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Abstract: The Internet of Things (IoT) is an emerging paradigm branded by heterogeneous
technologies composed of smart ubiquitous objects that are seamlessly connected to the Internet.
These objects are deployed as Low power and Lossy Networks (LLN) to provide innovative services
in various application domains such as smart cities, smart health, and smart communities. The LLN
is a form of a network where the interconnected devices are highly resource-constrained (i.e., power,
memory, and processing) and characterized by high loss rates, low data rates, and instability in
the communication links. Additionally, IoT devices produce a massive amount of confidential
and security-sensitive data. Various cryptographic-based techniques exist that can effectively cope
with security attacks but are not suitable for IoT as they incur high consumption of resources (i.e.,
memory, storage and processing). One way to address this problem is by offloading the additional
security-related operations to a more resourceful entity such as a fog-based node. Generally, fog
computing enables security and analysis of latency-sensitive data directly at the network’s edge. This
paper proposes a novel Fog Security Service (FSS) to provide end-to-end security at the fog layer
for IoT devices using two well-established cryptographic schemes, identity-based encryption, and
identity-based signature. The FSS provides security services such as authentication, confidentiality,
and non-repudiation. The proposed architecture would be implemented and evaluated in an OPNET
simulator using a single network topology with different traffic loads. The FSS performed better
when compared with the APaaS and the legacy method.

Keywords: Internet of Things; fog computing; security; privacy

1. Introduction

The Internet of Things is an emerging paradigm that provides seamless and ubiquitous
connectivity to smart devices over the Internet. The IoT is composed of diverse devices, such as
Radio-frequency identification (RFID) tags, sensors, and smartphones. These devices can potentially
cooperate and collaborate to provide diverse services like, for example, smart cities, smart communities,
emergency response, smart metering, home automation, intelligent transportation system, and the
Internet of connected vehicles [1,2] Interconnected IoT nodes generate a massive amount of data
that are needed to be private and confidential. The data must be stored, processed, and presented
in a secure, efficient, and easily interpretable form [3]. According to Cisco anticipation for the year
2020, 50 billion devices would capture the Internet and will reach 500 billion by the year 2025 [1,4].
The Federal Trade Commission’s (FTC) report [5] on IoT urged businesses to adopt best practices to
address consumer privacy concerns and security risks. It warns that smart devices are involved in
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harvesting huge amount of personal information and exposed to a variety of potential security threats,
such as unauthorized access and misuse of personal information.

Cloud computing can enable IoT to have the privilege of cost-effective on-demand services
for intensive processing and big data storage. However, in the cloud-based IoT applications, there
remain unresolved issues such as the requirement of high capacity client access link, variable latency,
lack of mobility support, and security and location-awareness [6,7]. In particular, applications such
as real-time monitoring, industrial automation (Industry 4.0), sensor and actuators networks, and
intelligent transportation systems are too latency-sensitive to be deployed on cloud infrastructures.
The fog computing paradigm addresses this challenge by offering computing resources and services to
end-users at the edge of the network [8]. Fog computing puts a substantial amount of communication,
control, storage, and management at the edge of a network as opposed to establishing dedicated
channels to a more centralized remote cloud infrastructure. This approach reduces service latency,
improves the Quality of Service (QoS), and provides a superior experience to end-users [7,9]. However,
fog computing is a non-trivial extension of cloud computing, and it has been proposed in the
IoT. Thus, security and privacy issues are inherited in fog computing. In addition, due to the
underlying differences between cloud computing and fog computing, security solutions proposed
for cloud computing may not suit fog services available to end-users at the edge of the networks.
Moreover, IoT applications are deployed as Low power and Lossy Networks (LLN), such as wireless
sensor networks, smart city, and smart health applications. The LLN is a class of networks where
the interconnected devices are highly resource constrained (power, memory, processing) and are
characterized by high loss rates, low data rates, and instability in the communication links [10]. Due to
their limited characteristics, they are not suitable for generating cryptographic keys and for computing
complex cryptographic operations. Therefore, addressing security concerns at the fog layer could
enable a fog paradigm to provide not only additional computational resources but also adequate level
of security to minimize cyber-attacks in the IoT environments.

