
Boukadi, K, Faci, N, Maamar, Z, Ugljanin, E, Sellami, M, Baker, T and Al-
Khafajiy, M

 Norm-based and Commitment-driven Agentification of the Internet of Things

http://researchonline.ljmu.ac.uk/id/eprint/10161/

Article

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Boukadi, K, Faci, N, Maamar, Z, Ugljanin, E, Sellami, M, Baker, T and Al-
Khafajiy, M (2019) Norm-based and Commitment-driven Agentification of the
Internet of Things. Internet of Things: Engineering Cyber Physical Human
Systems. ISSN 2542-6605

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

Norm-based and Commitment-driven Agentification
of the Internet of Things

Khouloud Boukadia, Noura Facib, Zakaria Maamarc, Emir Ugljanind, Mohamed
Sellamie, Thar Bakerf, Mohammed Al-Khafajiyf

aUniversity of Sfax, Sfax, Tunisia
bUniversity of Lyon, Lyon, France

cZayed University, Dubai, UAE
dState University of Novi Pazar, Novi Pazar, Serbia

eINT ParisSud, Every, France
fLiverpool JM University, Liverpool, United Kingdom

Abstract

There are no doubts that the Internet-of-Things (IoT) has conquered the ICT industry
to the extent that many governments and organizations are already rolling out many
anywhere,anytime online services that IoT sustains. However, like any emerging and
disruptive technology, multiple obstacles are slowing down IoT practical adoption in-
cluding the passive nature and privacy invasion of things. This paper examines how
to empower things with necessary capabilities that would make them proactive and re-
sponsive. This means things can, for instance reach out to collaborative peers, (un)form
dynamic communities when necessary, avoid malicious peers, and be “questioned” for
their actions. To achieve such empowerment, this paper presents an approach for agen-
tifying things using norms along with commitments that operationalize these norms.
Both norms and commitments are specialized into social (i.e., application independent)
and business (i.e., application dependent), respectively. Being proactive, things could
violate commitments at run-time, which needs to be detected through monitoring. In
this paper, thing agentification is illustrated with a case study about missing children
and demonstrated with a testbed that uses different IoT-related technologies such as
Eclipse Mosquitto broker and Message Queuing Telemetry Transport protocol. Some
experiments conducted upon this testbed are also discussed.

Keywords: Agentification, Commitment, Internet of Things, Norm, Violation.

1. Introduction

There is a consensus among the Information and Communication Technology ICT

community that the Internet of Things (IoT) is helping materialize Mark Weiser’s vision

about ubiquitous computing that is “...The most profound technologies are those that

disappear. They weave themselves into the fabric of everyday life until they are indis-

February 13, 2019

tinguishable from it” [42]. Today’s things (e.g., ambient sensors, smart watches, and

RFID tags) are everywhere producing massive amount of data (with reference to Big

Data era) about other “things” like vegetable freshness in a transit facility, number of

vehicles on a highway, and patients’ vitals in an ICU. Building upon these massive data,

a plethora of services and products are being or already developed like driverless cars

(e.g., Waymo by Google), healthcare applications (e.g., closed-loop insulin delivery

and IBM Watson Healthcare application in the city of Bolzano [38]), and green build-

ings (e.g., Bahrain world trade-center and Munich Genius of Things building [16]). It

is predicted that the total economic impact of IoT will reach between $3.9 trillion and

$11.1 trillion per year by the year 2025 [13]. It is, also, predicted that 30 billion devices

will be wirelessly connected to IoT by 20201.

Like any emerging and disruptive technology, IoT expansion and practical adop-

tion are encountering multiple obstacles. We cite diversity and multiplicity of things’

development and communication technologies [3], users’ reluctance and sometimes

rejection because of privacy invasion that things cause [24], lack of killer applications

that would demonstrate the necessity of things [21], lack of an IoT-oriented software

engineering discipline that would guide thing design and development [46], missing

interoperability on IoT [8], and, finally, passive nature of things that mainly supply data

(with limited actuating capabilities) [13, 27]. Backing the passive nature of things,

Green states, in a 2015 IBM white-paper [15], that IoT needs to be smarter so, that,

current things would go beyond sensing and sometimes actuating. Wu et al., also,

argue that “without comprehensive cognitive capability, IoT is just like an awkward

stegosaurus: all brawn and no brains” [43]. Simply put, “The Internet of Things De-

pends on the Intelligence of Things”2.

In this paper, we empower things with particular capabilities that would make them

proactive. These capabilities correspond to norms and commitments that would reg-

ulate things’ operations when they need, for instance to reach out to peers that ex-

pose collaborative attitude, to (un)form dynamic communities when necessary, and

1tinyurl.com/yadq3u2d.
2www.mouser.com/pdfdocs/Technologies-and-Applications-for-the-IoT.pdf.

2

to avoid peers that expose malicious attitude. In fact, things will be accountable for

their actions. While we already see some positive and encouraging signs of thing em-

powerment through initiatives like intelligent things [18], wisdom Web of things [9],

semantic things [17], Internet of social things [4], Internet of agents [33], agents of

things [27, 34], agentified use of IoT [19], process of things [22], and organizational

structures for IoT [35], we discuss, here, our work on agentifying3 (with reference to

software agents [23]) things. This agentification is done from 2 perspectives: concep-

tual using norms to guide things (what can be done) and operational using commitments

to allow things to act in compliance with these norms. No-compliance leads to sanc-

tions, which should affect things’ credibility and reputation, for example. According

to Chesani et al., commitments have a dual-role [10]. At design-time, they represent

the consequences of an entity actions on a system. And at run-time, they provide a

reference model for monitoring if this entity is behaving as prescribed.

In a previous work [44], we defined an ecosystem of agentified things in which

norms and commitments regulate the operations of these things and then, specialized

these norms and commitments into social (i.e, user-application independent) and busi-

ness (i.e., user-application dependent). In this paper, we (i) stress out the benefits of

agentifying IoT, (ii) discuss how things engage in collaborative sessions, (iii) identify

potential social relations between things, (iv) ensure the compliance of things with

norms to avoid violations, and finally, (v) demonstrate thing agentification through a

testbed incorporating different IoT-related technologies like Eclipse Mosquitto broker

and Message Queuing Telemetry Transport (MQTT) protocol. Some experiments con-

ducted over the testbed are also presented in the paper.

The rest of this paper is organized as follows. Section 2 discusses the current

IoT limitations, norm and commitment use in IoT, and then a case study. Section 3

describes our approach for thing agentification based on norms and commitments. Sec-

tion 4 presents the approach implementation before drawing some conclusions and dis-

cussing some future work in Section 5.

3The appropriateness of software agents’ characteristics like autonomy, social ability, and mobility, for

IoT applications is discussed in [12].

3

2. Background

This section discusses IoT in terms of limitations, related works, and adoption of

norms and commitments. It, also, presents a case study that will be used throughout

the paper to illustrate thing agentification based on norms and commitments.

2.1. IoT limitations

Pico-Valencia and Holgado-Terriza shed the light on some limitations of IoT that re-

sult from both the no-reasoning over things’ surroundings and the no-handling of social

aspects [33]. These limitations prevent things from being proactive and, thus, confine

them into a role of data supplier, only. Acting on behalf of things, software agents could

address these limitations. As a result, the Internet of Things will transition to the Inter-

net of Agents. To ensure this transition, Pico-Valencia and Holgado-Terriza present a

semantic-contract model that is built upon an OWL-based ontology to describe agents

in the context of the Internet of Agents. The description targets the agent’s profile,

object, model, service, social connection, and context.

