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Abstract

Advanced cyber threats that are well planned, funded and stealthy are an increasing issue facing

secure networked systems. As our reliance on protected networked systems continues to grow,

the motivation for developing new malicious techniques that cannot be easily detected by tradi-

tional signature-based systems, and that make use of previously unseen zero-day vulnerabilities,

continues to grow. Lack of adaptivity, extended data-collection and generalised algorithms to

detect stealthy attacks is contributing to the insecurity of modern networked systems. To pro-

tect these networks, new approaches that can monitor and respond to indicators of compromise

in a reflective way that considers all of the available evidence rather than individual points of

data is required.

This thesis presents a novel approach to intrusion detection and specifically focuses on de-

tecting advanced persistent threats which are characteristically stealthy and evasive attacks.

This approach offers a multi-agent model for automatically collecting, analysing and classifying

data in a distributed way that considers the context in which the data was found. Using a

context-based classification that considers the likelihood of a data-point being a false alarm or

legitimate is used to decrease the prevalence of erroneous classifications and regulate continu-

ation of the data collection process. Using this architecture, a detection rate increase of up to

20% is achieved in false alarm environments and an efficiency increase of up to 50% made over

traditional monolithic intrusion detection systems. Additionally, the shortcomings of algorithms

to detect stealthy attacks are addressed by providing a generalised anomaly detection algorithm

for detecting the initial traces of an attack and deploying the proposed multi-agent model to

investigate the attack further. The generalised algorithms can detect a wide variety of network-

based attacks at an average detection rate of 85% providing an accurate and scalable way to

detect the initial traces of compromise.

The main novelty of this thesis is providing systems for detecting attacks where the threat

model is increasingly stealthy and assumed capable of bypassing traditional signature-based

approaches. The multi-agent architecture is unique in its ability, and the generalised anomaly

detection algorithm is novel in detecting a variety of different cyber attacks from the network-
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flow layer. The evidence from this research suggests that context-based evidence gathering

can provide a more efficient approach to analysing data and the generalised anomaly detection

algorithm can be applied widely to detect attack indicators.
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Chapter 1

Introduction

Secure network systems are essential for the functioning of modern computing in all sectors of

society. Encapsulated within the concept of security are the individual goals of providing (i)

confidentiality, (ii) integrity, and (iii) availability which together keep data known only to the

individuals that should have access to it, ensure the data remains unchanged and allow the data

to be accessed when needed. NIST (National Institute of Standards and Technology) further

expands this definition to include the process of protection, detection, identification, response

and recovery. The adversaries of secure systems attempt to perform data breaches which are

described in a study by the Ponemon Institute [132] as an event in which an individual’s name

and a medical record and/or a financial record or debit card is potentially put at risk - either

in electronic or paper format. A record is described as information that identifies the natural

person (individual) whose information has been lost or stolen in a data breach. One example is a

retail company’s database with an individual’s name associated with credit card information and

other personally identifiable information. Another is a health insurer’s record of the policyholder

with physician and payment information.

Cybercrime affects society as a whole in addition to threatening the individual’s privacy or

businesses intellectual property. Breaches in privacy may compromise a countries critical infras-

tructure (i.e., energy, telecommunications, financial and transport) and cause lasting effects.

1.1 The Cause of Insecure Systems

The cause of insecure systems is a combination of poor detection systems and increasingly

advanced adversaries. The APT (Advanced Persistent Threat) is an example of an attack model

becoming increasingly prevalent in recent years, characterised by their well funded and targeted

operations that prioritise stealth and attack longevity over immediate reward. These advanced
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Figure 1.1
Median dwell time by region - Europe, the Middle East and Africa (EMEA), Asia-Pacific (APAC)
[109]

attacks often include new and unseen approaches to evading current detection solutions making

them increasingly difficult to monitor. In a 2018 study by Mandiant, the dwell times of attacks

were surveyed to examine the extent of long-lasting cyber attacks (i.e., the number of days from

the first evidence of compromise that an attacker is present on a victim network before detection).

Figure 1.1 shows the global average to be 101 days while increasing to 498 days for the Asia-

Pacific (APAC) region highlighting the issue that attackers are capable of spending prolonged

periods of time within systems protected by the current generation of detection technologies.

Furthermore, the study found that the 44% of the attacks discovered were detected by an

external source for the European and the Middle East and Africa (EMEA) regions (see Figure

1.2). This finding highlights the current state of cybersecurity with many intrusion detection

and prevention systems failing to detect the attack at any point, and further highlights the need

for an increasingly autonomous approach capable of investigating stealthy attacks that would

otherwise not be detected by traditional technologies in a timely manner.

1.2 The Cost of Insecure Systems

The Ponemon Institute study collected global statistics on the average number of breached

records by country (refer to Figure 1.3) as well as the average cost per capita compared to the

four-year average (refer to Figure 1.4). The study concluded that the faster the data breach

can be identified and contained, the lower the resulting cost. A separate study highlighted the
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Figure 1.2
Organisation attack detection source [109]

need for improved detection within internal networks, citing that the median period between an

attack happening and its detection was 205 days with only 31% of breaches detected internally

by the target of the attack [59, 77]. The average size of the data breach concerning the number

of breached records was 21,663 for the United Kingdom in 2017 and cost on average £74 ($123)

per capita.

One possible approach to address the issues surrounding network security and real-time

responses is to utilise the advances made within the multi-agent systems and machine learning

communities. This thesis examines the use of agent-based systems for automated detection and

response to network-based cyber attacks. This has been achieved by i) developing a multi-

agent system named the Decentralised Multi-Agent Security System (DMASS) to encapsulate

current detection mechanisms such as signature detection and targeted anomaly-based detection

into a mobile and automated system to facilitate increased information traversal, and ii) the

development of a Generalised Anomaly Detection Algorithm to be used in conjunction with the

DMASS to detect the initial stages of an attack at an abstract layer and mobilise the DMASS

to perform a targeted investigation of the potential security breach.
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Figure 1.3
The average number of breached records by country or region [132].

1.3 Aims & Objectives

The aim of this thesis is to address the issue of advanced and stealthy threats facing modern

networked systems. In particular, to increase the detection rate of a variety of attacks and where

possible the efficiency. The issue of advanced and stealthy attackers has become more prominent

in recent years due to advancements in detection technologies and the corresponding techniques

developed to avoid detection. Below, several objectives are considered to address this aim:

Objective 1: Multi-Agent Systems. To investigate and demonstrate the use of Multi-Agent

Systems to provide a more adaptive and real-time solution for network monitoring.

Objective 2: Datasets. To gain an in-depth understanding of network-layer security datasets.

Any dataset used must be up to date, contain a variety of network attacks and provide a com-

prehensive overview of the network.

Objective 3: Anomaly Detection. To investigate the use of anomaly-based algorithms to

guide the proposed multi-agent system during cyberattack investigations. While Multi-Agent

Systems are useful in autonomously investigating events, a trigger is required to determine where

and when the system should be deployed. To address this, generalised anomaly-based algorithms

will be analysed as a possible solution.
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Figure 1.4
The 2017 per capita cost of data breach compared to the four-year average [132].

Objective 4: Overfitting. To investigate the use of machine learning within the network

security environment. In particular, to investigate measures to avoid overfitting in this adver-

sarial domain where attackers deliberately seek to deceive the network monitor and a lack of

good datasets inhibits supervised training.

Objective 5: Network Forensics. To investigate the application of manually performed

forensic processes for use within a Multi-Agent System. The forensic process of gathering infor-

mation and tailoring the search response to consider evidence found is inherently efficient but

not currently used in an automated way.

1.4 Novel Contributions

The research within this thesis provides a novel multi-agent approach to network evidence col-

lection and analysis as well as algorithms to guide autonomous systems during the detection

process.

This thesis makes the following novel contributions to the field of intrusion detection and

multi-agent systems:

• An autonomous multi-agent architecture to collect and analyse information within the

local network, featuring a system of conditions & effects which describes how information

and technologies within a network relate to each other to provide a guiding mechanism
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for evidence retrieval. No current adaptive architecture provides adequate information

collection and analysis of networks or logically follows the evidence already collected to

inform future search actions.

• A guidance system for the multi-agent architecture using agent preference (i.e., allowing

agents to decide which other agents they prefer working with locally), voting algorithms

and discretionary control over when to end the search for additional information and

classify the event. Using these automated approaches, the multi-agent system may adapt

to both the operating environment and the attack without restricting the system with

hard-coded thresholds.

• An algorithm for detecting the traces of local network cyber attacks at the network flow

layer. Currently, anomaly-based and machine learning techniques focus on individual

domains within the network (i.e., to detect one particular attack) and cannot generally

be applied to detect multiple attacks without suffering from overfitting. The generalised

anomaly detection algorithm developed within this thesis is used in conjunction with the

multi-agent system to detect and then investigate the early indications of an attack.

1.5 Organisation

The organisation of this thesis is as follows:

Chapter 2 provides an overview and literature review of the three main topics discussed in

this thesis: (i) intrusion detection, (ii) advanced persistent threats, and (iii) multi-agent systems.

Chapter 3 presents the novel multi-agent approach to intrusion detection and the concept of

domains which is a descriptive model that encapsulates the relationships between technologies

within a network. A formal system definition and algorithms for performing an extended data

collection task (i.e., the agent approach to evidence collection) are also provided.

Chapter 4 describes the novel generalised anomaly detection algorithm which aims to detect

a wide variety of attacks during the early stages of a system penetration. In particular, the

algorithm aims to address the problem of overfitting within cybersecurity research. Details of

the simulator in which the algorithm was designed is also provided.

Chapter 5 contains the results and discussion of the multi-agent system and the anomaly

detection algorithm.
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Chapter 6 concludes this thesis with a discussion of the findings and possible future work.
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Chapter 2

Literature Review

In this chapter, an overview of the current state of the art in related research is provided. Several

topics including multi-agent systems, network security and machine learning are included among

the discussed areas of research. Critical networks, such as large-scale utility, business critical

and supply chain networks, require protection from increasingly stealthy and sophisticated se-

curity threats. While networks with many separate components, potentially spanning over a

considerable geographical distance (in the case of utility and supply chain networks) provide

many benefits to the users, they exponentially increase the attack surface and opportunity for

system compromise. The importance of protecting networks from the APT has been highlighted

in recent years with many high profile security breaches; including Stuxnet, Duqu, Flame and

Red October, discussed further in this section. New techniques are required to provide suffi-

cient protection of vulnerable networks as it is apparent that existing methods do not meet the

security networks requirements.

2.1 Intrusion Detection

This thesis aims to improve the performance of intrusion detection, to facilitate this, an under-

standing of existing intrusion detection techniques is necessary. This section discusses intrusion

detection concepts that are currently used throughout the security industry and research.

Many frameworks have been proposed to model and manage cybersecurity risk for critical

infrastructure and organisations. NIST proposed an industry-backed framework for governing

risk management processes, of which the framework core describes a set of cybersecurity activities

and desired outcomes that are common across many sectors [120]. The framework core consists

of five concurrent and continuous functions: (i) identify, (ii) protect, (iii) detect, (iv) respond,

and (v) recover. Furthermore, the framework describes three implantation layers that security

31
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should be performed on: (i) the executive level, (ii) the business process level, and (iii) the

implementation/operations level. The framework recognises the multiple attack vectors that

exist within every organisation, for example, those that exist at the executive level, the business

process level or the implementation and operations level which may become the target of an

attack. The framework is particularly applicable to modelling advanced attacks that target

specific organisations. The approach taken in this thesis is to address the threats that exist within

the technical operations layer; however, many of these threats may exist due to vulnerabilities

that exist in the higher business process or executive layer.

Intrusion detection has branched out into several areas to address the increasing amount of

threats facing modern networks. Figure 2.1 shows a high-level view of intrusion detection system

architectures and detection methodologies.

System Deployment An IDS may either be deployed centrally or distributed across several

devices. Host-based IDSs are deployed on a per-device basis to detect host-level attacks and

some device-specific network-level attacks. Network-based IDSs, on the other hand, are deployed

at a bottleneck point on the network, typically at the network’s perimeter so they can evaluate

all foreign traffic originating from outside of the network as well as outbound traffic from the

protected devices. Network-based IDSs have arisen as the most popular choice in recent years

owing to their ease of deployment, high visibility and easy administration. In comparison, host-

based or decentralised systems are most costly to deploy and administrate due to the increased

volume of individual devices that must be monitored. Other technology types, including wireless-

based IDSs are used for specialised architectures but function similarly.

Detection Methodology Of the several approaches used to detect attacks signature-based

detection has arisen as the most common. Using manually defined signatures created by domain

experts, individual attack patterns are described and used to detect future occurrences. An

example of a signature from a leading IDS named Snort is included below; in particular the

“content” field describes a string of encoded data that is to be searched for within the network

packets.

alert tcp $EXTERNAL_NET any -> $HOME_NET 139

flow:to_server,established

content:"|eb2f 5feb 4a5e 89fb 893e 89f2|"

msg:"EXPLOIT x86 linux samba overflow"

reference:bugtraq,1816

reference:cve,CVE-1999-0811
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Figure 2.1
Intrusion detection attributes.
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classtype:attempted-admin

Since signatures are manually defined to fit a particular attack, they are vulnerable to a num-

ber of evasion attempts including encrypting the data to bypass content filters and manually

changing the attack in minor ways so it no longer matches the signature. To address these con-

cerns, new methods including anomaly and specification-based methodologies have been used to

improve scalability and detect attacks without relying on specific signatures. The specification-

based approach uses examples of normal system behaviour and expected protocol interactions

to detect deviations from predefined norms [154], whereas anomaly detection uses heuristics or

rules that specify the form of malicious behaviour to detect attacks. The system is first taught to

recognise regular activity and builds a behavioural model around it, deviations from this model

are then processed as malicious. Typically, the IDS is parameterised by a threshold T that is

adjusted to control the detection performance. Adjusting the threshold to make T higher would

have the effect of potentially increasing the detection rate but at the cost of more false alarms.

Timeliness Anomaly-based IDSs require training time to build the behavioural model of the

network. This overhead often hinders their usefulness as training can often be both a compu-

tationally and temporally expensive process. On-line/real-time detection systems are capable

of learning and detecting while processing live networks events whereas off-line systems require

prior training or extra time to process the collected data. Additionally, a system may process

network events as a continuous stream of information or perform periodic batch processing af-

ter a certain number of events have been detected. A trade-off between the storage cost of

remembering events and the computational cost of continually updating the system model or

performing signature matching is made when deciding the granularity.

Data Source Processed data may come from a wide variety of sources within a network. Net-

work traffic (e.g., packet flow data) is the most visible source and contains all information moving

through the network. Host-based data such as system commands, system logs and security logs

are often used for specification-based IDSs due to the detailed information regarding a wide

variety of system events. Data may be collected either centrally or through a distributed net-

work of systems, however, distributed host-based systems may be vulnerable to disruptive DoS

(Denial of Service) attacks or network congestion while central systems may become vulnerable

to bottlenecks when processing a large volume of data.

It has been argued [83, 63, 145] that the current state of IDSs falls short of effectively

defending systems from compromise due to the lack of intelligence, adaptability and proactive
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capabilities. Current IDSs1 typically fall into two categories: detection by signature recognition

or detection by anomaly recognition. Unfortunately, IDSs have not evolved in any significant

way beyond the simple rule and anomaly-based systems that were seen over 20 years ago. Many

authors [21, 60, 145, 83] have noted that the current IDS technologies do not go far enough in

investigating potential attacks. Bass [21] called for IDSs to incorporate multi-sensor data fusion

techniques to detect more of the environment through the use of targeted sensors. Frank [60]

highlighted some of the problems around IDS data interpretation, noting that data reduction,

a highly expensive computational process, is a major problem due to the high volume of data

that the IDS will observe. Rather than performing bulk collection, a more targeted approach is

needed whereby the data is intelligently collected and filtered out before being stored. Kautz et

al. [83] called for intelligent systems to proactively monitor the environment and interpreting the

data to infer the possible goals of an attacker. This type of inference and proactive technology

has not yet been applied to the area of intrusion detection on any wide scale.

Spafford et al. [147] described desirable characteristics necessary for intrusion detection, in-

cluding fault tolerance, resistance to subversion, minimal overhead, conceivability, adaptability,

and autonomy. Many of the desirable properties overlap with those of a MAS (Multi-Agent

System). Spafford details an example architecture, AAFID (Autonomous Agents for Intrusion

Detection), consisting of four components that perform data collection, controlling transceivers,

monitors and filters that format data for use. Agents operated within a hierarchical structure

whereby agents report to transceivers, who in turn report to the monitors, which are overseen by

human operators. Testing highlight a performance bottleneck that occurred during the dissemi-

nation of information and was improved upon by introducing a side channel for communication

and the delivery of control instructions. The performance bottleneck is a common problem

associated with top-down hierarchical control structures that fail to scale well to dynamically

changing or large environments.

Helmer et al. [70] designed an agent-based IDS using lightweight agents that have a smaller

computational footprint but are less proactive in their abilities. While lightweight agents are less

proactive, they have a shorter development cycle and are less costly to transport in production

environments due to their small footprint. Further consideration was given to the unreliable

network security environment that may not provide agents with an active network connection at

all times. Helmer uses a system of report buffering to aggregate reports made by the agents offline

until such time that a connection can be made to the broader MAS. Availability in networked

environments can be distributed by many scenarios including both unintentional network issues

1Note: The properties of an IDS also generally apply to IDSs as an Intrusion Prevention System is an extended
IDS with preventative capabilities.



36 CHAPTER 2. LITERATURE REVIEW

arising from faulty technology and the intentional disruption of services by an attacker to prevent

communication from taking place.

Bass et al. [21] criticised the way that IDSs defend systems calling them “primitive” due

to their lack of sensors capable of interpreting the operating environment. Stating that they

are not able to detect sophisticated attacks, which has been proven numerous times in the

media, he called for the integration of multiple sensors that go beyond the current paradigm of

rule-based and anomaly-based detection. Examples of desirable sensors included performance

sensors for analysing the false positive rate, temporal sensors for distinguishing between multiple

cyber attacks over time, tracking models for following adversaries through a network, target re-

visitation sensors for tracking the interaction between targets and systems, and other various

measurement sensors. Sensor-based systems necessarily involve a certain degree of inference

when interpreting the collected data. Bass shows that threat analysis involves a high level of

inference to defend a system but little to attack it. Bass calls for a more systematic approach to

threat analysis stating the need for data gathering methods to eliminate unlikely associations,

association methods to quantify the similarity between events, assignment methods to declare

beliefs about events, deviation analysis to analyse statistical norms and suggested the use of

machine learning to go beyond this.

Kothari et al. [96] highlighted the problem of security systems that are incompatible with

the people that use them. Given the example of a security administrator that forces the use of

long passwords, users may subvert the intended security controls by reusing passwords or using

character repetition to ease the burden of complying with the new controls. Kothari proposed

that a study looking at the differences in population groups, focusing on identifying users prone

to using evasive techniques, and to find the “tipping point” that users would find acceptable.

The proposed system monitors the user’s activities on a system and attempts to infer their

current state of mind as a way to pre-empt workaround attempts on behalf of the user. Kothari

attempted to understand security needs from both a social and technical perspective which

resulted in a better understanding of how users would react to security controls and improve the

overall effectiveness of the systems.

Orfila et al. [122] proposed a MAS using three agents to detect and respond to intrusion

attempts. A predicator agent makes judgements about attacks based on probabilistic models

of the environment and sends them to the evaluator which aggregates the data and makes

recommendations to the manager agent who takes action against the possible attacker based

on the security policy. The system is organised hierarchically and could benefit from a more

adaptive organisation of agents such as the use of weighted relationships that put more trust in
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agents that have performed well in the past [174, 159].

Vecchiato et al. [157] have designed a modular MAS with three layers: the personal layer, the

ambient layer and the cloud layer. Having the various sensor (data collection) agents constrained

to one of these three domains and designing the system using secure software methodologies,

allows the designer to better constrain the agent scope. Comparisons can be drawn to cloud

computing where the personal agent hands-off any resource intensive computation to the cloud

layer where the system resources can be scaled up to match demand.

MASs are particularly suited to the domain of legacy technologies due to their flexible nature.

Given the example where two systems need to be connected to work correctly, coalitions of agents

could be formed to bridge the gap between the systems. This also has applications within the

security domain as networks of systems often comprise of a plethora of different systems and

technologies. To effectively interact with all of them it becomes necessary to have a system

capable of forming dynamic coalitions of agents that have interfaces to interact with the systems.

Li et al. [101] used a MAS to encapsulate old legacy technologies which are no longer supported

by the vendor or the company using them and could pose a security risk to the organisation

because of the lack of software patches. The proposed system includes a collection of agents for

performing various tasks, such as the kernel agent for processing the low-level system commands

and a collection of local resource agents for managing input and output. Having agents capable

of taking over the processes associated with systems to apply an extra layer of security could be

a useful tool in the intrusion prevention effort. In a security context giving agents the ability

to encapsulate sensitive data when suspicious conditions are met would be a useful automatic

response feature.

2.1.1 Digital Forensics

Computer forensics is tightly coupled with intrusion detection often providing the backbone for

informed improvements after an attack. Often the task is manually performed by a forensic

investigator, who cannot provide actionable information fast enough for any real-time decisions

to be made. One of the most important problems addressed by computer forensics is attacker

attribution: the process of attempting to learn about the source of an attack and the identity of

the person perpetrating it. Forensic investigators will often interact with services available on

the Internet as well as local systems to learn more about the attacker. Some of the services and

technologies that could be used to gather information about the attacker are: DHCP (Dynamic

Host Control Protocol) logs, active directory events, web proxy logs, hardware tracking software

logs, Wireless Access Point logs, email logs, Virtual Private Network logs, hard drive analysis,



38 CHAPTER 2. LITERATURE REVIEW

peer-to-peer logs, anti-virus logs, router interrogation, DNS (Domain Name System) interro-

gation, authentication logs and more. Currently, when intrusion detection is performed, most

of these services go unused, even though they could be used to learn more about the possible

attacker. MASs can often benefit the forensic process by aiding in the data collection process.

Whereas traditional IDSs collect data centrally, they often suffer from visibility problems be-

cause it is limited to monitoring the location that it has been placed in, for example, on a host

device or a section of the network. With increased mobility, the MAS can more easily move

between devices to gather data, as well as access the internet to perform extended collection.

Shakarian et al. [140] described a cyber attribution architecture [141, 142] that takes into

consideration many data sources and use MASs to reason about the origin of an attack through

the use of agent reasoning. The agents have access to two models: the EM (Environmental

Model) and the AM (Analytical Model). The EM represents the world in which the agent oper-

ates in and the AM represents the model that it used to reason about the data collected from the

EM. The EM is much broader than usually seen within MAS taking into consideration factors

such as a given countries investment into technology and capability to perform a cyber attack.

A predicate notation is used to represent statements with weights assigned to them, for example,

hasMseInvest(X) is the predicate used to represent whether the actor ‘X’ has a significant invest-

ment in math-science-engineering education, for each predicate the agent assigns a probability

distribution to represent beliefs about the model. The agents, when reasoning about the data,

can take into consideration both facts and presumptions; a judgement consisting of mainly facts

would have a higher weighting than one consisting of many presumptions. A noted problem

with this is the dimensionality of the data which can multiply as more variables are considered

(how to best analyse this data is an open problem within the literature). Additionally, it was

noted that of contradictory facts, given a scenario where two agents report two contradictory

facts, being able to reason about which is valid is a challenge. This is especially important

in the intrusion detection context as the attacker may leave false data behind to fool forensic

investigators (and agents).

Shanmugasundaram et al. [143] develop a distributed forensics system using a hierarchical

approach with multiple configurable sensors placed on the network. Current approaches are

criticised because (i) the large volume of data makes prolonged storage, processing and sharing

of information infeasible, (ii) incomplete logs caused by security events without signatures (i.e.,

zero-day attacks), (iii) long response times due to the requirement of manual investigation, (iv)

lack of mechanisms to share logs due to fears of information leakage, and (v) unreliable logging

mechanisms on host systems that can be circumvented. The proposed architecture named ForNet
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Figure 2.2
The ForNet heirarchical structure

is composed of two components: a system to summarise network events in its local vicinity

(SynApps) and a centralised server for management (refer to Figure 2.2). The architecture

provides a middle ground between long-term storage (through the server component) and a

distributed net of worker agents that provide the detection capability (through the SynApps).

Oriwoh et al. [123] propose a forensics response model tailored for IoT (Internet of Things)

environments taking into consideration the increased scope and complexity faced by forensic

analysts. Performing manual forensics by trained practitioners can be a time-consuming task in

an IoT environment where great distances can physically separate the devices, and the number

of devices can be many. The proposed architecture uses evidence to inform future searches has

been modelled using a MAS to automate the forensic process in IoT environments. This model is

beneficial over the traditional IDS approach of analysing security events where data is analysed

according to known signatures or anomaly analysis without the forensic feedback loop to help

inform future analysis of relevant data.

Jahanbin et al. [78] introduce an agent architecture for forensic information gathering using

three types of agents for data collection, analysis and alert generation. The authors remark

that the MAS paradigm is well suited to the task of forensic data collection since agents can

be dispatched to areas of the network to perform evidence gathering, a feature lacking in many

IDSs that just monitor the visible network connections. Structural similarities exist with the

system proposed by [67], i.e., with three layers of agents forming an information pipeline from

the lower layers to a higher layer agent. The decision-making process used in this model is

similar to an IDS because the security decisions are made based upon the available data without

consideration of possible missing data.
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2.1.2 Advanced Persistent Threat Modelling

In recent years, the complexity and effectiveness of cyber threats and attackers have increased

with advanced tools made available to the public. The APT is an example of this growing

sophistication which sees well planned and targeted attacks with a view to compromise a business

or industry completely. The term “persistent” is used to describe the use of advanced evasion

tools for bypassing security mechanisms undetected which allow the attack to remain within

the target network for a protracted amount of time. With attacks remaining undetected for

a significant amount of time, attackers can fully explore the network and achieve their goals.

Combined with the use of zero-day exploits, previously unknown to security vendors, the attacks

are much harder to defend against and monitor for when no signature exists for detecting traces

of the attack. Currently, solutions that merely combine traditional technologies such as IDSs

and firewalls have proven unable to detect advanced attacks where the attacker is adaptive to

the security solution. This calls for more adaptive and intelligent solutions to detect attackers

in different ways without relying on static IDS signatures that can be evaded. While APTs

may make use of zero-day exploits and stealthy mechanics to remain undetected, they must still

traverse the internal network and often times make use of existing tools to achieve their goals.

While directly detecting APTs that use zero-day exploits is difficult, the approach advocated

in this thesis of detecting the network traversal movements can be used to infer the presence of

attacks and signal further investigation for in-depth automated evidence gathering systems.

Attack Model

APTs are deployed in stages that follow the standard 6-stage attack cyber attack model of

(i) reconnaissance, (ii) initial compromise, (iii) command & control, (iv) lateral movement,

(v) target attainment, and (vi) exfiltration. While this process is well known to the security

community, subtle differences in the deployment of APTs and regular attacks at various stages

make the former much harder to detect.

Information Gathering The starting point of an attack is to gather as much information

about the target as possible [24]. Many sources of information exist with a variety of open source

tools available to perform intelligence gathering (known as open source intelligence gathering).

Since APTs are persistent and aim to remain stealthy within the network, several approaches

to gathering information exist. Passive collection refers to the monitoring of network commu-

nications without directly interacting with them. Passive information gathering only detects

and does not leave a footprint within the network. Semi-passive information gathering performs
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similar monitoring of the environment but accelerates the process by generating traffic that

would not usually be considered suspicious within the network (e.g., DNS or DHCP queries).

The introduction of these packets into the network invokes a response from the target device

which can be interpreted to gain information about the system. The most popular example of

this is network scanning using tools such as Nmap [108] which sends probe packets of different

kinds to a device and interprets the packet features (e.g., window size, maximum payload size,

and the type of response) to determine the operating system in use or versions of software op-

erating on a particular port. Tools such as Nmap are also used for the most intrusive example

of information gathering, active scanning, which sends a variety of packets to many different

ports and devices to force the response of the system to gather as much information as possible.

Many systems exist to detect this type of scanning behaviour and are often used to detect the

initial stages of a larger cyber attack. As a result, APTs tend to make use of either passive or

semi-passive information gathering to remain undetected and produce only a small detectable

footprint. While the APT approach results in a slower compromise, the advantage of APTs are

their persistent nature allowing them to remain within networks for an extended period.

Exploitation Once the initial compromise of the system’s perimeter has been achieved, a RAT

(Remote Administrator Toolkit) is typically used to retrieve additional software from locations

on the internet for use within the local network. With APTs focusing on remaining undetected,

additional software is downloaded slowly over time to avoid detection. Once an initial foothold is

made within a local network, the compromised device is used as a platform for launching attacks

against other, more valuable, targets within the network. Attackers often take the path of least

resistance when compromising systems, i.e., they compromise tertiary devices such as outdated

systems, utility systems and printers to gain the initial access and then spread throughout the

network.

The initial attack may take many forms, including:

• Spear Phishing. A targeted attack directed at a particular host or entity to gain access

to the wider network. Often network administrators or employees with a high degree

of access such as management staff are the targets of this type of attack. Information

gathered from online sources such as social media and company websites are used to tailor

the spear phishing attack to the particular target making them highly personalised and

effective if awareness training has not been provided. Additionally, forged documents such

as emails, PDFs and spreadsheets with official company logos can be used to achieve a

sense of legitimacy when encouraging the targets of an attack to click a malicious link or
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download a RAT program.

