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Fast and Accurate Retinal Identification System:
Using Retinal Blood Vasculature Landmarks

Abstract—While technological advances in automation have 
made life easier, it has introduced major security threats. To 
deal with the increasing rate of e-commerce fraudulent activities 
and identity theft, it is crucial to elevate automated identification 
systems. We present a high-performance fast and accurate ap-
proach for retinal identification. The proposed approach achieved 
high recognition accuracy by using such features that have 
maximum discriminant power among the classes and completely 
eliminated overlapping. Segmentation accuracy is improved by 
using different and separate segmentations for thick and thin 
blood vessels. In contrast to other techniques which focused only 
on accuracy, time efficiency is also targeted alongside accuracy 
in this work. Our method is made fast and computationally 
time efficient via principal component analysis. The proposed 
technique is validated on DRIVE, STARE, VARIA, RIDB, 
HRF, Messidor, DIARETDB0, and a multi-sample per subject 
database created by authors using the images provided by Dr. 
Chen (Shanghai Jiao Tong University Affiliated Sixth People’s 
Hospital). Experimental results demonstrated that the proposed 
approach outperforms other existing techniques. Segmentation 
achieves an overall accuracy of 99.65% with the recognition rate 
of 99.40% on all these databases.

Index Terms—Biometrics, PCA, retinal identification.

I. INTRODUCTION

THE expansion of automation technologies and increased
risk of identity theft have led emphasis on the need

of automated identification systems. Biometric authentication 
is used for people identification based on their physical 
and behavioral traits [1]. Biometric traits can be used for 
identification of face, fingerprint, ear, retina, iris, palm print, 
speech, signature, keystroke dynamics, gesture, and gait [2],
[3], [4], [5]. Biometrics has observed a significant evolution 
from facial to speech recognition [6], [7]. Although commonly 
used biometric identifiers provide a high level of security, 
yet they are susceptible to forgery and variations. So, the 
permanence required for biometrics can be breached. To 
overcome these challenges, the alternate solution is to use 
retina as a biometric variant. The retina is an internal organ 
that lies at the back end of the eye which makes it resistant to 
forgery. Its morphological structure contains unique features 
as shown in Fig. 1. These features provide the basis for the 
distinction between different subjects [8], [9].

Previous researches on retinal identification mainly focused 
on: a) Reliable vasculature network extraction or feature 
points extraction and not on time efficiency [10], [11], [12],
[13], [14]; b) Used end points, bifurcations, crossing over, a 
combination of end points and bifurcation, a combination of 
bifurcations and crossing over, optic disc location as features 
[4], [13], [15], [16], [17]. All these features provide distinc-
tion, but with an overlap between classes (authenticated and 
intruder). This overlapping reduces recognition accuracy; c)

Fig. 1: Human Retinal Vasculature Network. End point, bifur-
cation, and crossing point are used as feature by the proposed 
system. Each of these feature points have been highlighted 
(Yellow = end point, Blue = bifurcation, Red = crossing over).

Used single segmentation technique for both thick and thin 
blood vessels [18], [19], [20], [21]. However, with a single 
segmentation technique, thin vessels get discarded. When thin 
vessels get discarded, the overall segmentation accuracy is 
reduced.

Motivated by these issues, this paper aims to: a) Accelerate 
the matching process to make identification fast, computation-
ally cost effective and time efficient. This acceleration and effi-
ciency will make it more suitable for real-time applications. b) 
Selection of such features that provide maximum discriminant 
power to improve recognition accuracy. c) Use an efficient 
segmentation technique to improve the segmentation accuracy. 
Our work makes the following three main contributions:

• Efficient and fast matching process Principal com-
ponent analysis (PCA) [22] based accelerated retinal 
identification system is proposed. The extracted features 
are projected into a subspace achieved by PCA. This 
dimension reduction significantly reduces computation 
time and accelerates the matching process.

• Enhanced discriminant power features A combination 
of end points, bifurcation, and crossing over is used. 
Experimental results showed that the in contrast to other 
techniques the proposed features combination completely 
eliminated overlap between classes and has maximum 
discriminant power. It results in improved identification 
accuracy.

• Improved segmentation accuracy Separate segmenta-
tions are used for thick/thin blood vessels. The use of 
hybrid segmentation is more effective to retain complete 
retinal vasculature. It prevents thin vessels from being 
discarded. That helps to improve segmentation accuracy.
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Fig. 2: Overview of the proposed approach. Enrollment and identification a re t wo m ain m odules. E nrollment module:-
Segmentation and Post-Processing: The result of the final s egmentation a nd s keletonization i s s hown. F eature Extraction: 
Features are extracted and highlighted using color slicing. Zoomed images depict the result of color slicing. Template Generation: 
Feature vector formation illustration: “a” is the candidate feature point. Distance and angle between “a” and its four nearest 
feature points “b”, “c”, “d”, and “e” are found to formulate feature vector. Reduced template formulation: PCA is applied 
for dimensionality reduction. The reduced template is then stored in the database. Identification Module:- Live-Template 
Formulation: Query image template (live-template) is generated. Matching: L2-norm is used to find the distance between live-
template and templates stored in the database. Depending on the distance, total similarity measure (T SM ) is calculated. Query 
image is given a status either authenticated or intruder based on T SM .

II. RELATED WORK

EyeDentify company provided the first commercially avail-
able retinal identification system that uses a retina scanner 
called EyeDentification [23]. It maps vascular pattern on the 
retinal portion of the eyeball. Sadikoglu and Uzelaltinbulat 
[24] used the feature vector of the segmented image with 
a neural network. The neural network is trained by back-
propagation. Fatima et al. [15] used a recursive supervised 
multilayered thresholding for accurate segmentation. Vascular 
ending and bifurcation are used as features. Mahalanobis 
distance is used as a similarity measure for identification. 
In [17], feature extraction is performed by using optic disc 
location as a reference point. Blood vessels that are around 
optic disc are used for feature generation. Köse et al. [25] 
proposed a retinal identification that employed a similarity 
measure and is capable of tolerating the transformations. In 
[11], Fourier transform coefficient and angular partitioning are 
used for feature detection. Euclidean distance is used in the 
matching process. Monisha and Seldevchristopher [12] used 
the crossing number technique to find features and voting 
for finding similarity. Sasidharan [14] used skeletonization 
for feature extraction. Similarity transformation is used for 
similarity check between reference and candidate image.