Like Pico-Valencia and Holgado-Terriza, Mzahm et al. raise the same limitations

that result from the challenging task of embedding advanced hardware and software

into things [27]. As a solution, Mzahm et al. propose Agents of Things (AoT) through

a 6-layer architecture. The layers are business, application, reasoning, middleware,

network, and perception. Particularly, the reasoning layer consists of agents that make

decisions on behalf of things. Although some (even many) could argue that it is chal-

lenging to embed advanced hardware and software into things [27], Taivalsaari and

Mikkonen mention that “hardware advances and the availability of powerful but in-

expensive integrated chips will make it possible to embed connectivity and fully edged

virtual machines and dynamic language run-times everywhere” [39]. A result of these

advances is that everyday things will become connected and programmable dynami-

cally.

Looking at IoT from a social perspective is discussed in the work of Atzori et al. [5]

and [25]. They consider things as intelligent objects and suggest that models designed

for studying social networks of humans can be extended to social networks of objects.

4

Such a network could be built upon specific relations such as parental (similar ob-

jects built in the same period by the same manufacturer), co-location (objects in the

same venue), co-work (objects participating in the same scenario), ownership (objects

having the same user), and social (when objects come into contact sporadically or con-

tinuously). Atzori et al. note the paradigm shift from human-object interaction to

object-object interaction.

According to Ortiz et al. [30], many challenges and open issues still undermine the

blend of social computing with IoT. These include defining a social thing architecture,

addressing interoperability of things, considering new business models, discovering

things, managing energy consumption of things, handling security, privacy, and trust

of things A social thing architecture would consist of actors (smart things and humans),

an intelligent system to manage actors’ interactions, an interface for actors to engage

in interaction, and the Internet as a means for supporting interaction.

The afore-mentioned works offer a concise overview of IoT limitations that are

making things passive. Things should no longer remain “silent”. Instead, they should

seek the necessary support that would make them active and responsive to changes in

users’ and peers’ (cyber-physical) surroundings. Developing social connections be-

tween things could help identify this support along with ensuring a fruitful use of these

connections through norms, for example.

2.2. Norms and commitments in IoT

There is a consensus in the R&D community that norms help regulate interactions

in an open environment like the Web. Norms are largely adopted in many ICT domains

like service computing [36], service-level-agreement analysis [31], correct protocol

generation from contracts [28], e-business system modeling [45], etc. In this part of

the paper, we provide a brief overview of norm and commitment use in the context

of IoT. Brief because of the limited number of relevant references, to the best of our

knowledge, that we could identify despite the growing interest in IoT, in general, and

thing agentification, in particular.

Alkhabbas et al. suggest that responding to an emergent configuration could hap-

pen through commitments. These latter support form a dynamic set of things that

5

would temporarily cooperate to achieve some user goal [2]. This cooperation consists

of analyzing a user goal’s achievability given capabilities of things located within some

specified geographical boundaries, supporting the negotiation with the available things

so, that, a commitment-based emergent configuration is formed, and, finally, running

and continuously monitoring this configuration to make adaptation if needed. Dur-

ing negotiation, some things are requested to commit towards other peers to perform

some actions when some conditions hold. At run-time, things can release peers from

commitments initially established. In another work, Dastani et al. propose a formal

framework for modeling, analyzing, and comparing different commitments’ lifecycles

in virtual organizations with focus on business models based on cloud computing and

IoT [11]. This framework models, first, a lifecycle as a set of interaction norms (de-

fined as rules) and second, regulation policies as sanctions to apply when commitments

are violated. The framework, also, tracks lifecycles through monitoring (to check the

conformance of agents’ interactions to norms) and enforcement (that regulates these

interactions). Last but not least, the framework formally checks dynamic properties

of commitments’ lifecycles like interference between 2 distinct commitments and re-

dundancy of interaction norms. To wrap-up this discussion, we note the limited use

of norms and commitments in IoT, which is confining things into a passive, instead of

proactive, role as described earlier.

2.3. Case study

According to the International Centre for Missing & Exploited Children4, the num-

ber of missing children is alarming, for instance, 20, 000 in Australia, 45, 000 in Canada,

and 460, 000 in the United States. Resolving missing-child cases is complex due to

their sensitivity, unicity, and multiplicity of intervenants such as parents, witnesses,

law-enforcement agencies, and social services [7, 29].

From an IoT perspective, surveillance cameras could help answer questions like

when and where was the last time the child was seen, with whom was the child the

last time (s)he was seen, and what was the child wearing or holding? We advocate for

4globalmissingkids.org/awareness/missing-children-statistics.

6

collaborative cameras in order to speed up the case handling and cover wider search

areas. To this end, the initially-selected cameras by the law enforcements, for exam-

ple, would reach out to other cameras based on certain business and social agreements.

Business agreements are between municipalities that own the cameras and law enforce-

ment agencies, for example. And, social agreements are between cameras with respect

to their respective similar/alternative/joint capabilities (e.g., zoom and storage).

Giving cameras a certain “freedom” to act such as contacting peers could lead

to situations that violate agreements. Cameras can exceed the authorized zoom-level

and capture people’s faces without their approvals. Thus, monitoring the satisfaction

of all agreements will permit to detect violations so, that, actions are taken with re-

spect to what happened and who to hold responsible. In this paper, we provide means

for setting-up such proactive things by generating norms and commitments based on

business and social agreements and defining things’ operations using norms and com-

mitments. We, also, develop control mechanisms to ensure the consistency between

commitments in a multi-thing ecosystem and monitoring mechanisms to verify their

compliance with norms.

3. Norm-based agentification of things

This section discusses thing agentification by categorizing norms, identifying po-

tential social relations between things, setting-up an agentification chronology, defining

norms and their commitments, and, finally, developing guidelines for cross-commitment

consistency and compliance with norms.

3.1. How to categorize norms?

Agentification is to make things proactive and responsive to users’ and peers’ re-

quests in an autonomous and independent way and, hence, capable of executing opera-

tions, as they see fit5. Agents of different types and different capabilities (e.g., monitor-

ing, communicating, and reasoning) would be required acting on behalf of things. To

5For Pérez Hernández and Reiff-Marganiec, autonomous things are expected to sense, actuate, and rea-

son [32].

7

ensure that the outcomes of things’ operations are beneficial to the whole IoT ecosys-

tem such as satisfying users’ requests and rewarding collaborating peers, we adopt

norms to identify necessary operations and specialize norms into business and social.

The objective of this specialization is to capture the particular business and social as-

pects of the under-development IoT applications.

First, business norms capture User-2-Thing (U2T) interactions and are strictly ap-

plication dependent. The nature of under-development IoT applications (e.g., miss-

ing children) limits the choices of defining business norms and commitments. Busi-

ness norms and commitments in the missing-child application (e.g., screening camera

records requires6 approval and approval should be secured prior to screening any cam-

era record, respectively) are different from those in a loan application (e.g., maintain-

ing minimum solvency ratio of 1.5 is required and solvency-ratio calculation should

include all incomes and debts, respectively).

