fock, the Kohn-Sham equations are solved using a self-consistent 

approach where an initial estimation for electron density p(r) is used to solve Equation 2.30. This 

derives a set of orbitals resulting in an improved value for the electron density. This value is then 

fed back into Equation 2.30 until the values are self-consistent (see SCF method for Hartree-Fock in 

Section 2.1.3). 

The appeal behind DFT comes from the inclusion of an electron-electron exchange-correlation 

functional (Equation 2.25). In DFT, even simple approximations to the exchange-correlation 

functional can give favourable results. For example, studies have shown that the geometry of 

chemicals optimized through DFT to agree with experimentally determined geometry in 
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comparison to HF methods (92). Additionally, DFT has been shown to provide a better estimation 

of the energy change for organic reactions in comparison to HF (93). The simplest approximation to 

the contribution of the exchange-correlation functional is the Local Density Approximation (LDA) 

where the functional at a given position is computed exclusively from the value of the electron 

density at that position (and is therefore local). This method assumes that the electron density 

corresponds to that of a homogenous electron gas where the electron density is constant. The total 

exchange-correlation energy for a system can then be obtained by integrating over all space: 

𝐸𝑋𝐶[𝑝(𝑟)] = ∫ 𝑝(𝑟)𝜀𝑋𝐶(𝑝(𝑟))𝑑𝑟                                              (2.32) 

where 𝜀𝑋𝐶(𝑝(𝑟)) is the exchange-correlation energy per electron as a function of the electron 

density in the homogenous electron gas. The exchange-correlation functional is obtained by 

differentiation of Equation 2.33: 

𝑉𝑋𝐶[𝑟] = 𝑝(𝑟)
𝑑𝜀𝑋𝐶(𝑝(𝑟))

𝑑𝑝(𝑟)
+  𝜀𝑋𝐶(𝑝(𝑟))                                       (2.33) 

Although LDA approaches have shown to perform surprisingly well, they are inadequate for some 

problems, e.g. describing hydrogen bonds.  

As such, extensions of this method have been developed. For example, the Generalized Gradient 

Approximation (GGA) (or gradient-corrected functional) which incorporates both electron density 

and its gradient to better describe the non-uniformity of molecular densities. These gradient 

corrections are typically divided into separate exchange and correlation contributions e.g. Becke 

gradient exchange correction and the Lee-Yang-Parr correlation functional (BLYP). An extension of 

this is the use of a hybrid functional which mixes GGA with other features from ab initio methods 

(e.g. Hartree-Fock methods). This has advantages as Hartree-Fock provides an exact means of 

treating the exchange contribution. This approach works by combining the exchange contribution 

from the Hartree-Fock equation with the correlation component from the LDA. For example, B3LYP 
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which tends to be the most commonly used method for DFT (and is the method used throughout 

this thesis). 

2.4 Concluding remarks 

This chapter has discussed various quantum theories for the treatment of molecular systems. The 

Schrödinger equation was introduced as the key concept that allows various properties of a particle 

(e.g. an electron) to be determined. This is through the use of the wavefunction (a function that 

describes the wave like motion of a particle) and the Hamiltonian (an operator used to derive the 

energy of a system by defining the kinetic energy of particles and interactions between particles). 

The Hartree-Fock equation was shown to be an ab initio method suitable for approximately solving 

the Schrödinger equation by using a self-consistent method (adopting variation theorem). This 

method assumes electrons to be in a fixed field composed of nuclei and other electrons. Therefore, 

Hartree-Fock theory fails to account for electron-electron correlation. Density functional theory 

deals with these shortcomings by replacing the many-body electronic wavefunction with the 

electron density. The appeal of DFT comes from the inclusion of an exchange-correlation functional 

to account for electron-electron correlation. Given this, all calculations used within this thesis 

utilised a hybrid functional form of DFT with the inclusion of additional diffusion and polarizability 

functions B3LYP/6-31G+(d), see Chapters 3, 4 and 5).  
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Chapter 3. Development of a fragment-based in silico profiler for Michael 

addition 

3.1 Introduction  

It is well established that various toxicological effects can occur as a result of covalent bond 

formation between electrophilic chemicals and nucleophilic centres in proteins. This includes a 

range of toxicities such as skin sensitisation, respiratory sensitisation, aquatic toxicity and liver 

toxicity (28, 43, 52, 53, 70, 94, 95). A key mechanism through which a covalent bond can form 

between an electrophile and a protein is Michael addition. Such chemicals, known as Michael 

acceptors, contain a π-bond adjacent to a polarising group such as an α,β-unsaturated aldehyde 

(Figure 3.1) (61). The presence of the polarising group results in a partial positive charge on the β-

carbon of the π-bond, causing this position to become susceptible to a reaction with a biological 

nucleophile, typically cysteine or lysine residues (57, 58). Computational research has suggested 

that Michael addition can potentially occur via one of two mechanisms depending on whether the 

nucleophile is anionic or neutral (49, 52, 73-75). The mechanism in which the nucleophile is an anion 

(e.g. methyl thiolate) results in a resonance stabilised intermediate. This resonance stabilised 

intermediate lies in an energy minimum between two transition states along the reaction co-

ordinate.  The intermediate is then protonated carbon (e.g. from the deprotonated thiol group or 

a deprotonated water molecule) to produce the final product known as a Michael adduct 

(mechanism shown in Figure 3.2, energy diagram in Figure 3.3). The rate-determining step for this 

mechanism being determined through the formation of the first transition state. Additional 

research has outlined an alternative mechanism in which nucleophilic attack occurs via a neutral 

species (e.g. methyl thiol) resulting in the formation of a single four-membered ring transition state 

structure, with the formation of this species being the rate determining step (Figure 3.2, energy 

diagram in Figure 3.4) (52, 73, 74).   
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Carbonyl-Carbon

β-Carbon

α-Carbon  

 

Figure 3.1: The structure of a typical Michael acceptor (prop-2-enal) showing the α-carbon, the β-

carbon and the carbonyl-carbon 

 

ΔEINT-thiolate  Mechanism

ΔETS-thiol  Mechanism

α-carbon 

β-carbon

α-carbon 

β-carbon

‡

Figure 3.2: The two proposed mechanisms for Michael addition thiol reactivity resulting in the 

formation of a four-membered transition state structure (ΔETS-Thiol) or a resonance stabilised 

intermediate (ΔEINT-Thiolate) (R1 and R2 = glutathione, alkyl) 
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Figure 3.3: Energy diagram for the Michael addition reaction with a thiolate nucleophile through 

the formation of a stabilised intermediate structure (N.B. ΔETS and ΔEINT correspond to ΔETS-Thiolate 

and ΔEINT-Thiolate respectively) 

Figure 3.4: Energy diagram for the Michael addition reaction with a thiol nucleophile through the 

formation of a four-membered ring transition state structure (N.B. ΔETS corresponds to ΔETS-Thiol) 
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The mechanistic knowledge outlined above has allowed for the development of structural alerts 

enabling chemicals with the potential to react via Michael addition to be easily identified (57).  As 

outlined in Chapter 1, structural alerts can be grouped together into in silico profilers which are 

able to identify mechanisms associated with specific toxicological outcomes, such as skin 

sensitisation (48). Whilst in silico profilers are useful for identifying features associated with 

potential toxicity, the information they provide is qualitative i.e. a binary yes or no for the presence 

of a structural feature associated with reactivity and/or toxicity. Importantly, they provide no 

information concerning either the rate of covalent bond formation or toxicological potency. This is 

information is key as when using knowledge of covalent mechanisms to predict toxicity, a primary 

assumption is that the rate of covalent bond formation (reactivity) is proportional to toxicological 

potency. As a result of this assumption, there has been an increase in the number of studies focused 

on predicting potency using computational methods and/or in chemico reactivity measurements 

(i.e. experimental reactivity measurements that do not require the use of laboratory animals) (42, 

43, 49, 70, 95). The use of computational and in chemico methods for the prediction of toxicological 

potency is discussed in depth in Chapter 1. 

Given the importance of quantifying chemical reactivity for the prediction of toxicity, it is 

unsurprising that there have been a number of studies that have utilised computational descriptors 

for the prediction of chemical reactivity and toxicity (51, 71, 95-99). These are typically derived from 

quantum mechanics calculations based on the structure of the reactant electrophile alone, and 

include descriptors such as energy values of the Highest Occupied Molecular Orbital (HOMO) and 

Lowest Unoccupied Molecular Orbital (LUMO) and the electrophilicity index  (this index is derived 

from chemical potential and chemical hardness which are related to the HOMO and LUMO of a 

chemical) () (100, 101). However, these descriptors quantify only the electronic portion of 

chemical reactivity and do not account for factors such as steric hindrance at the reactive site. An 

example of a descriptor that accounts for both electronic and steric factors is the energy of 

activation (Eact), this is derived by calculating the energy difference between the optimised energy 
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of the reactants (electrophile and nucleophile) and optimised transition state (∆ETS-Thiol, Figure 3.4) 

or intermediate structures (∆EINT-Thiolate, Figure 3.3) linking the reactants to the products (Equations 

3.1 and 3.2 respectively).  

 

                ∆𝐸TS−Thiol = (𝐸Transition state − 𝐸Electrophile+𝐸Thiol)                  (3.1) 

     ∆𝐸INT−Thiolate = (𝐸Intermediate − 𝐸Electrophile+𝐸thiolate)                      (3.2) 

 

A number of computational studies have utilised the four-coordinate transition state mechanism 

to predict reactivity towards glutathione (52, 73, 74). For example, the glutathione reactivity of 22 

Michael acceptors (nine α,β-unsaturated aldehydes, 12 α,β-unsaturated ketones and one α,β-

unsaturated ester) was successfully predicted using calculated ΔETS-Thiol (R2 = 0.90, Model 3.1) (73). 

The resulting QSAR model also included descriptors relating to the rate of the reverse reaction (ΔETS-

Thiol.Back) and steric hindrance at the beta position (SAS(R)).  

 

   Log 𝐾GSH = −0.03 𝛥𝐸𝑇𝑆−𝑇ℎ𝑖𝑜𝑙 + 1.42 𝐿𝑜𝑔 𝑆𝐴𝑆(𝑅) + 0.03  𝛥𝐸𝑇𝑆−𝑇ℎ𝑖𝑜𝑙−𝐵𝑎𝑐𝑘 − 2.14 (Model 3.1) 

N = 22, R2 = 0.90, Radj
2 = 0.88, s = 0.34 

 

A second study using a group of 35 Michael acceptors (10 α,β-unsaturated aldehydes, 11 α,β-

unsaturated ketones and 14 α,β-unsaturated esters) also successfully used calculated ΔETS-Thiol to 

predict glutathione reactivity (R2 = 0.96, Model 3.2). In contrast to the previous QSAR model 

outlined above, the authors of this study included an indicator variable for the presence of an α-

substituent (Ia) (74). The predicted Log kGSH values were subsequently used, in conjunction with a 

descriptor to account for hydrophobicity (Log kOW), to predict toxicity to the ciliate Tetrahymena 

pyriformis for the same set of chemicals (R2 = 0.92 for predicted Log EC50 against experimental Log 

EC50) (details of the Tetrahymena pyriformis growth impairment assay is discussed in Chapter 1).  
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                                            Log 𝐾GSH = −0.06  𝛥𝐸𝑇𝑆−𝑇ℎ𝑖𝑜𝑙 − 1.25 𝐼𝑎 + 5.08                       (Model 3.2) 

 N = 35, R2 = 0.96 

 

In a separate study, the same authors also used the four-membered transition state approach to 

predict the toxicity to Tetrahymena pyriformis for 45 α,β-unsaturated esters (52). The authors used 

the model developed in the previous study (Model 3.2) to generate predicted Log kGSH values. Initial 

modelling of the 45 chemicals in the dataset resulted in a reasonable correlation between predicted 

toxicity (calculated from predicted Log kGSH and hydrophobicity) and experimental toxicity (R2 of 

0.68, Model 3.3). However, the authors noted that these results were inferior to the prediction of 

toxicity to Tetrahymena pyriformis for a set of 35 Michael acceptors (R2 = 0.68 vs R2 of 0.96 

respectively for predicted Log kGSH against experimental Log kGSH). To improve the correlation 

between glutathione reactivity and toxicity to Tetrahymena pyriformis, the authors assigned the 

chemicals into one of three groups based on their reaction rate and hydrophobicity. The first group 

(15 highly reactive chemicals with low hydrophobicity, Model 3.4a-c for aldehydes, ketones and 

esters respectively) and the second group (12 moderately reactive chemicals with moderate 

hydrophobicity, Model 3.5) were predicted using calculated ΔETS-Thiol values and Log kOW values. The 

authors suggested that this meant that the aquatic toxicity of these two groups of chemicals was 

being primarily driven by the rate of covalent bond formation (see Chapter 1 section 1.2.1.1 for 

aquatic toxicity mechanisms). The toxicity of the third group (18 slow reacting chemicals with high 

hydrophobicity, Model 3.6) was well-predicted based on Log kOW alone suggesting these chemicals 

exert their toxicity through narcosis. The overall predictivity for the 45 chemicals (using three 

separate models for the three groups) significantly improved (R2 = 0.83 versus 0.68 for predicted 

EC50 against experimental Log EC50, statistics for individual models 3.4 – 3.6 are not provided by the 

authors). 
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                                      Log EC50 = −0.44  𝐿𝑜𝑔 𝑘𝑂𝑊 − 0.50 𝐿𝑜𝑔 𝑘𝐺𝑆𝐻 − 2.26                   (Model 3.3) 

 N = 45, R2 = 0.68 

 

                                      Log EC50 = −0.45  𝐿𝑜𝑔 𝑘𝑂𝑊 − 0.51 𝐿𝑜𝑔 𝑘𝐺𝑆𝐻 − 2.4                       (Model 3.4a) 

 

                                      Log EC50 = −0.36  𝐿𝑜𝑔 𝑘𝑂𝑊 − 0.57 𝐿𝑜𝑔 𝑘𝐺𝑆𝐻 − 2.4                   (Model 3.4b) 

 

                                      Log EC50 = −0.31  𝐿𝑜𝑔 𝑘𝑂𝑊 − 0.68 𝐿𝑜𝑔 𝑘𝐺𝑆𝐻 − 2.4                    (Model 3.4c) 

 

                                      Log EC50 = − 0.33  𝐿𝑜𝑔 𝑘𝑂𝑊 − 0.67 𝐿𝑜𝑔 𝑘𝐺𝑆𝐻 − 2.5                     (Model 3.5) 

 

                                               Log EC50 = − 0.87 𝐿𝑜𝑔 𝑘𝑂𝑊 − 0.67 − 0.99                             (Model 3.6) 

 

Research has also shown that it is possible to use the energy difference of a resonance stabilised 

intermediate of the Michael addition reaction instead of the transition state structure, ΔEINT-Thiolate 

to predict glutathione reactivity and skin sensitisation potency (49, 75). This was achieved by using 

methyl thiolate as a nucleophile as opposed to methyl thiol (mechanism in Figure 3.2).  For example, 

a recent drug discovery study used calculated ΔEINT-Thiolate alone to predict the reactivity towards 

glutathione (expressed as reaction half-lives, t1/2) for a set of 16 acrylamides acting through Michael 

addition (R2 = 0.92 for reactions half-lives, t1/2 against ΔEINT-Thiolate, no Model provided by the 

authors). In contrast to the work utilising ΔETS-Thiol values discussed previously, the modelling did 

not require any additional descriptors for steric or electronic effects at either the α- or β-carbons. 

However, it is worth noting that such descriptors may not be required due to the similarity of the 

chemicals in the data set (15 of the 16 chemicals were unsubstituted at the α-carbon and 14 of the 

16 chemicals were unsubstituted at the β-carbon) (75).  
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An additional study used calculated ΔEINT-Thiolate as a descriptor to predict the skin sensitisation 

potency (as determined in the local lymph node assay, discussed in detail in Chapter 1) for a set of 

25 Michael acceptors (Model 3.7). A descriptor for the solvent accessible surface area (SAS) at the 

β-carbon was also included as a measurement of steric bulk around the reaction site (49). However, 

this approach failed to predict the skin sensitisation potency of six chemicals due to them being 

volatile or having the ability to polymerise.  

 

                                                   pEC3 = − 1.60 𝛥𝐸𝐼𝑁𝑇−𝑇ℎ𝑖𝑜𝑙𝑎𝑡𝑒 + 0.02 𝑆𝐴𝑆                          (Model 3.7)  

N = 25, R2 = 0.79, Radj
2 = 0.78, s = 0.13 

 

Experimentally determined reactivity has also been used for the prediction of skin sensitisation 

potential for Michael acceptors. This was demonstrated in a recent study which determined the 

kinetic rate constants of 14 Michael acceptors (43). This study successfully predicted the skin 

sensitisation potential of 10 Michael acceptors (Model 3.7) whilst three chemicals were identified 

as outliers. These chemicals were trans-2-hexenal, ethylene glycol dimethacrylate and ethyl 

acrylate. The chemicals 2-hexenal and ethyl acrylate were found to be volatile which resulted in 

loss of the chemical from the surface of the skin. This resulted in a lower skin sensitisation potency 

than would be expected based on reactivity alone. It was hypothesised that the final outlier, 

ethylene glycol methacrylate is less potent than predicted due to free-radical polymerisation under 

LLNA conditions.  

 

                                                             pEC3 = 0.24 𝐿𝑜𝑔 𝑘𝐺𝑆𝐻 + 2.11                                      (Model 3.7)   

N = 25, R2 = 0.79, Radj
2 = 0.78, s = 0.13 

 

The use of calculated ΔEINT-Thiolate has also been used to predict skin sensitisation potency for a group 

of 12 chemicals acting via a nucleophilic aromatic substitution (SNAr) mechanism (Model 3.8, R2 = 
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0.64 for ΔEINT-Thiolate against pEC3). The authors also used the same descriptor to develop a 

classification model capable of discriminating between sensitizers and non-sensitizers (non-

sensitizers had reaction barriers > 10 kcal/mol) (76). One chemical (chlorothalonil) was considered 

an outlier for being more potent than predicted due to its low hydrophobicity (resulting in an 

improved R2 of 0.74 from 0.64 for ΔEINT-Thiolate against pEC3).    

 

                                                      pEC3 = − 0.31 𝛥𝐸𝐼𝑁𝑇−𝑇ℎ𝑖𝑜𝑙𝑎𝑡𝑒 + 4.90                                (Model 3.8)        

N = 12, R2 = 0.62 

 

It is clear from the literature that in silico methods involving the calculation ΔETS-Thiol or ΔEINT-Thiolate 

are capable of predicting both chemical reactivity and, in turn, toxicity. The published studies have 

demonstrated that both descriptors have a similar degree of predictivity. However, both 

approaches require the use of computationally demanding quantum chemical calculations 

requiring access to commercial software. This limits their use, and inclusion, in freely available in 

silico tools currently finding widespread use in regulatory toxicology (for example, the OECD QSAR 

Toolbox). Given this, the aim of this chapter was to develop a fragment-based in silico profiler for 

Michael addition. The advantages of a fragment-based in silico profiler are the ability to generate 

predictions quicker than current quantum mechanics methods and without the need to use 

proprietary software. The concept is similar to that of a traditional in silico profiler in that query 

chemicals (inputted as SMILES) are compared to a database of information (in this case fragments 

encoded as SMARTS) to generate an output. In the case of a fragment-based profiler the output is 

a quantitative prediction of ΔEINT-Thiolate instead of the qualitative output yes/no prediction of a 

traditional in silico profiler (discussed in detail in Chapter 1). The concept of the fragment-based in 

silico profiler is summarised in Figure 3.5.  
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Figure 3.5. Concept of the in silico fragment-based profiler to predict reactivity 

Given the similarity in the published predictivity when using either ΔEINT-Thiolate or ΔETS-Thiol values, the 

method used calculated ΔEINT-Thiolate as this allows values to be obtained without the need for 

transition state calculations. This chapter focuses on the development of the fragments required 

for the fragment-based profiler for Michael addition (the application of the fragment-based profiler 

for Michael addition in predicting thiol reactivity and related toxicity can be found in Chapter 4). 

3.2 Methods  

3.2.1 Dataset 

Fragments were developed for linear α,β-unsaturated aldehydes, ketones and esters with varying 

alkyl and aryl substitutions at three positions (Figure 3.6). Profiling of a database of 212 Michael 

acceptors with glutathione reactivity data showed 54 chemicals were within the domain of linear 

α,β-unsaturated aldehydes, ketones and esters (alkyl and aryl). The modelling of the reactivity of 

these 54 chemicals using the fragment-based reactivity profiler is discussed in Chapter 4. An 

additional 17 chemicals (nine α,β-unsaturated nitros, three α,β-unsaturated nitriles and six α,β-

unsaturated cyclic ketones) were also included as part of the model validation in Chapter 4. The 

remaining 141 chemicals were excluded for various reasons: 64 chemicals belonged to additional 

chemical groups (containing sulphur, phosphorous, halogen or furan functional groups), 41 

Input 

chemical 

(SMILES) 

Assign 

Fragment 

QSAR 

Model 

Reactivity/ 

toxicity 

value 

Fragments 

(Eact 

values) 



 

54 
 

chemicals had multiple sites of reactivity, 20 chemicals were alkynes, eight chemicals had di-β 

substitutions, five chemicals were un-reactive and three had extended conjugation. 

 

Figure 3.6: General structure for α,β-unsaturated aldehydes (R3 = H), α,β-unsaturated ketones (R3 

= C) and α,β-unsaturated esters (R3 = OC). R1 and R2 = H, varying alkyl and aryl substitutions 

 

3.2.2 Computational methods 

All calculations were carried out using the Gaussian 09 suite of software using density functional 

theory at the B3LYP/6-31+G(d) level of theory using water as a solvent employing Polarizable 

Cotinuum Model (PCM) as an implicit solvation model (102). Energies of activation (ΔEINT-Thiolate) 

values were calculated using thiolate as a model nucleophile (See Equation 3.2). This was achieved 

by calculating the energy of the optimised structures for the thiolate nucleophile, the Michael 

acceptor and the intermediate structure (three calculations). All optimisations were obtained using 

the “loose” keyword (as there could potentially be a large number of calculations to carry out in 

developing a fragment-based method). The use of a thiolate (rather than a thiol) nucleophile allows 

an intermediate to be isolated on the potential energy surface. This significantly simplifies the 

calculations as the intermediate can be isolated using a simple energy minimisation calculation 

rather than a transition state calculation. This approach is in keeping with previous research (49). 

Calculated ΔEINT-Thiolate values in the fragment analysis section (Sections 3.4.2 – 3.4.3) are quoted to 

the nearest kcal/mol (calculated using Equation 3.1). Values for ΔETS-Thiolate were obtained using scan 

calculations to determine the highest point of energy for the reaction between the electrophile and 

nucleophile. Scan calculations were carried out with a bond length of 2.9 Å between the β-carbon 

and the sulphur of the thiol nucleophile. A series of seven calculations were then carried out where 
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the bond length between the β-carbon and the sulphur of the thiol nucleophile decreased by 0.1 Å 

with each calculation. This allowed the bond length which resulted in the highest energy structure 

(i.e. the transition state) to be determined. This resulted in a total number of nine calculations 

required for the transition state structure (one for each reactant and seven to determine the 

transition state structure). Transition state structures were subsequently characterised by the 

presence of a single negative eigenvalue connecting the transition state to the reactants and 

product on the potential energy surface. 

3.2.2 Statistical analysis 

Minitab (version 17) was used for the linear regression analysis in Section 3.4.1 in order to identify 

the level of correlation (R2 values) between ΔETS-Thiolate and ΔEINT-Thiolate for a representative series of 

Michael acceptors. Additional linear regression analysis for the prediction of glutathione reactivity, 

toxicity to Tetrahymena pyriformis and skin sensitisation is discussed in Chapter 4. 

3.3 Investigation of activation energies for Michael addition chemicals 

The key aspect of the fragment-based in silico profiler for Michael addition is the use of a database 

containing fragments with pre-calculated activation energy values. As discussed above, two 

different descriptors as a measurement of activation energy have been successfully used to predict 

reactivity and toxicity (ΔEINT-Thiolate and ΔETS-Thiol). The calculation of ΔEINT-Thiolate is computationally less 

demanding than ΔETS-Thiol (three calculations versus several). As such the calculations in this chapter 

focused on the determination of ΔEINT-Thiolate. However, using the energy of the intermediate 

structure (ΔEINT-Thiolate) as a substitute for the transition state depends on the assumption that the 

energy difference between the transition state and intermediate is consistent between all Michael 

acceptors. Currently there have been no studies which investigate the transition state structure 

which results from the reaction between the Michael acceptor and a thiolate nucleophile (ΔETS-

Thiolate). Additionally, there are no studies which have investigated the correlation between ΔEINT-

Thiolate and ΔETS-Thiolate. Given this, an investigation was carried out to assess the correlation between 



 

56 
 

these two descriptors. A good correlation would show that the easier to calculate ΔEINT-Thiolate could 

be used as a descriptor for the fragment database. Additionally, the effect on the calculated ΔEINT-

Thiolate values when utilising the two key conformers for electrophile structures was also 

investigated. 

3.3.1 Analysis of transition state energy versus intermediate energy values 

An analysis was carried out to investigate the level of correlation between ΔEINT-Thiolate and ΔETS-Thiolate 

for a series of representative Michael acceptors (prop-2-enal, but-2-enal, buten-2-one, penten-2-

one, methyl prop-2-enoate and methyl but-2-enoate). The calculated ΔEINT-Thiolate and ΔETS-Thiolate  

were calculated based on the cis intermediate geometry (see section 3.3.2). The calculated ΔETS-

Thiolate and ΔEINT-Thiolate showed significant differences, with the intermediates being consistently 

lower in energy (Table 3.1). The results showed the α,β-unsaturated aldehydes to have the lowest 

calculated ΔEINT-Thiolate and ΔETS-Thiolate values (chemicals 1 and 2 in Table 3.1), whilst the α,β-

unsaturated esters were the highest in energy (chemicals 5 and 6 in Table 3.1). The calculations also 

accounted for the effects of steric hindrance at the reaction site with chemicals with no alkyl 

substituent at the β-carbon being lower in energy than their substituted equivalents (compare 

chemicals 1, 3 and 5 with 2, 4 and 6 respectively in Table 3.1). Importantly, the calculations also 

showed the energy values for transition state structures and intermediate structures to be highly 

correlated (R2 = 0.96, Figure 3.8). This is unsurprising given that the geometries of the transition 

state and intermediate structures showed them to be extremely similar in nature, with the major 

difference being a shorter C-S bond length for the intermediate (Table 3.1). This analysis supports 

the use of the simpler method to calculate ΔEINT-Thiolate (as opposed to ΔETS-Thiolate) as the descriptor 

for reactivity for use in the fragment-based in silico profiler for Michael addition. 
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Figure 3.7. The key structural features of Michael acceptors. Bond angle and bond length values for 

intermediate and transition state structures shown in Table 3.1 

Table 3.1: Key bond angles and bond lengths shown in Figure 3.7 for intermediate and transition 

state structures 

ID Chemical 
C-S (θ) 

INT 

C-S (θ) 

TS 

C-S (Å) 
INT 

C-S (Å) 
TS 

ΔEINT-Thiolate 
(kcal/mol) 

ΔETS-Thiolate 
(kcal/mol) 

1 Prop-2-enal 112.1 116.8 1.9 2.6 -5.4 2.5 

2 But-2-enal  108.5 106.5 1.9 2.6 -1.5 5.1 

3 Buten-2-one  112.4 104.6 1.9 2.7 -0.8 5.6 

4 Penten-2-one 108.6 110.7 1.9 2.5 4.5 9.7 

5 Methyl prop-2-
enoate  

113.2 117.4 1.9 2.5 4.9 7.7 

6 Methyl but-2-enoate  109.4 110.8 1.9 2.3 10.2 12.4 
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Figure 3.8: The correlation between ΔETS-Thiolate (kcal/mol) and ΔEINT-Thiolate (kcal/mol) for a 

representative set of Michael acceptors (Table 3.1)  

3.3.2 The effect of cis and trans intermediates on calculated ΔEINT-Thiolate 

The previous analysis established that calculated ΔEINT-Thiolate can be used as opposed to ΔETS-Thiolate 

as a descriptor for reactivity for use in the fragment-based in silico profiler for Michael addition. In 

addition to this, an investigation into the effect of the potential for ΔEINT-Thiolate to vary due to 

rotation around the carbon-carbon double bond was also undertaken. Analysis of the reactant 

structure showed that there are two potential starting geometries for Michael acceptors. These 

being the cis-conformer where the carbon-carbon double bond is in the cis-position to the carbonyl, 

and the trans-conformer where the carbon-carbon double bond is in the trans-position to the 

carbonyl. These two conformers are related to each other via a 180° rotation around the α-carbon 

and the carbonyl-carbon. For example, there are two possible conformers for prop-2-enal (Figure 

3.9).  
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Figure 3.9. The two possible conformers of prop-2-enal highlighting the α-carbon 

Upon nucleophilic attack by a thiolate ion electron density in the π-bond is shifted resulting in a 

resonance-stabilised intermediate. This results in the formation of a partial double bond between 

the carbonyl-carbon and the α-carbon resulting in restricted rotation around this bond. This partial 

double bond results in the formation of two potential geometrical isomers for the intermediate, 

denoted here as a cis-intermediate and a trans-intermediate (mechanism showing the formation 

of each isomer is given in Figure 3.10).  

H+

cis-intermediate formation

trans-intermediate formation

H+

Figure 3.10: The different intermediate geometries of Michael acceptors reacting with a thiolate 

nucleophile 

Calculating ΔEINT-Thiolate for the chemicals in the previous analysis showed that the formation of the 

cis-intermediate was lower in energy than the formation of the trans-intermediate for all six 

chemicals (Figure 3.11, individual values shown in Table 3.2). This effect was greatest for α,β-

unsaturated aldehydes and ketones (chemicals 1 – 4 in Table 3.3). Whilst the difference in energy 

α-carbon 

cis-conformer trans-conformer

ΔETS-thiolate = -5.4 ΔETS-thiolate = -2.6

α-carbon 
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was significantly lower for the α,β-unsaturated esters (chemicals 5 and 6 in Table 3.2). This analysis 

highlighted the importance of having a consistent approach towards the choice of reactant 

conformations from which to calculate ΔEINT-Thiolate (more so for α,β-unsaturated aldehydes and 

ketones than the α,β-unsaturated esters). The formation of the cis-intermediate was calculated to 

be lower in energy for all chemicals investigated, and was thus utilised for all subsequent fragment 

calculations in the development of the fragment-based in silico profiler for Michael addition. 

 

Figure 3.11: The calculated ΔEINT-Thiolate difference between trans () and cis () intermediates. 

Structures are: (1) prop-2-enal, (2) but-2-enal, (3) buten-2-one, (4) penten-2-one, (5) methyl-prop-

2-enoate and (6) methyl-but-2-enoate  
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Table 3.2: Calculated ΔEINT-Thiolate (kcal/mol) values for cis and trans structures (Figures 3.9) 

ID Chemical 

Cis-intermediate  

ΔEINT-Thiolate 

(kcal/mol) 

Trans-intermediate 

ΔEINT-Thiolate 

(kcal/mol) 

Trans-intermediate  

ΔEINT-Thiolate  – 

Cis-intermediate ΔEINT-

Thiolate (kcal/mol) 

1 Prop-2-enal  -5.4 -2.6 2.8 

2 But-2-enal -1.5 1.6 3.1 

3 Buten-2-one -0.8 1.9 2.7 

4 Penten-2-one  4.5 7.2 2.7 

5 Methyl prop-2-enoate 4.9 5.2 0.3 

6 Methyl but-2-enoate 10.2 10.5 0.3 

 

3.4 Development of fragments for Michael addition 

The above analysis showed that ΔEINT-Thiolate was highly correlated with the true transition state for 

thiolate addition (ΔETS-Thiolate) meaning ΔEINT-Thiolate could be used as the descriptor associated with 

the fragments. Additionally, the analysis showed that the ΔEINT-Thiolate for chemicals in the cis-

intermediate were lower in energy than the equivalent values for the trans-intermediate As such 

ΔEINT-Thiolate for chemicals in the cis-conformation was used as a descriptor for all fragments. Having 

established this, the next step was to develop the fragments required to cover the applicability 

domain for α,β-unsaturated aldehydes, ketones and esters (chemical groups excluded from this 

domain are stated in the methods, Section 3.2.1). This is covered in Section 3.4.1 – 3.5. Sections 

3.4.2 and 3.4.3 outline the development of fragments for α,β-unsaturated aldehydes and for α,β-

unsaturated ketones and esters respectively. This next section (Section 3.4.1) will deal with the 

protocol for developing fragments. This protocol was adopted in order to enable a systematic 

approach to the SAR analysis. The SAR analysis aimed to investigate the variability of ΔEINT-Thiolate 

upon changing the substitutions at the various R-groups for the Michael acceptors. This was to 

establish the point at which ΔEINT-Thiolate no longer varied with a change in substitution at the 

respective R-group.  
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3.4.1 Rules for fragment development 

In order to enable a systematic approach to the fragment development, the following protocol was 

utilised: 

1. All ΔEINT-Thiolate values were calculated for fragments from the cis-intermediate. 

2. The ΔEINT-thiolate values for straight chains at each R-position were compared with the ΔEINT-

Thiolate values of a chain containing one carbon less (or in the case of methyl with hydrogen). 

