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Abstract 24 

Sustainability in the manufacture of different construction materials raises many important 25 

issues. Nowadays, there is increasing demand for such materials to be produced using 26 

environmentally friendly, low energy consuming production methods. This paper presents a 27 

review of the current research relating to the use of various production techniques for clay-28 

based construction materials. The techniques which will be reviewed are: blending and 29 

stabilising, alkali activation (geopolymerisation) and the use of microwave heating as an 30 

innovative sintering, curing and drying method.  The advantages and disadvantages of each 31 

technique will be discussed. Additionally, a comparison between the environmental and 32 

economic aspects of the studied production techniques along with some suggestions to improve 33 

the sustainability of different production techniques will be discussed.  34 

Keywords: Alkali activation; blending and stabilising; clay-based construction materials; 35 

compressive strength; environmental impact; Geopolymerisation; microwave heating.  36 
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1. Introduction  46 

For many thousands of years, clay has been widely used as an integral part of construction 47 

materials and products. Examples of the main structural clay products are bricks, blocks and 48 

roof tiles. Floor and wall tiles are examples of non-structural products made from clay. 49 

Buildings made from clay materials date back to the earliest periods of civilized development 50 

[1, 2].  51 

The desirable properties of clay-based products such as the durability, strength, heat and sound 52 

insulation along with fire-resistance mean that there is still considerable demand for them in a 53 

variety of sectors, despite the availability of modern alternative materials such as concrete, 54 

glass-fibre/resin composites, steel and plastics [3].  55 

Sun-baked clay bricks are thought to have been first used circa 8000 B.C while fired clay bricks 56 

where used circa 4500 B.C [4, 5]. In Europe, the Romans introduced clay-based brick during 57 

the 9th and 10th centuries and thousands of churches and cathedrals were built in masonry during 58 

the middle Ages [4]. The oldest skyscraper buildings in the world are located in the city of 59 

Shibam in Yemen [6]. These 500 huddled buildings, ranging from 5 to 11 stories high, reaching 60 

about 30m, were built with clay blocks [6, 7].   61 

In 2013, the annual production of bricks was about 1391 billion units worldwide [5]. This 62 

number is expected to increase through the rapid development of the construction industry 63 

globally, together with an expected increase in the world population [8]. The conventional 64 

process of converting clay into brick involves firing the brick at temperatures ranging between 65 

900 and 1150°C, depending on the type of clay [9, 10]. During this process, clay minerals break 66 

down and sinter forming a glassy bond with other minerals and materials in the brick. The main 67 

purpose of the firing process is to transform the porous and weak dried clay into strong, dense 68 

bricks with low porosity [3, 11]. This process requires high levels of energy consumption and 69 
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a resulting release of greenhouse gases into the atmosphere. The production of one brick 70 

requires some 2.0 kWh of energy and the release of  approximately 0.4 kg of CO2 [9].  These 71 

undesirable features of the manufacturing process are the main driving force behind research 72 

into more sustainable alternatives [12]. 73 

New methods have been developed to produce alternative clay-based construction products 74 

with better performance and properties than those created in the firing process. One of the 75 

oldest techniques is the blending and stabilisation of clay with other cementing materials such 76 

as cement, lime and/or other waste materials [9, 13, 14]. Blending and stabilising clays with 77 

other waste or by-product materials has many benefits such as reducing land-fill, solving the 78 

issues of waste management, protecting the environment and saving energy, which in turn, 79 

reduces the cost of the final product [9]. 80 

In addition to the use of blended and stabilised clay-based construction products, researchers 81 

have investigated the use of alkali activation techniques (geopolymerisation). The concept of 82 

developing clay-based geopolymer construction products is an attractive one, as they can 83 

provide structural strength in a very short time, they are sufficiently durable and CO2 emissions 84 

are reduced [15, 16]. Generally, geopolymer is formed by mixing an alumina-silicate precursor 85 

with an alkali solution [17-21]. This technique relies on the chemical reaction between the 86 

alumina-silicate precursor and a high alkaline solution to produce amorphous to semi-87 

crystalline geopolymer [17, 21-23].  88 

Heat is essential for the curing, sintering and drying of clay-based construction products in 89 

order to gain an adequate strength for civil engineering applications [24-26]. However, the use 90 

of conventional heating methods is relatively slow due to the low thermal conductivity of clay-91 

based construction materials and the slow rate of heat transfer from their surface to their core 92 

[26, 27]. In addition, researchers have identified the disadvantages associated with 93 
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conventional heating technologies such as high-energy consumption, long processing times, 94 

high processing temperatures and the associated negative environmental impacts [24, 26, 28, 95 

29].  96 

In the search for alternatives, innovative research has been carried out employing microwave 97 

technology as a sintering, curing and drying technique in the production of clay-based 98 

construction products [24-27]. The utilisation of microwaves has many advantages over 99 

conventional heating methods. Microwave treatment provides efficient internal heating, as 100 

energy is supplied directly and penetrates the material through molecular interaction with the 101 

electromagnetic field therein minimising substantial temperature gradients between the interior 102 

and the surface [24, 30-34]. Microwave treatment reduces energy consumption via rapid 103 

heating rates and processing times are significantly reduced leading to fewer negative 104 

environmental effects. Physical and mechanical properties are also improved through resulting 105 

higher density materials with better grain distribution [24, 30-33]. 106 

This paper presents a review of the research on the various techniques for the manufacture of 107 

clay-based construction products. The studied techniques including blending and stabilising, 108 

alkali activation (geopolymerisation) along with the use of microwave heating are presented as 109 

an innovative sintering, curing and drying technique in the production of clay-based 110 

construction products. Additionally, this paper also provide a comprehensive comparisons 111 

regarding the environmental and financial aspects associated with different production 112 

techniques along with some suggestions for future trend to improve the sustainability of the 113 

studied production techniques.   114 

 115 

 116 

 117 
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2. Review of Research  118 

In this study, the production of different clay-based construction materials are divided into 119 

three groups: blending and stabilising, alkali activation and microwave sintering, curing and 120 

drying. 121 

2.1 Characterization of the used clays  122 

It is well understood that the chemical compositions of clay as raw material have significant 123 

influence upon the properties of the clay-based construction materials [9]. Therefore, the 124 

chemical composition of different types of clay should be tested to elucidate the performance 125 

of these materials when they are combined with stabilisers or being activated chemically by 126 

different activators. The chemical composition of different types of clay as collected from the 127 

Energy Dispersive X-ray Florescence Spectrometer (EDXRF) test for all the reviewed papers 128 

that providing such information are presented in Fig. 1. Fig. 1 displaying the ranges and 129 

frequencies of the most common chemical compounds (SiO2, CaO and Al2O3) of the clay 130 

powder materials used for the preparation of different clay-based construction materials.   131 

It can be seen from Fig.1A that about 75% of the clays used in the production of different clay-132 

based construction materials have SiO2 content in the range between 40% to 60%. Additionally, 133 

12.5% of the clays have showed SiO2 content in the range of 70-80 % and the other 12.5% 134 

have SiO2 content in the range of 20-30%. The second chemical compound that can be found 135 

in abundant a quantity in different types of clay is the Al2O3. Fig.1B shows that the data of the 136 

Al2O3 content collected from different types of clay ranges from 0% to 45% and the majority 137 

of the observations lies between 15% and 30%. Another important compound is the CaO 138 

content. Fig.1C indicated that 67% of the clays have relatively small CaO content (below 5%), 139 

while 25% of the clays have a CaO content in the range of 5-10% and 25-30% (12.5% for each 140 

range).  141 
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As observed from Fig. 1 that most of the clays utilised in the production of different clay-based 142 

construction materials displayed similar ranges of SiO2, CaO and Al2O3 although they are came 143 

from different origins and places around the world.  144 

 145 
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Fig. 1. Chemical composition of used clays 164 
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2.2 Production of clay-based construction materials through blending and stabilizing  166 

Stabilization is a process of mixing the clay with different types of binders with the aim of 167 

enhancing its strength, durability and volume stability [35]. The performance of different 168 

stabilised clay-based construction materials is depend upon the characteristics of soil, binder 169 

and the mix design. This technique relies mainly on the formation of hydration products such 170 

as C–S–H gel and C–A–S–H gel produced from the chemical reaction between the silica 171 

sources (mainly the clay) and the CaO from the stabilisers.   172 

In most of the reviewed papers, the clays have high percentages of SiO2 and Al2O3, while 173 

having only small CaO content. Therefore, cement, lime and other binders with high CaO 174 

content are added in small dosages to form C–S–H gel and C–A–S–H gel that enhancing the 175 

mechanical and durability performance of the final product. The development of unfired clay-176 

based construction products with comparable or better performance than fired products 177 

significantly reduces CO2 emissions, reduces consumption of energy that in turn leads to 178 

cheaper products with reduced environmental impact. A brief summary of key experimental 179 

research work on this clay processing technique can be found in Table 1. 180 

El-Mahllawy et al. [36] investigated the effectiveness of combining Kafr Homied clay (KHC), 181 

Marble Cutting Waste (MCW), hydrated lime (HL) and Portland cement (PC) in the production 182 

of sustainable unfired clay brick. The results indicated that the water absorption decreased 183 

while the bulk density and compressive strength increased with extended curing time and 184 

increase of the MCW content in the presence of HL. This was mainly due to the pozzolanic 185 

reaction between KHC, HL and MCW that leads to the formation of cement phases that reduced 186 

the numbers of pores, decreased the water absorption and evidenced the densification of the 187 

mixtures. The X-ray powder diffraction (XRD) results indicated a reduction in the peaks of 188 

clay minerals and quartz intensity with increasing MCW content and curing time. This was 189 
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attributed to the progress of the pozzolanic reaction due to both the high alkalinity environment 190 

and the reaction between silica from the clay and lime from both HL and MCW that led to the 191 

formation of C-S-H gel.  192 

Sekhar and Nayak. [37] studied the influence of using Ground Granulated Blast Furnace Slag 193 