Akram et al. [13] formulated feature vector by calculating
distance and angle between feature points. Bifurcation is the
chosen feature point. The accuracy was further improved by

using both bifurcation and end points as features in [4]. Gabor
filter is used for extraction of feature points. The resulting
feature vectors are stored in the database. The reference image
and candidate images are matched using a SVM classifier [26].
In [16], branch points and crossing points are extracted from
only those vessels that have a certain width. Geometric hashing
is used to make features invariant. Crossing points and branch
points are used to map the hash table for every image. Jiu
et al. [27] used Gabor wavelet transform for enhancement of
vessels. The feature vector is formed by calculating distance
and angle between four nearest neighbors of a feature point.
Euclidean distance is used to test authentication.

III. APPROACH OVERVIEW

Fig. 2 gives an overview of the proposed system. It com-
prises of two main modules: Enrollment and Identification.
Enrollment module comprises of pre-processing, segmenta-
tion, post-processing, feature extraction, template generation
and registration to database submodules. Identification mod-
ule comprises of live-template formulation and matching
submodules. Pre-processing is specifically used to remove
artifacts. Feature extraction is used for features extraction.
After that, angle and distance between a feature point and
its four nearest feature points are calculated to formulate
the template. Template dimensionality is then reduced by
PCA. This step is crucial as it hastens the matching process
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Fig. 3: (a) Thin vasculature obtained without using NVCR: 
Zoomed images show artifacts. Red = optic disc boundary is 
apparent, Green = blood vessels are not enhanced properly and 
somewhat suppressed, Yellow = noise is also present and has 
a similar texture to that of vessels. (b) Thick vasculature ob-
tained without using NVCR. Red = non-uniform background, 
Green = illumination is present around blood vessels, Yellow = 
retinal boundary is also highlighted and there is no distinction 
between foreground and background.

and gives the proposed technique a lead over other existing 
techniques. After that in registration to database submodule, 
dimensionality reduced templates are stored in the database. In 
the identification module, the query image is given to system 
and its live-template is generated. L2-norm is used to calculate 
the distance between the feature vector of live-template and the 
feature vector of all the templates stored in the database. Based 
on the distance T SM is calculated. The result of this matching 
is a list of T SM between live-template and templates stored 
in the database. The subject with which live-template has 
maximum T SM is considered a match. If T SM is less than 
a pre-defined threshold then the query image corresponds to 
an intruder.

IV. ENROLLMENT MODULE

A. Pre-Processing

The presence of noise in retinal images can render them 
inappropriate for identification p hase [ 28], [ 29]. R etinal im-
ages contain non-uniform illuminations, blurry areas, and 
noisy background. Noise seems to be present in regions with 
poor illumination and is more prominent closer to retinal 
edges [30], [31]. Eye movements cause motion artifacts that 
induce blurring in images. Noise can also be induced by 
image acquisition modality i.e. Fundus camera [32]. Thus, pre-
processing is used for artifacts exclusion and to make images 
appropriate for reliable feature extraction. Pre-processing is of 
vital significance as the overall strength of retinal identification 
depends on the final segmented image. To deal with variations 
of different data sets, standardization is done to make the 
proposed technique universal for all of the data sets. Through 
experiments, the resolution of 256×256 is found to be optimal 
for performance. Thus, all images are resized to the resolution 
of 256 × 256.

1) Contrast Enhancement (CE): Green channel contains 
fine details and valuable information. So, to obtain maximum 
contrast between the blood vessels and background green 
channel is extracted. To make intensity uniform and to remove 
non-uniform illuminations from the images, Contrast Limit-
ed Adaptive Histogram Equalization (CLAHE) [33] is ap-

Fig. 4: Pre-processing. (a) CE module: Enhanced image ob-
tained by applying CLAHE on Igchannel. Zoomed images 
show NVC. Yellow = optic disc, Red = macula, Pink = 
background with noise. (b) NVCR module: Background re-
moval: Removes the artifacts and noise in the background by 
masking enhanced image with mask. Zoomed image shows 
a complete black background with no noise. Optic Disc and 
Macula Removal: Modified Top-Hat Transform i s applied for 
removing optic disc and macula.

plied. CLAHE divides the image into non-overlapping regions 
termed as tiles. Contrary to conventional contrast enhancement 
methods, it prevents over-amplification of noise by using a pre-
defined v alue t ermed a s c lip l imit [ 33]. T here i s n o n eed for 
adaptive selection of CLAHE parameters because image size 
has been fixed t o t he r esolution o f 256 × 2 56. To s elect an 
appropriate clip limit for CLAHE, we varied clip limit from 
0.01-0.05. With a clip limit of 0.01, the image quality was 
improved, the noise level was low and blood vessels were 
perceivable as well. To select tile size, we varied it from [8×8] 
to [64 × 64] and compared corresponding processing time. 
With different images, a window size of [8 × 8] had the least 
processing time. So for experiments, a clip limit of 0.01 and 
window size of [8×8] is applied to the extracted green channel 
(Igchannel) for optimum performance.

2) Non-Vascular Components Removal (NVCR): Segmen-
tation process is accelerated by removing non-vascular com-
ponents (NVC). NVC constitute of background, optic disc, 
macula, and other abnormalities. If NVC are not removed, 
the processing time will be more, blood vessels will not be 
enhanced appropriately, the noise will be more apparent, there 
will be non-uniform background, the computational cost of 
successive methods will be more and NVC will appear as 
false positive during segmentation stage. These artifacts are 
clearly visible in Fig. 3. All these factors result in declined 
performance. So, NVCR has a crucial role in handling the 
general performance of the proposed system.

