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Abstract We consider Markovian susceptible-infectious-removed (SIR) dynamics
on time-invariant weighted contact networks where the infection and removal pro-
cesses are Poisson and where network links may be directed or undirected. We prove
that a particular pair-based moment closure representation generates the expected in-
fectious time series for networks with no cycles in the underlying graph. Moreover,
this “deterministic” representation of the expected behaviour of a complex heteroge-
neous and finite Markovian system is straightforward to evaluate numerically.

Keywords Kolmogorov equation · Dimensional reduction

1 Introduction

1.1 Background

The majority of epidemic models fall either into the category of stochastic mod-
els (Bailey 1975; Bartlett 1956) or into the category of deterministic differential
equation-based models (Anderson and May 1991; Kermack and McKendrick 1927).
These two strands developed largely independently for much of the twentieth cen-
tury. Thus, an interesting question arises as to the precise mathematical connection
between stochastic and deterministic models. Frequently, deterministic descriptions
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apply to large populations where the stochastic effects can be treated as negligible.
For small populations we shall assume that it is the average or expected behaviour of
the epidemic that we are hoping to replicate with “deterministic” descriptions. This
average behaviour is a system characteristic that is fully specified by the system and
its initial conditions.

The first epidemic models were based on the assumption that populations are
evenly mixed, with each individual equally likely to interact with any other indi-
vidual at any time (Heathcote 2000). A classic example of this type of model is
the Susceptible-Infectious-Removed (SIR) compartmental model whereby individ-
uals are classified according to being in one of these three states. It has been shown
that for this type of mean-field model, the average of many stochastic simulations (the
expected outcome of the stochastic model) converges to the solution of the “equiv-
alent” mean-field deterministic model in the limit of an infinite population size and
subject to strict conditions regarding the initialisation of the epidemic (Kurtz 1970,
1971; Simon and Kiss 2011).

More recently, a higher degree of realism has been introduced by considering
stochastic models on contact networks where individuals are only able to contact a
limited subset of the population. This enables significant heterogeneity to be incorpo-
rated, treating individuals as distinct entities with fixed connectivity to pre-allocated
neighbours. While stochastic models are readily extended to incorporate such sys-
tems, deterministic descriptions have been more problematic. Several methodolo-
gies have been developed including pair-approximation models (Keeling 1999;
Keeling and Eames 2005; Rand 1999), degree-based models (Pastor-Satorras and
Vespignani 2001), and models based on the probability generating function (PGF)
formalism which are applicable to configuration networks (Volz 2008) as well as
the related edge-based compartmental modelling (Miller et al. 2012; Miller and Volz
2012). It has been observed (House and Keeling 2011) that these models are, at some
level, equivalent and are all derived from similar principles of independence. Al-
though comparison with simulation of stochastic models can sometimes be good, the
basic link remains obscure.

Typically there are two idealised scenarios in which exact correspondence between
stochastic models and solvable deterministic descriptions has been shown. Firstly,
correspondence has been shown to sometimes occur in the limit of infinite popula-
tions for particular idealised graphs (Ball and Neal 2008; Decreusefond et al. 2012)
which cannot be exactly realised in practice. It can also occur with some very sim-
plified systems whose symmetry properties can be exploited to achieve reductions in
the stochastic description (Keeling and Ross 2008; Simon et al. 2011).

Here we consider a recently introduced class of model, related to the pair-
approximation models, which give an exact correspondence between a determin-
istic description and the stochastic model for SIR epidemics on finite, time-invariant
networks. Pair-approximation models were introduced into network-based epidemic
and ecological theory in the 1990s to describe large populations of interacting indi-
viduals (Matsuda et al. 1992; Sato et al. 1994; Harada and Iwasa 1994; Rand 1999;
Keeling 1999). They are an example of a hierarchy of equations which are truncated
at the second order by an approximation (truncation at the first order corresponds to
mean-field). This type of hierarchy was first considered in statistical physics and is
sometimes known as the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hier-
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archy (Kirkwood 1946, 1947; Born and Green 1946). Recently, related models have
been considered at the level of individuals, variously called subsystem equations,
moment dynamics equations, pair-based equations (Sharkey 2008, 2011; Baker and
Simpson 2010; Markham et al. 2013). This method generates a solvable class of
models which can encompass a significant amount of heterogeneity and enables a
fundamental link with finite stochastic models (Sharkey 2008, 2011).

We consider a pair-based representation of Markovian SIR dynamics. We show
that by considering subsystems at the level of pairs, a closure can be found that de-
termines the expected infectious time series exactly for arbitrary network structures
where the underlying graph is a tree and, in some special circumstances, for particular
networks with cycles. We note that the recent, related message passing formulation of
epidemics on contact networks developed by Karrer and Newman (2010) also enables
an exact description of epidemic dynamics on finite tree graphs.

1.2 Statement of the Main Result

We consider an SIR compartmental model composed of P individuals whose states
are described at any given point in time by vectors I and S with respective compo-
nents Ii and Si , i ∈ {1,2, . . . ,P }, such that Ii = 1 if individual i is infectious (Ii = 0
otherwise) and Si = 1 if individual i is susceptible (Si = 0 otherwise). Transmission
and recovery occur by Poisson processes with rate parameters λi = ∑P

j=1 Tij IjSi and
μi = γiIi , respectively, where T is a “transmission” matrix with (time-independent)
elements Tij denoting the rate parameter for an infectious node j infecting a suscepti-
ble node i (Tii = 0 for all i) and where γi denotes the rate parameter for an infectious
individual i to recover, enabling individual-specific removal rates.

As shown by Sharkey (2011), for any transmission matrix T and any nodes i, j ,
the following differential equations are provably exact (consistent with the stochastic
model):

˙〈Si〉 = −
P∑

j=1

Tij 〈SiIj 〉,

˙〈Ii〉 =
P∑

j=1

Tij 〈SiIj 〉 − γi〈Ii〉,

˙〈SiIj 〉 =
P∑

k=1,k �=i

Tjk〈SiSj Ik〉 −
P∑

k=1,k �=j

Tik〈IkSiIj 〉 − Tij 〈SiIj 〉 − γj 〈SiIj 〉,

˙〈SiSj 〉 = −
P∑

k=1,k �=j

Tik〈IkSiSj 〉 −
P∑

k=1,k �=i

Tjk〈SiSj Ik〉,

(1)

where 〈Si〉 and 〈Ii〉 denote the time-dependent probabilities (or equivalently the ex-
pected values of the indicator functions) for individual i to be susceptible and infec-
tious, respectively, and expressions of the form 〈AiBj 〉 denote the time-dependent
probability that individual i is in state A and individual j is in state B with a similar
interpretation of terms of the form 〈AiBjCk〉. Here and throughout, we adopt the dot
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notation to denote time derivatives. It follows that the expected population-level sus-
ceptible and infectious time series are given by

∑P
i=1〈Si〉 and

∑P
i=1〈Ii〉, respectively.

Note that it is a short step (see Sharkey 2008) from (1) to the familiar population-
level pair equations (Keeling 1999; Keeling and Eames 2005; Rand 1999), also
proved independently by Taylor et al. (2012) for the susceptible-infectious-suscep-
tible variant.

This system can be completed by formulating differential equations for the triples,
quadruples, and so forth until we reach the full system size. This yields a self-
contained system of differential equations that exactly determines the probabilities
of each quantity given initial conditions. However, cascading these equations up to
the full system size will usually result in a system that is impractical to solve due to
its sheer size. This is why this system is typically closed at some level by introducing
a functional relation approximating higher-order probabilities in terms of lower-order
ones. One of the most frequently used closure relations can be written as

〈AiBjCk〉 ≈ 〈AiBj 〉〈BjCk〉
〈Bj 〉 (2)

for the current context. Applying this closure relation to our system at the level of
pairs we arrive at the following system:

˙〈Xi〉 = −
P∑

j=1

Tij 〈XiYj 〉,

˙〈Yi〉 =
P∑

j=1

Tij 〈XiYj 〉 − γi〈Yi〉,

˙〈XiYj 〉 =
P∑

k=1,k �=i

Tjk

〈XiXj 〉〈XjYk〉
〈Xj 〉 −

P∑

k=1,k �=j

Tik

〈XiYk〉〈XiYj 〉
〈Xi〉

− Tij 〈XiYj 〉 − γj 〈XiYj 〉,

˙〈XiXj 〉 = −
P∑

k=1,k �=j

Tik

〈YkXi〉〈XiXj 〉
〈Xi〉 −

P∑

k=1,k �=i

Tjk

〈XiXj 〉〈XjYk〉
〈Xj 〉 ,

(3)

where we use X for susceptible and Y for infectious to emphasise that these are
approximating differential equations based on the closure. When 〈Xi〉 in the denom-
inator is zero, we assume that the approximation takes the value zero.