(GGBS) and cement in the production of compressed stabilized earth blocks (CSEB) made 194 

from lithomargic clay. Compressive strength and water absorption of CSEB were evaluated 195 

after 28 days. The results indicated a reduction in the water absorption and an increase in the 196 

compressive strength with increase in the cement dosage and the air cured CSEB provided 197 

higher strength relative to water cured CSEB. The improvement in strength and reduction in 198 

water absorption with increase in the cement content was attributed to the formation of 199 

additional hydration products that created strong bonds that filled the pores of the soil matrix 200 

and connected the soil particles in an enhanced structure.  201 

Sitton et al., [38] studied the effect of stabiliser (cement) content and soil to sand ratio (SSR) 202 

on the mechanical performance of compressed earth blocks (CSBs) made from silty-clayey 203 

soil. Flexural and compressive strength tests after 7 and 28 days of curing either in water or in 204 

air were employed to evaluate the performance of the CSBs. The results indicated that strength 205 

of the CEBs increased with increasing the cement content because the cement has better 206 

binding properties than the clay on its own. Additionally, the CSBs under water curing 207 

exhibited higher strength than that under air curing. This was attributed to the fact that more 208 

hydration products from the reaction between the cement and soil could be formed in the 209 

presence of water over extended periods.  The highest compressive and flexural strengths of 210 

15.15 MPa and 1.84 MPa were achieved at cement content of 10.91%, SSR of 3.36 and water 211 

content of 11.4% after 28 days under water curing, respectively.  212 
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Saidi et al. [39] evaluated the effect of cement and lime content on the thermal conductivity of 213 

stabilised earth blocks (SEB). The results indicated that with increased stabiliser content, the 214 

thermal conductivity increased, which in turn resulted in decreasing the thermal insulation. The 215 

results also indicated that lime SEB exhibited lower thermal conductivity relative to cement 216 

SEB at the same levels of stabilisation. The increase in cement and lime content in SEB resulted 217 

in an increase in the thermal conductivity in comparison with un-stabilised blocks. The increase 218 

in thermal conductivity of SEB with increasing stabiliser content was attributed to the 219 

formation of additional hydration products that filled spaces between the soil particles and 220 

produced a denser structure. 221 

Nshimiyimana et al. [40] carried out experimental work to investigated the effect of using 222 

Calcium Carbide Residue (CCR) and Rice Husk Ash (RHA) in the manufacturing of 223 

compressed earth blocks (CEBs) made from reddish clayey soil. Compressive strength test 224 

after 45 days was employed to evaluate the performance of the CEBs. The results indicated 225 

that the highest compressive strength of 3.4 MPa was achieved with CCR content of 8% that 226 

was about 180% the compressive strength of the control CEBs (100% reddish clayey soil). 227 

Additionally, the compressive strengths were significantly improved by the addition of RHA 228 

along with the CCR. The highest compressive strength of 6.6 MPa was achieved at replacement 229 

level of 15% (10.5% CCR and 4.5% RHA) that was almost 3.5 times the compressive strength 230 

of the control CEBs. The improvement in the compressive strength in the presence of CCR and 231 

RHA is believed to be due to the increased hydration products formed from the reaction of 232 

calcium from the CCR and the silica from the RHA.       233 

Espuelas et al. [41] investigated the use of magnesium oxide (MgO) rich kiln dust (PC-8) as a 234 

binder for the production of unfired clay bricks made from Spanish clay soil. The performance 235 

of specimens was assessed by measuring the unconfined compressive strength at 1, 7, 28, 56 236 

and 90 days of curing and water absorption after immersion in water for 24h. The results 237 
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indicated that the compressive strength increased and water absorption decreased with both (i) 238 

the curing time and (ii) increased PC-8 dosage. The results indicated that the optimum dosage 239 

of PC-8 was 15% that provided a compressive strength of 9.9MPa and a water absorption value 240 

of about 5% after 90 days of curing. The development of strength and durability aspects of the 241 

developed unfired bricks was attributed to the ability of MgO rich kiln dust binder to form 242 

cementitious gels that bind clay soils. Therefore, the results obtained confirmed the suitability 243 

of MgO based binders as alternative binders to cement or lime in the production of unfired 244 

bricks.  245 

Abdullah et al. [42] examined the influence of different compactions (14MPa, 21MPa and 246 

28MPa) on the performance of Compressed Stabilised Earth Bricks (CSEBs) made from either 247 

Laterite Soil, sand and cement or clay, sand and cement. For the evaluation of the performance 248 

of the compacted brick, compressive strength testing was performed after 7 and 28 days along 249 

with water absorption tests. The effect of compaction on compressive strength for clay and 250 

laterite soil was contradictory as the optimum strength was achieved by the samples subjected 251 

to compaction of 14MPa and 28MPa for laterite soil and clay, respectively. Water absorption 252 

testing found that water absorption was improved through increased compaction resulting in 253 

denser samples with less voids. 254 

Zhang et al. [43] studied the effect of cement content and bulk density on the thermal 255 

conductivity and compressive strength of cement stabilised earth blocks (CSEB). The results 256 

indicated that the cement content caused only small variations in the thermal conductivity of 257 

the CSEB. This was mainly due to the small dosage of cement that had been added to the 258 

CSEB, so that it was not sufficient to cause a considerable effect on the thermal conductivity. 259 

However, the results of the compressive strength testing indicated a significant improvement 260 

in the strength of CSEB by increasing the cement dosage. The results also indicated that by 261 

increasing the bulk density, the thermal conductivity and compressive strength of the CSEB 262 
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increased. This is because increasing the bulk density caused a reduction in the number of pores 263 

and decreased the pore diameters in the CSEB significantly.  264 

Taallah and Guettala, 2016 [44] investigated the production of compressed stabilised earth 265 

blocks (CSBs) made from Biskra soil and three different percentages of quicklime. 266 

Compressive strength and tensile strength were used to evaluate the performance of the CSBs 267 

after 28 days of either water or air curing. The results indicated higher compressive and tensile 268 

strengths of the CSBs under air curing relative to water curing. The results also showed an 269 

increased strength with increasing the quicklime content until the optimum dosage of 10%, 270 

however, behind this level the strength tend to decrease. The improvement in the strength with 271 

increasing the quicklime content was attributed to the formation of additional C-S-H gel. On 272 

the other hand, the reduction in the strength of CSBs made with more than 10% quicklime 273 

content was attributed to the excessive contents of calcite and portlandite (Ca(OH)2) with 274 

increasing quicklime content that resulted in reduced strength. 275 

Rahmat et al. [45] investigated the development of unfired brick made with Lower Oxford Clay 276 

(LOC) and pulverised fuel ash (PFA). In this study, four stabilisers were used: Lime (L), 277 

Portland Cement (PC), lime-GGBS (30:70) and PC-GGBS (40:60). The investigation included 278 

unconfined compressive strength, water absorption, thermal conductivity and freeze and thaw 279 

tests alongside an evaluation of the environmental performance. The results of compressive 280 

strength and water absorption tests indicated that blending GGBS with lime or PC provided 281 

better performance than using only PC or Lime. This was mainly due to the combined 282 

pozzolanic reaction that leads to the formation of additional C-A-S-H gel that fills the voids, 283 

thus enhancing the strength and reducing the porosity of the brick to a minimum. In addition, 284 

the results of thermal conductivity testing indicated that bricks stabilised with PC-GGBS 285 

provided the lowest thermal conductivity value. Moreover, the results of the freezing and 286 

thawing at the end of the 30th cycle indicated that the weight loss of the bricks increased with 287 
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increasing the freezing and thawing cycles and the bricks stabilised with PC-GGBS achieved 288 

the lowest percentage of weight loss. Finally, the results of the environmental performance 289 

review suggested that the developed brick can be considered to be green brick with low energy 290 

usage and CO2 emissions and is suitable for the construction of internal walls.  291 

Oti et al. [46] studied the possibility of combining Brick Dust Waste (BDW) from the cutting 292 

of fired clay bricks with Mercia Mudstone Clay (MMC) in the development of unfired clay 293 

(mortar, block and brick). The results indicated an increase in compressive strength with 294 

increased percentages of BDW in the mixtures. This was mainly due to the pozzolanic reaction 295 

of GGBS and lime that led to the formation of additional C–S–H gel within the pore structure.  296 

The results also showed that the water absorption rate for all the mixtures was extremely low. 297 

Additionally, the results of the weight loss of samples after 7, 28, 56 and 100 cycles of freezing 298 

and thawing indicated an increase in the weight loss with increasing BDW content. Overall, 299 

the results indicated the potential production of unfired clay products using up to 20% BDW 300 

as replacement to MMC with acceptable performance of stabilised clay masonry units. 301 

Nagaraj et al. [35] studied the effect of combining cement and lime on the long-term properties 302 

of compressed stabilised earth blocks (CSEBs) prepared from red earth. For evaluating the 303 

engendering properties of CSEBs, compressive strength and water absorption tests were 304 

conducted after 7, 15, 30, 60, 120, 180 days; 1, 2 and 5 years. The results indicated that the 305 

compressive strength increased and water absorption decreased with increasing the age of 306 

curing for all the mixtures. The results also showed that up to the age of 120 days, the strength 307 

of the CSEBs stabilised with cement alone was higher than that stabilised with cement and 308 

lime. This was attributed to the quick hydration of cement relative to lime that helps the 309 

formation of hydration product within the CSEBs. At the age of 180 days onward, the CSEBs 310 

stabilised with 4% cement and 4% lime provided better strength than that stabilised with 8% 311 

cement. After 5 years of curing, the CSEBs with 4% cement and 4% lime have showed a 312 
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compressive strength of 7.2 MPa that was about 167% the strength of CSEBs stabilised with 313 

cement alone (4.3 MPa). This behaviour was attributed to the availability of adequate quantity 314 

of lime that possibly resulted in increasing the pH of the system and allow the alumina and 315 

silica in the clay to be dissolved and to combine with Ca++ to form calcium-alumino silicates 316 