The region of interest (ROI) in retinal images corresponds 
to the semi-circular region over a dark background [30]. The 
background is not actually black, but it contains noise [34]. So, 
it is necessary to mask the pixels that do not constitute ROI. 
Mask image is created by a two-stage process: coarse level and 
fine level. At the coarse level, Otsu threshold algorithm [35] is 
applied to Igchannel. However, some pixels are misclassified 
at this stage. At the fine l evel, t hese p ixels a re classified 
correctly by morphological opening and closing operation with 
a disc-shaped structuring element having radius 2. After that, 
masking of Igchannel is performed with the mask obtained. 
This step removes background noise and unwanted pixels 
that do not constitute ROI as shown in Fig. 4. Instead of a
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Fig. 5: Flow diagram showing blood vessels enhancement,
segmentation and image fusion. (a) Pre-processed image.
(b) BVE module: Application of Frangi filter generated two
outputs (Thin vessels network and thick vessels network). (c)
Segmentation module: k-means clustering used for thin vessels
network and Multilevel Thresholding used for thick vessels
network. (d) Image fusion: Final segmented image obtained
by fusion of thick and thin vessels.

normal top-hat transform which induces noise, modified top-
hat transform [36] is adopted. Modified top-hat ensures better
noise removal and suitable feature extraction.

ITophat = I − (I • Sc) o So (1)

where I is input image, • is a closing operator, o is an opening 
operator, Sc is the structuring element used for closing and So 
is the structuring element for opening, IT ophat is the output 
image. For both closing and opening disk type structuring 
element with the radius of 15 pixels is used. The opening 
stage of the modified top-hat transform removes the optic 
disc. Fig. 4(a) has the clear optic disc, macula, and noisy 
background. Proposed NVCR completely removes these NVC 
without effecting the blood vessels in the optic disc region as 
shown in Fig. 4(b).

3) Blood Vessels Enhancement (BVE): Without BVE, the 
output generated by NVCR will be directly subjected to the 
segmentation module. It is clearly evident from Fig. 4(b) that 
the output of NVCR is not appropriate for vasculature 
segmentation. It needs proper enhancement before segmen-
tation. Hence, BVE is a crucial factor for blood vasculature 
enhancement and to make image appropriate for segmentation. 
Currently used enhancement techniques also enhance noise that 
appears as spurs in the segmented result and increases false 
positive rate. Frangi filter is used in this work for blood vessels 
enhancement. Contrary to existing techniques that enhance 
whole structure, Frangi filter performs enhancement of only 
elongated structures. In the case of retinal images, these 
structures constitute blood vessels. Thus, the noise is 
suppressed as shown in Fig. 5(b). Given a continuous 2D image 
I(Ŷ  ), Frangi filter [37] for blood vessel enhancement is 
adopted.

r(Ŷ , σ, β1, β2) =


0 if λ2(Ŷ , σ) > 0

exp

(
−
R2

B(Ŷ , σ)

2β2
1

)
×(

1− exp

(
−
S2(Ŷ , σ)

2β2
2

))
, otherwise

(2)

Fig. 6: (a) Vasculature estimated by multi-level Otsu thresh-
old. The highlighted portion is estimated only by multi-level 
threshold. (b) Vasculature estimated by k-means. The high-
lighted portion is estimated only by k-means. (c) Image fusion: 
combines and harness results of both (a) and (b) to create 
a single-fused image (Ifused). Ifused is more informative, 
as it combines information from both (a) and (b). (d) Post-
processing: Result obtained by performing area opening of 
Ifused.

where λ1(Ŷ , σ) and λ2(Ŷ , σ) are eigenvalues of local
hessian estimated at Ŷ with scale σ. RB(Ŷ , λ) = λ1(Ŷ ,σ)

λ2(Ŷ ,σ)
is the elongated strength. It calculates the variation from
blob by taking into account the eccentricity of the second
ellipse. The structureness measure is given by S(Ŷ , σ) =√
λ21(Ŷ , σ) + λ22(Ŷ , σ). The parameters β1 (Frangi beta one)

and β2 (Frangi beta two) control sensitivity of the filter to
deviation in Rβ(Ŷ , σ) and S(Ŷ , σ) [38]. The values used for
β1 and β2 are 2 and 3.5.

B. Segmentation

Segmentation is paramount of overall performance because 
the errors prevailing in final segmented retinal images will 
significantly affect the feature extraction and identification 
process. In phase-based level set methods, vessel width plays 
an important role in the wavelet response. Thick blood vessels 
give a high response in contrast to thin vessels [15]. Due 
to varying wavelet response, thin vessels may get discarded. 
Another overhead of such methods is the optimal threshold 
selection to handle varying wavelet response. To overcome 
these issues and to retain both thick and thin vessels hy-
brid segmentation technique is used. Hybrid segmentation 
technique aids to estimate as much vasculature as possible. 
That in turn helps to achieve high segmentation accuracy. 
The advantage and contribution of hybrid segmentation are 
evident from Fig. 6. k-means clustering is used for thin 
vessels segmentation. k-means is a data clustering iterative 
algorithm that partitions the data points into clusters on the 
basis of their distances from the centroid [39]. To choose 
clusters k optimal for our data set, average silhouette method 
[40], [41] is used. Multi-level thresholding using Otsu is 
used for thick blood vessels segmentation. It performs well 
where the image has to be divided into two classes of pixels. 
It automatically calculates the optimum threshold in such a 
way that it maximizes between class variance of segmented 
classes [35]. It divides the image into multiple classes with 
optimization objective as:

J1(th1, th2, ...thk) = σ0
2 + σ2

1 + σ2
2 + ...+ σ2

k (3)
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Fig. 7: Two possible outcomes of the feature extraction phase. (a) The result of feature extraction performed without
skeletonization. Consequently, the feature extraction generates wrong features. (b) The result of feature extraction performed
with skeletonization. The extracted features are correct and each one is marked correctly by color slicing.

σ2
0 , σ

2
1 , σ

2
2 , ..., σ

2
k

where k is the total number of classes, {th1, th2, ..., thk}{is the set of }thresholds applied on the image, and
is variance set.

