Cranial remains from the graveyard to the laboratory: restoration, conservation and craniometric analysis of medieval British skeletal samples

Satu Valoriani

A thesis submitted in partial fulfilment of the requirements of Liverpool John Moores University for the degree of Doctor of Philosophy

April 2019

Acknowledgements

Firstly I would like to thank my supervisory team: Dr Matteo Borrini, Prof Joel D. Irish and Prof Silvia Gonzalez. Matteo has first introduced me to anthropology in 2008, during my undergraduate degree. Since then he has been teaching and supervising me in the Forensic Anthropology laboratory at Universitá degli Studi di Firenze. I would like to thank him for giving me the opportunity to carry out a PhD project and continue following my aims. I would also like to thank Matteo for being a great supervisor and a great friend, maybe one of my best. Thanks to Joel and Silvia for their support during these years, but mainly for their patience. Also thanks to them I developed my academic skills and increased my will of carrying out my research. Dr Constantine Eliopoulos, who collaborated with me and supported me over these years, even if he was not part of my supervisory team.

I would like to thank Dr Chris Deter, who gave me access to the osteological collection stored at the University of Kent and Dr Linda Fibiger who provided me with the possibility to analyse the Ballumbie collection at the University of Edinburgh.

Special thanks go to my family, who always supported me and even during hard times, always encouraged me to keep following my dreams. My father and my mother, who made me understand the importance of education and how it opens people's minds. They made me appreciate the diversity that distinguishes all of us and made me develop a personal interest that is also reflected in this thesis. My grandfather and grandmother, Beppe and Bruna, who have always been there for me and saw me growing up.

Last, but not least, a big thanks goes to my friends, the old ones and the new ones, that also supported me during these years. A special thank you goes to Megan, who gave a significant contribution to this thesis. I would finally like to thank Liverpool John Moores University for giving me the opportunity to carry out my research and meet the great staff working in the Natural Sciences Department.

<u>Abstract</u>

The present thesis proposes a comparison of 16 British medieval samples by means of craniometric analysis. The purpose of this study is to determine whether craniometric variation among British medieval groups exists and what are the causes of these differences. Following the reconstruction of 267 skulls from Gloucester, Poulton and Linenhall, 45 measurements for each cranium were recorded. Craniometric data from 946 individuals were analysed with multivariate statistical analyses. A selection of 18 variables was used for comparison among samples. A further comparison with a selection from Howells' main human groups was carried out. Discriminant function analysis, principal component analysis and hierarchical cluster analysis were carried out to detect differences among British medieval samples and British and Howells' data set. The results support previous work published by other authors indicating a difference in craniometric measurement among British samples. Further discrimination is proved among samples from different geographic areas. This analysis suggests that the differences in craniometrics among British medieval samples are determined by the migration of foreign people from other European areas. A further difference is demonstrated between British and Howells' samples, with a clustering based on geographical affinity. The European groups (including the British) resemble each other, while the others cluster based on their geographical distribution. The results prove that cranial measurements follow climate adaptation trends and DNA patterns verified by other researchers' results.

<u>Contents</u>

Acknowledgements	I
Abstract	II
Table of figures	VI
Table of tables	VIII
1. Introduction	
1.1 Objectives	
1.2 Hypotheses and Research Questions	
1.3 Significance of the study	5
1.4 Thesis Structure	6
2. Historical and Literature Background	7
2.1 Early Historic and medieval Britain	7
2.2 The sites	
2.2.1 Poulton (Cheshire)	
2.2.2 Linenhall, Greyfriars (Chester)	
2.2.3 St Owen's Cemetery, Gloucester	
2.2.4 Monastery of St Saviour, Bermondsey (Southwark)	
2.2.5 Dominican Friary, Carter Lane (London)	
2.2.6 St Mary Graces Abbey, London	
2.2.7 East Smithfield Black Death Cemetery (London)	
2.2.8 St Mary Merton Priory (London)	
2.2.9 St Mary Spital (London)	
2.2.10 St Nicholas Shambles, Newgate Street (London)	
2.2.11 Guildhall Yard (London)	
2.2.12 St Gregory's Priory, Northgate, Canterbury (Kent)	
2.2.13 St Leonard's Church, Hythe (Kent)	
2.2.14 Castle Hill, Scarborough (Yorkshire)	
2.2.15 Guisborough Priory (Yorkshire)	

2.2.16 Ballumbie, Dundee (Scotland)	56
2.3 Literature review	58
3. Materials and Methods	64
3.1 Introduction and Hypotheses	64
3.2 Materials	66
3.2.1 Collections and Samples	66
3.2.2 W.W. Howells' Database	69
3.2.3 Anthropometric Instruments	71
3.3 Methods	72
3.3.1 Cranial Reconstruction	72
3.3.2 Sex Determination	76
3.3.3 Age at Death Determination	77
3.3.4 Data Collection	78
3.3.5 Craniometric Measurements	80
3.3.6 Cranial and facial Indices	87
3.3.7 Data Handling	88
3.3.8 Inter- and Intra-observer Error	90
3.3.9 Statistical Analysis	92
4. Results	95
4.1 Introduction	95
4.2 Indices	96
4.2.1 Poulton	96
4.2.2 Linenhall	97
4.2.3 St Owens	97
4.2.4 London	98
4.2.5 St Gregory	99
4.2.6 St Leonard	99
4.2.7 Castle Hill	100
4.2.8 Guisborough	101

4.2.9 Ballumbie	101
4.2.10 Between population analysis	102
4.3 Discriminant Function Analysis	106
4.3.1 Inter-population Analysis: Non-pooled British Samples	107
4.3.2 Pooled Samples Analysis	109
4.3.3 Comparison with W.W. Howells data set	113
4.4 Principal Component Analysis	128
4.4.1 Inter-population Analysis: Non-pooled British Samples	128
4.4.2 Pooled Samples Analysis	131
4.4.3 Comparison with W.W. Howells data set	137
4.5 Hierarchical Cluster Analysis	155
4.5.1 Inter-population Analysis: Non-pooled British Samples	155
4.5.2 Pooled Samples Analysis	157
4.5.3 Comparison with W.W. Howells data set	160
5. Discussion	170
5.1 Introduction	170
5.2 Skeletal and Cranial Reconstruction	170
5.3 Inter-Population Analysis: British Samples	177
5.4 Comparison with W.W. Howells data set	182
5.4.1 British vs Howells' European samples	182
5.4.2 British vs Howells' samples	184
6. Conclusions	188
6.1 Summary and Conclusions	188
6.2 Research Hypotheses	189
6.3 Research Limitations	192
6.4 Future Suggestions	194
References	195

Table of figures

Figure 2.1: Map of Anglo-Saxon Britain (adapted from Richards, 1999)
Figure 2.2: Map of Viking Age Britain (adapted from Richards, 1991)
Figure 2.3: Anglo-Norman Britain (adapted from Gillingham and Griffiths, 2000)
Figure 2.4: location of Poulton (red) and Chester (green) (adapted from Emery, Gibbins and
Matthews 1996) 15
Figure 2.5: Poulton site with the location of the burials (from Burrell and Carpenter, 2013) 17
Figure 2.6: Chester in the medieval period and the location of the Greyfriars (adapted from
Thacker, Laughton and Kermode, 2003)18
Figure 2.7: Map of Gloucester and the archaeological excavations carried out in 1989 (adapted
from Atkin and Garrod, 1990) 21
Figure 2.8: Medieval period Gloucester (adapted from The Docks Archaeological desk-based
assessment © MoLAS 2007) 22
Figure 2.9: Gloucester Southgate Street excavation original plan ([©] Gloucester City Museum) 24
Figure 2.10: location of St Saviour Abbey, Bermondsey (adapted from Dyson et al., 2011) 25
Figure 2.11: location of the Dominican friary in London (adapted from Harrison, 1877)
Figure 2.12: location of St Mary Graces Abbey (adapted from Besant, 1904)
Figure 2.13: St Mary Graces Abbey burials (adapted from Gilchrist and Sloane, 2005)
Figure 2.14: location of the East Smithfield Black Death cemetery (adapted from Hawkins, 1990)
Figure 2.15: Location of Merton (adapted from Faden and Wyld, 1829)
Figure 2.16: St Mary Merton burials (adapted from Gilchrist and Sloane, 2005)
Figure 2.17: location of St Mary Spital (adapted from Green, 1884)
Figure 2.18: St Mary Spital burials. First period (c 1120-1200) (adapted from Connell et al. 2012)
Figure 2.19: St Mary Spital burials. Second period (c 1200-1250) (adapted from Connell et al.
2012)
Figure 2.20: St Mary Spital burials. Third period (c 1250-1400) (adapted from Connell et al. 2012)
Figure 2.21: St Mary Spital burials. Fourth period (c 1400-1539) (adapted from Connell et al.
2012)
Figure 2.23: location of the site of St Nicholas Shambles (adapted from White and Dyson, 1988)
40

Figure 2.24: plan showing the burials associated with St Nicholas Shambles church (adapted
from White and Dyson, 1988) 41
Figure 2.25: plan showing the location of the Guildhall in the city of London (adapted from
Ordnance Survey 1898. Reproduced with the permission of the National Library of Scotland) 42
Figure 2.26: location of St Gregory's Priory (adapted from Somner, 1703) 45
Figure 2.27: location of St Leonard's Church in Hythe (adapted from Ordnance Survey 1877.
Reproduced with the permission of the National Library of Scotland)
Figure 2.28: some of the Hythe skulls stored in St Leonard's Church ambulatory (St Leonard's
church ossuary, Hythe – skulls, n.d.)
Figure 2.29: map of Scarborough and location of the medieval chapel within the castle (adapted
from English Heritage, 2015)
Figure 2.30: location of Guisborough Priory (adapted from Ordnance Survey 1856. Reproduced
with the permission of the National Library of Scotland)53
Figure 2.31: location of Ballumbie (Adapted from Edward, 1616-1696. Reproduced with the
permission of the National Library of Scotland) 56
Figure 2.32: location of the burials in the site of Ballumbie (adapted from Willows, 2016) 57
Figure 4.1: Comparison between female and males indices in the Poulton sample
Figure 4.2: Comparison between females and males indices in the Linenhall sample
Figure 4.3: Comparison between females and males indices in the St Owens sample
Figure 4.4: Comparison between females and males indices in the London sample
Figure 4.5: Comparison between females and males indices in the St Gregory sample
Figure 4.6: Comparison between females and males indices in the St Leonard sample 100
Figure 4.7: Comparison between females and males indices in the Castle Hill sample 100
Figure 4.8: Comparison between females and males indices in the Guisborough sample 101
Figure 4.9: Comparison between females and males indices in the Ballumbie sample 102
Figure 4.10: Cranial indices means for British (1-9) and Howells' European (10-12) samples . 103
Figure 4.11: Cranial length/height indices means for British (1-9) and Howells' European (10-12)
samples
Figure 4.12: Cranial breadth/height indices means for British (1-9) and Howells' European (10-
12) samples
Figure 4.13: Nasal indices means for British (1-9) and Howells' European (10-12) samples 105
Figure 4.14: Orbital indices means for British (1-9) and Howells' European (10-12) samples . 105

Table of tables

Table 3.1: Dating and number of individuals analysed for the project
Table 3.2: W.W. Howells database population samples (Howells 1973; 1989)70
Table 3.3: Neurocranial measurements (after Borrini, 2013)
Table 3.4: Facial measurements (after Borrini, 2013)
Table 3.5: Orbital measurements (after Borrini, 2013)83
Table 3.6: Nasal measurements (after Borrini, 2013)
Table 3.7: Maxillary measurements (after Borrini, 2013)83
Table 3.8: Formulae for neurocranial and facial indices adopted for this study
Table 3.9: Measurements used for data collection in this study
Table 3.10: Measurements and instruments used for the inter- and intra-observer error91
Table 4.1: Non-pooled British samples classification results (1. Poulton; 2. Linenhall; 3. St Owen;
4. London; 5. St Gregory; 6. St Leonard; 7. Castle Hill; 8. Guisborough; 9.Ballumbie)108
Table 4.2: British male samples classification results results (1. Poulton; 2. Linenhall; 3. St Owen;
4. London; 5. St Gregory; 6. St Leonard; 7. Castle Hill; 8. Guisborough; 9.Ballumbie)110
Table 4.3: British female samples classification results (1. Poulton; 2. Linenhall; 3. St Owen; 4.
London; 5. St Gregory; 6. St Leonard; 7. Castle Hill; 8. Guisborough; 9.Ballumbie)112
Table 4.4: British and Howells' European non-pooled samples classification results (1. Poulton;
2. Linenhall; 3. St Owen; 4. London; 5. St Gregory; 6. St Leonard; 7. Castle Hill; 8. Guisborough;
9.Ballumble)114
Table 4.5: British and Howells' European male samples classification results (1. Poulton; 2.
Linenhall; 3. St Owen; 4. London; 5. St Gregory; 6. St Leonard; 7. Castle Hill; 8. Guisborough; 9.Ballumbie)
Table 4.6: British and Howells' European female complet electification results (1. Deuters 2.
Linenhall: 3. St Owen: 4. London: 5. St Gregory: 6. St Leonard: 7. Castle Hill: 8. Guisborough:
9.Ballumbie)

1. Introduction

Skulls are subject to various adaptive responses, both regarding ontogeny and over the life of a population. It has been shown that essential aspects of cranial morphology are genetically transmitted over generations (Sparks and Jantz, 2002; Relethford, 2004a; Harvati and Weaver, 2006). Craniometric research is essential for the understanding of population history as it allows reproducibility in measurements (Howells, 1973), which means that standardisation of values is recorded on different crania. The study aims to contribute to addressing further knowledge of the population history in Britain using human skulls from the Poulton and Gloucester medieval archaeological collections.

Human migrations can have differing impacts on craniometric variation in regards to both genetic and environmental factors. Craniometric information can, therefore, be used to detect within and among group variation, migration routes and ancestral origins. Migrations are essential for understanding many characteristics of a population, and there are close linkages between migration as a phenomenon and a great number of other processes or behavioural patterns. Studies of population structure and demographic change must consequently incorporate migration because its importance is equivalent to birth and death (Anthony, 1990).

Many other studies have been undertaken to prove migrations occurred, i.e. the analysis of stable isotopes and genetics. Analysis of skeletal material and teeth even has the potential to provide direct evidence on dietary intake. In fact, Strontium and Oxygen isotopes can be used as environmental tracers. These elements provide information about the kinds of environment where a person lived in childhood and whether the person migrated to a different environment during life (Schwarcz *et al.*, 1991; Leach *et al.*, 2009; Chenery et al., 2010; Brettell *et al.*, 2012).

Genetic data can also provide proof of human mobility, confirmed by extensive research to date. In fact, differences in Y-chromosomes amongst populations within the British Isles have been detected by different researchers over the past few years. The resulting data suggest that different parts of the British Isles have different paternal histories (Capelli *et al.*, 2003). For example, Scandinavian populations had an impact in the northern Isles and Scotland (Berry and Firth, 1986) and substantial migration of Anglo-Saxon populations occurred in England (Weale *et al.*, 2002). If migrations can be proven through interdisciplinary methods, a significant correspondence should also be expected from the craniometric analysis. However, the previous methods are destructive, and researchers are not always allowed to carry out this type of analysis on human remains. Furthermore, DNA analyses are limited by environmental conditions and the quality of preserved DNA (Brown and Brown, 2011). For this reason, examination of craniometric data is an essential alternative because it does not affect the integrity of the remains and can provide significant results regarding the history of a population.

The purpose of this study is to determine whether cranial morphological variations between British populations exist and what is the reason that causes these differences (i.e. a result of previous and contemporary migrations). Craniofacial morphology variability of these two samples was analysed and allowed the comparison within and between Poulton and Gloucester, along with other 14 British medieval samples. Moreover, new additional craniometric data were recorded following the reconstruction of the skulls of these two samples to support biological and population analyses. Finally, a further comparison with the W.W. Howells (1989) dataset was made to enable the correlation with a broader data sample.

1.1 Objectives

Both the archaeological and biological contexts suggest that there have been several people movements in Britain in the past, also made clear from the historical background. This thesis aims to detect whether there is a morphological craniofacial variability in medieval Britain. The reason could be a result of a contribution of external human groups as differences both within and between populations can be detected through craniometric research.

The majority of recent craniometric studies analyse the cranial variation from skeletal remains dating to earlier periods (i.e. Iron Age and Anglo-Saxon), and most of the medieval collections have not been analysed under this perspective. For this reason, to contribute to British craniometric studies that were undertaken in the early 20th century, this research was inspired by the following assumptions: differences can be detected in craniofacial morphology within and between British medieval populations. If variability exists, the possible causes can be identified from cranial morphological traits, i.e. environmental adaptation, diet, migration or a combination of all factors.

The methodology that was applied for this study involves the analysis of 946 skulls from 16 British medieval samples. Craniometric data were recorded by the author on samples from five osteological collections and compared with previously published data. Since most of the skulls that are part of the samples from Poulton, Gloucester and Linenhall were fragmented, reconstruction of about 300 skulls was undertaken before the analysis could commence.

Poulton is an archaeological site located in Cheshire with a history that spans approximately 9000 years. In this research, approximately 200 medieval adult remains recovered from the medieval Chapel (Emery, Gibbins and Matthews, 1996; Emery, 2000), were analysed. The adult skeletons from the Gloucester sample were also examined. These particular remains were recovered from the St. Owen's church cemetery and are dated between the 12th and the 17th centuries. All of the human remains from this collection are part of an urban port population and comprise approximately 100 adult individuals. In addition, the medieval site of Linenhall, located in the city centre of Chester, was analysed. The remains belong to the Greyfriars' burial ground that was in use between 1238 and 1538. The sample size is considerably smaller (10 individuals) than the other samples analysed in this research, but it was included in the analysis for completeness.

The comparative analyses that were used to evaluate the existence of differences within and between these British medieval samples are discriminant function analysis and principal component analysis. To better show the similarities between the samples, a hierarchical cluster analysis was also carried out. Furthermore, an additional comparison to Howells' dataset was made for a more comprehensive analysis of the cranial variability. Multivariate analyses are particularly suitable for cranial measurements, which are continuous metric traits and, in this case, they are taken into consideration as a whole, determining the skull shape by the relationship between all the measurements. In fact, this method clarifies the location of the variation in skull shape (Howells, 1973; Leach *et al.*, 2009). All of these materials and methods are detailed in subsequent chapters (see section 1.4).

1.2 Hypotheses and Research Questions

Britain witnessed several waves of migration before and during the Middle Ages. Thanks to both the historical and archaeological records, it is known that migrations occurred from different parts of Europe. Because morphological characters are genetically inherited, it would be expected that regional differences reflect different ancestral backgrounds. Furthermore, geographical isolation can be experienced in some regions of Britain, as few rural areas saw a minor influx of people from the outside. Therefore, the analysis of craniometric data is important to detect whether differences between craniometric measurements occur that archaeological excavations might not identify due to the loss of information following the critical preservation of evidence.

To determine whether there are significant differences between the analysed samples, four main hypotheses are tested herein, and these are summarised as follows (see also section 3.1). The first hypothesis suggests that there are measurable differences in craniofacial morphology between the British medieval samples. The differences would be a result of the different waves of migration that occurred before and during the Middle Ages in the British territory from various parts of Europe, as stated previously in this chapter.

The second hypothesis will determine whether differences between and within British medieval populations do occur, and if these can be determined by neurocranial, facial or both

measurements. For this reason, this second hypothesis is divided into three sub-hypotheses, to allow the determination of which area of the skull is driving the differences between the samples. As discussed in section 2.3, it has been proven that the neurocranium has a higher heritability than the facial skeleton, as the temporal bone and the neurocranium are more correlated with genetic factors (Boas, 1912; Guglielmino-Matessi, Gluckman and Cavalli-Sforza, 1979; Beals *et al.*, 1984; Kohn, 1991; Jantz and Meadows Jantz, 2000; Roseman, 2004; Roseman and Weaver, 2004; Carson, 2006; Harvati and Weaver, 2006). On the other hand, the morphology of the splanchnocranium is mostly influenced by environmental factors. This means that variability could also be detected on the facial skeleton and, as Relethford (2004a) also reported, morphological craniometric traits are controlled independently by genetics and environment, and none of these factors will obscure the other.

The third hypothesis proposes that there are also measurable differences in craniofacial morphology between British medieval samples and the W.W. Howells dataset samples. These groups will cluster together based on their geographical provenance. The comparison with Howells' dataset allows examination of the differences between the major human groups and the British samples that can be detected from the skulls' measurements. Additionally, it is possible to understand how the populations that share a recent common ancestry (or exchange a large number of migrants) should resemble with one another, more than geographically distant populations (Roseman, 2004).

The fourth and final hypothesis is also divided into three sub-hypotheses (see also section 3.1). It addresses whether differences between British medieval and W.W. Howells' dataset samples do occur, and if these can be determined by neurocranial, facial or both measurements.

To summarise, craniometric data are first compared between British samples only to detect variability across different areas, possibly as a result of migration from different parts of Europe (Scandinavia or European inland) or as isolation of a site. Secondly, the British samples are compared with the broader set of population sample data provided by W.W. Howells to test whether these show a similarity resulting from geographical proximity. Geographically closer populations should show more similarities than distant groups. First, the British sample is compared to the European groups, and secondly, the British samples are compared to a selection of the major Howells' human groups.