Second, social norms capture Thing-2-Thing (T2T) interactions and are strictly

application independent. These norms reflect interactions between things that arise

during the implementation of business/social commitments. From a thing perspective,

we define the progress of a T2T interaction along 3 stages: before, during, and after:

1. Before-interaction stage: example of social norm is to invite things (e.g., cam-

eras) to participate in certain operations (e.g., supporting child search) while a

corresponding social commitment is to contact all things without excluding any

(i.e., check with all cameras in a targeted search area). Another example of so-

cial norm is to require that things make interactions transparent while a corre-

sponding social commitment is to use appropriate means (e.g., public electronic

bulletin-board should be used) to guarantee this transparency.

2. During-interaction stage: example of social norm is to prohibit things from ex-

changing sensitive details publicly (e.g., child’s family name) while a corre-

sponding social commitment is to anonymize these details (e.g., nickname in-

stead of family name should be used). Another example of social norm is to

6We use particular verbs, formatted in italic, to ensure the consistent definition of norms and commit-

ments.

8

require that things exchange up-to-date data (e.g., child’s latest location) while a

corresponding social commitment is that data should continually be streamed to

all relevant parties (e.g., reserved communication channels should be used).

3. After-interaction stage: example of social norm is to require that things identify

all pending operations (e.g., suspension of broadcasting a child’s photo) follow-

ing the completion of an interaction while a corresponding social commitment

is to finalize all these operations (e.g., photo broadcast should be resumed af-

ter any suspension). Another example of social norm is to prohibit things from

opening a new communication channel with a third party that was deemed un-

necessary for an interaction (e.g., camera’s resolution below a threshold) while a

corresponding social commitment is to verify the relevancy of this party before

(e.g., camera’s capabilities are to be checked).

3.2. How to socialize things?

In the context of thing agentification, T2T interactions shed the light on a cer-

tain form of socialization among things. In line with the multiple thing-socialization

works [4, 5, 25, 30, 47], we propose 3 specific social relations between things upon

which networks of things are developed7 (Fig. 1). These relations allow things to

look at peers from 3 perspectives: recommendation exemplified with complementar-

ity relation, opposition exemplified with antagonism relation, and exclusion exemplified

with competition relation (below t stands for thing).

1. Complementarity relation is the concurrent participation of things in joint oper-

ations. A social norm for this relation is that a recommended thing is required

to fulfill its duties while a corresponding commitment is not to make the rec-

ommending thing feel disappointed. We propose Equation 1 to assess the com-

plementarity level between 2 things where acceptedRec(ti, t j) is the number of

times that the IoT application engineer accepts ti’s recommendations for t j and

madeRec(ti, t j) is the total number of times ti recommended t j (including those

7Our social relations are in line with Atzori et al.’s 5 relations (though the social dimension in At-

zori et al.’s work is not stressed-out).

9

recommendations that are declined). A highest value of wcompl(ti,t j) reflects the

positive opinion of ti about t j.

wcompl(ti,t j) =
acceptedRec(ti, t j)

madeRec(ti, t j)
(1)

2. Antagonism relation is the “sensitivity” (or “friction”) among things when both

participate in joint operations. A social norm for this relation is that opponent

peers are required to fairly participate in joint operations while a corresponding

commitment is not to make the other peer feel frustrated. We propose Equa-

tion 2 to assess the antagonism level between 2 things where jointOp(ti, t j)

is the number of times ti and t j participated together in joint operations and

inJointOp(ti | ¬t j) is the total number of times ti took part in some opera-

tions without t j and vice versa. A highest value of wantag(ti,t j) reflects a strong

co-presence between ti and t j.

wantag(ti,t j) =
jointOp(ti, t j)

inJointOp(ti | ¬t j) + inJointOp(t j | ¬ti)
(2)

3. Competition relation is the exclusion among things as only one will participate

in an operation. A social norm for this relation is that an excluded thing is re-

quired not to undermine the selected thing’s operation while a corresponding

commitment is that the excluded thing is expected to make all necessary details

available to the selected thing, should this one request them. We propose Equa-

tion 3 to assess the competition level between 2 things where selectedOp(ti) is

the total number of times ti was selected over t j to take part in some operations

and possibleOp(ti, t j) is the number of times ti and t j were both considered for

selection to participate in common operations. A highest value of wcompe(ti,t j)

reflects the appropriateness of ti over t j for satisfying operations’ requirements.

wcompe(ti,t j) =
selectedOp(ti)

possibleOp(ti, t j)
(3)

3.3. How to agentify things?

Norms have an impact on shaping thing agentification. Indeed, they provide the

necessary guidelines to things about how to act when processing requests of users

10

(U2T interactions) and/or involving peers in this processing (T2T interactions). Due

to the diversity of users’ requests, agentification defines norms at the conceptual level

and maps norms onto commitments at the operational level. Simply put, commitments

implement norms.

Our proposed chronology of thing agentification is depicted in Fig. 1. Agent-Thing

correspondence could take different forms including one-to-one (one agent per cam-

era), one-to-many (one agent for all cameras related to the same missing child case),

and many-to-many (many agents for all cameras in the same neighborhood). It all

starts when some application engineers define business and social norms as per the

formalism of Section 3.4. The engineers heavily rely on the under-development IoT ap-

plication’s characteristics (e.g., missing children) to define business norms. We recall

that social norms are application independent (Section 3.1), although, engineers can

rely on social relations between things to define additional social norms. When a user

initiates an interaction with a thing, the social/business norms associated with this in-

teraction are loaded from the respective repositories. Then, the norms are mapped

onto social/business commitments in preparation for their execution by things. During

execution, commitment violations could happen and, thus, need to be detected (Sec-

tion 3.7).

3.4. How to formalize norms?

To formalize Business Norms (NB) and Social Norms (NS), we adopt Vázquez-

Salceda et al.’s formal language whose core components are 3 deontologic concepts

(OBLIGED (ought to), PERMITT ED (may), and FORBIDDEN (ought not to)) and

2 temporal operators (BEFORE and AFT ER) [41]. In this language, norms can (i) re-

fer to an abstract state/action that an agent role should take over/perform, (ii) be condi-

tional, (iii) include a deadline, and/or (iv) be norms concerning other norms (i.e., meta-

norms like obligation to enforce norms).

Definition 1 (a). norm N is expressed as: C(a, r) where:

• C ∈ {OBLIGED, PERMITT ED, FORBIDDEN},

• a represents the entity that is expected to bind the norm (i.e., thing’s owner),

11

Things

Social norms

Engineers

definition

m
a
p

p
e
d

o
n

to

Business norms

m
a
p

p
e
d

o
n

to

definition

coordination

coordination

binding

Users

T2UT2U interactions

Social
commitments

Business
commitments

Networks

 of

 things

C
o

n
c
e
p

tu
a
l le

v
e
l

O
p

e
ra

tio
n
a
l le

v
e
l

membership

consultation

T2TT2T interactions

Figure 1: Components supporting thing agentification

• and, r represents (i) the abstract state that a should take ON or (ii) the abstract

action that a should perform8. In case of an abstract state, a should also report

its state to the ecosystem’s authority.

As per Section 3.3, U2T and T2T interactions exist and, hence, will be regulated

through business and social norms. We begin with social norms and define them along

Before (B), During (D), and After (A) stages:

• Before stage (B). Some social norms include, but are not limited to:

– B-NS1 : Inviting peers (peerInvitation) to participate in a certain operation

should indicate its purpose9 (p) (e.g., operation name and requirements)

and deadline (d) of receiving responses from peers to this invitation. This

norm is represented as OBLIGED(host, do peerInvitation(p, d, pe)) where

8In case of an abstract action, r is preceded by do.
9For the sake of simplicity, purpose is unique and thus, used for identification purposes.