1.1. Problem Statement

Lee et al. [11] suggested that IoT fog nodes are expected to collect and process personal information
originated from millions of IoT devices. While existing security solutions can address some threats,
there are other issues that pertain specifically to fog computing environments and which pose unique
challenges for security researchers and practitioners [11,12]. For example, authentication is an essential
requirement for protecting IoT data both in transit and at rest [13]. Unfortunately, many IoT devices
do not have enough memory and Central Processing Unit (CPU) power to perform cryptographic
operations that are required by most of today’s authentication protocols. For instance, a simple
RFID tag consists of a single 16-bit processor, often running at 6-12 MHz in an energy saving mode,
with a Random Access Memory (RAM) of 512 bytes and 16 Kbytes of flash for program storage.
A micro-controller can spend nearly 0.7µJ on each 16-bit operation at 12 MHz. Thus, if we double
the microcontroller (MCU) overhead to accommodate security-related operations on each packet,
then approximately 20,000 operations, at 16 bits, are expected to ensure data security, privacy, and
validation [14]. Therefore, IoT’s focus should be more on their core functionalities rather than spending
their valuable resources on generating keys and computing cryptographic operations. One way to
address this problem is by offloading the additional security-related operations to a more resourceful
entity such as a fog node(s).

1.2. Contributions

In this paper, we present a novel security mechanism which addresses the authentication,
confidentiality, and non-repudiation for IoT devices at the fog layer. The security mechanism
works as a Fog Security Service (FSS) that helps in the authentication of IoT devices, confidentiality
of data generated by IoT devices, and non-repudiation (an assurance that someone cannot deny
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their authenticity). The FSS provides end-to-end security between IoT devices and the fog layer.
Our contributions are listed below:

• A Fog Security Service (FSS) to provide identity-based authentication, the integrity of data, and
non-repudiation of connected nodes.

• A Private Key Generator (PKG) at fog layer to enhance end-to-end security between IoT and
fog layer.

• Implementation and evaluation of the proposed FSS to demonstrate the appropriateness of the
proposed mechanism.

1.3. Paper Structure

This paper is structured as follows. In Section 2, the fog computing architecture is explained.
The security issues of fog-based IoT networks are discussed in Section 3. Section 4 provides a literature
survey and a summary of earlier contributions. Section 5 details our proposed fog-based cryptographic
solution. Section 6 outlines the implementation and evaluation details of the proposed mechanism.
Finally, Section 7 concludes the paper.

2. Fog Computing Architecture

We adopted a more generic IoT-Fog architecture which has been proposed in [1] and in-line
with other fog architectures [1,15,16] to provide an insight to better comprehend the abilities and
functionalities of the fog layer. Moreover, to the best of our knowledge, there is no standard architecture
for fog computing [17]. According to the selected architecture, fog computing can be divided into two
categories: cloud-fog-device architecture and fog-device architecture, as shown in Figure 1.

J. Sens. Actuator Netw. 2019, 8, x FOR PEER REVIEW 3 of 18 

 

• A Fog Security Service (FSS) to provide identity-based authentication, the integrity of data, 
and non-repudiation of connected nodes.  

• A Private Key Generator (PKG) at fog layer to enhance end-to-end security between IoT 
and fog layer.  

• Implementation and evaluation of the proposed FSS to demonstrate the appropriateness of 
the proposed mechanism.  

1.3. Paper Structure 

This paper is structured as follows. In Section 2, the fog computing architecture is explained. The 
security issues of fog-based IoT networks are discussed in Section 3. Section 4 provides a literature 
survey and a summary of earlier contributions. Section 5 details our proposed fog-based 
cryptographic solution. Section 6 outlines the implementation and evaluation details of the proposed 
mechanism. Finally, Section 7 concludes the paper. 

2. Fog Computing Architecture  

We adopted a more generic IoT-Fog architecture which has been proposed in [1] and in-line with 
other fog architectures [1,15,16] to provide an insight to better comprehend the abilities and 
functionalities of the fog layer. Moreover, to the best of our knowledge, there is no standard 
architecture for fog computing [17]. According to the selected architecture, fog computing can be 
divided into two categories: cloud-fog-device architecture and fog-device architecture, as shown in 
Figure 1.  

 

Figure 1. Fog computing architecture. 