It is also important that this research is contextualised in a broader archaeological and historical perspective, as this study is not focused merely on data description. Two major research questions were therefore proposed and are listed as follows: did the migrations occurring in the earlier periods affect the cranial morphology of the British populations? Are the differences between the British medieval samples determined by the migrations of groups of people from different geographical areas?

1.3 Significance of the study

British research involving craniometric data is uncommon in the academic literature, especially concerning medieval remains. Furthermore, most of these studies are now quite dated (i.e. Little, 1943; Tattersall, 1968; Brothwell and Krzanowski, 1974; Dawes and Magilton, 1980). The majority of the studies undertaken on British craniometric data analyse Pre-Historic, Romano-British and Anglo-Saxon populations, to see whether the variation is a consequence of migration.

There has been a long debate in the archaeological field on the causes of migration and how it is reflected in the archaeological data. Movement of people is indeed a common theme in human history, which can be observed via archaeological evidence, although it can be difficult to confirm whether it was migration or acculturation (Brettell *et al.*, 2012). It is well known that the history of Britain, especially during the Roman and the post-Roman period, has been characterised by a series of migrations from continental Europe (Hunter and Ralston, 1999; Gillingham and Griffiths, 2000; Töpf *et al.*, 2005).

After the collapse of the Roman Empire (5th century), Britain saw the arrival of the Anglo-Saxon populations from northern Germany, who displaced the Romano-Britons in the eastern and southern regions. This migration affected just these parts of Britain because Wales and Scotland experienced separate migration histories (Hunter and Ralston, 1999). For about three centuries before AD 800, the British Isles witnessed the beginning of the Scandinavian occupation. The early occupation was limited to raids in coastal sites, and especially monasteries. These raids later led to the establishment of permanent settlements. Norse colonies were furthermore founded on the Isle of Man, in the Northern and Western Isles of Scotland and some northern parts of Britain. Even England was subject to raids from Scandinavia. Later, Anglo-Saxon England witnessed the incursion of a Danish army that seized territory in Northumbria, Mercia and East Anglia, culminating with the invasion of a new army under the Danish king Svein Forkbeard in AD 1013 (Hunter and Ralston, 1999). The conclusion of the Viking Age is usually placed at the end of the mid-11th century with the Norman Conquest, with the death of the Viking leader Harald Hardraada and the victory of William I (AD 1066) (Hunter and Ralston, 1999), although the Normans themselves were also of Viking heritage. All of these events are part of British population history and brought significant cultural and archaeological changes. Although craniometric analysis has been recently taken into

consideration by a few authors (see e.g. Russell, 2007; Jones, 2014), these studies are still not comparing medieval remains. This information is presented in more detail in chapter 2.

The focus of this thesis is to analyse the craniometric data considering medieval Britain in its entirety and underline dissimilarities that occur as a result of distinct cultural backgrounds. Commencing with the curation of the remains housed at Liverpool John Moores University, this added value to the samples and resulted in a full set of complete skulls for use in this thesis. Most of the collections comprise fragmented skulls, which implies a loss of a remarkable amount of data. Following reconstruction of the skulls, craniometric data were recorded and analysed in comparison with other data sets recorded or previously published for this thesis. The study also allowed for an analysis of three samples (Poulton, Gloucester and Linenhall) that, to date, have never been published (although projects are currently being undertaken by other researchers). Furthermore, this study provided the possibility to reanalyse data that were published at the beginning of last century and produced a view of the craniometric variation in the British Middle Ages. Finally, the results provide an extensive database that can be useful for interdisciplinary research to prove the theory of migration in Britain during the Middle Ages.

1.4 Thesis Structure

Chapter 2 provides background for this thesis. The first part of the chapter describes the historical background of the Middle Ages in Britain, paying particular attention to the movements of people that occurred before and during this period. The second part focuses on the history of each archaeological site from where the data collected and included in this thesis. The third part of the chapter offers a comprehensive overview of population studies and the use if craniometric analysis for these purposes. The chapter also includes a review of the main craniometric studies that involve British samples and that have been published so far. Chapter 3 offers a description of the samples examined and the methods that were adopted for the implementation of the study. Chapter 4 presents the results divided by the different statistical analyses adopted. First are exposed the results regarding the comparison between the British samples, secondly the results for the comparison between British and A selection of Howells' main populations' samples. Chapter 5 discusses the importance of cranial reconstruction and the results reported in chapter 4. Finally, chapter 6 examines the research limitations of this study, summarises the findings and proposes suggestions for future research.

2. Historical and Literature Background

2.1 Early Historic and medieval Britain

The medieval period is conventionally set to begin in 1066 with William the Conqueror and the Battle of Hastings, but for this research, it is important to understand the early historic period that precedes this event. The years between the 5th and 11th century have been a transition between the fall of the Roman Empire and the Middle Ages, which saw different waves of migration from several parts of Europe.

With the collapse of the Roman Empire in the early 5th century, Britain fell apart into several belligerent groups, both indigenous and invaders (Hills, 1999). In fact, starting from the mid-5th century (AD 449), Britain saw the migration of the Anglo Saxons. This group of Germanic people came from three different tribes: the Angles, the Saxons and the Jutes from the area comprising northern Germany, Denmark and Netherlands (Brettell *et al.*, 2012; Russell, 2007). However, these tribes did not occupy the whole of Britain, but just the southern and the eastern parts of England. The Angles originated from the Anglian area of Schleswig-Holstein and the Island of Fyn and established in the middle, eastern and northern England along with part of the Saxons. The Saxon group originated from the areas at the south and west of the River Elbe in north Germany, and there is evidence for their settlements in the Thames Valley and the area of the south. Some Saxons also settled in eastern England although the highest concentration was in northern Wessex and Sussex. The Jutes instead migrated from Jutland (Denmark) to the area of east Kent (Arnold, 2005).

The new populations brought with them their culture including burial practices. During the first three centuries of their initial immigration, they cremated their dead and placed the ashes into urns. The cremation practice is typical of the Anglian Midlands and eastern England. In southern and northern England, there is evidence of inhumation in simple graves without coffins or similar structures (Härke, 1990). The resulting difference shows that there is archaeological evidence of a migration, which reflects the similarity with the burial customs of the native European continental area, as Hills (1999) suggests. Whether this is the result of the migration of a few people or a mass migration is not clear yet. In Scotland instead, a tribal organisation continued, which is historically referred to as a collective group known as the Pictish. In reality, this was a more complex group of tribes. Wales also had a different historical development, as the post-Roman culture continued without too much influence from the Germanic populations (Hills, 1999; Russell, 2007) (Fig.2.1).

Figure 2.1: Map of Anglo-Saxon Britain (adapted from Richards, 1999)

From the 7th Century, there is a substantial change in the Anglo-Saxon culture. As it embarks on the conversion to Christianity, there is a considerable change to burial practices. Cremation fell in disuse and grave goods (or lack thereof) adapted to a Christian fashion, with an east-west orientation of the bodies in enclosed cemeteries beside churches in the villages (Härke, 1990; Hills, 1999; Russell, 2007). In contrast, outside of the Anglo-Saxon territory, there seems to be relatively less archaeological documentation, as there are lower status settlements with not many burial sites. The little archaeological evidence that is available, however, suggests a continuity of practice and population until the gradual introduction of Christianity (Hills, 1999).

The arrival of the Anglo-Saxon populations was not, however, the only migration that the British island has seen. Another significant contribution has been brought from the Scandinavian populations, which started their raids shortly before the AD 800 (Richards, 1999). The term "Vikings" indicates individuals from many parts of Scandinavia: Sweden, Norway and Denmark. The populations from Denmark (Danes) seem to be the main settlers of eastern England, the Norwegians (Norse) settled instead in the western and northern Britain (Russell, 2007). Although the advent of the Vikings is seen as an invasion, in reality, it is part of a continuing process that began with initial raids targeted to the coastal sites, becoming a proper occupation and sizing of the lands. The reason for this expansion, however, is not known, but it is most likely that it happened due to internal pressures caused by a shortage of resources (Richards, 1999).

The first Vikings were Norwegians, and their attacks were a consequence of the earlier Norse colonisation of Shetland, Orkney and the Hebrides. They first established bases on the Irish coast, and from there they aimed at the monasteries and strongholds of Ireland and the coasts of Britain. Danes soon joined the first colonists, and a Danish army arrived in East Anglia in AD 865 (Sawyer, 2002), capturing York in AD 866. A territory was defined, at this point, between the inhabitants of Britain and the new Scandinavian settlers. The boundary between them followed the River Thames up to the river Lea, until Bedford and up the river Ouse to the line of the Roman road (in modern times known as Watling Street). From here, it continued across the country from London in the south-east to Chester in the north-west. The area was known as the Danelaw (Hall, 2000) (Fig. 2.2).

However, even if any settlement of diagnostically 'Scandinavian' type had ever been found in large numbers anywhere in England (Trafford, 2000), it has been demonstrated extensively that the Scandinavian presence can be proved by the toponyms that still survive in Britain (Crawford, 1995; Fellows-Jensen, 2000). Most of the Viking evidence found in Britain are burials, which are not so copious in England, as they seem more concentrated in the North. The funerary rites practiced by the first Viking invaders in Britian were traditionally pagan, as practiced in their homecountry. The later generations adopted the local burial customs and became indistinguishable from the Christian burials. Some of the buildings also adopt a Viking style; for example in York and Chester, the buildings are constructed with semi-sunken cellars, which reflect the ones that can be found in Danish towns (Richards, 1999).

Figure 2.2: Map of Viking Age Britain (adapted from Richards, 1991)

Richards (1999) also notes that the Viking settlers were able to live with the indigenous populations. In fact, this can be observed from the artefacts from the Norse farm in Point of Buckquoy at Birsay (Orkney): the findings were from the Norse occupation levels, but they were Pictish bone pins. The evidence allows us to consider a probable inter-marriage with the local populations with the adoption of local culture, not extermination as frequently is thought. In the countryside, the Scandinavian settlers also established manorial centres creating a boom of rural parishes and parish churches in the 10th and 11th centuries.

The Viking Age is conventionally seen ending in the mid-11th century, when Harald Hardraara, the last Viking leader, died. The event coincides with the victory of William the Conqueror and the Late Saxon period. However, the Western Isles of Scotland and the Isle of Man stayed under the Scandinavian influence until 1266, while Orkney and Shetland belonged to Norway until 1496 (Richards, 1999).

The Middle Ages are set to begin in 1066 with the Norman conquest, which brought a period of significant changes that defined a new age. Parish churches multiplied, manors evolved, and towns flourished with an increase in the number of inhabitants.

Figure 2.3: Anglo-Norman Britain (adapted from Gillingham and Griffiths, 2000)

William the Conqueror, Duke of Normandy, was of Viking lineage but living in the north of France, born from Scandinavian ancestors (Crick and van Houts, 2011). The number of Normans that followed him to Britain was not so conspicuous compared to the number of people that were on the British territory. In fact, the most significant impact was on the upper classes, which were eradicated in favour of the Norman elite. All the lands were furthermore taken away from the British people and given to the new arrivals, who also retained the lands on the Continent; this was the beginning of a single community that kept constant exchanges with the mainland (Gillingham and Griffiths, 2000) (Fig. 2.3).

Anglo-Norman was the language adopted by the upper class, and many French terms were introduced to the English language. Not only was the mainland culture becoming part of the British culture, but the genetic pool was also introduced to the existing one, as the movement of people became constant (Crick and van Houts, 2011). By the early 11th century, London was one of the biggest cities in Europe and had many trading contacts with several parts of the continent from Rouen to Germany and Flanders (Sawyer, 2002). Ships also came to river ports of York, Lincoln, Norwich, Gloucester and Chester (Schofield, 1999).

The arrival of the Normans saw a drastic change in architecture. The Normans built numerous castles that were mechanisms to keep the indigenous people under control. In fact, the caste was the fortified residence of the lords, which had a military and domestic function. It also had strategic importance, to maintain control over hostile territory. With the abolition of slavery, immediately appeared the feudalism, that characterised the Middle Ages; this was a system of vassalage where the king was the landlord and rewarded his followers with lands for their loyalty. Following the conquest, around 1500 castles were built and by 1080s, 20% of the lands were owned by the king, 50% by the baronage and 30% by the church (Gilchrist, 1999; Sawyer, 2002).

The Normans also brought a change to the communities, breaking down the large Anglo-Saxon parishes into smaller territories of individual parishes. Churches then became the focal point of the medieval communities, where the social and ritual life took place, including the burial of the dead. In fact, there is a transition from the previous concept of the grave as a selfcontained place to an idea of the entire cemetery as a limited communal sacred space. It is only between the 10th and the 12th centuries that churchyards were established as the only burial place for the parish community (Zadora-Rio, 2003).

The foundation of a cemetery could have taken place as a continuum of a previous tradition (Iron Age, Roman, Anglo-Saxon or Viking), after the foundation of a new church or in the burial ground of a chapel headed by a parish church. The choice of the place of burial of the dead was dominated by two factors: which church and where in the burial ground based on the wishes of the deceased person. For the majority of the community, the only option was to be

buried in the parish cemetery or church. In addition to the parish cemeteries, there were the chapels: these were dependent on the churches and could apply for burial rights. The most common reason for burial in chapels was the length and the difficulty to reach the parish church (Daniell, 2005).

The Normans also reorganised the administration of the Church of England, Wales and Scotland. New continental orders were furthermore introduced following the conquest and abbeys and priories were founded in association with castles, towns and manors. The ecclesiastical territories under the bishops (dioceses) that were established by the Anglo-Saxons, were kept and new were added in the 12th century. The head of each diocese was the metropolitan cathedral; these cathedrals were then divided into monasteries, with a community of monks headed by a prior, or secular cathedrals, with a chapter of canons led by a dean. Most of the monasteries were following the rule of St Benedict of Nursia, and this was the most common type in Britain. In fact, it is possible to count the establishment of at least 2000 monasteries between England, Scotland and Wales (Gilchrist, 1999). The 13th century also saw the arrival of the friars, who found hospitals in urban places and aimed at educating the poor (Schofield, 1999).

The period of well-being did not, however, last for long. The population growth and the wealth of England during the two centuries following the Norman Conquest led to many communities becoming overcrowded. The beginning of the 14th century is scarred by a famine in the years 1315-25 due to crop failures and cattle disease. The decreasing amount of crop fields is undoubtedly due to soil exhaustion. The land was being overexploited and over partitioned because the population increased between two and a half and four times by the year 1300. The decrease in available food was not only due to the increase in population. The relatively warm period (Little Optimum) that characterised the 11th and 12th centuries came to an end. In fact, the 14th century was distinguished by an unstable climate that brought droughts, floods, sea-level changes and storms with very cold winters. The geological instability was also caused by the cultivation that was pushed into inhospitable margins, producing an alteration in the landscape.

The situation further worsened with the great sheep murrain in 1313-17 and the cattle murrain, which immediately followed in 1319-21 (Platt, 2003). The 50% drop in production consequently caused a 400% increase in grain price and led to growing tensions in the society (Schofield, 1999). The Black Death also followed in 1348, which started in southern England, and by the end of 1349 spread to central Scotland. The disease reduced the British population by a third, and it continued affecting it until the 1370s. However, the later endemics were more localised and affected predominantly urban populations. Landowners were facing severe difficulties, and the leasing of plots was preferred to the high farming. Hundreds of villages were

therefore abandoned and, following the demographic crisis, they became deserted. Only in the last part of the 15th century, the number of the population began to increase again, but the 13th century's population size was only reached in the 17th century (Gillingham and Griffiths, 2000).

The next centuries were characterised by a period of mixed fortunes, which comprised the decline of some cities and the rise of others, such as London for England, and Edinburgh for Scotland. The 15th century was characterised by prosperity in the commerce, which expanded as far as the Baltic area and some of the port towns started to grow, such as Newcastle, Colchester, Ipswich, Exeter and Chester (Schofield, 1999).

The British Middle Ages historically ended with the Battle of Bosworth in 1485. Archaeologically there is, however, a material culture continuum until 1540 when the dissolution of the monasteries brought a change to the medieval institutions accompanied by a redistribution of the lands (Stamper, 1999). When the Middle Ages came to an end, the Early Modern period started with the House of the Tudors ruling the Kingdom of England and its realms until the 17th century, bringing a period of relative stability in the country.

2.2 The sites

This Chapter is an introduction to the sites from which the craniometrics data have been collected and analysed. Each subchapter examines the history of the site where the human remains have been excavated, as well as the information about the distribution of the burials. The analysis of the contexts of each site is important to understand the possible causes of the morphological variation between and within the populations taken into consideration for this project.

2.2.1 Poulton (Cheshire)

Figure 2.4: location of Poulton (red) and Chester (green) (adapted from Emery, Gibbins and Matthews 1996)

Poulton is an archaeological site located in Cheshire (Fig. 2.4 in red) with a history that spans approximately 9000 years. Poulton is mentioned in Domesday Book, which is dated to 1086. After the Norman Conquest and the ecclesiastical reform, a Cistercian abbey was founded, probably sometime between 1147 and 1153. The foundation charter survives for the abbey of Poulton at its successor Dieulacres abbey in Staffordshire, but the physical abbey has not been

found yet. The site had a short life since it lasted only until 1220 when the monastery was relocated to Dieulacres and Poulton was converted into a grange. A small group of monks, however, stayed in the chapel, which remained the focus of the new abbey's agricultural exploitation of the land (Emery, 2010). The chapel was found and excavated in 1995 (Emery, 2000), and recent archaeological work revealed that probably the earliest origins of the chapel predate the foundation of the abbey, possibly 1020's (late Anglo-Saxon) (Emery, 2010).

The first mention of Poulton chapel appears in 1250, where it is reported that it was used from the people living in a village served by a monk. The building was surrounded by a burial ground, where it was estimated that there had been buried around 1200 people. The chapel appeared to have been used until the English Civil War, in the 17th century and disappeared after that (Emery, 2000).

The material that was analysed for this study was recovered from the cemetery that surrounds the Poulton medieval chapel. Poulton Research Project carried out the excavations since 1995 until present days in collaboration with Liverpool John Moores University (where most of the remains are housed) and uncovered about over 900 skeletons to date, together with a considerable amount of disarticulated human remains. Some of the earlier skeletal material was sent for re-burial at Mount St. Bernard's Monastery in Staffordshire, so the analysis of those remains was not possible (Burrell and Carpenter, 2013).

The number of the burials inside the chapel and in the northern part of the cemetery is lower than in the western and southern sides, as it is noticeable from Figure 2.5. A possible hypothesis could be the burial of higher status people inside the building, which could also suggest that these were later than the construction of the chapel. The majority of the burials also have an east-west orientation in extended supine position, which reflects the Christian standard.

A small sample of remains had been radiocarbon dated as part of an earlier study. Skeleton 53 gave two date ranges of 1531-1537, 1635 and 1780-1799. In 2012, the same and skeleton 535 were radiocarbon dated using tooth roots: skeleton 53 gave a range of 1470-1520 and 1560-1630, while skeleton 535 gave a chronology between 1280 and 1320. The latest analysis gave a clearer view of the chronology of the burials, which fits in the chronology of the site as well (Burrell and Carpenter, 2013). Continuous research is taking place in Liverpool John Moores University for the analysis of the human remains, which will help to provide a clearer understanding of the medieval Poulton community.

Figure 2.5: Poulton site with the location of the burials (from Burrell and Carpenter, 2013)

2.2.2 Linenhall, Greyfriars (Chester)

Figure 2.6: Chester in the medieval period and the location of the Greyfriars (adapted from Thacker, Laughton and Kermode, 2003)

The site of Linenhall is located in the city centre of Chester (Cheshire), in the area that belongs to the Greyfriars' site, in use between 1238 and 1538 (Fig. 2.4 in green). Chester's history

began with the occupation by the Roman legions, and it acquired a significant role in medieval British history.

After the Roman army left Chester, there must have been a continuity of occupation. By the 7th century, Chester and the surrounding territory was part of the Welsh kingdom of Powys. The lack of historical records, however, does not allow us to reconstruct precisely the Anglo-Saxon period of the city. Thacker, Laughton and Kermode (2003) report that Chester passed under the Mercian influence and that a 12th century tradition states that the Mercian king Æthelred founded St John's Cathedral in the late 7th century. He also suggests that the placename "Henwald's Lowe" (which can be seen in figure 2.6) can be attributed to an Anglo-Saxon origin.

In AD 893, the Vikings raided Chester and culminated with the occupation by the Danes, as part of the Danelaw. There is, in fact, architectural evidence in Chester of semi-sunken cellars used as storage for traded and manufactured items, which is reminiscent of the ones occurring in many Danish towns. The walls of the Roman fort were furthermore refurbished and probably extended to the river Dee by Æthelflæd in AD 907, consequent to the establishment of a Hiberno-Norse community in Wirral that was expulsed from Dublin.

The location of Chester was advantageous for the maritime trade. Starting from the 10th century, it had several connections with Ireland and the Scandinavian settlements in the Irish Sea. The Hiberno-Norse settlement was certainly located in the southern area of the legionary fortress, where the majority of the Scandinavian type architecture was found (Lower Bridge Street). The foundation of two churches, St Olave's and St Bridget's Church, furthermore date to the Scandinavian settlement of the city (Thacker, Laughton and Kermode, 2003). In this period, Chester also became an important centre for coin production, which operated in northwest Mercia (Richards, 1999; Thacker, Laughton and Kermode, 2003).