12

host is the thing issuing the invitation, peerInvitation is the abstract action,

and pe are peers acting as potential respondents. B-NS1 can be applied

when a thing is looking for collaborating peers.

– B-NS2 : A thing (t) in the ecosystem reports its status to the ecosystem’s au-

thority (auth), represented as PERMITT ED(t, currentS tatus(busy⊗available, auth))

where currentS tatus is the thing’s abstract state (e.g., busy).

– B-NS3 . A recommended thing (sollicited) should report its decision of par-

ticipating in some joint operation (op) to the ecosystem’s authority (auth),

represented as OBLIGED(sollicited, decision(op, yes ⊗ no, auth)) where

decision is the thing’s abstract state (e.g., yes).

• During stage (D). Some social norms include, but are not limited to:

– D-NS4 . Any classified/sensitive detail (d) should not be disclosed (detailDisclosure),

represented as FORBIDDEN(detailDisclosure(d, yes)) where detailDisclosure

is the abstract state (e.g., yes for not-disclosed).

– D-NS5 . Any detail (d) exchanged during interaction (detailFrehsnessLevel)

should have a certain freshness level (f l), represented as OBLIGED(detailFrehsnessLevel(d, f l))

where detailFrehsnessLevel is the abstract state.

• After stage (A). Some social norms include, but are not limited to:

– A-NS6 . An audit of a thing (t) participating in an operation (opAudit)

should indicate the status of all operations (op), represented as PERMITT ED(auditor,

opAudit(t, op(complete⊗pending))) where auditor is the thing carrying the

audit, t is the thing being audited, and opAudit is the abstract state (e.g., complete).

After presenting some social norms, we now define some business norms using the

missing child case-study:

• Before stage (B). Some business norms include, but are not limited to

– B-NB1 . Releasing a tape (tapeRelease) to local law enforcement agen-

cies (lea) should be backed by some reasons (r) beforehand from these

13

agencies, represented as OBLIGED(t, do tapeRelease(ta, lea, r)) where t

is the thing managing the tape ta and tapeRelease is the abstract action.

• During stage (D). Some business norms include, but are not limited to

– D-NB2 . Any photo (p) about a search area (areaZoom) should have a cer-

tain granularity level (gl), represented as OBLIGED(areaZoom(p, a, gl))

where areaZoom is the abstract state and a is the area being zoomed.

3.5. How to map norms onto commitments?

To structure commitments with respect to social and business norms, we adopt

Fornara and Colombetti’s formalism [14]: Stage-CSi
j |C

Bi
j (debtor, creditor, content[|condition])

whereCSi
j |C

Bi
j is a social|business commitment associated with a social|business normNSi |NBi

at a certain stage of the interaction (i.e., B, D, and A), debtor is the thing that makes the

commitment towards either a peer or user known as creditor, content is some action(s)

that debtor will execute, [] means optional, and condition validity authorizes debtor to

execute the action(s). Note that a norm can be mapped onto at least one commitment.

For the sake of illustration, we define 4 social commitments (B-CS1
1 , B-CS2

1 , D-CS4
1 ,

and A-CS6
1) and 1 business commitment (B-CB1

1).

1. B-CS1
1 (host, auth, contactAll(p, d, pe)) is a host’s social commitment towards

the ecosystem’s authority (auth) to contact all peers (pe), contactAll is the con-

crete action associated with the abstract action peerInvitation, p is the purpose

referring to an operation that host would like to see some peers participate in,

and d is the deadline of receiving responses from pe.

2. B-CS2
1 (host, auth, report(busy ⊗ available)) is a host’s social commitment to-

wards the ecosystem’s authority (auth) to report its status, report is the concrete

action associated with the abstract state currentS tatus, and busy ⊗ available is

the possible status.

3. D-CS4
1 (host, auth, hide(d, yes)) is a host’s social commitment towards the ecosys-

tem’s authority (auth) to not disclose any classified detail (d), hide is the con-

crete action associated with the abstract state detailDisclosure, and yes confirms

the no-disclosure.

14

4. A-CS6
1 (auditor, auth, reportAll(t, op(pending ⊗ complete))) is an auditor’s so-

cial commitment towards the ecosystem’s authority (auth) to report the status of

all operations (op) per thing (t), reportAll is the concrete action associated with

the abstract state opAudit, and pending ⊗ complete is the possible status.

5. B-CB1
1 (host, auth, handOver(ta, lea, r)|valid(r)) is a host’s business commit-

ment towards the ecosystem’s authority (auth) to hand tapes (ta) over to the law

enforcement agencies (lea), handOver is the concrete action associated with the

abstract action releaseTape, and valid is a function that auth uses to check at

run-time whether reasons (r) back the release approval to lea.

3.6. How to check the consistency of commitments?

Because a norm can be mapped onto many commitments (Section 3.5) and that

commitments of different norms are defined independently from each other, conflicts

of types intra-norm and inter-norm could arise. Reasons of conflicts could be, for in-

stance inaccurate execution chronology between commitments’ actions linked to the

same norm and, also, incompatible conditions between commitments linked to separate

norms. If not addressed, conflicts could lead to an unstable ecosystem of things (e.g., dead-

lock) and, even, to jeopardize its existence (e.g., dismantlement). To achieve commit-

ment consistency, we proceed as follows using some examples related to the missing

child case-study.

• Intra-norm conflict: A camera commits to the ecosystem’s authority to contact

some peers (i.e., certain cameras) so, that, they participate in some joint opera-

tion (B-CS1
1). But, the camera adds a peer to this operation without waiting for

its final response. For the sake of time, the requesting camera assumed a positive

response based on past cases (i.e., the peer should positively reply). The reason

of conflict is inappropriate execution chronology between add peer (add(pe))

and wait for peer’s response (wait(pe, resp)) actions. The commitment having

add(pe) as an action (B-CS1
2) should be conditioned by the response reported

in the commitment having wait(pe, resp) as an action (B-CS1
3). As a solution,

we revisit this free-condition commitment’s definition so, that, a new condi-

tion (valid(resp)) is attached to the commitment.

15

• Inter-norm conflict: A camera commits to the ecosystem’s authority to report both

its decision of participating in some operation (B-CS3
1) and the status of all its

operations (A-CS7
1). However its rejection decision of participation does not

match the status (e.g., pending) of certain operations. The reason of conflict

is incompatibility between the respective parameter values (i.e., no for decision

and pending for status) of report and reportAll actions. The commitment hav-

ing reportAll(op(pe, pending⊗complete)) as an action should be conditioned by

the acceptance decision reported in the commitment having report(op(yes⊗no))

as an action. As a solution, we revisit the commitment’s definition so, that,

reportAll(op(pe, pending⊗complete)) is changed to reportAll(pe(yes), op(pending⊗

complete)).

To achieve commitment consistency, we develop guidelines that consider execution

dependencies and data exchanges between commitments’ constituents (i.e., actions)

and between commitments as well.

• Guidelines for intra-norm conflicts. Commitments that belong to the same norm

could start and/or finish the execution of their actions depending on events like

same-start-with-another-action and same-finish-with-another-action. We special-

ize action dependencies between two actions (a1,a2) into 4 types: start-to-start (i.e., a1

must start before a2 can start), start-to-finish, finish-to-start, and finish-to-finish.