(C-A-S) and thereby binds the particles of clay existing in the matrix.  317 

Miqueleiz et al. [47] evaluated the development of unfired clay brick by blending marl clay 318 

soil and alumina filler (AF) waste. The stabilizers used in this investigation were a combination 319 

of Pulverised fuel ash (PFA) and lime (L) (70% PFA: 30% L). All mixtures were tested for 320 

compressive strength, water absorption and underwent 45 freeze/thaw cycles. The results of 321 

the compressive strength testing indicated that increasing the level of AF caused a significant 322 

reduction in the compressive strength relative to mixtures made with marl clay soil only at all 323 

curing ages. The results of water absorption tests showed that the presence of up to 40% AF 324 

have a water absorption rate of less than 20%, however the bricks with 60% AF collapsed upon 325 

immersion in water at all curing ages. This was attributed to the lower percentages of silica 326 

provided by marl clay that combined with calcium from the lime and results in the formation 327 

of less hydration products. The results of durability tests indicated that all mixtures were able 328 

to withstand the repeated 48-hour freezing/thawing cycles without any surface cracks.  329 
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Table 1. Studies on production of clay-based construction and building materials through blending and/or stabilising 330 

Reference Clay type Blended materials  Clay-based 

product 

Curing condition Tests 

conducted Replacement 

material  

Stabilising 

material 

[36] Kafr Homied clay Marble Cutting 

Waste (0%, 

10%, 15% and 

20%)   

Hydrated lime 

(0%, 10%, 15% 

and 20%) and 

5% Portland 

cement 

Brick Cured in a 

humidity chamber  

at 40oC±2 for 14 

and 28 days  

Compressive 

strength, water 

absorption, bulk 

density, and 

XRD 

[37] Lithomargic clay GGBS 25% Cement (0, 6, 8, 

10 and 12 %) 

Compressed 

stabilised 

earth blocks 

Cured in water and 

air for 28 days 

Compressive 

strength and 

water absorption 

[38] Silty-clayey soil - Cement (3.6, 

5.5, 9.1 and 

10.9 %) 

Compressed 

stabilised 

earth blocks 

Cured in water and 

air for 7 and 28 

days 

Compressive 

strength and 

flexural strength 

[39] Sidi Amor soil  - Cement (0, 5, 8, 

10 and 12%) or 

lime (0, 5, 8, 10 

and 12%)   

Stabilised 

earth blocks 

Cured in a humid 

atmosphere for 28 

days at 

temperature of 

20±2oC 

Thermal 

conductivity  

[40] Reddish clayey 

soil 

- Calcium 

carbide residue 

(0, 5, 8, 10 and 

15 %) or 

calcium carbide 

residue and rice 

husk ash (0, 5, 

8, 10 and 15 %) 

Compressed 

stabilised 

earth blocks 

Cured in ambient 

condition (30 ± 

5°C) for 45 days. 

Compressive 

strength and 

SEM 
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[41] Spanish clay soil - Magnesium 

oxide rich kiln 

dust (0, 3, 6, 9, 

12, 15 and 

18%) 

Brick  Cured in wet 

chamber 

Compressive 

strength and 

water absorption 

[42] Laterite Soil or 

clay 

Building sand 

(20%) or (50%) 

Cement (10%) 

or (20%) 

Compressed 

Stabilised 

earth brick 

Spraying the 

samples with 

water every day up 

to 7 or 28 days. 

 

 

 

Compressive 

strength and 

water absorption 

[43] 

 

 

 

 

 

 

 

Local soil in 

Xinjiang 

- Cement (3, 5, 7 

and 9 %) 

Stabilized 

earth blocks 

Samples wrapped 

with plastic foils 

and placed in the 

laboratory for 28 

days at 

temperature of  20 

± 1oC  

Compressive 

strength and 

thermal 

conductivity   

[44] Biskra soil - Quicklime (8, 

10 and 12%) 

Compressed 

stabilised 

earth blocks 

Cured in water and 

air for 28 days 

Compressive 

strength and 

tensile strengths. 

[45] Lower Oxford 

Clay 

PFA (50%) Lime-GGBS 

(30:70) and 

cement-GGBS 

(40:60) (10%) 

Brick Curing in humidity 

chamber at 20oC 

for 7 and 28 days 

Compressive 

Strength, Water 

Absorption, 

thermal 

conductivity 

freeze and thaw, 

and 

environmental 

performance. 
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[46] Mercia mudstone 

clay 

Brick dust 

waste (5%, 

10%, 15% and 

20%) 

GGBS and lime 

(22%)  

Mortar, 

block and 

brick 

The samples were 

moist-cured for 3, 

7, 14, 28 

and 56 days at 

room temperature 

of about 20°C. 

Compressive 

Strength, water 

absorption and 

freeze and thaw 

[35] Red soil  - Cement (4, 6 

and 8%) and  

lime (0%, 2% 

and 4%) 

Compressed 

stabilised 

earth blocks 

Cured in water for 

7, 15, 30, 60, 120, 

180 days; 1, 2 and 

5 years 

Compressive 

strength and 

water absorption  

[47] Marl clay soil Alumina filler 

(0, 20, 40 and 

60 %) 

PFA-Lime (70: 

30) (12%)  

Brick Cured in a 

moisture 

chamber for 1, 7, 

28, 56 and 90 days 

Compressive 

Strength, water 

absorption and 

freeze and thaw 

 331 

 332 

 333 
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2.2.1 Critical evaluation  334 

The technique of producing clay-based building materials by blending and stabilising clay is 335 

considered an important step in the fabrication of different clay-based construction materials. 336 

The main aim of this technique (that depends mainly on the production of hydration products 337 

such as C–S–H and C–A–S–H phases) is enhancing the mechanical and durability performance 338 

of the produced product.  339 

According to the reviewed studies and amongst the variety of stabilizers utilised, cement and 340 

lime have been the most popular stabilizers in the production of stabilised clay-based 341 

construction materials. Cement and/or lime were used either alone [37-39, 42-44], in 342 

combination with each other [35, 36] or in combination with other stabilisers such as GGBS or 343 

PFA [45-47]. However, two of the reviewed studies were used different stabilisers such as 344 

calcium carbide residue with rice husk ash [40] and magnesium oxide rich kiln dust [41].  345 

The dosage of the stabilisers in the reviewed studies varied depending on the type of stabiliser. 346 

For example, the cement dosage was ranging between 3% and 12% [37-39, 43] and only one 347 

paper [42] have showed the usage of 20% cement as stabiliser. The dosage of lime as stabiliser 348 

was similar to that of the cement (ranging between 2% and 12%). Additionally, the lime and 349 

cement were blended with GGBS or PFA to boost the hydration process of these materials by 350 

the highly alkaline environment (pH > 12) and accelerate the production of cementitious 351 

compound that binds the soil together [45, 46]. In some cases, the stabiliser dosage were 352 

relatively high with 22% for [46] and 25% for [36]. Regarding the dosage of stabiliser for the 353 

paper with calcium carbide residue and rice husk ash [40] were in the range of 5-12% while 354 

the magnesium oxide rich kiln dust [41] was in the range of 3-18%.  355 

The reviewed studies indicated that the production of C–S–H and C–A–S–H gel phases 356 

increased with increasing the amounts of stabiliser in the mixture [36, 37, 39, 40, 45]. This was 357 
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due to the chemical reaction occurring between the CaO from the cement, lime and other 358 

stabilisers and amorphous silica provided by clay together with the high alkalinity environment 359 

of cement or lime [37, 39, 45, 46]. These gels tend to fill pores and grow into capillary spaces, 360 

resulting in a more impermeable, dense and higher-strength structure [48, 49]. However, high 361 

dosage of stabiliser with high CaO content might negatively affect the performance of the 362 

product because this might resulted in free CaO that could lead to expansion and cracks in the 363 

final product [9].   364 

 365 

 366 

 367 

 368 

 369 

 370 

 371 

 372 

 373 

 374 

 375 

 376 

 377 
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2.3 Production of geopolymer clay-based construction materials through alkali activation 378 

(Geopolymerisation)  379 

During the development of construction materials using the technique of geopolymerisation, 380 

the most important chemical compounds that should be available in high a quantity are the SiO2 381 

and Al2O3 because they react with a high alkaline solution to produce amorphous to semi-382 

crystalline geopolymer material [5, 17]. Preferably, the total composition of the SiO2 and Al2O3 383 

compounds should be more than 70% [17].  Yun-Ming et al. [17] stated that the raw materials 384 

with abundantly amount of SiO2 and Al2O3 that is suitable for the production of geopolymer 385 

materials can be found in different types of clay.  These observations are in consistent with the 386 

results obtained from Fig.1 for different types of clay that were used in the production of 387 

geopoylmer clay-based construction materials.  388 

This technique is of great research interest in the field of sustainable construction materials due 389 

to its characteristics such as developing high mechanical strength within a very short time, 390 

enhanced durability, high fire resistance and considerably decreased greenhouse gas emissions 391 

and energy consumption [23, 50, 51]. Many researchers have investigated the production of 392 

clay-based construction materials using the technique of alkali activation (geopolymerisation) 393 

(see Table 2). 394 

Faqir et al. [52] conducted experimental work to investigate the utilisation of kaolin clay 395 

activated with NaOH in different concentrations in the fabrication of geopolymer mortar. In 396 

this study, the effect of sand to kaolin clay ratio and NaOH with different concentrations to 397 

kaolin clay ratio were evaluated by determine the compressive strength of geopoymer samples 398 

after 7 days of water and air curing. The results indicated that with decreasing the sand to kaolin 399 

clay ratio and increasing both the concentration and the amount of the NaOH, the compressive 400 

strength increased for both curing methods. The highest compressive strength were 27.1 MPa 401 
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and 18.1 MPa achieved at sand to kaolin clay ratio of 1.5 and NaOH (with concentration of 17 402 

M) to kaolin clay ratio of 0.17 under air curing and water curing, respectively. Additionally, 403 

the results of the water absorption test indicated that the geopolymer mortar exhibits lower 404 

water absorption rate with increasing the concentration of the NaOH and the lowest water 405 

absorption was about 3.7 % achieved for the geopolymer mortar that showed the highest 406 

compressive strength. The improvement in the strength and durability of the geopolymer 407 

mortar with increasing the NaOH concentration is believed to be due to the formation of denser 408 

microstructure that bonded the kaolin clay and the sand with less numbers of pores.  409 

Dassekpo et al. [53] evaluated the use of clay waste (CW) from construction sites, class F fly 410 

ash (FA), sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) in the production of 411 

geopolymer paste. The experimental programme included evaluation compressive strength, 412 

Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDX) and the 413 

leaching behaviour of the geopolymer paste. The results indicated an increase in the 414 

compressive strength with increases in the curing period and the FA content. This was due to 415 

the enhanced polymerisation process with longer curing periods and the increased Si/Al ratio 416 

with increased content of FA, which in turn resulted in increasing the amount of Si-O-Si bonds 417 

that formed during the geopolymerisation process, as evidenced by the EDX test. The SEM 418 

images showed an increase in the degree of compaction and formation of a denser 419 

microstructure as the amount of FA in the pastes increased. The leaching test was conducted 420 

for samples soaked in deionized water for 4, 8, 12, 24, 72 and 336 hours to measure the 421 

concentration of Aluminium (Al) and Arsenic (As). The results indicated that with increasing 422 

the FA content, the Al concentration decreased and As concentration increased.  423 

Sore et al. [51] investigated the development of geopolymer compressed earth blocks (CEB) 424 

using laterite clay, metakaolin (MK) and sodium hydroxide. The experimental programme 425 

included weight loss after curing, porosity, apparent density, compressive strength, flexural 426 



22 
 

strength, thermal diffusivity and thermal conductivity. The results indicated that with 427 

increasing MK content, the weight loss and porosity increased, while the apparent density 428 

decreased. In addition, the results of compressive and flexural strength tests revealed that with 429 

increased MK content, the strength of geopolymer CEB improved. This improvement in the 430 

mechanical strength was attributed to the formation of higher levels of geopolymer gels after a 431 

polymerisation reaction between the NaOH and the MK that resulted in increasing the bond of 432 

particles, resulting in a more resistant and more compact structure. Furthermore, the results 433 

also indicated low thermal diffusivity and thermal conductivity with all MK percentages.  434 

Phummiphan et al. [22] studied the development of low carbon pavement base material 435 

produced from lateritic soil (LS), class C FA, Granulated Blast Furnace Slag (GBFS), sodium 436 

hydroxide and sodium silicate. The performance of the low carbon pavement base material was 437 

evaluated in terms of unconfined compressive strength, SEM and XRD tests after 7, 28 and 60 438 

days. The results indicated that the highest compressive strength values after 28 and 60 days 439 

were found at LS: FA: GBFS = 60:30:10 and Na2SiO3: NaOH of 90:10. This mixture was 440 

considered to be the recommended optimum ratio in practice and was further investigated for 441 

SEM and XRD tests. The results of SEM and XRD tests indicated that the geopolymerisation 442 

products increased in volume as the curing time increased.  443 

Miranda et al. [54] investigated the development of low carbon alkali activated mortar (AAM) 444 

produced from granitic residual soil (GRS), FA, sodium silicate and sodium hydroxide. The 445 

mechanical performance of the AAM were evaluated by means of compressive strength and 446 

flexural strength after 30, 60 and 90 days of curing. The results indicated an improvement in 447 

the compressive and flexural strengths with increasing the curing time and FA content. In 448 

addition, the performance of the developed mortars was also assessed by building masonry 449 

walls using compressed earth blocks utilising the AAM. The results showed that walls 450 
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incorporating AAM with 15% FA had better performance than walls incorporating AAM with 451 

5% FA, but the increment was minimal.  452 

Leitão et al. [55] evaluated the mechanical and thermal performances of Alkali Activated 453 

Interlocking Compressed Earth Blocks (AAICEBs) made from 85% granitic residual soil, 15% 454 

FA, sodium hydroxide and sodium silicate. For assessing the mechanical performance of 455 

AAICEBs, the compressive strength test was conducted on the AAICEBs after 28 days. 456 

Additionally, the developed AAICEBs were used after 28 days in the building of a masonry 457 

wall and then the thermal conductivity of that wall was evaluated. The results indicated a 458 

compressive strength of 3MPa after 28 days of curing. The results of the thermal conductivity 459 

of the masonry wall suggested that the use of alkaline activators in the presence of 15% FA 460 

improved the thermal properties of the wall with respect to heat transference. 461 

Messina et al. [56] investigated the utilisation of calcined clay sediments (CCS) and calcined 462 

water potabilization sludge (CWPS) in the production of precast geopolymer paving elements. 463 

The raw materials were calcined at 750oC for two hours, and then different proportions of the 464 

calcined raw materials were blended with Na2SiO3 and NaOH to produce geopolymer paste. 465 

The developed paste was then mixed with building sand to produce geopolymer mortar. 466 

Compressive strength test was used to evaluate the performance of the geopolymer paste and 467 

mortar after 7 days of curing. The results indicated that the compressive strength of the 468 

developed pastes and mortars were very similar and were in the range between 17-23 MPa. 469 

The developed mortar with CCS/WPS ratio of 50/50 was then mixed with natural aggregate to 470 

produce paving bricks that have been evaluated by measuring the splitting tensile strength after 471 

7 days of curing. The developed paving bricks have showed splitting tensile strength between 472 

0.82-2.01 MPa.  The durability assessment of the developed bricks after 180 days of exposure 473 

to room conditions showed that there was no cracking and no efflorescence was formed on the 474 

surface of the developed paving brick.    475 
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Slaty et al. [23] studied the durability performance of geopolymer mortar and paste made from 476 

Jordanian Hiswa kaolinite (JHK) clay and sodium hydroxide. The experimental programme 477 

included drying shrinkage, wetting and drying conditions, sea water attack and alkali-silica 478 

reaction. The results indicated a very low drying shrinkage for all samples and the presence of 479 

sand in mortar significantly reduced the shrinkage relative to geopolymer paste. The results 480 

also showed that there was a 50% reduction in the compressive strength of specimens subjected 481 

to 100 cycles of wetting and drying conditions relative to geopolymer specimens cured under 482 

dry conditions. This was attributed to effect of water in weakening the bond strength of Si-O-483 

Si in the alumina-silicates resource and because clay minerals have a high tendency to absorb 484 

water and become plastic rather than stiff. In addition, the results indicated a very good 485 

mechanical performance for geopolymer mortar and paste immersed in sea water with a small 486 

formation of efflorescent material on the external surface of the samples. Furthermore, the 487 

alkali–silica reaction seriously affected the geopolymer specimens and produced expansion, 488 

cracking, and loss of the mechanical strength as a function of time.  489 

Poowancum and Horpibulsuk [57] investigated the use of Dan Kwian sedimentary clay 490 

(DKSC) in the development of geopolymer binder. During this investigation, the DKSC was 491 

calcined at 600°C for 1, 2 and 5 h and mixed with Na2SiO3 solution and NaOH solution in three 492 

different Na2SiO3/NaOH ratios (0.5, 1 and 1.5). Setting time, compressive strength and porosity 493 

were used to evaluate the effect of different calcination temperatures and Na2SiO3/NaOH ratios 494 

on the properties of the geopolymer paste. The results indicated that for a fixed Na2SiO3/NaOH 495 

ratio, the setting time of the paste calcined for 1 and 2 h was about 55 min and was about 60 496 

min for the paste calcined for 5 h. The increase in the setting time with increasing the 497 

calcination time was associated with a reduction in the compressive strength and higher 498 

porosity of the geopolymer paste. The results also showed that the compressive strength of the 499 

geopolymer paste decreased with increasing the Na2SiO3/NaOH ratio and the lowest 500 
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compressive strength was recorded for Na2SiO3/NaOH ratio of 1. Beyond this ratio, the 501 

compressive strength improved with increasing Na2SiO3/NaOH ratio. The highest compressive 502 

strength of 27 MPa and lowest porosity of 35% was achieved with calcination of the DKSC 503 

for 2 h and Na2SiO3/NaOH ratio of 0.5.    504 

Silva et al. [58] investigated the production of compressed earth blocks (CEBs) from granitic 505 

residual soil, FA,  sodium hydroxide and sodium silicate. Compressive strength and flexural 506 

strength after 180 days of curing were used for assessing the performance of the CEBs. The 507 

results showed superior compressive and flexural strengths of CEBs incorporating 15% FA 508 

relative to the CEBs with 10% FA. This was attributed to the formation of more geopolymer 509 

products along with the enhanced structure due to higher density. The performance of the CEBs 510 

in saturated conditions was also evaluated by submerging CEBs in water for 24 hours prior to 511 

the test. The results indicated a maximum reduction in the compressive and flexural strengths 512 

of 36% and 61%, respectively for the mixture with 10% FA in comparison to CEBs samples 513 

cured in dry conditions.  514 

Ferone et al. [59] carried out experimental works to investigate the possibility of employing 515 

Sabetta clay sediments (SCS) in the production of geopolymer binder. During this 516 

investigation, the SCS was calcined at two different temperatures (400oC or 750oC) for 120 517 

minutes and activated by NaOH alone or a mixture of NaOH and Na2SiO3. Compressive 518 

strength test was conducted after 28 days to assess the behaviour of the binder under different 519 

conditions of calcination and activation. The results indicated that compressive strength of the 520 

geopolymer binder was significantly enhanced with increasing the calcination temperature 521 

from 400oC to 750oC. Additionally, the results showed that the compressive strength was 522 

improved with increasing the concentration of the NaOH and when the SCS was activated by 523 

a mixture of NaOH and Na2SiO3. The compressive strength was further enhanced by the 524 

addition of 17 % GGBS. The highest compressive strength value of the geopolymer binder was 525 
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38.9 MPa achieved with SCS treated at 750 °C mixed with 17 % GGBS and activated by a 526 

mixture of NaOH and Na2SiO3. The SEM images showed that the addition of GGBS to the 527 

geopolymer binder in the presence of NaOH and Na2SiO3 leads to the formation of a very dense 528 

and homogenous microstructure due to the simultaneous formation of N-A-S-H and C-A-S-H 529 

gels as evidenced by the EDX test.  530 

Phetchuay et al. [60] evaluated the development of pavement subgrade material from silty clay 531 

soil, FA, Calcium Carbide Residue (CCR) and sodium silicate. In this investigation, the 532 

influential factors were FA replacement level, Na2SiO3/water ratio, curing temperature and 533 

curing time for a fixed CCR content of 7%. Compressive strength and SEM tests were used for 534 

evaluating the effect of different factors on the strength and microstructure of the pavement 535 

subgrade material. The results indicated that the optimum FA replacement level was 15%. 536 

