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Abstract: A space vector pulse-width modulation (SVPWM) algorithm for a three-level asymmetrical six-phase drive based 
on vector space decomposition (VSD) approach is presented in this paper. A modification in zero plane of the 
transformation matrix is proposed in order to meet the requirement that the realisation of sinusoidal output phase 
voltages can be obtained through the chosen output leg voltage space vectors. Furthermore, a method of choosing the 
switching sequences based on all possible one-level transitions of the leg voltages, i.e. a permutation method, is 
introduced. The algorithm is then validated experimentally and obtained results show that the developed method 
successfully achieves the desired fundamental phase voltage, although low order harmonics are present due to 
uncompensated inverter dead time. Last but not least, the performance of the proposed SVPWM algorithm is compared to 
several carrier-based PWM algorithms including in-phase disposition with ‘double min-max injection’ (PD-DI). This is a little-
known type of injection, which is verified to obtain identical performance as the presented multilevel algorithm. 
 

1. Introduction 

The advantages offered by multiphase drives, when 

compared to the already matured technology of three-phase 

drives, are well known and understood at this point in time 

[1]. The main advantage of a multiphase drive is that it offers 

greater fault tolerance capabilities compared to the 

conventional three-phase drives. If a fault takes place in one 

of the three-phase machine’s stator windings, the machine 

becomes single-phase and is not able to properly operate any 

more. However, this is not the case for multiphase machines, 

as investigated in [2] for six-phase drives. As a result, the 

research developments done in the area of multiphase drives 

have progressed significantly in recent years and more and 

more attention is given to multiphase drives with multiple 

three-phase winding sets, such as six- or nine-phase machines 

[3, 4]. This is so since, by simply rewinding the stator of the 

widely available three-phase machines, this type of 

multiphase machines can be constructed, hence enabling a 

saving in the manufacturing cost. 

A multiphase drive refers to a multiphase machine 

together with its corresponding multiphase inverter. The 

higher number of machine’s phases allows the current 

flowing form the dc-bus to be shared between the phases thus 

giving more flexibility of choosing power semiconductors, 

with much lower rating, when designing an inverter. In 

addition, the topology of the inverter used to drive the 

multiphase machine is not only restricted to the conventional 

two-level structure. Multilevel structures, such as the neutral 

point clamped (NPC) topology introduced in [5], can be used 

as well. Furthermore, by adding multilevel inverter’s ability 

to sustain much higher dc-bus voltage, on top of the 

possibility of using much lower rating for power 

semiconductors, a much higher power drive can be realised. 

However, from the control point of view, as the number of 

the inverter output leg voltage levels and the number of the 

machine phases increase, the complexity of developing 

proper PWM techniques also increases, especially for the 

SVPWM case. Yet, as shown later, all the complex steps 

required for developing the SVPWM algorithm can be done 

offline, thus keeping the implementation of the algorithm 

fairly simple. 

Among the carrier-based PWM techniques available 

for multilevel inverters, it has been shown that in-phase 

disposition PWM (PD-PWM) has the lowest voltage 

harmonic distortion [6]. In addition, it has also been shown in 

[7-9] that by using PD-PWM and injecting twice zero 

sequence into reference voltage waveforms (referred 

henceforth as ‘double min-max injection’ in this paper, i.e. 

PD-DI), similar results as with SVPWM technique can be 

obtained. However, unlike PD-DI, which can easily be 

extended to any number of inverter’s voltage levels and 

machine’s phases, the SVPWM algorithm is unique to the 

drive topology it has been developed for, hence the 

complexity. The first successful SVPWM algorithm for 

multilevel multiphase drive was presented in [10]. The 

developed algorithm is based on VSD approach, introduced 

in [11], and is intended for a five-phase machine driven by a 

three-level NPC inverter. Further, for the same drive topology, 

the algorithm has been improved further with the aim of 

reducing the variation in common mode voltage (CMV) in 

[12]. Moreover, based on the approaches presented in the 

improved algorithm, two SVPWM algorithms are later 

successfully developed and presented in [13] and [14] for 

three-level symmetrical six-phase and seven-phase drives, 

respectively. Furthermore, a performance comparison 

between PD-DI and SVPWM algorithm is also reported in 

[12-14], where their performances are proven to be identical 

for all three drive topologies. 

In this paper, a novel SVPWM algorithm based on 

VSD approach is developed and experimentally validated for 

a three-level asymmetrical six-phase drive, with a single 
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isolated neutral point. The importance of developing new 

SVPWM algorithms for multiphase multilevel drives cannot 

be overstated. The deeper understanding of these algorithms 

can lead to significant insights pointing the way to further 

developments in fault tolerant control, model predictive 

control and low switching frequency modulations for high 

power applications. These insights are not possible from the 

carrier-based modulation perspective. 

One of the main practical issues related to NPC 

topology is the dc-link capacitors voltage balancing. 

Typically, voltage balancing methods, which are based on 

software solutions, use common mode voltage injection [15] 

or multi-step operation of the converter [16]. However, the 

focus in this paper is on the algorithm development and the 

voltage balancing is not considered. During the algorithm 

development SVPWM it is assumed that the dc-link voltage 

is already balanced (e.g. by additional hardware). 

The paper is organised as follows. The steps for 

developing the proposed SVPWM algorithm are presented in 

detail in Section 2. In Section 3, the method of how to 

implement the proposed algorithm is detailed, and obtained 

experimental results that prove the validity of the developed 

SVPWM algorithm are presented. The performance 

comparison between the proposed algorithm and carrier-

based methods is also included. Finally, Section 4 concludes 

the work. 

2. Space vector algorithm 

The analysed drive topology is a standard three-level 

NPC inverter driving an asymmetrical six-phase induction 

machine, configured with a single neutral point, as shown in 

Fig. 1. This topology has 36 = 729 switching states 0 to 728 

which in normalised six-digit ternary numeral system are 

denoted as 000000 to 222222. Normalisation of the output leg 

voltages (𝑣𝐿𝐸𝐺𝑘) is done by 𝑉𝑑𝑐/2. 

Since an inverter is used to drive the machine, the 

attainment of sinusoidal phase voltage (𝑣𝑝ℎ𝑘) waveforms has 

to be done through the realisation of 𝑣𝐿𝐸𝐺𝑘. The relationship 

between 𝑣𝑝ℎ𝑘 and 𝑣𝐿𝐸𝐺𝑘 can be defined as: 

  𝑣𝑝ℎ𝑘 = 𝑣𝐿𝐸𝐺𝑘 −
1

6
∑ 𝑣𝐿𝐸𝐺𝑘

6
𝑘=1  (1) 

where 𝑘 = 1 to 6, which also corresponds to phases 𝑎 to 𝑓. 