• Exploiting Web Infrastructures. As an example of an untargeted attack different

from spear phishing, exploits targeting websites with the goal of infecting as many users

as possible are used to initiate attacks. The most common examples are XSS (Cross Site

Scripting) and SQL (Structured Query Language) injection that use vulnerabilities in web

server scripts and database interaction languages. Specifically, XSS is used to upload

foreign code to websites, often through the use of iFrames (embedded JavaScript code in a

webpage) that can redirect the target users to an external site or initiate the download of

malicious files to the user’s device. SQL injection can be used to reveal private information

from the targets web server, for example, by exposing system passwords, non-public files

or by allowing the remote upload of malware directly to the server.

• Communication Protocol Exploits. With the goal of remaining undetected during

the attack, network protocols can be used to circumvent the normal flow of operations.

Using common network protocols to mask lateral movement (i.e., moving between devices

compromising them) within the network or retrieve RAT software from a repository online

are common uses for exploited protocols. Simple Mail Transfer Protocol servers, primarily

used for the processing and delivery of emails can be used to relay malicious software

between networks. HyperText Transfer Protocol and File Transfer Protocol servers and

their associated protocols can also be used for delivering malicious software across the

internet and local networks, since these are examples of common protocols that are found

during everyday use, their presence does not raise suspicion making the malicious contents

harder to monitor for. Furthermore, low-level communication protocols such as DNS and

Address Resolution Protocol can be used to redirect users or create a man-in-the-middle

attack to make a copy of a users network traffic for further information gathering.

• Mobile Exploits. With the expansion of modern networks to include mobile devices, the

traditional network perimeter that was protected by IDSs and firewalls has expanded to

include a variety of networked devices using a variety of operating systems of software.

With mobile devices not being under the control of the system administrators, a variety of

software can be brought into the network which could be used as an entry point into the

protected subnets. Mobile protocols such as WiFi and Bluetooth can be used to subvert

security and gather information about devices within the network as well as the mobile

device itself.

• Physical Attacks. When remote exploitation is not possible, physical attacks can be
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Figure 2.3
Proposed model for feature extraction.

Table 2.1
Examples of Advanced Persistent Threats (APTs)

APT Category Target

Stuxnet Nuclear control system PLC software

Duqu Targeted information gathering Individual computers

Flame Windows-based malware ex-
ploitation

Windows computers

Red October Diplomatic, scientific and
governmental-targeted malware
attacks

Individual computers & mobile
devices

RSA Attack Industry-targeted spear phishing
attack

Email accounts

Operation SnowMan XSS web based Public website

used to gain entry into the network. The most common example is to install malware

onto a USB device and leave them in public places to be found. When brought into

the protected network, the malware rapidly spreads throughout the network and “phones

home” to download additional malware for use in compromising the wider network.

Technical Analysis

In recent years, several high profile APTs have been discovered and analysed. Virvilis et al.

[161] provide a high-level technical analysis of the Stuxnet, Duqu, Flame and Red October. In

this section, an overview of each is provided.
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Stuxnet First detected in June 2010 after development began 5 years earlier, the APT specif-

ically targeted Iranian nuclear Supervisory Control and Data Acquisition systems. The malware

was spread throughout the internet but would remain dormant in the absence of Siemens Step7

software or PLC. Upon detecting either the software of PLC, the malware would reprogram

the PLC to cause physical damage to the nuclear centrifuges. The malware was completely

autonomous; after release and made use of four zero-day exploits to breach the target’s network.

Based on the expertise required to build this malware, many researchers have stated it would

require state sponsorship to develop.

Duqu The Duqu malware was detected in September 2011 after having been active for over

a year unnoticed. The malware was more selective in its targeting by only infecting about 50

devices worldwide and included forensic countermeasures that would cause the malware to self-

destruct after 30 days. The primary focus of the malware was to perform information gathering

through keylogging and uploading the information back to a CnC (Command and Control)

server using a customised encryption protocol over port 443/TCP. Furthermore, the malware

would scan systems for a list of security products and use a rootkit to hide its files according to

the anti-virus software detected.

Flame Detected in May 2012 after being active for 5-8 years prior, the purpose of this malware

was for comprehensive information collection from Windows systems, mainly targeting Middle

Eastern countries. The malware impersonated the Windows update server through a complex

cryptanalytic attack to spoof the malware’s digital signature. More than 80 CnC servers were

used for the collection of gathered information reflecting the scale of the APT. Similar to Duqu,

the malware scanned for more than 100 security products and adapted the rootkit to evade

detection.

Red October Detected in 2012 after being active for over 5 years, the malware had been

targeting diplomatic, scientific and governmental institutions. The original malware had a very

small footprint and could download many extra modules from a CnC server tailored to the

network environment it found itself in. In particular, the malware targeted individual devices

and mobile phones and brute forced the Simple Network Management Protocol.

Operation SnowMan Detected in February 2014 made use of a zero-day exploit (CVE-

2014-0322) served from the U.S. Veterans of Foreign Wars’ website targeting military personnel.

Visitors to the website were redirected through a XSS attack to an alternate site where a user-
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after-free attack was performed to run arbitrary code on the victim’s machine.

RSA Attack Detected in 2011, employees at the RSA company received an excel spreadsheet

through email with a zero-day vulnerability attached. The zero-day vulnerability installed a

backdoor virus exploiting a vulnerability in the Flash technology. The attackers used the back-

door to harvest credentials from RSA employees to target high-value targets within the network.

The method of delivery (i.e., email) is an example of a targeted spear phishing attack that tricked

the user removing the email from the spam folder and opening its contents

From the four APT examples, a clear distinction from traditional attacks can be made.

APTs are typically well planned out, well resourced and have a particular purpose to achieve

some goal. This is different from traditional attacks that are usually less focused and aim to

infect as many devices as possible.

An APT is differentiated from normal cyber attacks by the adversary who possesses sophis-

ticated levels of expertise and significant resources to achieve their objectives through multiple

attack vectors [48]. Chen et al. [37] describes how APTs have evolved and are no longer lim-

ited to the military domain and distinguishes them from regular attacks by the following four

features: (1) has specific targets and objectives; (2) are highly organised and well resourced;

(3) embarks on a long-term campaign with multiple attempts; (4) utilises stealthy and evasive

techniques. APTs are usually performed by groups of skilled adversaries and are meticulously

planned, involving multiple steps to achieve the goal. Typically, an APT will involve the fol-

lowing six stages to achieve the goal: (1) reconnaissance and weaponization; (2) delivery; (3)

initial intrusion; (4) command and control; (5) lateral movement; (6) data exfiltration. As the

connectivity of systems grows through concepts such as IoT and Industry 4.0 [106] the threat of

APTs continue to grow as large connected architectures enable the attackers to spread through

the network of systems causing increased amounts of damage.

Bhatt et al. [24] use a semi-automatic event correlation architecture to detect multi-stage

APTs following the CIKC (Cyber Intrusion Kill Chain) model of system penetration (i.e., in-

formation gathering, weaponisation, delivery, exploitation, installation, command and control,

further actions) [73]. The event correlation architecture uses algorithms to track attacks between

the layers of the CIKC model using data obtained from system and network logs; however, Bhatt

notes that the automatic analysis of the events is an ongoing research issue and so requires the

input of an experienced analyst to make the final classification. The architecture is composed

of an initial logging module that aggregates the log files of many sources to feed into a hadoop

big data cluster. Data is then read into an intelligence module with patterns from the kill chain

model for malware analysis. It was noted that using the CIKC model as a predictable architec-
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ture for intrusion allowed for better tuning of the system by focusing the attention of the IDS

on the stages that analysts would commonly expect an intrusion to target.

APTs [61] are differentiated from traditional methods and compromise and malware as they

are deliberately slow-moving cyber attacks with the purpose of quietly compromising information

systems without revealing itself. This is different from the more general attacks that are more

commonly seen that might have the goal of disruption through a denial of service attack or to

make a host part of a botnet. The APT is a more targeted, stealthy and well thought out attack

that is often aimed at corporate organisations to steal sensitive data. Organisations often fall

prey to this type of attack due to their reliance on traditional perimeter model [74] which is

often very secure on the outer layers (using IDS and Firewalls) but “soft” on the inside (using

limited security technologies) resulting in pivoting attacks being very effective.

During a review of security processes, Singh et al. [145] criticised the reactive way in which

security is currently performed throughout the industry. Specifically, attention is drawn to the

vulnerability management cycle of discovery and patch which treats each event as independent

and results in the security of the system always behind a step behind new attacks. Singh calls

for a more holistic approach by stating that emphasis should be placed on understanding human

behaviour to detect threat prone behaviours which are regularly a target for adversaries that

will follow the path of least resistance which can be used as a methodology to detect attacks.

The cybersecurity ecosystem is described as a balance between two actors: the stakeholders and

the adversaries, and three layers that could be exploited: the social architecture, the users and

the technical architecture. It is noted that both the social and technical architectures rely on

each other to not be compromised to function securely, for example, the user may subvert some

technical control, such as the classic example of reusing or incrementing passwords.

Geib et al. [63] building on the work of Kautz et al. [83] argued that having a passive

IDS that cannot predict attacks or be used as an early warning system is not sufficient for

modern network security. Geib proposed a system for attack prediction that using inferred goals

to determine the possible future action that the attacker may take. Through a hierarchical

tree structure representing possible goals that the attacker may have, with broad goals such as

vandalism or theft at the root and simple actions to achieve these goals as the leaf nodes, it is

possible to infer previous actions taken by the attacker as a method to trace attack propagation

through the system. More complex attacks were modelled through the use of Markov Chains

allowing multi-goal attacks to be modelled on a probabilistic scale. While the system provided

an analytical tool for understanding attacks, it did not adequately consider that attackers are

uncooperative actors within the system and will attempt to remain undetected and subvert
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detection mechanisms. The model did not account for attackers that are aware of the system and

able to subvert detection by either planting evidence or misleading the sensors into concluding

the incorrect goal.

Mees [112] designed a MAS to detect APTs by using the DNS protocol to look up the

origins of suspect connections. Within the architecture three agents are described: the first

consult external DNS servers to evaluate the location of the host IP (Internet Protocol) address,

the second compares the connection characteristics to previously seen connections of the same

protocol and the third distinguished between robot-like connections and human-like connections

by consulting a database of connections and performing anomaly analysis. Using agents in this

way to perform active information reconnaissance on suspect entities would be an advantageous

feature to have as part of a wider architecture.

In a separate paper by Mees [113] et al., a more extensive architecture for detecting APTs

was designed using multiple agents with limited functions such as log analysis and DNS lookup

capabilities to work together to gather a more significant amount of information about a possible

APT attack. In particular, the architecture consisted of data being pulled from networked

locations and being preprocessed, feature selection performed and then delivered to a network

of agents before aggregation and classification. While this system consists of many collection

agents, there is less emphasis on intelligently optimising the collection process by analysing the

specific type of attack and forming a defence/information gathering plan accordingly. Having

agents capable of speculating on the most effective course of action (possibly based on past

successes and machine learning) would result in a more efficient and targeted defence system.

Friedberg et al. [61] develop a pattern matching system for use within IDSs. The system

attempts to find patterns that can be categorised into (i) periodically occurring patterns (e.g.:

timestamps), (ii) rare patterns (e.g.: session ids, or measurement values) and (iii) reoccurring

patterns (e.g.: enumeration values or usernames). A system of “ageing”, which is functionally

similar to genetic algorithm mutation, is used to remove any patterns that are no longer relevant

to the search process. Patterns are generated from IP-layer log files, i.e., to recognise the preva-

lence of GET-requests following a HTTP-packet using semantic processing without knowledge

of the meaning (i.e., the system is aware that a GET request occurred but does not understand

the implications or purpose of a GET request). While the system provided a true positive rate

of 80%, the context-less approach was not able to consider the context of the attack and only

capable of highlighting monitored patterns in user behaviour. Slow moving cyber attacks are

characteristically deceptive and capable of masquerading as legitimate traffic to remain unde-

tected, furthermore, if an attacker is able to penetrate the network, the possibility of the logging
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systems being disabled would render the proposed system inoperable.

2.1.3 Datasets

Obtaining reliable security datasets is not always possible due to the culture of secrecy that

often sees security breaches go undisclosed and information not shared. Due to the reluctance to

share private network traffic that may contain personal or business-critical information, hybrid

datasets containing known secure data and known malicious data are often combined for research

and testing. In recent years, synthetic hybrid datasets have been created that combine live

network activity with separately classified examples of malicious activity; by using this approach

balanced datasets more suitable for machine learning and correctly classified can be developed

for intrusion detection research. The main issue facing dataset generation is the ability to label

the examples which are increasingly costly to do manually and fraught with inaccuracies when

done automatically.

Khalastchi et al. [91] criticised the use of the artificially constructed hybrid datasets for off-

line learning stating that the security environment it typically non-deterministic and so could

not be properly used to detect future unknown occurrences. Typically, well-known attacks and

exploits are detected using signatures to a high degree of accuracy; the ability to detect and

prevent new zero-day exploits cannot be learnt from examples of existing attacks. Agent-based

systems are commonly designed with an intelligent component with the goal of detecting novel

attacks and so require a different methodology for learning the differences between malicious

and innocuous.

Lodi et al. [105] highlight the issue of businesses not sharing security information due to

factors such as the stigma against security breaches and fear of competitors taking advantage.

Lodi proposed a data sharing system named Semantic Room that enables businesses within

the same industry to anonymously share security breach information to better strengthen the

collective defences. The system is an information gathering an engine for information correlation

which allows the anonymous and secure sharing and dissemination of important conclusion-based

information derived from the individual networks that it operates in.

2.2 Machine Learning for Intrusion Detection

The intelligent component of a MAS is often derived from ML (Machine Learning) methods of

processing data. Many MAS from the literature combine the concepts of ABS (Agent-Based

System) and ML in a distributed manner to solve complex problems that have traditionally

been difficult to make progress on from a central system. Due to the decentralised nature of the
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MAS, observability of the environment is often incomplete, and strategies to learn more about

the environment are needed. Typically, it is unrealistic to assume that the environment will

be fully known to the agent as the cost associated with maintaining full visibility is high. A

common solution is for agents to know only their local environment and share the incomplete

views. Using the algorithms outlined in this section, agents can, more meaningfully, interpret

the substantial and highly dimensional security datasets that are found on modern networks.

Wu et al. [170] identities that intrusion detection faces problems such as having to analyse

a huge volume of variable traffic, which is often of different formats and difficult to uniformly

quantify. Wu provided a comprehensive review of various Artificial Intelligence algorithms as

they apply to intrusion detection. Since there are many algorithms and many combinations of

algorithms that can be used, the ensemble method (intelligently matching the best algorithm to

a dataset) was used to help choose the best type of algorithm for a specific input and goal.

2.2.1 Fuzzy logic

Fuzzy logic [170] has been used in intrusion detection as a way to classify vague and imprecise

data that is often countered within security systems. One current application of fuzzy logic

is in the anomaly detection domain where profiles of normal behaviour are built to compare

with malicious behaviour. While monitoring user behaviour, outlier events will inevitably be

identified, but are hard to categorise due to the fact the user’s behaviour will likely not fall into

the “absolutely safe” or “absolutely malicious” category. As a way to reduce false classifications,

fuzzy logic can be used to label risk events as increasingly risky or decreasingly risky based on

information collected. Instead of merely categorising some risky behaviour either safe or not

safe, it would benefit both the system and the user if a more precise measure was used. Fuzzy

logic systems are uniquely appropriate for MAS which rely on potentially unreliable observations

of the environment that must be quantified.

The main use of fuzzy logic in IDSs has been to aid in the understanding of imprecise and

noisy data [10] and the development of intrusion signatures. El-Hajj et al. [50] illustrated this

point concerning port scanning, which is one of the main activities intrusion detection systems

often monitor. El-Hajj noted that “no clear boundaries exist between normal and abnormal

events”, which results in non-fuzzy logic returning a higher number of incorrect classifications.

Dickerson et al. [46] developed the FIRE which uses fuzzy logic as the basis for classifying

attacks. Continuing with the example of port scanning, rather than looking at whether a port

scanning event had occurred and then blocking the connection, the source and destination port

along with the service was monitored and based on these three variables the event was modelled
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Figure 2.4
FIRE architecture proposed in [46].

using fuzzy logic such that if all three were deemed to be suspicious, then the event would be

classified as such. If two of the three variables were classified as innocuous while one was not,

then the whole event would likely be classed as less suspicious. This allows for a more fine-tuned

classification system which reduces false negatives and positives as events are not prematurely

deemed malicious or not based on incomplete information. One beneficial property of fuzzy

systems is the combination of multiple sources of information; this lends itself to be useful

in the area of MAS, such as seen in the FIRE system whereby specialised agents were used to

collect specific pieces of information which are then combined and used as the basis for detection

classification. The FIRE architecture (see Figure 2.4) makes use of both the proposed FIRE

agents (i.e., agents under the control of Transceiver A) to perform fuzzy intrusion monitoring and

also autonomous agents from the AAFID architecture for autonomous monitoring (i.e., agents

under the control of Transceiver B) [19]. Agents within the FIRE architecture make use of a

common network log source but may analyse different aspects of the file and it is assumed that

the system administrator is cable of assisting in the creating of fuzzy rules for use within the

architecture.

2.2.2 Neural Networks

Vinayakumar et al. [160] propose the use of a CNN (Convolutional Neural Network) to detect

network attacks on the KDD CUP 1999 dataset [84]. CNNs, a technique most commonly used

in computer vision, is noted as having the ability to extract higher level feature representations

from low level feature sets. Using the one-dimensional KDD network dataset, network traffic

time series events are processed to produce a set of features for use in the anomaly classification

stage. The authors state that the detection rate of R2L (Remote-to-Local) and U2R (User-to-

Root) attacks are lower until 400 epochs have been performed during testing, which highlights
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the performance issue of supervised learning for real-time detection in network systems. Fur-

thermore, while the accuracy of 0.684 to 0.885% is achieved, the authors note that attacks within

networks change year-to-year which further decreases the scalability of a system that requires

constant retraining.

Lee et al. [99] use the LSTM (Long Short-Term Memory) variant of the Recurrent Neural

Network, to perform anomaly detection on time-series datasets. The adapted approach is noted

as being applicable in time-based systems where anomalies often manifest themselves over a

period of time rather than as a single time-point. During the training phase, the training

dataset is divided up into three components: (i) the LSTM prediction model (M), (ii) the

error vector distribution (N), and (iii) the M-distance distribution which feed into the anomaly

detection inference phase. Inference is made by applying the model (M) to a new dataset to make

predictions, computing the error vectors of the new data, computing the M-distance between

the error vectors and (N), then finally labelling the new data. The approach reports a precision

of 0.49 and recall of 0.06.

ART [66, 170] has proven to be an effective method for intrusion detection which implements

a series of ANN (Artificial Neural Network)s to cluster the data on the similarity of the input

data to map clusters. The current generation of ART systems work much like the ANN and

has been used to perform clustering on network data to identify malicious traffic. Xiao et al.

[172] used ART in conjunction with PCA (Principal Component Analysis) to perform dimension

reduction and classifications of security events. In particular, the PCA component reduced the

complexity of high-volume data and the ART component performed sub-classification of security

events as a whole, with continuous updates made to the ART model. ART like other ANNs are

self-adjusting allowing the nodes to change to reflect the input data.

Aung et al. [14] propose the use of a collaborative IDS based on K-means and ART. The

proposed PART algorithm creates rules by making partial decisions trees on the currently known

instances (data) and selecting rules that best fit the available data (see Figure 2.5). Aung notes

that K-means is one of the most popular algorithms for cluster analysis, in particular, the

KDD CUP 1999 dataset used during the evaluation is composed of network flows which could

benefit from the clustering approach. While the approach reports upwards of 98% accuracy in

correctly identifying attacks in same dataset tests (i.e., training and testing on different portions

of the same data), the time to build the model can take upwards of 133 minutes making the

approach less suitable for live anomaly detection in network environments where attackers can

be particularly adaptive requiring constant rebuilding of the model.

Bukhanov et al. [43] develop an approach to intrusion detection using ART comprised of
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Figure 2.5
ART IDS proposed in [14].

two modules: (i) data acquisition and connection management, and (ii) the network analysis

module. The data acquisition module receives network connections and extracts 41 standard

features about the connections made. The traffic analysis module uses a neural network based

on ART-2 to classify the network connections into clusters. The architecture is proposed as a

notification system that will inform the compromised host after analysis has taken place. The

detection rate varied from attack-to-attack, however, the majority of attacks were detected at

a detection rate of 0.74-0.96 while attacks that did not exhibit a large footprint (i.e., stealthy

attacks attempting to remain hidden) only produced a detection rate of 0.03-0.48. While the

system has shown to be useful in detecting a broad number of network threats, any attacks that

are artificially slowed down to avoid detection are able to evade classification making the system

unsuitable for APT detection.

Ashfaq et al. [13] propose the use of a semi-supervised learning model using a single layer

feed-forward neural network to classify both labelled and unlabelled network security data.

Ashfaq notes that obtaining labelled network intrusion data is a cumbersome process requiring a

high degree of manual effort to label the dataset. The proposed semi-supervised model attempts

to classify new data from models built using both labelled and unlabelled data using a fuzzy

approach. The algorithm is tested on the NSL-KDD test dataset (specifically KDDTest+ and

KDDTest-21), producing an accuracy of 84.12% and 68.82% on each test set.

2.2.3 Evolutionary Algorithms

EC (Evolutionary Computation) [170] attempts to mimic the evolutionary process through the

use of adaptive pattern recognition. EC algorithms can be optimised to a local minimum/max-

imum through the process of crossover, merging one parent process with another to produce a
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direct child process with attributes of both parents, while also converging to a global minimum

or maximum through the act of periodic mutation, the introduction of periodic randomness into

the agent evolution. Associated with each algorithm is a user-defined fitness function which acts

as the goal the algorithm works towards. Throughout the literature, it has been noted several

times that human operators are often too slow in responding and adapting to cyber attacks.

Combining evolutionary algorithms with security systems have arisen as a good way to over-

come the issues of non-adaptive security. Chavan et al. [36] developed the Evolving Fuzzy Neural

Network combining fuzzy techniques with an ANN which sought to classify security events into

their corresponding attack type (e.g., normal, probe, DoS, U2R, R2L). Combined with protocol

analysis to differentiate between the events the system was able to classify the events to a high

degree of accuracy while remaining adaptive to changes in the future.

Balajinath et al. [18] used EC algorithms to learn individual user behaviours through fre-

quently used system commands. It was shown that users exhibit regularities in the use of systems

which can be used to detect the presence of non-legitimate users. As in other papers on intru-

sion detection [18, 22, 98], a comparison between anomaly detection and misuse detection was

made highlighting that anomaly detection often incurs a higher number of false positives and is

an issue that must be addressed. The proposed model operates on the premise that a sudden

change in user commands could indicate a potential intrusion. User behaviour is continually

changing; the proposed method takes this into account by implementing an entropy index which

shows changes in behaviour. A higher entropy value would make it harder to predict the next

user command. To limit the effects of entropy and to ensure the system does not return too

many false positives a ‘switch’ is used to cap the number of new behaviours learnt at any given

time. While the system reported an accuracy rate of 96.8% the data used to test the system

did not take into account shared devices where multiple users may interact with the operating

system. While this may be a viable way to detect intrusion on systems with only one user, if it

was implemented in any standard workplace environment it is unlikely that one person would

solely use a device. As with the nature of genetic algorithms, they evolve, it is not infeasible to

imagine a scenario where the attacker could reprogram the system by introducing his/her usage

patterns over time.

Toosi et al. [153] used EC algorithms in a hybrid neuro-fuzzy system to optimise the fuzzy

decision-making engine. Based on a number of factors, the rules generated would either remain

within the system or be phased out if they were no longer useful. This is a very important

property in a dynamic environment where the structure of the network can change quite rapidly

so having a dynamic algorithm capable of changing the thresholds will result in a more timeless
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system. Abadeh et al. [1] implemented a similar system whereby the fuzzy rules for an IDS were

initially generated, then after each cycle are evolved using the Genetic Algorithm and the least

effective rules from each cycle were dropped in place of the newer generation of rules.

Rastegari et al. [134] developed an evolutionary approach to building an evolving ruleset

for network intrusion detection. The proposed algorithm builds models on a variable number

of features following a feature preparation, normalisation, feature selection, validation and seed

selection stage. Correlation-based Feature Selection was noted as being a more appropriate

algorithm for feature selecting given the higher accuracy performance that can typically be

expected; eight features were selected from the NSL-KDD dataset including: src bytes, dst

bytes, num root, same srv rate, diff srv rate, srv serror rate, dst host diff host rate and dst

host srv serror rate. The system was evaluated using different fitness functions, the highest

performing showed a detection rate of 63.3% and a true negative rate of 97.2% with varying

results for the number of features and internal algorithm used.

Papamartzivanos et al. [128] propose the use of genetic algorithms for a network intrusion

detection system called Dendron. The genetic approach generates new detection rules based

on a process of evolution by introducing randomness into the rule-mutation and population-

replacement stages. Several classifiers are proposed for use within the fitness function with

decision trees (C.45) being selected as the highest performing and is noted for its advantages

of producing straightforward rules that can be easily transformed into signature-like rules for

use within intrusion detection. Feature selection takes place using the Information Gain Ratio

algorithm and is noted for performing particularly well on network intrusion datasets. The

algorithm is tested on both the NSL-KDD and UNB-ISCX datasets producing a detection rate of

98.24% and false alarm rate of 0.75% on the NSL-KDD data and 63.76% and 2.61% on the UNB-

ISCX data. Papamartzivanos notes that the UNB-ISCX data is different from prior datasets

since it is a more recent creation, reflects contemporary network structures and represents a

more complex threat environment which poses challenges to machine learning approaches.

2.2.4 Artificial Immune Systems

The AIS (Artificial Immune System) has been used to perform anomaly detection but tackles

the problem from the opposite side of the spectrum. Instead of modelling patterns of normal

usage, they model patterns of anomalous data and monitor for any matching patterns. The

self-non-self principle made of use in AIS, and inspired by immunology, theorises that the body

can detect any cell that does not belong to itself.

Saurabh et al. [138] develop the Efficient Proactive Artificial Immune System based Anomaly
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Detection and Prevention System to detect novel unseen attacks. The architecture is composed

of three modules: the Repertoire Training Module generates and selects efficient detectors, the

Vulnerability Assessment Module creates Detector Agents to evaluate test set instances, and the

Response Module which takes action in the cases where Vulnerability Assessment Module find

an anomaly to overcome the threat perception. Additionally, the model integrates self-tuning

to select the best detectors for anomaly detection. The system was trained and tested on the

KDD CUP 1999 dataset [84] and reported a detection rate of up to 100%, however, also a false

alarm rate of above 62%.

Wu et al. [169] apply an ANN optimised by an AIS to the domain of intrusion detection using

an artificial immune system to optimise the system. IDSs process a large amount of variable-

typed data which makes traditional ANNs less suitable since they perform better on similarly

formatted numeric data to reduce training times. Wu uses a General Regression Neural Network

[148] to overcome some of the problems associated with Multilayer Perceptron and Radial Basis

Function networks such as the slow training speeds [22, 169] and a tenancy to fall into a local

optimal search. One of the main issues with ANNs for intrusion detection is the required training

time. Firstly, good datasets for the ANN to learn from are required, without which building

an accurate model of the threat environment cannot take place. Secondly, the fact that off-line

training is required hinders the system in online environments where the standard for what is

considered malicious or not can change depending on the network requirements and evolution

of attackers over time.

Cooper et al. [40] propose the use of an AIS for the detection of network attacks using

the KDD CUP 1999 dataset. In particular, the approach recognises the importance of feature

separation in intrusion detection and aims to analyse each of the network services separately.

It is noted that 64% of services only contain abnormal events, 31% of services contain both

normal and abnormal events and 5% of services contain only normal events. During the first

experiment, the network services were analysed while mixed, resulting in a maximum detection

accuracy of 52.70%, however, when analysed separately, the detection rate rose to as high as

99% for certain services. While the results are encouraging, the construction of the KDD CUP

1999 dataset has been criticised in the literature for its unrealistic data, in particular, the fact

that the attacker makes use of so many services (64% of which are used only by the attacker

and not by normal users). The footprint left in the KDD dataset is uncharacteristically ‘noisy’

considering the goal of many attackers, in particular, APT threats, is to remain hidden and

leave a small undetectable footprint.
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2.2.5 Swarm Intelligence

SI (Swarm Intelligence) [93] studies collective behaviour and optimisation in decentralised sys-

tems. There are two main types of SI systems; the first is ant-based technologies that attempt

to find an optimal path through a search space by using collaborative exploration, the second

is Particle Swarm Optimisation which is inspired by collaborative agents (called particles) that

move towards the best global solution in a given search space through the use of local search.

SI has applications in classification rules discovery, misuse detection and could be applied to

keep traffic of intruder paths through a network. The exploratory nature of SI may also have

applications in testing defensive systems by repurposing the agents to penetrate the network

rather than defend it.

Swarming agent-based systems are particularly good at operating within networked systems.