In 1066, Chester was a prosperous town within the most populated area of the surroundings. At this time, three lords administered the city: the king, the earl and the bishop. The city also continued to be very important for the external trade, and it is confirmed by the complex system of tolls imposed on the cargoes of the ships arriving into the port.

With the Conquest, Chester took part in the rising of 1069-70. William I then brought his army into the city and built a castle, replacing the earls with a Fleming, Gherbod. The new fortress also gave to the city a military role, and it became the base for military campaigns against the Welsh and the Irish. Alongside this function, Chester maintained an essential position in the overseas trade. Ships arrived in its port from Aquitaine, Spain and Germany and the town became a focal point for the interchange in the area.

The Normans brought further changes in the religious life of the city. In fact, the northwestern Mercian see was transferred from Lichfield to St John's Cathedral in 1075. In 1092,

the minister of St Werburgh was furthermore changed to a Benedictine community. Other religious foundations followed this one: the Benedictine nunnery and the St John's and St Giles' hospitals. Further smaller parish churches also emerged by 1150: St Peter and St Mary (Thacker, Laughton and Kermode, 2003).

By the 13th century, Chester was a prosperous port, and its economy continued expanding reaching its peak. The city had a market twice a week, that was concentrated in the open spaces by St Peter's church, and many traders were attending them. It also continued its military role as a supplying centre for the royal expeditions in Wales. The favourable situation stimulated the local market, as the merchants had to supply the armies that were brought there by the royal order. The trading also involved France, as small amounts of pottery can be found in the city, mainly for the importation of wine (Thacker, Laughton and Kermode, 2003).

The city was moreover important as being the capital of the earldom. The castle was, in fact, the seat of the justice of Chester, the chamberlain and clerks of the exchequer and a county court. This brought to the city the permanent presence of influential officials. Its importance as an ecclesiastical centre continued in the 13th and 14th centuries. St Werburgh remained the wealthiest abbey in the North-West, with forty monks and a significant number of visitors from Wales and Ireland. St John's cathedral instead hosted the seat of the archdeacon of Chester and his court. In the 13th century, three friaries were established in the town: the Dominicans in the 1230s, the Franciscans in 1238 and the Carmelites in 1277. None of the friaries were wealthy, but they were very popular with the people, and they were favourite places of burial. Most of the higher status representatives chose to be buried in the Carmelite friary, while the Franciscan and the Dominicans were more popular between the lower classes (Thacker, Laughton and Kermode, 2003).

The sample that was analysed for this research belongs to the Greyfriars' burial site, which was discovered during the construction of a student accommodation complex. Twenty burials were excavated by L-P Archaeology between November 2015 and January 2016, and the remains were stored in Liverpool John Moores University until they went for reburial in August 2017. Only ten of these burials were however analysed due to taphonomical changes that caused damage on the other remains.

All the recovered burials were in an east-west orientation, typical of the Christian standard. Eight of them appeared to be shrouded, while the remaining eight seem to indicate a coffin burial. The positioning appears to be supine for all the burials, except for one that shows to be flexed. Radiocarbon dating was carried out on seven of the adult skeletons, which involved teeth samples (mostly molars). The dates span from 1155 to 1470, which appears to be consistent with the historical record of the use of the Greyfriars' abbey (Davenport, 2018).

20

2.2.3 St Owen's Cemetery, Gloucester

The site of St Owen's church in Gloucester is located in the city centre, on the west side of Southgate Street, between Kimborose Way and the entrance to the Docks (Figure 2.7 and 2.8) (Atkin and Garrod, 1990).

Figure 2.7: Map of Gloucester and the archaeological excavations carried out in 1989 (adapted from Atkin and Garrod, 1990)

Figure 2.8: Medieval period Gloucester (adapted from The Docks Archaeological desk-based assessment @ MoLAS 2007)

The town has its origins since the prehistoric times, but it is with the Roman presence that it became important. In fact, the Roman town of Gloucester was built as a fortress in the 1st century, which became a *colonia* in the 2nd century (Bryant and Heighway, 2003). There seems to be continuity from the Roman and the later occupation, as a Roman cemetery became the site of the late Anglo-Saxon minster of St Oswald. The church of St Mary de Lode also had its foundations on a post-Roman burial chapel, and the high-status Roman cemetery of Kingsholm became the site for a late Anglo-Saxon royal palace in AD 896.

In AD 577 the city of Gloucester was captured by the Anglo-Saxon invaders and declared head of the district. By the 7th century, the town became part of the kingdom of Hwicce and passed under the influence of Mercia in AD 628. Although Gloucester did not have a Viking influence, in AD 877 part of the Danish army camped in the town (Herbert, 1988). In the 10th century, Gloucester acquired an administrative and military status and was organised for defence by AD 914 by Æthelflæd of Mercia, who also founded the minister of St Oswald in AD 900. Differently from the earlier centuries, the town was given attention that was the start point of the economic growth for the following centuries.

By the Norman Conquest, Gloucester had already many close links with the rulers of England. In the 12th century, the castle was rebuilt, and its importance increased thanks to its strategic position in relation to South Wales. In the century that followed the Conquest, the town also had ten churches, and most of them were founded before 1066. One of the later ones was St Owen's church, probably founded by Roger of Gloucester. Three hospitals were

furthermore built in the 12th century: the leper hospital of St Mary Magdalene, the hospital of St Margaret and St Bartholomew.

The largest religious house was the Benedictine abbey of St Peter, which was also involved in the affairs of the town. It was a major landlord of most of the surrounding lands, owning many manors around the town and along the river. The house also had the patronage of two of the churches in the town, St Mary de Lode and St John, and secured St Michael and Holy Trinity.

Gloucester was also in an excellent geographical position, not only for its military importance but also for its trades. The town was known for its ironworking and cloth making, which insured the trade in the country through the river Severn and, through Bristol, also overseas. Bristol also involved the trade of wine from Gascony (Herbert, 1988). Gloucester was further important as an administrative centre because the sheriff carried on from the castle the county government. By the end of the 12th century, Gloucester registered a growth in population caused by conspicuous immigration in the area. Most of the immigrants were from the surrounding areas, such as the Midland towns, but the friars were also attracted to this city. The Franciscans and the Dominicans in fact founded communities in the 1230s and the Carmelites in the 1260s.

In the 14th century, Gloucester experienced the economic problems that were affecting the whole country. Its position as a trading and administrative centre, however, helped the community to get through this hard period without too many changes. The Black Death also affected the town and left the LLanthony Priory with a third of its canons and Gloucester Abbey lost a quarter of its monks. Though disease and economic problems affected the country nationally, Gloucester retained its prosperity for the remainder of the 14th century. The trades, in fact, continued with goods coming from London, Bristol and Southampton to be redistributed in the area and South Wales. St Mary de Crypt and the chancel of St Michael were also rebuilt, that could be identified as a sign of wealth (Herbert, 1988).

The prosperity of the 14th century seemed to have declined by the 15th century. A significant number of the population had been lost to the plague and, as a result, many of the numerous churches were in disuse. Even the number of foreign people, which were paying for trading rights in the town, diminished: from a number of about 300 listed in the 14th century it went down to about 100 for the 15th century. The drop indicates a decline in trade and affairs. With the dissolution of the monastic houses and the end of the medieval period, Gloucester entered a new era: the Gloucester Abbey became a cathedral, and the town finally was proclaimed city in 1541.

23

The human remains analysed for this research were recovered from the site located on Southgate Street (site 3/89) (Figure 2.9). The occupation of the site after the Roman period started in the 10th/11th century. Timber buildings were built and report a cut by a ditch, believed to be the east boundary of the Norman castle's orchard (Atkin, 1990). This site was then acquired by Llanthony Priory in 1137, and it seems that was abandoned in the late medieval period with a reorganisation in the mid-15th century. The cause of the abandonment of the site is not known, but it seems to coincide with the increased density of the burials in the cemetery of St Owen's church, probably linked with the Black Death (Atkin, 1990; 1992). More than 300 burials were recovered, together with the later burials from the Independent Chapel and the Royal Infirmary. The site of the church was then destroyed in 1847 during the extension of the docks (Atkin and Garrod, 1990). The human remains are currently housed at Liverpool John Moores University and are analysed for several undergraduate and post-graduate projects.

Figure 2.9: Gloucester Southgate Street excavation original plan (©Gloucester City Museum)

2.2.4 Monastery of St Saviour, Bermondsey (Southwark)

Figure 2.10: location of St Saviour Abbey, Bermondsey (adapted from Dyson et al., 2011)

Bermondsey Abbey was located in the south side of the River Thames, opposite the Tower of London, at what is now Abbey Street (Fig. 2.10). The evidence of occupation of this site dates from the Neolithic and Bronze Age periods. The Roman artefacts and burials also suggest the proximity of a settlement in the area. The majority of the archaeological evidence indicates an increase of finds for Mid-Saxon and Late Saxon period. In fact, the first buildings on the site are represented by a small apsidal chapel enclosed within ditches. This suggests that probably the area was on or near the centre of a high-status settlement, possibly of a religious nature with a Saxon minster church.

The area is also mentioned as "*nova et pulchra ecclesia*" in Domesday Book, as the site of the royal manor of Bermondsey. It is possible that the church mentioned was the chapel commissioned by William I (Dyson et al., 2011). Before the Norman Conquest, the manor was held by Earl Harold, and later Alwin Child founded the priory of St Saviour, Bermondsey, in 1082 for the monks of the Cluniac Order. This order was the medieval organisation of the Benedictines which had its origin from the abbey of Cluny, France.

The Conqueror's first intention was to use the Cluniac monks to reform the English church (Knowles and Hadcock, 1971), carrying an expression of a newly found sense of Anglo-Norman rather than a Norman identity (Burton, 1994). The French house sent four monks to establish a cell in Bermondsey after William Rufus had granted the monastery his manor between 1093 and 1097 (Graham, 1926). By 1150, the monastery was equipped with a *necessarium*, an infirmary, the infirmary chapel and other peripheral buildings. In the north side, outside the chapel, was situated the cemetery where the human remains analysed for this research were excavated.

With Henry I and the Norman kings, the order of Cluny received a lot of care and respect. This led to a discrete amount of donations and lands to the Monastery, and it is confirmed by the archaeological evidence of the expansion of the priory buildings. Important benefactors were also buried here: Mary Countess of Boulogne, Leofstan domesman of London, William Count of Mortain and Adelaide wife of Hugh de Grantmesnil (Dyson *et al.*, 2011). Bermondsey was well known as it claimed to house the relic of the Holy Rood and attracted a high number of pilgrims. Its building was suitable for large assemblies and councils of state during the 12th and 13th centuries (Graham, 1926). In fact, in 1152 the king's court convened here to consider the state of the kingdom and the expulsion of foreign people. Furthermore, between the late 12th and the beginning of the 13th century, Prior Richard built a hospital for lay brethren and boys (Malden, 1967; Dyson *et al.*, 2011).

The wealth of the monastery, however, did not last, as in the 13th century, the financial position worsened and the earliest records that can be found in Cluny, mention a delegate from Bermondsey who stated that the house was nearly reaching the bankruptcy. Later reports mention that the primary cause of the crisis of the monastery in the second half of the century was caused by repeated flooding and consequent loss of revenue from lands, with the following factor of alienation of priory lands and properties. In 1337, Bermondsey was sequestered as an alien priory (Dyson *et al.*, 2011). In 1381, the monastery was denized and got its independence from the motherhouse in France. In 1399, Pope Boniface IX proclaimed it abbey under King Richard II.
In the 14th century, the abbey also seemed to have returned to its first respectability and several influential people, such as Katherine widow of Henry V and Elizabeth widow of Edward IV, retired in the monastery (Malden, 1967). After the Dissolution of the monasteries, the Abbey became the basis for Sir Thomas Pope's mansion and in 1556 became the residence for the family of Radcliffe, Earls of Sussex (Dyson *et al.*, 2011).

The Department of Greater London Archaeology (DGLA) and the Museum of London Archaeology (MOLA) excavated the site between 1984 and 1988. The location is now part of the London Borough of Southwark, and it is a Scheduled Ancient Monument.

The number of individuals that were recovered amounts to 201 skeletons and are currently stored in the Centre for Human Bioarchaeology at Museum of London Archaeology. The earlier burials pre-date 1089, but the cemetery continues to be also used after the Dissolution of the monasteries. All the burials appear consistent with the Christian standards, and 19 of these burials are placed in a stone or mortar cist, while 21 report evidence of wooden coffins, as suggested by the presence of coffin nails. The burials in the external cemetery began in the western part north of the chapel and south of the priory church and developed eastwards, while three were inside the chapel (Dyson *et al.*, 2011; Gilchrist and Sloane, 2005).

2.2.5 Dominican Friary, Carter Lane (London)

Figure 2.11: location of the Dominican friary in London (adapted from Harrison, 1877)

The Dominican friary in London (also known as London Blackfriars) is located in the south-west corner of the area of central London, on the northern side of Carter Lane (Fig. 2.11). The earliest features found on the site are truncated pits and parts of the ditches dated to the Norman period fortress, probably Montfichet's Tower. The lowest and oldest excavated fills are dated 1050-1200. From the excavation data, it can be assumed that the fortress was in ruins by 1272 and that the Dominican friars used the building materials to build their friary nearby. The South ditch instead, which corresponds more or less to Carter Lane, was gradually infilled (dated by pottery 1150-1350) and used as part of the friary cemetery (Gaimster, Margeson and Barry, 1989).

The first Dominican friaries arrived in Britain in 1221, and in the same year, three of them reached London, settling in Holborn, near the Old Temple. Hubert de Burgh must have been their chief benefactor and bequeathed them his mansion near Westminster. By 1250, the order could count 400 members that already settled in the building.

The Blackfriars received conspicuous popularity in the English aristocracy, assisting Henry III and Henry IV. The position within the area of Westminster though did not facilitate their popularity, because it was located outside the city centre of London. In 1276, the archbishop of Canterbury, Robert Kilwaldby, managed to move the friary to the site on the Thames by Ludgate with Edward I being the official patron (Page, 1909). Even Edward II appears to have resided in the house a few times, and the number of state businesses carried out in the convent proves the importance that was given to the friary. The acquired prosperity was also a reason that caused a loss of popularity of the Dominican friars within the city, being accused of a lack of humility.

There was, however, a shift in public opinion regarding the Blackfriars as is evidenced in a large number of general citizens opting to be buried at the Dominican friary's cemetery. Furthermore, in 1382 the council for the discussion over the Wycliffe heresy and in 1413 the examination Sir John Oldcastle took place at the monastery. Even in the 15th century, the friary kept its good reputation, as Henry IV chose one of the friars as his confessor and the ambassadors of the Duke of Brittany in 1413 and the French ambassadors in 1445 stayed at the monastery. In 1436, Sir John Cornewaill, linked to the Lancastrian family, established a chantry in honour of the Virgin in the chapel located in the churchyard, and in 1470, Jon Tiptoft Earl of Worcester requested to be buried in the chapel that his family built in the nave of the church.

During the 14th and 15th centuries, the number of friars in the monastery decreased compared to the previous centuries, but it was still a centre of religious activity and an aspired place of burial for all the classes. In its last century of life, the friary was so involved in political affairs with the English aristocracy that the whole institution was considered "antichristian", and in 1538, the house surrendered with its prior and fifteen friars (Page, 1909).

The excavations of the area were undertaken by the Museum of London Archaeology (MOLA) in two phases during November 1987 to March 1988 and June to July 1988, supported by the funding from Eagle Star Assurance and London and Paris Properties. The articulated burials amounted to 60 individuals, 13 of which were part of a mass grave and two in a double burial. There was evidence of 25 coffin burials, one lead coffin and five possible empty or unused graves. Based on the finds from the burials, the dating suggested spans from 13th to the 14th century, but two of the burials might be later ones (16th century) (Gaimster, Margeson and Barry, 1989). The remains are currently stored in the Centre for Human Bioarchaeology at the Museum of London Archaeology.

2.2.6 St Mary Graces Abbey, London

Figure 2.12: location of St Mary Graces Abbey (adapted from Besant, 1904)

The site of St Mary Graces abbey is located where the site of the Royal Mint was, just on the east side of the Tower of London (Fig. 2.12). The Cistercian Abbey of St Mary Graces was established in London after the first wave of the Black Death in 1350 (Grainger and Hawkins, 1988). The parish was founded by King Edward III in honour of the Virgin, and the site was called the New Churchyard of Holy Trinity, as it was acquired by John Corey, a clerk, for a burial ground during the plague (Page, 1909).

Initially, the Abbey was not a wealthy institution, and the donations were only sufficient to sustain the monks that were living there. The construction of the buildings took several years, and they were not completed until 1379. By the end of the 14th century, the Abbey already had a position of some importance. During this period, the abbot of St Mary Graces, along with the ones of Boxley and Stratford, were asked to convoke the order and the abbey was the meeting place of the chapter general. Some eminent people also decided to be interred in the Abbey, such as Sir Simon Burley, and this explains the importance of the church for few members of the London aristocracy.

During the 15th century, the abbey maintained its status and the abbot served on the commissions for the administration of the confining district under Edward IV and Henry VIII (Page, 1909). The abbey survived until the Dissolution of the monasteries (circa 1540) and later

in 1560 was purchased by the Crown and converted into a storage yard for the Royal Navy until the mid-17th century. When the Abbey was in use, the general population used the churchyard, while monks and eminent people were buried within the abbey's church and chapels (DeWitte and Bekvalac, 2011).

The excavation of the site was carried out by the Museum of London Archaeology (MOLA) in 1986-1987, and 420 burials were uncovered, divided into two groups between the abbey and the churchyard. The inhumations were placed at the north of the church and extended westwards, overlying the earlier Black Death cemetery. Inside the abbey, the burials were mainly concentrated in the nave, but some were also recovered from the choir, the chancel, the chapels, the porch and the cloister. All the burials, external and internal, followed the Christian standards (Fig. 2.13) (Gilchrist and Sloane, 2005; Grainger and Phillpotts, 2011). The remains are currently stored in the Centre for Human Bioarchaeology at the Museum of London Archaeology.

Figure 2.13: St Mary Graces Abbey burials (adapted from Gilchrist and Sloane, 2005)

2.2.7 East Smithfield Black Death Cemetery (London)

Figure 2.14: location of the East Smithfield Black Death cemetery (adapted from Hawkins, 1990)

The East Smithfield Black Death cemetery is located in the northern side of St Mary Graces Abbey (Fig. 2.14). East Smithfield (also called "no mans land") was one of the areas purchased in 1348 by John Corey and was consecrated by the Bishop of London to be used as an emergency burial ground for the victims of the Black Death that were exceeding in the other cemeteries. The burial ground was used only for the period from 1348 until 1350 before St Mary Graces Abbey was built. The site was then used as a storage for the Royal Navy, and later, with the subsequent building of the Royal Mint, substantial damage and truncation of the burial site occurred in the eastern part of the cemetery (Grainger *et al.*, 2008).

The Black Death arrived in Britain in 1348, probably through infected ships arriving at a borough of Weymouth, Dorset (Hawkins, 1990). The population of the city was estimated to

reach between 45000 and 80000 inhabitants and between a third and a half are thought to have died during the Black Death. The cemetery was one of the two emergency burial grounds established in London to cope with the crisis. The second was located in West Smithfield, that later became the site of the London Charterhouse (Grainger *et al.*, 2008).

The excavations of the site were carried out between 1986 and 1988 by the Museum of London's department of Greater London Archaeology (DGLA), funded by City Merchant Development, as part of the Royal Mint excavation project. The excavations brought light to the fact that only a small portion of the area, which was supposed to be designated for the burial ground, was used for the inhumations. In fact, the burials occurred just in two areas: the west and the east (Fig. 2.14). The lack of burials in the central area could be explained by the fact that probably the number of fatalities did not reach the number that was expected (Hawkins, 1990).

All the burials were in supine position and following the Christian standards. In the western area, a total of 558 skeletons were exhumed, of which 300 uncovered from a mass burial. The eastern cemetery contained 192 individuals, of which 102 from a mass grave (Grainger and Phillpotts, 2011). At least 167 individuals recovered from the western area were buried within coffins, 14 in shrouds and 13 interred with deposits of ash. Furthermore, two coins were found, and this gave the possibility to give a *terminus post quem* of 1344 (Hawkins, 1990). In the eastern part of the cemetery instead, 63 individuals appeared to be buried in coffins, one with a shroud and two with deposits of ash. In addition, some of the graves appeared to be empty: it may be possible that this could be the result following the dissolution of the bones due to chemical contamination from the Royal Mint manufacturing processes (Hawkins, 1990; Gilchrist and Sloane, 2005). The remains are currently stored in the Centre for Human Bioarchaeology at the Museum of London Archaeology.

2.2.8 St Mary Merton Priory (London)

Figure 2.15: Location of Merton (adapted from Faden and Wyld, 1829)

The priory of St Mary Merton is located about nine miles in the south-west of London (Fig. 2.15). Merton is well known for two historical facts that took place in the area before the Norman Conquest: the murder of Kenulf, king of the West Saxons in 784 and a battle between Danes and Saxons in 871.