The second term in (1) represents CMV, which is a scalar 

value. Hence, one can see from (1) that the order of 𝑣𝑝ℎ𝑘 

waveforms is identical as the order of 𝑣𝐿𝐸𝐺𝑘 waveforms, at 

any instant of time. This indicates the possibility to realise 

sinusoidal 𝑣𝑝ℎ𝑘  waveforms if 𝑣𝐿𝐸𝐺𝑘  are sinusoidal on 

average. In order to realise this, the inverter switches have to 

be controlled in a proper sequence, i.e. by choosing the 

correct set of switching states. In other words, the objective 

of the proposed SVPWM algorithm in this paper is to 

properly apply the switching sequences for certain duration 

of time such that the generated 𝑣𝐿𝐸𝐺𝑘  waveforms are 

sinusoidal on average, hence realising sinusoidal 𝑣𝑝ℎ𝑘 

waveforms. The procedures for choosing the right switching 

sequences and calculating the dwell times are addressed in 

next sub-sections. 

2.1. Three-level asymmetrical six-phase space 
vectors 

The space vector projections for any set of variables 

(e.g. 𝑣𝑝ℎ𝑘 or 𝑣𝐿𝐸𝐺𝑘) of asymmetrical six-phase drive can be 

obtained using VSD approach through transformation matrix: 

[
 
 
 
 
 
𝑣𝛼

𝑣𝛽

𝑣𝑥

𝑣𝑦

𝑣0+

𝑣0−]
 
 
 
 
 

=
2

6
⋅

[
 
 
 
 
 
1 cos(𝛼) cos(4𝛼) cos(5𝛼) cos(8𝛼) cos(9𝛼)

0 sin(𝛼) sin(4𝛼) sin(5𝛼) sin(8𝛼) sin(9𝛼)

1 cos(5𝛼) cos(8𝛼) cos(𝛼) cos(4𝛼) cos(9𝛼)

0 sin(5𝛼) sin(8𝛼) sin(𝛼) sin(4𝛼) sin(9𝛼)
1 0 1 0 1 0
0 1 0 1 0 1 ]

 
 
 
 
 

⋅

[
 
 
 
 
 
𝑣𝑎

𝑣𝑏

𝑣𝑐

𝑣𝑑

𝑣𝑒

𝑣𝑓]
 
 
 
 
 

 (2) 

where 𝛼 = 𝜋/6. Substitution of 729 switching states into (2) 

results in 729 projection of 𝑣𝐿𝐸𝐺𝑘  space vectors into three 

orthogonal two-dimensional planes: 𝛼-𝛽, 𝑥-𝑦 and 0+-0−. In 

other words, each switching state yields unique 𝑣𝐿𝐸𝐺𝑘 space 

vector. In addition, by substituting (1) into (2), the projection 

of 𝑣𝑝ℎ𝑘 space vectors onto those planes can be obtained in a 

similar way. The total number of 𝑣𝑝ℎ𝑘 space vectors is 665. 

Note that the number of 𝑣𝑝ℎ𝑘 space vectors is less than the 

number of switching states, which means that the redundancy 

is present. 

One finds that the projections of 𝑣𝐿𝐸𝐺𝑘 and 𝑣𝑝ℎ𝑘 space 

vectors into 𝛼-𝛽  and 𝑥-𝑦  planes are identical, but they are 

different in 0+-0−  plane. Furthermore, different low order 

harmonics map into each plane. The low order harmonics of 

the order 12𝑘 ± 1  (𝑘 = 0, 1, 2, 3,… ) of the 𝑣𝐿𝐸𝐺𝑘  or 𝑣𝑝ℎ𝑘 

space vectors are mapped into 𝛼-𝛽 plane while the low order 

harmonics of the order 12𝑘 ± 5  (𝑘 = 0, 1, 2, 3, …) and 3𝑘 

( 𝑘 = 1, 3, 5, … ) are mapped into 𝑥-𝑦  and 0+-0−  planes, 

respectively [11]. The low order harmonics that map into 𝛼-𝛽 

plane contribute to the machine’s torque production. The low 

order harmonics that map into 𝑥-𝑦  and 0+-0−  planes 

contribute only to the machine losses, hence their existence is 

undesirable. Therefore, the average voltage value in 𝑥-𝑦 and 

0+-0− planes must be controlled to zero. 

2.2. Reduction of the number of space vectors 

Even though the total number of 𝑣𝑝ℎ𝑘 space vectors is 

large, not all of them can be chosen to achieve the desired 

sinusoidal 𝑣𝑝ℎ𝑘 waveforms. These 𝑣𝑝ℎ𝑘 space vectors can be 

identified by implementing order-per-sector law [10]. The 

order-per-sector law states that the projected 𝑣𝑝ℎ𝑘  space 

vectors in each sector in 𝛼-𝛽  plane (including the space 

vectors located on the borders of the bordering sectors, as 

well as at the origin) must satisfy the order of the sinusoidal 

reference phase voltage waveforms ( 𝑣𝑝ℎ𝑘
∗ ), for the 

corresponding sector in time domain. The 𝑣𝑝ℎ𝑘
∗  waveforms 

for asymmetrical six-phase system are defined as: 

a

b

c

d

e
f

n

vph

SF1

SF1 

SE1

SE1 

SD1

SD1 

SC1

SC1 

SB1

SB1 

SA1

F E D C B A

+

-

SA1 

Ndc

Vdc

SF2 SE2 SD2 SC2 SB2 SA2

SF2 SE2 SD2 SC2 SB2 SA2 

DF1

DF2

DE1

DE2

DD1

DD2

DC1

DC2

DB1

DB2

DA1

DA2

C1

C2

M

Pdc

vLEG

 
Fig. 1. Circuit topology of analysed three-level asymmetrical 

six-phase drive. 
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  𝑣𝑝ℎ𝑘
∗ = 𝑉∗ cos(𝜔𝑡 − 𝑖 ⋅ 𝜋/6) (3) 

where 𝑘 = 𝑎  to 𝑓 , while the corresponding values of 𝑖  are 

𝑖 = 0, 1, 4, 5, 8 and 9. By plotting reference phase voltages of 

(3), one finds that 𝑣𝑝ℎ𝑘
∗  reference values change their mutual 

order at 0°, 15°, 30°, 60° 75°, 90°, 150°, etc. These angles 

also correspond to the sector angles in 𝛼-𝛽 plane where the 

odd sectors are further sub-divided into two sections at 15° 

angle, while even sectors span the entire 30°. 