In general, we consider networks (graphs) with directed and undirected edges. In
what follows, we use the terminology “tree graph” to include graphs with directed
edges where the underlying (equivalent undirected) graph is a tree. Our main aim is
to show that when matrix T represents a tree and the system is initiated in a pure
system state (that is, one of the 3P possible configurations has probability 1 at time
t = 0), then the system can be closed at the level of pairs such that the closure holds
exactly. Specifically, solving the closed system above, we obtain the same values for
all marginal and pairwise-joint probabilities present in the unclosed system: 〈Xi〉 =
〈Si〉, 〈Yi〉 = 〈Ii〉, with similar equalities holding for the pairs.

In fact, we will prove the following theorem.
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Fig. 1 (a) An undirected tree indicating two nodes which we infect to initiate epidemics, with all other
nodes initially susceptible. (b) The mean (dots) of 100,000 stochastic simulations on the network with
transmission rate τ = 0.1 across each link and removal rate γ = 0.05 for each node, with error bars
denoting the 5th and 95th percentiles plotted together with the solution of (3) (solid line) using the Matlab
code published with Sharkey (2011)

Theorem 1.1 Let us assume the following:

• The graph (transmission network) is a tree (the underlying graph has no cycles).
• The initial condition is a pure state, i.e. the system is initially in one of its 3P

possible configurations with probability 1.

Then the following relations hold:

〈Sj 〉〈SiSj Ik〉 = 〈SiSj 〉〈Sj Ik〉
for all i ∈ {1,2, . . . ,P } and for all j with links towards i and all k with links towards
j : i �= k;

〈Si〉〈IkSiIj 〉 = 〈IkSi〉〈SiIj 〉
for all i ∈ {1,2, . . . ,P } and for all j and k with links towards i: j �= k.

Remark This theorem also holds for mixed (probabilistic) initial system states pro-
vided that the initial probabilities of the states of individuals in the system are uncor-
related. However, in general, mixed initial states cannot be represented exactly.

The theorem will be formulated in a more general context stating that even higher-
order closure relations are also exact.

Figure 1 shows the numerical solution of (3) for a small network of 9 nodes where
it is clear that it is accurate to within the precision visible on the graph. Matlab code
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for solving the system of Eqs. (3) is provided in Sharkey (2011). This code also
works on networks which are not trees but is no longer exact in these cases. Cycles
in the underlying graph of order three utilise the alternative closure 〈AiBjCk〉 =
〈AiBj 〉〈BjCk〉〈AiCk〉/〈Ai〉〈Bj 〉〈Ck〉 which is believed to gain increased accuracy in
most circumstances, but these do not occur in the tree graphs considered in the present
work.

The structure of the paper is as follows. Section 2 introduces some notation which
is needed to prove the result. This also contains an important theorem (Theorem 2.1)
which specifies equations describing the probabilities of the states of arbitrary sub-
systems (the proof of this result is given in the Appendix). The relevant state space
for our domain of a tree graph is then developed. Section 3 proves the main result,
initially focusing on some special cases to help motivate and facilitate understanding
of the main ideas and steps of the general proof in Sect. 3.5. The main ingredient for
the general proof is Lemma 3.1 which is proved via Theorem 2.1. Theorem 3.1 then
follows easily by induction from Lemma 3.1. The theorem as stated above is a sim-
ple corollary of Theorem 3.1. In Sect. 4 we discuss an application of the pair-based
model to some special cases of graphs with cycles where it is also exact.

2 Formulating the Full System

In this section we introduce a new notation which will assist in formulating the set
of differential equations for the full system. In (1) we formulated the differential
equations up to the level of pairs and we said that this could be continued up to
the full system level. This will be done formally here. In order to make the method
clearer, using our existing notation let us first evaluate the full set of equations for the
undirected line graph with three nodes which we refer to as the open triple, depicted
in Fig. 2. Here we shall assume that the transmission rate parameter is τ across both
links and that the removal rate is γ for all three nodes. Firstly we write all of the
single node equations for this network. From (1):

˙〈I1〉 = τ 〈S1I2〉 − γ 〈I1〉,
˙〈I2〉 = τ 〈I1S2〉 + τ 〈S2I3〉 − γ 〈I2〉,
˙〈I3〉 = τ 〈I2S3〉 − γ 〈I3〉,

(4)

and

˙〈S1〉 = −τ 〈S1I2〉,
˙〈S2〉 = −τ 〈I1S2〉 − τ 〈S2I3〉,
˙〈S3〉 = −τ 〈I2S3〉.

(5)

Fig. 2 Open triple graph
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We also need to specify the following equations for pairs:

˙〈S1I2〉 = τ 〈S1S2I3〉 − τ 〈S1I2〉 − γ 〈S1I2〉,
˙〈I1S2〉 = −τ 〈I1S2I3〉 − τ 〈I1S2〉 − γ 〈I1S2〉,
˙〈S2I3〉 = −τ 〈I1S2I3〉 − τ 〈S2I3〉 − γ 〈S2I3〉,
˙〈I2S3〉 = τ 〈I1S2S3〉 − τ 〈I2S3〉 − γ 〈I2S3〉.

(6)

Finally, at the triple level we have from the master equation (since the system has
only three nodes):

˙〈S1S2I3〉 = −τ 〈S1S2I3〉 − γ 〈S1S2I3〉,
˙〈I1S2I3〉 = −2τ 〈I1S2I3〉 − 2γ 〈I1S2I3〉,
˙〈I1S2S3〉 = −τ 〈I1S2S3〉 − γ 〈I1S2S3〉.

(7)

In order to formulate the full system for an arbitrary graph, we introduce notation
for the subsystem states.

2.1 Notation for System and Subsystem States

In general, our stochastic system (which we denote by Γ ) comprises of P individ-
uals, each of which may be in any of the S, I or R states at any given time. In
total, this corresponds to 3P possible states. Denoting these system states by Γ α ,
α ∈ {1,2, . . . ,3P }, the probabilities for each state are given by the master equation
(or Kolmogorov equations):

˙〈
Γ α

〉 =
3P
∑

β=1

σαβ
〈
Γ β

〉 −
3P
∑

β=1

σβα
〈
Γ α

〉
, (8)

where σ denotes a constant matrix of Poisson rate parameters. The master equation
completely describes our stochastic system using a set of 3P ordinary differential
equations. Our overall objective is to show that (3) is implied by the master equation
when T represents a tree graph.

It is useful for us to define a general subsystem ψW comprising of r nodes in Γ in-
dexed by vector W of length r : W = (W1,W2, . . . ,Wi, . . . ,Wr), Wi ∈ {1,2, . . . ,P },
where we can assume W1 < W2 < · · · < Wr . We assume that the network connections
of the nodes of ψW are a subset of the connections of Γ .

Let ψA
W denote the state of subsystem ψW where A = (A1,A2, . . . ,Ar) and Ai ∈

{S, I,R} ∀i ∈ {1,2, . . . , r} is a sequence of S, I and R symbols of length r such
that the state of node Wi is Ai . In terms of the notation of the previous section for
subsystems of single nodes and pairs of nodes, we have Si = ψS

i , Ii = ψI
i , SiIj =

ψSI
i,j , SiSj Ik = ψSSI

i,j,k etc. We shall use these two notations interchangeably. We shall
also sometimes treat indexing vectors such as W as sets such that n ∈ W means that
the node n is in the subsystem ψW .
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In general, although we can specify the states of each node with this type of no-
tation, an important ambiguity remains because information about the network struc-
ture is not included. To remove this ambiguity, the notation should normally be used
in the context of a sketch of the relevant network structure or where the network
structure is clear from the context of its use (as in (1)).

Let us now show how the differential equations of the different subsystem states
can be formulated in general.

2.2 Differential Equations for Subsystems

Here we obtain differential equations describing the rate of change of the state of any
subsystem. First we make some definitions.

Definition 2.1 A neighbour of node i is a node with a network link directed to-
wards i.

Definition 2.2 Ni denotes the set of neighbours of node i. That is: Tij �= 0 ∀j ∈ Ni .

Definition 2.3 For the subsystem ψA
W , if node Wk is infectious then:

hWk

(
ψA

W

) = ψ
A1···Ak−1SAk+1···Ar

W .

Otherwise, hWk
(ψA

W) = ψA
W

Remark This operator changes the state of node Wk in subsystem ψW to S if it is
infectious. If node Wk is susceptible or removed then it leaves the state unchanged.

Definition 2.4 For the subsystem state ψA
W of r nodes, a subsystem of r + 1 nodes

can be generated as follows: Take k ∈ {1,2, . . . , r} and take a neighbour n of Wk

outside of the subsystem with a network link towards Wk , i.e. let n ∈ NWk
, n /∈ W . If

Ak = S, then the generated subsystem state of (r +1) nodes is given by the generating
rule:

gn
Wk

(
ψA

W

) = ψ
A1···ArI
W1,...,Wr ,n

,

i.e. the subsystem is extended by an infected at node n which is connected to-
wards Wk . If Ak = I , then the generated subsystem state is given by:

gn
Wk

(
ψA

W

) = ψ
A1···Ak−1SAk+1···ArI

W1,...,Wr ,n
,

i.e. the subsystem is extended by an infected at node n which is connected towards
Wk and the state of node Wk is changed from I to S.