Gilbert Norman, sheriff of Surrey, in 1115 appointed the building of the first Austin convent that was initially made of wood. Robert Bayle was the first prior of the convent and, after living in Merton for two years, thought that the place would have been better for religious retirement. After this decision, the sheriff built a wooden chapel, removing part of the cloister and some of the cells. In 1130, the construction of the abbey with stone started; in the same year, the sheriff died and was buried inside the walls of the convent. The cloister and the other buildings were finally completed by 1136 (Brayley *et al.*, 1850; Lysons, 1972).

During the 13th century, the monastery saw several historical events. In 1217, the pope's legate, Cardinal Gualo, concluded the peace between Henry III and the French prince. In 1232, an armed mob directed towards the convent to get Hubert de Burgh, the great justiciar of

England, as he refused to leave the priory after the order of the King. In 1236, the priory was used for the holding of the Parliament, which passed the Statute of Merton that is considered the first English statute, between King Henry III and the Barons of England. Furthermore, Thomas Becket, archbishop of Canterbury, was educated in the priory school (Brayley *et al.*, 1850).

In the 14th century, the convent funded the royal house several times, because it was made the collection point for the royal aid levied in Surrey for its strategical position, and became a place for maintenance for several exponents of the English aristocracy. In 1538, like all the other monasteries and priories, Merton was surrendered by John Ramsey, the prior, and other 13 other people who were living in the monastery. The church was demolished and the materials used for the construction of Nonsuch Palace (Malden, 1967).

The excavations of the site were undertaken by DGLA between 1977 and 1983 and by MOLAS in 1986-1987 (Thompson, Westman and Dyson, 1998). The remains are currently stored in the Centre for Human Bioarchaeology at the Museum of London Archaeology. A group of 738 burials was excavated, clustered in four main areas: the church, the cloister and the chapter house (Fig. 2.16 in blue), the north cemetery, the south cemetery and the western cemetery (Fig. 2.16 in brown).

The burial practice was varied, and all the burials followed the medieval standards. The use of wooden coffins was 18%, but 43 stone cists, three lead and four stone coffins were also recovered. Four graves had head support stones and two pillows (Gilchrist and Sloane, 2005).

Figure 2.16: St Mary Merton burials (adapted from Gilchrist and Sloane, 2005)

2.2.9 St Mary Spital (London)

Figure 2.17: location of St Mary Spital (adapted from Green, 1884)

The Augustinian priory and hospital of St Mary Spital are located in the northern side of Folgate Street, in the northeast of London (Fig. 2.17). The cemetery seems to have been used before the founding of the hospital, and the land where it was located was situated outside Bishopsgate.

The medieval priory and the hospital were established in 1197 by a group of London merchants as a result of an increasing population and consequently a rise in need of care for the diseased (Connell *et al.*, 2012). Walter Brunus and his wife Roisia (two of the founders) confirmed the foundation of the house and in 1235 when the church was rebuilt further east (Sheppard, 1957). The house belonged to the Augustinian order, and it accommodated both canons regular and lay brothers and sisters. Until 1280, the infirmary used a different cemetery. In fact, the continued use suggests that the main cemetery was not used by the hospital, but for the burials of the canons, lay individuals, residents and benefactors (Connell et al., 2012).

In 1341, the hospital was reported to be established to receive pilgrims and the infirm until they recovered, pregnant women and children whose mothers died there during the childbirth. In the 14th century, the hospital also housed a few people from the aristocracy, such as the servant of Edward I's confessor, two of Edward III's yeomen and Robert de la Naperie (Sheppard, 1957). In 1391, a chapel dedicated to St Edmund and St Mary Magdalene was founded by William Evesham. The chapel was destroyed by the end of the 17th century, but the charnel house survived instead. This section of the building was used to store bones that had been disturbed from the cemetery, but it was cleared by the Dissolution.

At the end of the 14th century, a stone pulpit was built in the centre of the cemetery, to held sermons on Sundays and Easter Mondays, Tuesdays and Wednesdays. In this period, a part of the cemetery on the western side of the pulpit went out of use, although there is a small group of burials dated to the 15th century. In the north side of the pulpit and to the east of the chapel instead, a remarkable number of juveniles are buried, indicating that this area might have been used just for the interment of children (Connell et al., 2012). Finally, in 1538, after the Dissolution, the church was already in ruin, but the infirmary kept its use (Sheppard, 1957).

The excavation of the area has been carried out by the Museum of London Archaeology (MOLA) between 1985 and 1989. The remains are currently stored in the Centre for Human Bioarchaeology at the Museum of London Archaeology. As a result of the excavation, the area reported multiple sites within the hospital cemeteries, divided into four main groups of burials, which date to four different periods based on stratigraphic interpretation: *c* 1120-1200 (Fig. 2.18), *c* 1200-1250 (Fig. 2.19), *c* 1250-1400 (Fig. 2.20), and *c* 1400-1539 (Fig. 2.21). Burials probably ended between 1485 and 1510, before the closure of the priory after the Dissolution.

The excavation produced a conspicuous quantity of individuals, which amounts at 10516 skeletons. Half of the individuals were interred in single burials and the other half in multiple graves. The multiple burials (175), with bodies buried in a number of horizontal rows on top of each other in a single grave, tend to be placed further away from the church. The maximum number of bodies found in a single grave cut was 45 individuals, which Connell *et al.* (2012) interpret as a catastrophe. The bodies in the mass graves were disposed with care and orientated roughly in the Christian standards, although some of them were orientated north-south, probably with the intent of filling in the gaps. The burial pits were found in each of the phases of the cemetery and the majority of them pre-dated the Black Death so that it is not possible assigning them to this event. Connell *et al.* (2012) provide possible explanations to these events: the cemetery run out of space due to the rise in population and a need for mass burials followed; or a rise in mortality necessitated for multiple burials. However, outbreaks of infectious diseases were not infrequent in medieval London, along with famines. The earlier excavations also revealed 16 burials inside the church, which might indicate individuals of higher status.

Figure 2.18: St Mary Spital burials. First period (*c* 1120-1200) (adapted from Connell *et al.* 2012)

Figure 2.19: St Mary Spital burials. Second period (*c* 1200-1250) (adapted from Connell *et al.* 2012)

Figure 2.20: St Mary Spital burials. Third period (c 1250-1400) (adapted from Connell et al. 2012)

Figure 2.21: St Mary Spital burials. Fourth period (c 1400-1539) (adapted from Connell et al. 2012)

2.2.10 St Nicholas Shambles, Newgate Street (London)

Figure 2.22: location of the site of St Nicholas Shambles (adapted from White and Dyson, 1988)

The site of the parish church of St Nicholas Shambles is located on the north side of Newgate Street in the City of London (Fig. 2.22). The church of St Nicholas Shambles is first attested in 1144, and it is also mentioned in 1187 as being located next to the meat market, from where it takes its name (Thornbury, 1878). In 1196 it was also called as St Nicholas de Westrnacekaria (Harben, 1918)

It is not known much about the history of this parish church. Everything that was written about St Nicholas Shambles comes from the records in its final years before it was demolished. The archaeological excavation brought to light a circular hut and a boundary ditch that predated the establishment of the Roman street beneath Newgate Street. Two rectangular buildings are also present that were destroyed by fire, probably Boudican. In the later Roman period, the area saw the rebuilding of commercial premises with smaller chambers that were again destroyed by fire, probably Hadrianic (Schofield and Maloney, 1998).

The church was built in an initial structure of a nave and a chancel probably in the 11th century and then extended in the second half of the 12th century. In the wills that have been registered in the City court of Hustings from 1341, can be traced that 13 people desired to be buried in St Nicholas: only one of them (Nicholas de Thame) in the burial ground and the rest inside the church (Schofield, 1997). Later in the 1540s, the parish was abolished before its incorporation within the parish of Christ Church, together with the Greyfriars and the parish of St Audoen. All of these parishes and the St Bartholomew's Hospital in 1546 were granted by the King to the Mayor and Corporation of the City to take care of the poor. In February 1548, the

City issued the order to removal of the altars and the plate of the church, which brought to the abandonment of the building and the dismantlement in May 1551. In early 1552, as the church was completely demolished, the works for the construction of the Bull Head started: 14 dwellings surrounding a central courtyard were precisely dug on the perimeter of the church, churchyard and the parsonage. This building was demolished in the 1860s for the construction of the General Post Office buildings (Schofield, 1997).

The site was excavated by the Department of Urban Archaeology of the Museum of London between 1975 and 1979. A total of 234 skeletons have been excavated, the majority of which were fairly intact, but others present truncation. A number of 189 of them had a simple burial, perhaps in a coffin; 22 cases report stone pillows; 10 graves had a floor of crushed chalk and mortar; eight skeletons were buried in cists, and one case represents a charcoal burial (White and Dyson, 1988). The remains are currently stored in the Centre for Human Bioarchaeology at the Museum of London Archaeology. All the burials seem to be supine following the Christian standards. The cemetery was situated in the area at the north of the church and east of the patronage (Schofield, 1997) (Fig. 2.23). As reported by White and Dyson (1988), the burials that have been excavated might relate to the early stages of the church, which span from the 11th to the 12th centuries.

Figure 2.23: plan showing the burials associated with St Nicholas Shambles church (adapted from White and Dyson, 1988)

2.2.11 Guildhall Yard (London)

Figure 2.24: plan showing the location of the Guildhall in the city of London (adapted from Ordnance Survey 1898. Reproduced with the permission of the National Library of Scotland)

The London Guildhall Yard site is located within the medieval walls of the city of London, on the northern side of Gresham Street (Fig. 2.24). The site of the Guildhall was previously occupied by a Roman amphitheatre that was abandoned at the end of 4th century. Some of the walls were dismantled for the reuse of the building materials for the city walls bastions or the riverside walls (Bowsher *et al.*, 2007). Later, by the 9th century, the Saxon occupation was situated in two main areas: one located outside to the west of the Roman walls in the mercantile settlement of Lundenwic and the second was an ecclesiastical and administrative centre inside the city walls (Malcolm, Bowsher and Cowie, 2003). The archaeological research suggests that the Saxon settlement reached the excavated area, with evidence of a sunken-floored building, finds of pottery, plants and animal bones indicating a domestic type of occupation.

The Norman Conquest seems not to have affected the structure of the city immediately, but later in the 11th and 12th centuries, several parish churches were built, together with a more developed settlement outline. This growth also brought to a change in the Guildhall area. The site of the Guildhall also comprised a church: St Lawrence Jewry. The church took its name "Jewry" for its proximity to the Jewish quarter called "Old Jewry". The building of the original pre-Conquest church was made of timber and was located in the north of the settlement, probably used as a private chapel. Like many other parish churches, St Lawrence had an annexed churchyard, established in the 11th century.

The archaeological excavation unearthed for the end of the 11th century a temporary wattle structure from the cemetery, probably suggesting that the timber building was demolished to be rebuilt in stone as a parish church. In this period, the north-east corner of the churchyard contained two burial areas enclosed by two wattle fences that disappeared in the early 12th century. In the northern section, six burials were excavated, while in the southern section 12 burials were unearthed. Additionally, three later burials were recovered in the northern side of the cemetery. Clearly, these individuals date to the beginning of the 12th century, as in the early phase of the cemetery, this area was not used as a graveyard. The theory is also confirmed by the dendrochronological analysis (Bowsher *et al.*, 2007).

The church is first mentioned in documents dating to 1197, but it is suggested that William I granted it to the abbey of St Salvius at Montreuil (France). In the 13th century the church was granted to William Facet, canon of St Paul's, and at the end of the century sold to Hugh de Wichambrok, canon of St Martin le Grand. At the end of the 12th century and the beginning of the 13th, the cemetery continued to be used after about 70 years, and in the southern part, it is noticeable an intercutting, suggesting pressure on space, probably due to the growth of the population. For this period, 50 burials were excavated. The Guildhall instead was probably first built in the 1120s, representing the royal power and authority. In fact, the building hosted the headquarters for the collection of the tax, the Court of Husting and the meeting place for the aldermen. Also, the area showed for this period an urban growth with evidence of higher standards of living reflected in the type of pottery recovered in the residential buildings.

As stated above, in the 13th century the population of the City was in constant growth, and this is reflected as well in the archaeological evidence. The area surrounding the Guildhall had particular importance, as people part of the political life of the City were living here. John Fitz Geoffrey, a baron who challenged Henry III in the 1250s together with Simon de Montford, acquired the hall on Basinghall Street, enlarging the structure and building a chapel. Stephen Bukerel, one of Montford's military commanders, was living on Aldermanbury instead. On the southern side, all the buildings continued to be occupied by Jewish families, which had close relationships with the king as his supporters. To the north of the Jewish quarter instead, the expansion of building continued with a denser occupation, but probably of lower social status, as it was occupied by families of artisans. By the 13th century, St Lawrence Jewry was a well-established parish church (Bowsher *et al.*, 2007). For this period, two burials were excavated and were located under the line of the later gatehouse, which provides a *terminus ante quem* of 1303.

The tensions between the Crown and the City continued until the reign of Edward III when he rewarded London for the support provided. The improvement is also marked in the archaeological evidence, as the Guildhall shows a series of construction programmes that led to an enlargement. Similarly, the religious buildings show an expansion: St Lawrence Jewry in 1294 was acquired by Balliol College (Oxford), with the addition of the new Lady chapel, and St Michael Bassishaw church in the north saw the construction of a new aisle. As in the previous century, the population density saw an increase and several mercer shops appeared in the area, especially in the south of Aldermanbury and in the north of Basinghall Street. There is no evidence of the use of the cemetery for the period that comprises the end of the 13th and mid-14th century. The archaeological and historical evidence also suggests that two shops were built in 1333 in the northern corner of the churchyard and it may be possible that the burial practice was carried out in the southern corner, which has not been part of the archaeological investigation (Bowsher *et al.*, 2007).

Between 1358 and 1350 the Black Death spread in the City and across the country, killing thousands of people. However, the two parishes of this area do not show in the archaeological record any evidence of the pestilence, as the cemetery connected to St Lawrence Jewry did not expand or show an increase in burials. In this period the mayor, Adam Fraunceys, established the Guildhall College, consisting of a chapel, an accommodation block, a garden and a separate gatehouse. St Lawrence Jewry also saw an increase with the building of a tower at the church's west end and a newly enlarged vicarage in the late 14th century. The economic growth of the City also led to the growth of the markets that were more open to the exports of foreign cloth through London. An example of this is the market of Woolwharf (Bowsher *et al.*, 2007).

After the Black Death, a complete redesign of the Guildhall and the precinct took place, as the Crown was investing many resources in this wealthy area. In fact, the redevelopment project comprised the construction of a new Guildhall, a new chapel, more civil court buildings in the north and a gatehouse. Both the churches were also enlarged in the 15th century, and the flow in the residential area of wealthy people continued through time. The eastern side of the cemetery was re-established in the 15th and 16th centuries, but the burials were damaged during the removal of the soil with mechanical excavators (Bowsher et al., 2007).

The excavation of the site was carried out by the Museum of London Archaeological Service (MOLAS) between 1992 and 1997. A total of 68 individuals were excavated, and all seem to follow the Christian standards, with a supine deposition and aligned east-west. The remains are currently stored in the Centre for Human Bioarchaeology at the Museum of London Archaeology.

2.2.12 St Gregory's Priory, Northgate, Canterbury (Kent)

Figure 2.25: location of St Gregory's Priory (adapted from Somner, 1703)

The site of St Gregory priory is located 300 m north of the Canterbury Cathedral, just outside the medieval city walls (Fig. 2.25). The occupation of the city of Canterbury dates to the Roman period. In fact, Northgate road was the primary way into the city, and Roman activity has been uncovered in the area. Clay quarries, rubbish pits and a possible ditch were identified, but no structural remains were excavated, and it is impossible to say whether the site was of an actual occupation nature (Hicks and Hicks, 2001). The city of Canterbury, called *Durovernum* in the Roman period, is mentioned by Antoninus as a Roman station situated on one of the main military roads. The city of *Durovernum* is also cited on Peutinger's table (Hasted, 1800).

The first evidence of occupation dates to the Anglo-Saxon period. Rubbish pits, timberlined wells, gullies and ditches suggest the presence of property boundaries, which are dated between 450 CE and 1050 CE due to the pottery that has been recovered (Hicks and Hicks, 2001). Historical records report the closing of a charter by Kenulph, king of Mercia, in the city in 810. Furthermore, the city was the residence of King Ethelbert, until 596, when he moved to Reculver. Because the city was situated not far from the two islands of Thanet and Shepey, it has been subjected to several raids from the Danes. In fact, in 851, 1009 and 1011 they landed with a great army and sacked it, burning the city and decimating the population in their last raid (Hasted, 1800).

The foundation of the house is attributed to Lanfranc, archbishop of Canterbury, in 1084. There are several versions of the foundation of the site, but the most probable seems that Lanfranc placed there secular canons that were later replaced by regular canons by William, the archbishop in the 12th century. The possession of the clerks of St Gregory is also mentioned in the Domesday Survey (Page, 1926). Lanfranc, Norman and Abbot of Caen, was appointed archbishop by William of Normandy. He undertook several programs of rebuilding, such as Christ Church Priory and St Augustine's Abbey. He also founded several minor institutions, such as St Gregory, the leper hospital of Harbledown and the nunnery of St Sepulchre.

St Gregory was built as a sister establishment to the hospital of St John and was formed by a community of six priests and 12 clerks. The church initially comprised a long nave and a square chancel to the east. The burial ground was instead located in the south of the church (Hicks and Hicks, 2001). Certain religious houses, as in this case, had links also with other institutions. In fact, the church was sharing the cemetery with St John's hospital, as this did not have one (Gilchrist and Sloane, 2005).

In 1133 St Gregory became a priory thanks to William of Corbeil, who installed Augustinian canons from Merton Priory. The arrival of the new canons required some building work and a new choir was erected on the eastern end of the chancel. Transepts were also built in the northern and southern sides of the nave, each ending into two chapels. The new areas were suitable to house a coffin or reliquary (St Eadburgh and St Mildred), which St Gregory claimed to own (Hicks and Hicks, 2001). Furthermore, the prior was involved in administration and legal affairs by the archbishops, and the church was often used as a court for legal disputes (Sparks, 2001).

In 1145 historical records report that the priory was burnt, causing significant damage, and it can be identified from the archaeological evidence. For this reason, the building was reconstructed under the patronage of the archbishop Theobald. The church was the first building to be rebuilt. While the building of the new church was in progress, the surviving areas were being used, but it is known that the second building was ready by 1181. The building of the church was followed by the construction of the eastern side, consisting of a chapter house, a dormitory, an infirmary courtyard and a passage (everything in use by 1225) (Hicks and Hicks, 2001). As the priory was also used for legal affairs, in 1293 it was chosen as the place where the chancellor of England would have lodged if he was in Canterbury and 1329 the Great Seal was used by the temporary Seal Keeper Henry Cliff at St Gregory (Page, 1926; Sparks, 2001).

As many other priories, St Gregory gave hospitality to many people (for example William de Brickhill, sent by the king in 1309), who most probably lodged in the infirmary cloister area or in the infirmary itself. Finally, in January 1535 the last prior, John Symkins and six canons accepted the royal supremacy and the priory was accordingly dissolved (Sparks, 2001).

The excavation in St Gregory's priory was carried out between 1988 and 1991 by the Canterbury Archaeological Trust. The first archaeological examination of the site was carried out at the beginning of 1988, for which trial trenches uncovered remains of the priory. This excavation revealed evidence of truncation and disturbance of the archaeological levels following the foundation of the Post Office in the 1950s. In June 1988, the proper archaeological excavation started and continued until April 1991 (Hicks and Hicks, 2001).

A total of 1342 articulated burials were excavated from the cemetery, church and later priory, of which 91 were recovered from inside and around the priory (Mahoney et al., 2016). Out of these burials, 45 were located within the church structures, and the remaining ones were mainly excavated from the west side of the new church built in 1181. All the articulated skeletons were supine and extended. The majority of the burials were not placed in a coffin: only three males reported the presence of a wooden coffin. Two adult males were buried in the chapter house, and a third young adult was buried in the middle of the later church nave. Seven graves were stone-lined: two senescent males and a female all placed outside the west side of the church. Three further adult males were buried in the extreme west part of the cemetery in stone settings. Only two graves showed a multiple burial: one outside the west side of the church contained two infants and another within the nave contained an adult female and an adult male (Anderson and Andrews, 2001). The remains recovered from St Gregory's Priory are currently stored at the School of Anthropology and Conservation at the University of Kent, Canterbury.

2.2.13 St Leonard's Church, Hythe (Kent)

Figure 2.26: location of St Leonard's Church in Hythe (adapted from Ordnance Survey 1877. Reproduced with the permission of the National Library of Scotland)

St Leonard's Church is located in the northern side of the town of Hythe, Kent (Fig. 2.26). The collection of human remains at St Leonard's church is one of the largest in Great Britain: almost 1500 skulls are present (Stoessinger and Morant, 1932).

Historically, the area has been noted from the Roman times when the Roman militia constructed a heavily defended building to ward off sea-borne Saxon Raiders. This particular building was later given a Saxon name: Stutfall Castle. Stoessinger and Morant (1932) agree to assign the name *Portus Lemanis* mentioned in the Antonine Itinerary and by the Anonymous Geographer of Ravenna to the town of Hythe or the Stutfall Castle. The castle was excavated in the late 19th century, and it was probably one of the last Roman stations built along the south coast.