As the projected 𝑣𝑝ℎ𝑘  and 𝑣𝐿𝐸𝐺𝑘  space vectors are 

identical in 𝛼-𝛽  plane, the order-per-sector law can be 

implemented by simply comparing the order of the 

normalised 𝑣𝐿𝐸𝐺𝑘  levels in the switching states (when 

represented in six-digit ternary numeral system) with the 

order of 𝑣𝑝ℎ𝑘
∗  in the time domain. As a result, the numbers of 

𝑣𝐿𝐸𝐺𝑘 and 𝑣𝑝ℎ𝑘 space vectors are significantly reduced, from 

729 to 195 and from 665 to 163, respectively. The remaining 

𝑣𝐿𝐸𝐺𝑘 and 𝑣𝑝ℎ𝑘 space vector projections in 𝛼-𝛽, 𝑥-𝑦 and 0+-

0−  planes are shown in Fig. 2a to Fig. 2c. As already 

mentioned, the leg and phase voltage space vector projections 

in 𝛼-𝛽 and 𝑥-𝑦 plane are identical. This is not the case in 0+-

0− plane; hence the projected 𝑣𝑝ℎ𝑘 space vectors in Fig. 2c 

are shown as red dots. They are denoted as 𝑣0𝑝ℎ1 to 𝑣0𝑝ℎ5. 

2.3. Rotational transformation of 0+-0− plane 

Clearly, the projections of 𝑣𝑝ℎ𝑘  space vectors are 

along a straight line in the 0+-0−  plane, which makes the 

analysed topology a five-dimensional system [11]; yet both 

0+ and 0− axes are still dependent on each other. Therefore, 

in order to make it a genuine five-dimensional system, the 

components of one of the axes should always be zero. This 

can be achieved by rotating the projected 𝑣𝑝ℎ𝑘 space vectors 

and aligning them along 0−  axis, through a rotational 

transformation by −𝜋/4, as illustrated in Fig. 2c. As a result, 

the transformation matrix of (2), can be redefined as: 

[
 
 
 
 
 
𝑣𝛼

𝑣𝛽

𝑣𝑥

𝑣𝑦

𝑣0+

𝑣0−]
 
 
 
 
 

=
2

6
⋅

[
 
 
 
 
 
 
 
1 cos(𝛼) cos(4𝛼) cos(5𝛼) cos(8𝛼) cos(9𝛼)

0 sin(𝛼) sin(4𝛼) sin(5𝛼) sin(8𝛼) sin(9𝛼)

1 cos(5𝛼) cos(8𝛼) cos(𝛼) cos(4𝛼) cos(9𝛼)

0 sin(5𝛼) sin(8𝛼) sin(𝛼) sin(4𝛼) sin(9𝛼)
1

√2

1

√2

1

√2

1

√2

1

√2

1

√2
−1

√2

1

√2

−1

√2

1

√2

−1

√2

1

√2 ]
 
 
 
 
 
 
 

⋅

[
 
 
 
 
 
𝑣𝑎

𝑣𝑏

𝑣𝑐

𝑣𝑑

𝑣𝑒

𝑣𝑓 ]
 
 
 
 
 

(4) 

(a) 

 

(c) 

 
(b) 

 

(d) 

 

Fig. 2. Projection of leg (in blue) and phase (in red) voltage space vectors (identical in α-β and x-y plane) of the analysed 

inverter after implementation of the order-per-sector law in the: (a) 𝛼-𝛽 (b) 𝑥-𝑦 (c) 0+-0− plane and (d) 0+-0− plane after 

rotational transformation for −𝜋/4. 



4 

 

It should be noted that the new rotational 

transformation of 0+-0−  plane does not affect either the 

mapping of low order harmonics or the number of 𝑣𝐿𝐸𝐺𝑘 and 

𝑣𝑝ℎ𝑘 space vectors, either before or after the order-per-sector 

law implementation. 

The new projected 𝑣𝑝ℎ𝑘 and 𝑣𝐿𝐸𝐺𝑘 space vectors into 

0+-0− plane are shown in Fig. 2d. Although the coefficients 

of ±1/√2 in 0+ and 0− axes in (4) are obviously due to the 

applied rotational transformation, the existence of these 

coefficients can also be analytically proven as a scaling factor 

for the amplitude of 𝑣𝑝ℎ𝑘 low order harmonics of the order 

3𝑘  ( 𝑘 = 1, 3, 5,… ) in terms of the amplitude of the 

corresponding 𝑣𝐿𝐸𝐺𝑘  low order harmonics [17]. Recall that 

these low order harmonics are mapped onto 0+-0− plane. 

Moreover, one can also relate the projection of 𝑣𝐿𝐸𝐺𝑘 

space vectors onto 0+  axis to CMV [17]. Normally, in 

practice, CMV is not considered (i.e. it is not controlled) in 

space vector algorithms and this is the case also here. This 

makes the projection of 𝑣𝐿𝐸𝐺𝑘  and 𝑣𝑝ℎ𝑘  space vectors 

identical on all remaining considered axes: 𝛼, 𝛽 , 𝑥 , 𝑦, 0− . 

Therefore, it can be said that by not considering CMV, the 

determination of the switching sequences by means of 

selecting 𝑣𝐿𝐸𝐺𝑘  space vectors, i.e. corresponding switching 

states, will achieve the same realisation of 𝑣𝑝ℎ𝑘 waveforms. 

From the control point of view, it is advantageous to 

implement (4) instead of (2) in developing the space vector 

algorithm for the analysed drive topology. Therefore, any 

reference made to 0+-0− plane henceforth in the paper will 

refer to 0+-0−  plane after the implementation of rotational 

transformation, i.e. the plane shown in Fig. 2d. 

2.4. Determination of potential switching 
sequences 

With the aim of realising sinusoidal 𝑣𝑝ℎ𝑘 waveforms, 

the selection of 𝑣𝐿𝐸𝐺𝑘  space vectors and the corresponding 

switching states has to meet several general requirements and 

conditions. One of the main requirements is that the average 

value of 𝑥-𝑦  plane and 0−  axis components must be zero. 