For example, ethyl was compared to methyl and propyl compared to ethyl. 

3. Branched chains ΔEINT-Thiolate values were compared to the ΔEINT-Thiolate value of their straight 

chain equivalent. For example, i-propyl and t-butyl were compared with ethyl. 

4. Aryl substitutions were compared to the equivalent alkyl chain (or in the case of benzene 

with hydrogen). For example, methyl benzene with methyl, ethyl benzene with ethyl. 

5. Only one R group was investigated at a time whilst the other R groups remained constant. 

(e.g. R1 and R2 remained as hydrogen whilst the effect of substituents at the R3 position was 

investigated). 

6. Individual calculated ΔEINT-Thiolate were rounded to the nearest integer before comparing 

values rather than rounding the difference in ΔEINT-Thiolate between the two values (see 

Figure 3.12).  

7. A cut off value of > 1.0 kcal/mol was used to assess if there was a significant difference in 

ΔEINT-Thiolate following a change in substituents (see Figure 3.12). 

8. Unrounded ΔEINT-Thiolate values for fragments (to 1 decimal place) were used in the modelling 

of reactivity and toxicity in Chapters 4 and 5 (unlike rounded values which are used in the 

analysis). 

To explain rules 6, 7 and 8 in more detail, consider i-propyl and t-butyl substitution at the R1 position 

for α-β-unsaturated aldehydes. The ΔEINT-Thiolate is calculated to be 3.7 kcal/mol (rounded to 4.0 

kcal/mol, see rule 6) and 5.6 kcal/mol (rounded to 6.0 kcal/mol, see rule 6) for α,β-unsaturated 
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aldehyde substituted by these  fragments at the R1 position respectively. Both these fragments 

were compared to an ethyl substituent at the R1 position (ethyl substituent ΔEINT-Thiolate value being 

2.7 kcal/mol, 3.0 kcal/mol when rounded). The results showed that there was a difference in ΔEINT-

Thiolate of 1.0 kcal/mol between ethyl and i-propyl, whilst there was a difference of 3.0 kcal/mol 

between ethyl and t-butyl (summarized in Figure 3.12). Therefore, an ethyl group could be used to 

predict the ΔEINT-Thiolate of an i-propyl group (within 1.0 kcal/mol difference, see rule 7), but not t-

butyl (as there is a >1.0 kcal/mol difference). The results of this analysis meaning that to cover 

branched chains for α,β-unsaturated aldehydes substituted at the R1 position ethyl (to cover i-

propyl substation) and t-butyl were included in the fragment database. Note that although the 

integer rounded values were used in the fragment analysis, the calculated ΔEINT-Thiolate values 

assigned to fragments in the database were rounded to 1 decimal place (i.e. 2.7 kcal/mol and 5.6 

kcal/mol would be used for ethyl and t-butyl respectively at R1, see rule 8 and Figure 3.12).  

 

Figure 3.12: The analysis of fragments for α,β-unsaturated aldehydes containing i-propyl and t-butyl 

substitution at the R1 positions 

 

Compared to

ΔEINT-Thiolate  = 3.7 kcal/mol
(Rounded to 4.0 kcal/mol)

Compared to

ΔEINT-Thiolate  = 2.7 kcal/mol
(Rounded to 3.0 kcal/mol)

ΔEINT-Thiolate  = 5.6 kcal/mol
(Rounded to 6.0 kcal/mol)

ΔEINT-Thiolate  = 2.7 kcal/mol
(Rounded to 3.0 kcal/mol)
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3.4.2 Development of fragments for α,β-unsaturated aldehydes 

The eight rules stated above allowed the SAR in terms of ΔEINT-Thiolate to be investigated for positions 

R1 and R2 for α,β-unsaturated aldehydes. Where R1 and R2 were hydrogen, linear alkyl chains, 

methyl, ethyl and propyl), branched alkyl chains (i-propyl or t-butyl), or aryl (phenyl, benzyl, 

phenethyl and 3-phenylpropane) substituents. All ΔEINT-Thiolate values in the following fragment 

analysis are rounded to the nearest integer (see rule 6). 

Calculated ΔEINT-Thiolate SAR at position R1 for α,β-unsaturated aldehydes 

Initially the SAR for the variability of ΔEINT-Thiolate when extending the chain length at R1 position for 

α,β-unsaturated aldehydes was investigated. The calculated ΔEINT-Thiolate value increased by 3 

kcal/mol when extending the chain length from hydrogen to methyl substitution (compare chemical 

2 with 1 in Table 3.3). A larger increase of 5 kcal/mol was calculated when the alkyl substituent at 

R1 was extended from methyl to ethyl (compare chemical 3 with 2 in Table 3.3). In contrast, 

calculated ΔEINT-Thiolate remained relatively constant when extending the alkyl chain further from 

ethyl to propyl (compare chemical 3 with 4 in Table 3.3). This was also seen in calculated ΔEINT-Thiolate 

values when the alkyl chain was extended further (up to, and including, pentyl - Figure 3.13). This 

showed that ΔEINT-Thiolate for an ethyl substituent at the R1 can be used for the prediction of a propyl 

group or larger. 
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Figure 3.13: The change of calculated ΔEINT-Thiolate (kcal/mol) for α,β-unsaturated aldehydes with 

increasing alkyl chain length at the R1 position. All ΔEINT-Thiolate are rounded to the nearest integer 

In addition to linear alkyl chains, both i-propyl and t-butyl groups were also included in the analysis. 

These substituents were compared to their linear chain equivalents i.e. both i-propyl and t-butyl 

were compared to ethyl (Figure 3.12). An energy difference of 1 kcal/mol was calculated between 

i-propyl and ethyl (compare chemical 5 with 3 in Table 3.3), whilst an energy difference of 3 

kcal/mol was calculated between t-butyl and ethyl substitution (compare chemical 6 with 3 in Table 

3.3). This analysis showed that an ethyl chain was a suitable fragment for the prediction of 

calculated ΔEINT-thiolate for i-propyl. In contrast, the calculations showed that a fragment for a t-butyl 

group needed to be included at the R1 position. This is presumably due to its increased size 

(compared to its parent linear alkyl chain, ethyl) making nucleophilic attack by the thiolate ion more 

difficult due to steric hindrance. Figure 3.14 summarises the fragments that are required to predict 

the calculated ΔEINT-Thiolate for linear and branched α,β-unsaturated aldehydes (denoted as the 

parent chemical in Figure 3.14).  The effect of aryl groups on the calculated ΔEINT-Thiolate for the α,β-

unsaturated aldehydes was also investigated at the R1 position. The results showed that the 

calculated ΔEINT-Thiolate increases significantly by 8 kcal/mol on going from hydrogen to phenyl 
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(compare chemical 7 with 1 in Table 3.3). As expected, the results also showed that calculated ΔEINT-

Thiolate decreased by 2 kcal/mol upon the addition of a CH2 group between the β-carbon of the alkene 

and the benzene ring (compare chemical 8 with 7 in Table 3.3). In terms of defining fragments for 

the effect of a benzene ring it is necessary to compare the aryl substituent with the corresponding 

alkyl substituent. For example, an energy difference of 3 kcal/mol was calculated when comparing 

the ΔEINT-Thiolate value for phenyl to methyl (compare chemical 8 with 2 in Table 3.3). This energy 

difference is significantly in excess of the 1 kcal/mol cut-off. In contrast, an energy difference of 1 

kcal/mol was calculated when comparing the ΔEINT-Thiolate values of ethyl and phenethyl (compare 

chemicals 9 and 3 in Table 3.3). This means that three fragments were required to define the effect 

of a benzene ring at the R1 position: phenyl, benzyl and an ethyl chain. The ethyl fragment being 

used to predict chemicals with a benzene ring two or more carbons away from the β-carbon of the 

alkene. 

Table 3.3: Calculated ΔEINT-Thiolate (kcal/mol) values for α,β-unsaturated aldehydes substituted at the 

R1 position (R groups as defined in Figure 3.6). The fragment substituent column indicates the 

substituent used to predict the ΔEINT-Thiolate of the respective R-group following the above analysis. 

The resulting fragment calculated ΔEINT-Thiolate from using that substitution is also included 

ID Substituent name – R1 
ΔEINT-Thiolate  

(kcal/mol) 

Fragment 

substituent 

Fragment ΔEINT-Thiolate  

(kcal/mol) 

1 Hydrogen -5 H -5 

2 Methyl -2 CH3 -2 

3 Ethyl 3 CH2CH3 3 

4 Propyl 3 CH2CH3 3 

5 i-Propyl 3 CH2CH3 3 

6 t-Butyl 6 t-butyl 6 

7 Phenyl 3 C6H5 3 

8 Benzyl 1 CH2C6H5 1 

9 Phenethyl 2 CH2CH3 3 

10 3-Phenylpropane 2 CH2CH3 3 
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Figure 3.14: The fragment selection for a series of α,β-unsaturated aldehydes substituted at the R1 

position (ΔEINT-Thiolate   values in Table 3.3). The rationale behind the selected fragments for the 

parent chemical is discussed in Section 3.4.2 

Calculated ΔEINT-Thiolate SAR at position R2 for α,β-unsaturated aldehydes 

An analogous analysis into the effect of alkyl chain length on the α,β-unsaturated aldehydes 

substituted at position R2 showed only a small change in calculated  ΔEINT-Thiolate  values (within 1 kcal 

/mol) when going from methyl to ethyl to propyl (compare chemicals 4 and 3 with 2 in Table 3.4). 

This enabled methyl to be used as a fragment for all linear chains at the R2 position. However, a 

difference in calculated ΔEINT-Thiolate of 2 kcal/mol and 4 kcal/mol was calculated when comparing 

both i-propyl and t-butyl with ethyl (compare chemicals 5 and 6 with 3 in Table 3.4). These 

calculated results showed the need to include fragments for both i-propyl and t-butyl at the R2 

position.  Similarly, an analysis into the effect of aryl groups on the α,β-unsaturated aldehydes 

Parent chemical Fragment selection 
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substituted at position R2 showed the calculated ΔEINT-Thiolate value to decrease by 4 kcal/mol when 

going from hydrogen to phenyl (compare chemical 7 with 1 in Table 3.4). This decrease in energy 

can be rationalised in terms of the ability of the aromatic ring system to stabilise the negative charge 

present on the α-carbon in the intermediate structure (Figure 3.2). Only a small difference in ΔEINT-

Thiolate was calculated (within 1 kcal/mol when rounded) when comparing benzene groups that were 

one, two or three carbons away from the α-carbon (compare chemicals 8 with 2, 9 with 3 and 10 

with 4 in Table 3.4) with a methyl group (Table 3.4). The results of this analysis showed that only 

phenyl had a significant effect on calculated ΔEINT-Thiolate values at the R2 position. The calculations 

showed that a methyl fragment could be used to predict the calculated ΔEINT-Thiolate of benzene 

groups one or more carbons away from the α-carbon. This resulted in two fragments being required 

for aryl substituents at the R2 position (methyl and phenyl). 

Table 3.4: Calculated ΔEINT-Thiolate (kcal/mol) values for α,β-unsaturated aldehydes substituted at the 

R2 position (R groups as defined in Figure 3.6). The fragment substituent column indicates the 

substituent used to predict the ΔEINT-Thiolate of the respective R-group following the above analysis. 

The resulting fragment calculated ΔEINT-Thiolate from using that substitution is also included 

ID Substituent name – R2 ΔEINT-Thiolate  

(kcal/mol) 

Fragment 

substituent  

Fragment ΔEINT-Thiolate 

(kcal/mol) 

1 Hydrogen -5 H -5 

2 Methyl -2 CH3 -2 

3 Ethyl -2 CH3 -2 

4 Propyl -2 CH3 -2 

5 i-Propyl 0 i-Propyl 0 

6 t-Butyl 2 t-Butyl 2 

7 Phenyl -9 C6H5 -9 

8 Benzyl -2 CH3 -2 

9 Phenethyl -3 CH3 -2 

10 3-Phenylpropane -3 CH3 -2 
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3.4.3 Development of fragments for α,β-unsaturated ketones and esters  

The approach was extended to α,β-unsaturated ketones and esters using the same substituents as 

were used for the α,β-unsaturated aldehydes. The α,β-unsaturated ketones and esters required an 

additional R group to be taken into consideration (R3 in Figure 3.6). 

Calculated ΔEINT-Thiolate SAR at position R1 for ketones and esters 

For the α,β-unsaturated ketones six fragments were required at the R1 position (individual values 

shown in Table 3.5) while for the α,β-unsaturated esters a total number of five fragments were 

required (individual values shown in Table 3.6). The same set of fragments as discussed for the α,β-

unsaturated aldehydes substituted at the R1 position were required (Section 3.4.2, Table 3.3) with 

the following exceptions: 

 An i-propyl fragment was required for the α,β-unsaturated ketones as i-propyl was not 

within 1 kcal/mol of ethyl when rounded (compare chemical 5 with 3 in Table 3.5) 

 A benzyl fragment was not required for either of the α,β-unsaturated ketones or esters as 

methyl was within 1 kcal/mol when rounded (compare chemical 8 and 1 in Table 3.5 and 

Table 3.6 for ketones and esters respectively) 
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Table 3.5: Calculated ΔEINT-Thiolate values for α,β-unsaturated ketones substituted at the R1 position 

(R groups as defined in Figure 3.6). The fragment substituent column indicates the substituent used 

to predict the ΔEINT-Thiolate of the respective R-group following the above analysis. The resulting 

fragment ΔEINT-Thiolate calculated from using that substitution is also included 

ID Substituent SMILES - R1 
ΔEINT-Thiolate  

(kcal/mol) 

Fragment 

substituent 

Fragment ΔEINT-Thiolate 

(kcal/mol) 

1 Hydrogen -1 H -1 

2 Methyl 5 CH3 5 

3 Ethyl 7 CH2CH3 7 

4 Propyl 7 CH2CH3 7 

5 i-Propyl 9 i-propyl 9 

6 t-Butyl 10 t-butyl 9 

7 Phenyl 7 C6H5 7 

8 Benzyl 5 CH3 5 

9 Phenethyl 7 CH2CH3 7 

 

Table 3.6: Calculated ΔEINT-Thiolate values for polarised esters substituted at the R1 position (R groups 

as defined in Figure 3.6). The fragment substituent column indicates the substituent used to predict 

the ΔEINT-Thiolate of the respective R-group following the above analysis. The resulting fragment ΔEINT-

Thiolate calculated from using that substitution is also included 

ID Substituent name – R1 
ΔEINT-Thiolate  

(kcal/mol) 

Fragment 

substituent 

Fragment ΔEINT-Thiolate 

(kcal/mol) 

1 Hydrogen 5 H 5 

2 Methyl 10 CH3 10 

3 Ethyl 13 CH2CH3 13 

4 Propyl 13 CH2CH3 13 

5 i-Propyl 14 CH2CH3 13 

6 t-Butyl 16 t-Butyl 16 

7 Phenyl 13 C6H5 13 

8 Benzyl 11 CH3 10 

9 Phenethyl 12 CH2CH3 13 
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Calculated ΔEINT-Thiolate SAR at position R2 for α,β-unsaturated ketones and esters 

The analysis at the R2 position for the α,β-unsaturated ketones required a total of six fragments 

(individual values shown in Table 3.7) whilst the analysis for α,β-unsaturated esters substituted at 

the R2 position required a total of six fragments (individual values shown in Table 3.8). The same 

set of fragments as discussed for the α,β-unsaturated aldehydes substituted at the R2 position were 

required (Section 3.4.2, Table 3.4) with the following exceptions: 

 An ethyl fragment was required for both the α,β-unsaturated ketones and esters to predict 

aryl substituents that were two or more carbons away (compare chemicals 9 and 10 with 3 

in Table 3.7 and 3.8 for ketones and esters respectively) 

 An i-propyl fragment was not required for α,β-unsaturated ketones and esters as i-propyl 

was within 1 kcal/mol of ethyl when rounded (compare chemical 5 with 3 in Table 3.7 and 

Table 3.8 for ketones and esters respectively) 

 A benzyl fragment was required for both the α,β-unsaturated ketones and esters as methyl 

was not within 1 kcal/mol of benzyl rounded (compare chemical 8 with 2 in Table 3.7 and 

Table 3.8 for ketones and esters respectively) 
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Table 3.7: Calculated ΔEINT-Thiolate values for α,β-unsaturated ketones substituted at the R2 positions 

(R groups as defined in Figure 3.6). The fragment substituent column indicates the substituent used 

to predict the ΔEINT-Thiolate of the respective R-group following the above analysis. The resulting 

fragment ΔEINT-Thiolate calculated from using that substitution is also included 

ID Substituent name – R2 
ΔEINT-Thiolate  

(kcal/mol) 

Fragment 

substituent 

Fragment ΔEINT-Thiolate 

(kcal/mol) 

1 Hydrogen -1 H -1 

2 Methyl 5 CH3 5 

3 Ethyl 4 CH3 5 

4 Propyl 4 CH3 5 

5 i-Propyl 5 CH2CH3 5 

6 t-Butyl 7 t-butyl 7 

7 Phenyl -2 C6H5 -2 

8 Benzyl 2 CH2C6H5 2 

9 Phenethyl 3 CH2CH3 4 

10 3-Phenylpropane 3 CH2CH3 4 
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Table 3.8: Calculated ΔEINT-Thiolate values for α,β-unsaturated esters substituted at the R2 position (R 

groups as defined in Figure 3.6). The fragment substituent column indicates the substituent used 

to predict the ΔEINT-Thiolate of the respective R-group following the above analysis. The resulting 

fragment ΔEINT-Thiolate calculated from using that substitution is also included 

ID Substituent name – R2 
ΔEINT-Thiolate  

(kcal/mol) 

Fragment 

substituent 

Fragment ΔEINT-Thiolate  

(kcal/mol) 

1 Hydrogen 5 H 5 

2 Methyl 10 CH3 10 

3 Ethyl 9 CH3 10 

4 Propyl 10 CH3 10 

5 i-Propyl 8 CH3CH2 8 

6 t-Butyl 11 t-butyl 11 

7 Phenyl 1 C6H5 1 

8 Benzyl 7 CH2C6H5 7 

9 Phenethyl 8 CH2CH3 9 

10 3-Phenylpropane 8 CH2CH3 9 

 

Calculated ΔEINT-Thiolate SAR at position R3 for α,β-unsaturated ketones and esters 

Unlike the α,β-unsaturated aldehydes, α,β-unsaturated ketones and esters required an additional 

R group to be taken into consideration (R3 in Figure 3.6 - all values for α,β-unsaturated ketones and 

esters shown in Table 3.9 and Table 3.10 respectively). The analysis of linear and branched chains 

at the R3 position for α,β-unsaturated ketones showed the calculated ΔEINT-Thiolate values increased 

by 1 kcal/mol when going from methyl to ethyl (compare chemical 2 with 1 in Table 3.9). This meant 

that a methyl group could be used to predict the calculated ΔEINT-thiolate for linear chains two or more 

carbons in length at the R3 position. For the analysis of branched chains, calculated ΔEINT-Thiolate 

values also increased by only 1 kcal/mol when going from ethyl to i-propyl substituents (compare 

chemical 4 with 2 in Table 3.9). In contrast, the calculated ΔEINT-Thiolate value increased by 3 kcal/mol 

when going from ethyl to t-butyl (compare chemical 5 with 2 in Table 3.9). Therefore, a fragment 
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for t-butyl was required, but a fragment for i-propyl was not required as the results showed that 

ethyl could be used as a fragment for i-propyl. Finally, the analysis for aryl groups at the R3 position 

showed a decrease in the calculated ΔEINT-Thiolate values of 2 kcal/mol when going from a methyl 

substituent to a phenyl substituent (compare chemical 6 with 1 in Table 3.9). This is likely to be due 

to the increased electron withdrawing ability of the aryl ring which results in additional stabilisation 

of the negative charge present in the structure of the intermediate (Figure 3.2). This electron 

withdrawing effect is decreased by the addition of an extra alkyl carbon upon going from phenyl to 

benzyl. This resulted in an increase in the calculated ΔEINT-Thiolate value of only 1 kcal/mol (compare 

chemical 7 with 6 in Table 3.9). The results of these calculations showed four fragments to be 

required at the R3 position for α,β-unsaturated ketones: methyl, phenyl, ethyl and t-butyl. The 

calculated trends in the ΔEINT-Thiolate SAR for the R3 position for the α,β-unsaturated esters showed 

the same results, with an analogous set of fragments being required (Table 3.10). 

Table 3.9: Calculated ΔEINT-Thiolate values for α,β-unsaturated ketones substituted at the R3 position 

(R groups as defined in Figure 3.6). The fragment substituent column indicates the substituent used 

to predict the ΔEINT-Thiolate of the respective R-group following the above analysis. The resulting 

fragment ΔEINT-Thiolate calculated from using that substitution is also included 

ID Substituent name – R3 ΔEINT-Thiolate  

(kcal/mol) 

Fragment 

substituent 

Fragment ΔEINT-Thiolate 

(kcal/mol) 

1 Methyl -1 CH3 -1 

2 Ethyl 0 CH3 -1 

3 Propyl 0 CH3 -1 

4 i-Propyl 1 CH2CH3 0 

5 t-Butyl 3 t-butyl 3 

6 Phenyl -3 C6H5 -3 

7 Benzyl -2 CH3 -1 

8 Phenethyl -1 CH3 -1 
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Table 3.10: Calculated ΔEINT-Thiolate values for α,β-unsaturated esters substituted at the R3 position (R 

groups as defined in Figure 3.6). The fragment substituent column indicates the substituent used 

to predict the ΔEINT-Thiolate of the respective R-group following the above analysis. The resulting 

fragment ΔEINT-Thiolate calculated from using that substitution is also included 

ID Substituent name – R3 
ΔEINT-Thiolate  

(kcal/mol) 

Fragment 

substituent 

Fragment 

ΔEINT-Thiolate  (kcal/mol) 

1 Methyl 5 H 5 

2 Ethyl 5 OCH3 5 

3 Propyl 5 OCH3 5 

4 i-Propyl 6 OCH2CH3 5 

5 t-Butyl 7 Ot-butyl 7 

6 Phenyl -0 OC6H5 -0 

7 Benzyl 5 OCH3 5 

8 Phenethyl 5 OCH3 5 

 

3.5 Overall domain of the fragments 

The analysis outlined above for α,β-unsaturated aldehydes, α,β-unsaturated ketones and esters 

resulted in the definition of 294 fragments which are summarised in Table 3.11. The table shows 

which substitutions were required at the respective R-groups for each chemical class. All aldehydes, 

ketones and esters required no greater than an ethyl substitution at all R-positions when 

considering linear alkyl chains. Additionally, steric factors were shown to have a significant effect 

on the calculated ΔEINT-Thiolate for all R-groups for aldehydes ketones and esters, with t-butyl having 

a greater effect on calculated ΔEINT-Thiolate than i-propyl. The electron withdrawing effect of the 

benzene ring was also calculated to have an effect on calculated ΔEINT-Thiolate (when compared to 

linear alkyl chains) when linked by either one or two carbons at positions R1, R2 or (where relevant) 

R3. 
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Table 3.11: Summary of the fragments defined for α,β-unsaturated aldehydes, α,β-unsaturated 

ketones and esters (R groups as defined in Figure 3.6) 

Chemical class  R1 R2 R3 

α,β-unsaturated  

aldehydes 

Alkyl: H, CH3, CH2CH3, 

t-butyl 

Aryl: C6H5, CH2C6H5, 

CH2CH3 [for 

(CH2)nC6H5, n>=2]  

Alkyl: H, CH3, i-propyl, 

t-butyl 

Aryl: C6H5, CH3 [for 

(CH2)nC6H5, n>=1]  

H 

α,β-unsaturated 

ketones 

Alkyl: H, CH3, CH2CH3, 

i-propyl,  t-butyl 

Aryl: C6H5, CH3 [for 

(CH2)nC6H5, n>=1]  

Alkyl: H, CH3,,CH2CH3, 

t-butyl  

Aryl: C6H5, CH2C6H5, 

CH2CH3 [for 

(CH2)nC6H5, n>=2]  

Alkyl: CH3, CH2CH3, t-

butyl 

Aryl: C6H5, CH3 [for 

(CH2)nC6H5, n>=1]  

α,β-unsaturated 

esters 

Alkyl: H, CH3, CH2CH3,  

t-butyl 

Aryl: C6H5, CH3 [for 

(CH2)nC6H5, n>=1]  

Alkyl: H, CH3, CH2CH2, 

t-butyl 

Aryl: C6H5, CH2C6H5 

CH2CH2 [for 

(CH2)nC6H5, n>=2]   

Alkyl: OCH3, OCH2CH3 

O-t-butyl 

Aryl: OC6H5, OCH3 [for 

(CH2)nC6H5, n>=1]   

 

3.6 Concluding remarks 

This chapter has focused on the development of fragments for a fragment-based in silico profiler 

for Michael addition. The analysis showed that ΔEINT-Thiolate was highly correlated with ΔETS-Thiolate 

showing that ΔEINT-Thiolate could be used as the descriptor for reactivity for use in the fragment-based 

in silico profiler for Michael addition. This significantly reduced the number of calculations required 

per chemical (three calculations versus a minimum of nine). Additionally, calculations also showed 

the geometry of the reactant Michael acceptor to have an effect on the calculated ΔEINT-Thiolate 

values, with the cis-intermediate being lower in energy. The ΔEINT-Thiolate SAR analysis showed that a 

total number of 294 fragments were required (30 α,β-unsaturated aldehydes, 144 α,β-unsaturated 

ketones and 120 α,β-unsaturated esters) to cover the domain of linear α,β-unsaturated aldehydes, 
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ketones and esters. This covers all α,β-unsaturated aldehydes, ketones and esters with alkyl or aryl 

substitutions at the 3 R-positions (effectively covering a potentially vast number of chemicals). The 

definition of these fragments is the key step in the development of a fragment-based profiler. The 

ability of the developed fragments to predict thiol reactivity, skin sensitisation and Tetrahymena 

pyriformis toxicity will be discussed in Chapter 4. 
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Chapter 4. Application of the fragment-based in silico profiler for Michael 

Addition in predicting thiol reactivity, skin sensitisation and toxicity to 

Tetrahymena pyriformis 

4.1 Introduction 

Chapter 3 focused on the development of a fragment-based in silico profiler for Michael addition. 

The approach involved defining the fragments, and associated ΔEINT-Thiolate values, required to cover 

the domain of linear α,β-unsaturated aldehydes, ketones and esters. This analysis resulted in the 

definition of 294 unique fragments.  The aim of this chapter is to validate the ability of the in silico 

profiler, based on these fragments, and ΔEINT-Thiolate values to predict glutathione reactivity, skin 

sensitisation potency and toxicity to Tetrahymena pyriformis for chemicals within the domain of 

the profiler. 

 

4.2 Methods 

4.2.1 Computational Methods 

The fragment-based in silico profiler for Michael addition was developed based on a set of polarised 

aldehydes, ketones, and esters with varying alkyl and aryl substitutions (Figure 4.1) (103).  

 

Figure 4.1: Domain covered by fragment method for Michael acceptors.  (R1 = Hydrogen, alkyl, aryl) 

(R2 = Hydrogen, alkyl, aryl) (R3 = H) for polarised aldehydes, (R3 = CH, C-alkyl, C-aryl) for polarised 

ketones, (R3 = OCH, OC-alkyl, OC-aryl) for polarised esters.  
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The approach utilises a database of fragments with pre-calculated activation energy values (ΔEINT-

Thiolate) calculated using Density Functional Theory (DFT) at the B3LYP/6-31G+(d) level of theory using 

water as a solvent employing Polarizable Cotinuum Model (PCM) as an implicit solvation model 

(calculations performed using Gaussian09 with water as solvent) (102). The approach is 

summarised in Figure 4.2. Descriptors for hydrophobicity (Log kow) and vapour pressure (Log VP) 

were calculated using the KOWWIN (V1.68) and MPBPWIN (V1.43) modules of EPI suite (104). The 

Solvent Accessible Surface area (SAS) at the α-position was calculated for each chemical using the 

Chimera software (105). 

4.2.2 Dataset for glutathione reactivity 

The –Log RC50 values for various Michael acceptors were determined using a previously published 

spectrophotometric peptide depletion assay (106) (this data was gathered by Prof T. W. Schultz and 

the research group at the Department of Compariative Medicine research group at the University 

of Tennessee). Average -Log RC50 values were calculated for chemicals that had multiple 

experimental values. The – Log RC50 values for poorly soluble chemicals were determined by the 

addition of 50% MeOH. Profiling of a database of 212 Michael acceptors with glutathione reactivity 

data showed 54 chemicals were within the domain of the fragment-based in silico profiler for 

Michael addition (linear α,β-unsaturated aldehydes, ketones and esters). An additional 18 

chemicals (nine nitros, three nitriles and six cyclic ketones) were also included as part of the model 

validation which required the development of additional fragments. This resulted in a subsequent 

dataset of 72 chemicals comprising 13 aldehydes, 17 ketones, 24 esters, nine nitro compounds, 

three nitrile containing compounds and six cyclic ketones (Table 4.1). Standard deviation values 

indicate an average experimental error of 0.13 log units for the reactivity measurements.    
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4.2.3 Data Set for Tetrahymena pyriformis and skin sensitization 

A set of 62 Michael acceptors from a database of 2072 chemicals with experimental toxicity values 

to Tetrahymena pyriformis were identified as being within the applicability domain of the of the 

fragment-based in silico profiler (defined in Figure 4.1). This data was compiled in a study by 

Ruusmann et al based on the available data relating to the Tetrahymena pyriformis growth 

impairment assay and the work carried out by Prof T. W. Schultz (83, 107). These toxicity data were 

obtained using an in vitro assay, which quantifies 50% growth inhibition of the ciliate Tetrahymena 

pyriformis over a 40-hour exposure period to the test chemical (also recorded as –Log EC50 values) 

(54). A similar analysis of skin sensitization data gathered from the mouse LLNA resulted in a dataset 

of 38 Michael acceptors within the applicability domain of the fragment-based in silico profiler for 

Michael addition (data gathered from studies by Gerberick et al, Kern et al and Natsch et al) (108-

110). The LLNA is an in vivo based assay in which the stimulation of the lymph nodes of mice is 

measured upon exposure to a test chemical. The recorded value is the concentration required to 

elicit a three-fold stimulation in the lymph nodes, this is reported as an EC3 value (% weight) for the 

chemical. If the chemical does not produce a threefold stimulation it is not considered a sensitiser. 

All EC3 values were converted to pEC3 values (as shown in 1.2). As the test vehicle is known to 

influence pEC3 values, only chemicals for which the vehicle was recorded to be acetone: olive oil, 

(AOO 4:1) were included in the analysis, this resulted in a final dataset of 27 skin sensitising 

chemicals (111). 