It is reported by several historians that the area between Hythe and Folkestone witnessed a battle between the Saxons and the Britons, which saw a remarkable number of casualties. The remains in St Leonard's church are, in fact, told to be the ones from this conflict, but there are not enough evidences to prove the theory (Stoessinger and Morant, 1932).

According to Hasted (1799), the manor of Hythe was given by Halden, a Saxon thane, to the Priory of Christ Church (Canterbury) in 1036. The town is also mentioned in the Anglo-Saxon Chronicle, with the revolt of Earl Godwin in 1052, and in Domesday Book in 1088. Anglo-Saxon evidence have also been found in the area surrounding Hythe in the 19th century and it is clear that the town was an important port already before the Norman Conquest. This evidence is proved by the fact that Hythe was part of the Cinque Ports, together with Sandwich, Dover, Romney and Hastings, and amongst the most flourishing and populated English towns. For this reason, Hythe and all the other towns had to provide ships and men for the king, in return for immunities and privileges that they enjoyed for few years (Hasted, 1799; Stoessinger and Morant, 1932).

According to the tradition, Hythe saw several French incursions, as the town did not have walls and therefore was an easy target. However, there seems to be only one occasion that is historically recorded for 1295. One of the first mentions of the human remains in St Leonard's Church states that these were from French people who died on the coast nearby Hythe.

The beginning of the 14th century saw Hythe's, like many other coastal towns, disbandment. The harbour started filling up with deposits that were brought by the sea and the once flourishing ports lost their purposes. Stoessinger and Morant (1932) report that a historical document from 1422 states that in the town there were many Frenchmen. Similarly, earlier documents reveal that during the reign of Edward III many foreigners lived in Kent, especially Flemish and of Walloon origin.

St Leonard's Church was founded in the early Norman period and was expanded in the late Norman period and later in the 13th century. The ambulatory where the human remains are stored is located below the ground level on the north side of the church. Parsons (1908) and Stoessinger and Morant (1932) propose the hypothesis that the collection originated when the church was expanded, covering part of the original cemetery. In fact, during the 150 years after the foundation of the church and the later centuries, a remarkable number of skeletons have been uncovered. However, the theory made by Canon Scott Robertson (1899) that the remains were placed in the ambulatory after the Reformation, cannot be excluded, even if it seems unlikely. The most likely dating of the collection must be set starting from the early 13th century, when the ambulatory was built, until the Dissolution in the 16th century.

The human remains found in St Leonard's Church are all disarticulated and the skulls are stored inside the ambulatory (Fig. 2.27). As these are not the result of an archaeological excavation, there is no information about the location in the cemetery and the positioning of the skeletons.

Figure 2.27: some of the Hythe skulls stored in St Leonard's Church ambulatory (St Leonard's church ossuary, Hythe – skulls, n.d.)

2.2.14 Castle Hill, Scarborough (Yorkshire)

Figure 2.28: map of Scarborough and location of the medieval chapel within the castle (adapted from English Heritage, 2015)

Scarborough is a town on the coast of North Yorkshire, located on a headland that extends in the Northern Sea (Fig. 2.28). The history of the city dates back to the Bronze and Early Iron Ages, as archaeological remains have been found here. There is also evidence of Roman occupation, as the excavations in Castle Hill uncovered a signal station, probably built at the time of the general Theodosius against the raids of the Saxons (Little, 1943).

A manuscript from the 13th century reports that three centuries before, a group of Danes headed by Knut and Harold, defeated Adalbricht, son of Adalmund, at *Skardaborg* and from there marched towards York. Later in 1066, Harold Hadraara, together with Earl Tosti, lord of Falsgrave, seized and set fire to the castle. In fact, the town is not mentioned in the Domesday Survey (Page, 1923).

The building of the first castle started during the 12th century by William 'le Gros' of Albemarle and consisted of a tower overlooking the entrance and a wall surrounding the perimeter of the headland. The second phase of the castle was then built by Henry II who took the site from William in 1154 and established a town immediately to the west of the castle hill. The castle remained in royal hands for the whole duration of the middle ages, but it suffered two attacks during the English Civil War that left it in ruins (Pearson, 1999).

Initially the owner of the chapel was the holder of the castle, but later on, it was given by Richard I to the abbot and convent of Citeaux. The transfer resulted in the establishment of a small community of Cistercian monks. The link with the convent of Citeaux lasted until 1400 when the chapel was transferred to the prior of Bridlington. The building was used as a chapel until 1538, when it was converted to domestic use (Little, 1943).

In 1225 the town obtained a grant from the King's wood and the right for three years to put tolls on the ships that were arriving in the town. All of these events contributed to the growth of the town and between the 13th century and the 14th century, a set of walls were built for protection. Page (1923) reports that the town was later affected in the 14th century by several conflicts that took place in Scarborough. In fact, the sailors were imprisoned and the goods seized by the pirates from Scotland, Flanders, Zealand and Normandy that invaded the coast. There are also historical records for the constant arrival of Spanish and French ships in the port: this led to a continuous attack from foreign fleets and an impoverishment of the town.

The first recorded archaeological excavation took place in 1888 when the foundations of a medieval hall dating to the 13th century were discovered during the levelling operations of the War Office. At the beginning of the 20th century, more clearance work was carried out on the site, but no structure was brought to light, except for some smaller findings. A more extensive excavation of the Castle, and in particular of the chapel, was carried out between the years 1921 and 1925 under the supervision of F. G. Simpson. The excavation brought to light the Roman signal station, consisting of a central tower surrounded by a curtain wall. The excavation also revealed that the signal station was occupied later by the chapel and a burial ground, from which over 400 burials were recovered. It is likely that the interment ended in the 16th century when the chapel was converted to domestic use. The report of the excavation has never been fully published, and it is not possible to gain more information about the burial ground (Pearson, 1999).

2.2.15 Guisborough Priory (Yorkshire)

Figure 2.29: location of Guisborough Priory (adapted from Ordnance Survey 1856. Reproduced with the permission of the National Library of Scotland)

Guisborough priory is an Augustinian priory in Guisborough, located in the borough of Redcar and Cleveland, in North Yorkshire (Fig. 2.29). The excavations carried out in 1985 on the location of the priory brought to life evidence of pre-monastic activity on the site. Post holes, a small quantity of pottery and a sceat dating to 737-758 (Saxon period) were discovered, probably delineating a fence that was part of a building on the peripheral area of a settlement. This phase is then followed by an episode of agricultural activity (Heslop, 1995).

The earliest mention of Guisborough is made by Symeon of Durham shortly before 1066: he states that Copsi, who ruled in the County of York under Earl Tosti, gave some lands, including *Gisburham*, to the Church of St Cuthbert. The place is also mentioned in the Domesday Survey as *Ghigesburg*, being in the hands of the King and held by Ulchel. The land was part of the Conqueror's half-brother, Robert Earl of Mortain, possessions. By the time that Guisborough was mentioned in the Book, the manor was suffering for the effects due to the Conquest and lost half of its monetary value (Brown, 1889).

Guisborough Priory was among the first 20 houses of regular canons in Great Britain and one of the first in northern England (Heslop, 1995). The foundation of the priory dates to 1119, when Robert de Brus of Skelton dedicated the church to St Mary "*ex consensus et confirmatione Calixti papæ, et Thurstini Eborum archiepiscopi, et etiam ipsius regis Henrici*" (Brown, 1989: vii). In 1129, the foundation was confirmed with further donations. When Robert de Brus donated Guisborough to the canons, he ensured them the dominance of the area, as it was the only house in the proximity. He also comprised the whole town and part of the land and woods in the vicinity, together with the mills, ten churches and the whole Kirleatham and Coatham. Furthermore, the canons received the permission to use Robert's lands for the building material that they needed from his forest of Eskdale (Brown, 1889).

During the last years of the 12th century, the possessions of the priory continued to grow thanks to the gifts from different wealthy men, adding more lands and churches to the properties. After the death of Robert de Brus, the convent passed in the hands of his son Adam I in 1142, and to Adam II in 1143. The last one had a dispute with the convent over the advowson of the churches of Kirklevington and Skelton, but the church was confirmed to the monks by Roger de Pont L'Eveque. In 1263 King Henry III grants to the priory a three-day market and fair in Guisborough to celebrate the feast of the Assumption, which helped to support the convent. The priory stayed then under the Brus family until the end of the 13th century, when it passed in the hands of Walter de Fauconberg, by his wife Agnes, and to the Marmaduke de Tweng, by his wife, Lucy.

In 1289 the convent was destroyed by a fire and, in order to receive funds for the reconstruction of the church, the priory was permitted to appropriate several churches. The disaster was followed by repeated rides of the Scotts in the north of England, which reduced the value of the lands and slowed down the reconstruction of the church. For this reason, at the beginning of the 14th century, the priory was exempted from the clerical tenth to invest in the rebuilding of the church.

By 1380, the priory could count only 25 canons and two lay brothers and in the following year, William le Latimer orders the completion of the vaulting of the aisle in the northern part of the church (Harrison and Heslop, 1999). Guisborough Priory, differently from other medieval priories, did not play a great role in the political affairs of the time but retained its dominion just in the Cleveland area. Finally, the priory was formally dissolved in 1540 and was one of the last to surrender to the King in England. Henry VIII in this year gave the order to demolish the priory was formal the building materials to be reused in the construction of other buildings. The priory was

then given in the hands of the Chaloner family since 1550, and in 1932 the Office of Works assumed the Guardianship of the ruins of the church.

Between 1947 and 1954, the Ministry of Works exposed the west range, outer parlour, part of the north cloister wall and a paved floor in the west end. The excavations carried out later in 1985 and 1986 allowed to distinguish six phases: phase I and II predated the monastery, phase III represented the early building of the priory (12th century), phases IV and VI for the rebuilding of the priory, that were separated by phase V consisting in the interruption of the liturgical use of the nave.

During the excavation of phase III, five burials were recovered in the north-west corner of the site. In fact, Heslop (1995) states that they may predate the foundation of the priory or they might be contemporary. Other three inhumations were excavated from against the northern wall, but the author thinks that it is not possible to establish whether they date to the earlier church or the later Norman priory. Nine graves were also located in the 13th century southern aisle, beneath the foundation rubble levelling. A further three burials were excavated from against the northern wall and, together with the above mentioned, they were all aligned with the priory walls.

The excavation of the site brought to light a total of 53 burials. As a consequence of the lack of space inside of the priory, some of the graves cut other earlier ones, and some of the skeletons are incomplete (31 undisturbed). Primary depositions and secondary burials consisting in the deposit of disturbed bones (in the backfill of later burials and piles of human remains) are also represented (Heslop, 1995).

2.2.16 Ballumbie, Dundee (Scotland)

Figure 2.30: location of Ballumbie (Adapted from Edward, 1616-1696. Reproduced with the permission of the National Library of Scotland)

Ballumbie is located in Eastern Scotland in the area of Angus, also known as Forfarshire (Fig. 2.30). The site was a rural area situated four miles north of Dundee, one of the central boroughs of Scotland. The historical documentation on the site is not conspicuous, and the location of the church was not known until the excavation undertaken in 2005.

Ballumbie is first mentioned in 1470, when it became a parish church, as part of the parish of Lundie, in the diocese of St. Andrews (Cowan, 1967). Furthermore, in the mid-16th century, Ballumbie seems to acquire the status of a separate parish and terminates its role after the Reformation. Warden (1882) reports that the parish of Ballumbie is not mentioned in the Old Taxation or any other register. For this reason, he did not know when the church was erected into a church and parish. The author also states that there is the possibility that the parish was suppressed and annexed to Morehouse soon after 1574. However, Ballumbie appears in a map dated between 1616 and 1696 composed by Robert Edward (Fig. 2.30).

The Lovels, an eminent family, were living in Ballumbie. It seems that they were of Norman origin and moved to the area from Hawick at the end of the 12th and early 13th centuries. The Lovel family also built a castle around 1545 and later converted it into a mansion. Nowadays it is still visible, but unfortunately in ruins (Warden, 1882; Hall, 2007). Warden (1882) reports that the lintel of the church that the owner of the time located there is visible on the top of the east wall.

The excavation of the church and churchyard of Ballumbie was carried out by SUAT (Scottish Urban Archaeological Trust) in 2005. The church presented a simple rectangular plan with a Laird's Aisle associated in its southern part (Fig. 2.31). Underneath the church, a previously unknown long cist cemetery enclosed within a ditch was discovered (Hall and Cachart, 2005). A total of 197 articulated individuals were excavated, of which 103 were recovered from the cemetery, 52 inside the church, seven from the aisle, 18 within the long cist cemetery, seven predating the cemetery but not buried in cists and 10 for which no burial location is provided (Willows, 2016). The collection is currently stored at the Osteology Laboratory in the School of History, Classics and Archaeology at the University of Edinburgh.

All the burials seem to follow the Christian standards, apart from Sk 501 that faces east (Fig. 2.31 marked with a red circle). Regarding the burials recovered in the Aisle, Hall (2007) suggests that they might belong to the Lovel family. The cemetery seems to be used in two distinct phases: the early Christian phase and the later phase. The early Christian phase is represented by a number of cists burials, which produced a calibrated ¹⁴C date of AD 560-660 and is the earliest date for the site (Cachart and Hall, 2014). The most recent carbon date is from inside the church and produced a date between AD 1450 and 1640 (Willows, 2016).

Figure 2.31: location of the burials in the site of Ballumbie (adapted from Willows, 2016)

2.3 Literature review

There has been a remarkable lack of recent published craniometric research in Britain, with Mays (1997; 2010) reporting a proliferation of studies on for example disease and paleodiet. In the United States and Japan, variability and population studies using craniometrics data are still prevalent (83% and 63% respectively). The reason for this scarcity is due to the reported misuse of craniometric data (e.g. eugenics) between the 19th and the early 20th centuries. In fact, at the beginning of the 20th century, craniometric data was prevailing in anthropological research, while by the 1950s paleopathology took over this discipline (Brothwell, 2014).

Samuel George Morton was one of the first intellectuals (after Camper, 1791 and Cuvier, 1802) who based his research on craniometrics in order to distinguish between "human races". His theory was based on the idea that cranial capacity can affect the growth of the brain and consequently the behaviour: he was convinced that differences in cranial capacity reflected innate mental ability (Morton, 1849). In other words, intelligence was considered precisely as a capacity of civilization (Perrin and Anderson, 2013). As also confirmed by Gould (1978: 503), "their research display an enormous excess of speculation based on a paucity of information". In fact, the author reanalysed Morton's collection. He concluded that Morton chose to include or exclude large subsamples with the aim to match means with a priori expectation, including the Peruvian sample to reduce the Indian mean and excluding Hindus to raise the Caucasian mean. More researchers of the time followed Morton's example and theory, such as Earnest Hooton and Aleš Hrdlička who took part to the "Committee on the Negro", a national council designed to study the anatomy of the African-American populations. Fortunately this concept has been passed and nowadays the scientific community does not accept this theory anymore.

One of the most important studies for this topic has been performed by Franz Boas (1912), who focused his research on immigrant children in the United States. He concluded that the cranial vault is highly plastic and therefore responds quickly to the environmental stimuli.

At the beginning of the 20th century, Fisher published his *"the Coefficient of Racial Likeness" and the Future of Craniometry* (1936a). The author, who was part of the Eugenics Society (UK), tried to apply the statistical method to distinguish different "races" using cranial measurements. As he states, the coefficient of likeness is not able to discriminate between samples, but contrarily it detects the likeness between the samples. On the other hand, he underlined the importance of the cranium in the study of human variability.

A pioneer of craniometric study finalised to population analyses has been W.W. Howells. On a study regarding 100 male skulls from the collection of Hythe, he determined, out of 54 measurements, which ones are the most significant and independent variates (Howells, 1957). In his *Cranial Variation in Man. A Study of Multivariate Analysis of Patterns of Difference Among Recent Human Population* (1973), Howells analysed the craniometric data from 17 different populations (Europe, Africa, Asia, Oceania, North America and South America) of approximately 50 individuals for each sex. The study aimed to find the relation of the variation among individuals to the variation between populations in skull shape using discriminant and factor analyses. A few years later, the author published an extension of his previous work, to more widely cover the modern humanity. In his *Skull Shapes and the Map: Craniometric Analyses in the Dispersion of Modern Homo* (1989) he added more populations (for a total of 28) with the intent of detecting the differences between the populations of different major regions.

Boas' work has been reviewed recently by Gravlee, Bernard and Leonard (2003) and Sparks and Jantz (2002) utilising statistical techniques that were not available at that time. They determined that the morphology of the skull is more heavily influenced by genetic components, rather than environmental. In fact, as stated by Kohn (1991), a trait observed in an individual (phenotype) is the sum of the genotypic value and the environmental deviations. Environmental deviations can be identified with specific influences such as diet, climate, maternal care and the environment. The author also concludes that the dimensions of the neurocranium (bregma to nasion, nasion to basion and the angle formed by nasion, bregma and basion) have a higher heritability than the facial skeleton. The reason is explained from the differential growth of the skull regions, as the vault attains approximately 90% of its adult size at the age of five, while the face finishes its growth at about 12 years of age (Landauer, 1962). This theory has been confirmed by other authors (Guglielmino-Matessi, Gluckman and Cavalli-Sforza, 1979; Beals et al., 1984; Jantz and Meadows Jantz, 2000; Roseman, 2004; Roseman and Weaver, 2004; Carson, 2006; Harvati and Weaver, 2006), who report that the morphology of the splanchnocranium is mostly influenced by environmental factors, while temporal bone and neurocranium are more correlated with genetic factors.

Another important aspect which is worthy of consideration is the mandibular shape. Traits that differ in human populations due to masticatory behaviour and adaptation are ramal height and breadth, ramal obliqueness, corpus robusticity, mandibular notch shape, bicondylar breadth and mental foramen position (Nicholson and Harvati, 2006). Numerous studies showed that mandibular shape could change depending on the type of food that is consumed during life. An anteriorly rotating growth of the mandible is common among individuals with a hard and attritive diet. This growth direction resulted in an acuter gonial angle and more horizontal orientation of the mandibular base. In association with this change, the upper incisors appear more palatally inclined, and the interincisal angle appears larger than in individuals consuming soft food (Varrela, 1992). A study on facial growth has been proposed by Corruccini, Henderson and Kaul (1985), who compared rural and urban Punjabis population samples. In fact, as Lieberman *et al.* (2004) state, softer foods are widely hypothesised to lead to less facial growth, especially in the lower face and the alveolar crests. This differential growth can be due to the effects of strain that can stimulate periosteal growth and/or inhibit resorption in skeletally immature individuals, to adapt bone shape and structure.

Luther (1993) compared the differences in facial shape, especially the maxilla and the mandible, between a medieval and a modern population. The main changes that the author detected in the facial skeleton seem to be a result of a different diet, with a passage to a softer diet in modern times. This thesis is also confirmed by González-José *et al.* (2005) in their work carried out on populations with different subsistence strategies. The results that the authors found were that the masticatory component exhibits the most interesting deviation from the pattern depicted by the set of analysed variables. In fact, it is stated that there is a clear plasticity of the masticatory complex, which reflects the environmental influence of diet and mechanical loading of the face. They also suggest that craniometrics should not be disregarded as a source of data for the genetics of population models. These hypotheses led to the exclusion of the mandible from this project, as it is dependent on the type of food processed by the individuals.

Craniometric information is a result of population history and can be used to detect within and among-group variation, migration routes and ancestral origins. Relethford (2004a) established that morphological craniometric traits are controlled independently by genetics and environment, and none of these factors will obscure the other. Furthermore, Relethford (1988) states that analyses of anthropometric data provide additional time depth in studies of population structure so that they should integrate the genetic research.

A number of studies have assessed how appropriately the craniometric data can be used to reconstruct population history (Relethford, 1988; 1994; 2004a; 2009; 2010; Harvati and Weaver, 2006; Smith, Terhune and Lockwood, 2007; Smith, 2009) and proved that the data taken from the entire cranium reflects the evolutionary expectations. For instance, Relethford and Crawford (1995) in their analysis of the population of Ireland, examined the patterns of anthropometric variation concerning population history, estimating genetic distances from anthropometric data. As Ireland boasts a history of different populations' waves and dramatic shifts in size, it offers an interesting opportunity for research. In their conclusions, the authors have been able to detect two major determinants of biological variation, which consist of the Viking contact in the Midlands and the relative isolation of the western regions. Roseman (2004) suggests in fact that populations that share recent common ancestry and/or exchange a large number of migrants should resemble with one another, more than geographically isolated and distantly related populations.

Furthermore, several studies analysed the different regions of the cranium or individual bones (Harvati and Weaver, 2006; Smith, Terhune and Lockwood, 2007; Smith, 2009; Von Cramon-Taubadel, 2011) to test how reliable they can be for studies of population affinity. The results proved that these regions vary in equivalence to molecular data (Relethford and Harpending, 1994; Von Cramon-Taubadel, 2009; 2011). In his research, Relethford (2002) states that the apportionment of global genetic diversity estimated from craniometric data reflects the patterns observed in several studies of genetic markers and DNA polymorphisms. The study showed that the majority of the diversity exists within local populations. In fact, based on the genetic data, 10% of the total diversity exists among major geographic regions, 5% among local populations within regions and 85% within local populations within regions and 81% within local populations within regions and 81% within local populations within regions and 81% within local populations.