2.1. Cloud-Fog-Device Architecture 

Cloud-Fog-Device architecture has three ordered layers known as device, fog and cloud layers, 
with inter- and cross- layer communication, as shown in Figure 2. On moving from device to cloud 
layer, the computing and storage capacities decrease chronologically. To improve flexibility, 
computation, and storage capacity, virtualization is used on both the cloud and fog layers. The cloud 
layer consists of computing and permanent storage resources. It also imposes quality-based policies 
on the fog layer to cater delay-sensitive services. Whereas the fog layer provides data processing and 
transient storage services near to the network for IoT devices. It also provides several characteristics 
to IoT devices, such as mobility of the end devices, heterogeneity, location awareness, low latency, 
and capacity of processing a high number of IoT devices [18]. It incorporates network equipment like, 
for example, gateways and routers. The device layer may have mobile IoT devices such as smart cars 
or static IoT devices with predefined operations such as sensors installed on certain locations. It may 

Figure 1. Fog computing architecture.

2.1. Cloud-Fog-Device Architecture

Cloud-Fog-Device architecture has three ordered layers known as device, fog and cloud layers,
with inter- and cross- layer communication, as shown in Figure 2. On moving from device to cloud layer,
the computing and storage capacities decrease chronologically. To improve flexibility, computation,
and storage capacity, virtualization is used on both the cloud and fog layers. The cloud layer consists
of computing and permanent storage resources. It also imposes quality-based policies on the fog layer
to cater delay-sensitive services. Whereas the fog layer provides data processing and transient storage
services near to the network for IoT devices. It also provides several characteristics to IoT devices,
such as mobility of the end devices, heterogeneity, location awareness, low latency, and capacity of
processing a high number of IoT devices [18]. It incorporates network equipment like, for example,
gateways and routers. The device layer may have mobile IoT devices such as smart cars or static IoT
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devices with predefined operations such as sensors installed on certain locations. It may consist of
different physical objects and mechanical and digital devices. These devices can be anything equipped
with storage, communication, processing, and computation capabilities with different capacities, such
as mobile phones, RFID tags, laptops, vehicles, fridges, actuators, and ovens. Each thing possesses
uniquely identifiable characteristics that are embedded in its computer system to interoperate with
existing Internet infrastructure [19].
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2.2. Fog-Device Architecture

In cloud-fog-device architecture, the fog nodes offer transient real-time processing and storage
and send summarized data periodically to the cloud layer. However, in fog-device architecture,
fog nodes have the highest level, which provides different services without the intervention of the
cloud layer. A fog layer can be introduced as a mini-cloud to interoperate with IoT devices without
the involvement of cloud servers. However, this entirely depends on the need and requirement
of IoT applications, e.g., decentralized vehicular navigation, smart traffic lights, and local content
distribution [20]. Our previous paper [8] raised the question of who serves IoT better: Cloud, only;
edge, only; or both, together? It then answered this question by identifying and discussing a set of
collaborative scenarios with respect to clouds’ and edges’ duties.

The fog computing layer in both architectures can be leveraged by the security services such as
FSS to cope with security attacks which can compromise the confidentiality, integrity, and availability
of IoT devices. The FSS can be further extended to provide secure communication between cloud and
fog services, but this feature is not the focus of this paper.

3. Security Threats

Local data processing, storage, and analysis make it challenging for external invaders to get
access to the user’s data and information [21]. However, integration of IoT with a fog layer has
posed new security threats and risks [1,22]. Though there are many security mechanisms and services,
all are not equally worthy and befitting for fog computing paradigm due to its unique architecture
and characteristics. Following are some crucial attributes which must be considered for securing an
end-to-end communication and data of IoT devices at the fog layer.

• Authentication: It is a process of validation and verification to prove one’s identity as a
legitimate user.
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• Confidentiality: This property ensures that data is not exposed to unauthorized sources. It ensures
adversaries do not gain unauthorized access to data.

• Integrity: Integrity refers to the completeness and accuracy of data. It ensures that data have not
been changed and hence received as accurately as sent.

• Availability: It guarantees provisioning of network services and data to authorized users
when required.

• Non-repudiation: It refers to ownership of data. It ensures that sender cannot deny having sent
the data and the receiver cannot deny having received the data.