After segmentation, image fusion is performed to harness 
the results generated by k-means and multi-level threshold to 
generate a single-fused image. Image fusion is performed by 
spatial domain fusion method. We particularly used pixel level 
fusion using the Maximum method from spatial domain [42]. 
The maximum method performs a selection process. Every 
corresponding pixel of the images to be fused is compared. 
After that, the pixel with the maximum intensity is selected and 
placed on the corresponding position of the resultant image. 
Thus, every pixel of the fused image is the maximum intensity 
of the corresponding position pixels in the input images.

Ifused(i, j) =
M∑
i=1

N∑
j=1

max(X1(i, j), X2(i, j), ..., Xn(i, j)) (4)

where X1, X2, ..., Xn are the input images, Ifused is the 
output fused image, n is the total number of images to be 
fused, max() finds the maximum intensity pixel, M and N 
correspond to the total number of rows and columns. The 
reason for opting out this particular method is that it does not 
compromise over the good information available in the image, 
it is fast and efficient. Its disadvantage is that the maximum 
pixel is not always the better pixel. However, it is rectified 
in our method by post-processing. As evident from Fig. 6(c), 
Ifused is more informative as compared to results generated by 
the individual segmentation. As proposed segmentation retains 
both vessels, so it outperforms the other existing segmentation 
techniques and have high accuracy.

C. Post-Processing

Before analyzing Ifused for identification, it is subjected
to post-processing to get rid of spurs and unwanted regions
produced during segmentation. Area opening is used to remove
these artifacts. In this paper, vessels that have less than or
equal to 20 pixels are regarded as unwanted regions and
are discarded out. The result of area opening is shown in
Fig. 6(d). Before feature extraction, it is necessary to reduce
vessels width to 1. Without width reduction, the feature ex-
traction stage will yield incorrect features as evident from Fig.

7(a). Width is reduced by skeletonization. For skeletonization,
MATLAB’s built-in morphological function named bwmorph
is used [43]. Iskel = bwmorph(bw,′ skel′, Inf) where bw is
the segmented image obtained after area opening, with Inf
bwmorph repeats the operation until there is no further change
in the image. Fig. 7 shows a step-wise illustration of feature
extraction performed with and without skeletonization.

D. Feature Extraction

Like other biometric identification systems, retinal identifi-
cation also relies on its unique features to distinguish subjects
from one another. These include (a) end point (end of a vessel),
(b) bifurcation (where a vessel splits into two), (c) crossing
over (the point where two vessels meet up) as shown in Fig.
1. To ensure maximum discriminant power and high accuracy,
we used all three of them. For feature extraction, crossing
number technique is used. It takes the skeleton image Iskel as
input and outputs an image with extracted features F (Fig. 7).

CN(P ) =
1

2

8∑
i=1

|Iskel(pi)− Iskel(pi+1)| (5)

where P is the pixel to be evaluated, pi are the pixels sur-
rounding P in a clockwise direction and Iskel is the skeleton
image. CN is half of the sum of the difference between
adjacent pixels in the 8-neighborhood of P . Algorithm 1 is
the pseudocode for crossing number and color slicing. CN
explores 8-neighbourhood of a pixel that constitutes vessel
in a clockwise direction. Depending on final CN value, a
pixel is designated either as a feature point or not. Color
slicing is used to highlight the detected feature points. For
color slicing, a matrix with 3 layers (Clr img) having the
same dimension as that of Iskel is initialized. Corresponding
to CN value, a specific color (Red for end point, Green
for bifurcation, Blue for crossing over) is stored at the same
location in Clr img. Once feature extraction is completed,
Clr img is superimposed on Iskel. Before superimposition,
Iskel is also concatenated in 3 dimensions to have an image
with three layers (N Img). Superimposition of Clr img on
N Img gives the final image F with all extracted features
highlighted as shown in Fig. 7(b).
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Algorithm 1 Feature Extraction and Color Slicing

Require: Skeleton Image Iskel
Ensure: Final Image with extracted features F

1: Do zero padding of Iskel to obtain a matrix img;
2: Initialize a matrix Clr Img (with three layers) having the

same size as that of Iskel for color slicing;
3: for ∀ p ∈ img do
4: if img[p] == 1 then
5: Calculate CN value using Eq. (5);
6: Color Slicing: Evaluate computed CN value;
7: if CN == 1 then
8: p is end point;
9: Clr Img[p]← Red Color;

10: else if CN == 3 then
11: p is bifurcation;
12: Clr Img[p]← Green Color;
13: else if CN > 3 then
14: p is crossing over;
15: Clr Img[p]← Blue Color;
16: end if
17: else
18: Move to img(p+1);
19: end if
20: end for
21: N Img = cat(3, Iskel, Iskel, Iskel);
22: F = N Img + Clr img;

E. Template Generation

1) Template Formulation: Once features are extracted, the
next step is to formulate templates and store them in the 
database. The matching phase is paramount for the identifica-
tion process. Irrespective of rotation and translation, the angle 
and distance between different feature points remain the same. 
This consistency is harnessed to ensure that matching is rota-
tion and translation invariant. The angle and distance between 
a candidate feature point and its four nearest feature points 
are calculated to formulate a template. Resulting template is 
of dimension R × 8. Where R is the number of features and 
varies for every image.