Regarding the effect of Na2SiO3/water ratio, the results showed that it was 0.6 for samples 537 

under water curing and 1.4 for samples under air curing. Additionally, the results also indicated 538 

an increase in the compressive strength with the increase in curing period and curing 539 

temperature.  The SEM images confirmed the results of compressive strength test that at 540 

optimum conditions, a denser microstructure was formed.  541 

Molino et al. [61] studied the effect of different calcination temperatures and alkaline activators 542 

on the performance of geopolymer binder produced from Occhito clay sediments. During this 543 

research, the raw materials were calcined at either 650oC or 750oC for 60 minutes and activated 544 

by three alkaline activators, namely NaOH solution, sodium aluminate solution and potassium 545 

aluminate solution. Compressive strength test after 3 and 14 days of curing was employed to 546 

evaluate the performance of the binder under different conditions of calcination and activation. 547 

At the age of 3 days, the results indicated an improvement in the compressive strength of the 548 

binder with increasing the temperature of calcination from 650oC to 750oC for the samples 549 

activated with either NaOH solution or sodium aluminate solution, while decreased for samples 550 
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activated with potassium aluminate solution. After 14 days of curing, the results indicated 551 

higher compressive strength with increasing the temperature of calcination for all the used 552 

activators. The SEM images of the samples made with sodium aluminate solution showed a 553 

compacted microstructure with no significant changes with increasing the age of curing or the 554 

temperature of calcination. In summary, the utilisation of sodium aluminate activator at 555 

calcination temperature of 650oC provided higher compressive strength than other tested 556 

activators with calcination temperature of 750oC, thus the use of this activator could 557 

significantly reduce the energy usage and improve the sustainability of the final product.   558 

Slaty et al. [62] investigated the development of alkali-activated mortar using kaolinitic clay, 559 

silica sand and sodium hydroxide. The experimental programme included optimising the sand 560 

to binder ratio, curing temperature, and curing period. The results showed that by increasing 561 

the sand content, the workability of mortar improved and the highest compressive strength 562 

value was achieved when the sand to clay ratio was 1.  The results also indicated that with 563 

increasing the curing temperature from 50oC to 80oC, the compressive strength increased from 564 

14MPa to 32MPa after 24h of curing. Additionally, the results indicated an increase in 565 

compressive strength with increased curing time. This study concluded that the optimum 566 

conditions for producing kaolinitic clay-based mortar were; sand to kaolinitic clay ratio of 1, a 567 

curing temperature of 80oC and curing time of 24h. Furthermore, the optimised samples were 568 

tested under wet and dry conditions. The results showed a reduction in compressive strength 569 

by half for samples under wet conditions relative to dry conditions. This was attributed to the 570 

hydrolysis of the Si-O-Si bonds upon immersion in water. The results of the SEM and XRD 571 

tests evidenced the formation of crystalline reaction products that filled the pore spaces and 572 

helped bind the matrix.  573 

Sukmak et al. [63] examined the development of geopolymer brick using silty clay soil,  FA, 574 

sodium hydroxide and sodium silicate.  The Na2SiO3 / NaOH ratios studied were 0.4, 0.7, 1.0 575 
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and 1.5. Additionally, different Liquid (L)/FA ratios (0.4, 0.5, 0.6 and 0.7) and FA/clay ratios 576 

(0.3, 0.5 and 0.7) were investigated.  The experimental programme included measuring the 577 

compressive strength of brick after 7, 14, 28, 60, and 90 days of curing at ambient temperature. 578 

The results indicated that for different L/FA and FA/clay ratios, the optimum compressive 579 

strength was for the mixtures with Na2SiO3/NaOH ratio of 0.7. For a given Na2SiO3/NaOH 580 

ratio, the strength increased with increasing L/FA ratio until its optimum value was reached, it 581 

then tended to decrease.  The results also indicated that the compressive strength increased with 582 

increases in the FA content. This was due the increased geopolymerisation products produced 583 

because of the high alumina-silicate of FA. The overall results indicated that the optimum L/FA 584 

ratio was dependent upon only the FA/clay ratio. As the clay content decreases, the L required 585 

for the reaction decreases.  586 

Mohsen and Mostafa [64] studied the use of calcined white clay (CWC) in the development of 587 

geopolymer bricks. The clay was calcined at 700oC for two hours and then mixed with either 588 

NaOH alone or with a mixture of Na2SiO3 and NaOH to produce geopolymer bricks. For 589 

evaluating the performance of the geoploymer bricks, compressive strength test was conducted 590 

at (i) room temperature for 3 days, (ii) 75°C for 24 h and (iii) 150°C for 24 h. The results 591 

indicated that the compressive strength of the developed bricks with NaOH was improved from 592 

19.8 MPa to about 22 MPa with increasing the curing temperature from room temperature to 593 

75°C. However, increasing the curing temperature to 150°C resulted in a slight reduction in the 594 

compressive strength (18 MPa). Additionally, the compressive strength results of the 595 

geopolymer bricks activated with Na2SiO3 and NaOH improved from 44 MPa to about 79 MPa 596 

with increasing the curing temperature. The results of water absorption test indicated that 597 

increasing the curing temperature reduced the water absorption of the produced bricks for both 598 

activators. In summary, geopolymer bricks activated with Na2SiO3 and NaOH have showed 599 

higher compressive strength and much lower water absorption values than those activated with 600 
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NaOH solution only. This was attributed to the formation of denser geopolymer gel for bricks 601 

activated with Na2SiO3 and NaOH relative to those activated with NaOH solution only as 602 

observed by the SEM testing.  603 
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Table 2. Studies on production of clay-based construction and building materials through alkali activation (geopolymerisation) 604 

Reference Clay type Blended material  Alkali activator  Clay-based 

product 

Curing condition Tests conducted 

[52] Kaolin clay - NaOH (13, 16.3, 

17, 17.8 and 19.7 

M) 

Mortar Cured in oven at 

80oC for  24 hours 

then at air or in 

water for 7 days  

Compressive 

strength and water 

absorption  

[53] Clay waste from 

construction site 

Class F fly ash (0, 

10, 20 and 30%) 

Na2SiO3 and 

NaOH (14M) 

Paste Cured in a 

humidity chamber  

at 75oC±2 for  24 

hours then at  

ambient 

temperature for 7, 

14 and 28 days 

Compressive 

strength,  

SEM/EDX and 

leaching 

behaviour 

[51] Laterite clay Metakaolin (0, 5, 

10, 15 and 20%) 

NaOH (12M) Compressed earth 

blocks 

Cured at ambient 

temperature of 

(30oC ± 5oC) for 7 

days and then 

placed in oven for 

another 7 days at 

60oC ± 2oC 

Weight loss after 

curing, porosity, 

apparent density, 

compressive 

strength, flexural 

strength, thermal 

diffusivity and 

thermal 

conductivity. 

[22] Lateritic soil Class C fly ash 

(30%) and 

Granulated Blast 

Furnace Slag (10, 

20 and 30%)  

Na2SiO3 and 

NaOH (5M) 

Pavement base 

material 

Wrapped with 

plastic sheets and 

cured at room 

temperature 

between (27–

30)◦C for 7, 28 

and 60 days 

Compressive 

Strength,  SEM 

and XRD 
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[54] Granitic residual 

soil 

Fly ash (5% and 

15%)  

Na2SiO3 and 

NaOH (5M and 

12.5M) 

Mortar Cured at ambient 

temperature for 

30, 60 and 90 

days 

Compressive 

strength and 

flexural strength 

[55] Granitic residual 

soil 

Fly ash (15%) Na2SiO3 and 

NaOH (12.5M) 

Compressed earth 

block 

Cured at ambient 

temperature for 

28 days 

Compressive 

strength and 

thermal 

conductivity 

[56] Calcined clay 

sediments 

Calcined water 

potabilization 

sludge (30, 50 and 

70 %) 

Na2SiO3 and 

NaOH (14 M) 

Paste, mortar and 

paving brick 

Cured for 24h or 

either at 20°C or 

60°C and then at 

climatic chamber 

operating at 20°C 

until the age of 7 

days.  

 

Compressive 

strength, splitting 

tensile strength, 

SEM, XRD and 

visual assessment.  

[23] Jordanian Hiswa 

kaolinite clay 

- NaOH Mortar and paste Cured for 24h or 

48h at 80 °C and 

then for 7, 30, 60, 

90 and 180 days 

at ambient 

temperature.   

Compressive 

strength, drying 

shrinkage, wetting 

and drying 

conditions, sea 

water attack and 

alkali-silica 

reaction 

[57] Dan Kwian 

sedimentary clay 

- Na2SiO3 and 

NaOH (8 M) 

Paste Cured at 60°C for 

7 days 

Setting time, 

compressive 

strength and 

Porosity.  

[58] Granitic residual 

soil 

Fly ash (10% and 

15%) 

Na2SiO3 and 

NaOH (12.5M) 

Compressed earth 

block 

Cured at ambient 

temperature for  

180 days 

Compressive 

strength and 

flexural strength 
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[59] Sabetta clay 

sediments 

GGBS (0 and 17 

%) 

Na2SiO3 and 

NaOH (5, 7 and 

10 M) 

Paste  Cured for 3 days 

at 60°C in an 

oven, then at 

room temperature 

until the age of 28 

days.   

Compressive 

strength, SEM, 

EDX and XRD. 

[60] 

 

 

 

 

 

 

Silty clay soil Fly ash (0, 5, 10, 

15, and 20 %) and 

7% Calcium 

Carbide Residue 

Na2SiO3 Pavement 

subgrade material 

Cured either at 

ambient 

temperature (27–

30)◦C  or at 40oC 

for 7, 14, 28 and 

60 days 

Unconfined 

Compressive 

Strength and SEM  

[61] Occhito clay 

sediments 

- NaOH (5 M), 

sodium aluminate 

(8.5, 11, 13 and 

17 M) and 

potassium 

aluminate (8.5, 

11, 13 and 17 M) 

Paste Cured for 3 days 

at 60°C in an 

oven, then kept in 

air for 11 days 

Unconfined 

Compressive 

Strength and SEM 

[62] Kaolinitic clay Silica sand (25, 

50, 100 and 

150%) 

NaOH Mortar Cured  at 

temperature (50, 

60, 70 and 80oC) 

for curing period 

(6, 12, 18, 24, 48 

and 72h) 

Workability,  

compressive 

strength, wetting 

and drying, SEM 

and XRD 

[63] Silty clay soil Fly ash (30, 50 

and 70%) 

Na2SiO3 and 

NaOH (10M) 

Brick Cured at ambient 

temperature for 7, 

14, 28, 60, and 90 

 days 

Compressive 

strength  
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[64] White clay - NaOH alone or 

Na2SiO3 and 

NaOH 

Brick Curried at (i) 

room temperature 

for 3 days, (ii) 

75°C for 24 h and 

(iii) 150°C for 24 

h 

Compressive 

strength, Water 

absorption, SEM 

and XRD.  