Haack et al. [67] proposed an ant-based architecture and Cooperative Infrastructure Defence

model to reduce the human bottleneck problem while allowing administrators to set an overall

policy and keep control of the system. The proposed system uses a hierarchical structure (see

Figure 2.6 where humans function as supervisors at the top of the tree, below them are the

‘Sergeants’ which are agents in charge of a particular sub-domain and have the task of aggregating

data for the administrators. Below them are ‘sentinels’ agents that operate on a single host,

and are in charge of the sensors (ants) below them. The sensors are light-weight mobile pieces

of software that collects evidence of potential problems or intrusion and feed this data back

up the chain. The sensors can communicate with each other via the use of digital pheromones

which can attract or repel other sensors. Delays are a common part of any networked system, as

shown by Flink et al. [58] this can be detrimental to the effectiveness of the system. The effect

of the network delays on agents are twofold, firstly the agent may get trapped within an area of

the network suffering from high latency and would be unable to reach its goal. Secondly, this

could cause a cascading failure with the other agents that rely on the information processing

capabilities of the agent in question. In relation to ant-based systems pheromones are used to

direct other agents, if there is a sufficiently longer network delay, the pheromones may ‘dissipate’

before being received by the intended agents meaning instruction data is lost.

Fenet et al. [56] developed an SI IDS to track attackers back through a network through the

use of specialised interrogatory agents. The capability to track attackers is an important goal

but can be challenging when anonymising technologies are used, or the attacker is outside of the

local authorities jurisdiction. The system proposed uses swarm agents that are activated when

an attacker is detected within the network, the agent’s path traversing capabilities are used to

follow the attacker back through a network using DNS interrogation and other informational
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Figure 2.6
Swarm-based architecture proposed in [67].

nodes. The concept of having sets of very specific agents at the disposal of an IDS has shown

to be an effective way to perform attack attribution. Designing individual agents in such a way

that they become activated when a certain piece of information about an attacker is learned

then reporting back to the IDS for further agent activation could provide an efficient way to

perform information gathering. This model is good in situations where only a small amount of

information about the attacker is known (e.g., a Media Access Control address) as information

could be built by performing reconnaissance.

2.2.6 Naive Bayes

Pajouh et al. [126] propose the use of a Naive Bayes classification system for detecting net-

work attacks. By combining the two approaches K-Nearest Neighbour and Linear Discriminant

Analysis for dimension reduction, the two-tiered system provides a low-computation training

time and good detection rate when monitoring U2R and R2L attacks. Naive Bayes was noted

for its good performance when building classification models on low volumes of training data
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making the system more appropriate for real-time detection. Pajouh also noted that there was

an overlap between the normal and attack classes following the Bayes classification which led to

the use of the K-Nearest Neighbour algorithm to further group the instances. While the system

could classify certain approaches at a high detection rate (e.g., DoS at 84.68%), complex attacks

such as U2R and R2L were detected at 67.16% and 34.81% respectively.

Mehmood et al. [115] develop a multi-agent approach to intrusion detection using naive

bayes classification. The architecture uses naive bayes to detect attacks with built-in patterns

and makes use of four agent types: the collector, system monitor, actuator and communicator

agents. The reported detection probability for the architecture is 70-80% tested on the NSL-

KDD intrusion detection dataset. The model is structurally similar to many of the existing

hierarchical agent architectures that divide the roles of collection and analysis between different

agents and was specifically proposed for the detection of DoS attacks in IoT networks.

2.2.7 Support Vector Machine

Sung et al. [149] used a SVM (Support Vector Machine) in conjunction with a neural network to

rank the importance of data points in IDSs. Feature elimination was noted to be a fundamental

issue to speed up the processing, enabling the IDS to act more responsively to attacks. Several

SVMs were used in conjunction to classify the data, then the features that had the least impact

on the results were removed to speed up the detection process. SVMs were used to perform

the feature analysis due to their fast speed and capability to handle multi-dimensional data

very well. SVMs are more appropriate for basic classification where only a distinction between

malicious or not is needed but less appropriate in predictive environments where an increase in

risk is analysed. Sung addressed this critique by linking together multiple SVMs to allow for a

more precise classification to take place.

Mukkamala et al. [118] performed intrusion detection using an SVM which was capable of

identifying a data point as either normal or attack, the problem with this binary classification

is the lack of middle ground in the analysis. Mukkamala also performed a comparison to an

ANN showing that it was drastically quicker to train a SVM making it more appropriate in a

live networking environment and notes that statistical learning of this nature is being deployed

more in due to its generalisability.
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2.2.8 Other Approaches

Lorliam et al. [107] propose an unsupervised algorithm to apply Benford’s distribution law2 [47]

to flow detection using the observation that normal connections tend to follow the law closely

while malicious connections do not. Metrics such as flow size and window size are used to distin-

guish between normal and malicious activities. The flow-based approach to attacker detection

is noted to be more computationally efficient than lower level approaches that examine the data

in more detail (e.g., packet or host-based IDSs) but can miss application layer information that

could be of use to the detection process. Furthermore, Lorliam et al. note that it would be

possible for an attacker to change the attack speed to stay below the detection threshold which

highlights the underlying problem of relying on features that are under the attacker’s control

for intruder detection. While the coverage (concerning how much of the network the solution

can monitor) and deployability of the solution is high, the manipulability is also unacceptably

high and relies on the attacker remaining unaware of detection solution (i.e., security through

obscurity). A more robust approach would be to focus on those features that cannot be easily

controlled by the attacker and are not affected by network circumstances, for example, net-

work congestion is controlled by network infrastructure and operating systems that send data

differently.

Leu et al. [100] propose a profile based behavioural IDS to monitor user system calls and

detect anomalous behaviours. The system monitors users from the time they log in to compare

the profiles of multiple users to define normal activity. The system reports a recognition accuracy

of 98.99% but does not consider the wider security landscape and so can only be used to detect

a very limited number of attacks. The IDS, implemented at the host level, assumes a high

degree of visibility so that it can monitor both the legitimate and malicious users system calls

and compare the two profiles. The approach does not consider the possibility of more advanced

stealthy attackers that may launch attacks from auxiliary devices where the IDS is not installed

(e.g., printers and mobile devices). Furthermore, the IDS is unable to detect a broader range of

attacks such as port scans which do not rely on uncommon system calls such as format, del or

sudo3, and instead, use commonly white-listed network commands to perform the attack.

Cao et al. [34] propose the use of topic models to learn features of normal traffic to per-

form anomaly detection. Text classification algorithm LDA (Latent Dirichlet Allocation) [28]

is applied as the model to learn the structure of the network traffic to distinguish normal from

abnormal. LDA is applied by collecting network features in 5-minute intervals and joining the re-

2Benford’s distribution law states that there are measurable differences between naturally occurring and
tampered datasets with which can be used to detect fraud and anomalies.

3Common commands that are the focus of system call anomaly detection.
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sults to the existing model. This is done locally for each host to reflect the differences in network

traffic that will be experienced by devices of different types, for example, separate topic models

are created for the mail server and internet proxy endpoints. Validated on the DARPA (Defense

Advanced Research Projects Agency) 1999 dataset [116] containing multiple attack types, the

system can detect 45 of the 78 attacks from the dataset, but with a detection accuracy of 58%

is still unsuitable for broad deployment in live environments.

Rudrapal et al. [137] developed a keystroke monitoring system to distinguish between legiti-

mate and malicious users based on biometric features. The latency between keystrokes, duration

of key-press and finger placement were among the features used to learn the biometric behaviours

of the user. When tested, the system showed 86% accuracy in identifying different users; how-

ever, the system remains susceptible to factors affecting the user such as fatigue, the effects

of changing hardware and the possibility that the attacker may capture the user’s biometric

footprint to bypass the system. Furthermore, host-based solutions such as this are only effective

within systems that they are installed. If the attacker were to enter the network through an

auxiliary point, such as printer, mobile or legacy device, the detection benefits would not extend

to cover these entry points.

2.2.9 Comparison of Machine Learning Approaches for Security

In this section, several key works relating to anomaly detection for cybersecurity are discussed.

Table 2.2 summarises related works regarding the techniques that they apply. In particular,

each method is summarised in terms of the following attributes: (i) Type of data describes the

format of the dataset used by each proposal, (ii) Public dataset notes whether the data is freely

available for comparison, (iii) User modelling notes whether the constructed model is user-based

(i.e., modelling events as communications between two endpoints) or feature-based (e.g., using

packet-level features such as port numbers, payloads, etc.), (iv) Coverage describes the scope of

the dataset in terms of how much of the network environment is monitored, (v) Manipulability

is a measure of how protected a dataset is against attacks on its integrity (e.g., the extent to

which an attacker can manipulate a feature value and the level of network penetration required

to deceive the detection system), finally (vi) Deployability measures the feasibility of deploying

such technologies in a production scale environment. Additionally, Tables 2.3 and 2.4 provide a

comparison of machine learning approaches.
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Table 2.2
Comparison of approaches from the literature.

Author Data
Type

Public
Dataset

User
Mod-
elling

Coverage Manipulability Deployability

Lorliam et
al. [107]

Flow data
statistics 3 3 High High High

Leu et al.
[100] Log files 7 3 Low Low Low

Cao et al.
[34]

Raw packet
flows 3 7 High High High

Rudrapal et
al. [137]

Keystroke
data 7 3 Low Low Low

Heidarian
et al. [69]

Raw packet
flows 3 7 Low High High

Lippmann
et al. [103]

Keyword
data 3 7 Low High High

Bivens et al.
[26]

Raw packet
flows 3 3 Low Low High

Al-Jarrah
et al. [6]

Raw packet
flows 3 7 High High High
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Table 2.3
Comparison of results from the literature. (Part 1)

Author Data Approach Results (DR/FPR) Notes

Heidarian et al. [69] UNB ISCX SVM, Behavioural, HTTP
specification-based

89.25% / 8.60% Compared against only one
dataset.

Wang et al. [162] UNB ISCX Bayesian statistical mod-
elling (local & global), ge-
ographical anomaly detec-
tion

74.02% - 89.30%/10.70% -
25.98%

Pajouh et al. [126] NSL-KDD SMOTE balanced, Naive
Bayes network anomaly de-
tection

82.0% - 83.24% / 5.43% -
4.83%

Compared against only one
dataset.

Pervez et al. [131] NSL-KDD Feature selection, SVM
based intrusion detection

82% / 15% Compared against only one
dataset.

Tama et al. [150] NSL-KDD Gradient Boosted Machine
(GBM) based anomaly de-
tection

91.82% - 99.85% / 4.19% -
0.27%

Compared against only one
dataset.

Abdalla et al. [2] Private university network Ensemble anomaly detec-
tion using multiple algo-
rithms

74.0% / 40%

Anita et al. [10] Private Fuzzy intrusion detection
for mobile ad hoc networks

59.00% - 99.57%

Vinayakumar et al. [160] NSL-KDD Network anomaly detec-
tion using convolutional
neural network

68.4% - 88.5% 400 epochs required dur-
ing training making the
approach less suitable for
real-time detection

Lee et al. [99] Social media time series Deep learning, recurrent
neural network, Long
Short-Term Memory

49% / 6%
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Table 2.4
Comparison of results from the literature. (Part 2)

Author Data Approach Results (DR/FPR) Notes

Xiao et al. [172] KDD CUP 1999 ART and PCA based intru-
sion detection

95.73% Compared against only one
data.

Bukhanov et al. [43] NSL-KDD ART based network traffic
pattern anomaly detection

48% - 96% Poor detection perfor-
mance on stealthy attack
with smaller footprints

Ashfaq et al. [13] NSL-KDD Semi-supervised learning,
feed forward neural net-
work

84.12% - 68.82%

Rastegari et al. [134] NSL-KDD Evolutionary algorithm for
intrusion detection

63.3%

Cooper et al. [40] KDD CUP 1999 Artificial immune system
based intrusion detection

52.70% Detection accuracy varied
depending on the type of
attack

Haack et al. [67] Simulated network Hierarchical ant-based
intrusion monitoring ar-
chitecture using swarming
agents.

Papamartzivanos et al.
[128]

NSL-KDD and UNB-ISCX Genetic algorithm using
decision tree

KDD: 98.24% / 0.75%
ISCX: 63.76% / 2.61%

Algorithm performance de-
creases on modern UNB-
ISCX dataset
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Figure 2.7
A basic reflex agent architecture.

2.3 Agent Based Systems

The term agent is used in many contexts throughout recent works. Rocha et al. [135] describe

several examples including economic agents, helper agents for web retrieval, and robotic agents

for venturing into inhospitable environments. A common characteristic of the agent is the

possession of some degree of autonomy and a sense of agency that goes beyond the typical

preprogrammed examples of systems commonly seen. Figure 2.7 shows a basic agent architecture

consisting of sensors and actuators for both perceiving and acting within the environment.

Agents typically make use of condition-based if-then rules for deciding what action should take

place given the monitored state.

Jahanbin et al. [78] build on this definition by stating that agents should adhere to the

following five properties:

• The agent should be autonomous having the ability to act independently from the user.

• It should be both reactive and proactive within its environment.

• The agent should be adaptable thereby having the ability to learn according to the expe-

riences encountered.

• It should have the social ability to engage with other agents.

• Agents should be capable of cooperation supporting multiple flows of information to and

from other agents.
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Using these definitions, a clear distinction between traditional systems and ABS is made by

focusing on the intelligent reactive and proactive components that govern the agent’s actions.

In an attempt to standardise the definition of a ABS, Poslad et al. [133] published a working

definition with the Foundation for Intelligent Physical Agents [76], the standards body setup by

the Institute of Electrical and Electronics Engineers [75] to govern technical specifications. Four

key characteristics were defined which separates the ABS from traditional software:

• Performance measures (e.g., reactive, model-based, goal-based, and utility-based).

• Their adaptability.

• How they characterise their environment.

• Their degree of autonomy.

Bratman et al. [30] developed a theory of reasoning, known as BDI (Belief, Desire, Intention)

as an early example of an ABS. The system is based on agent planning and breaks down all

planning activities into the three steps: beliefs are internal statements that the agent believes

to be true, a desire is some world state that the agent wishes to produce and intentions are the

actions that the agent chooses to perform in order to achieve the goal. This architecture [52]

is normally represented as a tree-like structure with nodes representing non-deterministic world

states and arcs representing possibly agent intentions. The four standard temporal operators:

next, eventually, always and until are used within the architecture and extended by Rao et al.

[12] to include the temporal operators: optional and inevitable. With these operators, it becomes

possible to represent actions and goals to be achieved in the future.

2.3.1 Multi-Agent Systems

Agent-based system technology has arisen as a valuable paradigm for building scalable and

intelligent software and encapsulating complex routines into a distributed package. The capacity

of an agent is limited by the available knowledge and the view it has of the environment.

Using a multitude of agents with tailored approaches allows problems to be solved using the

most appropriate solution or agent. Where a problem domain is overly large or complex, MAS

are often the most appropriate solution for performing distributed processing using modular

components located close to the sources of information. Wooldridge et al. [165] describe agents

as “an encapsulated computational system that is situated in some environment and that is

capable of flexible, autonomous action in that environment in order to meet its design objectives”.

As described by Ye et al. [173], the definition implies the presence of autonomy that provides
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the agent with control over its own internal state and behaviour, reactivity to sense respond to

changes in the environment, pro-activeness to perform goal-directed behaviour and cooperation

to work with other agents.

Many control systems may be viewed as a MAS providing they contain a sensor and control

component. Ye et al. [173] provide the example of a thermostat system containing the tem-

perature sensor component and the decision making components that control whether to turn

the heat on or off. MASs have been used in a variety of industrial systems covering a variety of

domains and applications.

Self-organisation is the principle of formed cooperative behaviour involving multiple agents

without an external control mechanism. Self-organising systems arise in biology, for example,

Haack et al. [67] describe a system based on ant colonies that use pheromones to guide groups

of agents to a particular goal (i.e., food, water). Within the ant-inspired MAS, individual agents

may leave the group to explore new areas of the environment and leave evaporating pheromones

to guide the remaining agents when the goal location is found; the pheromones evaporate to

prevent agents from acting on old information. The notion of strong self-organising systems that

exhibit no central control and weak self-organising systems that exhibit some central control can

be used to distinguish between the many MAS available. Many MAS are implemented as a weak

self-organising system using layers of agents: at the lowest layer, sensor agents collect information

about the environment and deliver the observations to a higher layer that makes decisions about

future action based on an aggregation of individual views. While this architecture is easier to

control and update due to its similarity with current central systems, it does not fully take

advantage of the benefits strong self-organising MAS have to offer.

2.3.2 Multi-Agent Design and Development

Several design concepts encapsulate to describe the mechanics of a MAS. In particular, an

agent can be distinguished from traditional monolithic systems by how it interacts with the

environment, performs operations and represents knowledge.

Environment The environment may contain challenges for the agent to navigate and interact

with. In the context of security systems, the environment is often a network of connected de-

vices with multiple users performing a variety of concurrent actions. Environments may either

be described as discrete or continuous depending on whether the environment is fixed in size or

continually increasing in size. Observability describes whether the full environmental state can

be known at all times or whether in the case of partially observable environments, only a limited

amount of information can be known. Many real-world uses of MAS take place in partially ob-
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servable environments where the state frequently changes and continuous information retrieval is

required. Furthermore, an environment may either be deterministic or non-deterministic which

describes whether the next environment state is completely determined by the current environ-

ment state or whether additional factors affect future states. The goal of the security domain

is to detect malicious activity while remaining efficient as possible in regards to minimising the

communications overhead and reducing the number of false positive and negatives, within this,

there are multiple environments in which a MAS can operate to collect information.

Sensors & Actuators The mechanism by which agents interact with the environment is

through the use of sensors to collect information about the environment and actuators to make

changes to the environment. In the context of the security environment, the sensor is the most

important component, requiring knowledge of where sources of information can be located.

Knowledge Representation Agents in a MAS are social constructs and require a mechanism

to describe and exchange information between one another. The process of building a system

to describe information found within an environment is known as ontological engineering and

often involves the use of categorisation. While interaction takes place on individual objects,

high-level reasoning often takes place on categories of objects, e.g., the goal of security is to

find any attackers (the category) rather than a particular attacker (the object). Information is

often described as a predicate (e.g., attackers) or the category can be reified as an object (e.g.,

attacker(a)). Therefore, the notation a ∈ attackers can be used to describe that a is a member

of the category attackers. The relationship between categories of information is of particular

interest to this thesis and is used to allow agents to communicate knowledge about suspicious

activity and continue the investigation based on that evidence.

Problem Solving Agents may be viewed as problem-solving systems. In classical environ-

ments, this often involves navigation and the avoidance of obstacles to find a goal location.

At the implementation level, agents may be regarded as procedural or declarative; procedural

agents have the desired behaviour directly embedded in code whereas the declarative approach

uses a more flexible system of information sharing, often through requests and responses for

information. In classical environments, the procedural approach is often more efficient when

uncertainty is at a minimum and the environment remains unchanged over time, however, prob-

lems arise when changes in the environment are not reflected in the embedded code. The

declarative approach is better suited to handling change and uncertainty but at the cost of an

information-sharing overhead through an agent communications protocol, availability issues and
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the acquisition of imperfect information. In the security domain, with the recent exponential

increase of new technologies and services available for use, the number of attack vectors that

require protection has likewise increased requiring more systems to detect the potential attacks.

The expansion of technologies has placed pressure on the traditional procedural way of doing

security, through embedded signatures used within an IDS.

Local & Global Knowledge The benefit a MAS arises from the disjunction between local

and global states. While current examples of security technologies, such as IDS are monolithic

and have only a global memory for all types of knowledge, a MAS can be broken up into

individual agents each containing a local memory of specialised information, together combining

to describe the global knowledge. As discussed in the section on knowledge representation,

information is often described in relation to its categories and specifically, how those categories

relate to each other. With the architecture of a MAS distributed in nature, it lends itself to

maintaining the separation of categories which brings many benefits to the system as a whole.

When specialisation can take place, e.g., a group of agents that perform well in relation to

the collection and analysis of some category of information, the system as a whole can benefit

from performance-based mechanisms to encourage the use of reliable agents. Additionally, in

partially observable non-deterministic environments such as the environment of network security,

maintaining knowledge of the global state can be increasingly costly and produce inaccurate

results which further favours the individual local knowledge-based approach.

There is a clear distinction between a single ABS [80, 166, 129] and a MAS. The agent in

a single ABS often resembles a centralised system with intelligent capabilities while the MAS

is distributed in design and will have multiple agents that exhibit intelligent and cooperative

behaviours. Within the single ABS communication or cooperative behaviours are not required,

however, they are core concepts for use within a MAS. The benefits of MAS over a single ABS

are that multiple agents can perform more complex tasks such as distributed actions impossible

to complete with a single agent. Through the use of concurrent actions, distributed processing

and by monitoring the wider environment, MAS have proven effective solutions to large-scale

problems. Throughout the literature, there have been many mechanisms proposed to aid in the

guidance of the MAS.

Zivan et al. [174] use a distributed team of agents that use local search to solve navigational

problems within the environment. The fundamental problem addressed in this work is the

positioning of agents to monitor points of interest, often requiring multiple cooperative agents

to triangulate the position of a target. Zivan notes that optimally selecting the position of

agents is an NP-hard optimisation problem. The particular approach makes use of two agent
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sub-teams: a surveillance team and a search-and-detection team that use different algorithms

for achieving their respective goals. The surveillance team’s primary responsibility is to monitor

a target once found while the search-and-detection team uses algorithmic-search to explore the

environment to find new targets and communicates the locations to the other team. Agents

use past actions to tune the expectation for future exploration and optimise the use of high

performing agents. Critically, this MAS did not take advantage of domain knowledge that

might be used to increase the performance of the search using knowledge of the target or the

environment, for example, facts about the likely locations or historical data could be incorporated

to increase the performance.

As an example of a MAS used in a live environment, Alkhateeb et al. [8] designed a wireless

system to monitor university campuses through the use of multiple interacting agents collecting

a wide range of data from abnormal sound to pollutants in the air. The system used multiple

agents to monitor several systems around the campus to provide a context-aware system to

reduce the requirements for human security guards to patrol the campus buildings. Sensors

were deployed in critical rooms around the university and could respond to perceived incidents

by alerting the relevant member of staff, for example sending a text message to a security guard

with a map of the building and instructions to investigate when a threat was registered. The

system is composed of two categories of agents: system and ACCESS (Agents Channeling (or

Conveying) ContExt Sensitive Services) agents. The system agents are responsible for managing

the platform by creating and deleting agents as they are needed while the ACCESS agents have

generic responsibilities for monitoring services that are used within the architecture (e.g., location

services).

Baig et al. [17] performed a survey of the current application of MAS in many critical infras-

tructure areas including intrusion detection. Emphasis was placed on system resilience so that if

the system (or agent) is attacked, the rest of the system should not go off-line. Network topolo-

gies were considered and noted to have many entry points (e.g., Ethernet, wireless, Bluetooth),

and so the need for technology-specific agents at different points is needed. In traditional MAS

domains the environment is often static and does not experience much change. However, in the

case of computer networks, there will be a vast change in environment, possibly on a daily basis,

as devices are switched on and off or when new devices are installed for the first time. It may,

therefore, be beneficial to consider a more adaptive MAS that takes environmental change into

consideration and even use it as a way to monitor the system. Agents specifically designed to

consider the environmental changes could be used as a way to defend against rogue hardware

within a network by investigating new hosts and analysing (through the use of machine learning)
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how a network changes shape over time so that it can learn what to expect as change occurs.

2.3.3 Agent Norms

Norms are a popular mechanism for guiding MAS in their operations. Elster et al. [51] define

several uses for norms, in particular, the behavioural serves to compel an entity into acting

in a particular way. Uszok et al. [155] discuss the use of norms to constrain agents so that

they continue to operate within the established bounds. Alechina et al. [7] consider the use of

sanctions in norm-oriented systems, in particular, regimentation sanctions to remove the use of

past actions from future use and resource sanctions which impose a tax on agents that violate

norms. In norm-constrained environments, agents are given the choice to conform to the norm

or violate it which is appropriate in some but not all circumstances.

Goldman et al. [65] considered a variation of agent cooperation that, instead of directly

working with each other, would make positive changes to the environment to aid the other

agents in their goals. In the proposed system, agents are encouraged to use their own resources

(processing time) to make the environment better for all of the agents, in the example “Tile-

world”4, where the goal of the agents is to move around the space pushing blocks into holes, the

agents can move tiles towards the holes even if it is not the goal of the agent to push it in, this

type of cooperation results in other agents having to do less work to complete their goals.

2.3.4 Agent Communication & Efficiency

One way of enabling agents to work together is through the use of coalitions [166] that bring

mutually useful agents together with the intention to complete some plan. This is usually

achieved through the process of negotiation [54] and auctioning [166] to form the optimal team.

There are many types of coalition structures available for use with varying degrees of democracy

and authoritarianism. A purely democratic coalition will have each agent considered equal and

allow agents to submit participation requests [166] and eventually a coalition will be formed,

however, this can prove to be inefficient in a temporally-bound environment where coalitions

and decisions must be made promptly. By implementing a more authoritarian model that sees

one agent given more importance than others, has the power to veto decisions and choose the

team that it wants, decisions can be made quickly but often less optimally.

For any agent communication, a model that defines how messages should be exchanged

is required. Gmytrasiewicz et al. [64] considers communication between agents that do not

share a common language. The current standard is for language protocols to be hard coded by

4A 2D environment that agents must navigate to avoid entities and reach the goal tile.
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the agent designer and to have a fixed syntax for communication [163]. However, this limits

the autonomy and capabilities of the agents in future unforeseen situations that may require an

expanded syntax. As a strategy, Gmytrasiewicz proposes a system of inheritance whereby agents

could share their local syntax with the group to form a globally shared syntax for multi-agent

communication. Wang et al. [163] further explained the need for such a dynamic language that

does not limit agents so that should the agent come across a piece of information or concept that

it was not pre-programmed to understand, communication could take place without extensive

human interaction.

Negotiation [166] is the process by which agents may agree on some issue. When agents work

together a common way to discuss the terms of the mutual deal is by suggesting improvements

to the deal. This process is often used to work out logical problems with a deal, for example,

[166], if an agent needs assistance in performing some task, it may request the help of another

agent. However, the agent may not be able to stop what it is doing for a given period. Given

this fact, the initial agent may cancel the assistance request as it needs immediate help with

some task. Used in this way, agents can negotiate complex deals and efficiently coordinate their

efforts, and avoid concurrency issues such as race conditions or deadlock.

Jennings et al. [79] describes the factors required for negotiation to take place, including, a

set of rules that govern the agent’s interaction, a protocol for defining how the negotiation should

take place an object to be negotiated over. Jennings describes negotiation as a “search through

a space of potential agreements” where overlapping spaces represent mutually beneficial agree-

ment that can take place. As an improvement over the traditional proposal-acceptance/rejection

model, an improved counter-proposal model was advocated whereby agents could submit cri-

tiques of proposals to improve it iteratively. In non-competitive environments where agents work

together to achieve a goal, this model allows for a compromise between local agent goals and

the global aim of the system (e.g., to protect a systems security).

Auctioning is the act of agents bidding for a service or place in some coalition. Agents in

a utility-based model will use the desire for a positive utility score to bid for services when

working with other agents [166]. In a scenario where two agents want to join a coalition, and

they are both equally suited to the aid in the goals of the coalition, the utility will be used to

decide which agent gets the place. There are numerous auction models [166] that can be used

to structure the bidding process, each with their distinct advantages and disadvantages. Weerdt

et al. [45] use auctioning in a contractor-based model where jobs are outsourced to other agents

after a bidding process where jobs were taken based on the efficiency at which they could be

completed. The model provided an effective way to find the most efficient agent for the job,
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however, under conditions where the most efficient agent was busy, a less effective solution would

be found. Furthermore, with auctioning systems, communication overhead increases the overall

cost.

Fatima et al. [55] considered how agents should form coalitions [11] with each other and

how the negotiation should take place. Two main power structures between the agents were

considered: a democracy that gave the agents more weight to vote with and an autocracy that

gave most of the voting authority to one particular agent. The conclusion of this theoretical

study was that having a pure democracy results in an inefficient welfare distribution and that

some level of authority benefits the creation of coalitions. As observed within real-world power

structures, in any situation where the environment is time constrained, and a system is under

attack (i.e., the military), a top-down command structure is used to improve the efficiency and

response time of the organisation. It is commonly accepted to be more efficient to have a power

structure with some authority that can veto actions or set plans in motion. Given a situation

where a system is under attack, it could be necessary for one agent to force other agents to

cooperate in some distributed goal to ensure the security of the system, even if there is no

immediate benefit to the agent that is drafted.

Bahrani et al. [16] developed a coalition planning architecture for environments where the

environment and information are continually changing. The architecture uses both information

and collaborative technologies to verify pieces of data before acting upon them. The architecture

is designed for use within military organisations with personnel carrying out some actions; it was

found that it is more advantageous to have teams develop plans independent of each other and

then bring the plan together at the end when sensitive information was being used, this helps

control the flow of information through an organisation. Another emerging requirement was that

plans should be able to be constructed using both partial information and full information with

a view to enabling plan development in both information-rich and abstract scenarios. Feedback

from the use of this system found that future systems should support existing processes and

procedures rather than forcing new processes or change existing processes. Also included within

the architecture was a meta-level plan analysis used to scrutinise aspects of the plan continuously,

used when plans are merged.