For instance, there exists a finish-to-start dependency between wait and add ac-

tions reported in B-CS1
2 and B-CS1

3 , respectively. These dependencies will be

enforced at run-time through functions (e.g., valid()), which should guarantee

the consistent progress of actions at run-time.

• Guidelines for inter-norm conflicts. Commitments (Com) that are linked to differ-

ent norms could be synchronized by ensuring proper data exchange at run-time.

For each commitment, we define the following (null or non-null) parameters: (in-

put, output). We check consistency if output(Comi) ∩ input(Com(i+1)) , φ. For

instance, output(B-CS3
1) = {op(yes⊗no)} and input(A-CS7

1) = {op(pe, pending⊗

complete)}.

16

3.7. How do things comply with norms?

In our thing-agentification approach, we action (business/social) norms through

(business/social) commitments. To ensure full compliance with norms at run-time,

monitoring commitments is a must and should permit to detect satisfaction or violation

of these commitments [11, 37]. In fact, monitoring checks if a commitment’s debtor

has either executed10 (i.e., satisfaction) or not (i.e., violation11) the actions included in

the commitment’s content.

Because of the social aspects that we inject into our agentification approach, we

consider that the exclusivity of either satisfaction or violation does not permit to cap-

ture social aspects upon which ongoing and complex interactions between entities, such

as debtor and creditor, are built (Fig. 2). Indeed, these interactions require more than

“yes” and “no” that characterize business interactions (i.e., either approval or rejection)

that are usually governed by strict contracts [20]. To address the exclusivity limitation,

we propose a 3rd option that would “sit” between a commitment’s (complete) satisfac-

tion and (complete) violation, which is partial satisfaction/violation. The revised seman-

tics of complete versus partial is discussed below using the missing child case-study and

depicted with Fig. 3:

- Complete satisfaction of commitment: the debtor has successfully executed all

actions (after satisfying all conditions, if any) and the outcomes of this execu-

tion meet the creditor’s expectations; e.g., the tapes handed over to the law en-

forcement agencies are relevant since they record the areas of interest from 9am

to 11am.

- Complete violation of commitment: either the debtor has not executed any action

or has executed actions despite the non-satisfaction of conditions, if any; e.g., ei-

ther no tapes have been handed over to the law enforcement agencies or the tapes

have been handed over despite the no-eligibility of the recipients (e.g., local me-

dias).

10For the sake of simplicity, we assume that all executions are successful.
11Violation could lead to investigation/argumentation but this is outside this work’s scope.

17

Conditional Base

Completely
satisfied

c
re
a
te

Null

e
x
p
ir
e

detach

e
x
p
ir
e

Completely
violated

c
a
n
c
e
l

d
is
c
h
a
rg
e

Figure 2: Business commitment’s lifecycle (as per [37])

Conditional Base

Completely
satisfied

c
re
a
te

Null

e
x
p
ir
e

detach

e
x
p
ir
e

Completely
violated

c
a
n
c
e
l

d
is
c
h
a
rg
e

Partially
violated/satisfied

o
n
-h
o
ld

Figure 3: Social commitment’s lifecycle

18

- Partial violation/satisfaction of commitment: the debtor has successfully exe-

cuted all actions (after satisfying all conditions, if any) but the outcomes of this

execution do not meet the creditor’s expectations; e.g., “fresh” data has been

shared with the requestors, but upon receipt, the data has become obsolete.

We, hereafter, illustrate the monitoring of certain business and social commitments

presented earlier.

• B-CB1
1 (host, auth, handOver(ta, lea, r)|valid(r)). Monitoring this business com-

mitment means that the ecosystem’s authority (auth) verifies the reasons (r) that

led the camera’s owner (host) to hand over the tapes (ta) to the law enforcement

agencies (lea). If the reasons are valid, the ecosystem’s authority raises a com-

plete satisfaction of the commitment. Otherwise, it raises a complete violation.

• D-CS3
1 (host, auth, hide(d, yes)). Monitoring this social commitment means that

the ecosystem’s authority (auth) verifies that the camera’s owner (host) has hid-

den every classified detail (d) (e.g., child’s name). If this is the case, the ecosys-

tem’s authority raises a complete satisfaction of the commitment. Otherwise, it

raises either a partial violation if d has been hidden but d is not classified or a

complete violation if d has not been hidden but d is classified.

4. Thing-agentification testbed

This section discusses the testbed for implementing, experimenting, and evaluat-

ing our thing-agentification approach. Java, Eclipse Mosquitto broker [1], and Message

Queuing Telemetry Transport (MQTT) publish/subscribe protocol [6] are among the tech-

nologies implementing the testbed.

4.1. Architecture

Fig. 4 is the architecture of the testbed that comprises a set of Java-based in-

house developed components such as definition manager and monitor manager, and uses

Mosquitto in support of exchanging MQTT messages (e.g., streaming request) between

certain components. Requests that messages convey are expected to comply with the

19

defined norms and corresponding commitments; otherwise, violations are flagged (Sec-

tion 4.2). In the testbed, 2 relational databases are developed. The first stores details

about cameras (e.g., identifier, communication protocol, capabilities, and physical lo-

cation), and the second stores details about instantiated norms and commitments used

during monitoring.

MQTT broker

(Eclipse Mosquitto)

3. Run-time

2. Configuration1. Deployment

: repositiry

: component

: stage

: thing

: observer

Legend

Thing owner

Thing1 Thingi

Obs1 Obsi

1.1 install

3.3 MQTT transfer

System engineer

Monitor manager Definition manager

Mapping manager

2.1 define2.3 deploy

2
.2

 d
e
p

lo
y

3
.5

 M
Q

T
T

 m
o

n
it
o

r
re

q
u

e
s
t

B/S
norms

B/S
commitments

read

update

update

u
p

d
a
te

Execution manager

3.2 request
3.4 request

re
a
d

User

3.1 initiate

3.6 process

MQTT subscribe

Execution
data

Monitoring
data

Figure 4: Testbed’s architecture for thing agentification

The chronology of setting up and operating the testbed goes through 3 stages.

1. Deployment stage is about owners who install and initialize their things (cam-

eras in the following) with necessary details (1.1 in Fig. 4) along with assigning

observers to these cameras (one-2-one). Observers report on the actions that

cameras execute such as recording scenes, zooming-in/out, and rotating. These

actions reflect the progress of T2U and T2T interactions and permit to establish

the lifecycles of cameras’ commitments (Fig. 2 and Fig. 3).

2. Configuration stage targets the definition manager, mapping manager, monitor man-

ager, and B/S norms/commitments repositories. The definition manager assists the

testbed engineer define (2.1) the necessary NB j and NS j and stores them in the

B/S norms repository (update operation). The mapping manager, also, assists

the engineer deploy the corresponding commitments (2.2) for each norm (read

20

operation) prior to storing these commitments in the B/S commitments reposi-

tory (update operation). To track the completion process of things’ commitments

(so, that, potential violations are detected), the engineer deploys the monitor man-

ager (2.3) whose role becomes evident during the run-time stage.