To complete the definition, if Ak = R then the operator gn
Wk

leaves the subsystem
unchanged. We also assume that for any state Ak where there is no link from node n

to node Wk in the transmission matrix T , then the subsystem is also left unchanged.
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Remark The generated order r + 1 subsystem is obtained by replacing a susceptible
or infectious node Wk in the original subsystem by an SI arc such that the S node of
the arc is put in the place of the node Wk and where the I node of the arc is external
to the subsystem.

Definition 2.5 For the subsystem ψA
W , if node Wk is removed then:

fWk

(
ψA

W

) = ψ
A1···Ak−1IAk+1···Ar

W .

Otherwise, fWk
(ψA

W) = ψA
W .

Definition 2.6 For any subsystem ψW of r nodes in state ψA
W we define DAa

k where
k ∈ {1,2, . . . , r} and a ∈ {S, I,R} to have value 1 if Ak = a and to have value zero
otherwise:

DAa
k =

{
1 if Ak = a,

0 otherwise.

Theorem 2.1 The rate of change of the probability of a subsystem state ψA
W is:

˙〈
ψA

W

〉 =
r∑

k=1

(
1 − DAR

k

)
[

(−1)D
AS
k

(
P∑

n=1,n/∈W

TWkn

〈
gn

Wk

(
ψA

W

)〉

+
r∑

l=1

TWkWl
DAI

l

〈
hWk

(
ψA

W

)〉
)

− DAI
k

γ Wk

〈
ψA

W

〉
]

+
r∑

k=1

DAR
k

γ Wk

〈
fWk

(
ψA

W

)〉
. (9)

The proof of this theorem is a rather long diversion and can be found in the
Appendix.

As an example of applying the theorem, we can use it to obtain the set of subsys-
tem equations (1) by considering each equation in turn:

• If the subsystem is a single susceptible individual ψS
i , then r = 1 so k can only

take the value k = 1 where W1 = i and A1 = S, reducing (9) to:

˙〈
ψS

i

〉 = −
P∑

n=1,n�=i

Tin

〈
ψSI

i,n

〉
.

The first term on the second line of (9) is zero because Tii = 0, and the other terms
are zero because DSI

1 = 0 and DSR
1 = 0.

• For an infectious individual ψI
i we obtain:

˙〈
ψI

i

〉 =
P∑

n=1,n�=i

Tin

〈
ψSI

i,n

〉 − γi

〈
ψI

i

〉
,
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where the first term on the second line of (9) is zero because Tii = 0 and the last
term is zero because DIR

1 = 0.
• If the subsystem is the pair ψSI

i,j then the sum over k is over k = 1 and k = 2 and
W1 = i, W2 = j , A1 = S, A2 = I so:

˙〈
ψSI

i,j

〉 = −
P∑

n=1,n/∈{i,j}
Tin

〈
ψISI

n,i,j

〉 − Tij

〈
ψSI

i,j

〉

+
P∑

n=1,n/∈{i,j}
Tjn

〈
ψSSI

i,j,n

〉 − γj

〈
ψSI

i,j

〉
,

where the first line corresponds to k = 1 and the second to k = 2.
• If the subsystem is the pair ψSS

i,j then the sum is over k = 1 and k = 2 where
W1 = i, W2 = j , A1 = S and A2 = S so:

˙〈
ψSS

i,j

〉 = −
P∑

n=1,n/∈{i,j}
Tin

〈
ψISS

n,i,j

〉 −
P∑

n=1,n/∈{i,j}
Tjn

〈
ψSSI

i,j,n

〉
,

where both terms come from the first line of (9).

We have therefore obtained (1) in a slightly different notation (recall that Tii = 0 ∀i ∈
{1,2, . . . ,P }).

2.3 The State Space for a Tree Graph

Here we build up a state space which is sufficient to describe a tree graph. We first
make some definitions.

Definition 2.7 An r-motif is a subsystem of Γ comprising of r nodes and of network
links such that it forms a weakly connected network.

Definition 2.8 An r-state is the state of an r-motif.

The state space that we need to consider is built up inductively from the states of
single nodes by considering the infection process. Starting with the infected states
of the single nodes ψI

i , i ∈ {1,2, . . . ,P }, (9) shows that they depend on the 2-states
ψSI

i,j , j ∈ Ni as described by the generating rule (Definition 2.4).

The differential equations for 〈ψSI
i,j 〉 in turn contain the 3-states ψSSI

i,j,k , k ∈ Nj

and ψISI
k,i,j , k ∈ Ni . The differential equations for the 3-states contain 4-states

and typically, the differential equations for r-states contain (r + 1)-states for r ∈
{1,2, . . . , (P −1)}. This state generation process can continue until we reach P -states
which can only depend on other P -states.

Note that this process always forms subsystems which are motifs and that the
motif states can never include removed nodes.
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Definition 2.9 An out-neighbour of node i is a node with a network link from i

towards it.

Proposition 2.1 For a tree graph, if the out-neighbours of the I nodes are all S in
an r-motif, then this is true for all (r + 1)-motifs generated from this r-motif.

Proof This follows easily from the definition of the generating rule (Defini-
tion 2.4). �

Definition 2.10 Consider a tree graph and take the 1-motifs with I nodes: ψI
i ,

i ∈ {1,2, . . . ,P }. The “basic state space” M is formed by these 1-states together with
the set of motif states that can be iteratively generated from them using the generating
rule (Definition 2.4).

Remark Due to the method of its construction, the state space M gives a self-
contained system of differential equations, i.e. the time derivatives of the probabilities
of each motif state can be expressed in terms of the probabilities of other motif states
in the state space. An example in the case of the open triple is given by the motifs in
(4), (6) and (7).

Definition 2.11 Consider a tree graph and the 1-states: {ψI
i ,ψS

i : i ∈ {1, . . . ,P }} and
the 2-states with SS, i.e. {ψSS

i,j : i ∈ {1, . . . ,P }, j ∈ Ni}. The “extended state space”

M̄ comprises of these motifs states together with the set of motif states that can be
generated from them by repeated iteration of the generating rule.

Remark The extended state space is required to form the relevant closure relations.
Due to the method of its construction, it is also self-contained.

Lemma 2.1 Let ψA
W ∈ M̄ . Then the out-neighbour of an I node is an S node in ψA

W .

Proof Follows from Proposition 2.1. �

Lemma 2.2 For a tree graph, the equation for the time derivative of the probability
of an r-state ψA

W ∈ M̄ is given by:

˙〈
ψA

W

〉 =
r∑

k=1

[

(−1)D
AS
k

P∑

n=1,n/∈W

TWkn

〈
gn

Wk

(
ψA

W

)〉

− DAS
k

r∑

l=1

TWkWl
DAI

l

〈
ψA

W

〉 − DAI
k

γ Wk

〈
ψA

W

〉
]

. (10)

Proof For these states we have DAR
k = 0 ∀k ∈ {1,2, . . . , r}. Additionally, when

DAI
k = 1, the first term on the second line of (9) never arises because DAI

l = 1 im-
plies that an I is connected to an I node in r-state ψA

W which contradicts Lemma 2.1.
Therefore (9) reduces to (10). �
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Let us now formulate the exact closure relations and prove our main result.

3 Closure Relation and Proof of the Main Result

The exactness of (3) is straightforward to see provided that outbreaks of epidemics
are always initiated with a single infected individual. We prove this first before con-
sidering the general case.

3.1 Proof for Single Initial Infected

When infection is initiated on a tree graph at a single individual, infection must al-
ways proceed in linear chains. Consequently there is no possibility of the state IkSj Ii

illustrated in Fig. 3 arising because an infection initiated at either k or i must pass
through j to get to the other node. Furthermore,

〈Sj Ik〉 = 〈SiSj Ik〉 + 〈IiSj Ik〉 + 〈RiSj Ik〉,
but since 〈IiSj Ik〉 = 0 and consequently 〈RiSj Ik〉 = 0, we have:

〈Sj Ik〉 = 〈SiSj Ik〉
reducing (1) to the following closed system:

˙〈Si〉 = −
P∑

j=1

Tij 〈SiIj 〉,

˙〈Ii〉 =
P∑

j=1

Tij 〈SiIj 〉 − γi〈Ii〉,

˙〈SiIj 〉 =
P∑

k=1,k �=i

Tjk〈Sj Ik〉 − Tij 〈SiIj 〉 − γj 〈SiIj 〉,

˙〈SiSj 〉 = −
P∑

k=1,k �=j

Tik〈IkSi〉 −
P∑

k=1,k �=i

Tjk〈Sj Ik〉.