2.3.5 Agent Planning

Agent planning is the concept of agents sensing the environment and selecting a series of ac-

tions to perform to achieve some goal. Plan making can be performed by a single agent using

its internal knowledge to make judgements or by a group of MAS agents that are capable of
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communicating with each other, considering multiple plans and sharing their internal states to

develop a better plan.

The activity of agent planning is deeply rooted in philosophy and can be expressed using

logical notation to formalise the concepts for use in digital systems.

Planning makes use of agent autonomy to sense the environment and select a series of actions

to achieve a goal [31]. Planning may be performed by a single agent based on internal knowledge

of by a MAS capable of communicating with each other to form more complex plans. Agre et al.

[4] consider the computational cost of planning which increases exponentially with the number

of possible outcomes. Extensive planning requires an extended amount of time to consider all

options and in some dynamic situations can prove untenable where the utility of plans may expire

before optimal solutions can be reached. Many planning mechanisms tend to function linearly

with information being used iteratively rather than dynamically with little recalculation being

done on past beliefs in the light of new evidence [3, 8, 70, 122]. This design choice constrains

the MAS making it functionally less responsive to new data as it becomes available but reduces

the amount of reprocessing that must be done in the future.

It is argued [30, 38, 12] that it is only logical for an agent to adopt a plan if the agent believes

that the plan is achievable. In the security, context plans can be divided into two categories:

plans to enforce a policy (i.e., blocking an IP address) and plans to gather additional information

about an adversary (i.e., performing a DNS lookup). The concept of believing that a plan is

achievable can also be broken down into two categories: belief that the plan can be attempted

(i.e., that the required internal/external infrastructure exists) and that the plan will produce

the desired result (i.e., that the result of some action will produce some useful information).

When performing a policy enforcement plan, it is necessary that the infrastructure exists to

allow this to happen, and that the outcome of the plan to result in the intended action. The

belief that the plan can be achieved and the belief in the outcome of the result is absolutely

known in both cases. However, in the second case where the agent is attempting to learn more

information about the adversary, it is still necessary that the required infrastructure should be

readily available, but it is not necessary that the outcome of the plan be known ahead of time.

In a scenario where there is no clear plan available for learning about an adversary, it becomes

necessary for agents to adopt exploratory plans for which there is no clear postcondition. The

world in this scenario can be viewed as a disconnected tree-structure (figure 2.8) with groupings

of nodes representing sources of information (services) to be collected about an adversary. There

may be several disconnected structures (gaps within the knowledge space where information has

been deleted by the adversary) within the powerset of all worlds due to the malicious actors
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Figure 2.8
A disconnected world structure requiring exploratory plans to move from one tree to another.

covering their tracks by wiping logs or using evasive technologies resulting in knowledge gaps.

For exploratory goals to work the infrastructure for the goal must exist and the agent must

be able to interact with it. The only precondition for exploratory planning is that the agent can

interact with the systems in the plan, it would, however, be beneficial to order the plans using

an estimated utility reward based on past successful plans.

Padgham et al. [124] introduced the notion of capability into the BDI model [30] allowing

agents to rationally think about planning. Many systems are implemented by using a plan

library that consists of actions that can be used within the plans as well as a list of triggering

events for each associated plan and any pre-conditions [124]. The notion of capability means that

an agent has at least one plan and trigger for some goal. In Multi-Agent environments where

agents can work together the list of capabilities available to an agent can extend to capabilities

offered by other agents. The current way of doing this is to have agents communicate to tell

each other what capabilities they have to offer. Instead of having one agent propose the entire

plan, having one agent announce a general goal and then have other agents work towards that

goal without unnecessary communication could prove more efficient and more in-line with the

distributed nature of MASs.

Agre et al. [4] considered how agents could more efficiently plan [31] their actions, it is

noted that planning is often a computationally expensive activity due to the often exponential

number of outcomes that must be considered for an optimal plan to be devised. To perform

an extensive plan would require an extended period to consider all of the options. In highly

dynamic situations such as that of an IDS, plans are needed rapidly to respond to threats so

cannot be deliberated on for too long. Agre’s agents use indexical functions to describe actions

to be taken and possible consequences of those actions. The benefit of describing actions in this
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was is that only a relatively small part of the environment needs to be considered, instead of

making a plan for the whole environment, the agent just considers the immediate environment

that it is in and the affected environment where the result of the action occurs. This highlights

the requirement for an agent that can perform actions and consider the results of the actions

while doing it efficiently without considering the state of the entire environment.

For an agent to be able to plan, they must be able to choose what actions to perform

based on what they believe is happening in their environment. Vargas-Vera et al. [156], while

considering the problem of semantic web ontology mapping [164], address the issue of conflicting

beliefs. Independent agents might look at two related pieces of evidence and come to very

different conclusions from the evidence. Within the application of security, where adversaries5

can manipulate data sources, it is possible that the adversary could tamper with data leading

the agents to come to different beliefs about him. Vargas-Vera uses a fuzzy logic system to

assign either a low, medium or high trust level to any given belief. This would then be factored

into any situation where a conflict arose.

Many current planning mechanisms within the literature are linear in design [3, 8, 70, 122]

with the flow of information only going one way and not being used iteratively to plan more

dynamically. Generally, an agent has some intention, which is broken down into several data

collection tasks that the sensors perform, and then the data is analysed, and the cycle begins

again. It would be more beneficial, especially in the cybersecurity context, if the agent were able

to recalculate their intentions as more information is collected. Security data is often located

over a wide geographical area (the local network and the Internet), so when plans are formed,

they may be computationally intensive. If plans are viewed as tree structures of subtasks to be

completed, given the results of some collecting task, a path on that tree may become unnecessary

or redundant. Having a mechanism to reconfigure the collection tasks based on the collected

information could improve the speed at which security goals are achieved.

Korf et al. [95] develop a planning algorithm to solve the Rubik’s Cube problem6 using an

IDA* (Iterative Deepening A* Search) using a lower-bound heuristic built from a lookup table

containing the number of moves it would take to reach various sub-goals. IDA* uses depth-first

search to find increasingly longer solutions through the search space while using the lower-bound

heuristic to reduce the search space for any paths that are less optimal than the currently held

optimal solutions. To analyse the algorithm performance, random sampling was used, and then

the search heuristic for each stage was computed, the results were then compared to find the

5An adversary is taken to mean a malicious entity.
6The classic Rubik’s Cube game with coloured squares that must be reordered so that all cubes of the same

colour are moved to one side.
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error between the two calculations to determine the effectiveness. While some similarities can

be drawn to the problem faced in cyber attribution problem, there are some subtle differences.

If the attribution search space can be abstracted to a weighted graph search problem with nodes

representing sources of information about an adversary, before the search starts, the weights (i.e.,

rewards) of the nodes are unknown, and to find out what the rewards are, an agent must interact

with the node, which incurs a computational and temporal cost. Given the example of a node

containing a DNS server that could be interrogated, if the agent does not interrogate the node, it

may miss out on some information about the adversary, or if the agents do interrogate the node

they may or may not learn something about the attacker with a computational and temporal

cost associated with either result. The problem for the agent then becomes to intelligently decide

whether it is optimal to search that node or not, as is the case in Korf’s algorithm, a table of

sub-goals (i.e., a series of lucrative nodes to visit in the cyber attribution case) that the agent

should aspire to achieve could be kept as a way to guide agent search.

The PDDL (Planning Domain Definition Language) [110] can be used to express planning

problems by defining the problem in two components: the domain7 (predicates, types and ac-

tions) moreover, the problem8 (objects, goals and states). It was proposed as a standardised

language for planning so that programs for different environments could be created similarly

without the complete rewriting of a new planning language or system. The language supports

the following features: (1) Basic STanford Research Institute Problem Solver style actions, (2)

Conditional effects, (3) Universal quantification over dynamic universes, (4) Domain axioms

over stratified theories, (5) Specification of safety constraints, (6) Specification of hierarchical

actions composed of subactions and subgoals, (7) Management of multiple problems in multiple

domains.

2.3.6 Control Knowledge

Perez et al. [130] used control knowledge (i.e., information about the environment or specific

problem) to improve the quality of plans. Focusing specifically on the automatic acquiring of

knowledge, the algorithm compares the currently best held plan (based on the current control

knowledge) with future plans (based on future control knowledge), when the algorithm is search-

ing for new solutions it is allowed to search further for better plans, for example, if the currently

held best plan was located at depth 8, the algorithm might search for better solutions up to

depth 14. Looking for the goal state in this way is not guaranteed to find the optimal solution

as it is similar to performing a DFS (Depth-First Search) with an arbitrary cut-off depth, but

7The domain does not change with different scenarios.
8The problem can change PDDL is designed to be a domain-independent language.
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it will find increasingly optimal solutions as the algorithm is allowed to search further into the

space based on the control information.

2.3.7 Distributed Planning

Ephrati et al. [53] proposed a Multi-Agent planning system whereby goals are broken down into

sub-plans and executed locally by the individual agents. It was noted that the complexity of

planning can be measured by the time and space consumed resulting in an O(bd) where b is the

branching factor (i.e., average number of newly generated states at each stage) and d is the depth

of the problem (i.e., the path from initial state to the goal). This was shown to be significantly

reduced through the use of Multi-Agent planning techniques that divide the goals up into sub-

plans. In the proposed system the global plan was constructed out of local plans that were

completed by the individual agents based on their local knowledge of the environment. While

the use of sub-plans can result in a far more efficient algorithm, this is rarely the case as the sub-

plans are rarely independent of each other and can result in the duplication of actions or agents

competing for resources (i.e., race conditions and deadlock). In the security environment, the

fact that agent actions are not independent could serve to benefit the system as when multiple

lines of investigation converge on one goal state it makes it probable that the information is

trustworthy. However, for some resource intensive collection tasks, it would be inefficient to

duplicate collection efforts when it is likely that the same information will be returned in both

instances. The issue of multiple agents attempting to perform the same task could be solved

through the implementation of very specific agents that can perform only one collection task

each. In this way it forces the agents to cooperate to perform any extended plan and where

one agent is responsible for the collection of one piece of data, that agent can keep track of how

many other agents have requested the same piece of information and simply hand out the result

instead of redoing the collection task each time9. It must also be considered that finding a goal

state for some problem may not be the optimal goal state and so decide how long the agents

should continue to work at the problem even after a goal has been reached must be considered.

Megherbi et al. [114] used reinforcement learning to perform autonomous path planning. The

ability to monitor an extended environment is a task particularly suited to distributed MAS.

Within the architecture, Megherbi described a method to enable agents to remember the utility

of traversing a given path over a number of iterations by remembering which node that they had

traversed in the past and associating a utility number with it. This way if the agent, during a
9The agent should consider the optimal refresh rate for the resource that it is responsible for collecting and

then redo the collection task when it is optimal to do so. For example, performing an Internet Control Message
Protocol ping against a target should have a shorter cool-down period between refresh in comparison to a DNS
lookup
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random walk, found itself traversing a previously taken path they would have some knowledge

about the utility of following the path. The problem with applying this concept to the security

environment is that it requires many iterations to find an optimal path when a security event

happens, it will likely be a one-time event. Assuming that the agents perform one task and are

responsible for all similar tasks, over time, if they store the outcomes of various actions, they

would accumulate enough data to be able to judge the utility of one result against all previously

seen results. Giving the agents the ability to assign utility based on the outcome of previous

actions solves the problem of having to hard-code the utility values and allows the agents to

use their local knowledge to direct future plan-making. Within Megherbi’s proposed system the

agents keep a log of all the visited states during a run but in the security context, the time frame

for a “run” is open-ended. The agents responsible for making the global and sub-plans should

keep a record of how well the plans performed but not necessarily store the data associated with

the plan. If each of the agents responsible for performing information gathering stores the data

permanently, the agents that make the plan should only need to store the plan that was used as

well as the utility reward associated with the plan. Over time as new plans are attempted the

agents could then choose from the plans with the highest utility reward rather than having to

perform random walks.

Ferrando et al. [125] designed a context-aware intelligent MAS for the creation of plans

[44] within the healthcare industry. Argumentation was chosen as the tool to be used for

reasoning about events because of its perceived benefits [125] when working with incomplete

and inconsistent contextual information. Three approaches to plan making were highlighted:

plan selection is where agents construct independent plans and a centralised algorithm selects

the best, plan merging where agents construct independent plans for different sub-goals and a

centralised algorithm merges the plans and plan construction is where agents iteratively refine a

base plan until a joint plan that solves the problem is developed. The proposed solution takes in

the input suggestions of multiple agents and attempts to plan and evaluate the effectiveness of the

solution. However, this solution does not take into account environments that are mismatched

with the internal state of the agent. In effect, the plan is first developed inside of the agent’s

internal space and then acted out in the environment. This model of plan-then-perform is useful

for very predictable environments but may be less effective within the security environment

where plans are more likely to fail. An iterative approach is required where small portions of the

plan are created and then performed instead of developing an elaborate plan where the failure

of one component may cause the failure of many components.
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2.3.8 Uncertain Environments

Uncertain environments is the term used to describe those environments that cannot be fully

monitored by the agent, are prone to sporadic state change and as a result require dynamic

approaches to adapt to environmental changes.

Wu et al. [167] proposed an algorithm for Multi-Agent planning in uncertain environments

using online algorithms that only plan one step in advance given all of the currently available

information. The proposed algorithm attempts to overcome the challenges of online planning

(i.e., no training data) by using coordinated communication between the agents. A Markov

Decision Process along with Bayesian probability is used to calculate the likelihood of events

occurring given the information discovered at each step of the online discovery process. The

concept of agent histories is also taken into consideration during the planning process to speculate

how agents will act in a situation given their previous actions. The communication for the

proposed solution ensures that each agent has a synchronised copy of the histories for each agent

so that coordination can take place even when the communication channels are not completely

reliable. While the concept of a history, especially attempting to use the historic actions of an

attacker, is useful in some situations, it may lead to agents not collecting information when an

attacker makes a mistake. Given the example where 90% of attackers use a proxy to mask their

source IP address, if the agents rely on the histories of the attackers, they may choose not to

attempt a traceroute as such actions have proven unproductive in the past, if this happened for

10% of the attackers who did not use a proxy, the information would be not be gathered thereby

putting the agent at a disadvantage. The concept that one action may not result in a consistent

result must be taken into account when operating in such an unreliable environment. While past

successful actions should be taken into account, the agents should remain open to the possibility

that previously unsuccessful actions could prove worthwhile performing; this should perhaps be

implemented as a ‘last resort’ series of actions in the scenario where all normally-reliable actions

fail.

Chapman et al. [35] abstracted the problem of attacker attribution down to a search game of

hide-and-seek, considering the various proxy servers and anonymising technologies as nodes in

a graph to be visited by an attacker. While attackers will usually choose their positions strate-

gically to remain hidden, it is noted that often attackers are not completely rational and may

exhibit behavioural preferences in their chosen technologies. The overall goal is to understand

how to best discern a path back to the attacker. One of the most important factors in being

able to follow the attacker through the search space is having enough information to be able to

draw accurate conclusions. It, therefore, makes sense to enlist the use of MASs to autonomously
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collect this data from numerous sources around the web, a task which would take a human

operator a long time to complete.

2.3.9 Plan Complexity

Cox et al. [41] discussed different types of Multi-Agent planning systems, it was noted that in

some works the planning process is the Multi-Agent component with several specialised planning

agents that work together to generate a plan that they could not develop alone, and in other

works the product of the planning is Multi-Agent in the sense that it gives activities to multiple

actors to perform. Cox focuses on a specialised class of planning problems, called MPCP (Multi-

Agent Plan Coordination Problem), in which multiple agents within a system plan their activities

but can benefit from mutual coordination and cooperation in some tasks. One such advantage

of MPCPs are that agents can communicate to avoid the duplication of work while avoiding

extensive computationally expensive planning. The notion of agent coupling is used to describe

different degrees of cooperation. Loosely-coupled agents are mostly independent of each other

with some interaction, while highly-coupled agents work together and communicate regularly.

The algorithm developed by Cox looks for inconsistencies in plans and resolving them to find

the optimal solutions. The search uses a branch-and-bound algorithm that checks the search

space for the most optimal solution at any given point, as the first solution found will be classed

as the optimal one, the search must continue for some specified amount of time as the agents

could find a better solution. Pruning is used to discard any solutions that are worse than the

currently held “optimal solution” to reduce the size of the search space.

Korf [94] viewed planning as a problem-solving search using sub-goals, macro-operators (a

sequence of primitive actions to be taken to satisfy some sub-goal) and abstraction to execute

more efficient searches for the goal state. The problem space was modelled as a set of states and

a set of operators (i.e., actions) that map between multiple states. The case where no knowledge

is available was first considered, this will take the form of a brute-force search which can be

inefficient, BFS (Breadth-First Search) and DFS are the most common examples of a brute-

force search, BFS uses O(bd) time and space while DFS uses linear time and requires a cut-off

depth to stop the program from running indeterminately. An improvement on the traditional

DFS is the Depth-First Iterative Deepening search that starts with a cut-off of 1 and increases

it until the goal state is found, this works in O(bd) time and O(d) space, eventually all brute

for algorithms will find the optimal solution. Sub-goals are noted to be an efficient way to split

exponential problems up as decomposing an exponential problem in multiple simple problems

divides the exponent, significantly reducing the overall amount of work. Using sub-goals can be
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used in planning/search problems where there is something to be learnt about the environment,

it can be used to guide the search and prune branches of the planning tree. The final goal state

can be reached by concatenating together optimal solutions to individual sub-goals. Korf notes

that agents must go further than simple search to solve planning problems efficiently, they must

include learning behaviours such that they can learn a general strategy for solving a problem

over time, similar to how humans solve problems. Finally, Korf states that abstraction should be

used to, at the start, ignore low-level details and focus on a general plan for solving the problem

and then fill in the details as the planner progresses.

Cox et al. [42] discuss how, in a Multi-Agent environment, efficiency gains can be made

by giving agents the opportunity to find overlapping and duplicate tasks so that tasks can be

merged thereby reducing the overall computational cost. It is noted that plan merging can

incur unwanted costs, for example, it decreases agent autonomy, making them depending on a

network of agents or agents may suffer delays if the task could have been performed quicker

locally. Cox implemented the plan merging system as an independent agent capable of finding

and implementing plans after an agent has requested a merger. While this solution has proved

to be useful, a more carefully decomposed system could avoid the problem of plan merging

altogether. In a system with sufficiently low-level agents, each having a particular task that

they can perform, when an agent needs to task performing, rather than performing it locally,

they would instead request that the specialised agent perform it. Now, when the opportunity

for a plan to merge occurs, the specialised agent responsible for the given task which has been

duplicated by two agents can internally merge the two tasks into one without any communication

or negotiation. While this will have the effect of significantly increasing agent autonomy, it will

have the effect of more efficiently dealing with tasks and keep all of the data about one particular

task in one place for analysis.

2.3.10 Non-Classical Planning Environments

One method of representing agent plans is through the use of DEC-POMDPs (Decentralised

Partially Observable Markov Decision Processes) [23], the goal of which is to find an optimal

node to travel in an attempt to maximise the future rewards. MDP (Markov Decision Process)

are used most often in planning to represent planning systems with multiple changing states. Due

to the properties of non-classical planning environments being inherently non-deterministic and

to an extent uncertain, MDP’s can be used to model the state changes by updating the values

associated with the MDP nodes as changes occur. The DEC-POMDPs model uses multiple

distributed agents each with their own observations of the local environment and is defined as a
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Figure 2.9
The Fast Fordward (FF) planning algorithm architecture.

9-item tuple [168]: 〈I, S, {Ai}, {Ωi}, P, O, R, b0, γ〉 where I is a collection of n agents (i ∈ I), S

is a finite set of states (s ∈ S), Ai is a set of actions for agenti, γi is a set of observations, P is

the transition function (P: S ×A× S → [0,1]), O is the observation function (O: S × A × S →

[0,1]), R is the reward function (R: S × A → <), b0 is the initial state distribution (b0 ∈ ∆(S))

and finally γ is the discount factor. Seuken et al. [139] proposed a memory-bounded solution for

solving DEC-POMDPs efficiently using heuristics in problems with a finite number of horizons.

With every iteration, unnecessary strategies were eliminated to reduce the number of policies

needed to be kept in memory. The algorithms used both top-down and bottom-up search and

belief points10 to converge on the optimal policy from two fronts. The algorithm used heuristics,

including a random selector, to avoid getting stuck in an optimal local solution. In the security

search space, this can be applied but with even more accuracy. When searching for information

(represented as nodes) at some nodes, some information will be returned; this can then be used

to increase the belief probability of the current plan of investigation and streamline the search for

more information. In effect, small pieces of information hidden around the search space can be

seen as approximations guiding the agents towards the goal (e.g., attacker attribution). Using

these belief points the number of possible worlds that the agents would have to visit can be

reduced, making the search more efficient, for example, once an agent finds sufficient evidence

that the attacker is using a proxy, the search can be focused around collecting proxy service

information.

FFP (Fast Forward Planning) [72, 82] (Figure 2.9) uses heuristic guided algorithms [62, 29]

that uses BFS starting from the global optima to increase the search performance. FFP is

similar to Heuristic Search Planning [29, 27] but through the use of three properties was able

to perform better in the Artificial Intelligence Planning and Scheduling System competition

[15]. Firstly relaxed plan extraction was used to ignore any literals that do not lead to the goal

10A probability distribution over possible future world states is made whenever the world cannot be observed
due to lack of information.
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state, this can only be done when the final goal state is known, and the search can take place

backwards. An Enhanced Hill-Climbing algorithm [39] was used which works backwards from

the global optimum to find a better successor using BFS. The third improvement is the selection

of helpful actions during the search. Instead of just considering the weights of traversing edges,

the algorithm looks for traversals that will add at least one goal to the plan list. Actions that

lead to dead ends can then be avoided as they will not add a new goal to the plan list. It is

noted that in some cases this is too restrictive, so when no goals are available, the algorithm

reverts to an A* search using the edge weights.

SHOP (Simple Hierarchical Ordered Planner) [119] is a HTN (Hierarchical Task Network)

planner that performs problem reduction by decomposing complex plans into simpler primitive

plans that can be completed by an agent. HTN plans goals in the same order that they will be

executed which has the effect of reducing problems at execution time making the effects on the

environment more predictable. The issue with the SHOP algorithm is the requirement that it

must know the complete world state at every time step for it to function optimally, this condition

is often unrealistic when applied to live environments with changing landscapes and uncertainty.

2.4 Summary

This chapter has provided a summary of related work and existing approaches for the areas

of intrusion detection, machine learning and MASs. It has reviewed the many approaches to

detecting malicious behaviours and discussed some of the drawbacks with the existing systems.

In particular, the related work focused on the detection of threats at the network connection

and network flow layer where many different types of attacks leave detectable footprints.

During the review of intrusion detection techniques, APTs have been identified as an im-

portant issues that require more adaptive solutions to address. Approaches that make use of

machine learning techniques are described, however, due to the limitations on the scalability

and quality of the data available for training are shown to be inadequate for detected advanced

stealthy attacks. Finally, MAS are reviewed as a possible solution to addressing the identified

vulnerabilities.
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Chapter 3

Decentralised Multi-Agent Security

System (DMASS)

In this chapter, an overview of the proposed MAS for performing network intrusion detection

and modelling cyber events, first published in [86], is presented. In particular, the proposed

model is formalised, a case study is provided and algorithms for use within the system are

detailed. This chapter describes a novel approach to detecting stealthy attacks from within the

local network. The proposed system, Decentralised Multi-Agent Security System (DMASS),

performs agent-based information gathering and analysis for real-time usage without the need

for any central control system. The approach looks to proactively collect information and search

further locations that have, in the past, been found to be a reliable source of information, given

the nature of the event detected.

So far, this thesis has discussed in detail the current application of MAS and machine learning

for intrusion detection. It is evident that from Chapter 2 that there is a need for a more

autonomous approach to cybersecurity that goes beyond the paradigm of recording intrusion

signatures to detect future instances of the same attack. With the widespread use of APTs,

an approach less dependant on current knowledge of attacks, that instead focuses on real-time

investigation and decision making is required to address current cyber threats. The literature

review of current works in this area have shown that no complete system currently exists to

address the APT problem. Several MAS were discussed in Chapter 2; however, many of the

solutions are structurally similar to central systems containing two components: an evidence

collection component and a central system for aggregating and analysing the data.

Traditional approaches have taken to performing a bulk analysis of networks and informa-

tion which often leads to an increased number of false positives. The fundamental problem with

continuous detection systems at a high operating layer (i.e., on network flows) is the amount
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of oversampling, resulting in network traffic being checked against a significant amount of sig-

natures. When many signature checks are made, the likelihood of a problem being found is

increased, whether an attack is present or not. Network problems, misconfiguration and changes

in protocols can all contribute to the incorrect detection of an attack when vast amounts of

traffic are continually monitored. The DMASS addresses the increased number of false positives

by attempting to perform a targeted search of the environment, only evoking the use of evidence

collection agents when given cause to suspect evidence may be found at a particular location.

The main contributions of this approach compared to traditional IDSs are:

• The system selectively makes use of signatures and current detection algorithms while

avoiding bulk processing.

• A new layer of agent-based performance measuring is created in addition to the detection

approach. Rather than just relying on the performance of the signature, these extra

measures allow agents to consider the context in which information is gathered.

• A knowledge representation framework for considering the likelihood of a detected attack

being a false result.

• Algorithms for combining the views of multiple agents to classify the event as a whole

using several data points (i.e., multiple pieces of evidence).

3.1 Overview of Decentralised Multi-Agent Security System

The DMASS approach uses a collection of agents, which are distinguished from traditional soft-

ware by their autonomous implementation, to perform a variety of roles in the network security

environment. In addition to performing network monitoring and attack detection, currently

carried out by IDSs, this research focuses on bestowing agents with the tools to replicate the

manual forensic process, currently conducted by trained practitioners, to examining the security

environment pragmatically. Manually performed forensics is an involved process of information

gathering and analysis to inform the next actions taken by the practitioner. In comparison to the

IDS which makes immediate decisions based on a comparison to a signature or deviation from

a baseline, the forensic process would analyse information and then look for more evidence in a

location determined by the previously collected information. Bestowing agents with the ability

to react to environmental changes, consider the performance of other agents and to work proac-

tively to follow one line of investigation over another, when there is evidence to support it, is the

fundamental principle included in this model. This approach to digital evidence collection and
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cyber security is different from the traditional IDS approaches that typically use either signature,

anomaly or misuse detection [175]. The DMASS approach of using automated forensic processes

increases the agent’s adaptability by enabling it to respond to unforeseen circumstances where

the attacker can evade traditional signature or anomaly detection. In particular, the approach

can be described according to the attributes included in Figure 2.1:

• System Deployment: Network-based, wired, distributed.

• Data Source: Network-packet based, distributed, agent-based.

• Timeliness: Proactive-response, continuously monitored, on-line detection.

• Detection Methodology: Signature-based, distributed.

The system functions as a set of structurally similar agents that work together to analyse

a security event. Each agent is specialised towards the collection of data and analysis for one

particular attack vector, for example, an agent may collect and analyse data about DNS logs or

port scan attempts. During a detected security event, multiple agents may perform their collec-

tion and analysis tasks together to produce a complete analysis of the event sharing conclusions

of their findings when necessary. Figure 3.1 shows a flow diagram representing the agent’s ar-

chitecture with seven main processes detailed below. The system as a whole is comprised of

multiple agents, each performing these tasks and sharing data to analyse the event.

Initial General Anomaly Detection To begin an agent-based investigation into a suspected

security event, an initial trigger must occur to begin the process on-demand. While performing

continuous security monitoring is necessary in modern networks, the DMASS approach is instead

intended to run only when given cause to do so. The term “extended data collection task” is used

to describe the overall process of using the DMASS to gather and analyse security information

on-demand and is the primary purpose of the system. However, the individual agents may also

be used in a similar way to current IDSs to continually monitor for malicious activity as defined

by signatures or anomalous behaviours. The extended data collection task may be triggered

by the detection of a malicious or suspicious event detected by an agent during the course of

routine monitoring, or by a general anomaly detection algorithm described in Chapter 4.

Agent Selection If an agent detects a malicious event, it will become the initiating agents for

the extended data collection task, however, if an anomaly is detected by an external system, such

as a general network monitoring algorithm, then an agent will be selected that most suitable for

analysing the particular threat. Once an extended data collection task has begun, agent selection
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Figure 3.1
DMASS flow diagram.
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is handled by the current agent who selects the agent that is most suitable to contribute to the

extended data collection task based on the information that has already been gathered. Other

factors, including a fitness function, that rank agents based on their prior participation and

performance within the extended data collection task are used to determine which agent should

participate next.

Evidence Collection Each agent has the ability to collect a particular piece of evidence from

the environment, including but not limited to: system logs, security logs, DNS logs, network port

information and any data deemed relevant to analysing security events. Agents are limited to

one particular evidence type, with a view to creating groups of specialised agents that are experts

in analysing one aspect of a potential security event. Bulk collection and analysis of security

data is often done by default, however, this leaves a large network footprint with expensive

computational costs and does not always produce the intended result of a more secure system.

With the complexity of modern networks increasing, the likelihood of detecting a false positive

is more likely when performing untargeted scans of the environment, the approach taken by this

work avoids these potential issues by waiting until relevant information suggesting the presence

of an attacker is found.

Local Analysis Central to the concept of an ABS is the agent’s ability to analyse and learn

about the environment. Each agent privately and internally maintains information necessary

to analyse the evidence gathered in the previous step; this may take the form of signatures,

anomaly detection or machine learning techniques. In the case of anomaly detection or machine

learning techniques, a local state update may occur following the analysis to update definitions

of malicious activity in real time.