This assumption has also been used in other VSD based 

multilevel multiphase algorithms [10-14]. Furthermore, in 

order to minimise switching losses and d𝑣/d𝑡, it is desirable 

that the 𝑣𝐿𝐸𝐺𝑘 levels only increase by one level per transition 

in the first half of the switching period and decrease by one 

level per transition in the second half [18]. This will results in 

having symmetrical PWM switching signals within a 

switching period. Since the transition of 𝑣𝐿𝐸𝐺𝑘 levels in the 

second half of the switching period is just the opposite of the 

first half, it is adequate to consider only the first half of 

switching period in the selection process of switching 

sequences. 

On one hand, there are six 𝑣𝐿𝐸𝐺𝑘 level transitions in 

the first half of the switching period, which results in having 

seven switching states in each switching sequence. On the 

other hand, the number of chosen space vectors in each 

switching sequence must be equal to the number of machine 

phases [19], i.e. six in this case. This indicates that two of the 

chosen switching states in a switching sequence have 

identical space vector projections on all considered axes. In 

fact, these redundant switching states are the first, i.e. the 

starting, and the seventh switching state. Therefore, the 

selection of the starting switching states should also consider 

the existence of its redundant switching states. Furthermore, 

since each 𝑣𝐿𝐸𝐺𝑘  level increases by one level in each 

transition, the potential starting switching states can only 

contain ‘zeros’, ‘ones’ or combination of the two, for the 

analysed drive topology [12]. As a result, only 32 out of 195 

remaining switching states (enclosed in the red boxes in 

Fig. 2a) satisfy the stated requirements and can be chosen as 

the starting switching states. 

Based on the condition where each transition of the 

𝑣𝐿𝐸𝐺𝑘 levels is increased by one, one can easily determine the 

subsequent switching states. Normally, their corresponding 

space vectors are projected into the same sector as the space 

vector of the starting switching states in the 𝛼-𝛽 plane [12-

14]. Yet, for the analysed drive topology, this is not the case. 

Therefore, a new method, where all remaining switching 

states (regardless of their sector position) have to be 

considered as candidates for the subsequent switching state, 

needs to be implemented. 

Since there are six 𝑣𝐿𝐸𝐺𝑘  transition levels in a 

switching sequence, there are 6! = 720 possible permutations 

of switching sequences per selected starting switching state. 

But, not all possible permutations can be considered as 

potential switching sequences since some of the switching 

sequences also comprise of switching states which have been 

previously eliminated by order-per-sector law. In other words, 

the number of potential switching sequences should be less 

than 720 per starting switching state. Due to immense number 

of potential switching sequences (combinations of switching 

states) that need to be considered, a permutation method has 

been developed in Matlab, to ease the selection process. 

As an example, out of 720 permutations of switching 

sequence with starting switching state 324 (110000), only 102 

can be considered as potential switching sequences. All 

possible single level 𝑣𝐿𝐸𝐺𝑘 transitions of these 102 potential 

switching sequences are illustrated with six different colours 

of arrows (each colour of arrows represents each inverter leg 

transition) as shown in Fig. 3. Only transitions in 𝛼-𝛽 plane 

are shown. These 102 potential switching sequences produce 

unique transition patterns in 𝛼-𝛽 , 𝑥-𝑦  and 0+-0−  planes. 

However, it should be noted that due to numerous potential 

switching sequences that can be obtained from other starting 

switching states, there are higher possibilities among those 

potential switching sequences in having identical transition 

patterns, i.e. redundancy, in potential switching sequences. 

By graphically analysing the transition patterns of the 

potential switching sequences [10], one finds that not all 

potential switching sequences can satisfy the requirement that 

the values of 𝑥-𝑦 and 0+-0− plane components can be zero 

on average. Thus, the number of potential switching 

sequences can be reduced further. As an example, for 

potential switching sequences with starting switching state 

324, only 54 out of 102 satisfy the stated requirement. 

However, in order to completely determine the potential 

switching sequences for the analysed drive topology, this 

graphical method is still insufficient. Therefore, a method 

relying on numerical solutions is directly applied instead and 

this method will be addressed further in next sub-section. 

Since the permutation method determines the potential 

switching sequences by taking into account all of the possible 

single level transitions of 𝑣𝐿𝐸𝐺𝑘  for each identified starting 

switching state, it is also valid for other drives with any 

number of inverter levels and machine phases. 
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2.5. Dwell time calculation and sector division 

The dwell times typically refer to the duration of 

applied space vectors in any chosen switching sequence. Thus, 

the calculation of dwell times is based on space vector 

projections of the respective switching sequences. Hence, 

each transition pattern yields different value of dwell times 

and, consequently, the switching sequences which 

correspond to the same transition patterns will have the same 

value of dwell times [14]. The dwell times can be calculated 

using standard volt-second balance principle as well as time 

balancing equation which can be put in matrix form as: 

[
 
 
 
 
 
𝑇1

𝑇2

𝑇3

𝑇4

𝑇5

𝑇6]
 
 
 
 
 

=

[
 
 
 
 
 
𝑣𝛼,1 𝑣𝛼,2 𝑣𝛼,3 𝑣𝛼,4 𝑣𝛼,5 𝑣𝛼,6

𝑣𝛽,1 𝑣𝛽,2 𝑣𝛽,3 𝑣𝛽,4 𝑣𝛽,5 𝑣𝛽,6

𝑣𝑥,1 𝑣𝑥,2 𝑣𝑥,3 𝑣𝑥,4 𝑣𝑥,5 𝑣𝑥,6

𝑣𝑦,1 𝑣𝑦,2 𝑣𝑦,3 𝑣𝑦,4 𝑣𝑦,5 𝑣𝑦,6

1 1 1 1 1 1
𝑣0−,1 𝑣0−,2 𝑣0−,3 𝑣0−,4 𝑣0−,5 𝑣0−,6]

 
 
 
 
 
−1

⋅

[
 
 
 
 
 
 
𝑣𝛼

∗

𝑣𝛽
∗

𝑣𝑥
∗

𝑣𝑦
∗

1
𝑣0−

∗ ]
 
 
 
 
 
 

⋅ 𝑇𝑠 (5) 

where 𝑇𝑘 (𝑘 = 1, 2, … , 6) are the dwell times of the applied 

space vectors. 