 605 

 606 

 607 

 608 

 609 

 610 

 611 

 612 

 613 

 614 

 615 

 616 

 617 
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2.3.1 Critical evaluation  618 

In some of the reviewed papers, the clay materials were blended with different materials such 619 

as FA [53-55, 58, 60, 63], GGBS [59], metakaolin [51] and calcined water potabilization sludge 620 

[56]. The main reason behind blending the clay with the aforementioned materials is to increase 621 

the geopolymerisation products that in turns resulted in better mechanical and durability 622 

performance [17]. 623 

In the reviewed studies, both class C and Class F fly ash types were used. The reaction between 624 

alkaline activator and class C fly ash forms in addition to the geopolymerisation products that 625 

normally formed during the activation of class F fly ash, Calcium Silicate Hydrate (C-S-H) gel 626 

and Calcium Alumino Hydrate (C-A-H) gel [22]. This behaviour is similar to the alkali 627 

activation of GGBS and is attributed to the adequate calcium content in class C fly ash and 628 

GGBS [21, 65]. The amount of fly ash blended with different types of clay that has high SiO2 629 

and Al2O3 content was in the range of 5-30% [22, 53-55, 58, 60]. However, the amount of 630 

blended fly ash reached about 70% in the case of clay with total SiO2 and Al2O3 content of 631 

about 28% [63].   632 

According to the reviewed studies, the most commonly used alkaline activator solutions were 633 

sodium hydroxide (NaOH) and sodium silicate (Na2SiO3). Sodium hydroxide was used alone 634 

as an activator [23, 51, 52, 62] or in combination with sodium silicate [22, 53-59, 63, 64].  The 635 

utilisation of both activators together in the production of clay-based geopolymer products was 636 

vital because NaOH is required for the dissolution of alumina-silicate precursor, while Na2SiO3 637 

acts as binder or alkali reactant [17, 66-68]. Therefore, the final product will have better 638 

mechanical and durability performance [59, 64]. Additionally, the use of a combination of 639 

NaOH and Na2SiO3 is cost effective to produce clay-based geopolymer materials with good 640 

compressive strength and durability performance because NaOH is cheaper than Na2SiO3 [17, 641 

57].  642 
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In many of the reviewed papers that utilised NaOH with different concentration (in the range 643 

of 5-19.7 M) [52, 59], the results indicated an improvement in the strength and reduction in the 644 

water absorption with increasing the NaOH concentration. This enhancement in the strength 645 

and durability perfomace of the geopolymer materials is believed to be due to the formation of 646 

denser microstructure that bonded the particles of the raw materials, thus resulted in less 647 

numbers of pores [17, 52]. 648 

Generally, the Na2SiO3/NaOH ratio in the preparation of clay-based geopolymer products is 649 

important [17, 68]. Based on the reviewed studies the Na2SiO3/NaOH ratios were in the range 650 

of 0.25 to 9. The optimum Na2SiO3/NaOH ratio in the reviewed studies varied significantly 651 

according to the type of clay, blended materials, methods of curing, etc. In general, increasing 652 

the Na2SiO3/NaOH ratio resulted in improved strength and durability of the final product.  This 653 

could be attributed to the increased (Si) content that aids in the production of more of Si-O-Si 654 

bonds, and significantly enhanced the compressive strength of the clay-based geopolymer 655 

materials [63, 69, 70]. However, the strength started to decrease behind the optimum 656 

Na2SiO3/NaOH ratio. This could be due to the excessed Si content that hinders water 657 

evaporation and structure formation and negatively affect the geopolymerisation rate [63, 69, 658 

70]. 659 

In addition to the aforementioned alkaline activators, sodium aluminate and potassium 660 

aluminate activators were used by Molino et al. [61] with the aim of improving the performance 661 

of the raw materials with low Al2O3 content (16.33%). The results indicated an improvement 662 

in the performance of geopolymer binder with the use of alkaline aluminate solutions relative 663 

to NaOH solution.  664 

In some of the reviewed geopolymer-related studies, the raw materials (clays) were calcined at 665 

different temperatures and times [56, 57, 59, 61, 64], while the other studies used non-calcined 666 
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clays. Ferone et al., 2015 [59] stated that calcined clay could provide better performance than 667 

non-calcined clay. This is because heat treatment helps to transform the crystalline phases into 668 

reactive amorphous of raw materials that leads to enhance the strength of geopolymers [17, 59, 669 

71]. Additionally, the reviewed studies showed that the temperature at which the clays were 670 

calcined were in the range of 400oC to 750oC while the calcination time was between 1-5 hours. 671 

Generally, the strength of different calcined clay-based construction materials has improved 672 

with increasing the temperatures of calcination [59, 64] and the optimum calcination time was 673 

2 hours [56, 57, 59, 64]. The improvement in the strength with increasing the calcination 674 

temperature is believed to be due to the increased surface area of raw materials that dissolves 675 

quicker in the alkaline solution and consequent improve the geopolymerisation reaction [17]. 676 

On the other hand, the reduction in strength with increasing the time of calcination for more 677 

than two hours is attributed to the over calcination that leads in the transformation of reactive 678 

amorphous phase into mullite crystalline phases that are dead burnt and not reactive [17].  679 

 680 

 681 

 682 

 683 

 684 

 685 

 686 

 687 

 688 
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2.4 Microwave sintering, curing and drying of clay-based construction materials.   689 

Microwaves are electromagnetic radiation with frequencies in the range of 300GHz -- 300MHz 690 

and wavelengths between 1mm and 1m in free space [31, 72]. Standard microwave for 691 

scientific or industrial processing operates at a frequency of 2.45GHz [29, 31, 72, 73]. 692 

Sintering, curing and drying of clay-based building materials via microwave technique depends 693 

mainly on the deep penetration with uniform volumetric heating that significantly reduces 694 

processing times due to the rapid heating rate [74-76]. Although many studies have been carried 695 

out on the use of microwave techniques in the processing of construction materials [30, 34, 74-696 

82], only limited research has been conducted on clay-based construction materials as shown 697 

in Table 3.  698 

Hájková [83] investigated the utilisation of microwave technique to accelerate the curing of 699 

geopolymer mortar based on calcined kaolinite claystone (CKC). The geopolymer mortar was 700 

manufactured my mixing CKC (calcined at temperature of 750oC), sand and potassium water 701 

glass. The variables investigated during this study were the density of the potassium water glass 702 

(1.2, 1.3, 1.4, 1.5 and 1.6 g/cm3) used in the preparation of the geopolymer mortar and the 703 

method of microwave curing. The microwave curing methods employed were (1) the 704 

application of microwave for 26 min immediately after casting the geopolemer mortar (MW) 705 

and (2) the application of microwave for 26 min after 24 hours of casting the samples and 706 

solidification at room temperature (MW/2).  Compressive strength test after 7 and 28 days, 707 

leaching test of the Si, Al, K and Na elements after 28 days and porosity test were used to 708 

evaluate the performance of the geopolymer mortar. The results indicated that the compressive 709 

strength was increased with increasing the potassium water glass densities for both curing 710 

methods. Additionally, the compressive strengths for all the tested densities and for both curing 711 

methods were almost the same at the age of 7 and 28 days. This could be attributed to the fast 712 

solidification of the geopolymer mortars under microwave curing that force the polymerization 713 
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process to stop quickly that resulted in similar strengths. The leaching test results indicated an 714 

increasing in the leaching of Si, K and Na and reduction in the leaching of Al with increasing 715 

the potassium water glass densities. Moreover, the porosity test result indicated that the 716 

porosity decreased with increasing the potassium water glass densities and the samples with 717 

MW curing have higher pore volumes and pore diameters relative to that with MW/2 curing. 718 

In summary, the results showed the probable production of geopolymer mortar with 719 

compressive strength of more than 60 MPa from CKC at the optimum microwave curing 720 

conditions detailed in Table 3. 721 

Taurino et al. [24] investigated the feasibility of using microwave sintering in the production 722 

of brick from kaolin clay and municipal solid waste incineration bottom ash (BA). Sintering 723 

experiments were carried out at a power rating of 950W for 5 minutes holding at three different 724 

temperatures (800, 900 and 1000oC). Compressive strength, linear shrinkage and water 725 

absorption tests were used to evaluate the performance of the newly developed brick. The 726 

results indicated that by increasing the temperature, the liner shrinkage and water absorption 727 

reduced, while the compressive strength improved. This study concluded that the microwave 728 

sintering at optimum microwave conditions detailed in Table 3 for the mix with 55% BA with 729 

45% kaolin clay was sufficient to produce brick with 65MPa strength after 28 days of curing,  730 

Bagaber and Sudin, [25] examined the effectiveness of the microwave technique in drying of 731 

clay bricks as an alternative method to oven drying. In this study, the brick was made from 732 