Similar arguments show that this can be written in the form of (3).
More generally, this argument also applies to any tree graph where there is at most

one network path by which any susceptible individual in the network can become
infectious from the initial configuration of infected individuals.

Before discussing the general proof for any tree graph with multiple initially in-
fected individuals, we consider two very simple example networks which will serve
to motivate and illustrate the method of proof.

Fig. 3 Shown is a state which
cannot arise on a tree graph
where there is only one initially
infectious node
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3.2 Proof for an Open Triple

Here we consider the case for the open triple depicted in Fig. 2. The equations for
the probabilities of the basic state space M are given in (4), (6) and (7). To form the
relevant closure relations, we require the equations for the extended state space M̄

formed by the equations for M together with (5),

˙〈S1S2〉 = −τ 〈S1S2I3〉 and ˙〈S2S3〉 = −τ 〈I1S2S3〉. (11)

Our objective is to close the system at the level of pairs using the closure relation (2),
eliminating the need for differential equations describing triples (7), and show that
the system remains exact. We note that the exactness of (3) can be proved in this
case along the lines of the previous argument by considering each possible initial
condition separately; however, the approach discussed here will be more useful for
understanding the general case.

We need to consider closures for the triples 〈I1S2I3〉, 〈I1S2S3〉 and 〈S1S2I3〉. Let
us consider the closure:

〈I1S2I3〉 ≈ 〈I1S2〉〈S2I3〉
〈S2〉 .

This is exact if α(t) = 0 where

α(t) = 〈S2〉〈I1S2I3〉 − 〈I1S2〉〈S2I3〉
and 〈S2〉 �= 0. Taking the derivative of α with respect to time gives

α̇(t) = ˙〈S2〉〈I1S2I3〉 + 〈S2〉 ˙〈I1S2I3〉 − ˙〈I1S2〉〈S2I3〉 − 〈I1S2〉 ˙〈S2I3〉.
Substituting the relevant derivatives in from (5)–(7) and cancelling terms reduces this
to

α̇(t) = −2(τ + γ )α(t),

so:

α(t) = α(0)e−2(τ+γ )t .

Now it is easily verified that provided the system is initiated in a specific system state
then α(0) = 0. Consequently α(t) = 0 for all t ≥ 0 and the closure is exact.

By symmetry, it will suffice to consider one of the remaining two triples in (6). We
wish to show that α(t) = 0 where

α(t) = 〈S2〉〈S1S2I3〉 − 〈S1S2〉〈S2I3〉.
Here it is necessary to also use (11) for pairs of type SS in the extended state space.
This closure is not established immediately, but there is a two-step process to estab-
lishing that α(t) = 0 which the reader can verify by analogy with the example of the
star graph in the next section.
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Fig. 4 Star graph with P = 4
nodes

3.3 Proof for a Star Graph

We now consider the case of the undirected star graph with P = 4 shown in Fig. 4,
where again we assume that the strength is the same across each network link and is
denoted by τ and the removal rate for each node is γ . Writing down the equations
of the extended state space, there are two types of closure which need to be proved:
one for the S − S − I triples and one for the I − S − I triples (see (1)). The graph
has three triples ((1,4,3), (2,4,3), (1,4,2)), but it is sufficient to prove exactness
for one of them. Hence we want to prove the following two relations:

〈S4〉〈S1I3S4〉 = 〈S1S4〉〈I3S4〉,
〈S4〉〈I1I3S4〉 = 〈I1S4〉〈I3S4〉.

(12)

For brevity, we adopt the alternative notation:
〈
ψS

4

〉〈
ψSIS

1,3,4

〉 − 〈
ψSS

1,4

〉〈
ψIS

3,4

〉 = 0,

〈
ψS

4

〉〈IIS

1,3,4

〉 − 〈
ψIS

1,4

〉〈
ψIS

3,4

〉 = 0.

We introduce

α1 = 〈
ψS

4

〉〈
ψSIS

1,3,4

〉 − 〈
ψSS

1,4

〉〈
ψIS

3,4

〉
.

By differentiating this, substituting in from the process equations and grouping terms,
we obtain

α̇1 = −(τ + γ )α1 − τα2 − τα3 − τα4, (13)

where:

α2 = 〈
ψIS

1,4

〉〈
ψSIS

1,3,4

〉 − 〈
ψSS

1,4

〉〈
ψIIS

1,3,4

〉
,

α3 = 〈
ψIS

2,4

〉〈
ψSIS

1,3,4

〉 − 〈
ψSS

1,4

〉〈
ψIIS

2,3,4

〉
,

α4 = 〈
ψS

4

〉〈
ψSIIS

1,2,3,4

〉 − 〈
ψSIS

1,2,4

〉〈
ψIS

3,4

〉
.

Differentiating α2 we get

α̇2 = −2(τ + γ )α2 − τα5 − τα6, (14)

where:

α5 = 〈
ψIIS

1,2,4

〉〈
ψSIS

1,3,4

〉 − 〈
ψSIS

1,2,4

〉〈
ψIIS

1,3,4

〉
,
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α6 = 〈
ψIS

1,4

〉〈
ψSIIS

1,2,3,4

〉 − 〈
ψSS

1,4

〉〈
ψIIIS

1,2,3,4

〉
.

The derivatives of α3 and α4 can be obtained similarly.
Differentiating α5 we get

α̇5 = −3(τ + γ )α5 − τα7 − τα8, (15)

where:

α7 = 〈
ψIIIS

1,2,3,4

〉〈
ψSIS

1,3,4

〉 − 〈
ψSIIS

1,2,3,4

〉〈
ψIIS

1,3,4

〉
,

α8 = 〈
ψIIS

1,2,4

〉〈
ψSIIS

1,2,3,4

〉 − 〈
ψSIS

1,2,4

〉〈
ψIIIS

1,2,3,4

〉
.

The derivative for α6 can also be obtained. Finally, differentiating α7 and α8 we
obtain:

α̇7 = −4(τ + γ )α7 and α̇8 = −4(τ + γ )α8. (16)

To conclude the proof of the exactness of the closure, we first assume that the initial
state is not mixed; that is, one of the 34 = 81 possible configurations has probability 1
at t = 0. Then it is easy to see that αj (0) = 0 for all j ∈ {1,2, . . . ,8} (see Lemma 3.2
in Sect. 3.5 for a proof in a more general context). Hence the differential equations for
α7 and α8 show that α7(t) = 0 and α8(t) = 0 for all t ≥ 0. The differential equation
for α5 then implies that α5 = 0 ∀t ≥ 0 (and similarly for α6). This implies that α2 = 0
(and similarly α3 = α4 = 0). The differential equation for α1 shows that α1 = 0 which
is what we wanted to show. The other triple closure in (12) can be proved similarly.

Remark In fact, we have proved several closure relations αj = 0 ∀j ∈ {1,2, . . . ,8}.

The closure relations each consist of two pairs which are visualised in Fig. 5. For
reference, we refer to these as the left pair and the right pair referring to their position
in this figure. Looking at these closure relations, we can form two observations:

1. For a given node i, the number of times it appears as Si is the same in the left
and the right pair, and similarly with the number of times it appears as Ii . For
example, with α5, node 1 (the left node) has one I and one S for both pairs and
node 4 (central node) has two S’s in both pairs. For α6, the number of I ’s at
nodes 1, 2, 3 and 4 is (1,1,1,0) in both pairs and the number of S’s is given by
(1,0,0,2) in both pairs.

2. Any SI pairing on the left appears exactly the same number of times on the right.
For example in α7, I1S4 appears once on the left and once on the right and I3S4

appears twice on the left and twice on the right. Observing that only SS pairs and
IS pairs appear in the closure relations, a consequence is that SS pairs also have
this property.

These observations will be of key importance for developing the general proof in the
following two sections.
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Fig. 5 Each box illustrates the relevant node states for the four parts of the closure relation in the equation
above it. The node states on the left and the right correspond to the two terms in the closure relation. The
node numbers correspond to the same positions as in Fig. 4

3.4 General Closure Relations

In general, to show that the closure relationship (2) is exact for the tree graph, we
need to show that α = 0 where

α = 〈Bj 〉〈AiBjCk〉 − 〈AiBj 〉〈BjCk〉,

B = S and A,C ∈ {S, I }. Our proof of this is via induction using a sequence of
closures analogous to the proof in the case of the star graph in Sect. 3.3.

We shall consider many closure relations. In general we specify that they are com-
posed of two pairs of motif states (ψA

W ,ψB
X) and (ψC

Y ,ψD
Z ) and that the closure is



630 K.J. Sharkey et al.

exact if α = 0 where

α = 〈
ψA

W

〉〈
ψB

X

〉 − 〈
ψC

Y

〉〈
ψD

Z

〉
.

We formalise the observations we made about the closure relations for the star
graph at the end of Sect. 3.3 by defining what we term “compatible pairs”.