There is a great computation and storage overhead involved in existing security protocols such
as Secure Sockets Layer (SSL) based communication. For example, it is not worth applying existing
Public Key Infrastructure (PKI) based systems on all IoT devices due to their excessive computation
and storage. These protocols provide hard security in terms of fixed and predefined large sized keys,
therefore causing memory and processing overhead. Therefore, we proposed a fog-based security
service for preserving security concerns against authentication, confidentiality, and non-repudiation
for fog-based IoT systems. Our scheme is effective against several attacks made on these security
attributes. A list of some of those attacks is given in Table 1 along with their description.

Table 1. Security Threats.

Property Attack Description

Authentication

Brute Force

The attacker guesses a person’s password, user name, secret key
(e.g., used for encryption and decryption), and credit card number
by each and every possible combination using automated trial
and error process [23].

Insufficient
Authentication

Allow invaders to access a website that contains sensitive and
important contents. These websites are not directly addressable
without the user’s necessity to accurately verify their identity [23].

Man-in-the-Middle The adversary devises access the networks and insert themselves
in between the server and User to gain unauthorized control [24].

Replay attacks The identity of IoT devices is spoofed, altered, or replayed in
order to intercept or retransmit the data [25].

Dictionary All possible words from a dictionary are used to make an attack
on authentication data [26].

Eavesdropping

Malicious invaders capture the packets and read its content by
listening the communication channels. If the encryption and
decryption algorithms are not used in data, then this attack may
be quite effective [25].

Session Hijacking Transmission Control Protocol (TCP) session is hijacked to steal
session tokens to gain the unauthorized access to a server [27].

Key and/or
Certificate
Replication attack

Duplicate keys or certificates of identification proof are used to
create ambiguity to disrupt the identification and authentication
process [28].

Confidentiality

Packet Capturing
(Packet Sniffing)

Attacker captures the data and information packets from Ethernet
frames during communication. They can also read the sensitive
information such as passwords, usernames, and credit card
numbers if the traffic of the network is not encrypted [29,30].

Wiretapping
One or more edges may get affected in such attacks to
compromise the transient data confidentiality. Adversaries
wiretap a links to obtain a part of data for decoding a packet [31].
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Table 1. Cont.

Property Attack Description

Non-Repudiation

Repudiation Attack
Either false information is spread, or real event or transaction
denial is attempted by the attacker to prove themselves as
legitimate participants.

Masquerading
It is a kind of impersonation attack where adversary may attempt
to impersonate the identity of other nodes for communication and
transaction processing [32].