The first four and the last row of the inverse matrix in 

(5) correspond to 𝛼, 𝛽 , 𝑥 , 𝑦, and 0−  projections of the six 

chosen space vectors in the switching sequence. Note that 0+ 

axis (i.e. the fifth row) is omitted in (5), as it represents CMV, 

and is replaced with the time balancing equation which 

ensures that the sum of calculated dwell times is equal to the 

switching period, 𝑇𝑠. In addition, since the first and seventh 

switching state correspond to the same space vector, it is 

desirable for its calculated dwell time i.e. 𝑇1  to be equally 

shared between the two [20]. The reference voltages of 𝛼 and 

𝛽 axes in (5) i.e. 𝑣𝛼
∗, and 𝑣𝛽

∗  are set to 𝑉∗ · cos(𝜔𝑡), and 𝑉∗ ·

sin(𝜔𝑡), respectively while the references for 𝑥 , 𝑦 and 0− 

axes, i.e. 𝑣𝑥
∗, 𝑣𝑦

∗ and 𝑣0−
∗ , are set to zero. The references are 

set as such because they are equivalent to representation of 

sinusoidal 𝑣𝑝ℎ𝑘
∗  waveforms in those three axes. In other 

words, by substituting (3) into (4), one finds that the projected 

𝑣𝑝ℎ𝑘
∗  space vector has a radius of 𝑉∗ and travels at angular 

speed of 𝜔 which forms a circular trajectory in 𝛼-𝛽 plane but 

stays at the origin, i.e. zero, in 𝑥-𝑦 and 0+-0− planes. Note 

that if a multi-frequency output, with a-priori known value of 

the reference in the 𝑥-𝑦 plane, is desired it can be obtained by 

setting 𝑣𝑥
∗ and 𝑣𝑦

∗ to the adequate non-zero reference values. 

However, note that this will have a consequence on all 

calculations hereafter. Therefore, it is important to emphasise 

that the algorithm is presented for sinusoidal references (as is 

the case in [10-14]), and is not aimed for multi-frequency 

operation. 

Furthermore, one finds that the solutions for the dwell 

time calculations of some transition patterns only exist in 

certain regions of the 𝛼-𝛽 plane. These regions are commonly 

known as regions of application and can be identified either 

using analytical calculation [10] or by visualisation of 

numerical solutions of (5) in the 𝛼-𝛽 plane [14]. The regions 

of applications are separated by sector borders. Solving the 

problem analytically becomes more involved if the number 

of phases is increased and if asymmetrical machine is 

considered. Hence, in this paper, the latter method is adapted. 

However, it is fair to say that once the sector borders are 

determined it is it is irrelevant if they were calculated 

analytically or numerically. The visualisation of used 

numerical solutions is representation of consecutive dots 

where the dots indicate the locations of the applied 𝑣𝛼
∗ and 𝑣𝛽

∗ , 

if the solution of (5) does exist. In essence, while gradually 

increasing the magnitude of 𝑣𝛼
∗  and 𝑣𝛽

∗  (𝑉∗ ) from zero to 

0.644 ⋅ 𝑉𝑑𝑐  (from the origin until the circumradius of the 

largest polygon in 𝛼-𝛽  plane), the dwell times of each 

transition pattern are repetitively calculated with the help of 

Matlab code. If the solution for dwell times exists, a dot is 

plotted at the current values of 𝑣𝛼
∗  and 𝑣𝛽

∗ . As an example, 

transition pattern denoted by the thick arrows in Fig. 3, which 

corresponds to switching sequence 110000-111000-121000-

221000-221001-221101-221111, produces a region of 

application illustrated by different coloured dots in Fig. 4. 

One finds that only 40 out of 102 potential switching 

sequences, i.e. transition patterns, obtained from starting 

switching state 324, have a solution for dwell times 

calculation. This proves the inadequacy of graphical method 

in completely determining the switching sequences (where 

the reduction was done to 54 sequences). Besides, those 40 

switching sequences also form 40 unique regions of 

application, as shown in Fig. 4 (denoted by 1 to 40), and 

divide the sectors into several geometrical shapes. Hence, the 

regions of application also represent sub-sectors. The regions 

of application also correspond to potential switching 

sequences obtained from other starting switching states. 

Regions of application for starting switching state 351 

(111000) can also be identified in a similar way, and are also 

shown in Fig. 4 (denoted by 1 to 31 in red colour). It can be 

seen that several regions of application can be associated to 

potential switching sequences either with starting switching 

state 324 or 351. Since the existence of regions of application 

is unique to transition patterns, this indicates switching 

sequences which yield identical transition patterns in 𝛼-𝛽 , 

𝑥-𝑦  and 0+-0−  planes, thus confirming the existence of 

potential switching sequence redundancies. 

 
Fig. 3. All possible single level increasing transitions of 

𝑣𝐿𝐸𝐺𝑘 for starting switching state 324 (110000). 
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2.6. Potential switching sequence optimisation 

The existence of potential switching sequence 

redundancies gives more freedom in the process of the 

switching sequence optimisation. The optimisation process is 

actually based on minimisation of the switching losses, where 

the switching sequences of the all sub-sectors within a sector 

should belong to the same starting switching state [20]. Thus, 

during the transition between sub-sectors, additional 

switching losses can be avoided. However, in Fig. 4, sub-

sectors 10 and 40 of starting switching state 324 are located 

outside the first sector (S1) and it can be shown that they also 

do not have any redundant potential switching sequences. 

Therefore, in order to meet the stated requirement, two 

additional small sectors, each consisting of eight sub-sectors, 

are introduced at each side of odd sectors (denoted by AT and 

BT in Fig. 4). Because of this, one can say that each odd 

sector is actually comprised of A, AT, B and BT sectors. 

At this stage (when the process of optimisation is 

completed), the switching sequences as well as the sub-

sectors for all sectors, have been completely determined. As 

an example, the switching sequences of the first section of the 

first sector (S1-A) are listed in Table 1, and their 

corresponding sub-sectors are shown in Fig. 5. Note that only 

the switching states in the first half of the switching period 

are listed in Table 1, since the order of the switching states is 

reversed in the second half. 

2.7. Sub-sector determination 

It has been shown that the chosen switching sequences 

and their corresponding dwell times are highly dependent on 

the location of projected 𝑣𝑝ℎ𝑘
∗  space vector in 𝛼-𝛽 plane. But, 

in time, the projected 𝑣𝑝ℎ𝑘
∗  space vector travels along a 

circular trajectory and passes through the sectors as well as 

sub-sectors. Hence, the corresponding switching sequences 

and calculated dwell times have to be applied accordingly. In 

order to accommodate this, a method introduced in [10] 

where the borders of the sub-sectors are utilised to determine 

the current location of the projected 𝑣𝑝ℎ𝑘
∗  space vector in the 

𝛼-𝛽 plane is adopted. An illustration on how this method is 

applied for S1-A is shown in Fig. 5. 