2) Dimensionality Reduction: The increase in template 
dimensionality makes pattern detection difficult. It slows down 
the matching process and makes it more complex. Feature 
extraction phase yields templates of varying dimensionality. 
Most of the existing retinal identification t echniques focused 
only on accuracy and not on time efficiency. To make proposed 
matching process time efficient i t i s h astened b y reducing 
template dimensionality. The proposed approach used PCA 
for dimensionality reduction. PCA is used because it converts 
the set of features into a reduced number of uncorrelated 
features. PCA ensures that principal components not only 
correspond to maximum variance, but also ensures that re-
sulting set of features in the subspace are uncorrelated while 
retaining most of the information content [44], [45]. This 
guaranteed un-correlation improves the predictive performance 
of resulting features. The enhanced predictive power improves 
the performance of the classifier. The new retinal features are

Fig. 8: Performance of proposed method on images with large
degenerations. The first row corresponds to input images. The
second row corresponds to the result of segmentation achieved
by the proposed method. (a) Images from STARE [46] (b)
Images from DIARETDB0 [47] (c) Images from Messidor
[48].

termed as retinal Eigen features. Every original retinal feature
is transformed into an Eigen value. Firstly, every image is
converted into a column vector and stacked into a matrix i.e.
M = {M1,M2, ...,MN}. The zero-mean vector of each vector
is found by subtracting the vector from mean:

x0 =
1

N

N∑
i=1

Mi − x̄→ x̄ =
N∑
i=1

xi,j/N (6)

where x0 is zero-mean vector, Mi is ith column vector in
matrix M , x(i,j) is (i, j)th entry in the vector M , x̄ is mean
and i = 1, ..., N . After mean, covariance matrix is computed
as:

C = (x0)(x0)T (7)

where C is the covariance matrix, x0 is zero mean vector, T
is transpose and x0T is the transpose of zero mean vector. As 
C is large dimensionality matrix, Eigen vectors are calculated 
to obtain distinguishing features and remove redundant ones 
as:

Cv = λEv (8)

where λ is Eigen value, Ev is Eigen vector and Cv is the
matrix associated with Eigen values λ of vector Ev . All the
images are transformed to Eigen subspace as:

y = WT (Mi) i = {1, 2, ..., N} (9)
where y is Eigen subspace termed as principal components or 
retinal Eigen features, W is projection matrix constructed from 
selected Eigen vectors, T is transpose and WT is transpose 
of projection matrix. The first N  E igen f eatures w ith high 
variance are selected. As a result, dimensionality is reduced. 
The resulting retinal Eigen features are stored in the database.

Without PCA, all templates will have varying dimension. 
With the increase in database and template size, identification 
will take more time and will be inappropriate for real-time 
applications. PCA significantly reduced the dimension of the 
templates. As a result, the time interval between matching and 
identification process is reduced. Consequently, the proposed 
technique takes less time in matching and is computation-
ally more efficient. The statistical details of time efficiency 
achieved by the proposed technique are discussed later in 
Section VI-A.
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Fig. 9: FAR and FRR curves for retinal identification. (a) and (b) show the dependence of FAR and FRR on the threshold.
(c) FAR and FRR with respect to the error rate. The intersection point represents EER, which is demonstrated by a magenta
circle. As our approach has EER = ‘0’, thus it is accurate.

V. IDENTIFICATION MODULE

When an unknown subject sample is given, the system
generates its live-template. L2-norm given in Eq. (10) is used
to calculate the feature distance between the feature vector of
live-template and the feature vector of all the templates stored
in the database.

||v|| =

√√√√ k∑
i=1

|v2i | (10)

where v is a vector, k is the total number of elements in vector
v and |v2i | is absolute of squared values in v. To evaluate the
similarity between samples, total similarity measure (T SM ) 
is calculated. Whenever the live-template feature vector has 
minimum feature distance with some stored template feature 
vector, then the T SM for that subject is incremented by ’1’. 
T SM is calculated as:

T SM = Subject ID[find(mini(FD))] + 1, i = 1....N (11)

where find() is a MATLAB’s built-in function that finds 
the index position, min() is a MATLAB’s built-in function 
that returns the minimum element, FD is the feature distance, 
Subject ID is an array having the same length as that of 
the number of subjects stored in the database and is used for 
keeping the matching score, N is the total number of templates 
stored in the database. With find(min(FD)) index position 
where the minimum value of FD is encountered is found. 
After that, an increment of 1 is done to that index of the 
Subject ID. The result of this matching is a list of T SM 
values. After the live-template has been compared with all 
the templates in the database the final decision is made by 
comparing maximum T SM with a threshold as:

max(TSM) ≥ T (12)
where T is the threshold. If the above condition is satisfied,
then the query image is regarded as authenticated. Otherwise,
it is rejected as an intruder. Thresholding step is vital for
rejection of intruders.

VI. EXPERIMENTAL RESULTS

The algorithm is implemented and tested using MAT-
LAB R2015b environment on a workstation with Intel(R)
CORE(TM) i3-4130, 3.40GHz, and 8GB RAM. In contrast to
face recognition, very few databases are available for retinal
identification. To the best of our knowledge, VARIA [49]

Fig. 10: (a) Identification time comparison performed with
and without PCA. Our approach has significantly accelerated
the matching. (b) Recognition rate comparison of different
techniques. Our approach has the highest recognition rate.

and RIDB [50] are the only publicly available databases
for retinal identification purpose. For this reason, we created
our own database named Biometric Retinal Identification
Database (BRDB). Other existing techniques have evaluated
performance on some local database or on publicly available
databases like DRIVE [51] and STARE [46]. Local databases
are not publicly available. Hence for a fair comparison with
these techniques and to make publicly available databases
suitable for identification, augmentation is used to generate
multi-samples per subject. Each image is rotated randomly to
generate nine samples per subject. For performance evaluation
on pathological images STARE [46], HRF [52], Messidor [48],
DIARETDB0 [47] are used. Experimental section is further
divided into two subsections: Retinal Identification and Retinal
Vasculature Segmentation.