 4.2.4 Statistical analysis 

Linear regression analysis was used to develop quantitative structure-activity relationship models 

to obtain correlations between calculated –Log RC50 values and toxicity values using the Minitab 

(version 17) statistical software. Outliers were identified following linear regression analysis as 

chemicals with large standardised residuals as identified by Minitab. Chemicals for which a 

mechanistic rationale enabling outlying behaviour to be explained were subsequently removed 

from the analysis.     
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4.3 Prediction of glutathione reactivity using the fragment-based in silico profiler 

4.3.1 Predictions for α,β-unsaturated aldehydes, ketones and esters 

The ability of the fragment-based in silico profiler for Michael addition to predict glutathione 

reactivity was investigated for 54 chemicals (chemicals 1-54 in Table 4.1: 13 α,β-unsaturated 

aldehydes, 17 α,β-unsaturated ketones and 24 α,β-unsaturated esters). 
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Table 4.1: Michael acceptors with corresponding –Log RC50 values investigated in the current study. Where RC50 is the concentration of reactive chemical 

required to deplete GSH by 50 % in 120 minutes. Fragment names are based on their IUPAC name 

ID Chemical 
-Log RC50 

(mM) 
Fragment  

Predicted –Log RC50  (mM)  

Model 4.1 Model 4.2 Model 4.3 Model 4.4 

Aldehyde 

1 trans-Pent-2-enal 0.48 trans-Pent-2-enal 0.02 0.81 0.57 0.55 

2 trans-Oct-2-enal 0.56 trans-Pent-2-enal 0.02 0.81 0.57 0.55 

3 trans-Non-2-enal 0.39 trans-Pent-2-enal 0.02 0.81 0.57 0.55 

4 trans-Hex-2-enal 0.37 trans-Pent-2-enal 0.02 0.81 0.57 0.55 

5 trans-Prop-2-enal 1.14 trans-Prop-2-enal 0.89 1.74 1.38 1.34 

6 trans-2-Methylbut-2-enal -1.07 trans-2-Methylbut-2-enal -0.43 -0.68 -0.87 -0.96 

7 2-Methyl-pent-2-enal -1.32 2-Methyl-pent-2-enal -0.66 -0.82 -0.97 -1.05 

8 4-Methyl-pent-2-enal -0.06 4-Methyl-pent-2-enal -0.48 0.30 0.12 0.12 

9 trans-But-2-enal 0.67 trans-But-2-enal 0.31 0.98 0.70 0.66 

10 E-Dec-2-enal 0.67 trans-Pent-2-enal 0.02 0.81 0.57 0.55 

11 trans-Dec-2-enal 0.77 trans-Pent-2-enal 0.02 0.81 0.57 0.55 

12 trans-Cinnamaldehyde 0.02 trans-Cinnamaldehyde -0.43 0.24 0.06 0.05 

13 α-Methyl-trans-cinnamaldehyde * -1.33 α-Methyl-trans-cinnamaldehyde -0.72 -1.04 -1.18 -1.27 

Ketone 

14 Methyl vinyl ketone 1.23 Methyl vinyl ketone 0.20 1.19 0.93 0.92 

15 Hex-1-en-3-one 1.23 Methyl vinyl ketone 0.20 1.19 0.93 0.92 
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ID Chemical 
-Log RC50 

(mM) 
Fragment  

Predicted –Log RC50  (mM)  

Model 4.1 Model 4.2 Model 4.3 Model 4.4 

16 Pent-1-en-3-one 1.29 Methyl vinyl ketone 0.20 1.19 0.93 0.92 

17 Pent-3-en-2-one 0.83 Pent-3-en-2-one -0.60 0.30 0.14 0.15 

18 Hept-3-en-2-one 0.17 Hex-3-en-2-one -0.96 0.08 -0.03 0.00 

19 Oct-3-en-2-one 0.24 Hex-3-en-2-one -0.96 0.08 -0.03 0.00 

20 Non-3-en-2-one 0.27 Hex-3-en-2-one -0.96 0.08 -0.03 0.00 

21 Dec-3-en-2-one 0.24 Hex-3-en-2-one -0.96 0.08 -0.03 0.00 

22 Hex-4-en-3-one 0.46 Hex-4-en-3-one -0.72 0.23 0.08 0.10 

23 Oct-1-en-3-one 1.78 Methyl vinyl ketone 0.20 1.19 0.93 0.92 

24 3-Methyl-pent-3-en-2-one -0.99 3-Methyl-pent-3-en-2-one -1.33 -1.16 -1.23 -1.25 

25 5-Methyl-hept-2-en-4-one 0.44 5-Methyl-hept-2-en-4-one -1.00 0.05 -0.05 -0.01 

26 trans-Non-3-en-2-one 0.22 Hex-3-en-2-one -0.96 0.08 -0.03 0.00 

27 4-Phenyl-but-3-en-2-one -0.55 4-Phenyl-but-3-en-2-one -1.00 -0.44 -0.55 -0.55 

28 trans-Chalcone * 0.40 trans-Chalcone -0.75 -0.29 -0.43 - 

29 2-Hydroxychalcone 0.83 trans-Chalcone -0.75 -0.29 -0.43 - 

30 4-Hydroxychalcone 0.39 trans-Chalcone -0.75 -0.29 -0.43 - 

Esters 

31 Isobutyl acrylate 0.32 Methyl acrylate -0.66 0.61 0.46 0.50 

32 n-Hexylacrylate 0.09 Methyl acrylate -0.66 0.61 0.46 0.50 

33 Butyl acrylate 0.11 Methyl acrylate -0.66 0.61 0.46 0.50 
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ID Chemical 
-Log RC50 

(mM) 
Fragment  

Predicted –Log RC50  (mM)  

Model 4.1 Model 4.2 Model 4.3 Model 4.4 

34 Methyl crotonate -1.33 Methyl crotonate -1.45 -0.22 - - 

35 Ethyl acrylate 0.29 Methyl acrylate -0.66 0.61 0.46 0.50 

36 Methyl acrylate 0.31 Methyl acrylate -0.66 0.61 0.46 0.50 

37 Methyl methacrylate -1.84 Methyl methacrylate -1.38 -1.31 -1.37 -1.40 

38 t-butyl acrylate -0.11 t-butyl acrylate -0.97 0.42 0.31 0.38 

39 Propyl acrylate 0.07 Methyl acrylate -0.66 0.61 0.46 0.50 

40 2-Hydroxy ethyl acrylate 0.57 Methyl acrylate -0.66 0.61 0.46 0.50 

41 2-Hydroxyethyl methacrylate -1.52 Methyl methacrylate -1.38 -1.31 -1.37 -1.40 

42 2-Hydroxypropyl methacrylate -1.33 Methyl methacrylate -1.38 -1.31 -1.37 -1.40 

43 Phenyl acrylate 1.64 Phenyl acrylate 0.10 1.06 0.81 - 

44 Isoamyl acrylate 0.17 Methyl acrylate -0.66 0.61 0.46 0.50 

45 N-pentylacrylate 0.09 Methyl acrylate -0.66 0.61 0.46 0.50 

46 Ethyl crotonate -1.25 Methyl crotonate -1.45 -0.22 - - 

47 Methyl trans-pent-2-enoate -0.70 Methyl trans-pent-2-enoate -1.53 -0.26 - - 

48 Ethyl trans-hex-2-enoate 0.12 Methyl trans-pent-2-enoate -1.53 -0.26 -0.30 -0.22 

49 Methyl-hex-2-enoate -0.39 Methyl trans-pent-2-enoate -1.53 -0.26 -0.30 -0.22 

50 Methyl-4-methyl-pent-2-enoate -0.11 Methyl-4-methyl-pent-2-enoate -2.08 -0.59 -0.56 -0.45 

51 Ethyl tiglate -1.15 Methyl tiglate -2.08 -1.70 -1.66 -1.64 

52 Ethyl methacrylate * -1.53 Methyl methacrylate -1.38 -1.31 -1.37 -1.40 



 

85 
 

ID Chemical 
-Log RC50 

(mM) 
Fragment  

Predicted –Log RC50  (mM)  

Model 4.1 Model 4.2 Model 4.3 Model 4.4 

53 Butyl methacrylate * -1.63 Methyl methacrylate -1.38 -1.31 -1.37 -1.40 

54 2-Ethylhexyl acrylate * 0.36 Methyl acrylate -0.66 0.61 0.46 0.50 

Nitro 

55 1-Nitro-1-cyclohexene 1.56 2-Nitrobut-2-ene - - - 0.96 

56 
4-Methyl-β-nitrostyrene (mixture 

of cis and trans) 
0.94 2-Nitroethylbezene - - - 0.85 

57 trans-β-Nitrostyrene 1.21 2-Nitroethylbezene - - - 0.85 

58 trans-4-Methyl-β-nitrostyrene 1.09 2-Nitroethylbezene - - - 0.85 

59 trans-4-Chloro-β-nitrostyrene 1.14 2-Nitroethylbezene - - - 0.85 

60 trans-4-Bromo-β-nitrostyrene 1.18 2-Nitroethylbezene - - - 0.85 

61 4-Fluoro-β-nitrostyrene 1.29 2-Nitroethylbezene - - - 0.85 

62 trans-4-Methoxy-β-nitrostyrene 1.36 2-Nitroethylbezene - - - 0.85 

63 trans-β-Methyl-β-nitrostyrene 1.19 2-Nitroprop-1-en-1-yl-benzene - - - 0.82 

Nitrile 

64 2-Methyleneglutaronitrile -1.36 2-Methylprop-2-ene-nitrile - - - -1.28 

65 
Cyclohexene-1-carbonitrile (1-

cyanocyclohexene) 
-1.45 2-Methylbut-2-ene-nitrile - - - -1.57 

66 1-Cyclopentene-1-carbonitrile -1.31 2-Methylbut-2-ene-nitrile - - - -1.57 

Cyclic ketones 
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ID Chemical 
-Log RC50 

(mM) 
Fragment  

Predicted –Log RC50  (mM)  

Model 4.1 Model 4.2 Model 4.3 Model 4.4 

67 2-Cyclohexen-1-one 0.50 Hex-3-en-2-one - - - 0.00 

68 2-Cyclopenten-1-one 0.18 Hex-3-en-2-one - - - 0.00 

69 2-Methyl-2-cyclopenten-1-one -1.00 3-Methyl-hex-3-en-2-one - - - -1.35 

70 4,4-Dimethyl-2-cyclohexen-1-one -0.01 5-Methyl-hex-3-en-2-one - - - -0.10 

71 1-Acetyl-1-cyclohexene -0.31 3-Methyl-hex-3-en-2-one - - - -1.35 

72 1-Acetyl-1-cyclopentene -0.59 3-Methyl-hex-3-en-2-one - - - -1.35 

-Log RC50 were provided by T. W Schultz using a previously published spectrophotometric peptide depletion assay.18 * indicates - chemicals that were unreactive in the standard 120 minute 

GSH assay with DMSO, for these chemicals values were obtained using 50% MeOH as solvent. 
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Initial modelling, using only the calculated ΔEINT-Thiolate, failed to produce a statistically significant 

model due to chemicals with an α-substituent being consistently over-predicted (Model 4.1 in Table 

4.2 and Figure 4.2, chemicals with an α-substituent shown as ). Inclusion of a solvent accessible 

surface area (SAS) descriptor for the α-position resulted in a significantly improved model (Model 

4.2 in Table 4.2 and Figure 4.2). The mechanistic relevance of this descriptor likely stems from the 

nature of the intermediate in the Michael reaction which involves the formation of a resonance 

stabilised negative charge on the α-carbon atom. The solvation of this charge plays a key role in the 

stability of the transition state and thus overall reactivity. This solvation effect can be modelled by 

the inclusion of the steric SAS parameter, with the less solvent accessible α-substituted chemicals 

being less stabilised, due to solvent molecules being sterically hindered from solvating the charge 

by the presence of the substituent, compared to chemicals without an α-substituent. Given this, 

values for SAS at the α-position were introduced to all fragments in the fragment-based in silico 

profiler for Michael addition (in addition to ΔEINT-Thiolate). 

Table 4.2: Summary statistics for Models 4.1-4.4 as shown in Figure 3. Model 1 has no SAS at the α-

position value as it uses ΔEINT-Thiolate as a single descriptor. 

Model N a B c R2 R2-adj R2-Pred Average Error 

-Log RC50 = a + b. ΔEINT-Thiolate + c.SAS α 

4.1 54 0.80 -0.15 X 0.52 0.51 0.48 0.60 

4.2 54 -1.05 -0.09 -0.11 0.77 0.76 0.74 0.41 

4.3 52 -1.30 -0.07 0.12 0.81 0.80 0.78 0.37 

4.4 48 -1.48 -0.06 0.13 0.87 0.86 0.85 0.29 

 

Model 4.2 successfully improves the prediction for the majority of the chemicals in the dataset. 

However, closer inspection of the data shows methyl and ethyl crotonate (shown as  in Model 

4.2 Figure 4.2) to be significant outliers with errors of 1.07 and 0.99 log units respectively. Both 

methyl and ethyl crotonate have high predicted Log VP values (Table 4.3). As the experimental assay 

is carried out in scintillation vials, loss of the compound during the reaction may cause the results 
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to be unreliable (84). It is possible that this is not apparent for the unsubstituted volatile esters as 

they react sufficiently quickly. This is likely to be due to less steric hindrance; therefore, the reaction 

occurs before significant loss due to evaporation. Therefore, the effect on the slower reacting β-

substituted esters is more easily detected. Given this, these chemicals were considered to be 

outside the domain of the model and were removed from the analysis. 

Table 4.3. Predicted –Log RC50 values of β-substituted esters with corresponding error and Log 

Vapour Pressure (VP) values. 

Compound 
-Log RC50 

(mM) 

Predicted -Log 

RC50 (mM) 
Error Log VP 

Methyl crotonate -1.33 -0.32 1.01 1.26 

Ethyl crotonate -1.25 -0.32 0.93 0.91 

Methyl trans-pent-2-enoate -0.70 -0.37 0.33 0.98 

Ethyl trans-hex-2-enoate 0.12 -0.37 -0.49 0.14 

Methyl-hex-2-enoate -0.39 -0.37 0.02 0.54 

Methyl-4-methyl-pent-2-

enoate 
-0.11 -0.69 -0.58 0.80 

Ethyl tiglate -1.16 -1.72 -0.56 0.52 

 

An additional set of chemicals were also poorly predicted by Model 4.3 (Figure 4.3, chemicals 

highlighted as ), these being chemicals in which a phenyl ring conjugated to the carbonyl or ester 

moiety acts as the polarising group (Table 4.4). The reactivity of these chemicals was consistently 

under-predicted with error values ranging from 0.76 – 0.92 log units. Interestingly, the analogous 

chemical 4-phenyl-but-3-en-2-one in which the polarising group is a simple alkyl ketone is well 

predicted by Model 4.3 with an error of -0.04 log units. This suggests that the total electron-

withdrawing effect of a conjugated phenyl group at position R3 is not fully captured in the 

calculations (it is important to note that additional chemicals where R3 is alkyl or hydrogen and the 

β-position is substituted with an aromatic ring are well predicted by the model). Removing these 
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four chemicals from Model 4.3 resulted in Model 4.4 (Table 4.2 and Figure 4.2) with an average 

error of 0.28 Log units.  

 

Figure 4.2: Predicted versus experimental values for –Log RC50 for all models in the current study. 

Model 4.1: ΔEINT-Thiolate only; Model 4.2: ΔEINT-Thiolate with SAS at the α-position included. Model 4.3: 

ΔEINT-Thiolate with SAS at the α-position excluding three volatile β-esters, Model 4.4: ΔEINT-Thiolate with 

SAS at the α-position excluding three volatile β-esters and four compounds with a phenyl electron 

withdrawing group. 

 

 

 

 

 

Model 4.3 

Model 4.2 Model 4.1 

Model 4.4 
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Table 4.4: Predicted –log RC50 values for chemicals with a conjugated phenyl polarising group. 

Chemical Structure 
-Log 

RC50 

Predicted -Log 

RC50 
Error 

Chalcone 

 

0.40 -0.37 0.77 

2-Hydroxy-chalcone 

 

0.56 -0.37 0.92 

4-Hydroxy-chalcone 

 

0.39 -0.37 0.76 

4-Phenyl-but-3-en-2-

one 
 

-0.55 -0.51 -0.04 

Phenyl-acrylate 

 

1.64 0.94 0.76 

 

4.3.2 Prediction of additional chemical classes 

To demonstrate how the fragment-based in silico profiler may be expanded to cover additional 

chemical classes, a second dataset of 18 chemicals (compounds 55 – 72 in Table 4.1) with reactivity 

data was investigated. The chemicals within this dataset required ΔEINT-Thiolate values for an 

additional five fragments to be calculated, along with three fragments previously defined (Table 

4.5).  These ΔEINT-Thiolate values were used in conjunction with Model 4.4 to predict –Log RC50 values 

for these 18 chemicals with an average error of 0.62 log units (Figure 4.3a shows the predicted 

values for these 18 chemicals, shown as , in comparison to the chemicals used in the derivation 

of Model 4.4, shown as ). The results suggest that, for the polarised nitro, substituents at the α-

position have significantly less effect on reactivity than for chemicals polarised by an aldehyde, 

ketone or ester moiety. This can be rationalised in terms of the resonance stabilisation of the 
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intermediate for the polarised nitros for which two possible resonance forms exist (Figure 4.4). It is 

possible that the nitro group is sufficiently polarising that the negative charge is localised mainly on 

the oxygen rather than the α-carbon, resulting in solvation at this position becoming less important. 

Excluding the SAS parameter for the polarised nitros (in effect assuming that these chemicals have 

an SAS value equivalent to hydrogen) results in a significant improvement in the predicted –Log 

RC50 values for these chemicals (Figure 4.3b), with an average error of 0.44 log units. Interestingly, 

among the polarised nitros three of the compounds contain halogenated phenyl groups at the β-

position, these are predicted well (see chemicals 59-61 in Table 4.1). This suggests that using phenyl 

alone was sufficient and that the applicability domain of this method may extend further to alkyl 

and phenyl groups with varying substitutions. 
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Table 4.5: Fragments required to predict the reactivity of polarised nitros, polarised nitriles and 

cyclic ketones. 

Chemical Fragment used 
New or existing 

fragment 

Polarised nitros  

1-Nitro-1-cyclohexene 

         

New 

4-Methyl-β-nitrostyrene 

 

New 

Trans-β-nitrostyrene 

Trans-4-methyl-β-nitrostyrene 

Trans-4-chloro-β-nitrostyrene 

Trans-4-bromo-β-nitrostyrene 

Trans-4-fluoro-β-nitrostyrene 

Trans-4-methoxy-β-nitrostyrene 

Trans-β-methyl-β-nitrostyrene 

         

New 

Polarised nitriles 

2-Methyleneglutaronitrile 

 

New 

Cyclohexene-1-carbonitrile 

 

New 
1-Cyclopentene-1-carbonitrile 

 Polarised cyclic ketones 

Cyclohex-2-en-1-one 

 

Existing 
Cyclopent-2-en-1-one 

2-Methyl-cyclopent-2-en-1-one 

 

Existing 1-Acetyl-cyclohex-1-ene 

1-Acetyl-cyclopent-1-ene 
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Chemical Fragment used 
New or existing 

fragment 

4,4-Dimethyl-cyclohex-2-en-1-one 

 

Existing 

Figure 4.3: Predicted versus experimental –Log RC50 values for polarised nitros, polarised nitriles 

and polarised cyclic ketones () using Model 4.4 in comparison to the polarised aldehydes, ketones 

and esters in the initial dataset (). Figure 4.3a shows polarised nitros with the inclusion of the SAS 

descriptor.  Figure 4.3b shows polarised nitros with the SAS descriptor value set to hydrogen for all 

chemicals.  

‡

 

Figure 4.4: Michael addition mechanism for the reaction between thiol nucleophile and nitroethene 

(R = alkyl, GSH). 

In summary, the fragment-based in silico profiler was successful in predicting the thiol reactivity of 

Michael acceptors. This required the use of an additional descriptor to model the solvent accessible 

surface area at the alpha position (SAS α). The analysis showed that the fragment-based in silico 

profiler could be extended to additional Michael acceptors by calculating the necessary fragments. 

Figure 4.3a Figure 4.3b 
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The process through which the thiol reactivity of Michael acceptors was predicted using the 

fragment-based in silico profiler is summarized in Figure 4.5. 

 

 

 

Figure 4.5: A summary of the fragment-based in silico profiler for predicting thiol reactivity (-Log 

RC50).  

4.4 Prediction of toxicity using the predicted reactivity values 

Having shown that the ΔEINT-Thiolate values from the in silico profiler for Michael addition were 

successful in predicting glutathione reactivity (from QSAR Model 4.4 in Table 4.2). The next step 

was to assess the ability of the predicted reactivity values (-Log RC50) in predicting toxicity (toxicity 

to Tetrahymena pyriformis and skin sensitisation. 

4.4.1 Prediction of toxicity to Tetrahymena pyriformis 

Analysis of the Tetrahymena pyriformis data within the applicability domain of the fragment-based 

in silico profiler resulted in a dataset of 62 chemicals (14 aldehydes, 12 ketones and 36 esters) with 

corresponding EC50 values (Table 4.6).  

 

Input chemical  

 

Assign Fragment 

 

QSAR Model 

−Log RC50

= 0.18 +    0.89 Δ𝐸INT−thiolate

+ 0.23 SAS α =   −1.40 

Fragments (values) 

 Eact = 9.70 SAS α = 5.08 
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Table 4.6 The 62 chemicals used in the assessment of the fragment method for predicting Tetrahymena pyriformis toxicity. Chemical names, SMILES, 

experimental –Log EC50  mmol/l, –Log RC50(pred), Dkk and predicted -Log EC50 mmol/l for the respective models are shown. N.B -Log EC50 values were calculated 

with Model 4.6a for fast reacting chemicals (1-43) and Model 4.6b for slower reacting chemicals (44-62). 

ID 
 

Chemical 
SMILES 

-Log EC50 

(mmol/l) 

 – Log 

RC50(pred) 
Log kow Dkk 

Predicted -Log EC50 

Model 

4.5 

Model 

4.6a/b  

1 Prop-2-enal C=CC=O 1.65 1.34 0.19 -1.15 1.45 1.66 

2 (2E)-But-2-enal C\C=C\C=O 0.88 0.66 0.60 -0.06 1.04 1.04 

3 (2E)-3-(Furan-2-yl)prop-2-enal O=C\C=C\c1ccco1 0.37 0.05 1.19 1.14 0.66 0.46 

4 (2E)-Pent-2-enal CC\C=C\C=O 0.66 0.55 1.09 0.54 0.97 0.94 

5 4-Methylpent-2-enal CC(C)\C=C\C=O 0.82 0.55 1.51 0.96 0.97 0.94 

6 Hex-2-enal CCC\C=C\C=O 0.77 0.55 1.58 1.03 0.97 0.94 

7 (2E)-3-Phenylprop-2-enal O=C\C=C\c1ccccc1 0.68 0.05 1.82 1.77 0.66 0.46 

8 (2E)-3-[4-(Dimethylamino)phenyl]prop-2-enal CN(C)c1ccc(\C=C\C=O)cc1 0.52 0.05 2.00 1.95 0.66 0.46 

9 Hept-2-enal CCCC\C=C\C=O 1.05 0.66 2.07 1.41 1.04 1.04 

10 (2E)-Oct-2-enal CCCCC\C=C\C=O 1.20 0.55 2.57 2.02 0.97 0.94 

11 (2E)-2-Methylbut-2-enal C\C=C(/C)C=O -0.14 -0.96 1.15 2.11 0.04 -0.49 

12 Non-2-enal CCCCCC\C=C\C=O 1.60 0.66 3.06 2.40 1.04 1.04 

13 2-Methylpent-2-enal CC\C=C(/C)C=O -0.39 -1.05 1.64 2.69 -0.01 -0.58 

14 But-3-en-2-one CC(=O)C=C 1.50 0.92 0.41 -0.51 1.20 1.27 
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ID 
 

Chemical 
SMILES 

-Log EC50 

(mmol/l) 

 – Log 

RC50(pred) 
Log kow Dkk 

Predicted -Log EC50 

Model 

4.5 

Model 

4.6a/b  

15 Pent-1-en-3-one CCC(=O)C=C 1.49 0.92 0.90 -0.02 1.20 1.29 

16 Hex-1-en-3-one CCCC(=O)C=C 1.66 0.92 1.39 0.47 1.20 1.29 

17 Pent-3-en-2-one C\C=C\C(C)=O 0.54 0.15 0.82 0.67 0.72 0.56 

18 Hex-4-en-3-one CCC(=O)\C=C\C 0.93 0.10 1.31 1.21 0.69 0.51 

19 Oct-1-en-3-one CCCCCC(=O)C=C 1.92 0.92 2.37 1.45 1.20 1.29 

20 Hept-3-en-2-one CCC\C=C\C(C)=O 0.70 0.00 1.80 1.80 0.63 0.42 

21 Oct-3-en-2-one CCCC\C=C\C(C)=O 0.74 0.00 2.29 2.29 0.63 0.42 

22 Oct-2-en-4-one CCCCC(=O)\C=C\C 1.01 0.00 2.29 2.29 0.63 0.42 

23 2-Methylcyclopent-2-en-1-one CC1=CCCC1=O -0.83 -1.25 1.26 2.51 -0.14 -0.77 

24 3-Methylpent-3-en-2-one C\C=C(/C)C(C)=O -0.34 -1.25 1.37 2.62 -0.14 -0.77 

25 Non-3-en-2-one CCCCC\C=C\C(C)=O 0.98 0.00 2.79 2.79 0.63 0.42 

26 2-Hydroxyethyl prop-2-enoate OCCOC(=O)C=C 0.69 0.50 -0.25 -0.75 0.94 0.88 

27 2-Hydroxypropyl prop-2-enoate CC(O)COC(=O)C=C 0.65 0.50 0.17 -0.33 0.94 0.89 

28 Methyl prop-2-enoate COC(=O)C=C 0.55 0.50 0.73 0.23 0.94 0.89 

29 Ethyl prop-2-enoate CCOC(=O)C=C 0.52 0.50 1.22 0.72 0.94 0.89 

30 Propyl prop-2-enoate CCCOC(=O)C=C 0.53 0.50 1.71 1.21 0.94 0.89 

31 2-Methylpropyl prop-2-enoate CC(C)COC(=O)C=C 0.29 0.50 2.13 1.63 0.94 0.89 

32 2-Hydroxyethyl 2-methylprop-2-enoate CC(=C)C(=O)OCCO -1.08 -1.40 0.30 1.70 -0.23 -0.91 
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ID 
 

Chemical 
SMILES 

-Log EC50 

(mmol/l) 

 – Log 

RC50(pred) 
Log kow Dkk 

Predicted -Log EC50 

Model 

4.5 

Model 

4.6a/b  

33 Butyl prop-2-enoate CCCCOC(=O)C=C 0.52 0.50 2.20 1.70 0.94 0.89 

34 Benzyl prop-2-enoate C=CC(=O)OCc1ccccc1 1.35 0.50 2.44 1.94 0.94 0.89 

35 3-Methylbutyl prop-2-enoate CC(C)CCOC(=O)C=C 0.41 0.50 2.62 2.12 0.94 0.89 

36 Pentyl prop-2-enoate CCCCCOC(=O)C=C 0.54 0.50 2.69 2.19 0.94 0.89 

37 Cyclohexyl prop-2-enoate C=CC(=O)OC1CCCCC1 0.76 0.50 3.00 2.50 0.94 0.89 

38 Methyl 2-methylprop-2-enoate COC(=O)C(C)=C -1.28 -1.40 1.28 2.68 -0.23 -0.91 

39 Hexyl prop-2-enoate CCCCCCOC(=O)C=C 0.73 0.50 3.18 2.68 0.94 0.89 

40 2-Methylpropyl (2E)-but-2-enoate C\C=C\C(=O)OCC(C)C -0.34 -0.19 2.54 2.73 0.51 0.24 

41 Butan-2-yl (2E)-but-2-enoate CCC(C)OC(=O)\C=C\C -0.42 -0.19 2.54 2.73 0.51 0.24 

42 Butyl (2E)-but-2-enoate CCCCOC(=O)\C=C\C -0.16 -0.19 2.61 2.80 0.51 0.24 

43 2-Ethoxyethyl 2-methylprop-2-enoate CCOCCOC(=O)C(C)=C -0.78 -1.40 1.49 2.89 -0.23 -0.91 

44 (2E)-Dec-2-enal CCCCC\C=C\C=O 1.85 0.55 3.55 3.00 0.97 1.50 

45 Heptyl prop-2-enoate CCCCCCCOC(=O)C=C 1.09 0.50 3.67 3.17 0.94 1.59 

46 Ethyl 2-methylprop-2-enoate CCOC(=O)C(C)=C -0.93 -1.40 1.77 3.17 -0.23 -0.76 

47 Methyl (2E)-oct-2-enoate CCCCC\C=C\C(=O)OC 0.77 -0.19 3.10 3.29 0.51 0.84 

48 Methyl (2E)-3-phenylprop-2-enoate COC(=O)\C=C\c1ccccc1 0.58 -0.94 2.36 3.30 0.05 -0.08 

49 Methyl (2E)-2-methylbut-2-enoate COC(=O)C(\C)=C\C -0.70 -1.64 1.69 3.33 -0.38 -0.92 

50 Propan-2-yl 2-methylprop-2-enoate CC(C)OC(=O)C(C)=C -0.88 -1.40 2.18 3.58 -0.23 -0.40 
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ID 
 

Chemical 
SMILES 

-Log EC50 

(mmol/l) 

 – Log 

RC50(pred) 
Log kow Dkk 

Predicted -Log EC50 

Model 

4.5 

Model 

4.6a/b  

51 Propyl 2-methylprop-2-enoate CCCOC(=O)C(C)=C -0.66 -1.40 2.26 3.66 -0.23 -0.33 

52 Methyl non-2-enoate CCCCCC\C=C\C(=O)OC 1.04 -0.19 3.60 3.79 0.51 1.29 

53 Ethyl (2E)-3-phenylprop-2-enoate CCOC(=O)\C=C\c1ccccc1 0.99 -0.94 2.85 3.79 0.05 0.36 

54 Ethyl (2E)-2-methylbut-2-enoate CCOC(=O)C(\C)=C\C -0.50 -1.64 2.18 3.82 -0.38 -0.48 

55 Methyl (2E)-2-methylpent-2-enoate CC\C=C(/C)C(=O)OC -0.38 -1.64 2.18 3.82 -0.38 -0.48 

56 2-Methylpropyl 2-methylprop-2-enoate CC(C)COC(=O)C(C)=C -0.28 -1.40 2.67 4.07 -0.23 0.04 

57 Butyl 2-methylprop-2-enoate CCCCOC(=O)C=C -0.27 -1.40 2.75 4.15 -0.23 0.11 

58 Propyl (2E)-3-phenylprop-2-enoate CCCOC(=O)\C=C\c1ccccc1 1.23 -0.94 3.34 4.28 0.05 0.80 

59 Benzyl 2-methylprop-2-enoate CC(=C)C(=O)OCc1ccccc1 0.65 -1.40 2.98 4.38 -0.23 0.32 

60 Butyl (2E)-3-phenylprop-2-enoate CCCCOC(=O)\C=C\c1ccccc1 1.53 -0.94 3.83 4.77 0.05 1.24 

61 Hexyl 2-methylprop-2-enoate CCCCCCOC(=O)C(C)=C 1.09 -1.40 3.73 5.13 -0.23 0.99 

62 2-Ethylhexyl 2-methylprop-2-enoate CCCCC(CC)COC(=O)C(C)=C 1.57 -1.40 4.64 6.04 -0.23 1.80 
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Initial modelling using the –Log RC50(pred) values alone showed a clear trend (R2 = 0.45) between 

reactivity and toxicity to Tetrahymena pyriformis (Model 4.5 in Figure 4.6). Interestingly, this value 

is lower than that published on a dataset of 41 Michael acceptors using experimentally determined 

glutathione depletion data (R2 = 0.85) (70). However, in comparison with the current study (using –

Log RC50(pred) as a measure of reactivity) the previously published study using experimental 

reactivity data also failed to predict the toxicity to Tetrahymena pyriformis of slow reacting 

chemicals such as methacrylate esters. It was suggested that for these chemicals toxicity is driven 

by both hydrophobicity and reactivity due to their slower reaction with proteins (70).  

 

                                               −Log EC50 = 0.63 + 0.61(−𝐿𝑜𝑔 𝑅𝐶50(𝑝𝑟𝑒𝑑))                       (Model 4.5) 

 N = 62, R2 = 0.45, Radj
2 = 0.44, s = 0.46 

 

Consistent with this hypothesis, a related study showed that splitting the data into fast reacting and 

slow reacting classes resulted in significantly improved modelling results (52). Importantly, the 

toxicity to Tetrahymena pyriformis for the fast reacting chemicals could be predicted from 

experimental reactivity alone, whilst those in the slow reacting class required both hydrophobicity 

and reactivity. The authors suggested a reactivity cut-off to distinguish the two classes based on 

Equation 4.1 denoted Dkk (the difference between Log kOW and Log kGSH), where chemicals with a Dkk 

< 3 are fast reacting and those with Dkk > 3 are slow reacting. Although the authors used kinetic 

glutathione data (-Log KGSH) these values have been shown to be highly correlated with glutathione 

depletion data (-Log RC50) (56). Applying these criteria to the current dataset, using –Log RC50(pred) 

as a measure of reactivity resulted in Models 4.6a and 4.6b (fast and slow reacting chemicals 

respectively). Forty-three chemicals were assigned to the fast reacting class (chemicals 1 – 43 in 

Table 4.6), whilst 23 chemicals were assigned to the slow reacting class (chemicals 44-62 in Table 

4.6). In keeping with the previously published work using experimentally determined reactivity 

data, toxicity to Tetrahymena pyriformis for the chemicals in the fast reacting class required only –
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Log RC50(pred) (Model 4.6a), whilst the chemicals in the slow reacting class required both –Log 

RC50(pred) and log Kow (Model 4.6b). Figure 4.7 shows the correlation plots for Models 4.6a and 

4.6b. 