There are nine borders between the sub-sectors of S1-

A, these borders can be projected onto six axes P1 to P6, 

which are perpendicular to borders. Because numerical 

method was used, a careful visual analysis of the regions of 

application and sector borders has been done. It is concluded 

that the borders between sectors are straight lines (see Fig. 4). 

This was confirmed in Matlab by setting even smaller step for 

𝑉∗ and 𝜃 (where 𝜃 = 𝜔𝑡) then the one used for generation of 

Fig. 4. The distances from the intersection points between the 

projected borders and axes P1 to P6, with respect to the origin, 

also referred to as limits and denoted as 𝐿11, 𝐿21, 𝐿22, …, 𝐿61, 

are calculated using simple trigonometry and the values of the 

angles at which borders are located. To convert irrational 

numerical values (obtained from Matlab code) to standard 
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Fig. 4. Regions of application of all possible transition 

patterns for starting switching states 324 (110000) and 351 

(111000). 
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Fig. 5. Sub-sector determination based on the location of the 

projected 𝑣𝑝ℎ𝑘
∗  space vector in S1-A. 

Table 1. Selected switching sequences for S1-A. 

Sub-sector Selected switching sequence 

A 110000-110001-111001-111011-111111-211111-221111 

B 110000-110001-111001-111011-211011-211111-221111 

C 110000-110001-111001-111011-211011-221011-221111 

D 110000-110001-111001-211001-211011-221011-221111 

E 110000-110001-210001-211001-211011-221011-221111 

F 110000-110001-111001-211001-221001-221011-221111 

G 110000-110001-210001-211001-221001-221011-221111 

H 110000-110001-210001-220001-221001-221011-221111 

I 110000-210000-210001-220001-221001-221011-221111 

J 110000-210000-220000-220001-221001-221011-221111 
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mathematical representation, the fact that 𝐿23 corresponds to 

the maximum linear modulation index value of 1.035 [which 

also can be written as √2 ⋅ (√3 − 1)], was used. Based on it 

one can find that: 𝐿21 = 𝐿51 = √2 ⋅ (√3 − 1)/4 ⋅ 𝑉𝑑𝑐 , 𝐿11 =

𝐿31 = 𝐿41 = 𝐿61 = √3/6 ⋅ 𝑉𝑑𝑐 , 𝐿22 = 𝐿52 = √2/4 ⋅ 𝑉𝑑𝑐  and 

𝐿23 = √2 ⋅ (√3 − 1)/2 ⋅ 𝑉𝑑𝑐. These four limits are denoted 

further with 𝐿1 , 𝐿2 , 𝐿3  and 𝐿4 , respectively. Similarly, the 

𝛼-𝛽 component of 𝑣𝑝ℎ𝑘
∗  space vector can also be projected 

onto the same perpendicular axes i.e. 𝑃1 to 𝑃6. The distances 

between the point of intersections between the two to the 

origin (denoted as 𝑉1
∗  to 𝑉6

∗ ) are calculated and then 

compared to those limits. As a result, the current location of 

projected 𝑣𝑝ℎ𝑘
∗  space vector can be accurately determined at 

any given time instant, hence the correct switching sequence 

and corresponding dwell times can also be applied 

accordingly. The required conditions in determining the sub-

sectors for S1-A are listed in Table 2. To understand the 

process of determination of the sub-sector in which the 

reference is located careful analysis of the conditions in 

Table 2 and graphical visualisation of those conditions in 

Fig. 5 is mandatory.  Finally, it should be noted that when this 

method is applied to the other sectors (e.g. S1-B, S1-AT etc.), 

the projections of the sub-sectors’ borders onto their 

respective perpendicular axes (i.e. limits) might be different 

than those shown in Fig. 5. Therefore, although the previous 

four limits are also applicable to other sectors, one has to 

identify and denote the relevant limits as well as the required 

conditions accordingly. 

3. Experimental results 

Despite the complex selection process presented in 

Section 2, the real implementation of the presented SVPWM 

algorithm is actually rather simple. In fact, only the relevant 

switching sequence (chosen based on the current location of 

𝑣𝑝ℎ𝑘
∗  space vector projections in the 𝛼-𝛽  plane) and its 

corresponding dwell times are required in order to generate 

the switching signals for the inverter switches. Recall that all 

switching sequences have already been determined offline in 

Section 2. For these switching sequences, the corresponding 

inverse matrices (as in (5)) for dwell time calculation can also 

be pre-calculated and stored as constants in the memory. In 

addition, the total number of saved switching sequences and 

pre-calculated inverse matrices can be reduced further by 

implementing sector pair relation [13] and mapping the other 

sectors onto the first three sectors S1 to S3. Although the 

denotation of sub-sectors in S3 is identical to S1, it is difficult 

to obtain a simple implementation of relationship between 

these two sectors. This is so since the compositions of 𝑣𝐿𝐸𝐺𝑘 

levels of the switching states in S3 switching sequences are 

different than in S1. Also, it should be noted that even sectors 

S4, S8 and S12 are mirrored compared to S2, S6 and S10. 

Thus, the obtained switching sequences for S4, S8 and S12, 

when mapped into S2, have to be rearranged and the 

corresponding dwell times calculated accordingly. 

In summary, the implementation of the proposed 

SVPWM algorithm is simply done by accurately determining 

the current location of the applied 𝑣𝑝ℎ𝑘
∗  in 𝛼-𝛽  plane. The 

corresponding sector is then mapped into the first three-

sectors (S1 to S3). Next, the respective switching sequence 

and pre-calculated inverse matrix are fetched from the 

memory. After that, the corresponding switching sequence is 

generated based on the sector mapping relation while the 

dwell times are calculated using the pre-calculated inverse 

matrix. A simple rearrangement of generated switching 

sequences and calculated dwell times should be applied 

accordingly for even sectors. Finally, the application of 

obtained switching sequence and calculated dwell times 

generates the switching signals for the inverter switches. 