Local Decision & Vote Casting The result of the Local Analysis stage is to produce a

decision whether the agent believes the evidence gathered is indicative of malicious activity

or an innocuous event. Since the whole system is comprised several agents, each with a local

analysis of individual aspects relating to the overall security event, the local decisions can be used

to judge the performance of the agent compared to all other participating agents, for example, if

there is a clear consensus between several agents that an event is malicious but one agent finds

it innocuous, the performance rank for the one agent may be downgraded by the others as it

fails to come to the group consensus. As previously stated, the local analysis is internal and

private to the agent, so only the decision (or vote) and any output information that needs to be

analysed by other agents is passed to the next agent. The decisions and output information is



90 CHAPTER 3. DECENTRALISED MULTI-AGENT SECURITY SYSTEM (DMASS)

encapsulated within the “Global Report”, a data structure containing relevant information about

a particular security event that is created by the first agent and transferred between subsequent

agents that append information to it.

Global Decision The global decision stage is an optional process that may be performed at

the end of the extended data collection task. The exact time at which this process is performed

is dependant on the decision algorithm selected. The global decision marks the end of the

agent investigation where a final classification for the event as a whole is made; this is done by

combining the agent votes using the decision algorithm.

Communication Broadcast To communicate with other agents, a broadcast system is used

to find other agents that can contribute to the extended data collection task. Each agent

broadcasts any evidence gathered during the evidence collection stage that it cannot analyse

locally and takes requests for participation from other agents. Where agents can work with

the data type, responses are made to the request for the full global report, at this point agent

selection is made based on the past performance of agents as well as the selection algorithm

(discussed further in Chapter 3.6). At this point the global report is delivered to the chosen

agent the process begins again.

3.2 Formal System Modelling

Formally, the system is composed of several agents1 G = {g1, ..., gi}, each capable of performing

one data collection and analysis task for a particular software service2. A set of features F

formalises information collected from services, representing information about an activity, e.g.,

the IP address of a connection, VPN (Virtual Private Network) usage, etc. To encourage agent

specialisation, agents perform only one data collection task with additional agents created to

interact with other services. Agents are placed close to the source they monitor (i.e., on the

same network, subnet or device) to give them access to the required data streams (e.g., decrypted

network data on the monitored device). In addition to increasing the observable network, this

approach offloads the computational workload from a single device.

Each feature (f ∈ F ) describes the type of information while the value-set V describes the

range of possible values the feature may take. The heterogeneity of technologies found on the

modern network is vast, and so agents are created as self-contained entities capable of processing

1First detailed in [86].
2A service describes any system that an agent interacts with, this ranges from low-level network protocols to

application services.
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one particular service to improve deployability. New agents introduced to the system do not

require knowledge of other agents minimising exploitable dependencies. Furthermore, sensitive

information is kept locally within each agent with only the data analysis of the security event

shared to reduce the network footprint and the possibility of leaked information. Network-layer

detection often uses sources of threat intelligence to check the reputation of users, for example,

by checking email senders against a list of known malicious IP addresses. The mobility of agents

makes it easier for dedicated agents to perform threat intelligence monitoring without exposing

the whole security solution to the external world.

Each agent has a set of constraints placed upon it which must be satisfied before the agent

can perform its collection and analysis task. Constraints, hereby termed conditions, are defined

as feature-value pairs (f, v) representing information about the environment. For example, an

agent performing fingerprinting of a VPN device could hold the two conditions that the user

is located remotely (locationRemote) and that the connection is flowing over a VPN (isVPN).

The results of the agent’s data collection task is termed the effect and may be used to satisfy

another agent’s condition.

Definition 1 A data collection action is defined as a tuple 〈C, e〉:

• C is the action conditions; i.e., a set of pairs (f, v) where feature f ∈ F and value v ∈ fv;

• e ∈ F is the action effect; i.e., a feature whose value will be determined by the action.

Definition 2 Given a set of pairs (f, v) representing the available information about a suspi-

cious activity, the data analysis action is defined as a function returning a value between [0, 1]

representing the probability of the suspicious activity being malicious.

Definition 3 Given a set I formed by pairs (f, v) representing the available information about

a suspicious activity, and a data collection action 〈C, e〉, action conditions are satisfied if for all

(f, v) ∈ C, (f, v) ∈ I; and not satisfied otherwise.

An extended data collection task describes the process of several agents performing indepen-

dent data collection and analysis tasks in conjunction with each other to analyse more of the

security event. The mapping between an agent’s effect (output) and another agent’s condition

(input) enables agents to discover each other during the extended data collection task. With
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each additional agent included in the extended data collection task, more information is gathered

and analysed emulating the manual forensic process of gathering information based on what is

already known. Typically, at the start of this process little is known about the attack, but as

agents collect more data which will satisfy more conditions, a greater number of agents will be

able to participate since their conditions will become satisfied.

A communication module allows for the transfer of information between agents, the main

use of which is to send the report, which is a grouping of the agent’s ID, effect and the local

decision about the maliciousness of the data, between agents. The report is generated and

then sent to the next agent whose conditions have been satisfied by the effects already known.

Each agent may add to the collective information (i.e., the report) by aggregating data with

the current knowledge before passing it to the next agent. The transfer of the aggregated set of

reports facilitates the build-up and propagation of information within the agent network. Figure

3.2 illustrates the information flow with data collected from information sources during stages

(1) and (3) by two separate agents. The newly collected data is broadcast to other agents at

stage (2). Agents whose conditions are satisfied by the effect (Agent-2) respond by requesting

the full report of all previous data, following this, the current agent must select one of the

responding agents to receive the report. If multiple agents request the report, only one agent

will receive it, but the previous requests will be carried over to the next agent. In the case

of multiple requests for the report, the agent with the highest reputation (based on previous

conformity in voting with the group decision) is used to decide which agent should receive it.

Where previous requests are carried over, they are pushed into a last-in-first-out stack structure.

This promotes a depth-first search of the network where new requests are handled first with the

reasoning that a series of successful agent investigations into a particular domain is more likely

to discover the source of a network breach whereas a breadth-first search is a less specific search

for information. Figure 3.3 shows a similar extended data collection process occurring within

the developed multi-agent simulator; this process can be viewed as connections made between

the agent nodes. To improve privacy and reduce the communications overhead, the feature type

(f) of the currently known effects can be broadcast during the report propagation stage rather

than effect values (f, v) ∈ e. Agents whose condition types are fulfilled by the currently known

effect types would then be able to request the report containing both the feature type and the

values. Using this strategy, agents whose condition types do not match the current effect types

are not exposed to the information which increases the privacy of the system.

Decisions are made by individual agents based on their local view of the network and role

to monitor a specific feature or technology. The security community has developed a variety
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Figure 3.2
Flow diagram for the extended data collection task using agents and data sources.

of detection mechanisms for specific attacks, ranging from signatures of malicious behaviour to

anomaly and misuse detection systems to distinguish between normal and abnormal activity.

However, the scope of these individual detection systems is often small and provides the at-

tacker with an opportunity to evade detection and gain access through an alternate route. The

local decision modules within each agent make use of these traditional security mechanisms but

together define a broader view of the network by combing the local views into a more compre-

hensive global view.

Definition 4 Given a security event and agent identity, a local report RLocal is defined as a

tuple consisting of 〈eid, ts, g, (f, v), p〉 where:

• eid is a unique event identifier;

• ts is the events timestamp;

• g ∈ G is the agent’s identity;

• (f, v) is a feature-value pair corresponding to the output of the data collection action per-

formed by agent g;

• p ∈ [0, 1] is the agent’s analysis of the suspicious activity; i.e., the probability of the suspi-

cious activity being malicious.

During the extended data collection process, once no more agents can participate because

of unsatisfied conditions, the aggregated set of reports is analysed by the last agent to receive
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Figure 3.3
A smulated data collection task showing the propagation of information between agents. Agents
are selected based on the currently known information about the attack and condition informa-
tion.

them using one of the voting algorithms discussed in Chapter 3.6. The result of this analysis,

termed the final global decision, is where the final classification for the security event as a whole

is made. Following the classification, the final global decision is sent to all participating agents

so that they may compare their performance to that of the group’s decision.

Definition 5 A global report RGlobal is defined as a set of local reports {RLocal1 , ..., RLocaln}

containing the information collected by different agents participating in the same extended data

collection process as well as a unique event ID and timestamp.

Definition 6 Given a global report RGlobal representing the local decisions made by the agents

participating in an extended data collection process, the global decision is a function returning a

value between [0, 1] representing the collective judgement about the maliciousness of the investi-

gated activity.
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Figure 3.4
An example information flow between 5 agents using the decentralised communications protocol.

3.3 Communications Model

To allow agents participating in an extended data collection to coordinate, this model includes

an interaction protocol (depicted in Figure 3.4) 3. The protocol is formed by five main phases:

(i) request for participants; (ii) proposals from available participants; (iii) participant selection;

(iv) inform summary; (v) inform result, described as follows.

Request for Participants Once an agent has performed its data collection and analysis

tasks, the agent must add its local report to the global report, and then send it to the next

agent for further information collection. The communication module is used to facilitate this.

The first step of the interaction protocol is to request help from other agents that can par-

ticipate in the data collection process. In particular, the set of feature-value pairs are extracted

from the global report and then broadcast (by the initiating agent) to the other agents. Given a

global report {〈g1, (f1, v1), p1〉, ..., 〈gn, (fn, vn), pn〉} a request for participation is formalised as a

set {(f1, v1), ..., (fn, vn)} containing the available information about currently known broadcast

out to all agents.

Proposals from Participants Any agents whose data collection action is satisfied by the

information contained can respond by indicating their availability to participate in the extended

data collection task. Figure 3.4 illustrates this with Agent 2 broadcasting to other agents on the

network.

Participant Selection It is possible that several agents respond to the initial request indi-

cating that they can work with the available data. The initiator must decide which agent will

3First published in [89]
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be selected to continue with the data collection process. In particular, the initiator will send the

whole global report to this selected agent.

Unlike in other MAS solutions, the proposed model does not include a central repository of

agents which can be queried to find the most suitable agent for a given task. This improves

scalability but requires a system to allow agents to find each other. The agents will maintain a

local database of agents that they have previously worked with. Deciding which agent should

be selected as the preferred agent will affect the performance of the system as a whole. If the

most optimal agent is selected for the task most of the time, the search process will improve

as less time is spent performing data collection by unreliable agents. There are several ways in

which the preferred agent can be identified based on what is important in a given situation. If

accuracy is important for the current event the agents may select the agent that most often votes

correctly, this will result in a more accurate search. If time is a major factor during an event the

agent may choose the fastest performing agent to collect information quickly, this will produce

a result faster than the previous but could potentially lead to a less certain decision. While an

analysis of factors such as these could be done to determine the optimal preferred agent selection

algorithm, events within the security environment can often be unpredictable and allowing the

agents to choose the preferred agent at runtime could produce a more adaptable solution.

Inform Summary The agent selected from the previous stage (termed the child agent) will

send back a summary to the previous agent (termed the parent agent) containing information

about the decision it made during its own data collection task, this is done so the parent agent

may evaluate the performance of the child agent by comparing its decision to the groups. This

process can be viewed in Figure 3.4 with Agent 3 (the child) that sends back a summary to

Agent 2 (the parent). The parent agent will log this summary for use in selecting the child agent

in future extended data collection tasks. The parameters sent in the summary will include the

agent’s local decision about the maliciousness of the event in addition to performance variables

such as the time taken to perform the collection task, the importance of the data collected and

the computational cost of performing the collection.

Inform Result Once a final decision has been reached, the final decision will be sent to all of

the participating agents, this can then be used by the agents to review its method for selecting

the preferred agent (e.g., the preference can be increased for those agents with local decisions

in-line with the final decision).
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Table 3.1
Agents used within the case study.

Agent Condition Effect Location

Agent-1 Multiple connections on
different ports

IP address of offending
host

Host-A (192.168.56.101)

Agent-2 IP address belongs to
Host-B

Process owner identity Host-B (192.168.56.102)

Agent-3 External IP address Information about exter-
nal IP

Host-C (192.168.56.103)

Agent-4 Any IP address Information about IP loca-
tion

Host-C (192.168.56.103)

3.3.1 Case Study

To illustrate the advantages of using the proposed model, several agents were deployed in a live

networking environment to detect and respond to cyber reconnaissance activities (refer to Table

3.1). Typically there are several stages to a network breach, of which the first is information

gathering and reconnaissance [71]. Port scanning is a commonly undertaken activity during

a cyber attack with specifically crafted packets sent to hosts to discover information about

the underlying technologies [92]. While port scanning is associated with the early stages of

a penetration attempt, it can also be utilised legitimately by the network’s administrator for

housekeeping activities. The current solution for detecting port scanning activities is to use a

firewall or centralised IDS to monitor the network traffic, specifically looking for the specially

crafted packets that match various IDS signatures [136]. The methodology of monitoring a

network and making judgements about the event as a whole is used commonly throughout all

areas of cyber security but ignores additional pieces of evidence that could be collected and used

to consider the attack more intelligently. Furthermore, it does not take into consideration the

situational data about the attacker or attack which could be used to analyse the event more

accurately. To illustrate the benefits of using an agent-based approach, a port scanning scenario

is detailed.

Four agents {g1, ...g4} ∈ G are implemented and installed on three hosts joined by ethernet

connection (shown in Figure 3.8). The functions of the deployed agents are (1) monitoring port

scan attempts; (2) monitoring system privileges and process owners; (3) checking IP addresses

against a known blacklist; and (4) monitoring the origin of connections (refer to Table 3.1).

Using the system of conditions and effects, the agents collectively perform an extended data

collection task to gather more information about the event.
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Event 1 (Port Scan Initiated) A port scan attack, initiated from Host-B against Host-A,

is detected by Agent-1 whose condition is satisfied by the presence of multiple connections made

on different ports from the same host. Whereas a signature-based approach may immediately

detect and block the connections made, the DMASS agent-based approach begins an extended

data collection task to learn more about the event. The monitored information about this event

(stored on a per agent basis as RLocal) is captured and stored within the global report (RGlobal)

and the effect (the IP address of the initiating host) is broadcast to find additional agents that

can work with the data. Figure 3.5 shows the communications stack after Agent-1 has broadcast

its effect to the network4.

Figure 3.5
The communications stack after event 1 showing Agent-1 (A1) is the only agent to have com-
municated.

Event 2 (second broadcast) Of the agents whose condition is satisfied and that responded

to the broadcast (i.e., Agents 2 and 4), Agent-4 is selected by Agent-1 to receive the global report

next. In this example, the selection of Agent-4 over Agent-2 was made based on the reputation

of both agents (See Figure 3.6). Agent-4’s functions are broader than Agent-2 and so is more

likely to be involved in a greater number of extended data collection tasks and thus have an

increased reputation. In this way, agents whose functions are based around general information

gathering are typically prioritised over rarely used agents. This prioritisation is preferred as

it gives alternate agents an opportunity to search for conflicting evidence rather than making

classifications based on minimal evidence. The function of Agent-4 is to determine the location

(i.e., local or remote) of a host given an IP address. Upon finding the location of the IP address

is local, Agent-4 broadcasts this information as its effect. Note that the request made by Agent-2

is carried forward as part of the report structure passed between selected agents.

Event 3 (event classification) In this example with few agents, there are no more responses

the broadcast made by Agent-4 in the previous step (note that Agent-2 does not respond as its

request has been carried forward). Agent-3, whose function is to externally gather information

4The agent communications model described here was first introduced in [88].
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Figure 3.6
The communications stack after event 2 showing Agents 2 and 4 have responded to Agent-1’s
broadcast.

about remote IP addresses, does not respond to the broadcast in this event as its condition

(an external IP address) is not fulfilled. Instead, the request carried forward by Agent-2, which

is used to analyse the owner of suspicious processes where the IP address of the suspected

host matches the IP address of Host-B (the same host it is located on), is selected as the next

agent to receive the report. Upon analysis, Agent-2 finds that the port scan did originate from

Host-B, however, the process is owned by an administrative account and so classified as routine

maintenance rather than a malicious event.

Figure 3.7
The communications stack after event 3 showing Agents 2 being selected to participate in the
extended data collection task from its previous request made in event 2.

In this example, the IP address effect information is required by two agents (Agent-2 and

Agent-3) for the fulfilment of their conditions. The function of Agent-3 is to check remote IP ad-

dresses against known blacklists requiring the IP address to be remote. The function of Agent-2

is to monitor the process privileges on Host-B specifically, and as such, requires that the IP

address is local and belong to Host-B (stored as a local report RLocal). Following the IP address

being identified as belonging to the local network and referencing Host-B, the information was

passed to Agent-2 rather than Agent-3 whose conditions were satisfied by the available informa-

tion. The information collected by each agent, in the form of their individual local reports, is

joined to form the global report (RGlobal) for communication between agents. Upon analysing

the process information for Host-B, Agent-2 found that the popular port scanning tool, Network

Mapper, had been recently used by an administrator account, this contextual information led
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to the event being classified as non-malicious and no further action against hosts involved was

taken. While this limited scale example includes few agents per host, the architecture supports

many agents per device capable of performing a variety of functions to allow more complex data

collection and analysis tasks to take place. Furthermore, the application example highlights

the need for more in-depth analysis of security events rather than the surface detection and

prevention of network connections when they appear to match illegal signatures. Traditional

approaches that would associate the port scan activity with being malicious would have blocked

the activity immediately rather than performing extended data collection to discover more about

the service owner as in the case of the DMASS. The strength and novelty of the DMASS system

is that the agents that can gather contextual information surrounding a security event, priori-

tise search, and evaluate the performance of other agents. These mechanisms aid the agents in

analysing the security event in a more informed manner.

Figure 3.8
Example using agents (A-1,2,3,4) distributed across three devices (Hosts-A,B,C) to detct and
investigate the cause of a port scan attempt.

3.4 Environment Model

The concept of domains is introduced to describe the complexities found within the cybersecurity

environment more accurately. Domains modelling enables agents to weigh the progress of the

extended data collection task against expected attack patterns.

By using specialised agents, with each one capable of performing one data collection task, it

is possible to explore the underlying network structure by examining the agent’s relationships

with each other. Consider that each agent has a set of conditions and one effect, with the effects

fulfilling the conditions for other agents; when modelled, this produces a graph of connections

showing the relationship between the agents and by extension the relationship between the

underlying services [121]. Figure 3.9 shows this graph with nodes representing agents, the

colouring representing groups of agents belonging to the same service, and edges representing
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Figure 3.9
The simulated network environment containing several technological domains (represented by
colours). Conditions (C) and Effects (E) are numerically represented to abstract the data they
represent.

which effect satisfies which condition.

The choice to use specialised agents that perform only a single data collection action results

in a system where there may be multiple agents that work with a single technology. Complex

technologies will justify the use of many agents performing different types of tasks, for example,

an email server may have several agents for performing incoming, outgoing, and spammonitoring.

At the beginning of an extended data collection task when little is known about an event, the

search will begin with general data collection. As more information is gathered, the agents will

collect more attack-specific information as the agents find evidence about the attack.

Hence, the purpose of domains is to use the underlying network structure information to

more accurately and efficiently evaluate the collected information by considering whether the

detected attack is plausible. Plausibility is a measure of whether the agent’s analysis of an

event makes sense given common attack patterns. Typically an attacker will attempt to gain

access to a system through the path of least resistance [57], if agents from multiple domains

monitoring several technologies detect the presence of an attack, the event is recognised as having

an unusually wide scope. Furthermore, the attack is expected to spread through connected

neighbouring technologies since network links exist between them, this is grounded in empirical

evidence and is often used in attack graph generation [49]. Agents use these predictable and

well-defined movement patterns to determine the plausibility of monitored events.
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Given the example of a supply chain network, used for facilitating communication between

multiple businesses [146], the typical IDS solution would offer limited protection against more

complex multi-stage cyber attacks [152]. By participating in the supply chain network, the larger

corporation, which may have a more robust cybersecurity solution, puts itself at risk since the

attacker is more likely to penetrate through less protected supply networks and pivot to the real

target of the attack. The concept of domains can accurately model this threat with the DMASS

approach to monitor the attacker attempts to penetrate specific technologies as they pivot to

the real target. The scalability of the DMASS supports the placement of multiple agents on the

expanded network allowing the extended data collection task to take place on the network as a

whole.

The example of the supply chain network is descriptive of an APT which is more likely to

see the use of novel zero-day exploits that currently have no matching signature for detection.

The system of using domains to analyse the context of agent alerts is used as a mechanism

to detect zero-day attacks by analysing the movements of an attacker by the footprints that

are left behind. An attacker employing APT techniques and zero-day exploits may still leave

detectable footprints that can only be properly analysed in the global context where the evidence

is brought together. To this end, the goal of the domains approach is to facilitate the context-

aware processing of information to detect stealthy and novel attacks.

3.5 Simulator Description

In this section, a discussion about the implementation of the DMASS simulator, including how

domains are simulated, as well as an explanation of the underlying variables is provided. The

simulator’s configurable parameters fall into three categories (refer to Table 3.2): (1) those that

control the agents (Gv), for example, decision accuracy and choice of voting algorithm; (2) those

that control the environment (Ev), for example, the ratio of security events that are malicious

and the size of the network; and (3) those that control the attack (Av), for example, the size

of the affected region and detectability of the attack. The main variables from each category is

described below.

Several variables are introduced to control aspects of the simulated network. The number of

domains (Evamount ∈ N) is set according to the size of the simulated network. Smaller networks

with few services are simulated as having a limited number of domains, while larger expanded

networks are simulated with more. Services with more complex operations require more agents

to perform data collection. Agent membership to the individual domains is controlled by the

Domain Size Variability variable (Evsize ∈ [0, 1]). If set to zero, agents are distributed uniformly
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between the domains. If increased, domains will be created with a varied number of agents,

with agents distributed at random if set to 1. The Domain Association Factor (Evassociation ∈

[0, 1]) variable controls the logical connections between neighbouring domains. If set to zero, all

domains will be disjoint. If increased, links between domains, in the form of shared conditions

and effects, are made which represents similar technologies that are closely related (refer to

Figure 3.9). Over time these variables may change as the network evolves with new devices

added and others removed. However, for the purpose of the simulations, the network remains

constant once initialised, this is reflective of the typical local network that may experience

infrequent changes over time but not necessarily during the operation of a particular extended

data collection task.

Attacks are also simulated using the concept of domains. The variable Attack Penetration

(Avpenetration ∈ [0, 1]) controls how far the attack will spread through the simulated network.

Attacks primarily spread through connected nodes (defined by the Domain Association Factor).

Attack Detectability (Avdetectability ∈ [0, 1]) controls the stealthiness of the attack. A low value

would simulate an APT that is harder to detect. These variables are used to model the broad

nature of cybersecurity attacks, for example, a DDoS (Distributed Denial of Service) attack

would rank low on the attack penetration but high on attack detectability.

Table 3.2 lists the agent and environment variables used during the performance tests. Many

of the variables including the false alarm rate, domain size and spread of the attack were ran-

domised to verify the system under a wide variety of network conditions. The experimental

setup to obtain these results modelled the network environment as closely as possible. Agent

detection performance (Analysis) was controlled using a random distribution rather than a nor-

mal distribution to reflect the diversity of detection technologies that may perform differently

depending on the accuracy of the individual sensor.

3.6 Domain Evaluation Algorithms

Using the concept of domains, several algorithms for the analysis of the network environment

were developed. The algorithms make significant improvements to the agent’s efficiency in

analysing the network by introducing concepts such as agent memory, agent performance analysis

and evaluating the plausibility of attacks. Additionally, improvements to the detection accuracy

are made by avoiding the inclusion of poorly performing agents in the extended data collection

task. An evaluation of the domain exploration algorithms is provided in Chapter 5.2.
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Table 3.2
Agent and environment variables.

Variable Value

Runs 100

Iterations 1000

Repetitions1 11

No. Agents [30,100]

Preferred Agent Threshold1 [0,1]

No. conditions 1: 80%, 2: 15%, 3: 5%

Analysis (p)2 [0,1]

No. Domains (Evamount) [5,25]

False Alarm Rate [0,1]

Attack Penetration (Avpenetration) [0,1]

Attack Detectability (Avdetectability) [0,1]

Domain Size Variability (Evsize) [0,1]

Domain Association Factor (Evassociation) [0,1]
1 The preferred agent threshold is increased by 0.1 for each repetition. The repetition is cycled
for the specified amount every iteration.
2 Refer to Definition 4.

Baseline (Refer to Algorithm 3.1) The baseline algorithm iteratively processes the avail-

able information without making use of optimisation techniques and is presented for comparison.

To decide the global decision for the group, the algorithm tallies the local decisions from each

agent and takes the highest number of votes for either malicious or innocuous as the final event

classification. As a result, the algorithm performance is contingent on the individual agent’s

performance in evaluating the collected information. In cases where the agents cannot accu-

rately collect and analyse the digital evidence, the algorithm will incorrectly classify the event

as no corrective mechanisms are used to counter poor performance. This model is similar to the

current generation of security technologies that use a variety of detection mechanisms but do

not consider the detection alerts as a whole to evaluate whether the monitored attacks form a

plausible attack pattern.

Series Weighting (Refer to Algorithm 3.2) The first algorithm is introduced to give

weighted bonuses to malicious votes that appear within an unbroken series of agent decisions.

Given that the product of an extended data collection task can be viewed as a tuple of local

decisions (RGlobal = 〈eid, ts, {gn, (fn, vn), pn}〉), the decisions must be aggregated to produce the
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Algorithm 3.1 Baseline Algorithm
Require:

RGlobal the global report containing a set of local reports RLocal corresponding to a security
event.
α ∈ [0, 1] the minimum threshold required for a classification of malicious.
eid is a unique event identifier.
ts is the events timestamp.
g ∈ G is the agent’s identity.
(f, v) is a feature-value pair corresponding to the output of the data collection action per-
formed by agent g.
p ∈ [0, 1] is the agent’s analysis of the suspicious activity.

Define:
Tmalicious ← 0 a tally of malicious votes.
Tinnocuous ← 0 a tally of innocuous votes.

1: for 〈eid, ts, g, (f, v), p〉 ∈ RGlobal do . Iterate and tally local decisions
2: if p ≥ α then
3: Tmalicious ← (Tmalicious + 1)
4: else
5: Tinnocuous ← (Tinnocuous + 1)
6: end if
7: end for
8: if Tmalicious ≥ Tinnocuous then . Return global decision
9: return 〈eid, decision : malicious〉

10: else
11: return 〈eid, decision : innocuous〉
12: end if
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Algorithm 3.2 Series Weighting Algorithm
Require:

RGlobal the global report containing a set of local reports RLocal belonging to g ∈ G.
α ∈ [0, 1] the minimum threshold required for a classification of malicious.

Define:
β ← null the last processed decision.
γ ← 1 a counter ranging from 1 to 5.
Tmalicious ← 0 a tally of malicious. votes
Tinnocuous ← 0 a tally of innocuous votes.

1: for 〈eid, ts, {g, (f, v), p}〉 ∈ RGlobal do . Iterate and tally local decisions
2: if p ≥ α then
3: Tmalicious ← γ
4: if β = decision : malicious then
5: if γ < 5 then
6: γ ← (γ + 1) . Increase series weighting bonus when additional votes are cast
7: end if
8: end if
9: β ← decision : malicious . Store the last counted decision in β

10: else
11: γ ← 1 . Reset the counter when the series is broken
12: Tinnocuous ← (Tinnocuous + γ)
13: β ← decision : innocuous
14: end if
15: end for
16: if Tmalicious ≥ Tinnocuous then . Return global decision
17: return 〈eid, decision : malicious〉
18: else
19: return 〈eid, decision : innocuous〉
20: end if
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final event classification. The algorithm uses the corrective measure of giving extra weighting to

a series of malicious decisions that appear in sequence when modelled using the domains graph.

Group cohesion is measured by the number of similar decisions made by agents from the same

or neighbouring domains. High group cohesion during the decision-making process indicates

an abundance of evidence which can be relied on more. This algorithm uses these concepts

to favour groups of agents that vote in the same way. By default, each decision has a value

of 1, but for each additional vote of malicious after the first, an additional weighting is given.

Additional weighting for malicious but not innocuous votes is given because it is expected that

the majority of agents will vote innocuous as attacks typically target only a subset of network

domains. Within compromised networks, the volume of legitimate non-malicious traffic will

typically outweigh the volume of attack traffic resulting in a high false negative rate when

most agents correctly identify no attack. This algorithm corrects the problem of agents being

outweighed by providing additional weights to the decisions of cohesive groups.

Series Weighting with Cut-off (Refer to Algorithm 3.3) To increase the efficiency of the

Series Weighting voting algorithm the algorithm was further extended to improve the efficiency

by allowing agents to autonomously decide the point at which enough information to make

the global decision had been collected. If during the extended data collection task, a sufficient

amount of evidence is found supporting one decision over the other, agents can decide to make the

global decision earlier without consulting all agents that can participate5. Making quicker global

decisions improves real-time detection by reducing the number of agents involved. To search the

entire domains model for indicators of compromise, involving all agents in the analysis, would

ensure that the event classification is made using all of the available information, however, would

be operationally inefficient. Alternatively, if the decision to end the search for information is

made too early, the classification will be made on an unrepresentative subset of the available

information leading to inaccurate results. The domains model is used to allow agents to find the

most favourable point to end the search for evidence by taking into consideration the plausibility

of the data already collected. By considering the origin of evidence in relation to the domain

graph, agents can decide whether a branch of the network has been sufficiently explored or

whether further evidence collection is required.