As discussed by Brothwell (2014), because a noticeable amount of metric data (measurements and means) has been produced, it is possible to draw a view overtime for the British population. The author states that the use of osteometric data to prove the impact of external groups of people on the indigenous Neolithic and Bronze Age populations is still not overall accepted. However, the variation that is demonstrated is not likely simply derived from rapid microevolution. The same thesis can be applied to the differences showed by Anglo-Saxons and the medieval population.

British studies involving craniometric data are infrequent, especially for the medieval remains, and most of them are dated. The first extensive study made in Britain regarding a population, and more in particular regarding craniometry, was *Crania Britannica* by Davis and Thurnam (1865). The authors analysed a total of 261 individuals that ranged from the Neolithic to the Anglo-Saxon period. Even though there are some doubts about the type of equipment used and the accuracy of the measurements (tenths of an inch), it is out of doubt that it started a series of publications that were taking in consideration the variation of the British population.

The majority of the following studies analyse the Pre-Historic, Romano-British and Anglo-Saxon populations, to develop an understanding of variation migration (Huxley, 1866; Beddoe, 1885; Horton-Smith, 1896; Myers, 1897; MacDonnell, 1904; Wright, 1904; Keith, 1913; 1915; Hooke, 1926; Morant, 1926; Hooke and Morant, 1926; Buxton, 1935; Howells, 1937; 1938; Goodman and Morant, 1940; Fereday, 1956; Brothwell, 1960; Leese, 1991). It is worth of mentioning that studies concerning Scotland are very few and the majority of them were carried out on the Pre-Historic or undated material (Young, 1915; Turner, 1915; Reid and Morant, 1928; Wells, 1956-1957). It is not until 1908 that medieval remains received detailed attention. Parsons (1908) published his work *Report on the Hythe Crania*, recording craniometric data for a sample of 590 individuals. He recorded just six measurements for each skull, which are not sufficient to give detailed conclusions on the morphological variation of the population. For this reason, later on, Stoessinger and Morant (1932) reanalysed the collection to obtain a better-detailed view of the Kentish population. The data of this last research was included for population analysis in this thesis. In the same year, Duckworth and Pocock (1909) published their analysis of a series of crania unearthed during an excavation of the Augustinian friary in Cambridge. The authors compared the collection with other British medieval series, noticing an increase in brachycephaly during the medieval period.

Buxton (1937) in his *The Anthropology of Mediæval Oxford* already points out the problem that not much research was carried out on medieval human remains. His contribution to the anthropological research of the beginning of the 20th century added craniometric data for a total of 86 crania. For each cranium, the author collected three measurements to calculate three indices. He concluded that the medieval skulls differed significantly from the earlier Anglo-Saxon ones and the later British ones (which he included in his research).

Another study that needs to be mentioned is the one carried out by Little (1943), who analysed a series of more than 70 medieval crania coming from the graveyard surrounding the post-Norman conquest chapel from Castle Hill (Scarborough). The author compared the series with seven British samples and seven non-British samples, as the site has been subject to different occupations over the centuries. He concluded that the Scarborough population descended from a foreign community because there were no similarities between this population and the other British samples. The data of this research were also included for population analysis in this project. Tattersall (1968) compared 12th-15th Centuries remains from Clopton (Cambridge) with those from sites in Hythe, Dunstable and Scarborough. The research demonstrated that the populations were generally homogeneous, even with different group features (e.g. Hythe groups showed reduced cranial length).

More recent work by Brothwell and Krzanowski (1974) focused on cranial measurements and the variation between British populations due to migration during different chronological periods (Neolithic, Bronze Age, Iron Age, Romano-British, Saxon and medieval). Dawes and Magilton (1980) compared medieval human skeletal remains from St Helen-on-the-Walls (Aldwark) with remains from the Neolithic to the Middle Ages in the North of England. The results showed that the medieval skeletons were relatively homogeneous in comparison to the human remains from the different time periods studied, from which they tended to be separated. Brothwell (2014) agrees with the fact that further research is needed because few

62
attempts of comparison between samples from medieval cemeteries from Yorkshire has been made (Dawes and Magilton, 1980; Mays 2007).

3. Materials and Methods

3.1 Introduction and Hypotheses

The aim of this thesis is to provide and discuss the findings from a craniometric analysis of 16 British medieval samples. Following the reconstruction of 267 skulls from the Gloucester, Poulton and Linenhall collections, up to 45 measurements for each skull was taken, excluding the mandible, using traditional anthropometric methods (e.g., Martin and Saller, 1957; Howells, 1989). Further craniometric data, collected by the author and previously published, were included for a total 946 individuals from these 16 samples. These data were compared with those in several major human groups from the W. W. Howells dataset (Howells, 1989).

To carry out the project, four main hypotheses were proposed (see chapter 1, section 1.2). For implementation of the statistical analysis, the following null hypotheses and alternative hypotheses were proposed:

- Null Hypothesis 1: There are no statistically significant differences for the craniometric measurements among the British medieval samples.
 - Alternative Hypothesis 1: There are differences in the craniometric measurements among the British medieval samples.

Craniometric measurements were analysed with discriminant function analysis (DFA) to show whether there are differences between and within the population samples and between sexes. Discriminant function analysis provides a set of weightings that allow to distinguish the groups. If there are differences, then they can take different forms depending upon the region of the skull, which can be stated alternately as follows:

- Alternative Hypothesis 1a: If there are differences among British medieval samples, the differences are determined by the neurocranial measurements.
- Alternative Hypothesis 1b: If there are differences among British medieval samples, the differences are determined by the facial measurements.
- Alternative Hypothesis 1c: If there are differences among British medieval samples, the differences are determined by both the neurocranial and facial measurements.

Means calculated on the set of craniometric measurements were analysed with principal component analysis (PCA). Principal component analysis can be applied to any large dataset, and it synthesises it into a set of compound axes to understand which measurements contribute most to the differences between datasets.

- Null Hypothesis 2: There are no differences between the British medieval samples and the W.W. Howells dataset groups.
 - Alternative Hypothesis 2: There are differences in the craniometric measurements among British medieval samples and the W. W. Howells dataset groups. These samples will cluster based on their geographical proximity.

As for the alternative hypothesis 1, cranial measurements were analysed with discriminant function analysis (DFA) to determine whether there are significant differences among the different sets of data and it is predicted that these differences will reflect geographical distances. If there are differences, then they can take different forms depending upon the region of the skull, which can be stated alternately as follows:

- Alternative Hypothesis 2a: If there are differences among British medieval samples and the W. W. Howells dataset groups, the differences are determined by the neurocranial measurements.
- Alternative Hypothesis 2b: If there are differences among British medieval samples and the W. W. Howells dataset groups, the differences are determined by the facial measurements.
- Alternative Hypothesis 2c: If there are differences among British medieval samples and the W. W. Howells dataset groups, the differences are determined by both the neurocranial and facial measurements.

3.2 Materials

3.2.1 Collections and Samples

In the selection of the samples used, the aim was to acquire data from anthropological material uncovered from the North to the South of Britain. As discussed in the previous sections, the amount of skeletal material from the South is greater than the northern one, as the number of recovered remains available for the North is limited.

The samples from the anthropological collections from Poulton and Gloucester are housed in Liverpool John Moores University, and the data acquisition was made by the author. Following the excavation that took place between 2015 and 2016, the Linenhall sample was stored in Liverpool John Moores University until August 2017, when it went for reburial. Data from the human remains excavated from London archaeological sites were also included in this project, thanks to the Museum of London Archaeology (MOLA), that made them available online in its Wellcome Osteological Research Database. The sample from St Gregory's Priory, Canterbury, is stored at the School of Anthropology and Conservation at the University of Kent, Canterbury. The author recorded the measurements at the osteology laboratory at the University of Kent. The data for the Hythe crania were recorded and published by Stoessinger and Morant (1932) in the early 20th century, same as the data from the skeletal material recovered at the Castle Hill site (Scarborough) published by Little (1943). The human remains from Guisborough were analysed and published by Anderson (1994) and the ones uncovered at the church of St Nicholas Shambles were analysed and published by White (White and Dyson, 1988). The Ballumbie sample, from Ballumbie Church, is stored at the osteology laboratory in the School of History, Classics and Archaeology, University of Edinburgh.

In Fig. 3.1, it is possible to see the location where the remains analysed for this project came from. In Table 3.1 a summary of the archaeological sites, samples and dating, with the number of males (M), females (F), possible males (?M) and possible females (?F) is given.

Figure 3.1: Location of the origin of the samples analysed for this project

Site	Period	Number of Males	Number of Females	Number of ?Males	Number of ?Females
Poulton	14 th -16 th AD	106	41	11	4
Linenhall	12 th -15 th AD	7	3	0	0
St Owen	12 th -15 th AD	48	25	3	3
St Saviour	11 th -16 th AD	52	0	0	0
Dominican Friary	13 th -16 th AD	3	0	0	4
St Mary Graces	14 th -16 th AD	14	8	7	3
East Smithfield	14 th AD	31	15	6	4
St Mary Merton	12 th -16 th AD	59	4	10	1
St Mary Spital	12 th -16 th AD	13	7	4	2
St Nicholas Shambles	11 th -12 th AD	14	19	0	0
Guildhall Yard	11 th -14 th AD	4	4	3	1
St Gregory	11 th -16 th AD	45	22	3	4
St Leonard	N/A	75	34	37	53
Castle Hill	?12 th -16 th AD	43	18	0	0
Guisborough	12 th -16 th AD	14	8	4	6
Ballumbie	7 th -17 th AD	22	9	4	2
Total		550	217	92	87

Table 3.1: Dating and number of individuals analysed for the project

3.2.2 W.W. Howells' Database

W.W. Howells contributed significantly to craniometric analyses in relation to human variability and population history. With his contributions *Cranial Variation in Man. A Study of Multivariate Analysis of Patterns of Difference Among Recent Human Population* (Howells, 1973) and *Skull Shapes and the Map: Craniometric Analyses in the Dispersion of Modern Homo* (Howells, 1989), the author produced one of the largest-scale analyses of modern and historical human populations to date.

In his first study, Howells used 17 different population samples, each comprising 50 individuals for each sex. He recorded 70 measurements and angles on each cranium, and the craniometric analysis was limited just to the calvarium. As stated by the author (Howells, 1973:32), indices and linear combinations are not used for the statistical analysis, as the statistical method makes linear combinations of all the measurements at ones. He also considered that circumferences, arches and cranial capacity were not needed, as in his opinion, they do not give any information about the shape, but only regarding the size. Minimum frontal diameter was also excluded in favour of maximum frontal diameter. Howells stated that the measurements should be interrelated and common landmarks used as possible (1979:33). Therefore, he chose the ones that are a consistently and coherently distributed set on all the regions of the cranium and can therefore define the shape of the skull.

The aim was to examine contiguous populations, or those who are known or thought to be related, proceeding systematically from the greatest similarity to the least (Howells, 1973:6). Another purpose was to provide other researchers with a database to which compare any single or groups of fossil or recent skulls. The samples were chosen so that the series represent a real population unit and time span, to maintain the integrity of the intrapopulation variation in all the groups. In the case of the European groups, the author chose medieval samples, as it is more likely that in this period the admixture was lesser and hence more likely to have comparable dental histories, age distributions and causes of death.

The Howells database is therefore represented by five major geographic regions: Europe, Africa, Asia, Pacific and America. To these population samples, Howells added further individual recent specimens from every region or of unknown origin, along with some other prehistoric specimens from the late Pleistocene, as well as casts of some other fossil hominins. In his later publication, the author added ten more groups to the ones he defined as "core populations" (Howells, 1989:1) to represent in a better way some areas where the sample was not enough representative, as the Far East and the Pacific. His later work was then divided into the following geographic areas: Europe, Africa, Far East, Australia and Melanesia, Polynesia, Americas. As in the previous publication, 600 "test" specimens were added to the data, such as modern skulls and Pleistocene hominin skulls. Table 3.2 sums up the database sample and the groups analysed in this project as a comparison are indicated in bold.

Population	Number of Males	Number of Females	Date of publication
Medieval Norse (Oslo)	55	55	1973
Medieval Zalavár (Hungary)	53	45	1973
Berg (Carinthia, Austria)	56	53	1973
Teita (Kenya)	33	50	1973
Dogon (Mali)	47	52	1973
Zulu (South Africa)	55	46	1973
Australia, Lower Murray River	52	49	1989
Tasmania	45	42	1973
Tolai (New Britain)	56	54	1973
Mokapu Peninsula (Oahu, Hawaii)	51	49	1973
Easter Island	49	37	1989
Moriori (Chatham Islands)	57	51	1989
Arikara (South Dakota)	42	27	1973
Santa Cruz Island (California)	51	51	1989
Yauyos District (Peru)	55	55	1973
Hokkaido (North Japan)	55	32	1989
Kyushu (South Japan)	50	41	1989
Hainan Island (South China)	45	38	1989
Atayal (Taiwan)	29	18	1989
Philippine Islands	50	0	1989
Guam (Mariana Islands)	30	27	1989
Gizeh (Egypt, 26 th -30 th dynasties)	58	53	1973
Bushmen (South Africa)	41	49	1973
Andaman Islands	35	35	1973
Ainu (South-Central Hokkaido)	48	38	1989
Buriats (Siberia)	55	54	1973
Inugsuk (Eskimo, Greenland)	53	55	1989
Shang Dynasty (Anyang, China)	42	0	1989

Table 3.2: W.W. Howells database population samples (Howells 1973; 1989)

3.2.3 Anthropometric Instruments

For the craniometric data collection, a set of sliding calliper, spreading calliper with rounded tips, measuring tape, Mollison's craniophor and auricular head spanner were used. The sliding calliper usually is used for measuring linear measurements or thickness. The spreading calliper with rounded ends instead, provides accurate measurement of short distances between points where both or one might be not on a flat surface. The measuring tape allows to record the exact distance on a curved surface between two points. Finally, the Mollison's craniophor (Fig. 3.2) is used in connection with the auricular head spanner (Fig. 3.3) to place the cranium on the Frankfurt horizontal plane. The Frankfurt horizontal plane is determined by the right and left porion and the lowest point of the inferior margin of the orbit (preferably left). The Mollison's craniophor is not used to record measurements unless it is connected with the auricular head spanner. The auricular head spanner is instead used to measure different heights of the cranium from the porion. All these standard anthropometric tools have an accuracy of 1.0 mm.

Figure 3.2: Mollison's craniophor

Figure 3.3: Auricular head spanner

3.3 Methods

3.3.1 Cranial Reconstruction

The reconstruction of 300 skulls was carried out by the author in the osteology laboratory, to enable the analysis of the samples. Following excavation, the human remains were washed with cold water and brush to remove the soil covering the surface of the bone. The bones are usually recovered in damp soil, which adds weight to the remains, resulting in crushing and breakage. If the washing process is not done immediately after the excavation, the soil hardens causing damage to the bones (Bowron, 2003). The cleaning procedure is also essential for the analysis of the remains and to enable the exact reconstruction of the skulls, avoiding any error caused by the presence of sediment in the fractures (Borrini, 2007). The sample from Gloucester was cleaned immediately after the excavation and later acquired by the University. The samples from Linenhall and Poulton were cleaned in the osteology laboratory.

When the skeletal material was dry, photographic documentation was carried out. The skull fragments were first divided by anatomical position (as suggested by Brothwell, 1981) and then photographed to document the state of preservation of the remains before the reconstruction (Fig. 3.4).

Figure 3.4: Photographic documentation of Skeleton 110 skull from Poulton before reconstruction

The reassembling was carried out with non-permanent reversible glue. As suggested in the Code of Practice of the British Association of Biological Anthropology and Osteoarchaeology (2018), a solution of HMG Paraloid B-72 (60%) and acetone (40%) was used. Thanks to the fact that the skull fragments were previously divided for documentation, the reconstruction was first carried out separating the different anatomical parts. The reconstructed parts were then joined together to recreate the complete skull (Fig. 3.5).

Figure 3.5: Reassembling process of a fragmented skull.

Frequently, after the recovery of the remains, it might be noted that some parts of the skulls are missing due to taphonomical factors. For this reason, pigmented wax was used to reproduce bone's natural colour, following the guidelines published by Borrini (2007), to fill in the missing parts and give more stability to the sample. This procedure was carried out after the reconstruction and the assessment of the skulls' preservation, as only after the reassembling of the entire skull it was possible to determine whether its stability was adequate.

The wax is made by a combination of different components (Fig. 3.6) and, in the same way as the Paraloid glue, it is fully reversible. The basic formula of the wax is:

- 20 g of beeswax
- 20 g of paraffin (candle wax)
- 10 g of pine rosin
- 60 g of casting powder
- 60 g of calcium carbonate (limestone flour)

Figure 3.6: Different components of wax before mixing.

After the preparation of the components, the materials were placed in a metallic tray located on a hot plate. First, the beeswax and the pine rosin had to be melted entirely to avoid the presence of solid residues in the mixture (Fig. 3.7 A). After these materials formed a homogeneous blend, paraffin, casting powder and calcium carbonate were added (Fig. 3.7 B). This admixture creates a compound that is suitable for the reconstruction of missing parts in the skull, as it is stable, reversible and does not damage the bone surface. For the best performance in the reconstruction with wax, a mix of pigments (brown iron oxide and raw sienna) was used to recreate a natural colour.

Figure 3.7: Wax initial mix made with pine rosin and beeswax (A) and final compound (B).

Once the compound acquired a natural colour, a layer of tin foil was placed in the internal side of the skull. This procedure avoids the excessive accumulation of wax on the inner surface of the cranial vault and gives to the reconstructed area the same thickness of the bone. Reconstruction with wax was also used to recreate parts of the cranium that were missing. The splanchnocranium is more fragile than the cranial vault, and because it is formed by thinner anatomical parts, it is possible that these elements are more prone to taphonomic degradation and/or excavation damage. For this reason, some parts of the face, such as the nasal bones or the zygomatic processes, were recreated to give increased stability to the reconstruction. The result was a complete and stable skull that allowed the full recording of measurements (Fig. 3.8).

Figure 3.8: Reconstructed skull from Skeleton 155 from Poulton

3.3.2 Sex Determination

When the data were collected personally by the author, sex and age determination were carried out (discussed in section 3.3.3). For a study of this nature, sex determination is essential to allow the analysis to be made separately on males and females. This permits the effects of sexual dimorphisms to be accounted for and allows analyses of pooled sex samples to be carried out.

When sexual maturity was evaluated, sex determination was carried out following traditional methods (Bass, 1995; Buikstra and Ubelaker, 1994; White and Folkens, 2005). The skull is one of the most reliable areas of the skeleton for sex determination, second only to the pelvis, and it reaches levels of reliability of 92% (Krogman and Isçan, 1986). In general, sex assessment is based on the evidence that male individuals are morphologically more robust than females (Bass, 1995). The reason for this dimorphism is linked to stronger muscular attachments that are developed in male individuals.

Male crania usually display more prominent supraorbital ridges, pronounced glabella and marked temporal and nuchal lines compared to female skulls. Male frontals show a lack of bossing, the orbits are squarer and mastoid processes are larger than female skulls. The mandible also shows sexual dimorphism, as males have square mental eminence, gonial flaring and the gonial angle is more likely to be close to 90°.

Sex determination methods adopted for this study are based on the development and robusticity of five aspects of the skull, according to the criteria proposed by Buikstra and Ubelaker (1994). A scoring system is given to each trait, from a value of 1 indicating gracility (female) to 5 indicating robusticity (male). Because human sexual dimorphism is complex, intermediate values are also possible, and in some cases, determining the sex of an individual can be difficult. For this reason, in ambiguous cases, the sex determination on the pelvis was carried out to have an optimal evaluation of the sex of the individual. The female pelvis, like the skull, results overall more gracile and the pelvic inlet appears wider than the male one. The greater sciatic notch and the subpubic angle are broader in females than in males. Females tend to have a sharp medial aspect of the ischiopubic ramus, while in males this surface is relatively flat and blunt (Buikstra and Ubelaker, 1994). Even if these two methods give an accurate sex determination, due to the amount of variation within and between populations, it is always important to consider the inter- and intra-population differences to avoid any misclassification of the individuals.

3.3.3 Age at Death Determination

It is fundamental that all the individuals taken into consideration have reached the developmental maturity. The brain and head reach their adult size in childhood (Cunningham, Scheuer and Black, 2016), but the face continues its growth. The age of an individual also affects dimorphic sexual features and for this reason, for an immature skeleton sex estimation cannot be carried out. Furthermore, age estimation is easier in younger individuals, as the skeleton is still in a growth phase.

Dental eruption as an aging method has not been taken into consideration for this project. This method may give an age at death determination up until 23 years of age, when all the adult teeth have formed and erupted. As this thesis focusses only on the adults in the respective populations, dental eruption would add little to no value to the project (AlQahtani Hector and Liversidge, 2010). Additionally, the impaction or mal-eruption of the third molar could affect the aging of the individual using this method. The Lovejoy (1985) method based on dental wear was not used, because it is much influenced by the diet and cultural background of different populations. Furthermore, it has to be considered that different factors lead to attrition, such as bruxism, the form of temporomandibular joint, size and shape of the condyles, size of the teeth, deliberate dental modification (Prince, Kimmerle and Konigsberg, 2008), which could affect a correct age at death determination.