3. Run-time stage is about users who have requests like streaming cameras’ con-

tents. First, a user initiates the execution manager (3.1), that on behalf of the

user, requests cameras to execute specific operations (3.2-3.3). In conjunction

with sending users’ requests, the execution manager requests from the monitor

manager (3.4) to “keep-an-eye” on the cameras’ commitments (3.5) based on

the observers’ reports so, that, the monitor manager updates the B/S commitments

according to these commitments’ statuses (Fig. 3, update operation). Finally,

the execution manager analyzes these statuses (3.6) by consulting the B/S com-

mitments repository (read operation). In the case of any commitment violation

(illustrated below), the execution manager informs the user through a dedicated

dashboard.

4.2. Experiments

We considered 3 real IP cameras that we connect through an “IP Webcam” An-

droid app installed on 3 Lenovo Yoga tablets. The cameras are placed in different parts

of the city of Novi Pazar in Serbia, stream 24/7 live video content, and offer a secure

access to authenticated users via an in-house Java-based camera control panel. We use

the panel to direct 2 requests to cameras: rotation and streaming. Rotation requests

originate from users such as Police and other things such as another camera (when ex-

tending a search area). Contrarily, streaming requests originate from users, only, such

as Police and social services. In conjunction with the cameras, we deployed the testbed

on a 64bit Intel Core 2.50GHz CPU, 6GB RAM laptop.

2 types of violation-related experiments were performed: detection efficiency and

detection duration. The experiments cover the following commitments:

• D-CS4
1 (host, auth, hide(d, yes)) is a host’s social commitment towards the ecosys-

tem’s authority (auth) to not disclose any classified detail (d). The detail is about

a person’s face.

21

• B-CS2
1 (host, auth, report(busy ⊗ available)): A thing (t) in the ecosystem re-

ports its status to the ecosystem’s authority (auth).

• B-CB2
1 (host; auth; zoom(p; a; gl)) gl)) is a host’s business commitment toward

the ecosystem’s authority (auth) to zoom a search area (a) resulting in a photo (p)

with a certain granularity level (gl). For experiment needs, we replaced “zoom”

with “rotate” that would hold details about the sender (e.g., cameraID: 10000),

receiver (e.g., cameraID: 0003), operation name (e.g., rotate), and degree of

agreed rotation (e.g., 45).

1. Detection efficiency: To assess the testbed’s capacity of detecting commitment

violations, we considered 2 cases.

(a) The first case targets D-CS4
1 and uses 5 sets of experiments, each set con-

sisting of samples of 10, 20, 30, 40, and 50 video streaming sessions cap-

tured from midnight to midday and extracted from the monitor manager’s

database. Each session is formed in response to a user’s request like Po-

lice and singles out a specific camera. Upon releasing the video content

to the user, the execution manager processes the streamed video using an

in-house face recognition module developed in Python and Open Source

Computer Vision Library (OpenCV, opencv.org). When a face is detected

in the streamed video, the execution manager notifies the monitor manager

regardless of who has requested the streaming. Details about a user’s ses-

sion (userID, cameraID, cameraView, and session starting and ending time)

are collected by the control panel and submitted to the monitor manager for

analysis. This one checks the collected details with regard to the active

commitments and report possible violations that would be displayed in real-

time on the control panel. During analysis, the monitor manager decides on

3 cases per session (Fig. 5):

i. Completely violated (commonly known as True/Positive): the alert of

violation is confirmed in the sense that the user (e.g., social services) is

not authorized to consult parts of the video content due to the presence

of persons’ faces in this video.

22

ii. Completely satisfied (commonly known as True/Negative): the alert

of violation is not confirmed in the sense that the user (e.g., Police)

is authorized to consult the whole video content with or without per-

sons’ faces.

iii. Partially violated/satisfied: the alert of violation is simultaneously con-

firmed (social services are not allowed to check some parts of a video

content) and not confirmed (A Police officer has temporarily been as-

signed to social services and hence, is allowed to check all the content).

10 20 30 40 50

10

20

30

40

Nb of sessions

N
b

of
vi

ol
at

io
ns

Completely violated Completely satisfied Partially violated/satisfied

Figure 5: Testbed’s effectiveness for violation detection of D-CS4
1

As per Fig. 5, the monitor manager detects violations related to D-CS4
1 . In

the second set of 20 video streaming sessions (one session is started by one

authenticated user who selects one camera and a desired camera view) of

a specific camera, the results show 14 completely violated, 3 completely

satisfied, and 3 partially violated/satisfied commitments. It should be noted

that the reported violations numbers, such as 7, 14, 25, and 20 would vary

from one experiment to another depending on the streamed content used

23

during the experiments and the part of the day during which the streaming

sessions are formed (i.e, morning, afternoon, and evening).

(b) The second case is about reporting violations in connection with different

commitments. We considered 20 different user requests for concurrent ro-

tation and streaming. These requests concern 3 cameras and are sent from

the control panel using a dedicated user interface (Fig. 6). The execution

manager receives the requests and dispatches them to a particular camera.

We note that the monitor manager tracks the different requests and reports

violations related to independent and combined commitments (Fig. 7). For

instance, the monitor manager detects out of 20 requests to Camera 001,

10 true/positive violations of D-CS4
1 , 18 of B-CS2

1 , 13 of B-CB2
1 , 25 vio-

lations of D-CS4
1 + B-CS2

1 , and 37 violations of D-CS4
1 +B-CB2

1 . These

violations could be due to unauthorized rotation degree, not sending status

to the system’s authority, and/or unauthorized users watching faces on the

streamed video.

2. Detection duration: To assess the testbed’s time performance for detecting com-

mitment violations, we computed the time of processing live video content and

the time of reasoning over the commitments that are bound to a specific re-

quester. We considered social services’ streaming requests sent to Camera 001,

Camera 002, and Camera 003 with different commitments (i.e, one to three of

these commitments D-CS4
1 , B-CS2

1 and B-CB2
1), then we recorded the time that

the monitor manager took to process the enabled commitments so, that, potential

violations are detected (Fig. 8). We noticed that the detection time for com-

pletely violated commitments depends on the streamed content, especially for

the violation detection of D-CS4
1 . The reasoning over the agreed commitments

does not affect much the violation detection time, since the active commitments

are checked instantly by the monitor manager.

4.3. Scalability analysis

To assess the scalability of our system so, that, more streamed content is analyzed in

an acceptable time frame, we simulated 100 IP-cameras in conjunction with the 3 reals

24

Figure 6: Live video streaming of a street in Novi Pazar

25

D
−

C
S 4

1

B −
C
S 2

1

B −
C
B2

1

D
−

C
S 4

1
+

B −
C
S 2

1

D
−

C
S 4

1
+

B −
C
B2

1

10

20

30

40

10

18

13

25

15

7

20

13

28

36

16

9

17

26
27

N
b

of
vi

ol
at

io
ns

Camera 001

Camera 002

Camera 003

Figure 7: Testbed’s effectiveness for violation detection of different commitment types

26

1 2 3

0.5

1

1.5

2

2.5

3

3.5
·104

Nb of agreed commitments

V
io

la
tio

n
de

te
ct

io
n

tim
e

Streaming video of Camera 001 Streaming video of Camera 002 Streaming video of Camera 003

Figure 8: System performance evaluation based on detection time

27

that we used in the first experiment. As per Fig. 4, the IP cameras’ observers ana-

lyze their respective streamed contents. We deployed the observers on 100 cloud in-

stances based in Germany (Hetzner CX11: 1vCPU, 2GB RAM, 20GB disk space costing

0.00347 euro per hour and running on Linux Ubuntu). More cloud instances could be

added to host more observers, should this be deemed necessary. During the scalability

experiment, 6 sessions that lasted 24 hours each have been considered with different

number of received messages (Table 1).