4. Related Work

This section provides an overview of existing related work from the literature, proposed in the
context of providing security to IoT. Recent work has shown how fog complements and extends cloud
computing, emphasizing fog’s relevance to IoT and Big Data space. Bonami et al. [33] presented a
high-level description of fog software architecture and articulated the different technology components
necessary to implement the fog paradigm. Hong et al. [34] proposed the concept of mobile fog, a
high-level programming model to support latency-sensitive and large-scale IoT applications that are
geospatially distributed. A plethora of research exists in the literature that focuses on the security and
privacy issues in fog-based IoT infrastructures [9,12,21]. Alrawais et al. [18] proposed a fog-based
mechanism that enhanced the security of IoT devices by distributing certificate revocation among
IoT devices. In this scheme, a list of certificates is maintained by a certification authority which is
available on a cloud and is updated at the fog layer periodically. However, most of the organizations
may not be comfortable with the issuing of security certificates on a cloud due to a lack of trust
on the cloud provider. The authors in [35] introduced a cloud service called Authentication Proxy
as Service (APaaS) where mobile users are authenticated. The computation/storage resources are
outsourced to the cloud in order to perform the expensive authentication process with low latency and
limited power consumption. The work in [36] propounded a user authentication and management
framework for cloud SaaS application that harnesses the stateless and secure nature of Jason Web Token
(JWT) for client authentication and session management. Dsouza et al. [37] proposed a policy-driven
security management approach for fog resources including policy analysis and its integration with
fog paradigm. However, the approach does not consider the rights inheritance or propagation of
rights in the ecosystem [9]. Stojmenovic et al. [21] presented a survey of fog applications and the
associated security challenges. In particular, the authors analyzed man-in-the-middle attacks in fog
computing where fog devices can be compromised or replaced by fake ones. This paper takes one
step further to explore the design and implementation aspects of practical solutions to enhance the
security and privacy of cloud-enabled IoT-based systems in the fog level. This will enable the fog
paradigm to offer not only a balanced mix of enhanced computation power and connectivity but
also provide an adequate level of security to counter cyber-attacks. Bamasag et al. [38] proposed a
multicast authentication scheme for frequent message transmission in a short session or time interval.
It is based on symmetric cryptography and uses Shamir’s secret sharing technique where the secret
key is used as an authenticator. However, its key storage cost can be too high for resource-constrained
IoT devices. Salman et al. [39] presented an SDN-based identity-based authentication scheme for IoT.
The different identity formats used by different communication protocols are translated in a shared
identity-based on virtual IPv6 via the SDN controller. The gateways are responsible for authenticating
things whereas the gateways are authenticated by the central controller. However, the proposed scheme
has not been deployed and tested in an SDN-based environment. In addition, no performance analysis
for memory and communication overhead was presented [40]. Porambage et al. [41] proposed a
two-phase authentication mechanism to facilitate the IoT nodes and the end-users to authenticate each
other and initiate a secure connection. However, the communication overhead and the computation
cost, during the authentication and key generation phase, are high [42].
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In summary, several techniques exist in the literature which focus on the requirement of providing
secure communication to the resource-constrained IoT devices. Several existing solutions used cloud
for security-related operations such as key generation, certification, and authentication. However, these
approaches are not feasible when IoT devices are large in number, and faster response time is crucial
to improve service level and increase safety. Moreover, a timely upload of security parameters to the
cloud, generated by a huge number of devices, would need unfathomable measures of data transfer
capacity. Some techniques require IoT devices to coordinate and cooperate for the exchange of security
parameters and key generation related tasks. This puts extra overhead on the resource-constrained
IoT devices in terms of memory and power. We, therefore, propose a mechanism that offloads the
additional security-related operations to a more resourceful entity (such as a fog node) to reduce the
latency and power consumption of resource-constrained IoT devices.

5. Proposed Methodology

This section presents the key features and architecture of the proposed FSS service for securing
IoT at the fog layer. The purpose of this section is to discuss the functional and the physical elements
of the proposed system and how they accomplish the operational concept of the system [43,44].
The services are deployed at the fog layer to reinforce security features to minimize the risk of
mission-critical services being disrupted or taken down by security attacks. The FSS service comprises
three main network security features: Authentication, confidentiality, and non-repudiation. To address
these security features, we used public key and private key cryptography schemes. The public key
cryptographic scheme is used in authentication—in the private key sharing process, specifically.
The private key cryptographic scheme is used for communication to provide end-to-end security
between IoT devices and the fog layer.

In the proposed mechanism, we assume that the input security parameters (params) are assigned
to every IoT device, such as a unique identifier, username, and password. A sender is authenticated by
the verifier at the fog layer through the provided params: Denoted by IDrec. Furthermore, we used
asymmetric encryption for getting symmetric keys from the fog layer after node authentication.
We used the Rivest-Shamir-Adleman (RSA) algorithm for the public key encryption. Our FSS
service comprises a Verifier, a private-key-generator (PKG), and a hashing algorithm at the fog
layer. The Verifier verifies the IDrec that comes from the sender for the authentication (e.g., email
address, password, and device ID). Besides, the Verifier also maintains a table that consists of IDrec
and nonce values. During the authentication, nonce values are used to prevent play-back/replay
attacks. The PKG is used to generate private keys, which will be used for secure communication
between the fog layer and the IoT layer. The steps are given below to elaborate on how the proposed
approach works:

(1) The device, which wants to communicate with the fog layer, provides security params denoted by
IDrec, which can be any string such as an email address (e.g., abc@gmail.com), a unique identifier
(e.g., 3211214687423), or password (e.g., ******).

a. The IoT device that wants to communicate with the fog layer generates a small size
secret-key Ks (e.g., 128 bit) for the encryption of IDrec. A nonce value is also added with
that IDrec. Then, secret-key is used to encrypt the IDrec along with the provided nonce.

b. Encrypt the already generated small size secret-key Ks by using the fog layer public key and
then, combine both the cipher text (encrypted (IDrec + nonce) and encrypted (secret-key)),
denoted as C.