                      Dkk = Log (𝑘𝑜𝑤 − 𝑅𝐶50(𝑝𝑟𝑒𝑑)) = 𝐿𝑜𝑔 𝑘𝑜𝑤 − (−𝐿𝑜𝑔 𝑅𝐶50(𝑝𝑟𝑒𝑑)) ⁄                        (4.1) 

 

                                               −Log EC50 = 0.41 + 0.94 − (𝐿𝑜𝑔 𝑅𝐶50(𝑝𝑟𝑒𝑑))                   (Model 4.6a) 

 N = 43, R2 = 0.78, Radj
2 = 0.77, s = 0.30 

 

                               −Log EC50 = −1.82 + 0.35(−𝐿𝑜𝑔 𝑅𝐶50(𝑝𝑟𝑒𝑑)) +  𝐿𝑜𝑔 𝑘𝑂𝑊          (Model 4.6b) 

 N = 19, R2 = 0.85, Radj
2 = 0.83, s = 0.31 

 

 

Figure 4.6. The predicted -Log EC50 values against experimental –Log EC50 values for all 62 Michael 

acceptors using –Log RC50(pred) alone (Model 4.5). 
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Figure 4.7: The predicted -Log EC50 (mmol/l) against experimental -Log EC50 (mmol/l) of all 43 fast 

reacting chemicals () (Model 4.6a, chemicals 1-43 in Table 4.6) and 19 slower reacting chemicals 

() (Model 4.6b, chemicals 44-62 in Table 1) requiring hydrophobicity to be taken into account  

 

4.4.2 Prediction of skin sensitisation potency as measured in the LLNA 

The rate of covalent bond formation has also been shown to be important for the prediction of skin 

sensitisation potency as determined in the mouse LLNA using both experimental and computational 

measures of reactivity (43, 49, 94, 95). In keeping with these studies, the fragment-based in silico 

profiler was used to predict pEC3 values for the 26 Michael acceptors within the previously defined 

applicability domain. These chemicals are shown in Table 4.7.  
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Table 4.7. The 26 chemicals used in the assessment of the ability of the predicted reactivity values to predict skin sensitization potency (pEC3). Chemical 

names, SMILES, experimental pEC3 with error values, –Log RC50(pred), Log VP and predicted pEC3 values for all models are shown. 

 

ID 

 

Chemical 

 

SMILES 

 

pEC3 

 

-Log RC50(pred) 

 

Log VP 

Predicted pEC3  

Model 4.7 Model 4.8 

1 Methyl methacrylate CC(=C)C(=O)OC 0.05 -1.40 1.59 1.28(1.23)* - 

2 2-Hydroxypropyl methacrylate CC(COC(=O)C(=C)C)O 0.46 -1.40 -1.10 1.28(0.82)* - 

3 Ethyl acrylate CCOC(=O)C=C 0.55 0.50 1.61 1.38(0.83)* - 

4 Methyl acrylate COC(=O)C=C 0.63 0.50 1.95 1.38(0.75)* - 

5 Butyl acrylate CCCCOC(=O)C=C 0.81 0.50 0.74 1.38(0.57)* - 

6 r-Carvone CC1=CC[C@H](CC1=O)C(=C)C 1.07 -1.25 -0.86 1.29(0.22) 1.23(0.16) 

7 L-Carvone CC1=CC[C@H](CC1=O)C(=C)C 1.10 -1.25 -0.86 1.29(0.19) 1.23(0.16) 

8 α-Butyl cinnamic aldehyde CCCC\C(C=O)=C/c1ccccc1 1.23 -1.26 -2.55 1.29(0.06) 1.23(0.00) 

9 Linalool aldehyde C\C(C=O)=C/CCC(C)(O)C=C 1.25 -0.98 -2.51 1.30(0.05) 1.35(0.10) 

10 trans-Hex-2-enal CCC\C=C\C=O 1.25 0.41 0.71 1.38(0.13) - 

11 α-Amyl cinnamic aldehyde CCCCC/C(=C\c1ccccc1)/C=O 1.26 -1.26 -3.47 1.29(0.03) 1.23(-0.03) 

12 α-Hexylcinnamaldehyde CCCCCC\C(C=O)=C/c1ccccc1 1.26 -1.26 -3.45 1.29(0.03) 1.23(-0.03) 

13 2-Ethylhexyl-acrylate CCCCC(CC)COC(=O)C=C 1.27 0.50 -0.71 1.38(0.11) - 

14 Perillaldehyde CC(=C)C1CCC(C=O)=CC1 1.27 -0.98 -1.32 1.30(0.03) 1.35(0.08) 

15 1-(p-Methoxyphenyl)-1-penten-3-one CCC(=O)\C=C\c1ccc(OC)cc1 1.31 -0.55 -2.73 1.33(0.02) 1.54(0.23) 

16 α-Methyl-cinnamic aldehyde C\C(C=O)=C/c1ccccc1 1.51 -1.26 -1.59 1.29(-0.22) 1.23(-0.28) 

17 Benzylidene acetone CC(=O)\C=C\c1ccccc1 1.60 -0.55 -2.00 1.33(-0.27) 1.54(-0.06) 
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ID 

 

Chemical 

 

SMILES 

 

pEC3 

 

-Log RC50(pred) 

 

Log VP 

Predicted pEC3  

Model 4.7 Model 4.8 

18 5-Methyl-2-phenyl-hex-2-enal CCCC\C=C(\C=O)c1ccccc1 1.63 -0.79 -2.55 1.31(-0.32)* 1.43(-0.20) 

19 Cinnamic aldehyde O=C\C=C\c1ccccc1 1.63 0.05 -1.46 1.36(-0.27) 1.80(0.17) 

20 trans-Dec-2-enal CCCCCCC/C=C/C=O 1.79 0.41 -1.08 1.38(-0.41)* 1.95(0.16) 

21 Galbanone CC1(C)CCC=C(C1)C(=O)CCC=C 1.81 -1.25 (0.15)‡ -1.72 1.29(-0.52)* 1.84(0.03) 

22 
5,5-Dimethyl-3-methylene-dihydro-

2(3H)-furone 
CC1(C)CC(=C)C(=O)O1 1.85 -1.40 -0.76 1.28(-0.57)* - 

23 Diethyl maleate CCOC(=O)/C=C/C(=O)OCC 1.91 0.10 -0.72 1.36(-0.55)* 1.82(-0.09) 

24 2-Hydroxyethyl acrylate C=CC(=O)OCCO 1.92 0.50 -0.85 1.38(-0.54)* - 

25 Spirogalbanone C=CCCC(=O)C1=CCCC2(CCCC2)C1 2.00 -1.25 (0.15) ‡ -3.02 1.29(-0.71)* 1.84(-0.16) 

26 Pomarose C\C=C\C(=O)C(\C)=C(/C)C(C)C 2.02  0.15 -0.55 1.36(-0.66)* 1.84(-0.18) 

*Denotes chemicals with predictions outside of the experimental variation for that model. Error values for predicted pEC3 values for all chemicals are shown 
in brackets.  
‡ Chemicals with an additional –Log RC50(pred) value use this value for Model 4.8 for reasons discussed in the text
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An initial analysis of the correlation between pEC3 and –Log RC50(pred) resulted in a model with in 

extremely poor statistics (Model 4.7 in Figure 4.8). Despite this, 13 of the chemicals were predicted 

within a two-fold error of the corresponding experimental value (chemicals with a predicted value 

within 0.3 log units of the experimental value). These predictions are within the experimental two-

fold error of the LLNA (79). Any chemicals outside of the two-fold error of the experimental assay 

were considered to be outliers (labelled in Table 4.7) and were analysed in an attempt to rationalise 

the error in their predicted values.  

 

                                          Predicted pEC3 = 1.35 − 0.05 − (𝐿𝑜𝑔 𝑅𝐶50(𝑝𝑟𝑒𝑑))                 (Model 4.7) 

 N = 26, R2 = 0.00, Radj
2 = 0.00, s = 0.30 

 

Figure 4.8. Predicted pEC3 versus experimental pEC3 for all 26 Michael acceptors shown in Table 2. 

 = volatile chemicals;  = galbanone and spirogalbanone;  = 5,5-dimethyl-3-methylene-dihydro-

2(3H)-furone. 

Most of the compounds with the largest errors are chemicals that are volatile, with the majority of 

these being acrylates and methacrylates (chemicals 1-5 in Table 4.7). Previous research has shown 

that the skin sensitisation potency of these volatile chemicals is less than might be expected based 
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on their experimentally determined chemical reactivity (43). In addition, research has also 

suggested that the acrylate and methacrylates are susceptible to polymerisation driven by free 

radical chemistry in the skin (112, 113). Interestingly, the toxicity of a large number of similar 

chemicals towards Tetrahymena pyriformis were well predicted (chemicals 23-62 in Table 4.6). This 

highlights the importance of defining the applicability domain of any predictive model 

(experimental or computational) based on a detailed understanding of the mechanistic chemistry 

of the assay. This mechanistic rationale resulted in the removal of a total of six volatile chemicals 

(chemicals 1-5 and 10 in Table 4.7), and two additional acrylates (chemicals 13 and 24 in Table 4.7). 

Three of these chemicals were removed despite being relatively well-predicted (chemicals 10, 13 

and 24 in Table 4.7) as no mechanistic rationale could be offered as to why they were correctly 

predicted compared to the other chemicals identified. This being a case of applying a cautionary 

applicability domain to the model for these types of chemicals. 

In contrast to the over-prediction of the majority of volatile chemicals, galbanone and 

spirogalbanone were significantly under predicted using the predicted reactivity values (chemicals 

21 and 25 in Table 4.7). The skin sensitisation potency of these two chemicals was predicted using 

3-methyl-pent-3-en-2-one as the reference fragment to take account of the effect of an alkyl group 

at the α-position (which causes a decrease in the rate of the Michael addition reaction) (103). 

However, it is possible that a second site of Michael addition reactivity exists for these chemicals 

due to their reported ability to undergo double bond migration (highlighted part of the structure 

shown in Figure 4.9) (114). This type of migration is particularly favoured when the alkene group is 

unsubstituted (CH2=CR) as is the case with galbanone and spirogalbanone (Figure 4.9). Predicting 

the glutathione reactivity of spirogalbanone and galbanone with the reference fragment 3-penten-

2-one (to reflect the second potential site of reactivity) resulted in an improved pEC3 prediction of 

1.84 (versus 1.36) for both galbanone (pEC3 = 1.81) and spirogalbanone (pEC3 = 2.00). Importantly, 

it is likely that only one of these two possible sites of reactivity can undergo Michael addition at any 

one time as calculations show that the cyclic ring twists out of the plane of the carbonyl group upon 
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nucleophilic attack at the alternative site (data not shown). This will result in decrease in 

conjugation of the β-carbon within the double ring and the carbonyl group making a reaction less 

likely to happen. The predicted values suggest that the more reactive migrated site is primarily 

responsible for the skin sensitising ability of these chemicals. The more reactive alternative site for 

Michael addition was utilised for these chemicals enabling them to remain within the applicability 

domain of the model. This analysis demonstrates one of the strengths of the fragment-based in 

silico profiler in that it enables the investigation of alternative sites of chemical reactivity through 

the use of alternate fragments.  

 

Figure 4.9. Isomerisation of galbanone to produce an extended conjugated chemical highlighting a 

possible additional site of reactivity 

The final chemical that was poorly predicted was 5,5-dimethyl-3-methylene-dihydro-2-(3H)-furone. 

This chemical is a cyclic Michael acceptor in which only the α-carbon of the alkene is part of the ring 

system. The development of the fragment-based in silico profiler showed that the glutathione 

reactivity of cyclic Michael acceptors in which both the α- and β-carbons of the alkene were part of 

the ring could be successfully predicted using linear reference fragments (103). In keeping with this 

analysis, the analogous chemicals in the skin sensitisation data were well predicted (chemicals 6, 7 

and 14 in Table 4.7).  Inspection of the data used to develop the fragment-based in silico profiler 

shows that it does not contain chemicals in which only the α-carbon of the double bond is part of 

the ring. In addition, these types of chemicals are also not present in the Tetrahymena pyriformis 

dataset analysed in the current study. Therefore, it is impossible to ascertain as to whether the 

fragment-based in silico profiler is under-predicting the glutathione reactivity of these chemicals or 

if these chemicals are more potent in the LLNA than is predicted from reactivity alone.  The analysis 

outlined enabled the removal of nine chemicals resulting in a final model based on 17 chemicals 
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with an R2 = 0.77 (Figure 4.10, Model 4.8). Importantly, this model has a similar applicability domain 

to that published using experimentally determined kinetic rate constants, in that volatile chemicals 

and those that can polymerise are excluded (43, 94). However, the use of –Log RC50(pred) in the 

current study enabled a greater number of chemicals to be predicted (17 versus 10), whilst 

maintaining a similar level of statistical accuracy (R2 = 0.77 versus 0.84).   

 

                                            Predicted pEC3 = 1.77 + 0.43 − (𝐿𝑜𝑔 𝑅𝐶50(𝑝𝑟𝑒𝑑))               (Model 4.8) 

 N = 17, R2 = 0.76, Radj
2 = 0.76, s = 0.12 

Figure 4.10. The predicted pEC3 against experimental pEC3 for Model 4.8 (predicted values shown 

in Table 4.7) 

4.5 Concluding remarks 

The first aim of this chapter was to predict thiol reactivity for Michael acceptors using the ΔEINT-

Thiolate values from the in silico profiler for Michael addition. The second aim was to validate the 

ability of the predicted –Log RC50 values (generated from the use of the fragment based in silico 

profiler) to predict toxicity to Tetrahymena pyriformis and skin sensitisation potency (as 

determined in the LLNA). The results showed that a QSAR combined from pre-calculated ΔEINT-Thiolate 
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values, coupled with a descriptor for the solvent accessible surface area at the α-carbon, was able 

to accurately predict chemical reactivity as measured in a glutathione depletion assay. Two sets of 

chemicals were poorly predicted by the approach, these being: volatile esters with an extended 

substituent at the β-carbon and chemicals containing a conjugated benzene ring as part of the 

polarising group. The study also demonstrated the ease with which the approach can be extended 

to other chemical classes by the calculation of additional fragments and their associated ΔEINT-Thiolate 

and SAS values. Additionally, the results of this study showed the predicted reactivity values (-Log 

RC50(pred)) were able to predict both endpoints within well-defined, end-point specific applicability 

domains. The results also showed the importance of considering slow versus fast reacting Michael 

acceptors when modelling toxicity to Tetrahymena pyriformis and that polymerisation and volatility 

are important considerations in successfully predicting skin sensitisation potency. These results 

were in keeping with previously published studies that have utilised experimentally determined 

measurements of chemical reactivity to model the same endpoints. The statistical quality of 

resulting QSAR models demonstrated that the predicted reactivity values generated by the 

fragment-based in silico profiler are on a par with using experimentally determined values. 

However, the use of an in silico approach offers clear benefits in terms of the ability to predict 

reactivity towards thiol for Michael acceptors in an efficient manner, without the need to perform 

either time-consuming and expensive experimental assays or to undertake complex quantum 

mechanics calculations. The next chapter adopts the method of the in silico profiler to predict the 

reactivity and toxicity of chemicals that form covalent bonds through an alternative mechanism 

(bimolecular nucleophilic substitution -  SN2). 
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Chapter 5. The development of a fragment-based in silico profiler for the SN2 

mechanism and its application in predicting thiol reactivity and toxicity to 

Tetrahymena pyriformis  

5.1 Introduction 

Chapter 3 outlined the development of an in silico profiler for Michael addition applicable to α,β-

unsaturated aldehydes, ketones and esters. The profiler involved defining a set of 294 fragments 

developed from a SAR analysis of the effect of varying a range of substituents on calculated ΔEINT-

Thiolate values. Chapter 4 demonstrated the ability of this fragment-based profiler to predict 

glutathione reactivity, skin sensitisation potency (as defined in the mouse LLNA) and toxicity to 

Tetrahymena pyriformis for chemicals within its applicability domain. This chapter outlines the 

extension of this approach to chemicals capable of reacting with biological nucleophiles via a 

bimolecular nucleophilic substitution (SN2) mechanism. These reactions most commonly occur at 

sp3 carbon atoms bound to an electronegative leaving group such as a halogen (it is worth noting 

that toxicologically relevant SN2 reactions have also been shown to occur at nitrogen, sulphur and 

chlorine) (57). Unlike Michael addition, the SN2 reaction has no stable intermediate as the attack by 

the nucleophile and loss of the leaving group happen simultaneously (Figure 5.1). As such, the 

energy profile for the SN2 reaction consists of a single transition state linking the reactants and 

products on the potential energy surface (Figure 5.2). The rate limiting step for this reaction is the 

simultaneous formation of the carbon-nucleophile (or an equivalent nucleophilic atom e.g. nitrogen 

or sulphur) bond and breaking of the carbon-leaving group bond. This type of reaction has the 

potential to be reversible, depending on the similarity in pKa values between the nucleophile and 

the leaving group (similar pKa values indicating reversibility). However, this is unlikely to be the case 

in the reaction between chlorinated/brominated alkanes and a thiolate nucleophile (the focus of 

this chapter) due to the large difference in pKa values (-2.2, -4.7 and 10.5 for chloride, bromide and 
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thiolate respectively). In contrast to Michael addition, there have been no computational attempts 

to predict reactivity and toxicity for chemicals acting via an SN2 mechanism. As such, the aim of this 

chapter was to develop a fragment-based in silico profiler for the SN2 mechanism and to validate 

the ability of the in silico profiler and ΔETS-Thiolate values to predict glutathione reactivity and toxicity 

to Tetrahymena pyriformis.  

 

Figure 5.1. The formation of a covalent bond between an electrophilic chemical and cysteine via an 

SN2 mechanism, (X = halogen, R = alkyl, R1 = R2 = hydrogen or carbon) 

 

Figure 5.2. Energy diagram for the SN2 reaction between 2-bromobutan-2-one and a thiolate 

nucleophile resulting in the formation of a transition state structure (energy of activation shown as 

ΔETS-Thiolate). The energy difference between the reactants and the products is shown as ΔEFormation 
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5.2 Methods 

5.2.1 Data set 

Thirty-one chemicals were identified as acting via an SN2 mechanism from a study by D. W. Roberts 

and T. W. Schultz (chemicals shown in Table 5.7) (42). Three chemicals were excluded from this 

dataset, these being: 3-bromo-acetyl-coumarin, ethyl iodoacetate and 2-iodoacetamide. 3-Bromo-

acetyl-coumarin was excluded from the analysis due to it having multiple sites of electrophilic 

reactivity. The other two chemicals contained iodine as the leaving group. It was not possible to 

perform calculations on these chemicals due to the chosen basis set only being applicable to 

elements in the first three rows of the periodic table (see Chapter 2 for information on basis sets). 

This resulted in a dataset of 28 activated SN2 chemicals. All chemicals in the dataset had associated 

glutathione reactivity data (-Log RC50) and Tetrahymena pyriformis toxicity data (-Log IGC50) 

(information on respective assays found in Chapter 1) (42). 

5.2.2 Computational methods 

All calculations were carried out using the Gaussian 09 suite of software using density functional 

theory at the B3LYP/6-31G+(d) level of theory using water as a solvent employing Polarizable 

Cotinuum Model (PCM) as an implicit solvation model (102). The ΔETS-Thiolate values were obtained 

using scan calculations to determine the highest point of energy on the potential energy surface for 

the reaction between the electrophile and thiolate nucleophile. All scan calculations were 

performed using an initial bond length of 2.9 Å between the halogenated carbon atom and the 

sulphur of the nucleophile. In keeping with Chapter 3, all calculations used methyl thiolate as a 

model nucleophile. A series of seven calculations were then carried out in which the bond length 

between the halogenated carbon and the sulphur of the thiolate nucleophile was decreased by 0.1 

Å with each calculation. This mapped the reaction coordinate enabling the highest energy point 

corresponding to the transition state structure to be identified. All transition state structures were 

optimised and subjected to frequency analysis in order to identify a single negative eigenvalue 



 

112 
 

connecting the transition state to the reactants and products on the potential energy surface. All 

calculations were carried out using the “opt=loose” keyword. Calculated ΔETS-Thiolate values in the 

fragment analysis section (Sections 5.4.2 – 5.4.3) are quoted to the nearest kcal/mol. The approach 

is analogous to the method adopted in Chapter 3 in which a database of fragments with pre-

calculated activation energy values (ΔEINT-Thiolate) is used as the basis for the fragment-based in silico 

profiler for Michael addition (see Figure 3.5, Chapter 3).  

5.2.3 Statistical analysis 

Linear regression analysis was used to develop quantitative structure-activity relationship models 

to obtain correlations between ΔETS-Thiolate values, –Log RC50(pred) and toxicity to Tetrahymena 

pyriformis (-Log IGC50) values using the Minitab (version 17) statistical software.  

5.3 Investigation of SN2 transition state geometries 

Initial modelling efforts were focussed on the characterisation of the transition state structures for 

five brominated SN2 chemicals with differing electron-withdrawing groups (Table 5.3). All five 

chemicals had similar transition state structures with S-C bond lengths of 2.7 Å and C-Br bond 

lengths between 2.2-2.3 Å (Figure 5.3 and Table 5.1). The five chemicals had calculated ΔETS-Thiolate 

values in the following order (least reactive to most reactive): 2-bromo acetamide > methyl-2-

bromoacetate > 2-bromoacetic acid > 1-bromopropan-2-one > 2-bromo-1-phenylethan-1-one. 
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Figure 5.3. The calculated transition state geometry of 1-bromopropan-2-one upon reaction with 

methyl thiolate 

Table 5.1. The calculated bond lengths (Å) and ΔETS-Thiolate (kcal/mol) values for a representative 

series of brominated SN2 chemicals activated by an electron-withdrawing group 

ID Chemical S-C (Å) C-Br (Å) 
ΔETS-Thiolate 

(kcal/mol) 

ΔETS-Thiolate + sodium 

(kcal/mol) 

1 1-Bromopropan-2-one 2.7 2.2 -0.7 5.8 

2 
2-Bromo-1-phenylethan-

1-one 
2.7 2.2 -1.7 4.9 

3 Methyl-2-bromoacetate 2.7 2.3 0.4 6.9 

4 2-Bromoacetic acid 2.7 2.3 -0.4 6.1 

5 2-Bromo acetamide 2.7 2.3 2.2 8.7 

 

It is worth noting some of the ΔETS-Thiolate values in Table 5.1 are negative (i.e. the transition state is 

lower in energy than the reactants). These values are unusual at first glance, as the ΔETS-Thiolate values 

were obtained from the highest point of energy along the reaction co-ordinate and have negative 

frequencies associated with them (indicating them to be true transition states). Given that the pKa 

of a thiolate ion is reported to be roughly 12.0 it is unlikely that this species will exist in a significant 

amounts at neutral pH. In reality, it is likely that the thiolate is stabilised by a positively charge 
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counter ion such as sodium. With this in mind, a sodium ion was included in the calculation as part 

of the reactants and transition state structure. This resulted in a large increase in the ΔETS-Thiolate 

(kcal/mol) for all chemicals (see Table 5.1). This was something not immediately obvious in the 

analysis with the Michael acceptors and the analysis was carried out using the resonance-stabilised 

intermediate of the Michael addition reaction as opposed to the use of a transition state structure. 

However, in order to have a rational comparison with the Michael addition analysis (see Chapter 

4), ΔETS-Thiolate without the addition of sodium was used for the SN2 analysis. Although this has an 

effect on the ΔETS-Thiolate values, the values will be effected equally and therefore the predictive 

outcome of the values will not change. 

 

(Figure 5.4). Comparison of ΔETS-Thiolate values for 1-bromoproan-2-one with and without the addition 

of sodium (see Table 5.1 for values) 
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5.4 Development of fragments for SN2 chemicals 

The above analysis showed that the negative ΔETS-Thiolate values associated with some of the SN2 

chemicals could be resolved by including a counter ion (e.g. sodium) in the calculations. However, 

in order to remain consistent with the Michael addition analysis (see Chapter 4), ΔETS-Thiolate without 

the addition of sodium was chosen as the key descriptor in the development of a fragment-based 

profiler for the SN2 mechanism. The utility of this descriptor for modelling glutathione reactivity and 

toxicity is the focus of this chapter. 

As outlined in Chapter 3 the key process in the development of a fragment-based in silico profiler 

is the investigation of the SAR relationship between a reactivity descriptor (in this case ΔETS-Thiolate) 

and the possible R-group substituents. Inspection of the chemicals in the dataset showed that there 

were three factors that varied for the five types of electron-withdrawing groups present (ketones, 

esters, acids, amides and aromatic groups), these being; the halogen leaving group (bromine or 

chlorine) and varying substituents at the R1 and R2 positions (R-groups as defined in Table 5.2). 

Therefore, the analysis focused on the effects of these substituents on the calculated ΔETS-Thiolate 

values within the applicability domain of the experimental assay. Groups where there was no 

variation in substituents were not investigated (for example, a fragment analysis into R2 

substituents for ketones was not carried out as there is only a single substituent at R2 for ketones 

in the dataset, R2 = H). This resulted in three groups for SAR analysis: position R1 for brominated 

ketones and esters, position R2 for brominated esters, acids and amides and position R1 for 

chlorinated esters. Although no analysis was carried out for groups containing only one chemical, a 

fragment was still included for these chemicals to investigate the use of the ΔETS-Thiolate values for 

the prediction of glutathione reactivity and toxicity to Tetrahymena pyriformis. Section 5.4.2 

outlines the fragment development for brominated chemicals with substituents at the R1 (ketone 

and esters) and R2 positions (esters, acids and amides). Section 5.4.3 outlines the fragment 

development of the chlorinated chemicals at the R1 position (esters). 
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Table 5.2. The domain of chemicals in the dataset (all chemicals shown in Table 5.3). The table 

shows which substituents are present for the various R groups (R1 and R2) for each electron 

withdrawing group class. Additionally, the number of chemicals in each chemical class (N) is shown 

Electron 

withdrawing group 
Brominated chemicals Chlorinated chemicals 

Ketones 

  

R1 = CH2CH3, t-butyl, phenyl, 

naphthalene, pyrene, thiophene 

 

R2 = H 

R1 = t-butyl 

 

 

R2 = H 

N = 7 

Esters 

  

R1 = CH3, CH2CH3, (CH2)2CH3, t-

butyl, phenyl 

 

R2 = H, CH3, CH2CH3, (CH2)2CH3 

R1 = CH3, CH2CH3, (CH2)2CH3, t-butyl 

 

 

R2 = H 

N = 15 
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Electron 

withdrawing group 
Brominated chemicals Chlorinated chemicals 

Acids 

  

R1 = N/A 

 

R2 =  CH2CH3, (CH2)2CH3 

R1 = N/A 

 

R2 = CH2CH3 

N = 3 

Amides 

  

R1 = N/A 

 

R2 = H, CH3 

R1 = N/A 

 

R2 = H 

N = 3 

Aromatic group 
 

 

None 

R1 = Nitrobenzene  

N = 1 
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5.4.1 Rules for fragment development for chemicals acting via an SN2 mechanism 

In Chapter 3, a set of rules were established for the development of fragments for Michael addition 

enabling a systematic approach to be undertaken for their development. This included key 

information about the structure and geometries of the fragments. In addition, the process of how 

fragments were compared to one another to establish how many fragments were needed in the 

final profiler was also detailed. The aim of these rules being to enable the domain of the profiler to 

be easily extended in the future (as more data become available). Similarly, fragments for the 

profiler for chemicals acting via an SN2 mechanism were developed using an analogous set of rules: 

1. All fragments were developed using the transition state structure upon reaction with a 

thiolate nucleophile using ΔETS-Thiolate values as the key reactivity descriptor.  

2. The ΔETS-Thiolate values for straight chains at each R-position were compared with the ΔETS-

Thiolate values of a chain containing one carbon less (or in the case of methyl with hydrogen 

where applicable); for example, ethyl was compared to methyl and propyl compared to 

ethyl. 

3. Branched chains ΔETS-Thiolate values were compared to the ΔETS-Thiolate value of their straight 

chain equivalent; for example, t-butyl was compared with ethyl. 

4. Only ketones and esters contained aromatic substituents (at R1). In all cases these were 

compared to a methyl group; for example, phenyl, naphthalene, pyrene and thiophene 

were compared to methyl. 

5. Only one R group was investigated at a time whilst the other R group remained constant. 

For example, R1 remained as hydrogen whilst the effect of substituents at the R2 position 

was investigated. 

6. Individual calculated ΔETS-Thiolate values were rounded to the nearest integer before 

comparing values rather than rounding the difference in ΔETS-Thiolate between the two values. 
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7. A cut off value of 1.0 kcal/mol was used to assess if there was a significant difference 

between two substituents (to determine the need for the inclusion of a fragment in the 

profiler). 

8. Unrounded ΔETS-Thiolate values for fragments (to one decimal place) were used in the 

modelling of reactivity and toxicity (unlike rounded values, which were used in the 

fragment analysis). 

5.4.2 Development of fragments for brominated chemicals 

The eight rules stated above allowed the SAR in terms of ΔETS-Thiolate values to be investigated for 

positions R1 and R2 for chemicals acting via an SN2 mechanism (where the R-groups investigated are 

shown in Table 5.2). All ΔETS-Thiolate values in the following fragment analysis will be rounded to the 

nearest integer (see rule 6). Of the 28 chemicals in the dataset (shown in Table 5.7), 21 were 

brominated and seven were chlorinated. For the brominated chemicals this covered, 10 

brominated esters, six brominated ketones, two brominated acids, two brominated amides and 1-

bromomethyl-4-nitrobenzene. Analysis of the dataset revealed three groups that were large 

enough to allow a SAR analysis to be undertaken (11 chemicals with substituents at position R1 for 

brominated ketones and esters, eight chemicals with substituents at position R2 for brominated 

esters, acids and amides and four chemicals with substituents at position R1 for chlorinated esters). 

Calculated ΔETS-Thiolate values SAR at position R1 for brominated ketones and esters 

Initially the SAR for ΔETS-Thiolate values when extending the chain length at the R1 position for 

brominated ketones and esters was investigated (Figure 5.5, substituent values in Table 5.3). This 

group contained seven brominated ketones and 10 brominated esters covering seven and five 

substituents at the R1 position respectively. Calculated ΔETS-Thiolate values increased by 1 kcal/mol 

when extending the chain length from a methyl to an ethyl substituent at the R1 position for both 

electron-withdrawing groups (compare chemicals 2 with 1 and 9 with 8 in Table 5.3). Similarly, the 

change in calculated ΔETS-Thiolate values was less than 1 kcal/mol when comparing ethyl to a t-butyl 
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group for both electron-withdrawing groups (compare chemicals 3 with 2 and 11 with 9 in Table 

5.3). Additionally, methyl could be used for aromatic substituents phenyl, naphthalene, pyrene and 

thiophene for ketones (compare chemicals 4-7 with 1 in Table 5.3). The result of this analysis 

showed that a methyl group could be used to predict the ΔETS-Thiolate values of all alkyl groups (and 

aryl groups for ketones) at the R1 position. The exception being the need for an ethyl group for the 

prediction of chemicals where R1 = t-butyl (chemicals 11 and 3 in Table 5.3). This resulted in four 

fragments being required to cover the domain of ketones and esters with substituents at the R1 

position (these being R1 = methyl and ethyl for both ketones and esters).  

 

Figure 5.5. The general structure of primary brominated ketones and esters investigated in this 

study, R1 groups as defined in Table 5.3 
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Table 5.3. Calculated ΔETS-Thiolate (kcal/mol) values for brominated ketones and esters substituted at 

the R1 positions  

ID Substituent name R1 
ΔETS-Thiolate 

(kcal/mol) 

Fragment 

substituent 

Fragment ΔETS-Thiolate 

(kcal/mol) 

Ketones 

1 Methyl -1 CH3 -1 

2 Ethyl 0 CH3 -1 

3 t-Butyl 0 CH2CH3 0 

4 Phenyl -2 CH3 -1 

5 Naphthalene -2 CH3 -1 

6 Pyrene 0 CH3 -1 

7 Thiophene -1 CH3 -1 

Esters 

8 Methyl 0 CH3 0 

9 Ethyl 1 CH3 0 

10 Propyl 1 CH3 0 

11 t-butyl 1 CH2CH3 1 

12 Phenyl 0 CH3 0 

 

Calculated ΔETS-Thiolate values SAR at position R2 for brominated esters, acids and amides. 

The analysis for varying substituents at the R2 position was applicable to three chemicals groups 

(esters, acids and amides, Figure 5.6). There were 11 brominated esters, two brominated acids and 

two brominated amides in the dataset covering four substituents for esters and two for both acids 

and amides at the R2 position (based on Table 5.4). The results showed that for all three electron-

withdrawing groups, the calculated ΔETS-Thiolate values differed significantly when going from 

hydrogen to methyl substituents (compare chemicals 2 with 1, 6 with 5 and 10 with 9 in Table 5.4). 

This increase in the calculated ΔETS-Thiolate value is expected due to increased steric bulk around the 

reactive site. However, increasing the chain length further from methyl to ethyl resulted in the 
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calculated ΔETS-Thiolate values being within 1 kcal/mol (compare chemicals 3 with 2 and 7 with 6 in 

Table 5.4). This consistency in calculated ΔETS-Thiolate values was also seen when extending the chain 

length from ethyl to propyl (compare chemicals 4 with 3 and 8 with 7 in Table 5.4). This showed 

that only the addition of the methyl group (going from primary to secondary halide) has an effect 

on calculated ΔETS-Thiolate values, (increasing the chain length further resulted in no change in the 

calculated ΔETS-Thiolate values). This resulted in two fragments being used to cover the brominated 

electron-withdrawing groups for R2 substituents (this being R2 = Hydrogen and methyl). Although 

the groups for brominated acids and amides are small, it can be assumed that their applicability 

extends to acids and amides with larger substituents at the R2 position. This assumption is based 

on consistency in calculated ΔETS-Thiolate values when extending the chain length at the R2 position 

for other chemical groups (e.g. brominated esters substituted at the R2 position – see chemicals 1-

4 in Table 5.4). 