A PWM modulator, based on the introduced SVPWM 

algorithm, is developed and programmed into a real-time 

platform (dSpace ds1006) through Matlab/Simulink. The 

experimental setup is shown in Fig. 6. The 𝑉𝑑𝑐  is set to be 

300 V using Sorensen SGI 600/25 external dc supply. The 

asymmetrical six-phase induction machine is operated under 

no-load condition and driven using a custom made three-level 

six-phase NPC inverter, which switches at 𝑓𝑠𝑤 = 2 kHz. The 

inverter dead time is 6 μs  and it is not compensated. The 

machine’s parameters are listed in Table 3. The SVPWM 

algorithm is tested in open loop for full linear range of 

modulation index (𝑚𝑖 ) i.e. from 0.1 to 1.035, with 0.05 

increment, using 𝑉/𝑓 control. The 𝑚𝑖 is defined as: 

  𝑚𝑖 = 𝑉∗/(𝑉𝑑𝑐/2)   (6) 

The peak voltage of 𝑣𝑝ℎ𝑘
∗ , i.e. 𝑉∗, is chosen as 150 V 

at 50 Hz , which is the machine’s rated frequency, and, 

according to (6), it corresponds to 𝑚𝑖 = 1. 

 
 

Fig. 6. Experimental setup. 

Table 2. Conditions defining the sub-sectors that correspond 

to the location of the 𝑣𝑝ℎ𝑘
∗  space vector in S1-A. 

Sub-sector Conditions0 ≤ 𝜃 < 15°: and  

A 𝑉2
∗ ≤ 𝐿1     

B 𝑉2
∗ > 𝐿1,   𝑉3

∗ ≤ 𝐿2 where: 

C 𝑉3
∗ > 𝐿2,   𝑉4

∗ ≤ 𝐿2 𝑉1
∗ = 𝑉∗ cos(𝜔𝑡 + 𝜋/6) 

D 𝑉4
∗ > 𝐿2,   𝑉5

∗ ≤ 𝐿1,   𝑉1
∗ ≤ 𝐿2 𝑉2

∗ = 𝑉∗ cos(𝜔𝑡 + 𝜋/12) 

E 𝑉1
∗ > 𝐿2,   𝑉5

∗ ≤ 𝐿1 𝑉3
∗ = 𝑉∗ cos(𝜔𝑡) 

F 𝑉5
∗ > 𝐿1,   𝑉1

∗ ≤ 𝐿2 𝑉4
∗ = 𝑉∗ cos(𝜔𝑡 − 𝜋/6) 

G 𝑉1
∗ > 𝐿2,   𝑉5

∗ > 𝐿1,   𝑉2
∗ ≤ 𝐿3 𝑉5

∗ = 𝑉∗ cos(𝜔𝑡 − 𝜋/4) 

H 𝑉2
∗ > 𝐿3,   𝑉5

∗ ≤ 𝐿3 𝑉6
∗ = 𝑉∗ cos(𝜔𝑡 − 𝜋/3) 

I 𝑉5
∗ > 𝐿3,   𝑉6

∗ ≤ 𝐿2,   𝑉2
∗ ≤ 𝐿4  

J 𝑉6
∗ > 𝐿2,   𝑉2

∗ ≤ 𝐿4  
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Although the main aim of this paper is in fact 

development and implementation of the new SVPWM 

algorithm, for comprehensiveness the presented algorithm is 

also compared with two commonly found carrier-based PWM 

(CBPWM) algorithms and one lesser-known algorithm. 

Considered algorithms are all with in-phase disposition of the 

carriers, while the references are pure sinusoidal (PD-

SPWM), with min-max injection (PD-MM) and with double 

min-max injection (PD-DI). Details regarding the theory and 

implementation of PD-DI CBPWM for multilevel converters 

can be found in [21]. The performance of all modulation 

techniques is determined by means of total harmonic 

distortion (THD). The THD for the phase voltage (THD𝑣) and 

current (THD𝑖) are calculated using: 

 THD𝑣 = √∑ 𝑉𝑘
2/𝑉1

2ℎ
𝑘=2        THD𝑖 = √∑ 𝐼𝑘

2/𝐼1
2ℎ

𝑘=2  (7) 

where 𝑉𝑘  and 𝐼𝑘  represent the 𝑘 -th components of voltage 

and current in the spectrum, while 𝑉1  and 𝐼1  are the 

fundamental values of phase voltage and current, respectively. 

It should be noted that the first ℎ harmonics, up to value of ℎ 

that corresponds to 21 kHz, i.e. the first ten sidebands, are 

included in voltage and current THD calculations. The value 

of ℎ is not fixed and depends on the value of the fundamental 

frequency, 𝑓. If the value of ℎ was fixed then for low values 

of 𝑓 switching harmonics may not be taken into equation (or 

just first few side-bands would be considered) and the 

calculated value of THD would be significantly reduced. On 

the other hand, selected way for THD calculation is more fair 

and is much more accurate. 

The simulations for all modulators were done in 

PLECS software where the machine is modelled based on 

[24]. The results prove that the presented SVPWM and PD-

DI, from the perspective of current THD, outperform the 

other modulation methods (Fig. 7). Furthermore, the results 

show that SVPWM and PD-DI methods have identical 

performances. Therefore, the investigation of SVPWM and 

PD-DI is taken further for the experimental comparison. 

The measured phase ‘ 𝑎 ’ leg voltage ( 𝑣𝐴 ), phase 

voltage (𝑣𝑎) and current (𝑖𝑎) waveforms and corresponding 

spectra when 𝑚𝑖 = 0.4  and 𝑚𝑖 = 1  for the proposed 

algorithm as well as PD-DI, are shown in Fig. 8 and Fig. 9, 

respectively. One can see that the waveforms yielded by both 

modulation techniques are practically the same. Also, the 

values of the measured fundamental phase voltage are 

approximately the same as the reference values of 𝑉∗ which 

are obtained from (6), i.e. 60 V and 150 V for 𝑚𝑖 = 0.4 and 

1, respectively. Further, although the 𝑣𝑥
∗, 𝑣𝑦

∗ and 𝑣0−
∗  are set 

to zero in the proposed algorithm to ensure that the low order 

harmonics of the order 12𝑘 ± 5  (𝑘 = 0, 1, 2, 3, …) and 3𝑘 

(𝑘 = 1, 3, 5, …) do not exist, they are still present in both 

phase voltage and current spectra (see Fig. 8c and d and 

Fig. 9c and d), but are relatively small in magnitude. It can be 

shown (e.g. by simple simulation comparison without and 

with dead-time) that the appearance of these low odd order 

harmonics is purely the consequences of uncompensated 

inverter dead time [23]. 