c. The cipher text C is forwarded to the fog layer for the authentication, as shown in Figure 3.
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(2) Cipher text C is received at the fog layer, where a decryption algorithm (fog layer private key)
is applied to get the original message, thereby separating both the information received in the
cipher text C (i.e., IDrec + nonce and secret-key Ks).

a. Apply the fog layer private key on the encrypted secret key Ks to get the original secret key
(Ks).

b. Apply the secret key Ks on the cipher text (IDrec + nonce) to get the original IDrec and
nonce values, as shown in Figure 4.

c. The Verifier at the fog layer authenticates the received IDrec against the list of registered
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d. After authentication, the Verifier sends a request to the PKG to generate a private key for
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Figure 5. Verification of credentials.

(3) The PKG generates private keys for the authenticated devices and sends those keys to the
encryption algorithm for encryption.

(4) The secret key Ks, which is received from the IoT device, is used to encrypt the PKG generated
private key PK, as shown in Figure 6.

(5) In addition, for the non-repudiation requirement, the cipher text is further encrypted with the
fog layer’s private key, and sends this information back to the authenticated device, as shown
in Figure 7. The device can then apply the fog layer’s public key to ensure that the message is
indeed received from the fog layer.
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Figure 6. Encryption of the generated private-key with the secret-key.

(6) The authenticated IoT device then applies the decryption process to get the private key PK from
the received cipher text and:

a. Applies the secret key (Ks) on the encrypted message to get the private key PK.
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(7) After successfully receiving the private key PK in a secure manner, authenticated IoT device can
communicate with the fog layer through this private key PK.

(8) The private key PK is then used for the encryption and decryption on both sides to enable
end-to-end security.
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Algorithm 1 details how the authentication and private-key generation algorithm performs in
FSS. Procedure 1— (Request Authentication) starts in lines 2 and 3 with initiating an IoT request (IoTr)
and Virtual Machine (Vm). In this request, IoT devices generate a small size secret-key (esk) for the
encryption of the input security parameters. A nonce (enonce) value is also added to overcome the
replay attacks. The request is then sent to a fog node in Fn, where Fn = {f1, f2, f3,.., fn} for authentication
as per line 7. The encrypt function (lines 8–15) is responsible for encrypting the outgoing request using
the generated esk and the public key of the fog server (Sip). Procedure 2— (Authentication Response)
works in reverse, as shown in (lines 20–31). The decryption is achieved by removing and reversing the
elements of the request message, thus only the fog server with the right private key reads the message
and archives esk correctly.
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Algorithm 1: FSS—Authentication and Private-Key Generation Algorithm
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6. Evaluation Results

Though a complete evaluation of the proposed security mechanism is underway, some preliminary
results for the execution of the proposed “FSS” features will be presented in this section.

For implementing the FSS service, we used Visual Studio 2017. We first developed a real client-side
environment, which consists of a login page and a webmail page. The login page comprises different
functions (random secret key generation function, private key encryption and decryption function,
random nonce generation function, and public key encryption and decryption function). We ran
and tested our service on a small fog-based server (a laptop) and IoT devices (four mobile phones).
By using this setup, we obtained benchmark values to be used in OPNET-based network simulator to
evaluate our proposed method. Table 2 lists the benchmark values obtained during the experiment,
such as the execution time of various key generation functions. Table 2 also provides the technical
specification of all the devices used.

Table 2. Device specification and benchmark values.

Name Description

1 Computer device “HP core I3, Ram 6 GB, Hard drive 1TB, Operating System: windows 64 bit

2 IoT devices Samsung S4 Huawei P20 Lite Samsung
Galaxy J1

Apple
iphone 4

3 Processor

CPU

Quad-core 1.6 GHz
Cortex-A15 &
quad-core 1.2 GHz
Cortex-A7

Octa-core
(4 × 2.36 GHz
Cortex-A53 +
4 × 1.7 GHz
Cortex-A53)