Definition 3.1 For all a ∈ {S, I,R} and i ∈ {1,2, . . . ,P },ψa
i ⊂ ψA

W ⇔ ∃j s.t.
Wj = i and Aj = a.

For all a1, a2 ∈ {S, I,R} and i1, i2 ∈ {1,2, . . . ,P } : i1 �= i2,ψ
a1a2
i1,i2

⊂ ψA
W ⇔

∃j1, j2 s.t. Wj1 = i1,Wj2 = i2 and Aj1 = a1,Aj2 = a2.

Remark In general, the notation ψB
X ⊂ ψA

W denotes that the state of subsystem ψB
X is

implied by the state of subsystem ψA
W because it is contained within it.

Definition 3.2 Two pairs of motif states (ψA
W ,ψB

X) and (ψC
Y ,ψD

Z ) are called com-
patible pairs if the following conditions are met:

• CP(i) (ψa
i ⊂ ψA

W or ψa
i ⊂ ψB

X) ⇔ (ψa
i ⊂ ψC

Y or ψa
i ⊂ ψD

Z )

• CP(ii) (ψa
i ⊂ ψA

W and ψa
i ⊂ ψB

X) ⇔ (ψa
i ⊂ ψC

Y and ψa
i ⊂ ψD

Z )

• CP(iii) (ψIS
i1,i2

⊂ ψA
W or ψIS

i1,i2
⊂ ψB

X) ⇔ (ψIS
i1,i2

⊂ ψC
Y or ψIS

i1,i2
⊂ ψD

Z )

• CP(iv) (ψIS
i1,i2

⊂ ψA
W and ψIS

i1,i2
⊂ ψB

X) ⇔ (ψIS
i1,i2

⊂ ψC
Y and ψIS

i1,i2
⊂ ψD

Z )

• CP(v) Same as CP(iii) and CP(iv) but with SS pairs

where a ∈ {S, I,R}.

Definition 3.3 Let ψA
W be an r-state and ψB

X be a q-state. Then the order of the pair
(ψA

W ,ψB
X) is defined as r + q .

Proposition 3.1 If (ψA
W ,ψB

X) and (ψC
Y ,ψD

Z ) are compatible pairs, then their order
is equal.

Proof Follows from CP(i) and CP(ii). �

Proposition 3.2 For a tree graph, applying the transformation hi to each of the four
motif states in compatible pairs that contain node i generates compatible pairs.

Proof The transformation satisfies CP(i) and CP(ii) because it replaces ψa
i = ψI

i with
ψa

i = ψS
i which does not alter the form of the conditions. The transformation satisfies

CP(iii) and CP(iv) because all IS pairs where i is the infected individual are removed
by this transformation. New IS pairs cannot be created by the transformation since
this would require II pairs which are prohibited for tree graphs by Lemma 2.1. CP(v)
is satisfied because the transformation leaves existing SS pairs unchanged and created
SS pairs result from existing IS pairs so are balanced on each side. �
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3.5 Proof of the Main Result

Lemma 3.1 Let (ψA
W ,ψB

X) and (ψC
Y ,ψD

Z ) be compatible pairs or order R and
ψA

W,ψB
X,ψC

Y ,ψD
Z ∈ M̄ . Let

α0 = 〈
ψA

W

〉〈
ψB

X

〉 − 〈
ψC

Y

〉〈
ψD

Z

〉
.

Then

α̇0 =
m∑

p=1

cpαp + c0α0, (17)

where each αp can be expressed as

αp = 〈
ψĀ

W̄

〉〈
ψB̄

X̄

〉 − 〈
ψC̄

Ȳ

〉〈
ψD̄

Z̄

〉

with ψĀ

W̄
,ψB̄

X̄
and ψC̄

Ȳ
,ψD̄

Z̄
being compatible pairs of order R + 1, and c0, cp being

constants and m being an integer denoting the number of terms in the summation.

Remark This is a general statement of the forms of (13)–(16) in the star graph exam-
ple.

Proof Take the derivative of α0:

α̇0 = 〈
ψ̇A

W

〉〈
ψB

X

〉 + 〈
ψA

W

〉〈
ψ̇B

X

〉 − 〈
ψ̇C

Y

〉〈
ψD

Z

〉 − 〈
ψC

Y

〉〈
ψ̇D

Z

〉
. (18)

We consider the terms associated with removal, transmission terms of order R and
transmission terms of order R + 1 separately. Firstly, from (10), this derivative con-
tains the following terms associated with the removal process:

−
∑

k1

DAI
k1

γ Wk1

〈
ψA

W

〉〈
ψB

X

〉 −
∑

k2

DBI
k2

γ Xk2

〈
ψA

W

〉〈
ψB

X

〉

+
∑

k3

DCI
k3

γ Yk3

〈
ψC

Y

〉〈
ψD

Z

〉 +
∑

k4

DDI
k4

γ Zk4

〈
ψC

Y

〉〈
ψD

Z

〉

= −vα0,

where the sums over k1, k2, k3, k4 are over all nodes in the motifs ψW,ψX,ψY ,ψZ

respectively and where

v =
∑

k1

DAI
k1

γ Wk1
+

∑

k2

DBI
k2

γ Xk2
=

∑

k3

DCI
k3

γ Yk3
+

∑

k4

DDI
k4

γ Zk4

is easily seen to follow from CP(i) and CP(ii).
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The right-hand side of (18) also contains the following transmission terms with
motifs of order R:

−
∑

k1

DAS
k1

∑

l1

TWk1 Wl1
DAI

l1

〈
ψA

W

〉〈
ψB

X

〉 −
∑

k2

DBS
k2

∑

l2

TXk2Xl2
DBI

l2

〈
ψA

W

〉〈
ψB

X

〉

+
∑

k3

DCS
k3

∑

l3

TYk3 Yl3
DCI

l3

〈
ψC

Y

〉〈
ψD

Z

〉 +
∑

k4

DDS
k4

∑

l4

TZk4 Zl4
DDI

l4

〈
ψC

Y

〉〈
ψD

Z

〉

= −wa0,

where

w =
∑

k1

DAS
k1

∑

l1

TWk1 Wl1
DAI

l1
+

∑

k2

DBS
k2

∑

l2

TXk2Xl2
DBI

l2

=
∑

k3

DCS
k3

∑

l3

TYk3Yl3
DCI

l3
+

∑

k4

DDS
k4

∑

l4

TZk4Zl4
DDI

l4

and where the sums over k1, k2, k3, k4, l1, l2, l3, l4 are over all nodes in each of the
relevant motifs. This follows from CP(iii) and CP(iv). Hence the removal terms and
transmission terms of order R contribute c0a0 to the derivative of a0 where c0 =
−v − w.

For transmission terms with motifs of order R + 1, consider the term 〈ψ̇A
W 〉〈ψB

X 〉
in (18). This gives rise to the following terms in the derivative of α0:

∑

k1

(−1)
DAS

k1

P∑

n=1,n/∈W

TWk1n

〈
gn

Wk1

(
ψA

W

)〉〈
ψB

X

〉
.

To prove the lemma, it is sufficient to show that each term in this sum can be paired
uniquely with a term in 〈ψ̇C

Y 〉〈ψD
Z 〉 or in 〈ψC

Y 〉〈ψ̇D
Z 〉, such that the difference of these

terms forms αp . By symmetry this is a one-to-one pairing establishing that each term
of order R + 1 on the right-hand side of (18) is accounted for exactly once in the sum
of αp .

Let us take an element from the sum by choosing a node Ww , w ∈ {1,2, . . . , r},
and an outside neighbour node n ∈ NWw . This neighbour can either be in ψX or
outside.

Case 1: Aw = S.
Consider first the case where Aw is a susceptible node, resulting in the following term
in the sum:

−TWwn

〈
gn

Ww

(
ψA

W

)〉〈
ψB

X

〉
,

where we can identify cp = −TWwn.
We have Aw = S, n ∈ NWw and n /∈ W . Let us now identify a term in 〈ψ̇C

Y 〉〈ψD
Z 〉+

〈ψC
Y 〉〈ψ̇D

Z 〉 to form compatible pairs. According to CP(i) and CP(ii) we can assume
without loss of generality that Ww ∈ Y , i.e. ∃y : Yy = Ww and Cy = S (see Fig. 6).
There are two subcases:
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Fig. 6 Each circle refers to one of the motif states ψA
W

, ψB
X

, ψC
Y

, ψD
Z

specified to the top left. The
position of the relevant node states with respect to the motif states are then illustrated. (a) Subcase 1.1
(n /∈ Y ). (b) Subcase 1.2 (n ∈ Y )

Subcase 1.1: n /∈ Y .
When n /∈ Y , either n ∈ Z or n /∈ Z and these are shown by solid and dashed lines re-
spectively in Fig. 6(a). By CP(i), n ∈ Z ⇔ n ∈ X since n /∈ W so the solid lines match
on the left and right pairs as do the dashed lines. The corresponding term must there-
fore be −TYyn〈gn

Yy
(ψC

Y )〉〈ψD
Z 〉 = cp〈gn

Yy
(ψC

Y )〉〈ψD
Z 〉 irrespective of whether n ∈ Z or

not. Hence:

αp = 〈
gn

Ww

(
ψA

W

)〉〈
ψB

X

〉 − 〈
gn

Yy

(
ψC

Y

)〉〈
ψD

Z

〉
,

where (gn
Ww

(ψA
W),ψB

X) and (gn
Yy

(ψC
Y ),ψD

Z ) are easily seen to satisfy the definition
of compatible pairs since the extra node is n which is I in both pairs.