Table 1: Details about sessions’ received messages

Session #

1 2 3 4 5 6

Nb of received 2132110 3083143 5751902 6234271 8187840 9396200

messages

During the different sessions, we tracked the performance of the monitor man-

ager using VisualVM [40]. It is a profiling tool that assesses a system’s memory and

CPU usage with minimum impact on its performance. Our objective is to evaluate

the monitor manager capability of handling a growing amount of commitment-related

violation/non-violation messages and storing them in a MongoDB database.

The results of the experiment in terms of performance metrics are related to CPU

and memory usage. An example of these metrics for session 8 is reported in Ta-

ble 2. First, VisualVM automatically collects these metrics over a session period.

Then, it considers the maximum value of each metric from the collected values. Re-

garding memory usage, it peaks up to 99.97 MB when the number of messages hits

9396200 messages (Fig. 9a), while the CPU usage hits 68.7% (Fig. 9b), which demon-

strates that the monitor manager performance remains “acceptable” (low memory and

CPU usage under high load). This experiment also demonstrates that CPU usage in-

creases when initializing the system, decreases afterwards, and remains steady during

the session, which proves that the CPU usage is independent from the number of ob-

servers. The graphs in Fig. 10 represent the trend of memory and CPU usage for

session 8 over different monitoring periods.

Based on the presented metrics, we conclude that the monitor manager is not sub-

28

Table 2: Extract of the monitor-manager performance during session 8

Monitoring time Max memory usage Max CPU usage

(min) (megabytes) (%)

3 61.81 69.0

10 94.17 64.2

30 96.95 68.2

60 98.96 68.0

120 98.96 68.0

240 98.97 68.0

2132110 3083143 5751902 6234271 818784 9396200
90

95

100

Nb of messages

M
ax

M
em

or
y

us
ag

e
(M

B
)

Memory

(a) Memory usage

2132110 3083143 5751902 6234271 818784 9396200
10

50

100

Nb of messages

M
ax

C
PU

us
ag

e
(%

)

CPU

(b) CPU usage

Figure 9: Monitor manager performance

ject to severe stress when the number of cameras increases by adding more cloud in-

stances hosting the observers that are in charge of analyzing streamed content. Hard-

ware upgrade of the monitor manager is not necessary when increasing the number of

observers. The burden of streamed content analysis is not on the monitor manager

but on observers. Thanks to the cloud’s load balancer, the observers perform the

necessary analysis.

29

(a) 3 minutes of monitoring

(b) 10 minutes of monitoring

(c) 30 minutes of monitoring

(d) 60 minutes of monitoring

Figure 10: Trend of memory and CPU usage for session 8

30

5. Conclusion

This paper addressed the particular issue of things’ limited responsiveness (being

passive) to events impacting users’ and peers’ surroundings. This limitedness confines

things into a data supplier role and, hence, prevents them from handling complex busi-

ness scenarios like missing child. Both norms at the conceptual level and commitments

at the operational level define the necessary capabilities that should empower things

and, hence, make them proactive. Norms, specialized into business and social, regulate

the operations of things in terms of obligations, permissions, and prohibitions whereas

commitments, also specialized into business and social, ensure thing compliance with

these norms at run-time. This compliance could be jeopardized because of absence of

consistency among norms during their definitions and/or norm violation. Either way re-

quires commitment monitoring so, that, things avoid sanctions due to non-compliance.

A testbed and case study demonstrating the role of norms/commitments in empowering

things have been implemented using Bevywise simulator and Mosquitto broker. In term

of future work, we would like to expand the testbed by including more real things, ex-

amine further the partial violation/satisfcation of social commitments, and last but not

least discuss the impact of trust on thing selection [26].

References

[1] An Open Source MQTT v3.1 Broker. https://mosquitto.org/, 2018. (Accessed on

01/30/2018).

[2] F. Alkhabbas, M. Ayyad, R-C. Mihailescu, and P. Davidsson. A Commitment-based ap-

proach to realize Emergent Configurations in the Internet of Things. In International

Workshop on Engineering IoT Systems: Architectures, Services, Applications, and Plat-

forms (IoT-ASAP’2017), co-located with International conference on software architec-

ture (ICSA’ 2017), Gothenburg, Sweden, May 2017.

[3] D. Androc̀ec, B. Tomas̀, and T. Kis̀asondi. Interoperability and Lightweight Secu-

rity for Simple IoT Devices. In Proceedings of the Information Systems Security

Conference (ISS’2017) held in conjunction with the 40th Jubilee International Conven-

31

tion on Information and Communication Technology, Electronics, and Microelectron-

ics (MIPRO’2017), Opatija, Croatia, May 2017.

[4] L. Atzori, A. Iera, and G. Morabito. SIoT: Giving a Social Structure to the Internet of

Things. IEEE Communications Letters, 15(11), November 2011.

[5] L. Atzori, A. Iera, G. Morabito, and M. Nitti. The Social Internet of Things (SIoT) -

When Social Networks Meet the Internet of Things: Concept, Architecture and Network

Characterization. Computer Networks, 56(16), 2012.

[6] A. Banks and R. Gupta. OASIS Message Queuing Telemetry Transport (MQTT) TC —

OASIS. https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=

mqtt, 2014. (Accessed on 01/30/2018).

[7] J. Brokenshire. Missing Children and Adults: A Cross-Government Strategy. Home Office,

(ISBN: 978-1-84987-614-8), 2011.

[8] A. Bröring, S. Schmid, C.K. Schindhelm, K. Khelil, S. Käbisch, D. Kramer, J. Le Phuoc,

D.and Mitic, D. Anicic, and E. Teniente. Enabling IoT Ecosystems through Platform In-

teroperability. IEEE Software, 34(1), Jan-Feb 2017.

[9] J. Chen, J. Ma, N. Zhong, Y. Yao, J. Liu, R. Huang, W. Li, Z. Huang, Y. Gao, and J. Cao.

WaaS: Wisdom as a Service. IEEE Intelligent Systems, 29(6), 2014.

[10] F. Chesani, P. Mello, M. Montali, and P. Torroni. Representing and Monitoring Social

Commitments Using the Event Calculus. Autonomous Agents and Multi-Agent Systems,

27(1), 2013.

[11] M. Dastani, L. van der Torre, and N. Yorke-Smith. Commitments and interaction norms in

organisations. Autonomous Agents and Multi-Agent Systems, 31(2), 2017.

[12] M. Dastani, L. van der Torre, and N. Yorke-Smith. Agent-Oriented Cooperative Smart

Objects: From IoT System Design to Implementation. IEEE Transactions on Systems,

Man, and Cybernetics: Systems, (Fortino, G. and Russo, W. and Savaglio, C. and Shen, W.

and Zhou, M.), 2017 (forthcoming).

[13] DZone. The Internet of Things, Application, Protocls, and Best Practices. Technical re-

port, https://dzone.com/guides/iot-applications-protocols-and-best-practices, 2017 (visited

in May 2017).

32

[14] N. Fornara and M. Colombetti. Operational Specification of a Commitment-based Agent

Communication Language. In Proceedings of the 1st International Joint Conference on

Autonomous Agents and Multiagent Systems (AAMAS’2002), Bologna, Italy, July 2002.