 

Figure 5.6. The general structure of secondary brominated esters, acid and amides investigated in 

this study (R2 groups as defined in Table 5.4) 

 

 

 

 

 

 

Ester Acid Amide



 

123 
 

 

Table 5.4. Calculated ΔETS-Thiolate (kcal/mol) values for brominated esters, acids and amides at the R2 

positions  

ID Substituent name R ΔETS-Thiolate (kcal/mol) 
Fragment 

Substituent 

Fragment ΔETS-Thiolate 

(kcal/mol) 

Esters 

1 Hydrogen 0 H 0 

2 Methyl 5 CH3 5 

3 Ethyl 5 CH3 5 

4 Propyl 5 CH3 5 

Acids 

5 Hydrogen 0 H 0 

6 Methyl 5 CH3 5 

7 Ethyl 4 CH3 5 

8 Propyl 4 CH3 5 

Amides 

9 Hydrogen 2 H 2 

10 Methyl 7 CH3 7 

 

Brominated chemicals for which no SAR analysis was possible 

Of the 21 chemicals there was only a single chemical activated by nitrobenzene group, this 

prevented a SAR analysis from being carried out for this class. Given this, a fragment was included 

for 1-bromomethyl-4-nitrobezene to assess the ability of the ΔETS-Thiolate values to predict 

glutathione reactivity and toxicity to Tetrahymena pyriformis for this chemical. 

5.4.3 Development of fragments for chlorinated chemicals 

The dataset contained seven chlorinated chemicals - four esters, one ketone, one acid and an 

amide. Given this, the only group for which a SAR analysis could be carried out was the chlorinated 

esters substituted at the R1 position (R groups as defined in Table 5.2). This analysis resulted in the 



 

124 
 

same outcome as was seen for the brominated esters, where no change in the ΔETS-Thiolate values 

were calculated beyond a methyl substituent at the R1 position (chemicals 1-4 in Table 5.5). This 

resulted in two fragments being required to cover the four chlorinated esters in the dataset (these 

being R1 = methyl and ethyl). 

 

Figure 5.7. The general structure of secondary brominated esters, acid and amides investigated in 

this study (R1 groups as defined in Table 5.5) 

Table 5.5. Calculated ΔETS-Thiolate (kcal/mol) values for chlorinated esters substituted at the R1 

positions  

ID Substituent name R1 ΔETS-Thiolate (kcal/mol) 
Fragment 

Substituent 

Fragment ΔETS-Thiolate 

(kcal/mol) 

1 Methyl 3 CH3 3 

2 Ethyl 4 CH3 3 

3 Propyl 3 CH3 3 

4 t-Butyl 4 CH2CH3 3 

 

Chlorinated chemicals for which no SAR analysis was possible 

Of the seven chlorinated chemicals in the dataset, there were three chemicals for which no SAR 

analysis could be applied due to there being no other structurally related chemicals (1-

chloropinacalone, 2-chloroacetamide and 2-chlorobutyric acid). The fragments used to define these 

chemicals are discussed in the next section. 

5.5 Applicability domain of the fragment-based in silico profiler for the SN2 mechanism 

The above analysis resulted in the definition of ten fragments for the brominated chemicals and 

five fragments for the chlorinated chemicals (summarised in Table 5.6). All chemical classes for 
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brominated chemicals showed that a methyl substituent was capable of predicting the ΔETS-Thiolate 

values for alkyl and aryl substituents at both R-positions. The exception being the need for an ethyl 

group for t-butyl substituents for brominated ketones and esters. The SAR analysis for chlorinated 

esters substituted at the R1 position resulted in an identical outcome to that calculated for the 

brominated equivalents. Given this, an assumption was made that an analogous set of fragments 

to those defined for the brominated chemicals could be applied to extend the applicability domain 

of the profiler to cover an equivalent set of chlorinated chemicals. As such, the same set of R1 and 

R2 substituents were used to cover both brominated and chlorinated chemicals. This resulted in a 

total of 20 fragments to cover the expanded domain (fragments defined in Table 5.6).  

Table 5.6. The fragments required to cover the domain of chemicals in Table 5.2. Substituents used 

in the expanded domain for chlorinated chemicals are shown in italics.  

Chemical group Structure X = Br X = Cl 

Ketones 

 

R1 = CH3, CH2CH3 

R2 = H 

R1 = CH3, (CH2CH3) 

R2 = H 

Esters 

 

R1 = CH3, CH2CH3 

R2 = H, CH3 

R1 = CH3, CH2CH3 

R2 = H, (CH3) 

Acids 

 

R1 = N/A 

R2 = H, CH3 

R1 = N/A 

R2 = (H), CH3 

Amides 

 

R1 = N/A 

R2 = H, CH3 

R1 = N/A 

R2 = H, (CH3) 
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Chemical group Structure X = Br X = Cl 

Aromatic group 

 

R1 = Nitrobenzene R1 = (Nitrobenzene) 

Total Number of Fragments N = 10 N =  10  

 

5.6 Prediction of glutathione reactivity and Tetrahymena pyriformis toxicity using the 

fragment-based in silico profiler for SN2 

The above analysis identified the need for 15 fragments to cover the structural domain of the 28 

chemicals within the dataset with an additional five fragments being required to cover the 

expanded domain of chlorinated chemicals. This rationale is similar to the results from Chapter 4 

where 24 fragments were required for the prediction of reactivity for 54 Michael acceptors. The 

ability of the fragments and corresponding ΔETS-Thiolate were then used to predict glutathione 

reactivity (-Log RC50) and Tetrahymena pyriformis toxicity (-Log IGC50). Briefly, RC50 corresponds to 

reactive concentration, which results in 50% of GSH being depleted in 120 minutes (information on 

glutathione depletion assay found in Chapter 1, Section 1.6.1). Additionally, IGC50 corresponds to 

impairment growth concentration for 50% of control populations when exposed to the test 

chemical over a 40 hour period. Using the ΔETS-Thiolate values as the independent variables in a linear 

regression analysis showed them to be capable of predicting glutathione reactivity (Model 5.1, 

Figure 5.8, experimental and predicted values in Table 5.7) (103).   

  −Log RC50(pred) = 1.03 − 0.34 𝛥𝐸𝑇𝑆−𝑇ℎ𝑖𝑜𝑙𝑎𝑡𝑒                           (Model 5.1) 

              N = 28, R2 = 0.85, R2-adj = 0.84, R2-pred = 0.82, Average error = 0.31 
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Figure 5.8. The predicted –Log RC50 against experimental –Log RC50 for all 28 SN2 chemicals  

The predicted glutathione reactivity data values obtained from Model 5.1 (–Log RC50(pred)) were 

subsequently utilised as the independent variable for the prediction of toxicity to Tetrahymena 

pyriformis (-Log IGC50). The resulting regression analysis is shown in Model 5.2, with the statistics 

of this model being in keeping with previous research in which experimental glutathione reactivity 

data were used to predict toxicity to Tetrahymena pyriformis (Figure 5.9) (42).   

 

Figure 5.9. The predicted –Log RC50 against experimental –Log IGC50 values for all 28 SN2 chemicals 
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   −Log IGC50 = 1.27 + 1.00 − 𝐿𝑜𝑔 𝑅𝐶50 (𝑝𝑟𝑒𝑑)            (Model 5.2) 

             N = 28, R2 = 0.84, R2-adj = 0.83, R2-pred = 0.81, Average error = 0.31 
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Table 5.7. Chemicals acting via an SN2 mechanism with corresponding –Log RC50, -Log IGC50 (toxicity to Tetrahymena pyriformis), predicted –Log RC50 and 

Predicted –Log IGC50 values investigated in the current study. Chemical names taken directly from reference (2). Fragment names are based on their IUPAC 

name 

ID Chemical 
-Log RC50 

(mM) 

-Log IGC50 

(mM) 

Fragment  
Predicted –Log RC50 (mM) 

(Model 5.1) 

Predicted –Log IGC50 (mM) 

(Model 5.2)  

1 1-Bromomethyl-4-nitrobenzene 0.66 2.30 1-Bromomethyl-4-nitrobenzene 0.93 2.20 

2 2-(2-Bromoacetyl) thiophene 1.11 2.22 1-Bromo-2-propanone 1.28 2.55 

3 1-Bromo-2-butanone 1.30 2.60 1-Bromo-2-propanone 1.28 2.55 

4 1-Bromopinacolone 1.42 2.38 1-Bromo-2-butanone 1.14 2.41 

5 1-Chloropinacolone 0.12 1.27 1-Chloro-2-butanone 0.42 1.69 

6 2-Bromoacetophenone 1.26 2.82 1-Bromo-2-propanone 1.28 2.55 

7 2-(2-Bromoacetyl) naphthalene 1.18 2.96 1-Bromo-2-propanone 1.28 2.55 

8 1-(Bromoacetyl) pyrene 1.24 2.39 1-Bromo-2-propanone 1.28 2.55 

9 Ethyl bromoacetate 1.07 2.68 Methyl bromoacetate 0.92 2.19 

10 Ethyl chloroacetate -0.48 1.06 Methyl chloroacetate -0.12 1.15 

11 Methyl bromoacetate 1.18 2.96 Methyl bromoacetate 0.92 2.19 

12 Methyl chloroacetate -0.45 0.89 Methyl chloroacetate -0.12 1.15 

13 Propyl bromoacetate 1.14 2.08 Methyl bromoacetate 0.92 2.19 

14 Propyl chloroacetate -0.43 1.18 Methyl chloroacetate -0.12 1.15 

15 t-Butyl bromoacetate 1.07 2.68 Ethyl bromoacetate 0.86 2.13 
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ID Chemical 
-Log RC50 

(mM) 

-Log IGC50 

(mM) 

Fragment  
Predicted –Log RC50 (mM) 

(Model 5.1) 

Predicted –Log IGC50 (mM) 

(Model 5.2)  

16 t-Butyl chloroacetate -0.53 0.85 Ethyl chloroacetate -0.40 0.87 

17 Phenyl bromoacetate 1.14 2.08 Methyl bromoacetate 0.92 2.19 

18 2-Bromoacetamide 0.59 1.52 2-Bromoacetamide 0.28 1.55 

19 2-Chloroacetamide -1.20 0.04 2-Chloroacetamide -0.56 0.71 

20 Methyl-2-bromopropionate -0.18 1.18 Methyl-2-bromopropionate -0.83 0.44 

21 Methyl-2-bromobutyrate -0.54 1.02 Methyl-2-bromopropionate -0.83 0.44 

22 2-Bromopropionamide -1.40 0.00 2-Bromopropanamide -1.36 -0.09 

23 2-Bromobutyric acid -1.20 0.12 2-Bromopropanoic acid -0.52 0.75 

24 2-Chlorobutyric acid -1.58 -0.35 2-Chloropropanoic acid -1.14 0.13 

25 2-Bromovaleric acid -1.08 -0.04 2-Bromopropanic acid -0.52 0.75 

26 Ethyl-2-bromovalerate -0.23 0.70 Methyl-2-bromopropionate -0.83 0.44 

27 Ethyl-2-bromobutyrate -0.20 0.77 Methyl-2-bromopropionate -0.83 0.44 

28 Ethyl-2-bromopropionate -0.23 1.06 Methyl-2-bromopropionate -0.83 0.44 
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5.7 Concluding remarks  

The aim of this chapter was to develop a fragment-based profiler for the SN2 mechanism by 

adopting the method that was successfully applied to the Michael addition domain in Chapters 3 

and 4. The results showed that the fragment-based profiler for the SN2 mechanism was able to 

predict both glutathione reactivity and toxicity to Tetrahymena pyriformis for a series of activated 

SN2 chemicals. The predicted toxicity values towards Tetrahymena pyriformis were in keeping with 

a previous study in which experimental reactivity data were used to predict toxicity. The results of 

this chapter highlight the benefits of developing fragment-based reactivity profilers of this type, 

and their application in the prediction of toxicological endpoints for which the formation of a 

covalent bond is the key driver of potency within well-defined mechanistic domains.  
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Chapter 6: Discussion  

This final chapter will present an overall summary of the findings of and the conclusions drawn from 

the work in this thesis. The first section will focus on the background to the project and the rationale 

for the research undertaken. This will be followed by an overview of the key findings from the 

research presented in Chapters 3, 4 and 5. The final part of the chapter will focus on potential future 

work and applications of the research with regards to the potential for extending the in silico 

fragment-based reactivity profiler to other mechanistic domains and nucleophiles relevant to 

toxicity. The work will be discussed in the context of developing alternatives to traditional toxicity 

testing. 

6.1 Summary of work 

The work in this thesis has been focused on the development of alternative methods for 

toxicological risk assessment, more specifically the development of fragment-based in silico 

profilers for thiol reactivity. The motivation for the development of alternative methods arises from 

the seventh amendment to the cosmetic directive and the REACH legislation, which demand 

greater speed of chemical assessment with minimal animal usage. One of the key in silico methods 

used to satisfy the non-animal testing approaches envisaged by such legislation is category 

formation and read-across. The importance of considering the MIE when developing a chemical 

category was outlined in Chapter 1. This chapter also highlighted the importance of the mechanistic 

organic chemistry associated with the formation of a covalent bond between an electrophile and a 

biological macromolecule when developing such chemical categories. A number of studies have 

shown that such mechanistic chemistry can be encoded as structural alert-based in silico profilers 

which have been encoded into a number of freely available in silico tools, such as the OECD QSAR 

Toolbox. Finally, Chapter 1 outlined that research has shown that, when available, both 

experimental and computational measurements of reactivity can be used to build QSAR models 

within a mechanism-based category, enabling toxicological potency to be predicted. From a 
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computational point of view the limiting factor for the inclusion of these approaches in tools such 

as the OECD QSAR Toolbox is the need for complex and time-consuming QM calculations. With this 

in mind, the key aim of this thesis was to develop fragment-based in silico profilers capable of 

predicting reactivity (and, by extension, toxicity) for chemicals acting via Michael addition and SN2 

mechanisms.  

Chapter 2 outlined the theory behind the QM methods used throughout this thesis. One of the 

fundamental equations used in QM was introduced – the Schrödinger equation. The Schrödinger 

equation allows a number of important properties of a particle to be determined (such as energy). 

The Schrödinger equation is composed of two key parts, the Hamiltonian (provides information on 

kinetic energy and interaction between particles) and the wavefunction (a mathematical function 

that describes the motion of the particle through space). Additional concepts were defined in order 

to solve the Schrödinger equation, these being the Born-Oppenheimer approximation and HF 

theory. Density functional theory (DFT) was outlined as an alternative to solving the Schrödinger 

equation by replacing the many-body electronic wavefunction used in HF with the electron density. 

The appeal of DFT comes from the inclusion of an exchange-correlation functional to account for 

electron-electron correlation. The QM methods used in this thesis utilised a hybrid functional form 

of DFT with the inclusion of additional diffusion and polarizability functions. 

Chapter 3 focused on the development of fragments which formed the basis of the novel fragment-

based in silico profiler for Michael addition. The development of the fragment-based in silico 

profiler required the use of an appropriate descriptor which could successfully be used to relate 

chemical structure to chemical reactivity. Two descriptors for the Michael addition reaction were 

investigated, both being calculated using DFT. The first of these being the calculated activation 

energy derived from utilising the energy of the transition state structure linking the reactants and 

products for chemicals acting via Michael addition (ΔETS-Thiolate). The second descriptor that was 

considered related to the activation energy calculated using the energy of the ionised intermediate 
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structure that exists on the Michael addition potential energy surface (ΔEInt-Thiolate). Analysis within 

Chapter 3 showed these two descriptors to be highly correlated with one another. Given this, it was 

decided that all fragments for chemicals acting via Michael addition would be calculated using ΔEINT-

Thiolate due to it being significantly easier to compute. This enabled a SAR analysis to be carried out 

to investigate the variability of ΔEINT-Thiolate upon changing the substitutions (aliphatic and aromatic) 

at the various R-groups for the Michael acceptors. This was to establish the point at which ΔEINT-

Thiolate no longer varied with a change in substitution at the respective R-group. The calculated ΔEINT-

Thiolate stopped varying after 2 aliphatic carbons at all R groups for α,β-unsaturated aldehydes, 

ketones and esters. The exception being the need to include branched chains (i-propyl and t-butyl) 

at various R positions for the three groups. This resulted in the definition of 294 fragments to cover 

the domain of α,β-unsaturated aldehydes, ketones and esters (defined fragments are summarised 

in Table 3.11). This covers all α,β-unsaturated aldehydes, ketones and esters with alkyl or aryl 

substitutions at the various R-positions (potentially covering an vast number of chemicals). The 

development of such fragments is a crucial step in the development of the fragment-based in silico 

profiler for Michael addition thiol reactivity. 

Chapter 4 demonstrated the ability of the fragment-based in silico profiler for Michael addition 

developed in Chapter 3 to predict thiol reactivity as determined in a glutathione depletion assay. 

The results showed that fragment-based calculations for ΔEINT-Thiolate values, in conjunction with an 

additional descriptor related to the solvent accessible surface area at the α-position, were capable 

of predicting the glutathione reactivity for the majority of the chemicals in the dataset. Two sets of 

chemicals were poorly predicted by the approach; volatile esters with an extended substituent at 

the β-carbon and chemicals containing a conjugated benzene ring as part of the polarising group. 

Chapter 4 also demonstrated that the predicted glutathione reactivity values generated by the 

fragment-based in silico profiler for Michael addition could also be used to predict skin sensitisation 

potency and toxicity to Tetrahymena pyriformis within well-defined, endpoint specific applicability 

domains. The novel research output from this chapter being the development of an in silico profiler 
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for Michael addition and its ability to generate rapid predictions of glutathione reactivity. The utility 

of these values in the prediction of toxicity was demonstrated by predicting skin sensitisation 

potency and toxicity to Tetrahymena pyriformis within well-defined, end-point specific applicability 

domains. 

The expansion of the fragment-based in silico profiler to chemicals which form covalent bonds 

through an SN2 mechanism was investigated in Chapter 5. The research enabled a fragment-based 

in silico profiler for the SN2 mechanism to be developed based on a total of 19 fragments covering 

chlorinated and brominated chemicals activated by an electron-withdrawing group. This Chapter 

also outlined the use of this profiler for the prediction of toxicity to Tetrahymena pyriformis. The 

results highlighted the ability of the fragment-based in silico profiler to predict reactivity and 

toxicity of chemicals which form covalent bonds via mechanisms other than Michael addition 

something not extensively studied in the literature to date. This study expands on the novelty of 

the fragment-based in silico profiler developed in Chapter 4 by including chemicals from additional 

mechanistic domains. 

6.2 Prospects for future work - expansion of the fragment-based in silico profiler to 

additional mechanistic domains and endpoints 

The work carried out in this thesis highlights the development and use of two novel fragment-based 

in silico profilers for the Michael addition and the SN2 mechanistic domains. These profilers were 

shown to be capable of predicting both glutathione-based chemical reactivity and toxicity (skin 

sensitisation and aquatic toxicity). Given this, it is likely that the approach will be applicable to the 

other mechanistic domains relevant to toxicology (SNAr, SN1, acylation and Schiff base formation). 

The expansion of the fragment-based in silico profiler to additional domains is dependent on the 

availability of reactivity data. This is likely to be derived primarily from glutathione and other 

reactivity data sources (a database of 3089 chemicals with reactivity data exists covering all six 

mechanisms discussed). It may also be possible that additional fragments could be developed from 
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alternative data sources giving the opportunity to cover a wider range of chemistry within each of 

the mechanistic domains. Additionally given the high degree of correlation between glutathione 

reactivity and toxicity to Tetrahymena pyriformis it is possible that the latter could be used as a 

surrogate for reactivity data. The benefit of such an analysis becomes clear when considering that 

a database of 2072 chemicals with toxicity to Tetrahymena pyriformis values is publically available 

(83). Alternatively, an investigation could be carried out into the development of fragments with 

nitrogen-based nucleophiles such as lysine or butylamine (72, 85, 86). Lysine reactivity is likely to 

be of use for the development of fragments for the Schiff base domain as chemicals acting via this 

mechanism do so only with nitrogen based nucleophiles. As an example of the importance of this 

to toxicology, one only has to consider that lysine reactivity has been implicated as being key in 

endpoints such as respiratory sensitisation (where the MIE is covalent bond formation covering 

similar chemistry to skin sensitisation). 

In addition to the expansion to additional mechanistic domains relevant to toxicological endpoints, 

there are other areas of research where knowledge of the rate of covalent mechanisms may be of 

use. For example, in the development of covalently binding drugs. The significance of reactivity for 

covalent acting drugs was investigated in a study in which calculated ΔEINT-Thiolate values were used 

to predict the reactivity towards glutathione for a set of Michael acceptors (this study is discussed 

in detail in Chapter 3 Section 3.1) (75). These are classified as “warhead” type drugs which have 

found use in the treatment of serious disease such as cancer. Consider the chemicals ibrutinib and 

acalabrutinib (Figure 6.2) - both of these chemicals bind with biological proteins through Michael 

addition due to the presence of the alkene / alkyne moiety adjacent to an electron-withdrawing 

carbonyl group. Acalabrutinib is designed to be more potent and selective than ibrutinib. The 

increased potency of acalabrutinib is likely due to the difference in reactivity between an alkyne 

and alkene Michael acceptor with the alkyne being significantly more reactive. However, design of 

such drugs has been considered relatively controversial due to their affinity to form covalent bonds 

with off-target proteins. As such, the development of covalently binding drugs involves a process 
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of carefully tuning the reactivity and specificity which is complementary to the target (115). 

Therefore, a method that allows the reactivity of chemical to be predicted rapidly would clearly be 

beneficial in the design process of such molecules. 

 

Figure 6.2.  Ibrutinib (A) and Acalabrutinib (B) highlighting the reactivity centres in red 

6.3 Concluding remarks 

The work in this thesis has focused on the development of novel fragment-based in silico profilers 

for the prediction of thiol reactivity and toxicity for chemicals acting via Michael addition and SN2 

mechanistic domains. The approach enables chemical reactivity to be predicted without the use of 

time-consuming quantum mechanics calculations which involve the use of proprietary software. 

The work in this thesis has also shown that it is possible to expand the domain of the fragment-

based in silico profilers through the calculation of additional fragments, enabling additional 

chemicals and/or mechanistic domains to be readily investigated. This method is likely to be of 

primary use in regulatory toxicology with the potential to be implemented in such freely available 

tools as the OECD QSAR toolbox. Such implementation would enable the development of 

mechanism-based QSARs for reactivity to be utilised within the chemical category approach to data 

gap filling. Additionally, this approach is likely to be of use in other areas of research such as the 

development of covalent binding drugs such as anti-cancer agents.  

 

(a) (b) 
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Appendix I. Tables containing chemical names and SMILES for all Tables in the thesis 

Table 3.1a Chemical names and SMILES for chemicals in Table 3.1 and Table 3.2 

ID Chemical SMILES 

1 Prop-2-enal C=CC=O 

2 But-2-enal  CC=CC=O 

3 Buten-2-one  C=CC(=O)C 

4 Penten-2-one CC=CC(=O)C 

5 Methyl prop-2-enoate  C=CC(=O)OC 

6 Methyl but-2-enoate  CC=CC(=O)OC 

 

Table 4.1a Chemical Names and SMILES for chemicals in Table 4.1 

ID Chemical SMILES 

Aldehyde 

1 trans-Pent-2-enal O=C/C=C/CC 

2 trans-Oct-2-enal O=C/C=C/CCCCC 

3 trans-Non-2-enal O=C/C=C/CCCCCC 

4 trans-Hex-2-enal O=C/C=C/CCC 

5 trans-Prop-2-enal O=CC=C 
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ID Chemical SMILES 

6 trans-2-Methylbut-2-enal O=C/C(C)=C/C 

7 2-Methyl-pent-2-enal O=CC(=CCC)C 

8 4-Methyl-pent-2-enal O=CC=CC(C)C 

9 trans-But-2-enal O=C/C=C/C 

10 E-Dec-2-enal O=C/C=C\CCCCCCC 

11 trans-Dec-2-enal O=C/C=C/CCCCCCC 

12 trans-Cinnamaldehyde O=C\C=C\c1ccccc1 

13 α-Methyl-trans-cinnamaldehyde  C\C(C=O)=C/c1ccccc1 

Ketone 

14 Methyl vinyl ketone O=C(C=C)C 

15 Hex-1-en-3-one O=C(C=C)CCC 

16 Pent-1-en-3-one O=C(C=C)CC 

17 Pent-3-en-2-one O=C(C=CC)C 

18 Hept-3-en-2-one O=C(C=CCCC)C 

19 Oct-3-en-2-one O=C(C=CCCCC)C 

20 Non-3-en-2-one O=C(C=CCCCCC)C 

21 Dec-3-en-2-one O=C(C=CCCCCCC)C 

22 Hex-4-en-3-one O=C(C=CC)CC 

23 Oct-1-en-3-one O=C(C=C)CCCCC 
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ID Chemical SMILES 

24 3-Methyl-pent-3-en-2-one O=C(C(=CC)C)C 

25 5-Methyl-hept-2-en-4-one CC(C)C(=O)C=CC 

26 trans-Non-3-en-2-one CC(=O)/C=C/CCCCC 

27 4-Phenyl-but-3-en-2-one CC(=O)\C=C\C1=CC=CC=C1 

28 trans-Chalcone  O=C(\C=C\c1ccccc1)c1ccccc1 

29 2-Hydroxychalcone Oc1ccccc1\C=C\C(=O)c1ccccc1 

30 4-Hydroxychalcone Oc1ccc(\C=C\C(=O)c2ccccc2)cc1 

Esters 

31 Methyl crotonate CC(C)COC(=O)C=C 

32 Ethyl acrylate CCCCCCOC(=O)C=C 

33 Methyl acrylate CCCCOC(=O)C=C 

34 Methyl methacrylate COC(=O)\C=C\C 

35 t-butyl acrylate CCOC(=O)C=C 

36 Propyl acrylate COC(=O)C=C 

37 2-Hydroxy ethyl acrylate COC(=O)C(C)=C 

38 2-Hydroxyethyl methacrylate CC(C)(C)OC(=O)C=C 

39 2-Hydroxypropyl methacrylate CCCOC(=O)C=C 

40 Phenyl acrylate OCCOC(=O)C=C 

41 Isoamyl acrylate CC(=C)C(=O)OCCO 



 

149 
 

ID Chemical SMILES 

42 N-pentylacrylate CC(O)COC(=O)C(C)=C 

43 Ethyl crotonate CC(=C)C(=O)Oc1ccccc1 

44 Methyl trans-pent-2-enoate CC(C)CCOC(=O)C=C 

45 Ethyl trans-hex-2-enoate CCCCCOC(=O)C=C 

46 Methyl-hex-2-enoate CCOC(=O)\C=C\C 

47 Methyl-4-methyl-pent-2-enoate CC\C=C\C(=O)OC 

48 Ethyl tiglate CCC\C=C\C(=O)OCC 

49 Ethyl methacrylate  CCC\C=C\C(=O)OC 

50 Butyl methacrylate  COC(=O)\C=C\C(C)C 

51 2-Ethylhexyl acrylate  CCOC(=O)C(\C)=C\C 

52 Methyl crotonate CCOC(=O)C(C)=C 

53 Ethyl acrylate CCCCOC(=O)C(C)=C 

54 Methyl acrylate CCCCC(CC)COC(=O)C=C 

Nitro 

55 1-Nitro-1-cyclohexene C1CCCC=C1N(=O)(=O) 

56 4-Methyl-β-nitrostyrene (mixture of cis and 

trans) N(=O)(=O)C=Cc1ccc(C)cc1 

57 trans-β-Nitrostyrene c1ccccc1/C=C/N(=O)=O 

58 trans-4-Methyl-β-nitrostyrene O=N(=O)/C=C/c1ccc(C)cc1 
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ID Chemical SMILES 

59 trans-4-Chloro-β-nitrostyrene c1cc(Cl)ccc1/C=C/N(=O)(=O) 

60 trans-4-Bromo-β-nitrostyrene O=N(=O)/C=C/c1ccc(Br)cc1 

61 4-Fluoro-β-nitrostyrene O=N(=O)C=Cc1ccc(F)cc1 

62 trans-4-Methoxy-β-nitrostyrene O=N(=O)/C=C/c1ccc(OC)cc1 

63 trans-β-Methyl-β-nitrostyrene c1ccccc1/C=C/(C)N(=O)(=O) 

Nitrile 

64 2-Methyleneglutaronitrile N#CC(=C)CCC#N 

65 Cyclohexene-1-carbonitrile (1-

cyanocyclohexene) C1(C#N)=CCCCC1 

66 1-Cyclopentene-1-carbonitrile N#CC1=CCCC1 

Cyclic Ketones 

67 2-Cyclohexen-1-one O=C1CCCC=C1 

68 2-Cyclopenten-1-one O=C1CCC=C1 

69 2-Methyl-2-cyclopenten-1-one CC1=CCCC1=O 

70 4,4-Dimethyl-2-cyclohexen-1-one CC1(C)CCC(=O)C=C1 

71 1-Acetyl-1-cyclohexene CC(=O)C1=CCCCC1 

72 1-Acetyl-1-cyclopentene CC(=O)C1=CCCC1 
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Table 4.3a Chemical names and SMILES for chemicals in Table 4.3 

ID Chemical SMILES 

1 Methyl crotonate C/C=C/C(=O)OC 

2 Ethyl crotonate C/C=C/C(=O)OCC 

3 Methyl trans-pent-2-enoate CC/C=C/C(=O)OC 

4 Ethyl trans-hex-2-enoate CCC/C=C/C(=O)OCC 

5 Methyl-hex-2-enoate CCC\C=C\C(=O)OCC 

6 Methyl-4-methyl-pent-2-enoate COC(=O)\C=C\C(C)C 

7 Ethyl tiglate CCOC(=O)C(\C)=C\C 

 

Table 4.4a Chemical names and SMILES for chemicals in Table 4.4 

ID Chemical SMILES 

1 Chalcone O=C(\C=C\c1ccccc1)c1ccccc1 

2 2-Hydroxy-chalcone Oc1ccccc1\C=C\C(=O)c1ccccc1 

3 4-Hydroxy-chalcone Oc1ccc(\C=C\C(=O)c2ccccc2)cc1 

4 4-Phenyl-but-3-en-2-one CC(=O)\C=C\C1=CC=CC=C1 

5 Phenyl-acrylate CC(=C)C(=O)Oc1ccccc1 
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Table 4.5a Chemical names and SMILES for chemicals in Table 4.5 

ID Chemical SMILES 

1 1-Nitro-1-cyclohexene C1CCCC=C1N(=O)(=O) 

2 4-Methyl-β-nitrostyrene N(=O)(=O)C=Cc1ccc(C)cc1 

3 Trans-4-methyl-β-nitrostyrene O=N(=O)/C=C/c1ccc(C)cc1 

4 Trans-4-chloro-β-nitrostyrene c1cc(Cl)ccc1/C=C/N(=O)(=O) 

5 Trans-4-bromo-β-nitrostyrene O=N(=O)/C=C/c1ccc(Br)cc1 

6 Trans-4-fluoro-β-nitrostyrene O=N(=O)C=Cc1ccc(F)cc1 

7 Trans-4-methoxy-β-nitrostyrene O=N(=O)/C=C/c1ccc(OC)cc1 

8 Trans-β-methyl-β-nitrostyrene c1ccccc1/C=C/(C)N(=O)(=O) 

9 2-Methyleneglutaronitrile N#CC(=C)CCC#N 

10 Cyclohexene-1-carbonitrile C1(C#N)=CCCCC1 

11 1-Cyclopentene-1-carbonitrile N#CC1=CCCC1 

12 Cyclohex-2-en-1-one O=C1CCCC=C1 

13 Cyclopent-2-en-1-one O=C1CCC=C1 

14 2-Methyl-cyclopent-2-en-1-one CC1=CCCC1=O 

15 1-Acetyl-cyclohex-1-ene CC(=O)C1=CCCCC1 

16 1-Acetyl-cyclopent-1-ene CC(=O)C1=CCCC1 

17 4,4-Dimethyl-cyclohex-2-en-1-one CC1(C)CCC(=O)C=C1 
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Table 4.6a Chemical names and SMILES for chemicals in Table 4.6 