Subcase 1.2: n ∈ Y .
If n ∈ Y , then the edge n → Yy is an SS or IS edge in C. By CP(iii), CP(iv)
and CP(v), it is also the same edge in B because n /∈ W . Hence ∃x : Xx = Ww

and Bx = S. By CP(ii), Ww ∈ Z is also true where ∃z : Zz = Ww and
Dz = S. This is illustrated in Fig. 6(b). We therefore have the corresponding term
−TZzn〈ψC

Y 〉〈gn
Zz

(ψD
Z )〉 = cp〈ψC

Y 〉〈gn
Zz

(ψD
Z )〉 and:

αp = 〈
gn

Ww

(
ψA

W

)〉〈
ψB

X

〉 − 〈
ψC

Y

〉〈
gn

Zz

(
ψD

Z

)〉
,

where again, the relevant pairs are seen to satisfy compatibility.

Case 2: Aw = I .
So far we have proved the existence of αp when Aw = S, n ∈ NWw , n /∈ W . Now we
have to show αp can be defined when Aw = I , n ∈ NWw , n /∈ W . In this case, the
motif generating rule firstly changes Aw = I to Aw = S and then applies the same
generating rule as if Aw = S initially. From Proposition 3.2, applying the transforma-
tion to compatible pairs of order R produces compatible pairs of order R in the case
of the tree graph. After this transformation, the argument runs identically to case 1.
This completes the proof of Lemma 3.1. �
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Lemma 3.2 Assume that the initial condition is not mixed, i.e. ∃A ∈ {I, S}P such
that 〈ψA

1,2,...,P 〉 = 1. If (ψA
W ,ψB

X) and (ψC
Y ,ψD

Z ) are compatible pairs, then for any

graph, 〈ψA
W 〉〈ψB

X 〉 − 〈ψC
Y 〉〈ψD

Z 〉 = 0 at t = 0.

Proof Assume that 〈ψA
W 〉〈ψB

X 〉 = 1. Then by CP(i) and CP(ii), for all ψa
i ⊂ ψA

W , we
must have ψa

i ⊂ ψC
Y and/or ψa

i ⊂ ψD
Z . This is also true for all ψa

i ⊂ ψB
X and, by the

symmetry between the compatible pairs, it follows that 〈ψC
Y 〉〈ψD

Z 〉 = 1. Similarly, it
follows that 〈ψA

W 〉〈ψB
X 〉 = 0 implies that 〈ψC

Y 〉〈ψD
Z 〉 = 0. �

Theorem 3.1 Let us assume the following:

• The graph is a tree.
• The initial condition is not mixed.
• (ψA

W ,ψB
X) and (ψC

Y ,ψD
Z ) are compatible pairs.

Then 〈ψA
W 〉〈ψB

X 〉 − 〈ψC
Y 〉〈ψD

Z 〉 = 0 for all time t ≥ 0.

Proof We prove the theorem by induction according to the order of the closure. This
is analogous to the proof for the star graph in Sect. 3.3.

Step 1.
If the closure is of order 2P , then it is exact. More precisely, if ψA

W , ψB
X , ψC

Y and ψD
Z

are P -states, then (17) does not contain the summation terms and becomes:

α̇0 = c0α0.

Since we start from an initial condition that is not mixed, we have (by Lemma 3.2)
α0(0) = 0 ⇒ α0(t) = 0 ∀t ≥ 0.

Step 2.
Assume that the theorem is proved for compatible pairs of order R +1. We prove that
it is true for compatible pairs of order R. Applying Lemma 3.1, we have:

α̇0 =
m∑

p=1

cpαp + c0α0.

According to the induction condition, αp = 0 ∀p because these are compatible
pairs of order R + 1. Therefore α̇0 = c0α0. From Lemma 3.2, α0(0) = 0 so α0(t) = 0
∀t ≥ 0. Since we have proved the result for compatible pairs of order 2P then we
have completed the proof of the theorem. �

The lowest-order compatible pairs are of order four. The closure relation corre-
sponding to these pairs is formulated in the following important corollary.

Corollary 3.1 Under the assumptions on the graph and the initial conditions in The-
orem 3.1, we have the special cases:

〈
ψS

j

〉〈
ψSSI

i,j,k

〉 = 〈
ψSS

i,j

〉〈SI

j,k

〉
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for all i ∈ {1,2, . . . ,P } and for all j ∈ Ni , k ∈ Nj : i �= k;

〈
ψS

i

〉〈
ψISI

k,i,j

〉 = 〈
ψIS

k,i

〉〈
ψSI

i,j

〉

for all i ∈ {1,2, . . . ,P } and for all j, k ∈ Ni : j �= k.

This corollary is Theorem 1.1 expressed in a different notation.

Remark From CP(i) and CP(ii), it is clear that Lemma 3.2 can be extended to the
mixed initial condition where the probabilities of the initial states of each individual
in the system are statistically independent, leading to 〈ψA

W 〉〈ψB
X 〉 − 〈ψC

Y 〉〈ψD
Z 〉 = 0

at t = 0. However, for general mixed initial conditions where correlations between
individuals can occur, Lemma 3.2 does not hold and the pair-based model is not
exact.

4 Application to Some Graphs which Are not Trees

To complete this work, we make a final observation which shows that the pair-based
model can sometimes provide an exact representation of infectious dynamics on
graphs which are not strictly trees. We first make two definitions which can be under-
stood with reference to the examples in Fig. 7.

Fig. 7 The graphs on the left
are the initial transmission
networks where the initially
infected nodes are indicated by
the symbol I . The graphs on the
right are the reduced
representation graphs where the
cuts for independent segments
which occur for cases (b) and
(d) are indicated with dashed
lines. The tree structure of the
graphs on the right shows that
applying the pair-based model to
these graphs generates an exact
representation of the infection
dynamics on the original system
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Definition 4.1 A reduced representation is a graph which is constructed from the
initial transmission network and the given initial conditions by removing transmission
routes which cannot carry infection dynamics.

Definition 4.2 An independent segment is a region of a graph that is only connected
to other regions via nodes in the segment which are initially infectious.

Theorem 4.1 Given SIR dynamics on a transmission network with infection and re-
moval governed by Poisson processes and given an unmixed initial state of the system,
if every independent segment of the reduced representation is a tree, then applying
(3) to this representation exactly generates the expected infection dynamics on the
original transmission network.

Proof By definition, the infection dynamics of the system remain unchanged after
the removal of edges which cannot support infection dynamics. Additionally, the in-
fection dynamics of any independent segment are independent of the dynamics on the
rest of the graph because there is no process that allows influence across the initially
infectious nodes. If the resulting representation graph is a set of trees, then since (3)
is an exact representation of the dynamics on each independent segment, solving (3)
on the reduced representation graph is equivalent to the infection dynamics on the
original transmission network. �

Figure 7 shows some graphs and the associated representation graphs where the
dashed lines indicate the boundaries that separate independent segments. For each of
these examples, the solution of (3) on the representation graph exactly reproduces the
expected infection dynamics of the original system.

This suggests that the accuracy of the pair-based model could be increased by first
generating the representation graph for the particular network and initial conditions
prior to numerically solving the pair-based model.

5 Discussion

We considered the pair-based variant of the subsystem approach to constructing epi-
demic models on networks (Sharkey 2008, 2011). We proved that for SIR dynamics
on fixed tree graphs with exponentially distributed transmission and removal pro-
cesses, the pair-based model provides an exact determination of the infection proba-
bility time course for each individual in the network. We also showed that the dynam-
ics of some networks with cycles can also be represented exactly by the pair-based
model under specific initial conditions.

This represents the first provably exact deterministic model of epidemic dynamics
on finite heterogeneous systems which has been numerically evaluated. Here we use
the qualifying term “heterogeneous” to exclude systems with significant symmetry
which may be employed to obtain exact representations in very specialised circum-
stances (Keeling and Ross 2008; Simon et al. 2011). In principle, the message-passing
approach of Karrer and Newman (2010) will also yield an exact description of finite
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heterogeneous systems in a way that is numerically feasible, but to our knowledge
this has not yet been implemented in this context. Interestingly, the message-passing
method also applies more generally beyond the usual assumptions of Markovian dy-
namics to arbitrary distributions for transmission and removal processes, although
there may be implementation issues for more general distributions.