The phase ‘𝑎 ’ THD𝑣  and THD𝑖  obtained from the 

simulation and experimental results of the SVPWM 

algorithm and PD-DI modulator for full linear range of 𝑚𝑖 

are shown in Fig. 10 and Fig. 11, respectively. One can see 

that the THD𝑣  and THD𝑖 , obtained experimentally for both 

PWM techniques, are identical. It can be also observed that 

the THD characteristics, obtained by simulation and 

experimentally, are in very good agreement, with rather small 

differences. Since THD is normally used in practice as a 

figure of merit for measuring the performance of a 

modulation technique [24], it can be said that the proposed 

SVPWM algorithm and PD-DI for the analysed drive 

topology are proven to have identical performance, thus 

further validating the presented SVPWM algorithm. 

As already mentioned, the variation of mid-point dc-

link voltage is a common concern for NPC topology, but it is 

not actively controlled by the presented algorithm. To test the 

influence of the modulation method onto the dc-link mid-

point voltage, the modulation index was changed in a step 

manner (i.e. as a square-wave at 2 Hz), between 𝑚𝑖 = 0.4 to 

1.0.  Used converter has a total dc-link capacitance of 1.5 mF. 

The results shown in Fig. 12 prove that the proposed 

SVPWM algorithm is able to maintain the mid-point voltage 

stable at 150 V. Note that the transition is done in open loop 

using 𝑉/𝑓 = constant law. Further analysis of the influence 

of the presented method onto variation of the dc-link mid-

point voltage, e.g. using closed loop control such as field 

oriented control, is beyond the scope of this paper. 

The complexity of the two algorithms has been 

compared as well. The execution time was measured using 

dSpace Profiler Tool. Execution time of the carrier-based PD-

DI algorithm is 1.16 μs, while for the space vector algorithm 

it is 6.82 µs. It should be emphasised however that the 

execution time of the presented algorithm has been 

significantly reduced by storing significant amount of data in 

the memory. In the current implementation 71 ⋅ 36 = 2556 

integer values for the switching sequences and 2556 double 

values for the corresponding pre-calculated inverse matrices 

of (5), for all sub-sectors within S1 to S3 were stored in the 

memory.  Therefore, the memory usage of the presented 

algorithm is significantly higher than for PD-DI algorithm 

(which is an expected outcome when comparison of any two 

carrier-based and space vector algorithms is undertaken). 

Used implementation is acceptable for powerful platforms 

Table 3. Asymmetrical six-phase induction machine 

parameters. 

Parameters Value 

Resistance  Rs = 13.75 Ω Rr = 5.775 Ω 

Leakage inductance Lls = 5.3 mH Llr = 12.7 mH 

Mutual inductance Lm = 296.5 mH 

 

 

Fig. 7. Comparison of calculated 𝐓𝐇𝐃𝒊 based on simulation 

results with an ideal inverter for full linear range of 𝒎𝒊 =
 𝟎. 𝟏 to 𝟏. 𝟎𝟑𝟓. 
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with plenty of memory such as dSpace. However, it may be 

too demanding for lots of the standard microprocessors. 

Regardless of the fact that the carrier-based and 

SVPWM based algorithms yield the identical performance 

(and mentioned drawbacks about multi-frequency operation, 

and dc-link voltage balancing), SVPWM algorithms should 

still be investigated, since they provide better insight and 

easier understanding of some the multiphase machine/system 

features (e.g. harmonic mapping – which has important 

consequences in control, possibilities for current and power 

sharing, post-fault operation, on-board battery chargers, 

multi-motor drives etc.). These are sometimes hard, or even 

impossible, to analyse from the carrier-based PWM 

perspective. Therefore, the results presented in this paper may 

be of significance to those researchers that use SVPWM and 

vector space decomposition when investigating new control 

possibilities for multiphase machines. Furthermore, this work 

proves, for the first time, that for practical implementation the 

same level of performance can be achieved using the easier 

to implement carrier-based PD-DI method. 

Finally, the following should be noted. The algorithm 

is developed based on general principles of SVPWM 

algorithms for symmetrical multiphase three-level systems as 

in [10, 12-14]. However, because of the machine’s 

asymmetry, one can see that some additional steps were 

required in the developed algorithm. These steps are for the 

first time developed and applied in this paper and are done in 

a general way so that may be used for the other cases as well. 

The additional steps are as follow. The additional rotational 

transformation is introduced in 0+-0−  plane, to reduce the 

system to five-dimensional case. Further, the space vectors 

that should be selected to properly generate a reference 

located within a certain sector, now are not necessarily 

located within that sector. Therefore, general permutation 

method was introduced to solve this problem. Also, 

additional small sectors were introduced, to properly deal 

with the switching sequence redundancies and minimise the 

switching losses. 

4. Conclusion 

In this paper, a space vector algorithm based on VSD 

approach for three-level asymmetrical six-phase drive with 

single neutral point configuration is proposed and 

(a) 

    

(b) 

    

(c) 

 

(d) 

 

Fig. 8. Oscilloscope capture of 𝒗𝑨, 𝒗𝒂 and 𝒊𝒂 at 𝒎𝒊 = 𝟎. 𝟒 

for (a) developed SVPWM algorithm, (b) PD-DI, with 

corresponding (c) voltage and (d) current spectra (note: x-

axis is segmented, to show important harmonics only). 

(a) 

    

(b) 

    

(c) 

 

(d) 

 

Fig. 9. Oscilloscope capture of 𝒗𝑨, 𝒗𝒂 and 𝒊𝒂 at 𝒎𝒊 = 𝟏 for 

(a) developed SVPWM algorithm, (b) PD-DI, with 

corresponding (c) voltage and (d) current spectra (note: x-

axis is segmented, to keep important harmonics only). 
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experimentally tested for the first time. The required steps for 

developing the algorithm are presented in detail. A rotational 

transformation is applied to the 0+-0− plane in order to make 

the realisation of phase voltage waveforms possible through 

the leg voltage space vectors. In this way the problem is 

reduced to a five-dimensional case. The switching sequences 

are chosen by taking into account all possible single level leg 

voltage transitions by means of the introduced permutation 

method. Finally, the chosen switching sequences are applied 

according to the current location of the reference phase 

voltage space vector in the 𝛼-𝛽  plane. The proposed 

algorithm is validated through simulations and experiments, 

proving that the adequate value of the fundamental is 

obtained. The low order harmonics in the phase voltage and 

current spectra are present due to the uncompensated inverter 

dead time. Finally, the proposed SVPWM algorithm is 

compared with other CBPWM methods. It is shown that it 

obtains identical performance as PD-DI. 
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