1.2 GHz
Dual Core
Cortex-A7

1 GHz
Apple A4

Chipset Exynos 5 Octa 5410
Chipset

HiSilicon Kirin
659 Spreadtrum Apple A4

GPU IT SGX544MP3 Mali-T830 MP2 Mali-400 PowerVR
SGX535

RAM 2 GB 4 GB 512 MB 512 MB

4 Distance between E2E 500 m 500 m 500 m 500 m

4 Connection type 4G LTE 4G LTE 3G 2G

5 “Size of the users login page” 87 KB 87 KB 87 KB 87 KB

6 Manually filling users required
credentials approx. 13 s approx. 11 s approx. 17 s approx. 13 s

7 “Automated filling of credentials
and sign in” ~2 s ~2 s ~2 s ~2 s

8 Client-side key generation time
(auto) ~0.007 s ~0.0059 s ~0.0191 s ~0.013 s

9 Client-side message encryption
(using secret key) time ~0.2 s ~0.17 s ~0.2 s ~0.246 s

10 Client-side secret key encryption
(using fog server public key) time ~0.3 s ~0.2 s ~0.373 s ~0.3 s

11 Fog server-side verification time ~0.06 s ~0.06 s ~0.06 s ~0.06 s

12 Fog server PK generation time ~0.04 s ~0.04 s ~0.04 s ~0.04 s

13 Fog server PK encryption (using
secret key) time ~0.2 s ~0.2 s ~0.2 s ~0.2 s

14 Fog server PK encryption (using
fog private key) time ~0.3 s ~0.3 s ~0.3 s ~0.3 s

15 E2E response time for sharing PK ~2 s ~1.83 s ~3.39 s ~3.15 s

16 Total time for getting PK ~2.5 s ~2.19 s ~3.91 s ~4.083 s

As listed in Table 2, we used four mobile phones with different capacities and resources. We used
a Samsung S4, Huawei P20lite, Samsung Galaxy J1 and Apple Iphone4 with medium, high, low,
and normal processing resources, respectively, as shown in Figure 8. For the analysis of response
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time, we considered different Internet connection speed: 4G, 3G, and 2G. For the Samsung S4 and
Huawei P20lite, we used 4G, whereas for the Samsung Galaxy J1 and Apple Iphone4, we used 3G
and 2G. We set 500 m (E2E) distance between the fog server and the devices. E2E processing time
for sharing the PK between the fog server and the different devices was: ~2 s, ~1.83 s, ~3.39 s, and
~3.15 s. Correspondingly, the total response-time recoded for these devices i=was: ~2.5 s, ~2.19 s,
~3.91 s, and ~4.083 s. However, the response time may have been subject to oscillation based on
the available network connection speed. In addition, we calculated the overall performance with
regard to response-time based on a complete cycle from the client to the server and then back from the
server to the client. The parameters we considered in this calculation were: Client-side key generation,
client-side message encryption, client-side key encryption, server-side verification, server-side PK
generation, server-side PK encryption using the secret key, and server-side PK encryption using the
fog private key.
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Figure 8. Real environment setup.

In the OPNET simulator, we considered the network topology shown in Figure 8. In this topology,
we used a wireless network consisting of wireless nodes, a router, and a gateway. However, one fog
server was used to measure the performance of the proposed service. The benchmark values that we
obtained from the real environment were used in the simulator and applied to wireless nodes and the
fog server.

After applying all benchmark values on the connected nodes and server, we ran and measured
the performance of the proposed method with different traffic loads: High-load traffic (24 wired and
four wireless devices, as shown in Figure 8), medium-load traffic (four wireless devices) and low-load
traffic (one wireless device). The overall performance (in terms of processing time) of FSS in different
traffic loads is shown in Figures 9 and 10.