A. Retinal Identification

Proposed approach authenticity is evaluated by conducting 
different experiments. A personal database BRDB is designed 
to evaluate the validity of the proposed technique. BRDB 
consists of 1800 color retinal images of 200 subjects with nine 
samples per subject. Images are captured using Fundus camera 
TOPCON TRC NW300, having 8M pixels per inch (PPI), and 
are non-mydriatic with a 45-degree field of view. The images 
are macular centered, have the dimension of (1536x2048x3) 
and are stored in .JPG format. To evaluate proposed technique 
performance, 60 subjects were selected to act as authenticated 
users. Out of 9 samples, 6 samples are used for training and 
3 samples are used for testing. 70 subjects were selected to 
act as intruders. This set-up created a total of 810 experiments 
(60×3 = 180 authenticated subjects experiment, 70×9 = 630
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TABLE I: Performance comparison for retinal identification

No. Method Database Total
Images

Correctly
Recognized

Wrongly
Recognized

Accuracy
%

Identification
Rate%

1 Akram et al. [13]
DRIVE
STARE
VARIA

40
81

233

40
77
231

0
4
2

100
95.05
99.14

98.30

2 Hussain et al. [16] DRIVE 40 39 1 97.50 97.50

3 Sadikoglu and Uzelaltinbulat [24] DRIVE - - 1 97.50 97.50

4 Qamber et al. [4]
DRIVE
STARE
VARIA

40
81

233

40
78
232

0
3
1

100
96.29
99.57

98.87

5 Monisha and Seldevchristopher [12]
DRIVE
STARE

40
100

39
97

1
3

97.5
97 98.87

6 Sabaghi et al. [11] DRIVE 40 40 0 100 100

7 Jiu et al. [27]
DRIVE
STARE
VARIA

-
-
-

-
-
-

-
-
-

100
95.06
98.28

97.78

8 Fatima et al. [15] VARIA
RIDB

233
100

232
97

1
3

99.57
97 98.28

9 Farzin et al. [17] DRIVE+STARE 300 - - 99.0 99.0

10 Köse et al. [25] STARE 80 - - 95.0 95.0

11 Our Proposed

DRIVE
STARE
VARIA
RIDB

Our BRDB

40
81
233
100

1800

40
81

232
98

1797

0
0
1
2
3

100
100

99.57
98

99.46

99.40?

? Other techniques have only used DRIVE, STARE, VARIA or RIDB. Due to this in some cases, their average identification
rate is more as compared to our proposed technique. In contrast, our method is evaluated on all of them including BRDB. The
proposed method achieved the highest accuracy database wise.

TABLE II: Performance evaluation on images with degenera-
tions

Database Total
Images

Correctly
Recognized

Wrongly
Recognized

Identification
Rate (%)

STARE [46] 400 399 1 99.75
HRF [52] 45 45 0 100
Messidor [48] 800 797 3 99.62
DIARETDB0 [47] 130 128 2 98.46

intruder experiments). The proposed approach achieves the 
highest recognition rate that makes it more effective. It out-
performs other existing techniques as clearly evident from 
Table I. For pathological cases, effectiveness of technique 
is evaluated using STARE [46], HRF [52], Messidor [48]
(first two sets) and DIARETDB0 [47]. The statistical results 
of performance with these databases are given in Table II. 
It is evident that the proposed technique achieves a high 
identification rate even with these databases. Fig. 8 shows the 
visual results obtained with these databases. The results clearly 
depict proposed technique strength to deal with images having 
degenerations. The proposed approach is further validated by 
False acceptance rate (FAR), False rejection rate (FRR) and 
Equal error rate (EER). These matrices vary according to the 
chosen threshold. There is always a trade-off between FAR 
and FRR. Fig. 9 shows the effect on FAR and FRR with 
respect to change in threshold values. The intersection point 
of FAR and FRR represents EER. From Fig. 9(c), it is clear

that the proposed method achieves an EER of zero which 
makes it completely accurate and gives it a lead over existing 
techniques.

1) Identification Time: Biometric systems have to be used 
in real time, so they must be computationally accelerated 
and time efficient. Our method achieved this acceleration by 
using PCA. PCA reduced dimensionality and decreased the 
time interval between matching and identification process. The 
statistical details of time efficiency achieved by the proposed 
technique is given in Table III. The identification time for the 
techniques without any acceleration ranges from 500 - 900 
seconds. On the other hand, the proposed technique signifi-
cantly reduced it to a range of 0.019 - 0.029 seconds. Average 
time clearly shows that the proposed approach is much more 
efficient. This efficiency makes the proposed method more 
appropriate for real-time applications. Fig. 10(a) shows ac-
celeration achieved by the proposed method as compared to 
techniques without any acceleration mechanism. Thus experi-
mental results showed that our method has low computational 
time and outperforms techniques without any acceleration 
mechanism. The total identification time comprises of a fixed 
time (required for retinal image pre-processing, segmentation 
and feature extraction) and a variable time for the one-to-many 
matching process. Total identification time is calculated as:

Total identification time = Fixed T ime +

TL(one− to− one template matching)
(13)
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Fig. 11: Discriminant power comparison. (a) End points as feature points. (b) Bifurcation as feature points. Clearly, in both
(a) and (b), there is overlapping of in-class and between-classes distances. Thus, subjects are not identified correctly. (c) The
proposed combination of features points. There is no overlapping and there is a clear discriminant boundary among classes.

TABLE III: Identification time comparison with/without PCA

Database Total
Images

Query
Image Name

Total Identification Time (sec)
Without PCA With PCA

DRIVE [51] 40 38 training.tif 523.19 0.019
STARE [46] 100 Im0038.ppm 821.77 0.037
VARIA [49] 233 012.pgm 930.28 0.086
HRF [52] 45 08 h.jpg 529.27 0.024
Our BRDB 1800 4.jpg 827.20 0.029

Average Time - - 736.342 0.039

where TL is the total number of templates stored during
registration, Fixed T ime is 0.316 seconds, and one−to−one
template matching time is 0.0079 seconds (on a workstation
with Intel(R) CORE(TM) i3-4130, 3.40GHz and 8GB RAM).

2) Feature Comparison: Selected features discriminant
power is evaluated by comparing it with different kinds of
features (end points, bifurcations and proposed combination
of end points, bifurcations and crossing over). Performance
of all these features is evaluated and compared by the fol-
lowing experiment. FD between the live-template of different
subjects and registered subjects is calculated. If the template
belongs to the same class, then distance is categorized as
in-class. Otherwise, the distance is categorized as between-
class. The distribution of the two distances is approximated
as histograms. Intuitively, if a feature has good discrimination
power, then there will be no overlapping between both kinds of
distances and there will be a clear distinction among classes.
The histograms obtained as a result of this experiment are
shown in Fig. 11. When end points and bifurcations are used
independently, there is an overlapping of between-class and in-
class distance. However, with the proposed combination there
is no overlap and there is a clear discriminant boundary among
classes. Hence, the identification phase leads to correct results
with high accuracy.