For an efficient selection of adult individuals, two indicators of age at death were used: the fusion of the spheno-occipital synchondrosis and the ectocranial sutures closure. The spheno-occipital synchondrosis is a suture that is located between the anterior quadrilateral surface of the basilar portion of the occipital bone and the posterior surface of the body of the sphenoid. In children, these two parts are united by a cartilaginous disc that ossifies in the later period of adolescence when also the permanent dentition has nearly completed its development (Sahni, Jit and Suri, 1998). The spheno-occipital synchondrosis is a good indicator of age, as it reaches the complete fusion in females around the age of 16 and males around the age of 18 (Sahni, Jit and Suri, 1998; Schaefer, Black and Scheuer, 2009; Cunningham, Scheuer and Black, 2016). For this reason, this method was used as a discriminant between adults and non-adults individuals.

The ectocranial sutures closure have been extensively explained by Meindl and Lovejoy (1985). A series of 1 cm segments of ten sutures on cranial vault and lateral anterior skull have been chosen and scored with a scale from 0 (open) to 3 (complete obliteration). The sum of all the values given to each segment determines an age range that spans from <30 to 50+ years of age at death. This method can be applied to both sexes if preservation conditions are optimal. However, for each technique, pathological and occupational conditions, together with interpopulation variation must be considered when using these methods.

77

3.3.4 Data Collection

Before starting the data recording, a preservation assessment was carried out. If postmortem pressure or artificial modification have changed a whole region of the skull, this would be excluded from the analysis (Howells, 1973). All skeletal elements, in particular fragile parts such as the skull, may be affected by alteration during the life of the person or after the burial. Ante-mortem changes can be a result of intentional alterations (which have not been detected in these samples) or pathological conditions. Pathological conditions can affect the shape, size and surface morphology of the skull, but are also very easily detectable. For this reason, the specimens that showed these conditions were removed from the data analysis.

Modifications that occurred post-mortem may be caused by various taphonomical events. After the burial of the skeletal elements, warping can occur, especially on the skull. The relatively weak structure of the cranium, and the small amount of soft tissue that surrounds it, makes this element less stable than the other anatomical parts. Warping is a taphonomic alteration resulting from the collapse of a coffin lid or in non-coffin burials as a consequence of the soil pressure (Pokines and Baker, 2014a) (Fig 3.9). The skulls that show evidence of soil pressure warping were excluded from this study.

Figure 3.9: Warping effects on two skulls from Skeletons 66 and 133 from Gloucester

Working with archaeological material can be challenging as, oftentimes, recovered specimens are incomplete—even after reconstruction. For this reason, reasonable rules have been followed to maintain consistency in the data collection. First, the skulls were required to have a minimum presence of the frontal bone, right and left parietals, right and left temporals and occipital bone (calvarium). Their presence allowed the collection of most measurements essential for this research. The majority of skulls were recovered with a splanchnocranium. In most cases, due to the fragile nature of the splanchnocranium, they had to be reconstructed. In cases where just half of the facial bones were available, only one measurement for the extant side was recorded (i.e. orbital width and height). In cases where the landmark was located on a missing or damaged part of the skull, the measurement was excluded.

A remarkable number of skulls presented non-metric traits that could affect the measuring process. The most common was represented by wormian bones, which were found in several skulls and mostly located at bregma, lambda and between the sagittal and lambdoid sutures (Fig. 3.10).

Figure 3.10: Wormian bones on a reconstructed skull from Skeleton 131 from Poulton

The intra-sutural bones do not impede the measurement recording, but in cases where these occur at lambda, a judgement must be made by the person who is taking the measurement. In most of the cases, it was not difficult to locate the landmark, but if there were problems with the detection of the point, the measurement was not recorded.

Craniometric data were recorded on hand-written sheets with a table including all variables (See Appendix 1). Sex, age and anomalies (i.e. non-metric traits, pathologies and taphonomical changes) were also recorded. The same recording process was followed for each specimen included in this thesis. The anthropometric instruments used were the same for the entire study to allow the author to maintain consistency during the data collection. The equipment was also checked and calibrated before proceeding to the measurement of a skull to avoid any error in the data recording. All the measurements were recorded in millimetres with no decimal values.

In regard to the measurements not recorded by the author, it was not possible to monitor the data collection, as part of the sample was analysed at the beginning of the 20th century. However, it is assumed that experience and knowledge allowed the researchers to maintain a certain degree of consistency and logic during the data collection. The information provided by the other authors, when provided, is consistent with the data collection methods used for this study. Concerning craniometric data collection, standard methods were used for the published samples, which will be specified more in-depth in section 3.3.5.

3.3.5 Craniometric Measurements

The purpose of the craniometric analysis is description and comparison. In the past, craniologists and osteologists proposed up to 5000 measurements on an individual skull (Howells, 1969). Researchers such as Howells (1973) proposed instead a method with the intention of standardising the measurements. Yet, much work needs to be done to produce a protocol that can be a reference for all researchers.

For this study, the protocol developed by Borrini (2013) was adopted. The aim is to standardise the Martin and Saller procedure for data collection to yield reliability in measurements and minimise intra-observed error. The method has also been adopted by Florence, Pisa, Rome and Vatican Universities. Here, 45 measurements are proposed (Tables 3.3-3.7): 24 located on the neurocranium, eight for the facial skull, five for the orbital skeleton, four for the nasal skeleton and five for the maxilla (see Appendix 2).

A new coding system was proposed, to make more comprehensible the anatomical region where the measurements are being recorded. In this study, only craniometric measurements were analysed, but the protocol is proposed for the anthropometric analysis of

the entire human skeleton. For this reason, numerical coding, differently from the previous alphabetical ones, was developed. The coding assigned to the cranium shows three numbers. The first number denoted the macro-area from where on the skeleton the measurement has been taken (for example, the skull has been allocated number 1). The second number refers to the bone where the set of measurements are recorded (i.e. 1.1 refers to neurocranium, 1.2 refers to facial measurements and so on). The third number refers to the single measurement that is being recorded. This method allows the researcher to locate the single measurement based on the numbers, instead of having to refer to a single code.

In anthropometry, the measurements are based on landmarks that have been defined by Martin and Saller (1957) and adopted in other recognised standards, such as Howells (1973), Buikstra and Ubelaker (1994), Bass (1995) and Langley *et al.* (2016). Furthermore, craniometric landmarks can be paired or unpaired. Paired landmarks include two points that are equidistant on either side of the midsagittal plane. Unpaired landmarks are single points that fall on the midsagittal plane (Bass, 1995). For the location of the cranial landmarks, please refer to Fig. 3.11-3.14 and for the description of the landmarks to Appendix 3.

All measurements were recorded with the instruments described in section 3.2.3. Each measurement requires a specific instrument, and a summary regarding the tools that were used for each variable can be found in Appendix 4.

Measurement	Code	Landmarks
Maximum length of the neural skull	1.1.1	Glabella-opisthocranium
Glabella-inion length	1.1.2	Glabella-inion
Glabella-lambda length	1.1.3	Glabella-lambda
Cranial base length	1.1.4	Nasion-endobasion
Maximum neurocranial breadth	1.1.5	Euryon-euryon
Biauricular breadth	1.1.6	Auricolare-auricolare
Biasterionic diameter	1.1.7	Asterio-asterion
Bimastoid breadth of the cranial base	1.1.8	Mastoidale-Mastoidale
Basion-bregma height	1.1.9	Esobasion-bregma
Total height	1.1.10	Esobasion-sagittal suture
Porion-bregma height	1.1.11	Porion-bregma
Porion-vertex height	1.1.12	Porion-vertex
Horizontal cranial circumference	1.1.13	Glabella-opisthocranion
Horizontal cranial circumference above ophrion	1.1.14	Ophryon-opisthocranion
Transverse curve	1.1.15	Auricolare-bregma-auricolare
Total longitudinal arch	1.1.16	Nasion-opisthion
Nasion-bregma arch	1.1.17	Nasion-bregma
Parietal-longitudinal arch	1.1.18	Bregma-lambda
Occipital arch	1.1.19	Lambda-opisthion
Nasion-bregma chord	1.1.20	Nasion-bregma
Bregma-lambda chord	1.1.21	Bregma-lambda
Lambda-opisthion chord	1.1.22	Lambdaopisthion
Foramen magnum length	1.1.23	Endobasion-opisthion
Foramen magnum breadth	1.1.24	Lateral margion-lateral margin of the foramen

Table 3.3: Neurocranial measurements (after Borrini, 2013)

Measurement	Code	Landmarks
Length of the face	1.2.1	Endobasion-prosthion
Minimum frontal breadth	1.2.2	Frontotemporale-frontotemporale
Maximum frontal breadth	1.2.3	Coronale-Coronale
Upper facial breadth	1.2.4	Frontomalare temporale-frontomalare temporale
Bizygomatic facial breadth	1.2.5	Zygion-zygion
Maximum bimaxillary breadth of the midface	1.2.6	Zygomaxillare-zygomaxillare
Morphological height of the face	1.2.7	Nasion-gnathion
Height of the upper face	1.2.8	Nasion-alveolare

Table 3.4: Facial measurements (after Borrini, 2013)

Measurement	Code	Landmarks
Biorbital breadth	1.3.1	Ectoconchion-ectoconchion
Interorbital breadth from dacryon	1.3.2	Dakryon-dakryon
Interorbital breadth	1.3.3	Maxillofrontale-maxillofrontale
Orbital breadth	1.3.4	Maxillofrontale-ectoconchion
Orbital height	1.3.5	Supercilium-infracilium

Table 3.5: Orbital measurements (after Borrini, 2013)

Measurement	Code	Landmarks
Nasal breadth	1.4.1	Alare-alare
Nasal height	1.4.2	Nasion-nasospinale
Nose-malar chord	1.4.3	Orbital rim-orbital rim
Nose-malar breadth	1.4.4	Orbital rim-orbital rim

Table 3.6: Nasal measurements (after Borrini, 2013)

Measurement	Code	Landmarks
Maxilla-alveolar length	1.5.1	Prosthion-alveolon
Maxillo-alveolar breadth	1.5.2	Ectomolare-ectomolare
Palate length	1.5.3	Orale-staphylion
Palate breadth	1.5.4	Endomolare-endomolare

Table 3.7: Maxillary measurements (after Borrini, 2013)

Figure 3.11: Frontal view of skull landmarks (adapted from Buikstra and Ubelaker, 1994)

Figure 3.12: Lateral view of skull landmarks (adapted from Buikstra and Ubelaker, 1994)

Figure 3.13: Occipital view of skull landmarks (adapted from Buikstra and Ubelaker, 1994)

Figure 3.14: Basal view of skull landmarks (adapted from Buikstra and Ubelaker, 1994)

The measurements listed in Tables 3.3-3.7 were recorded by the author for the collections. For the data collected by other researchers, different methods were adopted. Even if the craniometric data recording involves mostly the same measurements, it is essential to specify the standards followed for published data in this study.

The samples located at the Museum of London Archaeology were analysed at the Centre for Human Bioarchaeology. After having developed the Wellcome Osteological Research Database (WORD), the osteologists working for the Museum uploaded the data online to make it available for other researchers. The data acquisition has been made on the base of a specialist recording form with the aim of standardising the recording of all the metric and morphological variability expressed by the human remains stored at the Museum (Connell, 2012). For the craniometric data, a maximum of 37 measurements were taken from the adult skulls (31 unpaired and 3 paired left and right). The reference procedures for the recording of the data were carried out following the guidelines published by Bass (1987), Buikstra and Ubelaker (1994) and Brothwell (1981) (Mikulski, 2012).

The sample from the site of St Nicholas Shambles was analysed by White (1988) for a total of 23 measurements for each skull. The standards used for his data collections are not listed, but it is stated that *"individual skeletal measurements were determined by standard techniques using conventional equipment"* (White, 1988: 29). However, the codes for the measurements listed in the publication were checked for conformity to this study.

The data for the skulls at St Leonard church in Hythe were collected and published by Stoessinger and Morant (1932). There is no reference to the methods used for the craniometric measurements. However, it is specified that the methods refer to a previous technique published by one of the authors and these were *"used normally by workers in the Biometric Laboratory"* (Morant, 1929: 82). The Biometric Laboratory used a code approved by the Frankfort Agreement to produce a standard data collection method for anthropometry. The code consists of different categories of symbols for different measurements and comprises single capitals, double capitals, lower case letters, primes (single and double), angle signs, subscripts and Greek letters. Before including the data in this study, the description of the measurements used in this paper was checked, and they are consistent with those adopted in the anthropometric literature.

Little (1943) carried out the craniometric analysis for the sample from Castle Hill, Scarborough. As for the sample from St Leonard church, it has not been possible to determine the method used for data collection due to the dated publication of the results. In this case, the author states that *"the measurements were taken in accordance with the customary biometric technique"* (Little, 1943:34). As well as for the previously cited sample, the definitions were checked for consistency with the craniometric measurements published in the anthropometric literature.

The data for the remains excavated in Guisborough were analysed and published by Anderson (1994). For the recording of the craniometric measurements from this sample, the author referred to the methods described by Brothwell (1981), Bass (1971) and Krogman (1978). Even if the measurements used by this author are the ones adopted in anthropological research, they were checked for consistency in this thesis.

For a more complete examination of the British archaeological samples analysed in this thesis, the data were compared with the W.W. Howells dataset. In the publications for this research (Howells, 1973; 1989), the author specifies exactly the measurements he included. Howells developed a coding system using a set of abbreviations for the measurements. They correspond to ones used in the previously most recognised systems, such as Martin and Saller (1957) and the one developed by the Biometric Laboratory. However, both of these methods used different coding systems, which the Howells criticises for different reasons. In his opinion, these cannot be used in computer language, as they use numbers or symbols (i.e. parentheses are used for specific operating functions in computer languages). Secondly, he states that the systems are not open for the introduction of new measurements used for his research, whereas three letters coding is more appropriate and more quickly recognisable.

The system developed by W.W. Howells is widely accepted in the Anthropometric field. It has also been adopted for the CRANID worldwide craniometric database, and it is familiar to most of the researchers. Even if Howells' system has been used for the development of the code used for this research, a second check for conformity was carried out by the author for consistency in this thesis.

3.3.6 Cranial and facial Indices

Neurocranial and facial indices were calculated, where allowed by the availability of the data. Indices are used to analyse shape differences independent of size and are used to quantify differences between morphological features. Skulls are classified into broad categories on the basis of shape variation derived from the indices (Liebenberg *et al.*, 2015). It is fundamental to underline that cranial indices do not give a full description of the cranial shape in a whole of its measurements but only takes into consideration two measurements at a time. For this reason, it is merely considered descriptive of the shape. For the comparison of the overall cranial shape and the determination of the differences within and between the samples analysed, multivariate analyses were used, as is described in section 3.3.9.

The formulae for the calculation of the indices refer to the ones published by Bass (1995) and are listed in Table 3.8 below. The variable codes were adapted to calculate the indices based on the coding system used for this thesis. The ranges that result from the calculation of each index and their description can be found in Appendix 5.

Index	Bass Code	Formula
Cranial Index	A	(1.1.5 x 100)/1.1.1
Cranial length/Height Index	C	(1.1.9 x 100)/1.1.1
Cranial Breadth/Height Index	D	(1.1.9 x 100)/1.1.5
Nasal Index	К	(1.4.1 x 100)/1.4.2
Orbital Index	L	(1.3.5 x 100)/1.3.4

Table 3.8: Formulae for neurocranial and facial indices adopted for this study

3.3.7 Data Handling

The total number of craniometric measurements that were collected on each cranium amounts to 45 variables (see section 3.3.5), which were recorded for completeness of the information (for a complete data set of the measurements collected by the author, see Appendix 6). Some of these variables are recorded spatially adjacent to one another, yielding analogous measurements.

For this reason, to allow an easier analysis of the data, a Pearson's product-moment correlation test was carried out. The test allowed the selection of a set of measurements, excluding the values that had a correlation of r > .500 (Emerson, 2015). The resulting dataset was then composed of 21 variables. The measurements were consequently checked for correspondence with those recorded by the other authors and reduced to 18 variables for improved data analysis. The final set of cranial measurements for this research can be seen in Table 3.9 below.

After recording the craniometric measurements, the data were transferred into an Excel file to create a complete dataset for each site. The measurements recorded for samples in the London area were considered a single dataset. The reason for this approach is to create a statistically valid sample for analysis from the same location. The dataset was then transferred into an SPSS v.24 database for the statistical analysis

Cranial Measurement	Code
Maximum length of the neural skull	1.1.1
Cranial base length	1.1.4
Maximum neurocranial breadth	1.1.5
Basion-bregma height	1.1.9
Nasion-bregma arch	1.1.17
Parietal longitudinal arch	1.1.18
Occipital arch	1.1.19
Nasion-bregma chord	1.1.20
Bregma-lambda chord	1.1.21
Lambda-opisthion chord	1.1.22
Foramen magnum length	1.1.23
Length of the face	1.2.1
Maximum bimaxillary breadth of the midface	1.2.6
Height of the upper face	1.2.8
Orbital breadth	1.3.4
Orbital height	1.3.5
Nasal breadth	1.4.1
Nasal height	1.4.2

Table 3.9: Measurements used for data collection in this study

First, all individuals that were assigned unknown sex were removed from the database. The individuals that had a sex estimation of "probable male" or "probable female" were included to maximise sample sizes. Second, missing value analysis was carried out to exclude individuals with >50% of the measurements missing. Finally, any individual that showed extremely low or high values in the statistical analysis was checked with the original data file for accuracy. If no inputting error could be identified, the individual was left in the dataset.

The recovered archaeological skeletal material is usually fragmentary, so some of the metric data cannot be recorded. Furthermore, the analysis used for this study does not permit missing values in the dataset. It was then necessary to carry out a replacement of the missing data. The procedure was carried out in SPSS v.24 using the "replace missing value" tool, and the "series mean" method. The result was replacement of the missing values with the means for each craniometric variable. The process was carried out for each site independently to obtain the mean values for each dataset included in the analysis.

In conclusion, the dataset resulting from the data preparation consisted of 670 individuals with less than 50% missing data. The final dataset was the one used for the statistical analyses described in section 3.3.9.

3.3.8 Inter- and Intra-observer Error

Accuracy and precision are essential for the results of a study. Accuracy refers to how correct the data are and indicates the closeness of a given measurement to the actual value of the variable. Precision is instead referred to as consistency, and can be defined in terms of measurement error, i.e. the deviation of a set of repeated measurements from a value (Pérez-Pérez, Alesan and Roca, 1990). Reproducibility refers to measurements taken by different researchers, also called inter-observer error. Repeatability is the similarity of repeating the measurements taken by the same investigator, i.e. intra-observer error (Fancourt and Stephan, 2018).

The sources of error in anthropometric measurements can be varied, including mistakes made by the observer in reading the instrument and/or uncertainty in locating the landmark. The definition of a measurement may not be read exactly in the same way by all observers, and their method of measuring a skull could affect reading of the value (for example difference in holding a skull or an instrument). Furthermore, re-measuring a skull could produce an error of 1 mm from the first set. The difference could be a result of the difficulty of some measurements, as they are extremely precise, and the indeterminacy of a reading that falls between two numbers on the instrument (Howells, 1973). For this reason, it is essential to test whether there is an error in the measuring system of the researcher.

For this study, an inter- and intra-observer error was carried out to test the degree of error in the craniometric measurements. First, a set of variables was selected based on the instruments used for this project. Three measurements were selected for each instrument, apart from the Mollison's craniophor and the auricular headspanner that are used to record just two measurements. The selection of measurements can be seen in the following Table 3.10.

The measurements were collected by two independent observers (Master students in Forensic Anthropology at Liverpool John Moores University) and the author on a sample of 30 crania and recorded on measuring sheets. Subsequently, the craniometric measurements were transferred on an SPSS v.24 database for the statistical analysis. Before carrying out the interobserver error test, the dataset was tested to check whether the data were normally distributed. A Kolmogorov-Smirnov test for goodness of fit was carried out, and the results indicated that most values had a normal distribution, apart from measurements 1.1.5 and 1.1.21 with values of .000 and .001, respectively.

90

As a result, two different inter-observer tests were carried out. For variables with a normal distribution, a Pearson product-moment correlation was used, while for non-normally distributed data a Spearman's rank-order correlation test was applied. Measurements collected by the author were compared to the first and the second observers, resulting in the correlation coefficients r = .992 and r = .993 for the normally distributed data (P values <0.05). The r_s value for non-normally distributed data yielded values of .963 and .969 (P values <0.05). The test indicated a significant correlation between both observers and the author, as a value of >.8 reflects high reliability (Atkinson and Nevill, 1998). Detailed results for the inter-observer error analysis can be found in Appendix 7.

The same procedures were applied for intra-observer error. The set of measurements described in Table 3.10 was recorded on three crania one year apart from the first recordings. The results showed a correlation coefficient of r = .964, which indicates high reliability. More detailed results from the intra-observer error can be found in Appendix 8.

It was, of course, not possible to carry out error tests for collections previously recorded by other authors, other than checking the methods adopted for measurements of the crania. As Utermohle and Zeruga (1982) state, significant inter- and intra-observer variation exists, and it is essential to account for this error when carrying out anthropometric investigations.