Series Weighting with Self-Selected Groups (Refer to Algorithm 3.4) To increase the

adaptability of the system, agent preference is introduced in the form of self-selected groups to

5Currently a value δ is used as a static value for the number of local reports to be processed. In future work,
an adaptive threshold will be developed for this value based on the network size.
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Algorithm 3.3 Series Weighting with Cut-off Algorithm
Require:

RGlobal the global report containing a set of local reports RLocal.
α ∈ [0, 1] the minimum threshold required for a classification of malicious.
δ ∈ [0, 1] the amount of local reports that will be processed.

Define:
β ← null the last processed decision.
γ ← 1 a counter ranging from 1 to 5.
Tmalicious ← 0 a tally of malicious votes.
Tinnocuous ← 0 a tally of innocuous votes.

1: while increment(RGlobal) ≤ (δ ∗ |RGlobal|) do . Iterate over the global reports
2: for 〈eid, ts, {g, (f, v), p}〉 ∈ RGlobal do . Iterate and tally local decisions
3: if p ≥ α then
4: Tmalicious ← γ
5: if β = decision : malicious then
6: if γ < 5 then
7: γ ← (γ + 1) . Increase series weighting bonus when additional votes are

cast
8: end if
9: end if

10: β ← decision : malicious
11: else
12: γ ← 1 . Reset the counter when the series is broken
13: Tinnocuous ← (Tinnocuous + γ)
14: β ← decision : innocuous
15: end if
16: end for
17: end while
18: if Tmalicious ≥ Tinnocuous then . Return global decision
19: return 〈eid, decision : malicious〉
20: else
21: return 〈eid, decision : innocuous〉
22: end if
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allow agents to autonomously measure the effectiveness of cooperating agents to prioritise their

participation in future extended data collection tasks. Following the collection and analysis

of some information, the agent must decide the general direction of the extended data collec-

tion task by choosing which agent can participate next. Over time, agents will find groups

of high-performance agents that it prefers to work with, defining the self-selected group. This

postpones the invocation of poorly performing agents effectively preventing their participation

in the data collection task thus improving the overall performance. Agent performance measures

the individual agent’s accuracy compared to the groups. The corrective measures used in these

algorithms attempt to improve the decision accuracy by minimising the effect poorly performing

agents have on the overall classification by forcing poorly performing agents to participate later

in the extended data collection task and thus increasing the chance that they will be cut-off and

not be given a chance to participate (refer to Table 5.1 for detection rate improvements). Self-

selected groups require inter-agent communication to inform participating agents of the event

classification following the final global decision. Information about how other agents voted is

also compared and the performance measure for each is locally updated for use in future events.

Furthermore, this system makes the agents adaptable to changing network circumstances. If

a particular technology becomes unavailable, the agent will quickly be removed from the self-

selected group of preferred agents until the technology is restored and the agent can once again

contribute to the extended data collection task.

The algorithms provided here are are designed to provide an extra layer to the common

process of monitoring data and then classifying it based on signatures. By introducing the series

weighting algorithm, more data points are gathered before a classification about an event in

made, producing a more reliable classification.

3.7 Summary

In this chapter, the design of the DMASS architecture is presented; an autonomous agent-

based architecture for collecting and analysing information found within the local network. The

DMASS features a collection of low-level agents responsible for independently collecting and

locally analysing small pieces of information before combining their findings with the groups to

produce a final classification for the event. The architecture design makes use of the knowledge

representation framework called conditions and effects to describe evidence found within the

network and facilitate the propagation of information between agents. A system of domains is

described to allow agents to analyse the plausibility of information found within context based on

expected attack patterns. In particular, domains allows the agents to evaluate whether a series of
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Algorithm 3.4 Self-Selected Groups Algorithm
Require:

RGlobal the global report containing a set of local reports RLocal.
RDecision the final event classification from RGlobal.

Define:
greq ⊆ G a subset of agents whose conditions c are satisfied and request the global report
RGlobal

glog is a set formed by pairs (g, gscore), where g ∈ G is an agent that previously has par-
ticipated in an extended data collection task and gscore ∈ N is a tally of correct number of
decisions.

1: procedure Agent Selection(greq, glog) . Find the highest performing agent from greq
using the previous performances of agents in glog

2: for g ∈ greq do
3: return Highest((g, gscore) ∈ greq) . Return highest performing agent listed in both
greq and glog using the gscore.

4: end for
5: end procedure

6: procedure Log Update . Update the log with details of previous extended data
collection tasks after each extended data collection task

7: for 〈eid, ts, {g, (f, v), p}〉 ∈ RGlobal do
8: if ∃gscore : (g, gscore) ∈ glog then
9: if p == RDecision then . Adjust the tally of correct decisions agent has made

compared to the final group decision.
10: gscore ← (gscore + 1)
11: else
12: gscore ← (gscore − 1)
13: end if
14: end if
15: end for
16: end procedure

local decisions made by the agents is indicative of an actual attack or a false positive based on the

attack pattern displayed by the evidence and the agent’s confidence in the quality of other agent’s

abilities. Finally, agent-based algorithms for evaluating information were proposed including

three novel features: (i) agent preference through self-selected groups, (ii) series weighting, (iii)

and decision threshold cut-off.



Chapter 4

Algorithms for Distributed Analysis

In this chapter, an overview and formalism of a Generalised Anomaly Detection Algorithm is

provided for use within networked systems. The motivation for a generalised algorithm arises

from the current literature that often proposes algorithms for targeting only a single or small

number of network-based attacks. While individual algorithms provide an important mechanism

for detecting attacks, given the rise of the APT as a new and emerging threat, a more adaptable

approach to detect attacks that have been purposefully obfuscated is required. The generalised

algorithm presented in this chapter addresses these concerns by detecting a wide variety of

network attacks and aims to still detect attacks given two assumptions about the attacker: (i)

the attacker knows the algorithm is in use and (ii) the attacker can evade current signature-based

security mechanisms.

The DMASS detailed in Section 3 provides a comprehensive MAS solution for the collection

and analysis of evidence found within network systems. While automated systems provide many

benefits over traditional centralised and brute-force approaches than analyse everything, they

require an initial starting trigger to begin the search for additional evidence. While signatures

could be used for this purpose, it is assumed that an APT attacker is capable of evading most

signatures by either operating below the threshold of the signature or using a zero-day exploit to

bypass the security system altogether. While signatures could be applied with increased sensi-

tivity (i.e., decreased thresholds), they cannot be applied system-wide with increased sensitivity

due to the unacceptably high number of false alarms that would result. Instead, they should

only be used within the context of the DMASS where prior evidence has given agents reason

to suspect an attacker may be present. Therefore, to begin the extended data collection task

performed by the DMASS or other automated security systems, a broad anomaly detection al-

gorithm is required to detect the presence of an attacker who can then be further investigated.

This chapter presents an anomaly detection algorithm for use within local networks to detect
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a wide range of attacks at an average detection rate of 85%, which is a marked improvement

over current anomaly detection algorithms that are often specialised towards detecting a single

type of attack. Multi-step user traffic patterns are used as the basis for distinguishing between

malicious and innocuous traffic activity at a high level that cannot be easily tampered with by

the attacker.

Many algorithms for detecting specific types of attacks using anomaly detection already exist

[158]. For example, signature-based detection algorithms use a database of predefined examples

of malicious activity created by domains experts to identify attacks which is unsuitable for

scalable deployment to detect a wide range of attacks. Similarly, anomaly-based detection

approaches [5] make use of supervised and unsupervised machine learning to detect normal and

abnormal patterns in features obtained from network data. This also presents some limitations

as network architectures vary greatly resulting in different normal patterns for each operating

environment. Furthermore, the attacker can control and manipulate a variety of features (e.g.,

port number, the length of connection and the overall footprint of the attack) which complicates

the process of identifying reliable features that do not change between attackers or instances of

an attack. As a result, both anomaly and signature-based detection algorithms suffer from high

false positive and false negative rates when deployed to live networks.

The algorithm described here, fits into this existing ecosystem of security technologies as a

heuristic-style1 algorithm for identifying endpoints that do not appear to act like any others.

This behavioural difference is not based on specific features that can be easily manipulated by

attackers, but on behavioural patterns derived from the interaction with networked services. A

broad algorithm such as this could be used to tune an IDSs sensitivity to focus the detection

efforts on those endpoints that appear to be behaving anomalously so they can be analysed with

increased suspicion.

The development of network anomaly detection algorithms entails (i) the selection of fea-

tures, of which there are many to choose from, and (ii) the development of the model, which

determines how the features are used during the classification process. There are many different

ways to model normal and abnormal traffic evidenced by the variety of different datasets and

existing solutions. Design choices regarding the scalability, efficiency, deployability and accuracy

influence the selection of features and ultimately the utility of the system in live environments.

Palmieri et al. [127] argue that systems should be designed to be protocol and service indepen-

dent, so as to work on the broadest possible range of applications. The approach advocated in

this thesis extends these design principles to select features that cannot be easily influenced by

1The term “heuristic” is used to reference the algorithms intended use as a generalised model for detecting
attackers rather than specific attacks.
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the attacker, resulting in a far more reliable solution that can be applied in many environments.

The generalised algorithm, focusing on the early detection of attackers within the local

network, relies on features that are not directly recorded in traditional network datasets2 but

are instead inferred from the behaviours inherent in the data as a whole. The algorithm runs in

two phases that are continually performed during online detection. During the first phase, the

system monitors all network traffic on the internal network and groups the traffic into endpoint-

to-endpoint pairs to learn behavioural norms for individual devices. In the second phase, an

iterative analysis of the model is performed to find groups of endpoints that act similarly, which

is used as the basis for distinguishing between normal and anomalous traffic. The underlying

concept of anomaly detection is the existence of measurable differences between normal and

abnormal data, without this, classification could not take place. The algorithm uses features

found within the internal L2L (Local-to-Local) traffic as the basis for what is considered normal

as it is more protected than traffic that originates from outside of the local network. Protected

networks have a strict boundary separating the local network and internet by typically using

firewalls and IDSs to limit the amount of incoming traffic and are generally used for a specific

purpose (i.e., business operations). User activities within the protected network can be classified

as either legitimate or adversarial as defined by the organisation’s security policy. Using these

behavioural norms to distinguish between the two classes is more manageable on a per-network

basis owing to the size of the problem. Furthermore, behavioural norms differ between networks,

and as such, what is considered normal for one network will not extend to other networks.

Therefore, the algorithm is implemented as an unsupervised learning system that uses online

training to learn the norms of the specific network. The detection of external attacks outside of

the local network is out of the scope of this thesis and has been extensively studied [5].

4.1 System Modelling

To identify anomalous events, a clear baseline for what is considered normal is required. This

subjective metric is often based on the network policy that defines which users are allowed to

access network resources. At the application layer, this policy is often implemented as access

controls (i.e., user identification and password authentication) to prevent unauthorised users

from interacting with resources without permission. From the perspective of a network monitor,

endpoints that have permission to interact with a service will generate increased amounts of

predictable traffic during its interaction. Unauthorised users will not be able to interact in the

same way because access controls hinder them. Detecting the differences in these two network
2Recall these features may be tied to a particular attack and easily manipulable by an attacker.
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Figure 4.1
Graphical representation of the UNB ISCX dataset highlighting neighbouring endpoints.

patterns forms the basis of the generalised anomaly algorithm. A traffic model is constructed

by building a connection graph to represent the connections between pairs of endpoints. Figure

4.1 shows the visualised communications from the UNB ISCX Intrusion Detection Evaluation

Dataset [144], containing both normal data and a variety of networked attacks. Within Figure

4.1, nodes represent the individual endpoints labelled by their IP addresses, and the directed

edges represent the total amount of packets sent to another host (i.e., all connections made to

a host are grouped visually). Additional information attached to the edges is discussed further

in Section 4.4. For each node, a local set of communications between its direct neighbours can

be isolated to find similar communication patterns between the node’s direct neighbours. The

decision to model endpoint connections as a whole within the model was made to reduce the

attack surface of the system. Flow-based anomaly detection often uses aggregated statistics

about the shape and size of individual flows without considering the control an attacker has

over them. An attacker may, for example, fragment a single attack over many network flows to

obfuscate it from detection. By implementing the algorithm in a more generalisable way, the

aim is to detect broad behavioural changes that may be indicators of an attack and avoid the

associated problems of attack obfuscation.

The model is used to distinguish between normal and anomalous connections by finding other

endpoints that have a similar network footprint. Using the hypothesis that legitimate users will

exhibit broadly similar connection patterns when interacting with a networked service, the graph

in Figure 4.1 is iteratively processed to find endpoints that communicate with other endpoints

similarly. The similarity is defined by the number and ratio of connections shared between two
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endpoints as compared to other endpoints. For example, a group of endpoints are considered

similar if they send and receive a similar number of flows to a common endpoint, this is used

as the basis for defining a network footprint for groups of endpoints. If a particular endpoint

makes many connections that fit into the network patterns of many groups, it can be said with

confidence that the connections are legitimate because the connections can be explained by

endpoints interacting with networked services protected by authentication systems. Typically,

normal traffic is more abundant than attack traffic, therefore, basing the network norms on the

majority interaction can provide an accurate way to model normal activity. Note, users must

have the required application-layer authentication to interact with many networked services. On

the contrary, attackers attempting to penetrate the internal network must go through a period

of acquiring these privileges, during which time they will generate a unique network footprint

as they attempt reconnaissance and privilege escalation which will cause unusual traffic to be

generated. It is at this point of the attack lifecycle that the algorithm attempts to detect the

intrusion.

4.2 Dataset Analysis

For the goal of detecting infiltrations from the inside (i.e., post-compromise detection), con-

sideration is given the available datasets and the effects of data granularity against the likely

outcome of anomaly detection algorithms.

The granularity of the dataset is an important consideration as it defines the available de-

tection scope, for example, a highly granular dataset of features for biometric keyboard analysis

(e.g., typing speed, key-press pressure, average words per minute, etc.) will limit the detec-

tion of attackers to a particular device and set of attacks. Within the literature, authors who

select granular datasets often report more accurate results, for example, Rudrapal et al. [137]

reported 86% accuracy in distinguishing between users by employing the aforementioned bio-

metric features to detect attackers. However, when datasets with a low granularity are used,

for example, network-layer datasets consisting of raw packets or flow statistics, the detection

accuracy can often decrease significantly (e.g., Cao et al. [34] reported a detection accuracy of

58%). The poor detection accuracy of low granularity datasets can be attributed to the datasets

wide scope containing a variable number of attacks, each of which manifests in a unique network

footprint. The difficulty of distinguishing between normal and abnormal using machine learning

or anomaly detection increases as the definition of abnormal expands to include the variety of

possible attacks. When the definition of abnormal is constrained to mean any value outside of

a given range for a particular feature (e.g., using the words per minute feature), the only vari-
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ability is how well the selected feature can distinguish between the legitimate and illegitimate

user in that use-case. However, in highly variable environments with many different types of

attacks, some of which remain unknown until they occur for the first time (e.g., zero-day ex-

ploits), the suitability of features to each attack may be different and cannot be easily modelled

in the same way. Furthermore, at the network-layer multiple users interact which transforms the

problem from a single user-to-attacker relationship to a problem of defining multi-user norms

to encapsulate all of the legitimate user’s behaviours. With an increased number of possible

attacks and the inclusion of multiple users, the variability of defining what is normal increases

exponentially. However, the benefit of performing detection at the network layer is that more of

the information about the attacker is available, this manifests as network footprints left by the

attacker that can be modelled for detection.

4.2.1 Selecting Features for Anomaly Detection

Following the decision to use flow-level data to increase deployability, consideration for feature

selection is needed. Within cyber security environments, the problem of overfitting should be

given particular attention because of the dynamic nature of network environments that can also

vary between organisations, in addition to the adversary, whose goal it is to remain hidden,

and can control many of the features recorded in the datasets. Many flow-level datasets follow

a similar structure to the UNB ISCX Intrusion Detection Evaluation dataset [144] which uses

nineteen packet features including the application protocol name, payload sizes, payload con-

tents, Transmission Control Protocol flags, IP addresses, port numbers and timestamps (refer

to Table 4.1). Given that an attacker can directly influence each feature in flow-level datasets,

either by targeting a different service, IP address or directly manipulating the values (e.g., port

numbers, flags and payloads), relying on any subset of features may result in a model overfitted

to the particular implementation of the attack. Implementational overfitting occurs because

there is no standard footprint for an attack in relation to the feature-values, and as such, ma-

chine learning algorithms will often model the specific implementation of an attack, unique

to an attacker, rather than correctly model a reproducible attack footprint that can be used

across many occurrences. Note that features in Table 4.1 marked with an asterisk were manu-

ally removed from the dataset for testing to increase the performance of the machine learning

algorithms. Throughout the literature, these features are often removed as they are a poor

indicator of an attackers general pattern (e.g., the attackers IP address will change between

datasets and attacks). Furthermore, some features like the source/destinationPayloadAsUTF

and source/destinationPayloadAsBase64 were removed as they are text-based features which
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Figure 4.2
Proposed model for feature extraction.

are not well supported by the chosen machine learning algorithms and are better suited for

signature-based detection. Finally, the startDateTime and stopDateTime were removed as they

are not a good indicator of stealthy attacks that may be purposefully slowed down to avoid

detection and do not generalise well across multiple datasets or attack types.

Within the UNB ISCX dataset, several malicious activities are performed:

• Information gathering about the target including network IP ranges, nameservers, mail

servers and user email accounts.

• Mail server enumeration

• Buffer overflow attack against a vulnerability in Adobe Reader

• Opening reverse connections to the internet

• Uploading post-compromise tools

• Internally scanning the network

• SQL Injection

• Backdoor creation

The attacks performed throughout this scenario are commonly used during network intru-

sions and separate solutions focusing on each task have been individually proposed. However,

detecting the presence of the attacks at the network layer has proven increasingly difficult as

the number of possible attacks and the sophistication of advanced evasion techniques grows.

Tavallaee et al. [151] in a criticism of the KDD CUP 1999 dataset [84] comment on results
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Table 4.1
UNB ISCX Intrusion Detection Evaluation Dataset Features.

Feature Type Rank†

appName Nominal 5

totalSourceBytes Numeric 9

totalDestinationBytes Numeric 8

totalDestinationPackets Numeric 12

totalSourcePackets Numeric 14

sourcePayloadAsBase64* Nominal 15

sourcePayloadAsUTF* Nominal 18

destinationPayloadAsBase64* Nominal 16

destinationPayloadAsUTF* Nominal 17

direction* Nominal 19

sourceTCPFlagsDescription Nominal 10

destinationTCPFlagsDescription Nominal 11

source (IP)* Nominal 7

protocolName Nominal 13

sourcePort Nominal 3

destination (IP)* Nominal 6

destinationPort Nominal 4

startDateTime* Nominal 2

stopDateTime* Nominal 1

tag Normal, Attack N/A

* Features manually removed to prevent overfitting and to improve machine learning al-
gorithm performance.
† Ranked through information gain attribute evaluation.
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from the machine learning literature that often report a very high detection rate (upwards of

98%). The results are compared against the low adoption rates of commercial IDS solutions

that overwhelmingly use signature-based detection rather than the proposed models.

4.3 Critical Analysis of Machine Learning Approaches

In this section, several aspects of the network security environment that contribute to the low

adoption of machine learning compared to signature-based intrusion-detection are discussed.

The contents of this section were first published in [90].

Attack Implementation Differences The general footprint for an attack is often used to

detect similar attacks in the future. Features such as which device was targeted, the duration

of the attack, payload and protocols utilised can be used to model the event. However, using

the model to detect future instances of the same attack may result in increased false negatives

as different attackers perform the same type of attack but configured with different parameters.

The issue of implementation differences causing the same attack to look different arises at the

network layer as attacks are often defined by multivariate collections of features, often under

the control of the attacker, rather than a single feature with an acceptable range. Building a

model to detect a specific attack using a subset of features from Table 4.1 may not be fully

generalisable to future events if there are implementation differences in the way that the attack

is performed.

Preventing Overfitting Overfitting is a particular problem in network anomaly detection

where the many nominal features, with a variety of possible values, increases the complexity

of the detection models. Within the literature, several features are commonly removed from

datasets to decrease the probability of overfitting occurring (refer to features marked by * in

Table 4.1), however, overfitting can still occur in the cleaned datasets because of the afore-

mentioned implementation differences. With most features under the control of the attacker,

any over-reliance on a particular feature-value will result in reduced accuracy if altered by the

attacker after the model is built.

Detecting Stealthy Attacks In the case of advanced stealthy attacks, many of the numeric

features measuring information about the volume of traffic (e.g., totalSourceBytes, totalDesti-

nationBytes, totalSourcePackets and totalDestinationPackets) become less reliable as they do

not accurately represent the actual attack. Many attacks can be slowed to make the packets

appear as if they are apart of separate network flows rather than belonging to a single network
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event. The effectiveness of statistically analysing the volume of traffic flows also decreases as the

number of users and networked services grows because of the increased variability experienced.

Generalised Models Many types of attacks will leave detectable footprints at the network

layer if they move between host. As such, performing anomaly detection at this layer neces-

sarily involves the detection of many attacks, most of which are unknown to both the network

administrator and the security community. Given many possible attacks with a propensity to

manifest in different network footprints, any generalised model built to detect multiple attacks

will likely detect some but miss others.

4.3.1 Proposed Feature Selection Model

To overcome the discussed problems, the use of two new features generated from the traffic

flows to improve the classification accuracy are considered. While relying on any subset of

feature values may result in a poor performance due to the variable nature of the attacker and

attack implementation, using the broad communication patterns monitored from both a local

and global perspective to classify connection flows increases scalability and performance. The

proposed architecture for feature extraction is displayed in Figure 4.3 and is composed of the

following modules:

Monitored Environment The architecture takes as input network flows or raw packet con-

nections from either a centrally collected network monitor or collection of distributed network

sensors. For this prototype, data is taken directly from the labelled UNB ISCX dataset contain-

ing network flows for an internal intrusion.

Endpoint Identification The proposed model assumes a set of endpoints e ∈ E that exist

within the local network. Each endpoint is modelled, and the connections or flows associated

with it are locally stored for use within the model.

Service Identification The model assumes the existence of networked services se ∈ S where

each service belongs to some endpoint e. Services are identified within the model by the volume

of incoming traffic to be expected from multiple endpoints such that services are expected to

have a one-to-many relationship between itself and other endpoints. Normal traffic patterns are

defined under the proposed model by comparing the traffic models of endpoints interacting with

networked services to find the normal interaction pattern and then grouping agents by how they

interact over multiple services.
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Figure 4.3
Proposed model for feature extraction.

Local Model Training For each endpoint if a network service can be identified, a local

model is built to classify the one-to-many relationship between itself and other endpoints using

the volume and directionality of the traffic. For each endpoint, there exists a set of connections

or flows Ce such that some are incoming cin ⊆ Ce and others outgoing cout ⊆ Ce. The model

locally identifies groups of endpoints that exhibit similar connection patterns by measuring the

volume difference between sizes cin and cout. The output from this stage is to add a new feature

to the dataset named localGroupSize (Le) describing the number of endpoints that could be

locally grouped together as exhibiting similar traffic patterns.

Model Comparison To validate the results of the previous step, the local groups are com-

pared to find crossover between locally grouped endpoints and multiple services. A new feature

globalGroupSize (G) is formally defined as {G : |Le ⊆ {L1, ..., Ln}| >= α} where the size of any

two local set comparisons is greater than the threshold α (presently set as 2). If a set of locally

grouped endpoints is found to share the connection profile of many endpoints, more confidence

can be placed in a classification that the traffic is legitimate rather than abnormal.

Feature Selection & Update Dataset For this prototype algorithm, the features described

above are extracted and written to the initial input dataset for manual off-line analysis.

4.3.2 Evaluation of Novel Features

Table 4.2 lists the results of a feature analysis of the UNB ISCX dataset with the additional

LocalGroupSize andGlobalGroupSize features included in the dataset. Several feature-analysis

algorithms and search methods were used during the evaluation to calculate the most predictive
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Table 4.2
Results of Feature Analysis

Attribute Evaluation
Method

Search Method Most Predictive Features

Correlation-Based Subset Se-
lection [68]

Best First (Greedy Search) Source Port, Protocol, Global
Group Size

Classifier Subset Evaluation
using C.45 decision tree with-
out error pruning *

Best First App Name, Total Source
Packets, Source Port, local-
GroupSize

Classifier Subset Evaluation
using C.45 decision tree with
error pruning *

Best First Total Source Bytes, Source
Port, Global Group Size, Lo-
cal Group Size

Classifier Subset Evaluation
using Naive Bayes *

Best First Source Port, Local Group
Size

Classifier Subset Evaluation
using RBF Neural Network *

Best First Source Port, Global Group
Size, Local Group Size

Consistency Subset Evalua-
tion [104]

Best First App Name, Total Source
Bytes, Local Group Size

Grain Ratio Attribute Evalu-
ation

Ranked Search Global Group Size, Source
Port, Protocol

* Made use of an additional testset: UNSW-NB15 dataset [117].

features. The Classifier Subset Evaluation made use of an additional test set name UNSW-NB15

[117] containing similarly structured network flows. The algorithm evaluates the predictiveness

of the features over the training and test sets using a chosen algorithm and ranks the most

predictive features using a best first greedy search. The C.45 decision tree, Naive Bayes and

RBF Neural Network classifiers were chosen for analysis due to their ability to perform well

on noisy data. From the results, the two proposed features were continually ranked high by

the respective algorithms in their predictive ability when tested on both a single and multiple

datasets.

The proposed features overcome the previously identified problems of scalability and imple-

mentation differences by combining the local view of the network with the global view. Advanced

evasion techniques will typically be able to evade detection at the local level but not at the global

level where traffic patterns are compared across the entire network. Locally, it is possible to

tailor attack activities to remain undetected by performing such activities below the detection

thresholds, however, if other users in the network do not also appear to interact in a similar way,

increased suspicion would be placed on the activity. Under such circumstances, the connections

belonging to the attacker may not fit any global group and thus have the global group size
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variable set to zero.

While the results from the feature analysis are encouraging, the proposed model would be

better suited as a separate algorithm to fully take advantage of the proposed model. While

grouping endpoints into local and global sets have proven to be a good indicator of the class,

other features with problems discussed in Section 4.3.1 were also selected and would limit the

deployability of any machine learning model used as a result. As such, future work will focus on

the continued development and separation of the proposed model from the problematic features.

The impact of this result is to demonstrate the use of behavioural-based features that go some

way to addressing the problem of overfitting in network-layer anomaly detection.

4.4 Generalised Anomaly Detection for DMASS

In this section, the generalised anomaly detection algorithm is detailed. The algorithm consists

of four ordered steps that are continuously performed to monitor and log network connections,

perform local model traversal, perform remote model traversal and finally to remove explained

connections.

Local Connection Analysis (Refer to Algorithm 4.1) During the first stage, the con-

nections received by each endpoint in the local network are analysed. This requires connection

monitoring, which can be done centrally (e.g., by an IDS) or distributively (e.g., by sensors

located on the network). Given that only the flow-layer network connections are required (e.g.,

TCP/IP are the most common protocols) rather than host-based data, it is assumed that 100%

visibility is achievable.

More formally, the network is composed of a set of endpoints (this set is denoted by E)

identified by their IP address. The set E is formed by local (El) and remote (Er) endpoints

(E = El ∪ Er). The set of monitored connections (denoted by C) is formed by tuples 〈s, r〉

where s ∈ E is the endpoint sending the data through the connection and r ∈ E is the endpoint

receiving the data. The connections monitored are organised into logical data structures within

the model to preserve the higher-level application layer features that will be the focus of the

classification stage. Specifically, for each local endpoint e ∈ El the algorithm maintains the set

of “neighbours” (denoted by Ne) containing information about other local endpoints that are

directly communicated by e. Within the logical structure, value d is defined as the percentage

difference between the number of incoming and outgoing flows.3. The volume-based metric d is

3Note the particular data exchanged between two nodes is not used by the algorithm, and hence it is is not
captured by the representation.
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Algorithm 4.1 Local Connection Analysis Function
Require:

e ∈ El the endpoint whose connections are being analysed
Ne the information maintained about of neighbours of e
C = {c1, ..., c2} a set of connection flows starting and ending at the endpoint (∀〈s, r〉 ∈ C :
s = e or r = e)

1: for 〈s, r〉 ∈ C do
2: if {s, r} ∩ Er = ∅ then . The connection is local
3: if s = e then . The connection is sent by node e
4: if ∃〈r, sC, rC, d, t〉 ∈ Ne then . The receiver endpoint is in the list of neighbours
5: d← |(sC − (rC + 1))/((sC + (rC + 1))/2.0) ∗ 100|
6: Ne ← Ne \ {〈r, sC, rC, d, t〉} ∪ {〈r, sC, rC + 1, d, t〉} . Update neighbour

information
7: else . The receiver endpoint is not in the list of neighbours
8: Ne ← Ne ∪ {〈r, 0, 1, 50, 0〉} . Add the receiver endpoint to the list of the

neighbours
9: end if

10: else . The connection is received by node e
11: if ∃〈s, sC, rC, d, t〉 ∈ Ne then . The sender endpoint is in the list of neighbours
12: d← |((sC + 1)− rC)/(((sC + 1) + rC)/2.0) ∗ 100|
13: t← (sC/rC) ∗ 100 . Update the percentage of total flows received
14: Ne ← Ne \ {〈s, sC, rC, d, t〉} ∪ {〈s, sC + 1, rC, d, t〉} . Update neighbour

information
15: else . The receiver endpoint is not in the list of neighbours
16: Ne ← Ne ∪ {〈s, 1, 0, 50, 0〉} . Add the receiver endpoint to the list of the

neighbours
17: end if
18: end if
19: end if
20: end for

Algorithm 4.2 Local Model Update Function
Require:

e ∈ El the endpoint whose connections are being analysed
Ne the information maintained about of neighbours of e
C = {c1, ..., c2} a set of connection flows starting and ending at the endpoint (∀〈s, r〉 ∈ C :
s = e or r = e)
Se = {..., 〈d, s〉, ...} is a set of distinct locally similar pair of endpoints (s and s′) of Ne

indexed by the percentage difference value d
ε ∈ R an error value used in the calculation of Se

1: for 〈s, sC, rC, d, t〉 ∈ Ne do . Begin loop to compare all neighbouring endpoints
2: for 〈s′, sC ′, rC ′, d′, t′〉 ∈ Ne do
3: if s <> s′ and d >= (d′ − ε) ∧ d <= (d′ + ε) then . Group endpoints by d if they

are within the margin of error ε
4: Se ← Se ∪ {s, s′}
5: end if
6: end for
7: end for
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Algorithm 4.3 Remote Model Update Function
Require:

e ∈ El the endpoint whose connections are being analysed
Se ⊆ El the set of distinct locally similar endpoints
Ge ⊂ El the set of remotely similar endpoints
η ← N the minimum amount of endpoints required for classification as a remotely similar
set.