ID Chemical SMILES 

1 Prop-2-enal C=CC=O 

2 (2E)-But-2-enal C\C=C\C=O 

3 (2E)-3-(Furan-2-yl)prop-2-enal O=C\C=C\c1ccco1 

4 (2E)-Pent-2-enal CC\C=C\C=O 

5 4-Methylpent-2-enal CC(C)\C=C\C=O 

6 Hex-2-enal CCC\C=C\C=O 

7 (2E)-3-Phenylprop-2-enal O=C\C=C\c1ccccc1 

8 (2E)-3-[4-(Dimethylamino)phenyl]prop-2-enal CN(C)c1ccc(\C=C\C=O)cc1 

9 Hept-2-enal CCCC\C=C\C=O 

10 (2E)-Oct-2-enal CCCCC\C=C\C=O 

11 (2E)-2-Methylbut-2-enal C\C=C(/C)C=O 

12 Non-2-enal CCCCCC\C=C\C=O 

13 2-Methylpent-2-enal CC\C=C(/C)C=O 

14 But-3-en-2-one CC(=O)C=C 

15 Pent-1-en-3-one CCC(=O)C=C 

16 Hex-1-en-3-one CCCC(=O)C=C 
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ID Chemical SMILES 

17 Pent-3-en-2-one C\C=C\C(C)=O 

18 Hex-4-en-3-one CCC(=O)\C=C\C 

19 Oct-1-en-3-one CCCCCC(=O)C=C 

20 Hept-3-en-2-one CCC\C=C\C(C)=O 

21 Oct-3-en-2-one CCCC\C=C\C(C)=O 

22 Oct-2-en-4-one CCCCC(=O)\C=C\C 

23 2-Methylcyclopent-2-en-1-one CC1=CCCC1=O 

24 3-Methylpent-3-en-2-one C\C=C(/C)C(C)=O 

25 Non-3-en-2-one CCCCC\C=C\C(C)=O 

26 2-Hydroxyethyl prop-2-enoate OCCOC(=O)C=C 

27 2-Hydroxypropyl prop-2-enoate CC(O)COC(=O)C=C 

28 Methyl prop-2-enoate COC(=O)C=C 

29 Ethyl prop-2-enoate CCOC(=O)C=C 

30 Propyl prop-2-enoate CCCOC(=O)C=C 

31 2-Methylpropyl prop-2-enoate CC(C)COC(=O)C=C 

32 2-Hydroxyethyl 2-methylprop-2-enoate CC(=C)C(=O)OCCO 

33 Butyl prop-2-enoate CCCCOC(=O)C=C 
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ID Chemical SMILES 

34 Benzyl prop-2-enoate C=CC(=O)OCc1ccccc1 

35 3-Methylbutyl prop-2-enoate CC(C)CCOC(=O)C=C 

36 Pentyl prop-2-enoate CCCCCOC(=O)C=C 

37 Cyclohexyl prop-2-enoate C=CC(=O)OC1CCCCC1 

38 Methyl 2-methylprop-2-enoate COC(=O)C(C)=C 

39 Hexyl prop-2-enoate CCCCCCOC(=O)C=C 

40 2-Methylpropyl (2E)-but-2-enoate C\C=C\C(=O)OCC(C)C 

41 Butan-2-yl (2E)-but-2-enoate CCC(C)OC(=O)\C=C\C 

42 Butyl (2E)-but-2-enoate CCCCOC(=O)\C=C\C 

43 2-Ethoxyethyl 2-methylprop-2-enoate CCOCCOC(=O)C(C)=C 

44 (2E)-Dec-2-enal CCCCC\C=C\C=O 

45 Heptyl prop-2-enoate CCCCCCCOC(=O)C=C 

46 Ethyl 2-methylprop-2-enoate CCOC(=O)C(C)=C 

47 Methyl (2E)-oct-2-enoate CCCCC\C=C\C(=O)OC 

48 Methyl (2E)-3-phenylprop-2-enoate COC(=O)\C=C\c1ccccc1 

49 Methyl (2E)-2-methylbut-2-enoate COC(=O)C(\C)=C\C 

50 Propan-2-yl 2-methylprop-2-enoate CC(C)OC(=O)C(C)=C 
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ID Chemical SMILES 

51 Propyl 2-methylprop-2-enoate CCCOC(=O)C(C)=C 

52 Methyl non-2-enoate CCCCCC\C=C\C(=O)OC 

53 Ethyl (2E)-3-phenylprop-2-enoate CCOC(=O)\C=C\c1ccccc1 

54 Ethyl (2E)-2-methylbut-2-enoate CCOC(=O)C(\C)=C\C 

55 Methyl (2E)-2-methylpent-2-enoate CC\C=C(/C)C(=O)OC 

56 2-Methylpropyl 2-methylprop-2-enoate CC(C)COC(=O)C(C)=C 

57 Butyl 2-methylprop-2-enoate CCCCOC(=O)C=C 

58 Propyl (2E)-3-phenylprop-2-enoate CCCOC(=O)\C=C\c1ccccc1 

59 Benzyl 2-methylprop-2-enoate CC(=C)C(=O)OCc1ccccc1 

60 Butyl (2E)-3-phenylprop-2-enoate CCCCOC(=O)\C=C\c1ccccc1 

61 Hexyl 2-methylprop-2-enoate CCCCCCOC(=O)C(C)=C 

62 2-Ethylhexyl 2-methylprop-2-enoate CCCCC(CC)COC(=O)C(C)=C 

 

Table 4.7a Chemical names and SMILES for chemicals in Table 4.7 

 

ID 

 

Chemical 

 

SMILES 

1 Methyl methacrylate CC(=C)C(=O)OC 
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ID 

 

Chemical 

 

SMILES 

2 2-Hydroxypropyl methacrylate CC(COC(=O)C(=C)C)O 

3 Ethyl acrylate CCOC(=O)C=C 

4 Methyl acrylate COC(=O)C=C 

5 Butyl acrylate CCCCOC(=O)C=C 

6 r-Carvone CC(=C)C1CC=C(C)C(=O)C1 

7 L-Carvone CC1=CC[C@H](CC1=O)C(=C)C 

8 α-Butyl cinnamic aldehyde CCCC\C(C=O)=C/c1ccccc1 

9 Linalool aldehyde C\C(C=O)=C/CCC(C)(O)C=C 

10 trans-Hex-2-enal CCC\C=C\C=O 

11 α-Amyl cinnamic aldehyde CCCCC/C(=C\c1ccccc1)/C=O 

12 α-Hexylcinnamaldehyde CCCCCC\C(C=O)=C/c1ccccc1 

13 2-Ethylhexyl-acrylate CCCCC(CC)COC(=O)C=C 

14 Perillaldehyde CC(=C)C1CCC(C=O)=CC1 

15 1-(p-Methoxyphenyl)-1-penten-3-one CCC(=O)\C=C\c1ccc(OC)cc1 

16 α-Methyl-cinnamic aldehyde C\C(C=O)=C/c1ccccc1 

17 Benzylidene acetone CC(=O)\C=C\c1ccccc1 

18 5-Methyl-2-phenyl-hex-2-enal CCCC\C=C(\C=O)c1ccccc1 

19 Cinnamic aldehyde O=C\C=C\c1ccccc1 
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ID 

 

Chemical 

 

SMILES 

20 trans-Dec-2-enal CCCCCCC/C=C/C=O 

21 Galbanone CC1(C)CCC=C(C1)C(=O)CCC=C 

22 
5,5-Dimethyl-3-methylene-dihydro-2(3H)-

furone 
CC1(C)CC(=C)C(=O)O1 

23 Diethyl maleate CCOC(=O)/C=C/C(=O)OCC 

24 2-Hydroxyethyl acrylate C=CC(=O)OCCO 

25 Spirogalbanone C=CCCC(=O)C1=CCCC2(CCCC2)C1 

26 Pomarose C\C=C\C(=O)C(\C)=C(/C)C(C)C 

 

Table 5.1a Chemical names and SMILES for chemicals in Table 5.1 

ID Chemical SMILES 

1 1-Bromopropan-2-one CC(=O)CBr 

2 2-Bromo-1-phenylethan-1-one BrCC(=O)c1ccccc1 

3 Methyl-2-bromoacetate COC(=O)CBr 

4 2-Bromoacetic acid OC(=O)CBr 

5 2-Bromo acetamide NC(=O)CBr 
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Table 5.7a Chemical names and SMILES for chemicals in Table 5.7 

ID Chemical SMILES 

1 1-Bromomethyl-4-nitrobenzene [O-][N+](=O)c1ccc(CBr)cc1 

2 2-(2-Bromoacetyl) thiophene BrCC(=O)c1cccs1 

3 1-Bromo-2-butanone CCC(=O)CBr 

4 1-Bromopinacolone CC(C)(C)C(=O)CBr 

5 1-Chloropinacolone CC(C)(C)C(=O)CCl 

6 2-Bromoacetophenone BrCC(=O)c1ccccc1 

7 2-(2-Bromoacetyl) naphthalene BrCC(=O)c1ccc2ccccc2c1 

8 1-(Bromoacetyl) pyrene BrCC(=O)c1ccc2ccc3cccc4ccc1c2c34 

9 Ethyl bromoacetate CCOC(=O)CBr 

10 Ethyl chloroacetate CCOC(=O)CCl 

11 Methyl bromoacetate COC(=O)CBr 

12 Methyl chloroacetate COC(=O)CCl 

13 Propyl bromoacetate CCCOC(=O)CBr 

14 Propyl chloroacetate CCCOC(=O)CCl 

15 t-Butyl bromoacetate CC(C)(C)OC(=O)CBr 

16 t-Butyl chloroacetate CC(C)(C)OC(=O)CCl 

17 Phenyl bromoacetate BrCC(=O)Oc1ccccc1 
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ID Chemical SMILES 

18 2-Bromoacetamide NC(=O)CBr 

19 2-Chloroacetamide NC(=O)CCl 

20 Methyl-2-bromopropionate COC(=O)C(C)Br 

21 Methyl-2-bromobutyrate CCC(Br)C(=O)OC 

22 2-Bromopropionamide CC(Br)C(N)=O 

23 2-Bromobutyric acid CCC(Br)C(O)=O 

24 2-Chlorobutyric acid CCC(Cl)C(O)=O 

25 2-Bromovaleric acid CCCC(Br)C(O)=O 

26 Ethyl-2-bromovalerate CCCC(Br)C(=O)OCC 

27 Ethyl-2-bromobutyrate CCOC(=O)C(Br)CC 

28 Ethyl-2-bromopropionate CCOC(=O)C(C)Br 
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ABSTRACT: The Adverse Outcome Pathway (AOP) paradigm details the existing knowledge that links the initial interaction
between a chemical and a biological system, termed the molecular initiating event (MIE), through a series of intermediate events,
to an adverse effect. An important example of a well-defined MIE is the formation of a covalent bond between a biological
nucleophile and an electrophilic compound. This particular MIE has been associated with various toxicological end points such as
acute aquatic toxicity, skin sensitization, and respiratory sensitization. This study has investigated the calculated parameters that
are required to predict the rate of chemical bond formation (reactivity) of a dataset of Michael acceptors. Reactivity of these
compounds toward glutathione was predicted using a combination of a calculated activation energy value (Eact, calculated using
density functional theory (DFT) calculation at the B3YLP/6-31G+(d) level of theory, and solvent-accessible surface area values
(SAS) at the α carbon. To further develop the method, a fragment-based algorithm was developed enabling the reactivity to be
predicted for Michael acceptors without the need to perform the time-consuming DFT calculations. Results showed the developed
fragment method was successful in predicting the reactivity of the Michael acceptors excluding two sets of chemicals: volatile esters
with an extended substituent at the β-carbon and chemicals containing a conjugated benzene ring as part of the polarizing group.
Additionally the study also demonstrated the ease with which the approach can be extended to other chemical classes by the
calculation of additional fragments and their associated Eact and SAS values. The resulting method is likely to be of use in regulatory
toxicology tools where an understanding of covalent bond formation as a potential MIE is important within the AOP paradigm.

■ INTRODUCTION

The Adverse Outcome Pathway (AOP) paradigm has been
promoted as a key approach that may enable the demands of the
seventh amendment to the cosmetic directive and REACH to be
met.1 An AOP details the existing knowledge that links the initial
interaction between a chemical and a biological system, through
a series of intermediate events, to an adverse effect.2 Clearly,
biological pathways, the perturbation of which, can lead to an
adverse effect, are diverse and complex. Thus, the AOP concept is
concerned with defining only the key, testable events in a given
pathway. Consequently, there are significant efforts to develop
in silico, in chemico, and in vitro methods that enable such key
events to be predicted and/or tested. The ultimate aim is that a
series of alternative tests (developed from the knowledge of an
AOP) will enable an animal test for a regulatory end point to
be replaced. For example, the recently defined AOP for skin
sensitization has led to the development of a number of non-animal
testing methods which may be used (in combination) to replace
in vivo studies.3 Within the AOP approach, in silico methods are
typically used to define the chemistry associated with the initial
chemical interaction between a chemical and the biological system,
termed the molecular initiating event (MIE).

An important example of a well-defined MIE is the formation
of a covalent bond between a biological nucleophile, such as
the thiol group of cysteine or the amine group of lysine, and
an electrophilic chemical such as acrolein.4 This particular
MIE has been associated with various adverse outcomes such as
skin sensitization, respiratory sensitization, acute aquatic toxicity,
liver toxicity, chromosomal aberration, and a wide range of
idiosyncratic drug toxicities.5−10 Given the importance of
covalent bond formation as an MIE, various in chemico assays
have been used to investigate the potential correlation between
rate of covalent bond formation (reactivity) of chemicals and their
ability to elicit a toxicological effect.11 There are a number of
reactivemechanisms by which an electrophilic chemical may react
with a biological nucleophile. An important and well-studied
mechanism is Michael addition. For a chemical to act via Michael
addition it must have an electron-withdrawing group adjacent to a
carbon−carbon double bond; this results in an electron-deficient
carbon at the β-position. This allows for nucleophilic attack
such as a thiolate nucleophile at the electron-deficient β-position
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resulting in the formation of a resonance-stabilized carbanion
at the α-position, the carbanion is then protonated to produce the
final product, a Michael adduct (Figure 1).12 When considering
Michael addition thiol reactivity, there are three important factors:
the impact of the electron-withdrawing group, substitution at
the α-position (where the inductive effect of the substituent
can stabilize/destabilize the negative charge at this position), and
substitution at the β-position of the carbon−carbon double bond.
There have been many attempts to relate predict the reactivity

and toxicity of chemicals known to act via Michael addition both
experimentally (in chemico) and computationally (in silico).13−24

In chemico approaches involve either the determination of the ki-
netic rate constant or, more typically, spectrophotometric methods
that involve determination of the concentration of the electrophile
required to deplete a model nucleophile such as glutathione.18

In contrast, in silico methods, such as the works of Mulliner et al.
and Schwobel et al., use quantummechanical methods to calculate
the energy of activation for these types of electrophilic reactions,
enabling the experimental rate values to be predicted using simple
quantitative structure activity models.19,22 Furthermore, such
in silico methods have been applied for the prediction of toxicity
data where covalent protein binding is the MIE.
It is clear from the literature that in silico methods involving

the calculation of the activation energy are capable of predicting
both chemical reactivity and, in turn, toxicity. However, these
approaches require the use of time-consuming quantum chemical
calculations which require proprietary software. This limits their
use and inclusion in freely available in silico tools currently finding
widespread use in regulatory toxicology (for example, the OECD
QSAR Toolbox). Therefore, the aim of this study is to develop
an in silico profiler capable of predicting chemical reactivity for
Michael acceptors. This approach is based on a fragment method
in which a database of pre-calculated energy of activation values
are used within the in silico profiler, thus removing the need for
the end-user to perform such calculations.

■ METHODS
Dataset. The RC50 values for various Michael acceptors were

determined using a previously published spectrophotometric peptide
depletion assay.25 Where RC50 is the concentration of electrophile
required to deplete the concentration of glutathione (GSH) by 50% in
120 minutes. Average RC50 values were calculated for chemicals which
had multiple experimental values. RC50 values for poorly soluble
chemicals were determined by the addition of 50% MeOH. A struc-
turally diverse set of experimental data was profiled using previously
published alerts for polarized aldehydes, ketones, esters, nitros, nitriles,
and cyclic ketones.12 This resulted in a subsequent dataset of 72
chemicals covering 13 aldehydes, 17 ketones, 24 esters, 9 nitro com-
pounds, 3 nitrile-containing compounds, and 6 cyclic ketones (Table 1).
Additionally, individual standard deviation values are stated; these values
result in an average experimental error of 0.13 log unit.
Computational Methods. All calculations were carried out using

the Gaussian 09 suite of software using density functional theory (DFT)
utilizing the B3LYP/6-31G+(d) level of theory.26 Energies of activation
(Eact) values for transition-state structures were calculated using thiolate
as a model nucleophile. The use of a thiolate (rather than a thiol)
nucleophile allows an intermediate to be isolated on the potential energy

surface. This significantly simplifies the calculations, as the intermediate
can be isolated using a simple energy minimization calculation rather
than a transition-state calculation. The solvent-accessible surface area
(SAS) at the α-position was calculated for each chemical using the
Chimera software.27 The in silico profiler was encoded as a workflow
using the open source KNIME environment. All experimental and cal-
culated data are available in the Supporting Information, including the
fragment which is used for each chemical in Table 1, calculated Eact
(kcal/mol), SAS values, and predicted −log RC50 values for each model.

Statistical Analysis. Linear regression analysis was used to develop
quantitative structure−activity relationship (QSAR) models to obtain
correlations between −log RC50 values and the calculated descriptors
(Eact and SAS values) using the Minitab (version 17) statistical software.

■ RESULTS AND DISCUSSION

The initial aim of this study was to develop a fragment-based
in silico profiler capable of predicting chemical reactivity for
polarized alkenes (aldehydes, ketones, and esters, chemicals 1−54
in Table 1). This was achieved by systematically varying a series of
alkyl and aryl substituents at each of the R groups (as shown in
Figure 2) in order to establish the point at which increasing the
alkyl chain size failed to increase the activation energy by more
than 1 kcal/mol (all analysis carried out by rounding the energy
difference to the nearest kcal/mol). For example, examining
how the calculated activation energy changes when varying the
substituents at position R1 for a series of aldehydes (R2 = R3 =
hydrogen) shows that on going from methyl to ethyl the
activation energy increases by 4.2 kcal/mol. In contrast, extending
the alkyl chain further from ethyl to propyl, decreases the
activation energy by 0.2 kcal/mol (Table 2). This change is
significantly less than the cutoff value of 1 kcal/mol (or less),
meaning that all alkyl chains of two carbons or more can be
reasonably predicted using the calculated activation energy value
of the ethyl group. This analysis enables two fragments to be
defined that can be used to calculate the activation energy of
chemicals with simple alkyl chains at this position (R = Me and
Et). The analysis also showed the need to include isopropyl
and tert-butyl groups due to their increased steric hindrance. An
analogous analysis was carried out into the effect of alkyl chain
length on the polarized aldehydes at position R2 (Table 2).
The effect of a benzene ring on the calculated activation energy

for the polarized aldehydes was also investigated at positions R1
and R2. Taking the effect at R1 as an example, the results showed
that the activation energy increases significantly on going fromR1
= Me to Ph (−1.5 to 3.4 kcal/mol). As expected, the results also
showed that increasing the number of CH2 groups between the
alkene and the benzene ring caused a decrease in the associated
activation energy (compare R1 = C6H5 to CH2C6H5). In terms of
defining fragments for the effect of a benzene ring at this position,
it is useful to compare the aryl substituent with the corresponding
alkyl substituent. For example, comparing the activation energy
values of R1 = CH2C6H5 to R1 = CH3 shows there to be an energy
difference of 2.7 kcal/mol, which when rounded to the nearest
kcal/mol is significantly in excess of the 1 kcal/mol (or less)
cutoff. In contrast, comparing R1 = CH2CH2C6H5 to R1 =
CH2CH3 shows there to be an energy difference of 1.1 kcal/mol

Figure 1. Proposed mechanism and transition state of acrolein (an electrophile) and a thiol nucleophile (R = glutathione, alkyl).
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Table 1. Michael Acceptors with Corresponding −Log RC50 Values Investigated in the Current Studya

ID chemical SMILES RC50 average
−log RC50 average

(mM)

Aldehydes
1 trans-2-pentenal OC/CC/CC 0.33 ± 0.02 0.48
2 trans-2-octenal OC/CC/CCCCC 0.28 ± 0.02 0.56
3 trans-2-nonenal OC/CC/CCCCCC 0.41 ± 0.05 0.39
4 trans-2-hexenal OC/CC/CCC 0.43 ± 0.11 0.37
5 acrolein OCCC 0.07 ± 0.03 1.14
6 trans-2-methyl-2-butenal OC/C(C)C/C 11.71 ± 1.88 −1.07
7 2-methyl-2-pentenal OCC(CCC)C 20.74 ± 1.21 −1.32
8 4-methyl-2-pentenal OCCCC(C)C 1.15 ± 0.15 −0.06
9 trans-2-butenal OC/CC/C 0.21 ± 0.02 0.67
10 (E)-2-decen-1-al OC/CC\CCCCCCC 0.21 ± 0.05 0.67
11 trans-2-decenal OC/CC/CCCCCCC 0.17 ± 0.02 0.77
12 trans-cinnamaldehyde OC\CC\C1CCCCC1 0.96 ± 0.24 0.02
13 α-methyl-trans-cinnamaldehydeb C\C(CO)C/C1CCCCC1 21.60 ± 7.04 −1.33

Ketones
14 methyl vinyl ketone OC(CC)C 0.06 ± 0.03 1.23
15 1-hexen-3-one OC(CC)CCC 0.06 ± 0.00 1.23
16 1-penten-3-one OC(CC)CC 0.05 ± 0.00 1.29
17 3-penten-2-one OC(CCC)C 0.15 ± 0.09 0.83
18 3-hepten-2-one OC(C = CCCC)C 0.67 ± 0.11 0.17
19 3-octen-2-one OC(CCCCCC)C 0.57 ± 0.16 0.24
20 3-nonen-2-one OC(CCCCCCC)C 0.54 ± 0.11 0.27
21 3-decen-2-one OC(CCCCCCCC)C 0.58 ± 0.16 0.24
22 4-hexen-3-one OC(CCC)CC 0.34 ± 0.05 0.46
23 1-octen-3-one OC(CC)CCCCC 0.02 ± 0.01 1.78
24 3-methyl-3-penten-2-one OC(C(CC)C)C 9.77 ± 1.23 −0.99
25 5-methyl-2-hepten-4-one CC(C)C(O)CCC 0.37 ± 0.02 0.44
26 trans-3-nonen-2-one CC(O)/CC/CCCCC 0.60 ± 0.03 0.22
27 4-phenyl-3-buten-2-one CC(O)\CC\C1CCCCC1 3.53 ± 0.07 −0.55
28 trans-chalconeb OC(\CC\C1CCCCC1)C1CCCCC1 0.40 ± 0.08 0.40
29 2-hydroxychalcone OC1CCCCC1\CC\C(O)C1CCCCC1 0.28 ± 0.08 0.83
30 4-hydroxychalcone OC1CCC(\CC\C(O)C2CCCCC2)CC1 0.41 ± 0.29 0.39

Esters
31 isobutyl acrylate CC(C)COC(O)CC 0.48 ± 0.06 0.32
32 n-hexyl acrylate CCCCCCOC(O)CC 0.82 ± 0.08 0.09
33 butyl acrylate CCCCOC(O)CC 0.77 ± 0.02 0.11
34 methyl crotonate COC(O)\CC\C 21.25 ± 4.95 −1.33
35 ethyl acrylate CCOC(O)CC 0.52 ± 0.05 0.29
36 methyl acrylate COC(O)CC 0.49 ± 0.10 0.31
37 methyl methacrylate COC(O)C(C)C 69.19 ± 7.12 −1.84
38 tert-butyl acrylate CC(C)(C)OC(O)CC 1.28 ± 0.030 −0.11
39 propyl acrylate CCCOC(O)CC 0.85 ± 0.08 0.07
40 2-hydroxyethyl acrylate OCCOC(O)CC 0.27 ± 0.03 0.57
41 2-hydroxyethyl methacrylate CC(C)C(O)OCCO 33.40 ± 1.33 −1.52
42 2-hydroxypropyl methacrylate CC(O)COC(O)C(C)C 21.15 ± 9.20 −1.33
43 phenyl acrylate CC(C)C(O)OC1CCCCC1 0.02 ± 0.01 1.64
44 isoamyl acrylate CC(C)CCOC(O)CC 0.68 ± 0.22 0.17
45 n-pentyl acrylate CCCCCOC(O)CC 0.81 ± 0.02 0.09
46 ethyl crotonate CCOC(O)\CC\C 17.95 ± 0.78 −1.25
47 methyl trans-2-pentenoate CC\CC\C(O)OC 5.05 ± 0.42 −0.70
48 ethyl trans-2-hexenoate CCC\CC\C(O)OCC 0.76 ± 0.10 0.12
49 methyl 2-hexenoate CCC\CC\C(O)OC 2.46 ± 1.37 −0.39
50 methyl 4-methyl-2-pentenoate COC(O)\CC\C(C)C 1.28 ± 0.25 −0.11
51 ethyl tiglate CCOC(O)C(\C)C\C 14.34 ± 3.32 −1.15
52 ethyl methacrylateb CCOC(O)C(C)C 33.75 −1.53
53 butyl methacrylateb CCCCOC(O)C(C)C 43.27 −1.63
54 2-ethylhexyl acrylateb CCCCC(CC)COC(O)CC 0.44 ± 0.03 0.36

Nitros
55 1-nitro-1-cyclohexene C1CCCCC1N(O)(O) 0.03 ± 0.01 1.56
56 4-methyl-β-nitrostyrene (mixture of cis and trans) N(O)(O)CCc1ccc(C)cc1 0.10 ± 0.03 0.94
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(sufficiently close to the 1 kcal/mol cutoff). This means that two
fragments are required to define the effect of a benzene ring at the

β-position (R1), with R1 = CH2CH3 being used to predict
chemicals with a benzene ring three or more carbons away from
the β-carbon of the alkene. As previously, an analogous analysis
was carried out for the polarized aldehydes at the α-position (R2)
(Table 2).
The structure−activity analysis into the effect of alkyl and

aryl substituents on the calculated activation energy was repeated
for the polarized ketones and esters in the dataset (varying
groups at positions R1, R2, and R3; data shown in the Supporting
Information), resulting in the definition of 407 fragments,
which are summarized in Table 3. These fragments cover both
singly substituted chemicals and all possible combinations of the
fragments shown in Table 3.

Predicting Glutathione Reactivity Using Fragment-
Based in Silico Profiler. The ability of the fragment-based in
silico profiler to predict GSH reactivity was investigated for a total
of 54 chemicals (13 polarized aldehydes, 17 polarized ketones,
and 24 polarized esters). Initial modeling using only the cal-
culated activation energy value (Eact) failed to produce a statistically
significant model due to chemicals with an α-substituent being
consistently over-predicted (model 1 in Table 4 and Figure 3,
where chemicals with anα-substituent are shown as filled squares).
Inclusion of a SAS descriptor for the α-position resulted in a
significantly improved model (model 2 in Table 4 and Figure 3).
The mechanistic relevance of this descriptor likely stems from the
nature of the intermediate in the Michael reaction, which involves
the formation of a resonance-stabilized negative charge on the
α-carbon atom. The solvation of this charge plays a key role in the
stability of the transition state and thus overall reactivity. This
solvation effect can be modeled by the inclusion of the steric SAS
parameter, with the less solvent-accessible α-substituted chemicals
being less stabilized due to solvent molecules being sterically
hindered from solvating the charge by the presence of the sub-
stituent compared to chemicals without an α-substituent.
Model 2 successfully improves the prediction for the majority

of the chemicals in the dataset. However, closer inspection of the

Table 1. continued

ID chemical SMILES RC50 average
−log RC50 average

(mM)

Nitros
57 trans-β-nitrostyrene c1ccccc1/CC/N(O)O 0.09 ± 0.02 1.21
58 trans-4-methyl-β-nitrostyrene ON(O)/CC/c1ccc(C)cc1 0.08 ± 0.01 1.09
59 trans-4-chloro-β-nitrostyrene c1cc(Cl)ccc1/CC/N(O)(O) 0.07 ± 0.03 1.14
60 trans-4-bromo-β-nitrostyrene ON(O)/CC/c1ccc(Br)cc1 0.07 ± 0.00 1.18
61 4-fluoro-β-nitrostyrene ON(O)CCc1ccc(F)cc1 0.05 ± 0.01 1.29
62 trans-4-methoxy-β-nitrostyrene ON(O)/CC/c1ccc(OC)cc1 0.04 ± 0.02 1.36
63 trans-β-methyl-β-nitrostyrene c1ccccc1/CC/(C)N(O)(O) 0.06 ± 0.01 1.19

Nitriles
64 2-methyleneglutaronitrile N#CC(C)CCC#N 22.92 ± 3.45 −1.36
65 cyclohexene-1-carbonitrile (1-cyanocyclohexene) C1(C#N)CCCCC1 28.16 ± 40.45 −1.45
66 1-cyclopentene-1-carbonitrile N#CC1CCCC1 20.51 ± 0.95 −1.31

Cyclic Ketones
67 2-cyclohexen-1-one OC1CCCCC1 0.32 ± 0.13 0.50
68 2-cyclopenten-1-one OC1CCCC1 0.67 ± 0.17 0.18
69 2-methyl-2-cyclopenten-1-one CC1CCCC1O 9.92 ± 1.24 −1.00
70 4,4-dimethyl-2-cyclohexen-1-one CC1(C)CCC(O)CC1 1.01 ± 0.11 −0.01
71 1-acetyl-1-cyclohexene CC(O)C1CCCCC1 2.06 ± 0.54 −0.31
72 1-acetyl-1-cyclopentene CC(O)C1CCCC1 3.90 ± 4.19 −0.59

aRC50 is defined as the concentration of reactive chemical required to deplete GSH by 50% in 120 min. Average RC50 values are given for chemicals
with multiple measurements. RC50 values were provided by T. W Schultz, obtained using a previously published spectrophotometric peptide
depletion assay.18 bThese chemicals were unreactive in the standard 120 min GSH assay with DMSO; RC50 for these chemicals values were obtained
using 50% MeOH as solvent.

Figure 2. General structure for polarized aldehydes (R3 = H), polarized
ketones (R3 = C), and polarized esters (R3 = OC).

Table 2. Calculated Activation Energy Values for Polarized
Aldehydesa

R1 R2 R3 Eact (kcal/mol)

CH3 H H −1.5
CH2CH3 H H 2.7
CH2CH2CH3 H H 2.5
isopropyl H H 3.7
tert-butyl H H 5.6
C6H5 H H 3.4
CH2C6H5 H H 1.2
CH2CH2C6H5 H H 1.8
CH2CH2CH2C6H5 H H 2.2
H H H −5.4
H CH3 H −1.7
H CH2CH3 H −1.9
H CH2CH2CH3 H −2.0
H isopropyl H −0.3
H tert-butyl H 2.4
H C6H5 H −8.7
H CH2C6H5 H −2.2
H CH2CH2C6H5 H −2.5
H CH2CH2CH2C6H5 H −2.5

aR groups as defined in Figure 2. Analogous data for polarized ketones
and esters are available in the Supporting Information.

Chemical Research in Toxicology Article

DOI: 10.1021/acs.chemrestox.6b00099
Chem. Res. Toxicol. 2016, 29, 1073−1081

1076

http://pubs.acs.org/doi/suppl/10.1021/acs.chemrestox.6b00099/suppl_file/tx6b00099_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.chemrestox.6b00099/suppl_file/tx6b00099_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.chemrestox.6b00099/suppl_file/tx6b00099_si_001.pdf
http://dx.doi.org/10.1021/acs.chemrestox.6b00099
http://pubsdc3.acs.org/action/showImage?doi=10.1021/acs.chemrestox.6b00099&iName=master.img-002.png&w=75&h=53


data shows methyl and ethyl crotonate to be significant outliers,
with errors of 1.07 and 0.99 log units, respectively (Figure 3).
Both methyl and ethyl crotonate have high predicted log VP

values (Table 5), as the experimental assay is carried out in
scintillation vials loss of the compound during the reaction may
cause an issue.21 It may be possible that this is not being shown

Table 3. Summary of the Fragments Defined for Polarized Aldehydes, Ketones, and Estersa

chemical class R1 R2 R3

polarized
aldehydes

alkyl: H, CH3, CH2CH3, isopropyl, tert-
butyl

alkyl: H, CH3, isopropyl, tert-butyl H

aryl: C6H5, CH2C6H5, CH2CH3 [for
(CH2)nC6H5, n ≥ 2]

aryl: C6H5, CH3 [for (CH2)nC6H5, n ≥ 1]

polarized ketones alkyl: H, CH3, CH2CH3, isopropyl, tert-
butyl

alkyl: H, CH3, isopropyl, tert-butyl alkyl: CH3, isopropyl, tert-butyl

aryl: C6H5, CH3 [for (CH2)nC6H5, n ≥ 1] aryl: C6H5, CH2C6H5, CH2CH3 [for (CH2)nC6H5, n≥ 2] aryl: C6H5, CH2C6H5, CH2CH3 [for
(CH2)nC6H5, n ≥ 2]

polarized esters alkyl: H, CH3, CH2CH3, isopropyl, tert-
butyl

alkyl: H, CH3, isopropyl, tert-butyl alkyl: OCH3, O-isopropyl, O-tert-butyl

aryl: C6H5, CH3 [for (CH2)nC6H5, n ≥ 1] aryl: C6H5, CH2C6H5, CH2CH2C6H5, CH2CH2CH3 [for
(CH2)nC6H5, n ≥ 3]

aryl: OC6H5, OCH3 [for (CH2)nC6H5,
n ≥ 1]

aR groups as defined in Figure 2.