We note that effective degree models can generate very good agreement with
stochastic simulation (Ball and Neal 2008; Lindquist et al. 2011) as do the PGF
or edge-based compartmental modelling methods (Miller et al. 2012; Miller and
Volz 2012; Volz 2008), although exact correspondence has not been proven here.
For some idealised networks, including fully connected networks and some con-
figuration networks (Volz 2008), convergence to the expected value can be shown
in the infinite population limit (Ball and Neal 2008; Decreusefond et al. 2012;
Karrer and Newman 2010). However, these models have a large measure of homo-
geneity, and convergence only occurs for infinite populations.

It is intuitively understood that clustering is at the root of problems with mod-
els based around closures at the level of pairs (Keeling and Eames 2005). Previous
analysis (Sharkey 2011) attributed the failure to anomalous terms which emerge in
subsystem equations when differentiating closure approximations based around the
statistical independence of individuals. Here, repeating similar analysis for a closure
at the order of pairs in the context of tree graphs, these anomalies do not arise and we
are able to prove that the closure is exact via induction.

In principle, models based around subsystems at the order of three nodes or higher
could be constructed. The next higher-order model would require obtaining a closure
which is able to preserve correlations between triples, and similarly for higher orders.
This leads to an interesting theoretical question for future analysis: does the hierarchy
of exact order-by-order models suggested in Sharkey (2011) exist, and if so, what
form should the closure approximations take at each level? We conjecture that exact
closures of a similar nature to those considered here are possible for networks with
more structure, given that the order at which the closure is performed is guided by
the network structure; future work will focus on this question.

Acknowledgements This research was facilitated in part by the Research Centre for Mathematics and
Modelling at The University of Liverpool. We thank two anonymous reviewers for helpful comments
which improved the manuscript.

Appendix

The proof of Theorem 2.1 is analogous to the proof of the single and pair equations
by Sharkey (2011). In what follows, summations over Greek indices α,β are assumed
to be over all 3P possible system states. First we make some definitions.

Definition A.1 For a system Γ in state α and a single node i of Γ in state a we
define:

Dαa
i =

{
1 if ψa

i ⊂ Γ α,

0 otherwise,
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denoting whether or not the specified single node state matches the system state. Note
that this is just Definition 2.6 applied to the full system.

Definition A.2

ζ
αβ
j =

⎧
⎨

⎩

1 if the states of all individuals in Γ are the same
for Γ α and for Γ β except for ψj which may change,

0 otherwise.

Proposition A.1 For all α, i:

∑

a

Dαa
i = 1,

where the summation is over all possible states available to node i.

Proof Statement that for a given system state Γ α , or subsystem state ψA
W , each node

must be in a unique state. �

Proposition A.2 For all β, i, a:

∑

α

Dαa
i ζ

αβ
i = 1.

Proof Statement that there is only one system state which is identical to Γ β except
that node i is in state ψa

i . �

Proposition A.3 For any subsystem ψA
W and ∀k ∈ {1,2, . . . , r}:

D
αAk

Wk
Dαa

Wk
= DAa

k Dαa
Wk

for all α,a.

Proof Proposition is true when Dαa
Wk

= 0. When Dαa
Wk

= 1 we have:

D
αAk

Wk
= 1 ⇔ a = Ak ⇔ DAa

k = 1,

D
αAk

Wk
= 0 ⇔ a �= Ak ⇔ DAa

k = 0. �

Proposition A.4 For any subsystem ψA
W and ∀k ∈ {1,2, . . . , r}:

∑

α

Dαa
Wk

ζ
αβ
Wk

r∏

j=1,j �=k

D
αAj

Wj
D

βAj

Wj
=

r∏

j=1,j �=k

D
βAj

Wj

for all β,a.
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Proof Proposition is true when:

r∏

j=1,j �=k

D
βAj

Wj
= 0.

From Proposition A.2 there must be a single state Γ α for which Dαa
Wk

ζ
αβ
Wk

= 1, other-
wise it is zero. When

r∏

j=1,j �=k

D
βAj

Wj
= 1,

we must also have (for the state when D
αβ
Wk

ζ αa
Wk

= 1):

r∏

j=1,j �=k

D
αAj

Wj
= 1,

because only site ψWk
can change state during this transition, establishing the propo-

sition. �

We can now use these propositions to prove Theorem 2.1:

Proof We have that:

〈
ψA

W

〉 =
∑

α

〈
Γ α

〉 r∏

i=1

D
αAi

Wi
.

Taking the derivative of this with respect to time and substituting in the system master
equation (8) gives

˙〈
ψA

W

〉 =
∑

α

˙〈
Γ α

〉 r∏

i=1

D
αAi

Wi

=
∑

αβ

σαβ
〈
Γ β

〉 r∏

i=1

D
αAi

Wi
−

∑

αβ

σβα
〈
Γ α

〉 r∏

i=1

D
αAi

Wi
. (19)

From Proposition A.1:

1 =
[∑

a1

D
αa1
W1

]

· · ·
[∑

ar

D
αar

Wr

][∑

b1

D
βb1
W1

]

· · ·
[∑

br

D
βbr

Wr

]

=
r∑

k=1

∑

akbk

r∏

j=1

D
αaj

Wj
D

βbj

Wj
.
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Multiplying the right of (19) by this gives:

˙〈
ψA

W

〉 =
∑

αβ

σαβ
〈
Γ β

〉 r∏

i=1

D
αAi

Wi

r∑

k=1

∑

akbk

r∏

j=1

D
αaj

Wj
D

βbj

Wj

−
∑

αβ

σβα
〈
Γ α

〉 r∏

i=1

D
αAi

Wi

r∑

k=1

∑

akbk

r∏

j=1

D
αaj

Wj
D

βbj

Wj
.

This can be simplified using the fact that σαβ = 0 whenever the state of the subsystem
ψW differs by more than a single individual ψWk

, k ∈ {1 · · · r}, between states Γ α and
Γ β which means that aj = bj = Aj for j �= k:

˙〈
ψA

W

〉 =
∑

αβ

σαβ
〈
Γ β

〉 r∏

i=1

D
αAi

Wi

r∑

k=1

r∏

j=1,j �=k

D
αAj

Wj
D

βAj

Wj

∑

akbk

D
αak

Wk
D

βbk

Wk

−
∑

αβ

σβα
〈
Γ α

〉 r∏

i=1

D
αAi

Wi

r∑

k=1

r∏

j=1,j �=k

D
αAj

Wj
D

βAj

Wj

∑

akbk

D
αak

Wk
D

βbk

Wk

=
∑

αβ

σαβ
〈
Γ β

〉 r∑

k=1

D
αAk

Wk

r∏

j=1,j �=k

D
αAj

Wj
D

βAj

Wj

∑

akbk

D
αak

Wk
D

βbk

Wk

−
∑

αβ

σβα
〈
Γ α

〉 r∑

k=1

D
αAk

Wk

r∏

j=1,j �=k

D
αAj

Wj
D

βAj

Wj

∑

akbk

D
αak

Wk
D

βbk

Wk
,

where the last equality follows from D
αAj

Wj
D

αAj

Wj
= D

αAj

Wj
.

For SIR dynamics, we can do the summations over ak and bk :

˙〈
ψA

W

〉 =
∑

αβ

σαβ
〈
Γ β

〉 r∑

k=1

D
αAk

Wk

r∏

j=1,j �=k

D
αAj

Wj
D

βAj

Wj
DαI

Wk
D

βS
Wk

×
∑

αβ

σαβ
〈
Γ β

〉 r∑

k=1

D
αAk

Wk

r∏

j=1,j �=k

D
αAj

Wj
D

βAj

Wj
DαR

Wk
D

βI
Wk

−
∑

αβ

σβα
〈
Γ α

〉 r∑

k=1

D
αAk

Wk

r∏

j=1,j �=k

D
αAj

Wj
D

βAj

Wj
DαS

Wk
D

βI
Wk

−
∑

αβ

σβα
〈
Γ α

〉 r∑

k=1

D
αAk

Wk

r∏

j=1,j �=k

D
αAj

Wj
D

βAj

Wj
DαI

Wk
D

βR
Wk

. (20)
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Now we introduce the relevant terms in the transition matrix at the level of the
system:

σαβDαI
Wk

D
βS
Wk

r∏

j=1,j �=k

D
αAj

Wj
D

βAj

Wj
=

P∑

n=1

TWknD
αI
Wk

D
βS
Wk

DβI
n ζ

αβ
Wk

r∏

j=1,j �=k

D
αAj

Wj
D

βAj

Wj
,

σαβDαR
Wk

D
βI
Wk

r∏

j=1,j �=k

D
αAj

Wj
D

βAj

Wj
= γ Wk

DαR
Wk

D
βI
Wk

ζ
αβ
Wk

r∏

j=1,j �=k

D
αAj

Wj
D

βAj

Wj
,

σβαDαS
Wk

D
βI
Wk

r∏

j=1,j �=k

D
αAj

Wj
D

βAj

Wj
=

P∑

n=1

TWknD
αS
Wk

D
βI
Wk

DαI
n ζ

βα
Wk

r∏

j=1,j �=k

D
αAj

Wj
D

βAj

Wj
,

σβαDαI
Wk

D
βR
Wk

r∏

j=1,j �=k

D
αAj

Wj
D

βAj

Wj
= γ Wk

DαI
Wk

D
βR
Wk

ζ
βα
Wk

r∏

j=1,j �=k

D
αAj

Wj
D

βAj

Wj
,

where these equations are designed so that they are satisfied for any combination of
α,β, k. Substituting these into (20) gives:

˙〈
ψA

W

〉 =
∑

αβ

〈
Γ β

〉 r∑

k=1

D
αAk

Wk

P∑

n=1

TWknD
αI
Wk

D
βS
Wk

DβI
n ζ

αβ
Wk

r∏

j=1,j �=k

D
αAj

Wj
D

βAj

Wj

+
∑

αβ

〈
Γ β

〉 r∑

k=1

D
αAk

Wk
γ Wk

DαR
Wk

D
βI
Wk

ζ
αβ
Wk

r∏

j=1,j �=k

D
αAj

Wj
D

βAj

Wj

−
∑

αβ

〈
Γ α

〉 r∑

k=1

D
αAk

Wk

P∑

n=1

TWknD
αS
Wk

D
βI
Wk

DαI
n ζ

βα
Wk

r∏

j=1,j �=k

D
αAj

Wj
D

βAj

Wj

−
∑

αβ

〈
Γ α

〉 r∑

k=1

D
αAk

Wk
γ Wk

DαI
Wk

D
βR
Wk

ζ
βα
Wk

r∏

j=1,j �=k

D
αAj

Wj
D

βAj

Wj
.

We can rearrange the summation order:

˙〈
ψA

W

〉 =
r∑

k=1

P∑

n=1

TWkn

∑

β

〈
Γ β

〉
D

βS
Wk

DβI
n

∑

α

D
αAk

Wk
DαI

Wk
ζ

αβ
Wk

r∏

j=1,j �=k

D
αAj

Wj
D

βAj

Wj

+
r∑

k=1

γ Wk

∑

β

〈
Γ β

〉
D

βI
Wk

∑

α

D
αAk

Wk
DαR

Wk
ζ

αβ
Wk

r∏

j=1,j �=k

D
αAj

Wj
D

βAj

Wj

−
r∑

k=1

P∑

n=1

TWkn

∑

α

〈
Γ α

〉
D

αAk

Wk
DαS

Wk
DαI

n

∑

β

D
βI
Wk

ζ
βα
Wk

r∏

j=1,j �=k

D
αAj

Wj
D

βAj

Wj

−
r∑

k=1

γ Wk

∑

α

〈
Γ α

〉
D

αAk

Wk
DαI

Wk

∑

β

D
βR
Wk

ζ
βα
Wk

r∏

j=1,j �=k

D
αAj

Wj
D

βAj

Wj
,
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and apply Proposition A.3:

˙〈
ψA

W

〉 =
r∑

k=1

DAI
k

P∑

n=1

TWkn

∑

β

〈
Γ β

〉
D

βS
Wk

DβI
n

∑

α

DαI
Wk

ζ
αβ
Wk

r∏

j=1,j �=k

D
αAj

Wj
D

βAj

Wj

+
r∑

k=1

DAR
k

γ Wk

∑

β

〈
Γ β

〉
D

βI
Wk

∑

α

DαR
Wk

ζ
αβ
Wk

r∏

j=1,j �=k

D
αAj

Wj
D

βAj

Wj

−
r∑

k=1

DAS
k

P∑

n=1

TWkn

∑

α

〈
Γ α

〉
DαS

Wk
DαI

n

∑

β

D
βI
Wk

ζ
βα
Wk

r∏

j=1,j �=k

D
αAj

Wj
D

βAj

Wj

−
r∑

k=1

DAI
k

γ Wk

∑

α

〈
Γ α

〉
DαI

Wk

∑

β

D
βR
Wk

ζ
βα
Wk

r∏

j=1,j �=k

D
αAj

Wj
D

βAj

Wj
.

Applying Proposition A.4 gives

˙〈
ψA

W

〉 =
r∑

k=1

DAI
k

P∑

n=1

TWkn

∑

β

〈
Γ β

〉
D

βS
Wk

DβI
n

r∏

j=1,j �=k

D
βAj

Wj

+
r∑

k=1

DAR
k

γ Wk

∑

β

〈
Γ β

〉
D

βI
Wk

r∏

j=1,j �=k

D
βAj

Wj

−
r∑

k=1

DAS
k

P∑

n=1

TWkn

∑

α

〈
Γ α

〉
DαS

Wk
DαI

n

r∏

j=1,j �=k

D
αAj

Wj

−
r∑

k=1

DAI
k

γ Wk

∑

α

〈
Γ α

〉
DαI

Wk

r∏

j=1,j �=k

D
αAj

Wj
.

Breaking up the sums over n on the first and third lines depending on whether the
node n is internal or external to the motif ψW gives:

˙〈
ψA

W

〉 =
r∑

k=1

DAI
k

∑

n/∈W

TWkn

∑

β

〈
Γ β

〉
D

βS
Wk

DβI
n

r∏

j=1,j �=k

D
βAj

Wj

+
r∑

k=1

DAI
k

∑

n∈W

TWkn

∑

β

〈
Γ β

〉
D

βS
Wk

DβI
n

r∏

j=1,j �=k

D
βAj

Wj

+
r∑

k=1

DAR
k

γ Wk

∑

β

〈
Γ β

〉
D

βI
Wk

r∏

j=1,j �=k

D
βAj

Wj

−
r∑

k=1

DAS
k

∑

n/∈W

TWkn

∑

α

〈
Γ α

〉
DαS

Wk
DαI

n

r∏

j=1,j �=k

D
αAj

Wj
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−
r∑

k=1

DAS
k

∑

n∈W

TWkn

∑

α

〈
Γ α

〉
DαS

Wk
DαI

n

r∏

j=1,i �=k

D
αAj

Wj

−
r∑

k=1

DAI
k

γ Wk

∑

α

〈
Γ α

〉
DαI

Wk

r∏

j=1,j �=k

D
αAj

Wj
.

Lines 1 and 4 can be immediately recognised as the generating rule (Defini-
tion 2.4). For n /∈ W and n ∈ NWk

:

DAI
k

∑

β

〈
Γ β

〉
D

βS
Wk

DβI
n

r∏

j=1,j �=k

D
βAj

Wj
= DAI

k

〈
gn

Wk

(
ψA

W

)〉
,

DAS
k

∑

α

〈
Γ α

〉
DαS

Wk
DαI

n

r∏

j=1,j �=k

D
αAj

Wj
= DAS

k

〈
gn

Wk

(
ψA

W

)〉
,

and if n /∈ NWk
then TWkn = 0.

Line 2 requires that n ∈ W . Let l ∈ {1,2, . . . , r} and Wl = n. Then:

r∑

l=1

TWkWl

∑

β

〈
Γ β

〉
D

βS
Wk

DβI
n

r∏

j=1,j �=k

D
βAj

Wj

=
r∑

l=1

TWkWl

∑

β

〈
Γ β

〉
D

βS
Wk

D
βI
Wl

D
βAl

Wl

r∏

j=1,j �=k,j �=l

D
βAj

Wj

=
r∑

l=1

TWkWl
DAI

l

∑

β

〈
Γ β

〉
D

βS
Wk

D
βI
Wl

r∏

j=1,j �=k,j �=l

D
βAj

Wj
,

where the last equality follows from Proposition A.3. Using the definition of
hWk

(ψA
W), this becomes:

r∑

l=1

TWkWl
DAI

l

〈
hWk

(
ψA

W

)〉
,

and similarly for line 5.
We obtain:

˙〈
ψA

W

〉 =
r∑

k=1

DAI
k

∑

n/∈W

TWkn

〈
gn

Wk

(
ψA

W

)〉

+
r∑

k=1

DAI
k

r∑

l=1

DAI
l TWkWl

〈
hWk

(
ψA

W

)〉

+
r∑

k=1

DAR
k

γ Wk

〈
fWk

(
ψA

W

)〉
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−
r∑

k=1

DAS
k

∑

n/∈W

TWkn

〈
gn

Wk

(
ψA

W

)〉

−
r∑

k=1

DAS
k

r∑

l=1

DAI
l TWkWl

〈
hWk

(
ψA

W

)〉

−
r∑

k=1

DAI
k

γ Wk

〈
ψA

W

〉
,

where the hWk
operator on the 5th line is superfluous but allows us to write the equa-

tion in the form of (9). �
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