3) The Impact of Scaling on System Performance: The
impact of scaling has been analyzed in terms of execution
time, identification rate and an average number of extracted
features as shown in Fig. 12. For analyzing the impact of
scaling on system performance, we downsampled the images
from the original resolution. The images are resampled to the
resolutions of 512 × 512, 256 × 256, 128 × 128, 64 × 64,
32 × 32 and 16 × 16 respectively. Fig. 12(c) shows that

TABLE IV: Comparison for retinal vasculature segmentation

Method DRIVE STARE
Acc Sn Sp Acc Sn Sp

Staal et al. [51] 0.944 0.719 0.977 0.952 0.697 0.981
You et al. [53] 0.943 0.741 0.975 0.950 0.726 0.976
Soares et al. [54] 0.946 0.724 0.976 0.948 0.710 0.974
Singh and Srivastava [55] 0.952 0.759 0.971 0.927 0.794 0.938
Imani et al. [56] 0.952 0.752 0.975 0.959 0.750 0.975
Vlachos and Dermatas [57] 0.929 0.747 0.955 - - -
BahadarKhan et al. [58] 0.961 0.746 0.980 0.946 0.758 0.963
Our Proposed 0.968 0.756 0.978 0.963 0.755 0.963

Fig. 12: (a) Scaling effect on average feature points number.
(b) Scaling effect on time consumed in pre-processing and fea-
tures extraction. (c) Scaling effect on identification accuracy.

the identification rate with the resolution of 512 × 512 and
256 × 256 is the same i.e. 99.85%. However, the execution
time with the resolution of 256 × 256 is faster as compared
to the resolution of 512× 512. With the resolution of 16× 16
execution time is fastest, but the identification rate declines
to 65%. So for the optimal performance, all the images are
downsampled to the resolution of 256×256. With the increase
in image size, the number of extracted feature increases corre-
spondingly. However, with the increased number of extracted
features execution time increases which make the identification
process slow.

B. Retinal Vasculature Segmentation

To evaluate proposed technique performance for segmen-
tation it has been validated on DRIVE [51], STARE [46] 
and has been compared with other existing techniques. The 
performance is evaluated with respect to three evaluation 
measures i.e. Accuracy (Acc), Sensitivity (Sn) and Specificity 
(Sp). The statistical results of this comparison are given 
in Table IV. The proposed segmentation is very efficient
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Fig. 13: Average silhouette plot for computing k. The plot 
peak value is 2. So k = 2 is proper cluster choice.

and achieved the highest accuracy as compared to all other 
paralleled techniques. Our method also achieved highest Sn 
and Sp for DRIVE except for Singh [55] and Bahadar Khan 
[58] which is only better comparatively by a difference of 
0.003 and 0.002. While in the case of STARE, Sn of Singh
[55] and Bahadar Khan [58] are 0.039 and 0.003 better. The Sp 
of You [53], Soares [54] and Imani are slightly better by 0.013, 
0.011 and 0.012 respectively. Fig. 8 shows the effectiveness of 
our segmentation technique. The experimental results validate 
that the suggested method is very effective as compared to 
other cited frameworks. To choose number of clusters (k) 
of k-means clustering that are optimal for segmentation of 
our data set, average silhouette method [40], [41] is used. 
We computed k-means clustering by varying k from 1-15. 
For each k, the average silhouette of observations is then 
calculated. The maximum location of average silhouette plot 
is considered as the appropriate number of clusters [40], [41]. 
As evident from Fig. 13, the maximum location of average 
silhouette plot for our data set is observed at 2. So, the value 
of k is set to 2.

VII. CONCLUSION

A fast and accurate automated retinal identification system 
is developed. Experimental results showed an identification 
rate of 99.40% with the EER of zero. In contrast to other 
techniques, it achieves high identification accuracy by using 
such set of features that offer maximum discriminant power 
and completely eliminated overlap among classes. Our ap-
proach has low computational time and is computationally 
more efficient. Proposed segmentation technique is found to 
be more efficient and improved segmentation accuracy to 
99.65%. The limitation of this work is that with images having 
severe pathological noise the identification rate is low as 
compared to normal images. The reason for this decline is 
that in presence of severe pathological disorder it is difficult 
to extract the feature points. Due to this difficulty, another 
limitation arises, i.e. identification time for such images is 
more as compared to normal ones. In the future, we will 
overcome this limitation by particularly improving our image 
enhancement module. Improved image enhancement will yield 
more enhanced images for pathological cases as well. That, in 
turn, will aid the feature extraction phase. This convenient 
feature extraction will overcome will make the identification 
process fast for pathological cases as well. Alongside we plan

to create an even more larger retinal database, with images
taken over even much longer periods and improve performance
by applying various discriminant analytics.

REFERENCES

[1] M. Wazid, A. K. Das, N. Kumar, and J. J. P. C. Rodrigues, “Secure three-
factor user authentication scheme for renewable-energy-based smart grid
environment,” IEEE Trans. Ind. Informat., vol. 13, no. 6, pp. 3144–3153,
2017.

[2] F. Zhao, H. Luo, X. Zhao, Z. Pang, and H. Park, “HYFI: Hybrid floor
identification based on wireless fingerprinting and barometric pressure,”
IEEE Trans. Ind. Informat., vol. 13, no. 1, pp. 330–341, 2017.

[3] P. Hu, H. Ning, T. Qiu, Y. Zhang, and X. Luo, “Fog computing based
face identification and resolution scheme in internet of things,” IEEE
Trans. Ind. Informat., vol. 13, no. 4, pp. 1910–1920, 2017.

[4] S. Qamber, Z. Waheed, and M. U. Akram, “Personal identification sys-
tem based on vascular pattern of human retina,” in Cairo International
Biomedical Engineering Conference, 2012, pp. 64–67.