Table 4. Summary Statistics for Models 1−4 As Shown in Figure 3

model N a b c R2 R2-adj R2-pred average error

−log RC50 = a + bEact + cSASα
1 54 0.80 −0.15 −a 0.52 0.51 0.48 0.60
2 54 −1.05 −0.09 −0.11 0.77 0.76 0.74 0.41
3 51 −1.30 −0.07 0.12 0.81 0.80 0.78 0.37
4 47 −1.48 −0.06 0.13 0.87 0.86 0.85 0.29

aModel 1 has no SAS value, as it uses Eact as a single descriptor.

Figure 3. Predicted versus experimental values for −log RC50 for all models in the current study: model 1, Eact only; model 2, Eact with SAS at the
α-position included; model 3, Eact with SAS at the α-position excluding three volatile β-esters; model 4, Eact with SAS at the α-position, excluding three
volatile β-esters and four compounds with a phenyl electron-withdrawing group.
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with the unsubstituted esters, as they are reacting sufficiently fast
for the reaction to occur before the loss of reactive compound.
This is therefore having a greater effect on the slower reacting
β-substituted esters. With this in mind it could be suggested that

β-substituted esters with log VP values of 0.9 or greater are out of
the predictive domain of this model.
An additional set of chemicals were also poorly predicted

by model 3 (Figure 3, chemicals highlighted as filled squares),
these being chemicals in which a phenyl ring conjugated to the
carbonyl or ester moiety acts as the polarizing group (Table 6).
The reactivity of these chemicals was consistently under-
predicted, with error values ranging from 0.76 to 0.92 log unit.
Interestingly, the analogous chemical 4-phenyl-3-buten-2-one
in which the polarizing group is a simple alkyl ketone is well
predicted by model 3, with an error of −0.04 log unit. This
suggests that the full electron-withdrawing effect of a conjugated
phenyl group at position R3 is not fully captured in the
calculations. (It is important to note that additional chemicals,
where R3 = alkyl or hydrogen and the β-position is substituted
with an aromatic ring, are well predicted by the model; see
Supporting Information, Table S1, chemicals 12, 13, 27, 57−61.)
Removing these four chemicals from model 3 resulted in
model 4 (Table 4 and Figure 3), with an average error of 0.28 log
unit.

Figure 4. Predicted versus experimental−log RC50 values for polarized nitros, polarized nitriles, and polarized cyclic ketones (shown as filled in squares)
using model 4 in comparison to the polarized aldehydes, ketones, and esters in the initial dataset (shown as filled circles). Left: polarized nitros with the
inclusion of the SAS descriptor. Right: polarized nitros with the SAS descriptor value set to hydrogen for all chemicals.

Table 5. Predicted Error Values for Predicted −Log RC50 of
β-Substituted Esters with Corresponding Log Vapor Pressure
(VP) Values

compound
−log RC50
(mM)

predicted −log RC50
(mM) error log VP

methyl crotonate −1.33 −0.32 1.01 1.26
ethyl crotonate −1.25 −0.32 0.93 0.91
methyl trans-2-
pentenoate

−0.70 −0.37 0.33 0.98

ethyl trans-2-
hexenoate

0.12 −0.37 −0.49 0.14

methyl 2-hexenoate −0.39 −0.37 0.02 0.54
methyl 4-methyl-2-
pentenoate

−0.11 −0.69 −0.58 0.80

ethyl tiglate −1.16 −1.72 −0.56 0.52

Table 6. Predicted −Log RC50 Values for Chemicals with a Conjugated Phenyl Polarizing Group
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Prediction of Other Chemical Classes Using the
Fragment-Based in Silico Profiler. To demonstrate how the
fragment-based in silico profiler may be expended to cover
additional chemical classes, a second dataset of 18 chemicals
(compounds 55−72 in Table 1) with reactivity data was investi-
gated. The chemicals within this dataset required Eact values for
an additional five fragments to be calculated, along with three
fragments previously defined (Table 7). These Eact values were
used in conjunction with model 4 to predict −log RC50 values
for these 18 chemicals, with an average error of 0.62 log unit
(Figure 4, left-hand plot shows the predicted values for these
18 chemicals as square data points in comparison to the
chemicals used in the derivation of model 4). The results suggest
that for the polarized nitros that substituents at the α-position
have significantly less effect on reactivity than for chemicals
polarized by either an aldehyde, ketone, or ester moiety. This
can be rationalized in terms of the resonance stabilization of
the intermediate for the polarized nitros for which two possible
resonance forms exist (Figure 5). It is possible that the nitro

group is sufficiently polarizing that the negative charge is localized
mainly on the oxygen rather than the α-carbon, resulting in
solvation at this position becoming less important. Excluding the
SAS parameter for the polarized nitros (in effect assuming that
these chemicals have an SAS value equivalent to hydrogen) results
in a significant improvement in the predicted−log RC50 values for
these chemicals (Figure 4, right-hand plot), with an average error
of 0.44 log unit. Interestingly, among the polarized nitros three
of the compounds contain halogenated phenyl groups at the
β- position, these are predicted well (see Supporting Information,
Table S1, chemicals 59−61). This suggests that using phenyl
alone was sufficient enough of a prediction and that the applicabi-
lity domain of this methodmay extend further to alkyl and phenyl
with varying substitutions.

■ CONCLUSIONS

The aim of this work was to develop an in silico profiler capable
of predicting reactivity for polarized aldehydes, ketones, and
esters acting via Michael addition. The results showed that a

Table 7. Fragments Required To Predict Reactivity of Polarized Nitros, Polarized Nitriles, and Cyclic Ketones

Figure 5. Michael addition mechanism for the reaction between thiol nucleophile and nitroethene (R = alkyl, GSH).
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combination of pre-calculated Eact values coupled with a
descriptor for the solvent-accessible surface area at the α-carbon
was able to accurately predict chemical reactivity as measured
in a glutathione depletion assay. Two sets of chemicals were
poorly predicted by the approach: volatile esters with an extended
substituent at the β-carbon, and chemicals containing a
conjugated benzene ring as part of the polarizing group. The
study also demonstrated the ease with which the approach can be
extended to other chemical classes by the calculation of additional
fragments and their associatedEact and SAS values. This approach,
along with the associated in silico profiler, enables chemical
reactivity to be predicted without the use of time-consuming
quantum mechanics calculations and is likely to be of use in
regulatory toxicology tools where an understanding of covalent
bond formation as a potential molecular initiating event is
important within the adverse outcome pathway paradigm.
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ABSTRACT: This study outlines the use of a recently developed fragment-
based thiol reactivity profiler for Michael acceptors to predict toxicity toward
Tetrahymena pyriformis and skin sensitization potency as determined in the
Local Lymph Node Assay (LLNA). The results showed that the calculated
reactivity parameter from the profiler, −log RC50(calc), was capable of
predicting toxicity for both end points with excellent statistics. However, the
study highlighted the importance of a well-defined applicability domain for
each end point. In terms of Tetrahymena pyriformis, this domain was defined
in terms of how fast or slowly a given Michael acceptor reacts with thiol
leading to two separate quantitative structure−activity models. The first, for
fast reacting chemicals required only −log RC50(calc) as a descriptor, while
the second required the addition of a descriptor for hydrophobicity.
Modeling of the LLNA required only a single descriptor, −log RC50(calc),
enabling potency to be predicted. The applicability domain excluded
chemicals capable of undergoing polymerization and those that were predicted to be volatile. The modeling results for both end
points, using the −log RC50(calc) value from the profiler, were in keeping with previously published studies that have utilized
experimentally determined measurements of reactivity. These results demonstrate that the output from the fragment-based thiol
reactivity profiler can be used to develop quantitative structure−activity relationship models where reactivity toward thiol is a
driver of toxicity.

■ INTRODUCTION

It is well established that various toxicological effects can occur
as a result of covalent bond formation between electrophilic
chemicals and biological nucleophiles such as lysine and
cysteine groups of proteins. This includes toxicological effects
in both humans and environmental species, for example, skin
sensitization or aquatic toxicity.1−6 One mechanism resulting in
covalent bond formation is Michael addition. Chemicals that
act via Michael addition (known as Michael acceptors) are
typically organic chemicals that contain a π-bond adjacent to a
polarizing group, such as a carbonyl.7 This results in a partial
positive charge on the β-carbon of the π-bond, causing the
electrophilic chemical to become susceptible to a reaction with
a biological nucleophile with either a negative charge or a lone
pair of electrons.8,9 This nucleophilic attack at the β-carbon of
the Michael acceptor results in a resonance stabilized carbanion
intermediate, with a negative charge residing on the α-carbon.
This α-carbon is then protonated to produce the final product
(known as a Michael adduct) (Figure 1).
Knowledge of this mechanism has allowed for the develop-

ment of structural alerts to identify chemicals that may act via
Michael addition and consequently have the potential to cause
toxicological effects.8,9 Structural alerts can be grouped together
to form the basis of an in silico profiler for mechanisms
associated with specific toxicological outcomes, such as the

structural alerts developed to identify the potential mechanism
of action for skin sensitization.10 While in silico profilers are
useful for identifying features associated with potential toxicity,
the information they provide is qualitative (i.e., a binary yes or
no for the presence of a structural feature); they provide no
information concerning toxicological potency. When using
knowledge of covalent mechanisms to predict toxicological
potency, a primary assumption is that the rate of covalent bond
formation (reactivity) is proportional to toxicity.11 As a result of
this assumption, there has been an increase in the number of
studies focused on predicting potency using computational
methods and/or in chemico reactivity measurements (i.e.,
experimental reactivity measurements that do not require the
use of laboratory animals). A common experimental approach
is the measurement of depletion of reactive peptides (such as
glutathione) upon exposure to the test chemical over a fixed
time period.2 There have been many experimental studies
which have successfully linked reactivity, as measured in an in
chemico assay, to toxicity, e.g., to Tetrahymena pyriformis
measured in the in vitro Tetrahymena pyriformis growth
impairment assay.12−16 Similarly, results of kinetic peptide
depletion assays have also been used in the prediction of skin
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sensitization potency.3,4 Previous studies have also utilized
Hammett and Taft descriptors to model chemical reactivity for
the prediction of skin sensitization.17 These descriptors were
derived from extensive studies into the effect of substituents
upon the acidic dissociation constant (pKa) in model acid
systems. These efforts further demonstrate the possibility that
potency can be predicted for reactive chemicals within well-
defined mechanistic domains.
A number of approaches have been published that make use

of chemical descriptors derived from computational (in silico)
approaches aimed at quantifying chemical reactivity. These are
typically derived from quantum mechanics calculations and
include descriptors, such as energy values of the highest
occupied molecular orbital (HOMO) and lowest unoccupied
molecular orbital (LUMO) and the electrophilic index (ω).18

These descriptors are then used to relate the electronic
properties of the test chemical to their reactivity or to their
toxicity, directly. However, these descriptors quantify only the
electronic portion of chemical reactivity and don’t account for
factors such as steric hindrance at the reactive site.6 Another
common descriptor is the energy of activation (Eact) in which
the energy difference between a test chemical and a model
nucleophile (with its respective transition state structure) is
used. This has been performed successfully for the prediction of
both aquatic toxicity and skin sensitization.19,20 Importantly,
this type of descriptor offers the advantage that it accounts for
both electronic and steric factors involved in chemical
reactivity, with studies showing that this approach is capable
of predicting potency for aquatic toxicity and skin sensitization.
However, the derivation of Eact is reliant on the quantum
mechanics calculations capable of “mapping” out the reaction
pathway including the identification of key intermediates and/
or transition state structures. This can be a time-consuming
process, requiring significant expertise in the application of such
methods.
Given the challenges of utilizing quantum mechanics

calculations to derive Eact values for use in predictive
toxicology, a recent study by the current authors showed that

it is possible to predict experimentally derived reactivity toward
glutathione (expressed as −log RC50) through the use of
fragments with precalculated Eact values for Michael accept-
ors.21 This approach involved defining the length of alkyl chain
of the Michael acceptor beyond which further increases failed
to significantly increase the activation energy. This enabled
appropriate fragments to be generated which could be stored in
a database along with precalculated activation energy values.
The methodology was encoded as a KNIME workflow through
which chemicals of interest can be inputted using SMILES
strings and are then compared to the fragments encoded as
SMARTS patterns. The fragments are associated with their
corresponding Eact values and an additional parameter that
models the solvent accessible surface (SAS) at the α-position of
the Michael acceptor. Once the query chemical has been
assigned a fragment, its corresponding Eact and SAS values are
used to predict its reactivity (expressed as −log RC50 values)
based on a previously developed QSAR model; this process is
summarized in Figure 2. Therefore, given the availability of a
fragment-based profiler, the aim of this study was to validate the
calculated −log RC50 values generated from the fragment based
profiler for thiol reactivity in predicting toxicity to Tetrahymena
pyriformis and skin sensitization potency (as determined in the
LLNA) for Michael acceptors.

■ METHODS
Computational Methods. The previously published fragment-

based profiler for thiol reactivity was utilized in the current study to
predict reactivity toward a thiol nucleophile (defined a −log
RC50(calc)).

21 Briefly, this profiler was developed from a set of linear
Michael acceptors with experimentally determined RC50 values, where
the RC50 is the concentration of the electrophile required to deplete
the concentration of glutathione by 50% over a fixed 2 h time period.22

The fragment-based reactivity profiler was trained on a set of polarized
aldehydes, ketones, and esters with varying alkyl and aryl substitutions
(Figure 3).21

The −log RC50(calc) values for chemicals in the Tetrahymena
pyriformis and skin sensitization data sets were generated using a
previously developed KNIME workflow encoding the fragment-based

Figure 1. Michael addition reaction between acrolein and a thiol nucleophile (R = glutathione, alkyl).

Figure 2. Summary of the workflow used to predict reactivity (−log RC50).
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reactivity profiler for thiol reactivity (this workflow, including
calculated fragments is available from the authors on request).21 The
workflow utilizes a database of fragments with precalculated activation
energy values (Eact) calculated using density functional theory (DFT)
at the B3LYP/6-31G+(d) level of theory (calculations performed
using Gaussian 09 and with water as a solvent).23 The workflow is
summarized in Figure 2. Descriptors for hydrophobicity (log Kow) and
vapor pressure (log VP) were calculated using the KOWWIN (V1.68)
and MPBPWIN (V1.43) modules of the EPI suite.24

Data Sets for Tetrahymena pyriformis and Skin Sensitization.
A set of 62 Michael acceptors from a database of 2072 chemicals with
experimental toxicity values to Tetrahymena pyriformis were identified
as being within the applicability domain of the fragment-based thiol
reactivity profiler (defined in Figure 3).25 These toxicity data were
obtained using an in vitro assay, which quantifies 50% growth
inhibition of the ciliate Tetrahymena pyriformis over a 40-h exposure
period to the test chemical (also recorded as EC50 values).

26 A similar
analysis of skin sensitization data gathered from the Local Lymph
Node Assay (LLNA) resulted in a data set of 38 Michael acceptors
within the applicability of the fragment-based thiol reactivity
profiler.27−29 The LLNA is an in vivo based assay in which the
stimulation of the lymph nodes of mice is measured upon exposure to
a test chemical. The recorded value is the concentration required to
elicit a 3-fold stimulation in the lymph nodes; this is reported as an
EC3 value (% weight) for the chemical. If the chemical does not
produce a 3-fold stimulation, it is not considered a sensitizer. All EC3
values were converted to pEC3 values (eq 1). As the test vehicle is
known to influence pEC3 values, only chemicals for which the vehicle
was recorded to be acetone/olive oil (AOO 4:1) were included in the
analysis; this resulted in a final data set of 26 skin sensitizing
chemicals.30

=pEC3 log(EC3/molecular weight) (1)

Statistical Analysis. Linear regression analysis was used to
develop quantitative structure−activity relationship models to obtain
correlations between calculated −log RC50 values and toxicity values
using the Minitab (version 17) statistical software. Outliers were
identified following linear regression analysis as chemicals with large
standardized residuals as identified by Minitab. Chemicals for which a
mechanistic rationale enabling outlying behavior to be explained were
subsequently removed from the analysis.

■ RESULTS AND DISCUSSION
The aim of this study was to investigate the ability of a recently
published fragment-based thiol reactivity profiler to predict the
toxicity of Michael acceptors toward Tetrahymena pyriformis
and the LLNA.25,27−29 Analysis of the Tetrahymena pyriformis
data within the applicability domain of the fragment-based thiol
reactivity profiler resulted in a data set of 62 chemicals (14
aldehydes, 12 ketones, and 36 esters) with corresponding EC50
values (Table 1). Initial modeling using the −log RC50(calc)
values alone showed a clear trend (R2 = 0.45) between
reactivity and toxicity to Tetrahymena pyriformis (model 1 in
Figure 4). Interestingly, this value is lower than that published
on a data set of 41 Michael acceptors using experimentally
determined glutathione depletion data (R2 = 0.85).2 However,

in comparison with the current study (using −log RC50(calc) as
a measure of reactivity) this study using experimental reactivity
data also failed to predict the toxicity to Tetrahymena pyriformis
of slow reacting chemicals such as methacrylate esters. It was
suggested that for these chemicals toxicity is driven by both
hydrophobicity and reactivity due to them reacting slowly with
proteins.2

= + −

= = − = =N R R s

log(1/EC ) 0.63 0.61 log RC (calc)

62, 0.45, adj 0.44, 0.46

50 50

2 2

(model 1)

Consistent with this hypothesis, a related study showed that
splitting the data into fast reacting and slow reacting classes
resulted in significantly improved modeling results.5 Impor-
tantly, the toxicity to Tetrahymena pyriformis for the fast
reacting chemicals could be predicted from experimental
reactivity alone, while those in the slow reacting class required
both hydrophobicity and reactivity. The authors suggested a
reactivity cutoff to distinguish the two classes based on model 1,
where chemicals with a Dkk < 3 were fast reacting, and those
with DKK > 3 were slow reacting. Applying these criteria to the
current data set, using −log RC50(calc) as a measure of
reactivity resulted in models 2a and 2b (fast and slow reacting
chemicals, respectively). Forty-three chemicals were assigned to
the fast reacting class (chemicals 1−43 in Table 1), while 19
chemicals were assigned to the slow reacting class (chemicals
44−62 in Table 1). In keeping with the previously published
work using experimentally determined reactivity data, toxicity
to Tetrahymena pyriformis for the chemicals in the fast reacting
class required only −log RC50(calc) (model 2a), while the
chemicals in the slow reacting class required both −log
RC50(calc) and log Kow (model 2b). Figure 5 shows the
correlation plots for models 2a and 2b.

= −

= − −

D K RC

K RC

log( / log (calculated))

log log (calculated)
KK ow

ow

50

50 (model 2)

= + −

= = − = =N R R s

log(1/EC ) 0.41 0.94 log RC (calc)

43, 0.78, adj 0.77, 0.30

50 50

2 2

(model 2a)

= − + −
+

= = − = =

K

N R R s

log(1/EC ) 1.82 0.35 log RC (calculated)
0.89log

19, 0.85, adj 0.83, 0.31

ow

50 50

2 2

(model 2b)

■ PREDICTION OF SKIN SENSITIZATION POTENCY
AS DEFINED IN THE LLNA

The rate of covalent bond formation has also been shown to be
important for the prediction of skin sensitization potency as
determined in the LLNA using both experimental and
computational measures of reactivity.3,4,6,19 In keeping with
these studies, the fragment-based reactivity algorithm was used
to predict pEC3 values for the 26 Michael acceptors within the
previously defined applicability domain. These chemicals are
shown in Table 2. An initial analysis of the correlation between
pEC3 and −log RC50(calc) resulted in extremely poor statistics
(model 3 in Figure 6). Despite this, 13 of the chemicals were
predicted within a 2-fold error of the corresponding

Figure 3. Domain covered by the fragment method for Michael
acceptors. (R1 = hydrogen, alkyl, aryl) (R2 = hydrogen, alkyl, aryl) (R3
= H) for polarized aldehydes, (R3 = CH, C-alkyl, C-aryl) for polarized
ketones, and (R3 = OCH, OC-alkyl, OC-aryl) for polarized esters.
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Table 1. 62 Chemicals Used in the Assessment of the Fragment Method for Predicting Tetrahymena pyriformis Toxicity (log 1/
EC50 mmol/L)a

predicted log (1/
EC50) (mmol/L)

ID chemical SMILES
log (1/EC50)
(mmol/L)

−log
RC50(calc) logKow Dkk model 1

model
2a/b

1 prop-2-enal CCCO 1.65 1.34 0.19 −1.15 1.45 1.66

2 (2E)-but-2-enal C\CC\CO 0.88 0.66 0.60 −0.06 1.04 1.04

3 (2E)-3-(furan-2-yl)prop-2-enal OC\CC\c1ccco1 0.37 0.05 1.19 1.14 0.66 0.46

4 (2E)-pent-2-enal CC\CC\CO 0.66 0.55 1.09 0.54 0.97 0.94

5 4-methylpent-2-enal CC(C)\CC\CO 0.82 0.55 1.51 0.96 0.97 0.94

6 hex-2-enal CCC\CC\CO 0.77 0.55 1.58 1.03 0.97 0.94

7 (2E)-3-phenylprop-2-enal OC\CC\c1ccccc1 0.68 0.05 1.82 1.77 0.66 0.46

8 (2E)-3-[4-(dimethylamino)phenyl]prop-2-enal CN(C)c1ccc(\CC\CO)cc1 0.52 0.05 2.00 1.95 0.66 0.46

9 hept-2-enal CCCC\CC\CO 1.05 0.66 2.07 1.41 1.04 1.04

10 (2E)-oct-2-enal CCCCC\CC\CO 1.20 0.55 2.57 2.02 0.97 0.94

11 (2E)-2-methylbut-2-enal C\CC(/C)CO −0.14 −0.96 1.15 2.11 0.04 −0.49
12 non-2-enal CCCCCC\CC\CO 1.60 0.66 3.06 2.40 1.04 1.04

13 2-methylpent-2-enal CC\CC(/C)CO −0.39 −1.05 1.64 2.69 −0.01 −0.58
14 but-3-en-2-one CC(O)CC 1.50 0.92 0.41 −0.51 1.20 1.27

15 pent-1-en-3-one CCC(O)CC 1.49 0.92 0.90 −0.02 1.20 1.29

16 hex-1-en-3-one CCCC(O)CC 1.66 0.92 1.39 0.47 1.20 1.29

17 pent-3-en-2-one C\CC\C(C)O 0.54 0.15 0.82 0.67 0.72 0.56

18 hex-4-en-3-one CCC(O)\CC\C 0.93 0.10 1.31 1.21 0.69 0.51

19 oct-1-en-3-one CCCCCC(O)CC 1.92 0.92 2.37 1.45 1.20 1.29

20 hept-3-en-2-one CCC\CC\C(C)O 0.70 0.00 1.80 1.80 0.63 0.42

21 oct-3-en-2-one CCCC\CC\C(C)O 0.74 0.00 2.29 2.29 0.63 0.42

22 oct-2-en-4-one CCCCC(O)\CC\C 1.01 0.00 2.29 2.29 0.63 0.42

23 2-methylcyclopent-2-en-1-one CC1CCCC1O −0.83 −1.25 1.26 2.51 −0.14 −0.77
24 3-methylpent-3-en-2-one C\CC(/C)C(C)O −0.34 −1.25 1.37 2.62 −0.14 −0.77
25 non-3-en-2-one CCCCC\CC\C(C)O 0.98 0.00 2.79 2.79 0.63 0.42

26 2-hydroxyethyl prop-2-enoate OCCOC(O)CC 0.69 0.50 −0.25 −0.75 0.94 0.88

27 2-hydroxypropyl prop-2-enoate CC(O)COC(O)CC 0.65 0.50 0.17 −0.33 0.94 0.89

28 methyl prop-2-enoate COC(O)CC 0.55 0.50 0.73 0.23 0.94 0.89

29 ethyl prop-2-enoate CCOC(O)CC 0.52 0.50 1.22 0.72 0.94 0.89

30 propyl prop-2-enoate CCCOC(O)CC 0.53 0.50 1.71 1.21 0.94 0.89

31 2-methylpropyl prop-2-enoate CC(C)COC(O)CC 0.29 0.50 2.13 1.63 0.94 0.89

32 2-hydroxyethyl 2-methylprop-2-enoate CC(C)C(O)OCCO −1.08 −1.40 0.30 1.70 −0.23 −0.91
33 butyl prop-2-enoate CCCCOC(O)CC 0.52 0.50 2.20 1.70 0.94 0.89

34 benzyl prop-2-enoate CCC(O)OCc1ccccc1 1.35 0.50 2.44 1.94 0.94 0.89

35 3-methylbutyl prop-2-enoate CC(C)CCOC(O)CC 0.41 0.50 2.62 2.12 0.94 0.89

36 pentyl prop-2-enoate CCCCCOC(O)CC 0.54 0.50 2.69 2.19 0.94 0.89

37 cyclohexyl prop-2-enoate CCC(O)OC1CCCCC1 0.76 0.50 3.00 2.50 0.94 0.89

38 methyl 2-methylprop-2-enoate COC(O)C(C)C −1.28 −1.40 1.28 2.68 −0.23 −0.91
39 hexyl prop-2-enoate CCCCCCOC(O)CC 0.73 0.50 3.18 2.68 0.94 0.89

40 2-methylpropyl (2E)-but-2-enoate C\CC\C(O)OCC(C)C −0.34 −0.19 2.54 2.73 0.51 0.24

41 butan-2-yl (2E)-but-2-enoate CCC(C)OC(O)\CC\C −0.42 −0.19 2.54 2.73 0.51 0.24

42 butyl (2E)-but-2-enoate CCCCOC(O)\CC\C −0.16 −0.19 2.61 2.80 0.51 0.24

43 2-ethoxyethyl 2-methylprop-2-enoate CCOCCOC(O)C(C)C −0.78 −1.40 1.49 2.89 −0.23 −0.91
44 (2E)-dec-2-enal CCCCC\CC\CO 1.85 0.55 3.55 3.00 0.97 1.50

45 heptyl prop-2-enoate CCCCCCCOC(O)CC 1.09 0.50 3.67 3.17 0.94 1.59

46 ethyl 2-methylprop-2-enoate CCOC(O)C(C)C −0.93 −1.40 1.77 3.17 −0.23 −0.76
47 methyl (2E)-oct-2-enoate CCCCC\CC\C(O)OC 0.77 −0.19 3.10 3.29 0.51 0.84

48 methyl (2E)-3-phenylprop-2-enoate COC(O)\CC\c1ccccc1 0.58 −0.94 2.36 3.30 0.05 −0.08
49 methyl (2E)-2-methylbut-2-enoate COC(O)C(\C)C\C −0.70 −1.64 1.69 3.33 −0.38 −0.92
50 propan-2-yl 2-methylprop-2-enoate CC(C)OC(O)C(C)C −0.88 −1.40 2.18 3.58 −0.23 −0.40
51 propyl 2-methylprop-2-enoate CCCOC(O)C(C)C −0.66 −1.40 2.26 3.66 −0.23 −0.33
52 methyl non-2-enoate CCCCCC\CC\C(O)OC 1.04 −0.19 3.60 3.79 0.51 1.29

53 ethyl (2E)-3-phenylprop-2-enoate CCOC(O)\CC\c1ccccc1 0.99 −0.94 2.85 3.79 0.05 0.36

54 ethyl (2E)-2-methylbut-2-enoate CCOC(O)C(\C)C\C −0.50 −1.64 2.18 3.82 −0.38 −0.48
55 methyl (2E)-2-methylpent-2-enoate CC\CC(/C)C(O)OC −0.38 −1.64 2.18 3.82 −0.38 −0.48
56 2-methylpropyl 2-methylprop-2-enoate CC(C)COC(O)C(C)C −0.28 −1.40 2.67 4.07 −0.23 0.04

57 butyl 2-methylprop-2-enoate CCCCOC(O)CC −0.27 −1.40 2.75 4.15 −0.23 0.11

58 propyl (2E)-3-phenylprop-2-enoate CCCOC(O)\CC\c1ccccc1 1.23 −0.94 3.34 4.28 0.05 0.80

59 benzyl 2-methylprop-2-enoate CC(C)C(O)OCc1ccccc1 0.65 −1.40 2.98 4.38 −0.23 0.32
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experimental value (chemicals with a predicted value within 0.3

log units of the experimental value). These predictions are

within the experimental 2-fold error of the LLNA.31 Any

chemicals outside of the 2-fold error of the experimental assay

were considered as outliers (labeled in Table 2) and were

analyzed to rationalize the error in their predictions.

Table 1. continued

predicted log (1/
EC50) (mmol/L)

ID chemical SMILES
log (1/EC50)
(mmol/L)

−log
RC50(calc) logKow Dkk model 1

model
2a/b

60 butyl (2E)-3-phenylprop-2-enoate CCCCOC(O)\CC\c1ccccc1 1.53 −0.94 3.83 4.77 0.05 1.24

61 hexyl 2-methylprop-2-enoate CCCCCCOC(O)C(C)C 1.09 −1.40 3.73 5.13 −0.23 0.99

62 2-ethylhexyl 2-methylprop-2-enoate CCCCC(CC)COC(O)C(C)C 1.57 −1.40 4.64 6.04 −0.23 1.80
aChemical names, SMILES, experimental log (1/EC50) (mmol/L) with −log RC50(calc), Dkk, and predicted log (1/EC50) (mmol/L) for the
respective models are shown. log (1/EC50) (mmol/L) values were calculated with model 2a for fast reacting chemicals (1−43) and model 2b for
slower reacting chemicals (44−62).

Figure 4. Predicted log (1/EC50) (mmol/L) values against experimental log (1/EC50) (mmol/L) values for all 62 Michael acceptors using −log
RC50(calc) alone (model 1).

Figure 5. Predicted log (1/EC50) (mmol/L) against experimental log (1/EC50) (mmol/L) of all 43 fast reacting chemicals (bold circles) (model 2a,
chemicals 1−43 in Table 1)) and 19 slower reacting chemicals (squares) (model 2b, chemicals 44−62 in Table 1) requiring hydrophobicity to be
taken into account.
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= + − −

= = − = =N R R s

predicted pEC 1.35 0.05 log RC (calc)

26, 0.00, adj 0.00, 0.3

3 50

2 2

(model 3)

The majority of compounds with the largest errors are
chemicals that are volatile, with the majority of these being
acrylates and methacrylates (chemicals 1−5 in Table 2).
Previous research has shown that the skin sensitization potency
of these volatile chemicals is less than might be expected based
on their experimentally determined chemical reactivity.3 In
addition, research has also suggested that the acrylate and
methacrylates chemicals are susceptible to polymerization
driven by free radical chemistry in the skin.32,33 Interestingly,
the toxicity of a large number of similar chemicals toward
Tetrahymena pyriformis was well predicted (chemicals 26−62 in
Table 1). This highlights the importance of defining the
applicability domain of any predictive model (experimental or
computational) based on a detailed understanding of the
mechanistic chemistry of the assay. This mechanistic rationale
resulted in the removal of a total of six volatile chemicals
(chemicals 1−5 and 10) and two additional acrylates
(chemicals 13 and 24). Three of these chemicals were removed
despite being relatively well-predicted (chemicals 10, 13, and
24) as no mechanistic rationale could be offered as to why they
were correctly predicted compared to the other chemicals
identified. This is a case of applying a cautionary applicability
domain to the model for these types of chemicals.
In contrast to the overprediction of the majority of volatile

chemicals, galbanone and spirogalbanone were significantly
under predicted using the fragment-based reactivity algorithm
(chemicals 21 and 25 in Table 2). The skin sensitization

potency of these two chemicals was predicted using 3-methly-3-
penten-2-one as the reference fragment to take into account of
the effect of an alkyl group at the α-position (which causes a
decrease in the rate of the Michael addition reaction).21

However, it is possible that a second site of Michael addition
reactivity exists for these chemicals due to their reported ability
to undergo double bond migration (highlighted part of the
structure shown in Figure 7).34 This type of migration is
particularly favored when the alkene group is unsubstituted
(CH2CR) as is the case with galbanone and spirogalbanone
(Figure 7). Predicting the glutathione reactivity of spirogalba-
none and galbanone with the reference fragment 3-penten-2-
one (to reflect the second potential site of reactivity) resulted in
an improved pEC3 prediction of 1.84 (versus 1.36) for both
galbanone (pEC3 = 1.81) and spirogalbanone (pEC3 = 2.00).
Importantly, it is likely that only one of these two possible sites
of reactivity can undergo Michael addition at any one time as
calculations show that the steric bulk of the cyclic ring enables
only one of the alkene moieties to be conjugated with the
carbonyl group at a time (data not shown). The predicted
values suggest that the more reactive migrated site is primarily
responsible for the skin sensitizing ability of these chemicals.
The more reactive alternative site for Michael addition was
utilized for these chemicals enabling them to remain within the
applicability domain of the model. This analysis demonstrates
one of the strengths of the fragment-based thiol reactivity
profiler in that it enables the investigation of alternative sites of
chemical reactivity through the use of alternate fragments.
The final chemical that was poorly predicted was 5,5-

dimethyl-3-methylene-dihydro-2-(3H)-furone. This chemical is
a cyclic Michael acceptor in which only the α-carbon of the
alkene is part of the ring system. The development of the

Figure 6. Predicted pEC3 versus experimental pEC3 for all 26 Michael acceptors shown in Table 2. □ = volatile chemicals; ⧫ = galbanone and
spirogalbanone; △ = 5,5-dimethyl-3-methylene-dihydro-2(3H)-furone.