1: NS ← [] . is the list of similar endpoints for all the neighbours and neighbours of
neighbours

2: for s ∈ Se do
3: NS = NS ⊕ f(s) . Function initiated by e to remotely retrieve from s ∈ Ne its the

similar set Ss
4: end for
5: for 〈s, sC, rC, d, t〉 ∈ Ne do
6: NS = NS ⊕ f ′(s) . Function initiated by e to remotely retrieve from s ∈ Ne the similar

set they have obtained from its neighbours
7: end for
8: for 〈s, sC, rC, d, t〉 ∈ Ne do
9: if count(s,NS) >= η then . If s appears in the similar sets of η neighbour endpoints

10: Ge ← Ge ∪ {s} . Add similar endpoint to Ge

11: end if
12: end for

Algorithm 4.4 Model Analysis Function
Require:

e ∈ El the endpoint whose connections are being analysed
α ∈ R the maximum allowed value for the percentage of total received metric t . Prevents
endpoints with few connections from being prematurely classified as non-malicious
Ne the information maintained about of neighbours of e
Ge ⊂ El the set of remotely similar endpoints belonging to e

1: for 〈s, sC, rC, d, t〉 ∈ Ne do . Iterate the neighbours set
2: if s ∈ Ge then
3: if t <= α then . Compare the percentage of total received value t against the α

threshold
4: γ ← s . Set of innocuous endpoint identities
5: else
6: δ ← s . Set of malicious endpoint identities
7: end if
8: else
9: δ ← s . Set of malicious endpoint identities

10: end if
11: end for



126 CHAPTER 4. ALGORITHMS FOR DISTRIBUTED ANALYSIS

used to distinguish between legitimate traffic which typically exhibits longer and more complex

exchanges of traffic and malicious traffic which manifests in shorter or prematurely terminated

connection flows due to preventative access controls. The metric t measures the amount of

traffic exchanged between two particular endpoints in relation to the total amount of traffic

exchanged by that endpoint. This metric is used in the later stages of the algorithm to prevent

the premature classification of low volume endpoints.

Definition 7 (Neighbour Set) Given a local endpoint e ∈ El, its neighbours are defined as a

set formed by tuples 〈s, sC, rC, d, t〉 where

• s ∈ El is an endpoint that has communicated with e, i.e., ∃〈e, n, d〉 ∈ C or ∃〈n, e, d〉 ∈ C;

• sC ∈ N is the number of flows sent by s, i.e., sC = |{(e, n, d′) : (e, n, d′) ∈ C}|;

• rC ∈ N is the number of flows received by s, i.e., rC = |{(n, e, d′) : (n, e, d′) ∈ C}|;

• t ∈ R is the percentage of total flows received from a particular endpoint, defined as:

(sC/rC) ∗ 100;

• d ∈ R is the percentage difference between the amount of sent and received flows defined

as:
|sC − rC|

sC+rC
2.0

× 100

For each endpoint within the local network, a neighbour set is created to store relevant

information and to facilitate data exchange between the entities within the model. As new

connections are captured for an endpoint, the algorithm can update the relevant entities

neighbour rather than recalculate all neighbour sets.

Local Model Update (Refer to Algorithm 4.2) During the second stage, the neighbour

sets for each local endpoint are traversed to discover similar interaction patterns that will define

the normal activity for each endpoint. The volume difference of traffic exchanged between two

endpoints is used as a metric to group endpoints that act similarly. Hence the normal traffic

patterns are inferred from how the majority of endpoints interact with a given endpoint.

In particular, this algorithm finds for each local endpoint e ∈ El a set of endpoints that

interact with e similarly to other neighbour endpoints in (this set is denoted by the set Se ⊆ El).

Pairs in Se interact similarly with e. Any pair of endpoints in Ne whose percentage difference

value (d) are similar within a margin of error (ε) are added to Se as similar endpoints that
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are assumed to be communicating with a service in a common way (i.e., producing a similar

interaction pattern). The percentage difference value of connection flows is used as a tamper-

resistant feature when compared to how other endpoints also interact with a service. This is

owing to the authentication mechanisms commonly used to protect local network services that

will prevent unauthorised attackers from interacting with the service in the same way, preventing

the generation of similar flow-layer interaction patterns. Attackers are more likely to evoke the

ending of a flow by attempting to interact with a service while unauthenticated causing the

service to close the connection (i.e., by sending a TCP RST or FIN packet4). In future iterations,

if new endpoints are found to act in a similar way to previously defined patterns, they are added

to the model for analysis in the next steps.

Definition 8 (Similar Endpoints) Given a local endpoint e ∈ El, the similar endpoints for e

(denoted by Se ⊆ El) are defined as a set formed by local endpoints where for all s ∈ Se:

• There is a neighbour element corresponding to endpoint s: 〈s, sC, rC, d, t〉 ∈ Ne;

• There is another neighbour element such that ∃s′ : 〈s′, sC ′, rC ′, d′, t′〉 ∈ Ne;

• d ∈ [d′ − ε, d′ + ε]

Remote Model Update (Refer to Algorithm 4.3) The previous step can be viewed as

each endpoint locally finding its normal interaction footprint defined by how other endpoints

interact with it. Following this definition, a similar process is undertaken to validate the local

norms by finding groups of endpoints that act similarly when communicating with other service-

endpoints. In modern networks containing a variety of networked services that can be accessed

by the endpoints, this process reveals multi-step traffic patterns that legitimate endpoints per-

form forming the basis of how the system distinguishes between innocuous and malicious users.

Formally, this function retrieves the set of locally similar endpoints from its neighbours and

compares it with its local similar-set to find similar overlapping interactions. A communication

action f(s) is defined to allow the remote retrieval of information from s about s’s similar set Ss

(the similar sets it has received from its neighbouring endpoints). The sets retrieved are stored

in a list (denoted by NL) formed by the similar sets obtained from the neighbours and neigh-

bours of neighbours. In the case where the system is deployed as distributed sensors around

a network, these actions will allow sensors to exchange the information required during this

stage. The local set Se is compared to the remote list NS by counting how many times a given

endpoint in Se appears in the list NL (this is calculated by the function count). The purpose of
4The TCP protocol uses RST and FIN packets to end attempted communication flows.
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this is to find multiple common communications vectors that an endpoint conforms with. If the

count is greater than a threshold η the endpoint is added to the set Ge. Endpoints placed into

Ge have satisfied the condition that they (i) interact predictably as defined by the local norm

(i.e., Algorithm 4.2), and (ii) interact with the endpoints surrounding neighbours in a similar

way (i.e., Algorithm 4.3). Endpoints which act similarly when interacting with a small subset

of services are inferred to be apart of the same clique (i.e., endpoints belonging to a particular

department), and deviation from group norm can be used as an indicator of compromise.

Definition 9 (Remotely Similar Endpoints) Given a set of locally similar endpoints Se,

and the list of similar sets NS, remotely similar endpoints for e (denoted by Ge) are defined as

a set of endpoint identities where for all s ∈ Ge:

• s ∈ Se;

• s appears at least η times in the list NS;

• where η ∈ N is a threshold value currently set to 2.

Model Analysis (Refer to Algorithm 4.4) The final function iteratively processes the

model build during the previous stages to classify endpoints as either malicious or innocuous.

The set of neighbours is iteratively processed to find to find remotely similar endpoints (i.e.,

those in Ge) for which the percentage of total received value t is greater than a threshold α;

to prevent endpoints with only a few connections from being considered normal without due

consideration. Note that t is recalculated during the flow processing stage in Algorithm 4.1.

A minimum threshold for exhibited traffic is desirable to prevent unrepresentative samples of

network traffic to define system norms. By default, all endpoints are considered to be malicious

and innocuous endpoints are iteratively marked as such during the classification stage.

Definition 10 (Model Analysis) Given a set of neighbours Ne and the set of remotely similar

endpoints Ge, endpoints 〈s, sC, rC, d, t〉 ∈ Ne are classified into innocuous endpoints if:

• innocuous iff s ∈ Ge and t is greater or equal than a threshold alpha that must be reached

before a classification of innocuous can be made;

• malicious otherwise.

The purpose of the algorithm is to provide a method of detection for use within the network

layer to detect a wide range of attacks. While the algorithm achieves this goal of being able to

detect a wide variety of attacks at an acceptable detection accuracy (see Section 5.3 for results)
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Figure 4.4
Usage of the Generalised Anomaly Detection Algorithm and the DMASS together.

the vulnerability of this system is its inability to identify the specifics of the attack or perform

an in-depth investigation of further compromise within the system. As such, the algorithm is

designed to be used specifically within the DMASS to guide the agents to an initial start -point

and allow further investigation to take place. Figure 4.4 shows the process flow for the algorithm

and DMASS when working together with the output of the model analysis stage resulting in the

identification of a device that should be the target of the DMASS-based agent investigation.

Together, each system address the weakness of the other system to provide a comprehensive

solution to detect and respond to cyber attacks. The advantages of the generalised anomaly

detection algorithm is its ability to (1) detect a wide range of attacks, and (2) operate on the

network layer, while its weaknesses are (1) the output of the algorithm is a device address that

appears to be acting anomalously, not a comprehensive analysis of the event. The advantages

of the DMASS are (1) its ability to perform in-depth investigations into events, (2) its ability to

proactively gather relevant information, and (3) its ability to work on-demand rather than as a

brute-force detection system, while its weaknesses are (1) the on-demand approach requires an
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external indication to begin the investigation. It is clear that the two systems are mutually ben-

eficial and addresses the weaknesses inherent within each system with the generalised anomaly

detection algorithm providing the starting point for the DMASS investigation.

4.5 Summary

In this chapter, the generalised anomaly detection algorithm was presented as a high layer

algorithm for detecting a wide variety of attacks. The literature review identified the APT as a

particularly stealthy and evasive threat to modern networks requiring adaptable solutions that

do not rely on any one feature of the attack. The proposed generalised algorithm addresses this

threat model by relying on user interaction patterns rather than network layer features such as

service type or port numbers. The algorithm instead models attackers in a tamper-resistant way

that cannot be manipulated by slowing down an attack or performing lateral movement using

only a small amount of connections. To show the predictiveness of the algorithm, a feature

analysis was performed on the two main tamper-resistant features extracted from the data: (i)

local group size, and (ii) global group size. Finally, a formal description of the algorithm is

provided with details of how the algorithm can be used together with the DMASS provided in

Chapter 3.



Chapter 5

Simulation Results & Discussion

In this chapter, the results of the algorithms from both the DMASS and Generalised Anomaly

Detection Algorithm are provided. Evaluation of the algorithms took place within simulation

software specifically designed to allow MAS to work with security datasets and is detailed in

Chapter 5.1. The results from the DMASS show a detection rate increase of up to 20% in high

false alarm environments and an efficiency increase of up to 50% made over traditional monolithic

intrusion detection systems. The results of the Generalised Anomaly Detection algorithm show

its capability to detect a wide variety of network-based attacks at an average detection rate of

85% providing an accurate and scalable way to detect the initial traces of compromise.

5.1 Simulator Design

To facilitate the development of the DMASS and generalised anomaly detection algorithm, a

simulator was developed to work with the appropriate data. Figure 5.1 shows the core packages

within the software (written in Java) structured as follows (i) development of the DMASS is

largely contained within the Agent, DataStructures and Profiles packages, with code for the

various algorithms described in Chapter 3.6, (ii) the generalised anomaly detection algorithm is

contained within the NetworkFlow and DataStructures packages, and (iii) tertiary work done on

the application of MAS to cloud web service composition is contained within the Cloud package.

Utilities. The simulator is designed to test agent-based simulations in many environments.

Figure 5.2 shows the utility window (left) with details of the current test (e.g., the number of

simulations, attacks and repetitions). Additional information about the performance statistics of

the simulator (e..g,., used RAM, Maximum RAM and available RAM) are continually updated

as the simulator runs. During non-demonstration tests, the simulator is performed without a

graphical interface to increase the speed at which tests are performed, allowing for many thou-
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Figure 5.1
The core packagages of the simulator used during the development of the DMASS and generalised
anomaly detection algorith.
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Figure 5.2
Agent view of the simulator.

sands of simulations to be performed in a short amount of time. Information about initialised

agents is shown in the left-hand portion of the main window with details of each agent’s internal

state (e.g., conditions, effects, performance analysis and information about the corresponding

domain). The simulator uses 62 configurable settings stored within an external configuration

file to control many aspects of the simulator, GUI and data output. A subset of the settings

controlling the agents are shown below:

09) Prioritise number input types = false

10) Show edge action labels = false

11) Use string agents = false

12) 1 condition = 80

13) 2 conditions = 15

19) Global malicious threshold = 1.0

20) Local report threshold = 0.0

21) Event flagging threshold = 0.0

22) Preferred agent threshold = 0.7

23) Do column resize = false

24) Analysis max = 1.0

26) Analysis min = 0.5
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AgentCore. Each agent is programmatically similar to each other with similar functions,

however, each is initialised with unique variables such as conditions and effects to allow the

agents to interact with each other. Two conditions and effects classes exist to distribute the

information among the agents, within the simulator a maximum of 6 conditions is allowed

per agent. Agent decisions are a combination of local decisions and the global report. The

LocalDecision class is internal to each agent and is placed inside the GlobalReport class stored

within the DataStructures package. Each agent has the ability to target another agent and

deliver the global report if they currently have it.

Profiles. Within the simulator an experiment can be created through the addition of a new

profile. A profile is a class composed of an initialSettings method that overrides the default

settings within the simulator and then 1 to 11 optional methods titled round 1 to round 11

which may contain additional settings overrides unique to each round. The purpose of the

profile class is to facilitate testing groups of agents under different environment settings. This

allows the same group of agents, under the same environmental conditions, to be simulated in

different ways to enable a fair comparison to take place. For the purposes of this thesis, profiles

were used to test the performance of different algorithms and settings on the same group of

agents, for example, to compare the baseline and the series weighting algorithm and to test the

effectiveness of the preferred agents feature on those algorithms. Below lists three rounds used

during the series baseline tests, round 1 uses the baseline algorithm with the “usePreferredAgent”

setting disabled, round 2 uses the series weighting algorithm with the same setting disabled, and

round 3 uses the same algorithm with the setting enabled.

@Override

public void round_1() // Baseline

{

Settings.selectedVotingSystem = "Highest Votes";

Settings.usePreferredAgent = false;

Settings.ignoreBadAgents = false;

Settings.letAllAgentsRun = true;

Settings.selectAgent = "None";

}

@Override

public void round_2() // Series weight baseline

{

Settings.selectedVotingSystem = "Series Weighting";
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Figure 5.3
Results document showing each agent interaction during the simulation.

Settings.usePreferredAgent = false;

Settings.ignoreBadAgents = false;

Settings.letAllAgentsRun = true;

Settings.selectAgent = "None";

}

@Override

public void round_3() // Series weight with pref agent baseline

{

Settings.selectedVotingSystem = "Series Weighting";

Settings.usePreferredAgent = true;

Settings.ignoreBadAgents = false;

Settings.letAllAgentsRun = true;

Settings.selectAgent = "None";

}

As output, the simulator produces an Excel spreadsheet for each round containing the details

of every agent action as well as their internal states (See Figure 5.3), the details of each iteration

(i.e., for each attack scenario, see Figure 5.4), and for each run (i.e., the runtime history of all

agents within the current simulation scenario). Additional information about the statistics of

the whole simulation including a comparison table for each of the rounds is included as well as

the current configuration of all system settings and the domains environment layout. Using the

results document, a step-by-step history and performance report for each agent is made available

to verify the validity of the tests and conclusions.

NetworkFlow. For the purposes of testing the Generalised Anomaly Detection Algorithm,

the simulator was extended to work with the appropriate flow-layer datasets in CSV and XML

format. The code format is structurally similar to that described in Chapter 4.4 with the
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Figure 5.4
Results document showing logging at the interaction level.

whole system composed of four methods and several utility functions called on as needed. The

connection diagrams produced for Figure 4.1 produced following the full processing of the dataset

and subsequently updated during the model processing phase where the connection information

is used to discern the malicious nodes. The connections graph is interactive providing detailed

information about the internal state of the node during the model processing, an example output

for a particular node is as follows:

Name: 192.168.1.101

Neighbours: (9) [192.168.1.1, 192.168.1.2, 192.168.1.103, 255.255.255.255, 192.168.1.104,

192.168.1.105, 192.168.1.255, 192.168.1.102, 192.168.5.122]

Total Sent: 2348 Total Received: 1722

Total Malicious: 2 Total Safe: 2346

Neighbour 192.168.1.1: CountReceived: 2, CountSent: 0, %Diff: 200.0, %Total Recieved: 0.0

Neighbour 192.168.1.2: CountReceived: 4, CountSent: 0, %Diff: 200.0, %Total Recieved: 0.0

Neighbour 192.168.1.103: CountReceived: 372, CountSent: 404, %Diff: 8.24742268041237,

%Total Recieved: 0.0

Neighbour 255.255.255.255: CountReceived: 2, CountSent: 0, %Diff: 200.0, %Total Recieved:

0.0

Neighbour 192.168.1.104: CountReceived: 40, CountSent: 40, %Diff: 0.0, %Total Recieved:

0.0

Neighbour 192.168.1.105: CountReceived: 40, CountSent: 1188, %Diff: 186.97068403908793,

%Total Recieved: 0.0

Neighbour 192.168.1.255: CountReceived: 576, CountSent: 0, %Diff: 200.0, %Total Recieved:

0.0

Neighbour 192.168.1.102: CountReceived: 90, CountSent: 90, %Diff: 0.0, %Total Recieved:

0.0

Neighbour 192.168.5.122: CountReceived: 1222, CountSent: 0, %Diff: 200.0, %Total

Recieved: 0.0

Similar Neighbours: []

Removed Edge Count: 0
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Figure 5.5
Snort log output file containing the classification of the UNB ISCX dataset.

Normal Connections: 2346, Malicious: 2, No. Nodes: 1

The log contains the local statistical information about each node used during the processing

of the dataset. The information such as CountSend and %TotalReceived is directly used by the

proposed algorithm to calculate the likelihood of a node being used for malicious activity.

SnortAlertParser. The simulator is also designed to work with both Bro IDS and Snort

IDS datasets. Chapter 5.2.1 contains a case study using a dataset first analysed Snort and

then within the agent-based simulator to find additional nodes that were not detected by the

IDS. The simulator can take in as input both a labelled dataset and the output of a Snort IDS

classification in the format shown in Figure 5.5.

5.2 DMASS Simulation Evaluation

To evaluate the DMASS algorithms, 100,000 simulations consisting of 1000 runs with 100 se-

curity events per run are performed. For each run, a new domain network (See Figure 3.9) is

generated, and 100 simulated security events consisting of both attacks and false alarms are

initiated to assess the agent’s performance. The purpose of these tests is to show that MAS can

provide a useful mechanism for detecting attacks and to minimise the overall amount of work

done in terms of data collection to reduce the problems associated with bulk analysis.

Table 5.1 shows a comparison of the DR (Detection Rate) and FAR (False Alarm Rate) of

the four algorithms during the individual evidence evaluation stage with a 20% DR improvement
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Table 5.1
Results and comparison with the system baseline using Detection Rate (DR) and False Alarm
Rate (FAR) for the agents local analysis.

Evaluation DR FAR

Highest Votes (System baseline) 0.595 0.102

Series Weighting Basic 0.727 0.225

Series Weighting with Preferred Agents 0.792 0.231

Series Weighting with Cut-off and Preferred Agents 0.804 0.228

made over baseline. During the evidence evaluation stage, the agents individually collect and

analyse evidence and decide whether it indicates normal or malicious activity. These individual

analyses are then combined using one of the voting algorithms to classify the security event as

a whole, as such the overall performance of the classifier can be judged in terms of both the

individual performance of the agent (Table 5.1) and the final classification made by the group

(Figure 5.7).

DR =
TP

TP + FN

FAR =
FP

FP + TN

This DR improvement can be attributed to the corrective measures introduced by the algo-

rithms that avoid the inclusion of poorly performing agents as well as the increased intelligence

used to analyse and weigh the reliability of decisions. Furthermore, this improvement is made

without introducing any extra detection mechanisms but instead is made by intelligently consid-

ering the plausibility of the information gathered through the concept of domains and preventing

unreliable agents from damaging the integrity of the event classification. As a result of the al-

gorithms, the FAR is also increased, however, this is by an acceptable amount given the current

industry standards [9] and improvement made to the DR, furthermore, this result is later im-

proved during the application of the voting algorithm to decide the final classification. In many

business environments, the detection rate is given priority over the false alarm rate to protect

networked assets at the cost of possible availability disruption. Significant efficiency improve-

ments were also made with a reduction in the number of local decisions needed to analyse an

event. Figure 5.6 shows the total number of local decisions reduced by over 50% while maintain-

ing the same ratio of correct global decisions. The result shows that less processing was needed

to come to the same conclusion about the security event. This performance improvement is
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Figure 5.6
The total number of local decisions (i.e., cost associated actions) using each of the four algorithms
described in Table 5.1 plotted against the percentage of correct global decisions.

significant as it shows the agent’s ability to select the most relevant agents needed for analysing

the security event while avoiding the use of irrelevant agents outside of the attacked domain.

This result shows the opposite of the brute-force approach often adopted by IDSs and instead

avoids irrelevant computation during the detection process. Figure 5.7 shows a comparison of

the algorithms in both low and high false alarm environments with the improved algorithms

performing better in environments with a high FAR. This improvement from the system base-

line is again attributed to the agent’s ability to identify the poorly performing agents using

the domains model. Whereas the system baseline performance is directly linked to the agent’s

ability to analyse an individual piece of information, high false alarm environments provide the

improved algorithms with an increased opportunity to identify the poorly performing agents and

optimise the extended data collection task around them.

This system is entirely decentralised with each agent maintaining a local copy of how well an

agent performed in the past. Different types of attacks elicit data collection tasks that explore

different parts of the network, and since each agent maintains a local database of preferred

agents, they are sensitive to the directionality of various attacks. In addition to the preferred

agent, any agents that continually perform poorly will be avoided during the data collection

process. This is more desirable than centrally managing the reputation of agents which does not

reflect the performance diversity under different situations, but instead, assigns generic labels

which may be unrepresentative. Whereas an agent may perform badly within one domain, it

may perform well in another. Under the current system, this is recognised and selected for during
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Figure 5.7
A comparison of the 4 algorithms featured in Table 5.1 in both a low and high false alarm
environment (95% confidence intervals).

the preferred agent process. Coupled with the cut-off system, this has the effect of invoking the

most reliable agents earlier on in the collection process and not providing the poorly performing

agents with an opportunity to participate.

Figures 5.8 and 5.9 show the change in the amount of correct local decisions (Total LD

correct) and correct global decisions (Total GD correct) when changing the simulator parameters

for the number of agents and attack detectability. The number of agents has the effect where

fewer agents (in the 15-100 range) causes the system as a whole to perform poorly due to

ineffective corrective measures that would otherwise penalise poorly performing agents. The

performance of the agent preference corrective strategy, which penalises poorly performing agents

in future extended data collection tasks, is limited by the lack of agent choice in the 15-100

range resulting in poorly performing agents used out of necessity to continue the analysis (where

no preferable agents are available, less preferred agents are chosen to fulfil the extended data

collection task). Where more choice (in terms of the number of agents) is available, the more

reliable and highly performing agents are selected for participation. The performance gain

of adding agents to the network stabilises after a point owing to the cut-off algorithm that

prioritises the high performing agents and ends the search for evidence before every agent has

had an opportunity to participate. While there is no clear disadvantage of adding more agents

to the network, the number of messages sent between agents for participation increases with

each additional agent. The attack detectability measure which represents the stealthiness of the
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Figure 5.8
Comparison of Number of Agents (No. Agents) Threshold.

attack has the predictable effect of reducing the amount of correct global and local decisions

when it is harder to detect, i.e., when this value is low, and the attacker is harder to detect,

agents are more likely to analyse the event incorrectly. The corrective measures of penalising

poorly performing agents go some way to improving the agent performance; however, stealthy

attacks are still a challenge to the agent-based system as well as to the IDS.

5.2.1 Snort IDS Evaluation

To further show the need for the DMASS and demonstrate its performance benefits, an evaluation

using the Snort IDS [136] was performed on the UNB ISCX Intrusion Detection Evaluation

Dataset [144] to show increased efficiency in detecting malicious traffic. The dataset contains a

series of labelled network flows from within a local network. The dataset was first analysed with

Snort IDS signatures and then processed by the agents to find the remaining connection flows

that were not detected. Figure 5.10 shows an example of the network graph built from the UNB

ISCX dataset where nodes are IP addressable hosts and edges represent network connections

made between them. The graph is used to model connections between nodes so that agents may

follow the spread of connection through the domains to search for undetected nodes.

Using the Snort IDS analysis as a starting point, the agents search subsections of the network

to discover additional edges that are malicious but were not detected by the IDS. Snort takes on



142 CHAPTER 5. SIMULATION RESULTS & DISCUSSION

Figure 5.9
Comparison of Attack Detectability (Avdetectability threshold).

the role as the data gathering/analysis module by using its signatures to classify the activity as

malicious or innocuous. Typically an IDS has many signatures that can be enabled or disabled

depending on the threat model with fewer signatures being used to improve the FAR and more

signatures used to increase the DR but at the cost of increasing the FAR.

The dataset model contains a total of 236 edges with 148 malicious. Snort IDS detected a

total of 25 edges. The majority of the edges not detected by Snort were attempting to scan the

network, in particular where the attacker scanned an IP address that was not in use. Typically,

this behaviour is considered non-malicious by most IDSs as its cause often occurs normally

within local networks as a result of typical probing and non-malicious networking problems.

Figure 5.11 shows the connection model for probe activity with many connections made to IP

addressable nodes that do not exist on the network and so get no response.

The following agent-based search of the data is measured by the detection rate increase as well

as the computational cost of performing an additional search. The detection rate is measured by

the number of additional edges investigated that were malicious while the computational cost is

measured by the total number of edges investigated. While the detection accuracy is dependent

on the quality of the signatures a search based on the series weighting algorithm (see Algorithm

3.2) can be used to search sub-domains of the graph network based on the results of Snort’s

initial analysis of the data. By prioritising search in the areas that Snort previously identified as

containing malicious traffic, the search can more efficiently find the remaining malicious edges

without having to search unaffected areas of the network. While Snort parsed all 236 edges

to find 25 malicious events, the following search of the data parsed only 64 edges to find an
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Figure 5.10
An example of the USB ISCX dataset network.

additional 9 edges that were undetected by Snort. The agent search was both more efficient than

Snort (based on the amount of searched nodes that contained malicious traces) and detected

additional instances of malicious activity that it could not. The benefit of the system is that

it can use the concept of domains to find undetected locations of compromise. Following the

agent’s identification of an undetected location, the area can be analysed with additional IDS

signatures under increased suspicious while avoiding unnecessary analysis of unaffected areas.

5.2.2 System Scalability

During an IDS’s operation, it will process all available data and make comparisons against known

signatures of known malicious activity. This action provides a O(n) processing time where n

is the number of signatures for being processed. This is functionally similar to the system

benchmark shown in Figure 5.6 that has a large number of local decisions must be processed

to analyse the global decision. The algorithms improve on this by requiring less local decisions

(i.e., pieces of information) to be analysed for a similar overall result. In particular, the Series

Weighting with Cut-Off Threshold algorithm reduces the amount of processing required by over

50% which significantly improves the scalability of the system as less work must be undertaken

to achieve the same result.