97% red clay and 3% charcoal. The main reason for adding a small percentage of charcoal was 733 

to enhance microwave absorption. The performance of dried brick using the microwave 734 

technique was evaluated by measuring density, cracks and water absorption with comparisons 735 

made with those dried in a conventional electrical oven. Dried clay bricks using the microwave 736 

technique showed improved density, less water absorption and were free from cracks as 737 

compared with drying in a conventional electrical oven. In addition, using the microwave 738 
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technique at optimum conditions, as identified in Table 3, significantly reduced the temperature 739 

and time of drying compared to conventional electrical oven treatment.  740 

Kim et al. [26] evaluated the employment of the microwave technique to accelerate the curing 741 

of alkali activated Hwangtoh clay (AAHC) Paste. In this investigation, the alkali activator was 742 

a combination of Na2SiO3 and NaOH. Internal temperature distribution, porosity and 743 

compressive strength tests were used for evaluating the performance of the AAHC paste. For 744 

comparison purposes, there were some samples cured using heat curing at 60oC.The results of 745 

the internal temperature distribution indicated that the core temperature was generally higher 746 

than the surface temperature. However, the maximum difference between core and surface was 747 

less than 10oC, this evidenced the uniform heating of the microwave technique. The results 748 

also showed a reduction in the cumulative pore volume and improvement in the compressive 749 

strength of AAHC paste with increased microwave curing time. This was due to the gradual 750 

filling of larger pores with the reaction products of alkali activation. Additionally, the results 751 

revealed the possible production of paste with compressive strength of about 21MPa at the 752 

optimum microwave curing conditions detailed in Table 3. These results were higher than those 753 

achieved with conventional heat curing at 60oC for 72 hours. 754 

Itaya et al. [27] studied the possibility of using microwave techniques in the drying of kaolin 755 

clay bricks as an alternative to conventional oven drying. Deformation and formation of cracks 756 

within the brick were used to assess the effectiveness of the microwave drying technique. The 757 

results indicated that microwave drying of bricks with constant power resulted in large cracks 758 

and breaking of samples when the internal temperature reached about 100oC. However, the 759 

results showed successful drying without any deformation or crack formation when the drying 760 

process was conducted at optimum drying conditions stated in Table 3. In addition, the use of 761 

optimum drying conditions significantly reduced the drying time of kaolin clay brick relative 762 

to conventional oven drying763 
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Table 3. Studies on the use of microwave as sintering, curing and drying technique of clay-based construction materials. 764 

Reference Clay type Microwave 

Process   

Microwave Power 

(W) 

Microwave 

Time (minutes) 

Clay-based 

product 

Tests conducted  Optimum 

Microwave 

Conditions 

[83] Kaolinite 

claystone 

Curing 3000 26 Mortar Compressive 

strength, leaching 

and porosity  

The application of 

microwave for 26 

min with power of 

3000 W after 24 

hours of casting the 

samples  

[24] Kaolin clay Sintering 950 5 Brick  Compressive 

strength linear 

shrinkage and 

water absorption 

5 minutes of 

microwave sintering 

with a power of 950 

W at temperature of 

900oC    

[25] Red clay Drying 700 6, 8 and 10 Brick  Density, cracks 

generation and 

water absorption 

8 minutes of 

microwave drying 

with a power of 700 

W at temperature of 

70oC    

[26] Hwangtoh 

clay 

Curing  40, 60 and 80 30, 60, 90, 

120,150, 180, 

210 and 240  

Paste Internal 

temperature 

distribution, 

porosity and 

compressive 

strength 

240 minutes of 

microwave curing 

with a power of 60 

W 

[27] Kaolin clay Drying 100, 200, 300, 400, 

500, 600, 700, 800, 

900 and 1000 

- Brick  Deformation and 

generation of 

cracks 

21 minutes of 

microwave drying 

with a power of 600 

W for 3.5m, 200W 
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for the next 6.5 m 

and 100 W until the 

drying completion   
765 
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2.4.1 Critical evaluation  766 

The use of microwave heating for sintering, curing and drying of clay-based construction 767 

materials relies upon the uniform volumetric heating that directly penetrates the material 768 

leading to enhanced consolidation efficiency and accelerates densification, enhancing 769 

mechanical and durability performance [74-76]. This deep penetration combined with the 770 

uniform, volumetric heating can significantly reduce energy usage due to the short processing 771 

times and rapid heating rate [74-76].  772 

The absorption of microwave energy depends to a large extent upon the chemical composition 773 

of raw materials [26, 84].  It has been reported by Kim et al. [26] that the existence of high 774 

content of SiO2 and Al2O3 in raw materials will allow them to absorb microwave energy very 775 

well and enhance curing of clay-based construction materials. Therefore, the total amount of 776 

SiO2 and Al2O3 in the clay materials that have been cured or sintered with microwave were 777 

more than 80% [24, 26, 83].  According to the reviewed studies, the chemical composition of 778 

raw materials were not been reported for the studies that used microwave for drying of clay 779 

materials.  780 

The reviewed studies in Table 3 show that the microwave processing time is reduced with 781 

increases in microwave power. Additionally, all the reviewed studies indicate a considerable 782 

reduction in processing time by using microwave heating compared to a conventional electrical 783 

oven. This is because the volumetric heating process is significantly more efficient in 784 

comparison with resistance heating [72, 85]. 785 

As heat is favourable for improving the performance of geopolymer materials, however, the 786 

use of conventional ovens is not an energy efficient technique as it takes a long time and 787 

consumes energy along with the negative environmental impact associated with it. Therefore, 788 

the produced geopolymer materials have used the microwave as an environmentally friendly 789 
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source of heating. In the reviewed studies that employed the microwave as a curing technique, 790 

the microwave powers varied significantly with 40, 60 and 80 W for [26] and 3000 W for [83]. 791 

These variations in the power explain why the required processing time in  [26] was 4 times 792 

the time required in [83].  793 

Regarding the utilisation of microwave as drying technique of brick, the reviewed studies have 794 

also showed a range of microwave powers that have been employed between 100-1000 W. 795 

Additionally and similar to the use of microwave as curing technique, the utilisation of higher 796 

power resulted in reducing the processing time as the temperature inside the microwave is 797 

directly related with the microwave power.   798 

For the use of microwave as sintering technique, Taurino et al. [24] indicated that the utilisation 799 

of microwave with a power of 950 W for 5 minutes was sufficient to produce brick with a 800 

compressive strength of 65 MPa.  801 

 802 

 803 
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3. Discussion  818 

3.1 Characterisation of clay-based construction materials 819 

Tables 1-3 exhibit the wide range of clay-based materials and methodologies that have been 820 

developed and subjected to various research investigations. 821 

A range of tests were carried out on the resulting products to evaluate their performance 822 

following different standards. Compressive strength was the common test considered by most 823 

of the reviewed studies as the compressive strength is considered a basic and universally 824 

acceptable unit of measurement to specify the quality of  clay-based construction materials as 825 

stated by common standards [35].   826 

Other tests were also used in assessing the performance of the products. For example, the water 827 

absorption test was conducted for most of the resulting bricks, blocks, stabilized earth blocks 828 

and compressed stabilized earth blocks as a durability measurement [24, 25, 35-37, 41, 42, 45-829 

47, 64].  830 

Since clay-based brick and blocks are recognised as materials which contribute towards the 831 

thermal insulation of buildings and consequently increase indoor comfort, some of the research 832 

projects [39, 43, 45, 51, 55] investigated this property. The results indicated that the thermal 833 

isolation of the clay-based unities have been reduced slightly with increasing the stabiliser 834 

content [39, 43, 45], however, the use of alkaline activators and especially in the presence of 835 

FA improved the thermal isolation of the clay-based unites [51, 55].  836 

Freezing/thawing and wetting/drying tests were evaluated for different clay-based materials 837 

produced in countries that experienced these conditions such as the United Kingdom, Spain 838 

and Belgium. [23, 45-47, 62].  839 
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In order to identify potential toxic agents within the produced materials, some researchers 840 

conducted leaching test [53, 83]. Dassekpo et al. [53] have conducted leaching test to identify 841 

the Arsenic content as a toxic material because the raw materials were clay waste from 842 

construction sites. Additionally, Hájková [83] conducted the leaching for the alkali  (K and Na) 843 

elements to decrease efflorescence of the mortar due to the alkali effect.   844 

Different tests were conducted for evaluating the performance of the clay-based construction 845 

products for different application of microwaves. Porosity test was conducted when the 846 

microwave was used as a curing technique because reducing the curing time by increasing the 847 

temperature of curing can significantly produce larger pores with larger diameters and 848 

consequently reduce the compressive strength at later ages [69, 83]. However, generation of 849 

cracks were investigated when the microwave was used as drying technique due to the high 850 

temperature of the core of the clay-based produces [25, 27]. Other tests such as linear shrinkage 851 

and internal temperature distribution were conducted when the microwave was used as 852 

sintering and curing technique, respectively.  853 

Although most of the reviewed studies aimed to reduce the negative environmental impact of 854 

the clay-based construction materials, only one research project actually investigated the 855 

environmental performance of the final product [45]. As such, more detailed environmental 856 

impact assessments of the other techniques will be required before they can be compared with 857 

conventional production methods. 858 

3.2 Curing of clay-based construction materials  859 

The term curing is a process that normally associated with the production of different 860 

construction materials such as concrete, mortar, stabilised earth blocks, etc. The curing process 861 

can significantly affect the performance of the construction materials and it usually aims at 862 

acquisition the full strength of developed product [86]. As the method of curing can be varied 863 



46 
 

according to the process of production, therefore, this section will be divided into two sections: 864 

curing of blended and stabilized clay-based construction materials and curing of geopolymer 865 

clay-based construction materials.  866 

3.2.1 Curing of blended and stabilized clay-based construction materials 867 

Curing is very important process for stabilized clay-based construction materials, especially 868 

when cement or lime is used in preparation of these products as a stabilizing agent. Water 869 

curing would aid in enhancing the hydration process of the cement/lime as this process can 870 

take place more efficiently in the presence of water that results in hardening the materials 871 

treated with cement/lime. Table 1 shows the methods of curing that was used for each of the 872 

stabilized clay-based construction materials 873 

According to the reviewed studies [36-39, 42, 44, 45],  the produced clay-based construction 874 

materials that incorporated cement and/or lime were kept moist for 28 days by immersing in 875 

water, spraying with water or placed in humidity chamber at ambient temperature that ranged 876 

between 20-40oC according to the weather conditions in the country where the experiments 877 

were conducted. This is because the presence of moisture will allow unreacted cement or/and 878 

lime particles to hydrate further, producing additional cementing gel as reported by Joel and 879 

Edeh [86]. Additionally, increasing the age of cuing to 28 days or even longer [35, 46, 47] in 880 

the presence of moisture will aid the formation of secondary cementing gel that is formed due 881 

to the chemical reaction between calcium from portlandite phase (CH) and silicates from the 882 

clays [2].  883 

3.2.2 Curing of geopolymer clay-based construction materials. 884 

The method and period of curing can significantly affect the properties of the geopolymer clay-885 

based construction materials [17, 69]. Geopolymer clay-based construction materials are 886 

usually cured at ambient or slightly higher temperature after mixing. Normally, the curing 887 
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temperature is preferable to be less than 100oC [17].Based on the reviewed studies [22, 23, 51-888 