[5] Z. Chen, Q. Zhu, Y. C. Soh, and L. Zhang, “Robust human activity
recognition using smartphone sensors via CT-PCA and online SVM,”
IEEE Trans. Ind. Informat., vol. 13, no. 6, pp. 3070–3080, 2017.

[6] K. Zinchenko, C.-Y. Wu, and K.-T. Song, “A study on speech recognition
control for a surgical robot,” IEEE Trans. Ind. Informat., vol. 13, no. 2,
pp. 607–615, 2017.

[7] A. K. Jain, A. Ross, and S. Pankanti, “Biometrics: A tool for information
security,” IEEE Trans. Inf. Forensics Security, vol. 1, no. 2, pp. 125–143,
2006.

[8] Z. Chen, L. Zhang, Z. Cao, and J. Guo, “Distilling the knowledge from
handcrafted features for human activity recognition,” IEEE Trans. Ind.
Informat., pp. 1–9, 2018.

[9] V. S. Joshi, M. K. Garvin, J. M. Reinhardt, and M. D. Abramoff,
“Identification and reconnection of interrupted vessels in retinal vessel
segmentation,” in IEEE International Symposium on Biomedical Imag-
ing: From Nano to Macro, 2011, pp. 1416–1420.

[10] Z. Waheed, M. U. Akram, A. Waheed, and A. Shaukat, “Robust
extraction of blood vessels for retinal recognition,” in International
Conference on Information Security and Cyber Forensics, 2015, pp. 1–4.

[11] M. Sabaghi, S. R. Hadianamrei, A. Zahedi, and M. N. Lahiji, “A new
partitioning method in frequency analysis of the retinal images for
human identification,” Journal of Signal and Information Processing,
vol. 2, no. 4, pp. 274–278, 2011.

[12] L. S. Monisha and C. Seldevchristopher, “Biometric identification using
retina scan,” International Journal of Advanced Research Trends in
Engineering and Technology, vol. 2, pp. 145–151, 2015.

[13] M. U. Akram, A. Tariq, and S. A. Khan, “Retinal recognition: Personal
identification using blood vessels,” in International Conference for
Internet Technology and Secured Transactions, 2011, pp. 180–184.

[14] G. Sasidharan, “Retina based personal identification system using
skeletonization and similarity transformation,” International Journal of
Computer Trends and Technology, vol. 17, no. 3, pp. 144–147, 2014.

[15] J. Fatima, A. M. Syed, and M. U. Akram, “A secure personal identifica-
tion system based on human retina,” in IEEE Symposium on Industrial
Electronics Applications, 2013, pp. 90–95.

[16] A. Hussain, A. Bhuiyan, A. Mian, and K. Ramamohanarao, “Biomet-
ric security application for person authentication using retinal vessel
feature,” in International Conference on Digital Image Computing:
Techniques and Applications, 2013, pp. 1–8.

[17] H. Farzin, H. Abrishami-Moghaddam, and M.-S. Moin, “A novel retinal
identification system,” EURASIP Journal on Advances in Signal Pro-
cessing, vol. 2008, pp. 280 635:1–280 635:10, 2008.

[18] D. Kumar, A. Pramanik, S. S. Kar, and S. P. Maity, “Retinal blood
vessel segmentation using matched filter and Laplacian of Gaussian,”
in International Conference on Signal Processing and Communications,
2016, pp. 1–5.

[19] M. M. Fraz, S. A. Barman, P. Remagnino, A. Hoppe, A. Basit,
B. Uyyanonvara, A. R. Rudnicka, and C. G. Owen, “An approach
to localize the retinal blood vessels using bit planes and centerline
detection,” Computer Methods and Programs in Biomedicine, vol. 108,
no. 2, pp. 600–616, 2012.

[20] G. Azzopardi, N. Strisciuglio, M. Vento, and N. Petkov, “Trainable COS-
FIRE filters for vessel delineation with application to retinal images,”
Medical Image Analysis, vol. 19, no. 1, pp. 46–57, 2015.



11

[21] M. U. Akram, I. Jamal, A. Tariq, and J. Imtiaz, “Automated segmentation
of blood vessels for detection of proliferative diabetic retinopathy,”
in IEEE-EMBS International Conference on Biomedical and Health
Informatics, 2012, pp. 232–235.

[22] J. Zhu, Z. Ge, and Z. Song, “Distributed parallel PCA for modeling and
monitoring of large-scale plant-wide processes with big data,” IEEE
Trans. Ind. Informat., vol. 13, no. 4, pp. 1877–1885, 2017.

[23] M. Womack, “The eyes have it,” Sensor Review, vol. 14, no. 4, pp.
15–16, 1994.

[24] F. Sadikoglu and S. Uzelaltinbulat, “Biometric retina identification based
on neural network,” Procedia Computer Science, vol. 102, pp. 26–33,
2016.
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database and methodology for diabetic retinopathy algorithms,” Machine
Vision and Pattern Recognition Research Group, Lappeenranta Univer-
sity of Technology, Finland, Tech. Rep., 2006.

[48] E. Decencière, X. Zhang, G. Cazuguel, B. Lay, B. Cochener, C. Trone,
P. Gain, R. Ordonez, P. Massin, A. Erginay, B. Charton, and J.-C.
Klein, “Feedback on a publicly distributed image database: the messidor
database,” Image Analysis & Stereology, vol. 33, no. 3, pp. 231–234,
2014.

[49] M. Ortega, M. G. Penedo, J. Rouco, N. Barreira, and M. J. Carreira,
“Retinal verification using a feature points-based biometric pattern,”
EURASIP Journal on Advances in Signal Processing, vol. 2009, no. 1,
pp. 235 746:1–235 746:13, 2009.

[50] Z. Waheed, M. U. Akram, A. Waheed, M. A. Khan, A. Shaukat, and
M. Ishaq, “Person identification using vascular and non-vascular retinal
features,” Computers & Electrical Engineering, vol. 53, pp. 359–371,
2016.
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