Figure 9 elucidates the overall processing time taken by both the IoT devices and the fog server.
The blue bars show the time taken by different IoT devices, whereas the orange bars represent the
overall processing time of the fog server. The processing time of the IoT devices depends upon on
the following key processes: The client-side key generation time, the client-side message encryption
and decryption time using the secret key, the client-side secret key encryption, and decryption time
using the fog server’s public key, i.e., 1.007 s, 0.7459 s, 1.1652 s, and 1.105 s for the Samsung S4,
Huawei P20lite, Samsung Galaxy J1, and Apple Iphone4, respectively. We could see that due to
variations in hardware resources of IoT devices, such as CPU, chipset, GPU, and RAM (as shown in
Table 2), the processing time varied accordingly. Furthermore, the fog server’s processing time of
~1.1 s depended upon on certain parameters: The fog server-side verification time, the fog server PK
generation time, the fog server PK encryption and decryption time using secret key, and the fog server
PK encryption and decryption time using the fog private key. The fog server processing time was
constant, as we used the same server for all the IoT devices.
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Figure 10 demonstrates the correlation between the total time for getting the PK generated by the
fog server and E2E processing time in blue and orange lines, respectively. The blue line depicts the
total time for getting the PK that starts when a request is sent to the fog server. The fog server node
responds with the private key in return. The IoT device then applies the received PK for encryption.
Despite that, the E2E time represents the time to access a webpage after a node is authenticated.
As shown in Figure 10, E2E time varies for each IoT device relying on their processing capabilities.
However, the total time for getting the PK from the fog server fluctuates due to two main reasons:
The network connection type used, such as 2G, 3G, or 4G, and the processing capabilities of the IoT
devices. For example, E2E time for the Huawei P20lite was the smallest with 1.83 s, but for the Apple
Iphone4, it was 3.15 s. Correspondingly, total time for the said devices is 2.19 s and 4.083 s. Where the
Huawei P20lite is ranked as a high resource IoT device with 4G network technology, while the Apple
Iphone4 is ranked as normal resource IoT device with the 2G network connection type as described
earlier. Similarly, if we compare the Samsung J1 (a low resource IoT device with 3G) with the Huawei
P20lite (high resource IoT device with 4G), we can see a radical change with a difference of 1.56 s for
E2E processing times and a difference of 1.72 s for the total time in getting PK generated by the fog
server due to processing and different network connection types.

Figure 11 illustrates the performance comparison among FSS, Authentication Proxy as a Service
(APaaS), and the legacy method on invoking a remote service (by a mobile user) to get authenticated.
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We refer the readers to 39 for more details on the APaaS service and the legacy method. We used
the same parameters for performance evaluation as that of the APaaS service, such as the response
time obtained when invoking the authentication service with different alternatives: Cookies enabled,
no cookies and no auto-filling, browser-based auto-filling, and E2E time access. The E2E time represents
the time to access a webpage after a node is authentication. The benchmark values obtained from
the FSS with different alternatives were then compared with the results of the APaaS and the legacy
method. As shown in Figure 11, the grey, blue, and orange lines show the performance of the legacy
method, APaaS, and FSS. The performance line illustrates the time taken for the authentication, which,
without auto-fill, was 21, 15, and 13 seconds for the legacy method, APaaS, and the FSS, respectively.
Likewise, time taken for the auto-fill was 13, 4, and 2 seconds. Similarly, the time taken with cookies
was approximately 13, 4, and 2 seconds. Lastly, E2E access time for the three techniques was 13, 4, and
3.5 seconds, respectively. Thus, the proposed scheme performed better than the APaaS service and the
legacy method in terms of response time when communicating with the fog layer.
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7. Conclusions

The IoT-based applications are involved in harvesting a huge amount of personal and confidential
information and are vulnerable to various security threats. Various cryptographic techniques exist that
can effectively deal with different security attacks but are not suitable for resource-constrained IoT
devices as they incur high consumption of resources. One way to tackle this issue is by offloading the
additional security-related operations to a more resourceful paradigm such as a fog layer. In this paper,
we demonstrated how a fog layer can reasonably be made secure to support IoT-based applications. We
proposed a new Fog Security Service (FSS), which provides identity-based authentication, the integrity
of data, and non-repudiation of connecting nodes via a private key generator (PKG) at the fog layer. FSS
enhances end-to-end security between the IoT layer and the fog layer. Implementation and evaluation
of the proposed FSS have been done, in the form of simulation using OPNET, to demonstrate the
appropriateness of the proposed mechanism. First, the benchmark values were obtained in a real
environment where IoT devices (with different capacities and resources) wirelessly connected to a
fog node were considered. The performance was measured in terms of the response time, using
various operations of the proposed method such as random secret key generation function, private key
encryption and decryption function, random nonce generation function, and public key encryption
and decryption function. These benchmark values were then used in the simulator and applied to
nodes and the fog server. We ran and measured the performance of the proposed service with different
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traffic loads: High-load traffic, medium-load traffic, and low-load traffic. The overall response time of
FSS, in different traffic loads, was better when compared to the APaaS service and the legacy method.

Author Contributions: N.A. and M.A. designed the architecture of the proposed system; M.A. and T.B. supervised
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and focus of the paper.
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