64], different curing temperatures with various periods of times were employed in the 889 

production of different geopolymer clay-based construction materials.  890 

According to the reviewed studies, air curing was considered by many of the researchers under 891 

ambient temperatures that ranged between 20-35oC. For the geopolymer clay-based 892 

construction materials under air curing, the periods of curing was a minimum of 7 days and 893 

some of the studies extended the time to 28 days [55], 60 days [22, 60], 90 days [54, 63] and 894 

even 180 days [58]. This is because the geopolymerisation reaction is very slow at ambient 895 

temperature and extending the period of curing is essential to produce materials with enhanced 896 

strength and reduced water absorption due to the formation of additional geopolymerisation 897 

products [17, 22, 54, 58, 87].  898 

In addition, oven curing was one of the techniques used in the curing of geopolymer clay-based 899 

construction materials due to that fact that heat is essential to improve the reaction by 900 

accelerating the dissolution of silica and alumina species from the raw materials [88-90]. 901 

According to the reviewed studies, the curing temperatures were reported in the range between 902 

40oC and 150oC and the period under oven curing ranged between 6 hours to 7 days. Slaty et 903 

al. [62] reported that increasing the temperature (50oC, 60oC, 70oC and 80oC) improved the 904 

strength gain after 6-72 hours. However, high curing temperature (150oC) resulted in reduced 905 

compressive strength due to the formation of large pores [64].  906 

In general, adequate curing for clay-based construction materials is required to produce 907 

materials with good mechanical and durability performance to maintain their structural 908 

integrity. 909 

 910 
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3.3 Comparative assessment of the techniques used in the production of clay-based 911 

construction materials:  912 

The sustainable development in the construction industry required evaluating different 913 

parameters of the production techniques. The criteria considered in this study for the 914 

assessment are environmental and economic aspects for the production of different clay-based 915 

construction materials. The study presents comprehensive evaluation of environmental impacts 916 

associated with different techniques to produce clay-based construction materials. 917 

Additionally, the study provide some facts about the economic feasibility of different 918 

production techniques.  919 

3.3.1 Environmental assessment  920 

From an environmental point of view, the construction industry is responsible for about 40% 921 

of the energy consumption worldwide, nearly 30% of the global greenhouse gas emissions, 922 

generation of solid waste, depletion of natural resources and environmental damage [91]. 923 

Therefore, the construction industry is looking for alternative techniques and materials with the 924 

aim of moving towards sustainable development. The main advantages of using sustainable 925 

techniques and materials are to protect the environment and ecology, reduce the depletion of 926 

natural resources, energy efficiency and healthy outdoor and indoor environment [91, 92]. 927 

The main goal of this study is to assess the environmental impact of different unfired clay-928 

based construction materials, and to compare them with traditional fired clay-based 929 

construction materials.  The assessment criteria including quantifying the consumption of 930 

energy, consumption of natural resources, consumption of fossil fuel and production of 931 

greenhouse gases.   932 

The production of clay-based construction materials through firing is considered the most 933 

significant impact on the environment. This is because of the high temperature kiln firing 934 
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needed that consumes significant amount of energy along with releasing large quantities of 935 

greenhouse gases including CO2 (attributed to the utilisation of coal for the firing process)[5, 936 

91]. Additionally, in some cases where the coal used for firing is of low quality, this could 937 

significantly contributes to the acidification due to the release of SO2 emissions and the 938 

formation of NOx [91, 93]. Furthermore, the production of fired clay-based construction 939 

materials contribute considerably to the depletion of fossil fuels as firing obtained mainly from 940 

coal [91].   941 

On the other hand, the production of unfired clay-based construction materials through 942 

stabilisation seem to be the trend to follow to achieve sustainable development in the 943 

construction industry in terms of environmental concerns. However, the stabilisation technique 944 

involves the addition of cementing material(s) such as lime or/and cement, whose manufacture 945 

required intensive energy, consumes huge quantities of natural resources along with releasing 946 

huge quantities of CO2 emissions [5, 91, 94]. The manufacture of Portland cement consumes 947 

about 5.6 GJ of energy and requires approximately 1.5 tonnes of raw materials along with the 948 

production of about 7% of CO2 emission in the atmosphere [49, 95]. Additionally, the 949 

production of stabilised clay-based construction materials contribute to larger water depletion 950 

that needed for curing process and lower consumption of fossil fuels relative to fired clay-based 951 

construction materials [91].  952 

In comparison with the aforementioned production techniques, the production of clay-based 953 

construction materials through geopolymerisation consumes much less energy and releases 954 

considerably lower quantities of greenhouse gases [5].  Therefore, the environmental burden 955 

of the geopolymer clay-based construction materials are generally lower than the fired or 956 

stabilised clay-based construction materials [96]. However, the production of geopolymer clay-957 

based construction materials is also associated with some environmental impacts that mainly 958 

attributed to the utilisation of alkali activators [97]. The manufacture of the alkali activators 959 
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require intensive energy: (i) sodium hydroxide that is processed by electrolysis of salt water 960 

and (ii) sodium silicate from the melting of soda ash and sand at about 1400oC [97]. 961 

Additionally, in order to achieve reasonable strength for geopolymer clay-based construction 962 

materials, there is a need for curing at elevated temperatures (40oC-80oC) that means extra 963 

energy consumption [5, 97].  964 

3.3.2 Economic assessment 965 

The feasibility of different production techniques should be evaluated in order to produce 966 

sustainable products with competitive financial cost.  The parameters included in the economic 967 

assessment are the cost of raw materials and the energy required in the production.  968 

The cost of raw materials can vary significantly among the production techniques. Poinot et al. 969 

[96] reported that the cost of raw materials for fired clay-based construction materials could be 970 

as small as 2% of the total cost of the final product, while in the case of geopolymer clay-based 971 

construction materials most of the cost is attributed to the alkaline activators. The highest cost 972 

(about 60%) associated with the production of clay-based construction materials through firing 973 

is attributed to the consumption of large quantities of energy [96]. However, the unfired clay-974 

based construction materials required smaller amount of energy to power the hydraulic pressure 975 

compressed machines and for curing at elevated temperatures (for geopolymer clay-based 976 

construction materials)[5, 96].   977 

As overall, the evaluation of the environmental impacts and economic feasibility of different 978 

production techniques depends on considerations included in the assessment criteria and all of 979 

these considerations should be evaluated and compared to provide accurate evaluation of the 980 

performance of different clay-based construction materials. According to the evaluated criteria 981 

and from production point of view, the production of clay-based construction materials through 982 

geopolymerisation is seen to be the best production technique taking into consideration the low 983 
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environmental impacts and the potentially competitive financial cost relative to other 984 

production techniques.   985 

3.4 Future trends  986 

The sustainability index of different clay-based construction materials could be significantly 987 

improved by employing cheaper and eco-friendly materials and manufacturing processes along 988 

with concentrate on improving the mechanical and durability performance. The following are 989 

some suggestions to improve the sustainability of different clay-based construction materials:  990 

 As the utilisation of cement and/or lime in the production of stabilised clay-based 991 

construction materials reduced the sustainability index of the final products, therefore, 992 

replacing these materials with viable alternatives, could significantly improve the 993 

sustainability performance of this manufacturing technique. The use of industrial, 994 

agricultural and natural waste and/or by-products as partial or full replacement to 995 

traditional binders (cement and/or lime) can lead to the production of stabilised clay-996 

based construction materials with superior environmental, financial and technical 997 

benefits. Marcelino-Sadaba et al. [94] stated that replacing the cement and/or lime 998 

partially by GGBS in the production of stabilised clay bricks resulted in reduced 999 

environmental impacts and superior technical performance.    1000 

 Generally, the production of geopolymer clay-based construction materials have lower 1001 

environmental impact, relatively similar cost to other production techniques and with 1002 

relatively high mechanical and durability performance. However, the alkaline 1003 

activators used in the production of geopolymer clay-based construction materials are 1004 

considered as the main contributor to environmental impact and cost of this production 1005 

technique. Therefore, the viability of this production technique could be further 1006 

enhanced by; firstly, reduce the molar concentration of the alkaline activators, secondly, 1007 
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the utilisation of clay materials with a minimum Si/Al molar ratio of 2 to decrease the 1008 

use of alkaline activator solutions and finally, utilisation of some waste materials with 1009 

high alkaline content as alternative to traditional alkaline activators. Additionally, heat 1010 

curing is essential for geopolymer clay-based construction materials to achieve 1011 

adequate mechanical and durability performance, however, the use of conventional 1012 

ovens is not an energy efficient technique as it takes a long time and consumes energy 1013 

along with the negative environmental impact associated with it. Therefore, the use of 1014 

microwave as an alternative source of heat can significantly reduce the cost and 1015 

environmental impact of this technology, as the microwave heating is uniform and 1016 

volumetric, reducing energy consumption and curing temperatures, with very rapid 1017 

heating rates and significantly reduced processing times, thus improving physical and 1018 

mechanical properties, and lowering environmental hazards.  1019 

4. Conclusion 1020 

Based on the review of the research studies on the production of clay-based construction 1021 

materials, the following conclusions have been drawn: 1022 

 A wide variety of clay types were investigated in the production of different clay-based 1023 

construction materials. 1024 

 The techniques studied for the production of clay-based construction materials were: 1025 

blending and stabilising, alkali activation and the use of microwave heating as an 1026 

innovative sintering, curing and drying technique. The method of blending and 1027 

stabilising is based on replacing clay partially with some waste or by-product materials 1028 

and adding cementing materials such as cement or lime. The technique of alkali 1029 

activation is based on the chemical reaction between clay materials representing the 1030 

alumina-silicate source and a high alkaline solution. The use of microwave heating is 1031 
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based on volumetric heating that directly penetrates the material significantly reducing 1032 

the processing time. 1033 

 A detailed comparison between different production techniques were conducted in 1034 

terms of environmental and economic aspects along with suggestion for future trend to 1035 

improve the sustainability of different production techniques.   1036 

 In order to maximize the commercial production of clay-based construction products 1037 

using the techniques discussed in this work, more research needs to be conducted on 1038 

the environmental and economic benefits along with public education and 1039 

standardisation.     1040 
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