[15] H. Green. The Internet of Things in the Cognitive Era: Realizing the Future and Full

Potential of Connected Devices. www-01.ibm.com/common/ssi/cgi-bin/ssialias?

htmlfid=WWW12366USEN, December 2015.

[16] IBM. Munich Genius of Things: Connected Workplaces and Buildings, February 2018.

[17] A. Katasonov, O. Kaykova, O. Khriyenko, S. Nikitin, and V. Terziyan. Smart Semantic

Middleware for the Internet of Things. In Proceedings of the 5th International Conference

on Informatics in Control, Automation and Robotics (ICINCO’2008), Funchal, Madeira,

Portugal, 2008.

[18] A. Kott and D.S. Alberts. How Do You Command an Army of Intelligent Things? IEEE

Computer, 50(12), 2017.

[19] J. Kwan, Y. Gangat, D. Payet, and R. Courdier. An Agentified Use of the Inter-

net of Things. In Proceedinmgs of the 2016 IEEE International Conference on Inter-

net of Things (iThings’2016) and IEEE Green Computing and Communications (Green-

Com’2016) and IEEE Cyber, Physical and Social Computing (CPSCom’2016) and

IEEE Smart Data (SmartData’2016), Chengdu, China, December 2016.

[20] M. Kyas, C. Prisacariu, and G. Schneider. Run-Time Monitoring of Electronic Contracts.

Springer Berlin Heidelberg, 2008.

[21] T. Leppänen and J. Riekki. A Lightweight Agent-based Architecture for the Internet of

Things. In Proceedings of the WEICE Workshop on Smart Sensing, Wireless Communica-

tions, and Human Probes, Wuxi, China, March 2013.

[22] Z. Maamar, M. Sellami, N. Faci, E. Ugljanin, and Q.Z. Sheng. Storytelling Integration

of the Internet of Things into Business Processes. In Proceedings of the Business Pro-

cess Management Forum (BPM Forum’2018) held in conjunction with the 16th Interna-

tional Conference on Business Process Management (BPM’2018), Sydney, NSW, Aus-

tralia, 2018.

[23] P. Maes. Pattie Maes on Software Agents: Humanizing the Global Computer. IEEE Inter-

net Computing, 4(1), July 1997.

33

[24] A. Martı́nez-Ballesté, P.A. Pérez-Martı́nez, and A. Solanas. The Pursuit of Citizens’ Pri-

vacy: a Privacy-Aware Smart City is Possible. IEEE Communications Magazine, 51(6),

2013.

[25] L. Militano, M. Nitti, L. Atzori, and A. Iera. Enhancing the Navigability in a Social Net-

work of Smart Objects: A Shapley-Value based Approach. Computer Networks, 103, 2016.

[26] D. Minoli and B. Occhiogrosso. Blockchain mechanisms for IoT security. Internet of

Things, 1-2, 2018.

[27] A. M. Mzahm, M. S. Ahmad, and A. Y. C. Tang. Agents of Things (AoT): An intelligent

operational concept of the Internet of Things (IoT). In Proceedings of the 13th International

Conference on Intellient Systems Design and Applications (ISDA’2013), Bangi, Malaysia,

2013.

[28] N. C. Narendra. Generating Correct Protocols from Contracts: A Commitment-based Ap-

proach. In Proceedings of the 2008 IEEE Congress on Services - Part I (SERVICES I 2008),

Honolulu, Hawaii, USA, 2008.

[29] College of Policing. Major investigation and public protection: Missing person inves-

tigations, https://www.app.college.police.uk/app-content/major-investigation-and-public-

protection/missing-persons/missing-person-investigations/, 2016, (visited February 2018).

[30] A. M. Ortiz, D. Hussein, S. Park, S. N. Han, and N. Crespi. The Cluster Between Internet

of Things and Social Networks: Review and Research Challenges. IEEE Internet of Things

Journal, 1(3), June 2014.

[31] A. Paschke and M. Bichler. Knowledge Representation Concepts for Automated SLA

Management. Decision Support Systems, 46(1), 2008.

[32] M. E. Pérez Hernández and S. Reiff-Marganiec. Towards a Software Framework for the

Autonomous Internet of Things. In Proceedings of the 4th IEEE International Conference

on Future Internet of Things and Cloud (FiCloud’2016), Vienna, Austria, August 2016.

[33] P. Pico-Valencia and J. A. Holgado-Terriza. Semantic Agent Contracts for Internet of

Agents. In Proceedings of the 2016 IEEE/WIC/ACM International Conference on Web

Intelligence Workshops (WIW’2016), Omaha, NE, USA, 2016.

34

[34] C. Savaglio, G. Fortino, M. Ganzha, M. Paprzycki, C. Badica, and M. Ivanovic. Agent-

Based Computing in the Internet of Things: A Survey. In Proceedings of the 11th Inter-

national Symposium on Intelligent Distributed Computing (IDC’2017), Belgrade, Serbia,

October’2017.

[35] Z. Shen, H. Yu, L. Yu, C. Miao, Y. Chen, and V.R. Lesser. Dynamic Generation of Internet

of Things Organizational Structures Through Evolutionary Computing. IEEE Internet of

Things Journal, 5(2), 2018.

[36] M. N. Singh, A. K. Chopra, and N. Desai. Commitment-Based Service-Oriented Architec-

ture. Computer, 42(11), November 2009.

[37] M. P. Singh. An Ontology for Commitments in Multiagent Systems: Toward a Unification

of Normative Concepts. Artificial Intelligence and Law, 7(1), 1999.

[38] L. Slowey. IoT for the OAP: New Technology for an Ageing Population, 2016.

[39] A. Taivalsaari and T. Mikkonen. A Roadmap to the Programmable World: Software Chal-

lenges in the IoT Era. IEEE Software, 34(1), 2017.

[40] VisualVM Team. VisualVM: All-in-One Java Troubleshooting Tool. https://

visualvm.github.io/, 2018. (Accessed on 02/05/2019).

[41] J. Vázquez-Salceda, H. Aldewereld, and F. Dignum. Norms in multiagent systems: from

theory to practice. Computer Systems Science and Engineering, 20, 2005.

[42] M. Weiser. The Computer for the 21st Century. Newsletter ACM SIGMOBILE Mobile

Computing and Communications Review, 3(3), 199.

[43] Q. Wu, G. Ding, Y. Xu, S. Feg, Z. Du, J. Wang, and K. Long. Cognitive Internet of Things:

A New Paradigm Beyond Connection. IEEE Internet of Things Journal, 1(2), April 2014.

[44] Y. X. Blind Review. In Proceedings of the IEEE 12th International Conference on Research

Challenges in Information Science (RCIS’2018), Rennes, France, May 2018.

[45] L. Xu, M. A. Jeusfeld, and P. W. P. J. Grefen. Detection tests for identifying violators of

multi-party contracts. ACM SIGecom Exchanges, 5(3), 2005.

[46] F. Zambonelli. Key Abstractions for IoT-Oriented Software Engineering. IEEE Software,

34(1), January-February 2017.

35

[47] C. Zhang, C. Cheng, and Y. Ji. Architecture Design for Social Web of Things. In Pro-

ceedings of the 1st International Workshop on Context Discovery and Data Mining (Con-

textDD’2012), Beijing, China, 2012.

36