Furthermore, the communication module to allow agents to exchange information while com-

munication is kept as lightweight as possible by separating the system functions. The function
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Figure 5.11
An example of probe activity not detected by snort IDS.

to find agents whose conditions are satisfied by the current information is a small message with

a minimal network footprint, while the larger global report is only sent specifically to the chosen

agent and not broadcast to the network. The algorithm results in Figure 5.6 that show the

number of local decisions required is substantially reduced is in proportion with the number of

network messages that are sent as every unique local decision requires the global report to be

sent.

5.2.3 Existing Approaches

Given that the DMASS system uses existing detection technologies within each agent to process

the collected information, average agent performance modelled the current state of the art for

IDSs (detection rate of 70-100% depending on the type of attack). Agents were tested under a

number of simulated environment types (controlled by the Ev variables) to make the results as

generalisable as possible. A wide range of attacks were performed to simulate the diversity of

footprints that may be left behind by the attacker (controlled by the Av variables). Using this

model, improvements were made to the performance of traditional technologies through the in-

clusion of agent-based mechanisms, in particular, the domain exploration algorithms are shown

to be effective in high false alarm environments where traditional technologies relying on only

detection signatures without corrective measures perform poorly. With the control variables

(Ev and Av) randomly initialised between simulated runs, simulations were performed under a
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diverse range of conditions representative of modern networks. The results in Table 5.1 show

that an improvement to the detection rate of up to 20% can be made over traditional approaches

by introducing corrective measures to detect poorly performing agents in high false alarm situa-

tions. Traditional systems that attempt to match as many signatures as possible result in worse

performance than the extended data collection approach because irrelevant classifications can

dilute the final event analysis.

5.2.4 Model Vulnerabilities

The model provides a robust solution to encompassing many detection technologies for use by

an automated agent-based forensic architecture. However, the use of agent-based technologies

brings with it a set of considerations highlighting the limitations of the model. Agents rely on

the transfer of information to share local views of the network to make the final global decision,

as a result, under conditions of prolonged network congestion or purposeful denial of service, the

extended data collection task could be disrupted. While the availability of agents is an important

consideration, forensic investigations can occur after-the-fact, as such the process may continue

once normal network conditions are restored.

In MASs, the communications overhead is often computationally expensive due to the de-

centralised nature of the system. Figure 5.6 shows the trade-off between the global decisions

and the number of local decisions (which represents the number of communications made).

While the figure shows a reduction in the overall number of communications between the four

algorithms, this is still exponentially higher than a central approach that does not require any

communication between its components. The trade-off is shown in Figure 5.7 where the base-

line approach performs poorly in high false alarm environments because of the vast amount of

endpoints to scan and an inability to distinguish between malicious and innocuous. However,

the Series Weighting with Cut-off algorithm performs much better because it uses an agent

performance measure to penalise poorly performing agents. Overall, while the communications

overhead creates an increased burden on the network, the detection accuracy is increased.

5.3 Generalised Anomaly Detection Evaluation

In this section, an evaluation of the generalised anomaly detection algorithm is given in com-

parison to existing techniques from the literature and commonly applied machine learning algo-

rithms. When comparing the algorithm against both supervised and unsupervised approaches

to show the effect of overfitting in both categories. Three types of evaluations are performed: (i)

multi-dataset supervised evaluation tests the performance of supervised algorithms in training
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on one dataset (using 10-fold cross-validation) and testing on another dataset, (ii) single-dataset

unsupervised evaluation tests the performance of unsupervised clustering algorithms using a sin-

gle dataset since the strength of the unsupervised approach is that no offline training is required,

and (iii) a comparison is made to algorithms from the literature that use the same dataset. The

algorithm is evaluated using two separate datasets to show that it can be applied to different

networks without suffering from implementation overfitting.

5.3.1 Datasets for Generalised Anomaly Detection

There has been a historical problem of obtaining suitable datasets for cybersecurity with most

organisations preferring to keep their data private due to fears of unintended information leakage.

With the general lack of good data available, research is often validated against outdated datasets

such as the DARPA 1999 dataset [116] which contain known structural problems and may not

be representative of the modern network due to its age. Furthermore, the type of data used as

the basis for detection will govern the systems real-time deployability and scope of detection. As

the amount of preprocessing required increases, the suitability for real-time detection decreases,

and as the scope of the dataset narrows, so does the ability to detect a broad range of attacks.

To fully capture a broad range of attacks, the data must be wide in scope justifying the choice

to use flow-level data collected directly from the wire. Table 5.2 lists several commonly used

datasets with a discussion on the type of data as well as common criticisms.

5.3.2 Performance Evaluation

To evaluate the algorithm’s performance, the UNB ISCX dataset is analysed by the generalised

algorithm to build a network model and compared against several alternative techniques. As

previously stated, the algorithm requires that only L2L data be used within the model, as such,

non-local data was disregarded from the evaluation. Direct comparisons between this algorithm

and others that analyse the whole dataset are made, however, the comparison is fair since 19,610

of the 20,358 flows labelled as “attack” present in the UNB ISCX dataset exist within the L2L

portion of the data1. The metrics used to compare the generalised algorithm with existing

systems and machine learning algorithms are listed below with the detection rate and false

alarm rate being the most important measures from a security point of view.

Accuracy =
TP + TN

TP + TN + FP + FN

1For the day June 13th, 2010 (day 3) containing a high number of internal network attacks.
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Table 5.2
Comparison of commonly used datasets.

Dataset Type of Data Discussion

DARPA 1999 [116] Simulated Tcpdump
data from inside and
outside of a medium-
sized U.S. air force
base.

There are many criticisms [144, 111, 33] con-
cerning the reliability of the dataset includ-
ing the TTL† values for the packets and the
baseline performance when tested using a
signature-based IDS and age of the dataset.

KDD CUP 1999 [151] An improved version
of the DARPA 1999
dataset.

Many problems with the DARPA 1999
dataset persist, however, the dataset was
cleaned to make both the training and test-
ing sets more realistic.

UNB ISCX Intrusion
Detection Evaluation
Dataset 2012 [144]

Simulated labelled
Tcpdump data.

Simulated data extracted from real user logs.
Attacks include a diverse range of multi-
stage attacks originating from both inside
and outside of the local network‡.

UNSW-NB15 Net-
work Data Set 2015
[20, 117]

Simulated labelled
Tcpdump data.

A large synthetic-hybrid dataset collected by
the Cyber Range Lab of the ACCS contain-
ing nine types of attacks: Fuzzers, Analysis,
Backdoors, DoS, Exploits, Generic, Recon-
naissance, Shellcode and Worms.

† IP Time To Live field.
‡ 8 categories of attacks including: fuzzers, reconnaissance, shellcode, analysis, Denial of Service,
backdoors, exploits and worms.

Detection Rate =
TP

TP + FN

False Alarm Rate =
FP

FP + TN

Specificity =
TN

FP + TN

Matthews Correlation Coefficient =

(TP ∗ TN)− (FP ∗ FN)√
(TP + FP ) ∗ (TP + FN) ∗ (TN + FP ) ∗ (TN + FN)

Table 5.3 lists the performance evaluation for the generalised algorithm when tested with

the UNB ISCX dataset (day 3). Given the high-level nature of the dataset containing many

types of attacks, the system is effective in classifying attacks to an acceptable degree. The

high specificity of the system (90.11%) shows the accuracy of the model in iteratively grouping

together connection flows to explain their presence within the network. Furthermore, since the

algorithm is presented as a classifier for use within a wider security context (e.g., to tune an
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Table 5.3
The detection performance metrics for the generalised anomaly detection algorithm using the
UNB ISCX dataset (day 3).

Metric Value

Accuracy 87.06%

Detection Rate 81.03%

False Alarm Rate 9.89%

Specificity 90.11%

MCC 71.05%

Table 5.4
The detection performance metrics for the generalised anomaly detection algorithm using the
UNSW-NB15 dataset.

Metric Value

Accuracy 94.59%

Detection Rate 88.80%

False Alarm Rate 2.51%

Specificity 97.65%

MCC 87.74%

IDS), it is preferable to have an increased number of false positives which can later be further

investigated and verified, rather than a high number of false negatives which would not be further

investigated.

To validate the generalisability of the algorithm it was also tested on the UNSW-NB15

[20, 117] dataset containing a variety of attacks captured at the network flow layer. By testing

the model on a different dataset containing different attacks, the algorithm is shown to be scalable

in different networks while not producing over-fit results for a particular attack implementation

or dataset. Table 5.4 shows a similar results distribution with a low false alarm rate and high

system specificity. Overall, the algorithm performed similarly on both datasets providing an

effective way to detect attacks across a variety of network topologies.

5.3.3 Machine Learning Comparison

Comparing the results with alternative techniques is challenging in the absence of a general

framework in addition to the variety of datasets (refer to Table 5.2) used throughout the liter-

ature, some of which are recognised as being unsuitable for making general classifications and
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Table 5.5
Performance comparison of related works and machine learning algorithms.

Author Dataset Detected At-
tacks

Detection Rate False Alarm Rate

Generalised algorithma UNB ISCX Local Network
Infiltration

81.03% 9.89%

Generalised algorithmb UNSW-NB15 DoS, Fuzzers,
Exploits, Re-
con, Shellcode,
Worms

88.80% 2.51%

Heidarian et al. [69] UNB ISCX DDoS Onlyc 89.25% 8.60%
Wang et al. [162] UNB ISCX DDoS Only 74.02% - 89.30%d 10.70% - 25.98%d

Pajouh et al. [126] NSL-KDD Probe, DoS,
U2R, R2L

82.0% - 83.24% 5.43% - 4.83%

Pervez et al. [131] NSL-KDD Probe, DoS,
U2R, R2L

82% 15%

Tama et al. [150] NSL-KDD Probe DoS,
U2R, R2L

91.82% - 99.85% 4.19% - 0.27%

Tama et al. [150] UNSW-NB15 DoS, Fuzzers,
Exploits, Re-
con, Shellcode,
Worms

91.31% 8.60%

Abdalla et al. [2] Private Local Network
Infiltration

74.0% 40%

Jiang et al. [81] Abilene network traffic DDoS & Mixed
Attacks

87% 40%

Lakhina et al. [97] Abilene network traffic Worms 80% 10%
Papamartzivanos et al. [128] UNB ISCX Local Network

Infiltration
63.76% 2.61%

C.45 Decision Treee UNB ISCX Local Network
Infiltration

43% 51%

RBF Neural Networkf UNB ISCX Local Network
Infiltration

52% 76%

Simple K-Meansg UNB ISCX Local Network
Infiltration

40% 28%

Expectation Maximisationh UNB ISCX Local Network
Infiltration

50% 70%

a Accuracy: 87.06%, Specificity: 90.11%, MCC: 71.05%, dataset day 3.
b Accuracy: 94.59%, Specificity: 97.65%, MCC: 87.74%.
c Evaluated using the dataset for June 13th, 2010 (day 3).
d Results depend on the model configuration.

e Confidence factor: 0.25, Number of folds: 3.
f Minimum standard deviation: 0.1, Number of clusters: 2.
g Distance function: Euclidean, Maximum iterations: 500, Number of clusters: 2.
h Maximum iterations: 100, Minimum standard deviation: 1.0E6.

are considered to be error-prone. The commonly used DARPA 1999 dataset has been found by

many authors to be inaccurate in representing the typical network environment and suffering

from statistical problems arising from the synthetic construction of the data [102, 25, 33]. For

this reason, the UNB ISCX and UNSW-NB15 datasets were used as alternatives.

To highlight the aforementioned problems of implementation overfitting, several machine

learning algorithms were trained and tested using two datasets similarly to the previous experi-

ment. To benchmark the generalised anomaly detection algorithm, four well-known and widely

deployed machine learning algorithms were trained on the UNB ISCX data and tested on the

UNSW-NB15 dataset to show the performance reduction that occurs when attempting to gen-

eralise between networks. Both datasets were cleaned and normalised to produce nine matching

features commonly used to evaluate machine learning algorithms: Application Name (nominal),
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total source bytes (numeric), total destination bytes (numeric), total source packets (numeric),

total destination packets (numeric), source port (nominal), destination port (nominal), protocol

name (nominal) and the class value (attack/normal). The algorithms were trained using 10-fold

cross-validation and compared against the known class values for each flow. Specifically, the four

algorithms were chosen for their widespread use in the literature and to test the dataset using

different approaches (i.e., decision tree, neural network and unsupervised clustering). Table 5.5

lists the detection rate and false alarm rate for both the supervised and unsupervised learning

algorithms tested. While some approaches detect multiple attacks, others that only detect one

type will often perform better in terms of detecting the attack, however, for the purposes of

detecting a variety of attacks, the proposed algorithm performs better overall.

The original dataset of 19 features (See Table 4.1) and the class was reduced to 11 through

feature selection based on a literature review and testing of several features. The removed

features fall into three categories: (i) string-based features, (ii) device IDs, and (iii) temporal

features. The string-based feature (i.e., the payload) cannot be easily modelled through machine

learning due to its complex format and the prominence of encryption resulting in unique values

for identical payloads. Device IDs (i.e., IP addresses) are unsuitable for local network anomaly

detection as the IP addresses used within these features are re-used between networks (and

datasets) since they are within the local-network IP address range, as such any model relying

on a particular IP address for classification will classify future instances incorrectly. Finally,

temporal features (i.e., startDateTime and stopDateTime) are dependant on the time the attack

was initiated, the length of the attack and any evasive techniques used (e.g., slowing a port scan

down to avoid detection). Table 5.6 lists the removed features with a comparison of the gain ratio

rank scores showing the predictability of each feature and discussion on why it was removed from

the data; these features may be useful for other approaches to detecting attacks (e.g., the start

and stop time may be useful for temporal-modelling), however, they are deemed inappropriate

for broad-based APTdetection for the reasons noted in the table.

Further tests were performed to compare the performance comparison of the removed fea-

tures, however, through feature selection performed within the selected algorithms (e.g., C4.5

leaf pruning), the identified features were typically removed early. During a comparative eval-

uation of the datasets with and without the source and destination IP addresses using a C.45

decision tree, the IP address features did not appear in either tree having been pruned by the

algorithm. Both algorithms performed equally within a 1% margin of error due to the IP address

features being removed. The results of various algorithm comparisons are included below.
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Table 5.6
Comparison of Removed Features.

Feature Grain Ratio
Rank Score

Reason for Removal

Destination IP 0.175 While the target of an attack is an important
feature, within the local network where IP ad-
dresses are allocated within the private IP range
(i.e. 192.168.0.0 to 192.168.255.255) any model
built using this feature could not be applied for
future attacks.

Source IP 0.130 Like destination IPs, APTs launched from the
local network use IP addresses within the private
range.

StartDateTime 0.062 Poor performance and APTs are not modelled
well temporally.

StopDateTime 0.062 Poor performance and APTs are not modelled
well temporally.

SourcePayload-
AsBase64

0.0004 Poor performance and prevalence of payload en-
cryption.

DestinationPayload-
AsBase64

0.0003 Poor performance and prevalence of payload en-
cryption.

DestinationPayload-
AsBaseUTF

0.0002 Poor performance, prevalence of payload encryp-
tion and similar to Base64 representation.

SourcePayload-
AsBaseUTF

0.0001 Poor performance, prevalence of payload encryp-
tion and similar to Base64 representation.

C4.5 Decision Tree The C4.5 algorithm [171] is a statistic classifier for building decision

trees. When trained on one dataset and tested on another, the algorithm correctly identified

49% of instances with a FAR of 0.51, a DR of 0.43 and a ROC Area of 0.459.

Radial Basis Function Network Radial Basis Function (RBF) [32] is a neural network

chosen for its resistance to high-dimensional noisy data and efficiency during the training phase2.

When trained on one dataset and tested on another, the algorithm correctly identified 52% of

instances with a FAR of 0.76, a DR of 0.52 and a ROC Area of 0.355.

Simple K-Means Clustering Simple K-Means is a simple clustering algorithm that performs

well on noisy high-dimensional data. When tested on the UNB ISCX dataset using a classes-to-

2Note that 10-fold cross validation could not be used during the training phase due to the exponential increase
in the time required caused by the amount of nominal variables.
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clusters evaluation3 the algorithm correctly identified 73% of the instances with a FAR of 0.28

and a DR of 0.40.

Expectation Maximisation Clustering Expectation Maximisation clustering performs

cross-validation to determine the number of classes. When tested on the UNB ISCX dataset

using a classes-to-clusters evaluation the algorithm correctly identified 60% of the features with

a FAR of 0.70 and a DR of 0.50.

From these results, the problem of overfitting is highlighted by showing the performance

reduction when evaluating the supervised algorithms on different training and test datasets.

Often within the literature, an algorithm is trained and tested on different portions of the same

dataset which results in an artificially high classification result (upwards of 98%) because the

attack footprint will be static for the particular attack. When tested on two datasets, the

performance reduction is explained by the variety of attacks, the dynamic nature of the attack

footprint, and the adversarial control over the flow features, resulting in a model that is not truly

representative of the wider attack but are overfitted to the specific implementation of the attack.

The results show that unsupervised clustering algorithms are more suited to this environment

as there is no requirement to perform prior offline training allowing the algorithms to remain

sensitive to the network’s normal traffic patterns. These results demonstrate the advantages of

focusing on detecting the abstract behavioural differences between the connections and endpoints

rather than focusing on a particular feature that would identify general malicious behaviour.

5.3.4 Dataset Comparison & Challenges

Within the literature authors often use datasets to detect specific types of attacks rather than

multiple attacks. Heidarian et al. [69] use Support Vector Machines to achieve 89.25% accuracy

in detecting denial of service attacks from the UNB ISCX dataset. Algorithms with a narrow

scope often outperform broader models that attempt to detect a variety of attacks because the

variability of the data is lower. However, many authors do not perform an evaluation to test

for attack overfitting as described in Section 5.3.3 by testing the model on multiple datasets.

Table 5.5 shows the performance of current models from the literature that attempt to detect

attacks in the UNB ISCX dataset. The Generalised Anomaly Detection Algorithms achieves a

similar detection and false alarm rate in classifying a wider variety of attacks (e.g., DoS, fuzzers,

system exploits, reconnaissance, shellcode and worms) than the listed approaches do in detecting

a single attack. Furthermore, the results are validated on a secondary dataset (UNSW-NB15) to

3The model is first built using the available features and then evaluated by comparing the distribution of the
two classes over the clusters.
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show that the model is not overfitted to any particular dataset but can be applied to networks

of different architectures and containing different attacks.

Data balancing is an important consideration for the training and testing of ML algorithms

requiring a dataset containing a similar number of both malicious and innocuous samples. While

in a live environment, the ratio of malicious-to-innocuous will often be unbalanced with the

volume of innocuous being far greater, especially in the case of stealthy attacks where the

objective is to remain hidden and undetected. While the datasets used are more balanced

than would be typically found in live environments to improve the quality of the ML model,

supervised learning techniques require re-training in live environments which can be challenging

given the lack of labelled network security datasets that are properly balanced and representative.

Furthermore, the approach to algorithm evaluation proposed in this thesis is to make use of

multiple datasets for the training and testing stages. Given the reality that the footprint of

a given attack can change between attacks and that there are multiple ways to achieve any

particular goal, building a model based on the data from one source often leads of incorrect

classification of future instances.

5.3.5 Generalised Anomaly Detection for DMASS

The generalised anomaly detection algorithm is designed to be of particular use to the DMASS.

The two systems can be viewed as addressing different aspects of the cybersecurity problem,

(i) the generalised anomaly detection algorithm works towards detecting the initial traces of an

attack, but it cannot detect the specifics of the attack, whereas (ii) the DMASS system can

perform in-depth investigations into a network, but it relies on signatures of existing approaches

to begin the extended data collection process. Both systems are mutually beneficial to each other

with the generalised algorithm providing the trigger for the DMASS to perform the in-depth

investigation.

Together the systems provide an automated approach to detecting and investigating network

threats with a focus on detecting advanced stealthy attacks that employ evasive techniques to

bypass IDS triggers.

5.4 Summary

In this chapter, the results of the DMASS and generalised anomaly detection algorithm were

provided as well as a description of the simulator in which they are developed. The simu-

lator contains features to enable the fair comparison of different algorithms under the same

environmental conditions. Through the use of system profiles, the same groups of agents can be
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compared using various algorithms to produce a more accurate comparison of the detailed agent-

based features. Additionally, in-depth logging of agent actions are produced for interpreting the

results produced by the simulator. The DMASS produced a detection rate of 80-85% under

high false alarm environments in comparison to the baseline approach that is more closely tied

to the performance of signatures. In addition to the detection rate improvement, the DMASS

increased efficiency by 50% by introducing agent preference and threshold cut-off to avoid brute-

force analysis. The generalised anomaly detection algorithm produced an average detection rate

of 85% while detecting a wide variety of network attacks. The algorithm is unsupervised and

so can be applied directly to the network without a prolonged training period making it more

suitable for real-time detection. Furthermore, by focusing on the anomalous lateral movements

made by the attacker, the algorithm is more adaptive to future variations of attacks that may

be implemented with different feature-values.



Chapter 6

Conclusion & Future Work

When cyber attacks are successful, they can result in widespread disruption of services, monetary

costs and the compromise of user privacy. Generally, the longer a cyber attack persists, the most

costly it becomes; as a result, security systems must prioritise the timely detection and removal

of threats that penetrate the perimeter of the network.

Persistent threats that can remain undetected and have long-lasting ramifications have arisen

as a challenging issue for modern network security. With current detection technologies mostly

relying on manually defined signatures to describe known malicious behaviours, unseen and

stealthy attacks without a corresponding signature can effectively bypass security undetected. In

recent years, examples of high-profile advanced persistent threats such as Stuxnet, Duqu, Flame

and Red October have been studied as examples of persistent threats that are well sponsored,

researched and targeted. While the static signature-based solution has proven unable to adapt

to these threats, new approaches using machine learning and adaptive multi-agent systems have

shown promising results in addressing the new generation of attacks.

The evidence from the research suggests that the current generation of monolithic intru-

sion detection systems that effectively brute-force monitor the network environment for rule

violations cannot adequately protect systems from persistent threats that make use of evasion

technologies. The first significant contribution was the application of multi-agent systems to the

problem of advanced persistent threat detection, which was shown to be a viable and adaptive

solution for dynamically collecting evidence, knowledge representation and reducing the number

of false results. The methodology presented for use within the Decentralised Multi-Agent Secu-

rity System allows for the automatic operation of agents to collect and analyse evidence from

around the network. Mechanisms for guiding the agents to reliable sources of information and

avoiding the inclusion of poorly performing agents were developed to avoid the disadvantages

of the current generation of static intrusion detection technologies. Through the development

155
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of distributed algorithms for use within the proposed multi-agent systems, the results show

that the amount of work done (regarding processing signatures) can be reduced by using the

multi-agent approach. Given the complexity of the network environment with great variety in

terms of technologies and protocols, the targeted multi-agent approach resulted in an increase in

accuracy while significantly reducing the amount of processing required. This result is credited

to the agent-based mechanisms such as agent-preference and the ability of agents to analyse the

current effectiveness of the evidence gathering investigation.

Machine learning has arisen as a promising approach to detecting malicious behaviours within

cybersecurity. Anomaly detection is based on the idea that there exists distinguishable behaviour

between malicious and legitimate users, and through modelling user behaviour, these differences

can be detected. One of the main issues in the application of machine learning technologies

to the live environment is overfitting. When a model learns the training data too well, it

can negatively impact the performance of the algorithm resulting in solutions that are tied to a

particular implantation of an attack, rather than to the category of attacks it is trained to attack.

The second major contribution of this thesis is the development of a broad-based algorithm for

use at the network-flow layer to detect the initial traces of persistent threats. While the goal of

the advanced persistent threat is to remain hidden from detection, certain actions are necessary

for the development of the attack. In particular, lateral movement throughout the network

cannot be avoided and cannot be easily hidden from detection. While separating the malicious

and legitimate movements at this layer requires an additional system, such as the proposed

Decentralised Multi-Agent Security Systems, the information gathered at this layer can be used

to indicate the broad location of malicious users. With the goal of avoiding implementation

overfitting, the proposed algorithm aims to detect a variety of attacks to identify hosts for

further investigation.

6.1 Summary of Novel Contributions

The research in this thesis presents the application of multi-agent systems to the problem of

automated evidence collection and processing as well as the detection of stealthy persistent

threats that cannot be easily detected by rule-based systems.

The main novel contributions of this thesis are as follows:

• Decentralised Multi-Agent Security System. The development of the decentralised

multi-agent security system aims to improve the way in which detection is done. The

monolithic approach of monitoring all network communications and making a final deci-
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sion based on a comparison against a signature is static and does not take into account

situational information about the order in which evidence is found or how it relates to other

pieces of evidence. The developed architecture separates individual agent evidence analysis

and the global classification stage to allow for the inclusion of additional mechanisms such

as agent performance a dynamic system for deciding when the evidence collection stage

should be ended and the classification made.

• Development of the Domains Model. The system of domains was developed to work

with the concept of conditions & effects, core to the operation of the decentralised multi-

agent security system. The model recognises that technologies found within local networks

relate to each other in different ways and this is used by the attackers to perform lateral

movement around the network. The series weighting algorithms were developed to make

use of this environmental fact to judge the quality of the information found by the agents.

For example, where collected evidence originated from around the network in a sporadic

pattern, the likelihood of it being a false positive result can be concluded, based on the

system of domains.

• Analysis of Overfitting in Cyber Security. In security research, the topic of overfit-

ting often goes undiscussed despite the environment and datasets being extremely prone

to its associated problems of producing inaccurate models that fail to adapt to new envi-

ronments. Unlike other fields of study, attackers, particularly advanced persistent threats

have the goal to remain hidden and deceive those attempting to detect them. Additionally,

attackers can directly affect the features found within the datasets used for training and

testing machine learning algorithms since the data features (such as packet sizes, desti-

nation and payload) all originate from either a user or attacker. The comparison shows

that machine learning algorithms often heavily bias towards the particular dataset and the

shape that the attack takes rather than the general pattern of the attack.

• Generalised Anomaly Detection. As an improvement over the current machine learn-

ing approaches that often overfit to the attacker, the generalised anomaly detection algo-

rithm was presented to detect a wide variety of attacks by studying the lateral movement

of attackers through the network. The algorithm specifically avoids using features of the

dataset and instead remodels the iterations between groups of users to find outliers for

further investigation. The results show that the algorithm can perform well in different

environments by testing it against different data sets containing a variety of attacks. The

disadvantage of the developed algorithm is that it cannot identify the type of attack, but
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only the location of the attack for further in-depth investigation. As such, the generalised

anomaly detection algorithm and the decentralised multi-agent security system work well

together to detect the initial traces of an attack and then investigate it further.

Together, the DMASS and generalised anomaly detection algorithm address the weakness

inherent in the other system to provide a comprehensive solution to detect and respond to cyber

attacks. The advantages of the generalised anomaly detection algorithm is its ability to (1)

detect a wide range of attacks, and (2) operate on the network layer, while its weaknesses are

(1) the output of the algorithm is a device address that appears to be acting anomalously, not a

comprehensive analysis of the event. The advantages of the DMASS are (1) its ability to perform

in-depth investigations into events, (2) its ability to proactively gather relevant information,

and (3) its ability to work on-demand rather than as a brute-force detection system, while

its weaknesses are (1) the on-demand approach requires an external indication to begin the

investigation. When used together, the system addresses both the problem of detecting events

from a high-layer (i.e., from network flows) and investigating the event further through the

agent-based DMASS architecture.

6.2 Future Work

Future work would focus on the increased integration of the proposed systems with current net-

work detection technologies, the continued application of the generalised algorithms to new en-

vironments and the use of Multi-Agent Systems to autonomously address cyber security threats.

• In particular, moving the DMASS from the developed simulator into a live environment

would require the re-working of current IDS technologies to operate as a MAS, several

steps have been taken to adapt the Bro IDS for this purpose. Due to the complex nature

of IDSs with many variable parts, the full development of a decentralised IDS was placed

outside of the scope of this research and testing to prove the individual algorithms was

performed instead. In addition, future work researching the automatic tailoring of IDS

signature sensitivity (i.e., the degree to which a piece of evidence is deemed to match the

signature) could be undertaken to increase automation of the system as a whole. The

exact degree to which each agent can increase signature sensitivity is an open research

question and will be studied as development into the MAS and IDS fields continue; a lack

of datasets to test this has lead to its inclusion as future work.

• The series weighting algorithms presented as part of the DMASS have provided interesting

results and shown the benefit of on-demand decentralised processing of information com-
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pared to the bulk processing of all available data. By introducing additional mechanisms

to consider the accuracy of the analysis (i.e., the domains and preferred agent model), false

alarms and the overall amount of processing can be reduced. Algorithms that make use of

these variables and include problem-specific information to evaluate the information collec-

tion process have been shown to be more reliable than the brute-force approach and may

have applications in other areas were correct classifications are difficult to make without

objective standards for making decisions. The context-based approach to problem-solving

could be applied in other fields where the data is complex and variable, requiring more

in-depth solutions. While classifying events on a single data point has proven to be the

most popular method of analysis, considering several data points and the context in which

they were collected could be applied to many fields to solve complex problems.

• An adapted multi-agent model developed within the simulator has already been applied

to the problem of web service composition in cloud computing environments. Web service

composition shares many environmental factors with that of network security; in partic-

ular, additional searching can result in higher costs and slower composition fulfilments.

The multi-agent approach of using meta-information to reduce searching by relying on

past composition histories, information about the distribution of web services and the

requirements of the users has shown to be a more efficient way of addressing the issues

within this area.
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