Figure 7. Isomerization of galbanone to produce extended conjugated chemicals highlighting a possible additional site of reactivity.
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fragment-based reactivity algorithm showed that the gluta-
thione reactivity of cyclic Michael acceptors in which both the
α- and β-carbons of the alkene were part of the ring could be
successfully predicted using linear reference fragments.21 In
keeping with this analysis, the analogous chemicals in the skin
sensitization data were well predicted (chemicals 6, 7, and 14 in
Table 2). Inspection of the data used to develop the fragment-
based reactivity algorithm shows that it does not contain
chemicals in which only the α-carbon of the double bond is part
of the ring. In addition, these types of chemicals are also not
present in the Tetrahymena pyriformis data set analyzed in the
current study. Therefore, it is impossible to ascertain as to
whether the fragment-based reactivity algorithm is under-
predicting the glutathione reactivity of these chemicals or if
these chemicals are more potent in the LLNA than is predicted
from reactivity alone.
The analysis outlined enabled the removal of 11 chemicals

resulting in a final model based on 17 chemicals with an R2 =
0.77 (Figure 8, model 4). Importantly, this model has an
applicability domain similar to that published using exper-
imentally determined kinetic rate constants, in that volatile
chemicals and those that can polymerize are excluded.3,4

However, the use of −log RC5o(calc) in the current study
enabled a greater number of chemicals to be predicted (17
versus 10) while maintaining a similar level of statistical
accuracy (R2 = 0.76 versus 0.84).

= + −

= = − = =N R R s

pEC3 1.77 0.43 log RC (calculated)

17, 0.76, adj 0.76, 0.12

50

2 2

(model 4)

■ CONCLUSIONS
The aim of this work was to validate the fragment-based
reactivity profiler for thiol reactivity for the prediction of
toxicity to Tetrahymena pyriformis and skin sensitization
potency for Michael acceptors. The results of this study
showed that the predicted reactivity values (−log RC50(calc))
was able to predict both end points within well-defined, end-
point specific applicability domains. The results showed the
importance of considering slow versus fast reacting Michael

acceptors when modeling toxicity to Tetrahymena pyriformis
and polymerization and volatility to be important in
successfully predicting skin sensitation potency. These results
were in keeping with previously published studies that have
utilized experimentally determined measurements of chemical
reactivity to model the same end points. The statistical quality
of resulting QSAR models demonstrated that the predicted
reactivity values generated by the fragment-based profiler for
thiol reactivity are on par with using experimentally determined
values. However, the use of an in silico approach offers clear
benefits in terms of the ability to predict reactivity toward thiol
for Michael acceptors in an efficient manner, without the need
to perform either time-consuming and expensive experimental
assays or undertake complex quantum mechanics calculations.
The approach outlined for the development of the fragment-
based in silico profiler could be extended to other end points,
for example, genotoxicity where nitrogen acts as the
nucleophile. Such developments would be dependent on the
availability of reactivity data for nitrogen-based nucleophiles.
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Abstract 

This study outlines the development of a fragment-based in in silico profiler for SN2 thiol reactivity. 

The profiler was developed based on the chemical space covered by a previously published dataset of 

glutathione reactivity data covering SN2 chemicals activated by the presence of an adjacent π-system. 

The approach is in keeping with a recently developed fragment-based in silico profiler for Michael 

addition thiol reactivity and involved developing a database of structural alert-type fragments with 

associated activation energy values (EINT-thiolate). These energy values were calculated using density 

functional theory with a B3YLP functional coupled to a 6-31G+(d) basis set. The fragment-based in 

silico profiler for SN2 thiol reactivity was utilized to predict glutathione reactivity and toxicity towards 

Tetrahymena pyriformis of a series of SN2 chemicals. The results showed the fragment-based in silico 

profiler was able to successfully predict both glutathione reactivity and toxicity to Tetrahymena 

pyriformis. Overall the results of this study extend the previous fragment-based profiler development 

to the SN2 domain and further validate the approach. The study also highlights the ability of the 

fragment-based in silico profilers to predict toxicological potency where the formation of a covalent 

bond is the key Molecular Initiating Event.  
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Introduction 

Human health risk assessment faces significant challenges as there is a demand for greater speed of 

chemical assessment and the requirement to minimise or avoid animal usage. The Registration, 

Evaluation, Authorisation and Restriction of Chemicals (REACH) regulation states that all chemicals 

produced or imported into the European Union in quantities of one ton per annum (or more) need to be 

assessed for human and environmental hazards.1 To test all of these chemicals using traditional animal 

methods (in vivo) would be costly, time consuming and raises ethical concerns  in terms of animal 

usage.2 The seventh amendment to the cosmetics directive bans the use of animal testing for cosmetic 

products, hence there is clearly a need to develop robust alternative methods. The Adverse Outcome 

Pathway (AOP) paradigm is seen as the key approach that will enable the demands of seventh 

amendment to the cosmetic directive to be met in regulatory toxicology. An AOP details the existing 

knowledge that links the initial interaction between a chemical and a biological system, termed the 

Molecular Initiating Event (MIE), through a series of intermediate key events, to an adverse outcome.3 

Within the AOP approach, computational (in silico) methods are typically used to define the chemistry 

associated with the MIE  

The formation of a covalent bond between electrophilic chemicals and biological nucleophiles (such as 

cysteine and lysine groups of proteins) is an example of a well-defined MIE. Bimolecular nucleophilic 

substitution (SN2) is an example of a mechanism through which covalent bonds may form between 

electrophiles and nucleophiles. This typically occurs at an aliphatic carbon, nitrogen, sulphur or halogen 

atom bound to an electronegative leaving group (Figure 1).4 Unlike Michael addition, the SN2 reaction 

has no stable intermediate as the attack by the nucleophile and loss of the leaving group is assumed to 

happen simultaneously.  

X-

‡

 

Figure 1: The formation of a covalent bond between an electrophilic chemical and cysteine via an SN2 

mechanism (X = halogen, R = alkyl, R1 = R2 = hydrogen or carbon) 

Given the importance of covalent bond formation as an MIE in various toxicities for example skin 

sensitisation and aquatic toxicity, several studies have attempted to predict toxicological potency using 

in chemico and in silico methods. 5-14 In terms of toxicity relating to covalent bond formation, one of 

the primary assumptions is that toxicological potency and rate of covalent bond formation (or reactivity) 
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are proportionally related. Consequently, in chemico analysis is often used to quantify the rate of 

reactivity between electrophilic chemicals and nucleophilic peptides, such as glutathione, representing 

the biological system. For example, a study by Roberts et al predicted toxicity towards Tetrahymena 

pyriformis for a set of 60 chemicals potentially able to react via an SN2 mechanism using glutathione 

depletion data (expressed as RC50 values).15 The study found that it was possible to predict toxicity to 

Tetrahymena pyriformis by assigning chemicals to groups based on their reaction mechanism 

characteristics. This resulted in the definition of four groups: eight non-activated primary halides (of 

which all were unreactive), nine chemicals activated by an unsaturated hydrocarbon, 22 chemicals 

activated by an unsaturated activating group and 21 chemicals whose nature and/or mechanism of 

reaction could not be assigned solely as acting via an SN2 mechanism. Glutathione reactivity data were 

successfully used to predict the toxicity of the largest group of 22 chemicals identified as acting via an 

SN2 mechanism (chemicals activated by an unsaturated activating group). In addition, the toxicity of a 

further nine chemicals whose mechanism could not initially be assigned as definitely acting via an SN2 

mechanism were also well predicted using glutathione data, suggesting that these chemicals most likely 

act via SN2 (with the potential competing reactions playing little or no role in determining toxicity). 

This resulted in a final model of 31 chemicals whose toxicity to Tetrahymena pyriformis could be 

successfully predicted using glutathione reactivity data alone. It was suggested by Roberts et al that the 

additional chemicals may be acting through alternative mechanisms such as via competing SN1 

reactions or after elimination reactions leading to the production of Michael acceptors.15 

Previous research has shown that data from the in vitro Tetrahymena pyriformis growth impairment 

assay correlates well with experimental reactivity data for other mechanistic domains.7, 9, 15-17 Although 

data from in chemico reactivity assays have been used successfully to relate reactivity to toxicity (such 

as to Tetrahymena pyriformis) recent efforts have focussed on obviating the need to conduct these 

laboratory experiments entirely through the development of in silico alternatives. Such efforts involve 

the calculation of quantum mechanical descriptors, to enable prediction of toxicity or reactivity directly 

from structure. 11-13, 18 For example, descriptors such as the energy values of reactants and transition 

state and/or key intermediate structures (typically using a model nucleophile e.g. methyl thiol). In doing 

this it is possible to calculate the energy difference between the reactants and transition states and/or 

intermediate structures computationally, this is termed the activation energy (Eact). Previous studies 

have shown calculated Eact to correlate well with reaction rate for Michael acceptors.11, 12, 14, 19 

A recent study by the current authors showed it was possible to predict experimental reactivity 

(expressed as -log RC50 values) for a set of Michael acceptors using a fragment-based in silico profiler 

where fragments are stored in a database with their respective, pre-calculated activated energy (Eact) 

values.19 Fragments were developed for Michael acceptors by defining the length of alkyl chain beyond 

which further increases in chain length failed to significantly increase Eact.  Query chemicals (input as 

SMILES) are compared to the database of fragments with pre-calculated Eact values along with an 
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additional descriptor that models the solvent accessible surface area (SAS) at the α-position. Once the 

query chemical has been assigned a reference fragment, its corresponding Eact and SAS-α values are 

used to calculated –log RC50 using a defined QSAR model. Furthermore, the potential of this fragment-

based profiler, for Michael acceptors, to predict toxicities associated with covalent bond formation was 

assessed  using  Tetrahymena pyriformis toxicity data and skin sensitisation potency as measured in the 

Local Lymph Node Assay (LLNA).20 These studies demonstrated that it was possible to predict toxicity 

to Tetrahymena pyriformis using two different models that differentiated between fast and slow reacting 

chemicals; the model for slow reacting chemicals incorporated an additional descriptor for lipophilicity 

(log KOW). Additionally skin sensitisation potency as measured in the LLNA was successfully modelled 

within a well-defined applicability domain where volatile chemicals and those with the potential to 

polymerise were excluded. These findings were in keeping with previously published studies for both 

toxicity to Tetrahymena pyriformis and skin sensitisation potency. 21, 22 

Given that experimental reactivity towards glutathione, and toxicity that is associated with such 

reactivity, were successfully predicted for linear Michael acceptors in previous studies, it plausible that 

an analogous method could be successfully applied to other mechanistic domains. As such, the aim of 

this study was to develop a fragment based in silico profiler for the prediction of SN2 thiol reactivity. 

The fragments developed for this are based on the chemicals investigated in a previous study by Roberts 

et al.15 This will be achieved by adopting a similar method as applied previously to Michael acceptors.19 

Additionally, the ability of fragment-based in silico profiler for SN2 thiol reactivity to predict both 

glutathione reactivity and toxicity towards Tetrahymena pyriformis was also investigated. 

Methods 

Data set 

Thirty-one chemicals were identified as acting via an SN2 mechanism from reference (chemicals shown 

in Table 6).10 Three chemicals were excluded from this dataset, these being: 3-bromo-acetyl-coumarin, 

ethyl iodoacetate and 2-iodoacetamide. 3-Bromo-acetyl-coumarin was excluded from the analysis due 

to it having multiple sites of electrophilic reactivity. The other two chemicals contained iodine as the 

leaving group. It was not possible to perform calculations on these chemicals due to the chosen basis 

set only being applicable to elements in the first three rows of the periodic table. This resulted in a 

dataset of 28 activated SN2 chemicals. All chemicals in the dataset had associated glutathione reactivity 

data (-log RC50) and Tetrahymena pyriformis toxicity data (-log IGC50).10 

Computational methods – calculation of ΔETS-thiolate 

All calculations were carried out using the Gaussian 09 suite of software using density functional theory 

at the B3LYP/6-31G+(d) level of theory with water as a solvent.23 The ΔETS-thiolate values were obtained 

using scan calculations to determine the highest point of energy on the potential energy surface for the 

reaction between the electrophile and thiolate nucleophile. All scan calculations were performed using 
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an initial bond length of 2.9 Å between the halogenated carbon atom and the sulphur of the nucleophile. 

All calculations used methyl thiolate as a model nucleophile. A series of seven calculations were then 

carried out in which the bond length between the halogenated carbon and the sulphur of the thiolate 

nucleophile was decreased by 0.1 Å with each calculation. This mapped the reaction coordinate 

enabling the highest energy point corresponding to the transition state structure to be identified. All 

transition state structures were subjected to frequency analysis in order to identify a single negative 

eigenvalue connecting the transition state to the reactants and products on the potential energy surface. 

All calculations were carried out using the “opt=loose” keyword.  

It is worth nothing some of the ΔETS-thiolate values obtained for some of the chemicals were negative (i.e. 

the transition state is lower in energy than the reactants). These values are unusual at first glance, as the 

ΔETS-Thiolate values were obtained from the highest point of energy along the reaction co-ordinate and 

have negative frequencies associated with them (indicating them to be true transition states). Given that 

the pKa of a thiolate ion is reported to be roughly 12.0 it is unlikely that this species will exist in a 

significant amounts at neutral pH. In reality, it is likely that the thiolate is stabilised by a positively 

charge counter ion such as sodium. With this in mind, a sodium ion was included in the calculation as 

part of the reactants and transition state structure. This resulted in a large increase in the ΔETS-Thiolate 

(kcal/mol) for all chemicals. This was something not immediately obvious in the analysis with the 

Michael acceptors and the analysis was carried out using the resonance-stabilised intermediate of the 

Michael addition reaction as opposed to the use of a transition state structure. However, in order to have 

a rational comparison with the Michael addition analysis, ΔETS-Thiolate without the addition of sodium 

was used for the SN2 analysis. Although this has an effect on the ΔETS-Thiolate values, the values will be 

effected equally and therefore the predictive outcome of the values will not change. 

Fragment analysis 

All fragment development utilised the following set of rules (analogous to those utilised during the 

development of the previously published fragment-based in silico profiler for Michael addition thiol 

reactivity19: 

1. All fragments were developed using the transition state structure upon reaction with a thiolate 

nucleophile using ΔETS-thiolate values as the key reactivity descriptor.  

2. The ΔETS-thiolate values for straight chains at each R-position were compared with the ΔETS-thiolate 

values of a chain containing one carbon less (or in the case of methyl with hydrogen where 

applicable); for example, ethyl was compared to methyl and propyl compared to ethyl. 

3. Branched chains ΔETS-thiolate values were compared to the ΔETS-thiolate value of their straight chain 

equivalent; for example, t-butyl was compared with ethyl. 
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4. Only ketones and esters contained aromatic substituents (at R1). In all cases these were 

compared to a methyl group; for example, benzene, naphthalene, pyrene and thiophene were 

compared to methyl. 

5. Only one R group was investigated at a time whilst the other R group remained constant. For 

example, R1 remained as hydrogen whilst the effect of substituents at the R2 position was 

investigated. 

6. Individual calculated ΔETS-thiolate values were rounded to the nearest integer before comparing 

values rather than rounding the difference in ΔETS-thiolate between the two values. 

7. A cut off value of 1.0 kcal/mol was used to assess if there was a significant difference between 

two substituents (to determine the need for the inclusion of a fragment in the profiler). 

8. Unrounded ΔETS-thiolate values for fragments (to one decimal place) were used in the modelling 

of reactivity and toxicity. 

Statistical analysis 

Linear regression analysis was used to develop quantitative structure-activity relationship models to 

obtain correlations between ΔETS-Thiolate values, predicted –log RC50 and toxicity to Tetrahymena 

pyriformis (-log IGC50) values using the Minitab (version 17) statistical software.  

Results and Discussion 

Inspection of the chemicals in the dataset showed that there were three factors that varied for the five 

types of electron-withdrawing groups present (ketones, esters, acids, amides and aromatic groups), these 

being; the halogen leaving group (bromine or chlorine) and varying substituents at the R1 and R2 

positions (R-groups as defined in Table 1). Therefore, the analysis focused on the development of 

fragments capable of predicting the effects of these substituents on the calculated ΔETS-thiolate values 

within the domain of the experimental assay.  

Table 1: Structures of the chemicals utilised in the SAR fragment analysis in the current study  

 

R1 = CH2CH3, t-butyl, 

phenyl, naphthalene, pyrene, 

thiophene 

 

R1 = CH3, CH2CH3, 

(CH2)2CH3, t-butyl, phenyl 

 

Brominated ketones and esters (N = 11) 
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R2 = H, CH3, CH2CH3, 

(CH2)2CH3 

 

R2 =  CH2CH3, (CH2)2CH3 

 

R2 = H, CH3 

Brominated esters, acids and amides (N = 8) 

 

R1 = CH3, CH2CH3, 

(CH2)2CH3, t-butyl 

  

Chlorinated esters (N = 4) 

 

Development of fragments for brominated chemicals 

Of the 28 chemicals in the dataset (shown in Table 6), 21 were brominated and seven were chlorinated. 

For the brominated chemicals this covered, 10 brominated esters, six brominated ketones, two 

brominated acids, two brominated amides and 1-bromomethyl-4-nitrobenzene. Analysis of the dataset 

revealed three groups that were large enough to allow a SAR analysis to be undertaken (11 chemicals 

with substituents at position R1 for brominated ketones and esters, eight chemicals with substituents at 

position R2 for brominated esters, acids and amides and four chemicals with substituents at position R1 

for chlorinated esters).  

Calculated ΔETS-thiolate values SAR at position R1 for brominated ketones and esters 

Initially the SAR for ΔETS-thiolate values when extending the chain length at the R1 position for brominated 

ketones and esters was investigated (chemicals as shown in Table 1). This group contained seven 

brominated ketones and 10 brominated esters covering seven and five substituents at the R1 position 

respectively. Calculated ΔETS-thiolate values increased by 1.0 kcal/mol when extending the chain length 

from a methyl to an ethyl substituent at the R1 position for both electron-withdrawing groups (compare 

chemical 2 with 1, and 9 with 8 in Table 2). Similarly, the change in calculated ΔETS-thiolate values was 

less than 1.0 kcal/mol when comparing ethyl to a t-butyl group for both electron-withdrawing groups 

(compare chemical 3 with 2, and 11 with 9 in Table 2). Additionally, methyl could be used for aromatic 

substituents benzene, naphthalene, pyrene and thiophene for ketones (compare chemicals 4-7 with 1 in 
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Table 2). The result of this analysis showed that a methyl group could be used to predict the ΔETS-thiolate 

values of all alkyl groups (and aryl groups for ketones) at the R1 position. The exception being the need 

for an ethyl group for the prediction of chemicals where R1 = t-butyl (compare chemical 11 with 3 in 

Table 2). This resulted in four fragments being required to cover the domain of ketones and esters with 

substituents at the R1 position (these being R1 = methyl and ethyl for both ketones and esters).  

 

Table 2: Calculated ΔETS-thiolate (kcal/mol) values for brominated ketones and esters at the R1 position 

ID Substituent name R1 
ΔETS-thiolate 

(kcal/mol) 

Fragment 

substituent 

Fragment ΔETS-thiolate 

(kcal/mol) 

Ketones 

1 Methyl -1.0 CH3 -1.0 

2 Ethyl 0.0 CH3 -1.0 

3 t-Butyl 0.0 CH2CH3 0.0 

4 Benzene -2.0 CH3 -1.0 

5 Naphthalene -2.0 CH3 -1.0 

6 Pyrene 0.0 CH3 -1.0 

7 Thiophene -1.0 CH3 -1.0 

Esters 

8 Methyl 0.0 CH3 0.0 

9 Ethyl 1.0 CH3 0.0 

10 Propyl 1.0 CH3 0.0 

11 t-Butyl 1.0 CH2CH3 1.0 

12 Benzene  0.0 CH3 0.0 

 

Calculated ΔETS-thiolate values SAR at position R2 for brominated esters, acids and amides. 

The analysis for varying substituents at the R2 position was applicable to three chemicals groups 

(chemicals as shown in Table 1). There were 11 brominated esters, two brominated acids and two 

brominated amides in the dataset covering four substituents for esters and two for both acids and amides 

at the R2 position. The results showed that for all three electron-withdrawing groups, the calculated 

ΔETS-thiolate values differed significantly when going from hydrogen to methyl substituents (compare 

chemical 2 with 1, 6 with 5, and 10 with 9 in Table 3). This increase in the calculated ΔETS-thiolate value 

is expected due to increased steric bulk around the reactive site. However, increasing the chain length 

further from methyl to ethyl resulted in the calculated ΔETS-thiolate values being within 1.0 kcal/mol 

(compare chemical 3 with 2, and 7 with 6 in Table 3). This consistency in calculated ΔETS-thiolate values 
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was also seen when extending the chain length from ethyl to propyl (compare chemical 4 with 3, and 8 

with 7 in Table 3). This showed that only the addition of the methyl group (going from primary to 

secondary halide) has an effect on calculated ΔETS-thiolate values, (increasing the chain length further 

resulted in no change in the calculated ΔETS-thiolate values). This resulted in two fragments being used to 

cover the brominated electron-withdrawing groups for R2 substituents (this being R2 = methyl and 

hydrogen). Although the groups for brominated acids and amides are small, it can be assumed that their 

applicability extends to acids and amides with larger substituents at the R2 position. This assumption is 

based on consistency in calculated ΔETS-thiolate values when extending the chain length at the R2 position 

for other chemical groups (e.g. brominated esters at the R2 position – see chemicals 1-4 in Table 3). 

Table 3: Calculated ΔETS-thiolate (kcal/mol) values for brominated esters, acids and amides at the R2 

position  

ID Substituent name R ΔETS-thiolate (kcal/mol) 
Fragment 

Substituent 

Fragment ΔETS-thiolate 

(kcal/mol) 

Esters 

1 Hydrogen 0.0 H 0.0 

2 Methyl 5.0 CH3 5.0 

3 Ethyl 5.0 CH3 5.0 

4 Propyl 5.0 CH3 5.0 

Acids 

5 Hydrogen 0.0 H 0.0 

6 Methyl 5.0 CH3 5.0 

7 Ethyl 4.0 CH3 5.0 

8 Propyl 4.0 CH3 5.0 

Amides 

9 Hydrogen 2.0 H 2.0 

10 Methyl 7.0 CH3 7.0 

 

Brominated chemicals for which no SAR analysis was possible 

Of the 21 chemicals there was only a single chemical activated by nitrobenzene group, this prevented a 

SAR analysis from being carried out for this class. Given this, a fragment was included for 1-

bromomethyl-4-nitrobezene to assess the ability of the ΔETS-thiolate values for the prediction of 

glutathione reactivity and toxicity to Tetrahymena pyriformis for this chemical. 

Calculated ΔETS-thiolate values SAR at position R1 for chlorinated esters 
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The dataset contained seven chlorinated chemicals - four esters, one ketone, one acid and an amide. 

Given this, the only group for which a SAR analysis could be carried out for was the chlorinated esters 

at the R1 position (R groups as defined in Table 1). This analysis resulted in the same outcome as was 

seen for the brominated esters, where no change in the ΔETS-thiolate values were calculated beyond a 

methyl substituent at the R1 position (chemicals 1-4 in Table 4). This resulted in two fragments being 

required to cover the four chlorinated esters in the dataset (these being R1 = methyl and ethyl). 

Table 4: Calculated ΔETS-thiolate (kcal/mol) values for chlorinated esters at the R1 position  

ID Substituent name R1 ΔETS-thiolate (kcal/mol) 
Fragment 

Substituent 

Fragment ΔETS-thiolate 

(kcal/mol) 

1 Methyl 3.0 CH3 3.0 

2 Ethyl 4.0 CH3 3.0 

3 Propyl 3.0 CH3 3.0 

4 t-Butyl 4.0 CH2CH3 3.0 

 

Chlorinated chemicals for which no SAR analysis was possible 

Of the seven chlorinated chemicals in the dataset, there were three chemicals for which no SAR could 

be carried out due to there being no other structurally related chemicals (1-chloropinacalone, 2-

chloroacetamide and 2-chlorobutyric acid). The fragments used to define these chemicals are discussed 

in the next section. 

Applicability domain of the fragment-based in silico profiler for SN2 thiol reactivity  

The above analysis resulted in the definition of ten fragments for the brominated chemicals and five 

fragments for the chlorinated chemicals (summarised in Table 5). All chemical classes for brominated 

chemicals showed that a methyl substituent was capable of predicting the ΔETS-thiolate values for alkyl 

and aryl substituents at both R-positions. The exception being the need for an ethyl group for t-butyl 

substituents for brominated ketones and esters. The SAR analysis for chlorinated esters at the R1 position 

resulted in an identical outcome to that calculated for the brominated equivalents. Given this, an 

assumption was made that an analogous set of fragments to those defined for the brominated chemicals 

could be applied to extend the applicability domain of the profiler to cover an equivalent set of 

chlorinated chemicals. As such, the same set of R1 and R2 substituents were used to cover both 

brominated and chlorinated chemicals. This resulted in a total of 20 fragments to cover the expanded 

domain (fragments shown in italics in Table 5).  
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Table 5: The fragments required to cover the domain of chemicals in the dataset. Substituents used in 

the expanded domain for chlorinated chemicals are shown in italics.  

Chemical group Structure X = Br X = Cl 

Ketones 

 

R1 = CH3, CH2CH3 

R2 = H 

R1 = CH3, 

(CH2CH3) 

R2 = H 

Esters 

 

R1 = CH3, CH2CH3 

R2 = H, CH3 

R1 = CH3, CH2CH3 

R2 = H, (CH3) 

Acids 

 

R1 = N/A 

R2 = H, CH3 

R1 = N/A 

R2 = (H), CH3 

Amides 

 

R1 = N/A 

R2 = H, CH3 

R1 = N/A 

R2 = H, (CH3) 

Aromatic group 

 

R1 = Nitrobenzene R1 = (Nitrobenzene) 

Total Number of Fragments N = 10 N =  10 

 

Validation of the fragment-based in silico profiler for SN2 thiol reactivity  

The above analysis identified the need for 15 fragments to cover the structural domain of the 28 

chemicals within the dataset. An additional five fragments were defined enabling the domain of the 
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chlorinated chemicals to be expanded to cover the equivalent chemical space as defined for the 

brominated chemicals. Using the ΔETS-thiolate values associated with each fragment as the independent 

variable in a linear regression analysis showed them to be capable of predicting glutathione reactivity 

(Model 1 and Figure 2, experimental and predicted values in Table 6).   

                      −predicted log RC50 = 1.03 − 0.34 ΔETS−Thiolate                   (Model 1) 

              N = 28, R2 = 0.85, R2-adj = 0.84, R2-pred = 0.82, Average error = 0.31 

 

Figure 2: Correlation between predicted and experimental –Log RC50 and for all 28 SN2 chemicals  

The predicted glutathione reactivity data values obtained from Model 1 (predicted –log RC50) were 

subsequently utilised as the independent variable for the prediction of toxicity to Tetrahymena 

pyriformis (-log IGC50). The resulting regression analysis is shown in Model 2 and Figure 3, with the 

statistics of this model being in keeping with previous research in which experimental glutathione 

reactivity data were used to predict toxicity to Tetrahymena pyriformis.16   

                                       −log IGC50 = 1.27 + 1.00 − predicted log RC50                 (Model 2) 

                      N = 28, R2 = 0.84, R2-adj = 0.83, R2-pred = 0.81, Average error = 0.31 
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Figure 3: Correlation between predicted –log RC50 values from Model 1 and experimental –log IGC50 

values for the 28 chemicals in the dataset 
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Table 6: Chemicals acting via an SN2 mechanism with corresponding –Log RC50, -Log IGC50 (toxicity to Tetrahymena pyriformis), predicted –Log RC50 and –

Log IGC50 values investigated in the current study. Chemicals names taken directly from reference (2). Fragment names are based on their IUPAC name 

ID Chemical 

-Log 

RC50 

(mM) 

-Log 

IGC50  

(mM) 

Fragment  

Predicted –Log 

RC50  

(mM) (Model 1) 

 Predicted –Log 

IGC50  

(mM) (Model 2)  

1 1-Bromomethyl-4-nitrobenzene 0.66 2.30 1-Bromomethyl-4-nitrobenzene 0.93 2.20 

2 2-(2-Bromoacetyl) thiophene 1.11 2.22 1-Bromo-2-propanone 1.28 2.55 

3 1-Bromo-2-butanone 1.30 2.60 1-Bromo-2-propanone 1.28 2.55 

4 1-Bromopinacolone 1.42 2.38 1-Bromo-2-butanone 1.14 2.41 

5 1-Chloropinacolone 0.12 1.27 1-Chloro-2-butanone 0.42 1.69 

6 2-Bromoacetophenone 1.26 2.82 1-Bromo-2-propanone 1.28 2.55 

7 2-(2-Bromoacetyl) naphthalene 1.18 2.96 1-Bromo-2-propanone 1.28 2.55 

8 1-(Bromoacetyl) pyrene 1.24 2.39 1-Bromo-2-propanone 1.28 2.55 

9 Ethyl bromoacetate 1.07 2.68 Methyl bromoacetate 0.92 2.19 

10 Ethyl chloroacetate -0.48 1.06 Methyl chloroacetate -0.12 1.15 

11 Methyl bromoacetate 1.18 2.96 Methyl bromoacetate 0.92 2.19 

12 Methyl chloroacetate -0.45 0.89 Methyl chloroacetate -0.12 1.15 

13 Propyl bromoacetate 1.14 2.08 Methyl bromoacetate 0.92 2.19 

14 Propyl chloroacetate -0.43 1.18 Methyl chloroacetate -0.12 1.15 

15 t-Butyl bromoacetate 1.07 2.68 Ethyl bromoacetate 0.86 2.13 

16 t-Butyl chloroacetate -0.53 0.85 Ethyl chloroacetate -0.40 0.87 

17 Phenyl bromoacetate 1.14 2.08 Methyl bromoacetate 0.92 2.19 

18 2-Bromoacetamide 0.59 1.52 2-Bromoacetamide 0.28 1.55 

19 2-Chloroacetamide -1.20 0.04 2-Chloroacetamide -0.56 0.71 
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20 Methyl-2-bromopropionate -0.18 1.18 Methyl-2-bromopropionate -0.83 0.44 

21 Methyl-2-bromobutyrate -0.54 1.02 Methyl-2-bromopropionate -0.83 0.44 

22 2-Bromopropionamide -1.40 0.00 2-Bromopropanamide -1.36 -0.09 

23 2-Bromobutyric acid -1.20 0.12 2-Bromopropanoic acid -0.52 0.75 

24 2-Chlorobutyric acid -1.58 -0.35 2-Chloropropanoic acid -1.14 0.13 

25 2-Bromovaleric acid -1.08 -0.04 2-Bromopropanic acid -0.52 0.75 

26 Ethyl-2-bromovalerate -0.23 0.70 Methyl-2-bromopropionate -0.83 0.44 

27 Ethyl-2-bromobutyrate -0.20 0.77 Methyl-2-bromopropionate -0.83 0.44 

28 Ethyl-2-bromopropionate -0.23 1.06 Methyl-2-bromopropionate -0.83 0.44 



 

Conclusions 

The aim of this work was to develop a fragment-based profiler for SN2 thiol reactivity by adopting a 

similar method that was previously successfully applied to the Michael addition domain. The results 

showed that the fragment-based in silico profiler was able to predict glutathione reactivity for a series 

of activated SN2 chemicals. Additionally, the in silico reactivity predictions were shown to predict 

toxicity to Tetrahymena pyriformis for chemicals identified as acting via an SN2 mechanism. The ability 

of the reactivity values derived from the fragment-based in silico profiler to predict toxicity to 

Tetrahymena pyriformis were in-keeping with previous research that demonstrated the use of 

experimental reactivity data to predict the same endpoint. The results of this study highlights the 

benefits of developing fragment-based reactivity profilers of this type, and their application in the 

prediction of toxicological endpoints for which the formation of a covalent bond is the key driver of 

potency.  
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