Measurement	Instrument
1.1.1	Spreading calliper
1.1.5	Spreading calliper
1.1.11	Mollison's craniophor and headspanner
1.1.12	Mollison's craniophor and headspanner
1.1.17	Measuring tape
1.1.18	Measuring tape
1.1.19	Measuring tape
1.1.20	Sliding calliper
1.1.21	Sliding calliper
1.1.22	Sliding calliper
1.2.2	Spreading calliper

Table 3.10: Measurements and instruments used for the inter- and intra-observer error

3.3.9 Statistical Analysis

In this study, three statistical methods were employed for the analysis of the data: discriminant function analysis, principal component analysis and hierarchical cluster analysis. The application of the three methods are described in the following sections.

Discriminant Function Analysis

Discriminant function analysis provides a set of weightings that allow the groups to be distinguished (Fisher, 1936b). The weightings can then be used to give a probability of assigning unknown individuals to each possible group. If the probability is high, the individual is consequently assigned to a group (Dytham, 2011). The assumptions of the discriminant function analysis are: the observations (or values) are collected from a random sample; each predictor variable is normally distributed; there are at least two groups of categories, with each individual belonging to only one group; the number of individuals belonging to each group should be equal or approximately of the same amount (Burns and Burns, 2008).

Before carrying out the multivariate analyses for the comparison between the samples, a normality test was carried out to find out whether the osteometric data were normally distributed. The test was carried out as the DFA performs better when the observations are normally distributed, and the sample size is equal or nearly equal in all the groups. However, in archaeology, these assumptions are frequently violated, because at least one of the groups may have a smaller sample size (Kovarovic *et al.*, 2011). For this reason, a DFA was realised with both raw data and log transformation in SPSS v24, to determine whether the results were affected by the non-normal distribution of the data.

A stepwise discriminant function analysis was applied using the Mahalanobis distance method to test whether the analysis would give a better classification of the individuals in the different groups. The stepwise analysis enters or removes all the predictors one at a time, evaluating the contribution of the variables to the overall discrimination. At each step of the analysis, the resulting model includes only the variables that have contributed most to the discrimination between individuals. As a result, a set of best predictors should be identified, removing the ones that less contribute to the discrimination in the comparison. The stepwise method is driven by *F* to enter and *F* to remove values. *F* value indicates the statistical significance in the discrimination between samples, i.e. it is a value for how much a variable is contributing to the correct classification of the individuals in a group (Hill, Lewicki and Lewicki, 2006).

The DFA analysis was used in this study to assess the differences between British populations in relation to single measurements. First, for both the analyses, the statistical test

was carried out comparing the non-pooled British samples comprising both males and females. Secondly, the samples were pooled by sex to compare the variability between British males and British females.

A further comparison, with regard to the single craniometric measurements, was made with the Howells dataset, both comparing the non-pooled and pooled samples. For a better performance of the analysis, the Howells dataset was reduced to 12 main populations. However, the analysis of the complete Howells' dataset can be found in Appendix 9. Finally, the comparison was made among British males and females respectively to Howells' males and females. Another comparison was made between the British sample and the Howells' European Norse, Berg and Zalavar populations to detect whether there are significant differences between the samples. For all these comparisons, the analysis has been first carried out with discriminant function analysis and with the stepwise method, to see whether there is a difference in the results following the reduction of the variables.

Principal Component Analysis

Principal component analysis aims to reduce a dataset composed of a large number of interrelated variables in order to explain as much as possible of the variation present in the sample. The method transforms the set of data into new non-correlated variables, called principal components. It then orders them so that the first explains the greatest variability in the sample, the second explains the most variability not accounted for by the first, and so on (Jolliffe, 2002).

The first principal component is represented by the line through the points that passes through the long axis of the cloud. A second line that passes through the cloud of points and perpendicularly to the first component represents the second principal component instead (Dytham, 2011). In this case, the analysis was carried out in SPSS v24, where a set of factors (or PCs) were retained by the program to determine the variability of the sample. SPSS v24 uses Kaiser's criterion (Kaiser, 1960) to extract these factors, i.e. only the factors with Eigenvalues greater than 1 are retained. The factor scores were then used to produce three-dimensional scatterplots to comprehend the results of the analysis better.

For this study, unlike for the discriminant function analysis, the means for each measurement were used. The means were calculated for each population separately and then analysed. The aim of the PCA, in this case, was to determine which cranial measurements determine the greatest variability between the populations included in the analysis. As for the discriminant function analysis, the first step was to analyse the means of the British populations. Firstly, the non-pooled samples were compared. Secondly, the pooled samples were analysed.

A further analysis was made comparing the British populations with the Howells' European samples (Norse, Zalavar and Berg). The first comparison was made between the non-pooled samples, and subsequently, the males were compared and lastly the males. Finally, the same method was used to compare the selected major Howells' samples. The selected samples used for this final analysis are the same that were used previously for the discriminant function analysis.

Hierarchical Cluster Analysis

Cluster analysis is a data exploratory analysis tool, which separates data into groups whose identities are unknown in advance. To define the groups and to assign group membership, the degree of similarity and difference between individual observations is used (Wilks, 2011). Cluster analysis is also used to generate dendrograms that show putative phylogenetic relationships or to divide individuals into groups that might have taxonomic meaning. Differently from discriminant function analysis, the procedure does not require any assumptions before assigning memberships to a group.

Cluster analysis works as a systematic process. The individuals are first depicted as a scattering of points, then the two closest individuals are identified, and their similarity is recorded as the distance between them (Dytham, 2011). The most commonly used distance measure is the squared Euclidean distance, which was also used for the analysis in this thesis. The distance between clusters can vary in methodology, but the one chosen for this analysis is based on the distance between the sample means of the points contained in each group. Based on this distance, the first step is to find two data vectors that are the closest ones in a dimensional space, combining them into a new group. In each subsequent step, the two closest are merged to form a broader group. The process is repeated until all the individuals are assigned to a single group. The final aim is to minimise the differences within groups of individuals and to maximise the differences between clusters (Wilks, 2011).

In this thesis, similarly to discriminant function analysis and principal component analysis, the British non-pooled samples were first analysed, and later male and female groups were compared. This method was also used in the comparison between British and Howells' European samples (Norse, Berg and Zalavar). Finally, the same procedure was carried out on a selection of Howells' populations, as for the previous statistical analyses. For a more comprehensive exploration of the data, the functions extracted from the principal component analysis were used in the production of the dendrograms. Furthermore, more than one method was applied (between groups, within groups, single linkage, Ward linkage), to understand whether the results were consistent in each methodology, but only the results of the analysis between groups and Ward's minimum variance method are included in this thesis.

4. Results

4.1 Introduction

Chapter 4 explains the results for the statistical analyses that were carried out for this study. Section 4.2 describes the five cranial indices calculated, based on the availability of the measurements. The results derived from the indices for each British sample are explained, comparing the male and the female groups. Then, the means of the indices calculated for each group are compared with the mean indices of the Howells' European samples.

Section 4.3 describes the results for the discriminant function analysis. The DFA allowed discriminating between the samples included in this study based on the craniometric measurements.

Section 4.4 comprises an explanation of the results for the principal component analysis. Differently from the previous discriminant function analysis, the means resulting from each variable in the different samples were employed for the data analysis. This procedure allowed to determine which variables were more significant in discriminating between groups.

In section 4.5, the results for the hierarchical cluster analysis are presented. This descriptive method was used to show better the similarities between the samples and to create dendrograms to illustrate the clustering of the groups. Only two methods were included, the between-groups linkage and Ward's method, to show that both the approaches give equal results and to confirm the validity of the analysis.

Every chapter has a standard outline, to maintain consistency throughout the thesis. First, the non-pooled British samples data analysis is described, with no differentiation between males and females. In the second part of the analyses, the samples were pooled, and male data were compared for all the British groups, as well as female data. Then, the pooled and nonpooled British samples are compared to the Howells' European groups (Norse, Zalavar and Berg). Finally, for a more comprehensive analysis, the results for Howells' dataset analyses are described to see how the major human groups differentiate and if the different samples cluster together based on geographical affinity.

4.2 Indices

Cranial indices were calculated for descriptive purposes. Five cranial indices were calculated: cranial index, cranial length/height index, cranial breadth/height index, nasal index and orbital index. First, a comparison was carried out between males and females within each British sample. Second, the indices were calculated using the means of the measurements for the non-pooled samples, comprising both males and females, and a comparison was made between British and the European samples from Howells' dataset (Norse, Zalavar and Berg).

4.2.1 Poulton

The sample from Poulton shows relatively small differences between males and females (Fig. 4.1). The cranial index for both sexes falls in the mesocrany range, which means that both samples have an average or medium skull shape, tending to round-headed, as the values are close to brachycrany. Similarly to the ratio of height to length, both tend to be average or medium (orthocrany), with an inclination to a low skull. When comparing cranial breadth and height instead, both fall into the low skull range (tapeinocrany).

Different results are obtained when analysing the facial skull. Even though values are close, the nasal index for the females shows a narrow nasal aperture (leptorrhiny), while men seem to have a higher value that falls into the mesorrhiny range (average or medium). For the orbital index, females tend to have wider orbits (chameoconchy) compared to men, that fall into the mesoconchy range (average or medium).

Figure 4.1: Comparison between female and males indices in the Poulton sample

4.2.2 Linenhall

The indices for the Linenhall sample seem to follow the same pattern for males and females (Fig. 4.2). Both sexes show an average skull shape for the cranial index (mesocrany) and the cranial height/length index (orthocrany). In the first case, females tend more to a broad/round head, while in the second case this sample is closer to chamaecrany. A slight difference is encountered in the ratio between cranial breadth and height. In fact, females fall into the tapeinocrany range, and males have a bigger value that falls into an average/medium skull. Regarding the facial skeleton, both the samples show an average or medium nasal index and wide orbits. In the last case, females have wider orbits than males, but still falling into mesoconchy.

Figure 4.2: Comparison between females and males indices in the Linenhall sample

4.2.3 St Owen

The histogram in Fig. 4.3 shows that the values for the Gloucester sample are reasonably similar for both sexes. Both sexes show an average or medium skull for the first two indices. When comparing the cranial breadth with the height instead, both result as tapeinocranic (low skull).

The facial skeleton results in very similar values, especially the shape of the orbits, which shows mesoconchy for both sexes. The only difference is encountered in the nasal index where the females have a narrow nasal aperture, while men fall into an average range.

Figure 4.3: Comparison between females and males indices in the St Owen sample

4.2.4 London

The London sample is fairly homogeneous as the sexual dimorphism is minimal (Fig. 4.4). The cranial index has a higher value for females, which show a broad/rounded head, while males fall in the medium range. The other indices are higher in the males, showing orthocrany for the cranial length/height. When comparing the breadth and the height instead, females fall in the tapeinocrany class (low skull), while males still fall in the average value (metriocrany). The indices for the facial skull show average values both for nasal aperture and orbits' size.

Figure 4.4: Comparison between females and males indices in the London sample
4.2.5 St Gregory

The sample from Canterbury shows minimal differences between sexes (Fig. 4.5). The cranial index indicates an average skull, tending to brachichrany, with a higher value for the females. The same average value can be seen for the cranial length/height ratio, while for the cranial breadth/length females have a low skull (tapeinocrany). The facial skeleton indices fall into the average/medium sizes, even though males show a significant tendency to cameoconchy.

Figure 4.5: Comparison between females and males indices in the St Gregory sample

4.2.6 St Leonard

The Hythe sample follows the same pattern for both females and males (Fig. 4.6). For both the sexes, the cranial index falls well above the brachycrany category and is characterised by broad or round skulls. In the comparison between cranial length and height, females show an average or medium skull, whereas males have a high skull. However, regarding the breadth/height ratio, both the samples show a low skull, even though the value is borderline with metriocrany for male individuals.

The values for the facial skeleton seem to be higher for females, but both the samples fall into the same categories. The nasal index indicates mesorrhiny in both sexes, with an average or medium nasal aperture. The orbital index instead indicates that this sample has wide orbits, (cameoconchy).

Figure 4.6: Comparison between females and males indices in the St Leonard sample

4.2.7 Castle Hill

Male and female samples from Scarborough are reasonably similar in their cranial indices (Fig. 4.7). Female skulls are overall smaller than the male ones. Both the cranial and the length/height indices show an average value. When comparing the breadth with the height instead, the skulls are classified as tapeinocranic (low skull).

The facial skull is similar, showing that both the sexes have an average nasal aperture. The highest difference between the sexes is shown in the orbital index where females show a higher value that locates them into the mesoconchy class. Males instead have wide orbits and fall in the chameoconchy class.

Figure 4.32: Comparison between females and males indices in the Castle Hill sample

4.2.8 Guisborough

The indices for the Guisborough sample were calculated depending on the availability of measurements. As it can be seen in Fig. 4.8, because of missing data, it was not possible to calculate facial indices on the female sample. However, it was possible to determine the cranial indices.

Overall, there is a substantial similarity between the two sexes, with lower values encountered for the female sample. The cranial and the length/height indices classify the two samples in the average or medium categories (mesocrany and orthocrany). Cranial breadth and length ratio classifies both samples in the tapeinocranic group, showing that both the sexes are characterised by low skulls.

The facial skull indices for the males show that the nasal aperture was of an average type, with a tendency to a narrow shape. The orbits instead fall well into the hypsiconchy category, showing that this sample had narrow orbits.

Figure 4.33: Comparison between females and males indices in the Guisborough sample

4.2.9 Ballumbie

The sample from Ballumbie shows a similar overall trend in the indices for both sexes (Fig. 4.9). The cranial index for the males seems to have a lower value than the females, but both are in the brachycrany group (broad or rounded head). The values for the length/breadth index show an average skull (orthocrany). The breadth/length index instead, classifies both sexes into the tapeinocrany class, with a higher value showed by males.

For both the samples, the nasal aperture is similar, with an average size falling into mesorriny. However, there is a difference in the orbital index where females seem to have narrower orbits (hypsiconchy) than men (mesoconchy).

Figure 4.9: Comparison between females and males indices in the Ballumbie sample

4.2.10 Between population analysis

A variation in the cranial indices can be seen among the British groups, but also in comparison with the Howells' European samples (Fig. 4.10). Overall, the majority of the samples are classified in the average or medium group. The only three groups that fall into another class are St Leonard (number 6), Ballumbie (number 9) and the Berg group (number 12). These samples fall in the broad or rounded headed individuals category (brachycrany).

The lowest values for the cranial indices are shown by Norse group (75.53), Zalavar sample (76.98) and St Owen (77.63). The highest values are indicated by St Leonard (82.22), Berg sample (82.19) and Ballumbie (81.04). Even though there is disparity in the British cranial indices, they fall into the same class and it does not seem that they cluster together based on geographic proximity. St Leonard (number 6) and St Gregory (number 5) are both in Kent, but they seem to belong to two different morphological groups. The same cannot be said for Guisborough (number 7) and Castle Hill (number 8), that show a minimal difference between each other and are both classified as average headed.

Figure 4.340: Cranial indices means for British (1-9) and Howells' European (10-12) samples

Cranial length/height ratio seems to follow the same pattern shown by the cranial index (Fig. 4.11). All the samples fall into the average or medium class, apart from Norse group, which is located in the chamaecrany class, with a strong tendency to an average skull.

The lowest values are given by Norse sample (69.99), St Owen (70.18) and Poulton (71.18). The highest values instead are given by St Leonard (74.94), London (73.53) and St Gregory (73.4). St Leonard falls into the average class, but with a tendency to a higher skull (hypsicrany). Here, there seems to be a similarity that follows the geographical proximity. The groups from the Southern part of Britain show higher values compared to the ones located in the North. The only exception for the southern groups is represented by Gloucester that is located on the western coast.

The trend for the cranial breadth/height ratio changes compared to the previous indices. The majority cluster together in the tapeinocrany class, with values that show a low skull. Although, London, St Gregory, Norse sample and Zalavar fall into the metriocrany class (Fig. 4.12).

The lowest values are shown by Ballumbie (88.25), Berg sample (88.56) and Poulton (90.19). In contrast, the highest values are recorded by Zalavar (94.84) and Norse samples (92.71), followed by London (91.81). Even if the samples are divided into two different classes, there seems to be an increased homogeneity in the indices, especially for the British samples. The only different value is related to Ballumbie, which is well located in the tapeinocranic group.

The nasal indices place all the samples, both British and European, in the average or medium category. Only Gloucester sample has a narrow nasal aperture even though it is close to the average value (Fig. 4.13). The lowest values are represented by St Owen (47.93), Guisborough (48.01) and London (48.55). The highest values instead are given by St Leonard (51), Berg (50.55) and Zalavar (50.16) samples.

The sample from St Leonard is similar to the groups from mainland Europe, as they show similar values for the nasal shape. Close values are also shared by Gloucester and Guisborough. The last sample is classified in the average group, but it shows a tendency towards a narrow nasal aperture.

Figure 4.13: Nasal indices means for British (1-9) and Howells' European (10-12) samples

In Fig. 4.14, the orbital index is shown. There is a clear homogeneity between the groups as the values do not cover a wide range. Linenhall, St Leonard, Castle Hill and Zalavar samples are characterised by wide orbits (chameoconchy). The others fall into the average or medium class, apart from Guisborough that seems to be part of the hypsiconchy group.

The lowest values are given by St Leonard (78.91), Linenhall (82.12) and Zalavar (82.42). The highest values were instead reached by Guisborough (95.58), Ballumbie (87.89) and London (87.54). The only samples that seem to differ significantly from the others are Guisborough and St Leonard while the rest of the samples seem to show the same distribution.

Figure 4.14: Orbital indices means for British (1-9) and Howells' European (10-12) samples

4.3 Discriminant Function Analysis

Discriminant function analysis was carried out for the first part of this study. First, the data were analysed with no differentiation between males and females. The British samples were first compared to each other to see whether there are statistically significant differences among the data. In the second part, the samples were pooled, and male data were compared for all the British groups, as well as female data.

For a more comprehensive analysis, Howells' data set was used to see how the major human groups differentiate and if the British samples cluster together based on geographical affinity. First, the comparison was carried out with just the Howells' European samples. Second, Howells' dataset was used for discriminant analysis. However, because it is a conspicuous sample, the major human groups were selected to perform the statistical analysis better. The scatter plots and results for the initial comparison with the complete Howells' dataset can be seen in Appendix 9.

The analysis was first carried out using the raw data. Then, a log transformation of the variables was carried out, to see whether the analysis was better performed with normally distributed data. The results did not differ significantly from the ones resulting from the raw data. In the analysis regarding the non-pooled sample, the correct classification of the individuals was 58.2%, while after the data was log transformed was 58.4%. For the pooled sample, the results had a classification accuracy of respectively 67.4% and 65.6% for females and 58.8% and 60.6% for males. For this reason, only the results for the raw data analysis are discussed.

A stepwise discriminant function with Mahalanobis distance procedure was also applied to test the accurate classification of the individuals. Once again, the results were compared to the ones from the DFA. Here, the difference between the correct classifications for the two methods was high. In the non-pooled British sample analysis, the classification accuracy was 55.1% using the stepwise method. For the pooled sample, the results were 49.3% for females and 53% for males. The standard discriminant method was therefore used as the classification accuracy is better performed using this procedure.

4.3.1 Inter-population Analysis: Non-pooled British Samples

Discriminant function analysis allowed to discriminate between British non-pooled samples. As seen in Table 4.1, the classification accuracy for this test was 58.2%. The scatterplot in Fig. 4.15 shows how the British samples cluster based on the first two discriminant functions. As showed by the results of the Eigenvalues (see Appendix 10), which represent the amount of variance accounted for by each discriminant function, the first two account for 80.5% of the total variation (Function 1 = 56.3% and Function 2 = 24.1).

It is clear Table 4.1 and Fig. 4.15 that some samples share similarities. In fact, Poulton shows a classification accuracy of just 39.4%, with 12.1% of the individuals clustering in St Owen and 11.4% respectively into Castle Hill and Ballumbie. A smaller percentage of the sample (8.3%) appears to classify in Linenhall and London groups. Gloucester is the most homogeneous sample, as 48.3% are correctly classified. Instead, 17.2% are classified under the Poulton sample, and 12.1% is misclassified into Linenhall. A further 6.9% is classified respectively into London, St Gregory and Ballumbie. The poorest classification results are represented by St Gregory, which shows 17.1% of misclassification respectively in Poulton and Ballumbie. Castle Hill and Ballumbie show a good sample classification (61.1% and 58.3%), but still lower compared to the other groups. In fact, Linenhall, London, St Leonard and Guisborough represent the samples with the highest classification accuracy. Linenhall shows 71.4% correctly classified individuals, while 14.3% of the sample classified respectively in St Owen and St Leonard. The results could be due to the small sample size (7 individuals), compared to the others. London has a very good classification accuracy, resulting in 74% of the individuals being assigned to the original group. The major similarities are shared by this sample with Guisborough, St Owen and Castle Hill. Similarly, St Leonard reaches an accuracy of 72.4%, with 7.5% of the individuals misclassified in St Gregory and 5.5% in St Owen groups. Finally, the highest percentage is shown by Guisborough (88.9 %), with a minimal misclassification corresponding to 5.6% in both London and Ballumbie. Also, in this case, the sample size, that is remarkably smaller than the others (18), could affect the results of the classification.

The results are better represented in the scatterplot shown in Fig. 4.15. The samples that had a higher correct classification percentage display a looser cluster compared to the other groups. In fact, it can be seen that Guisborough and St Leonard act as outliers, while the closest associations are represented by Ballumbie, St Gregory and St Owen. Further outlier samples, but with a less isolated position in the scatterplot, are represented by Castle Hill and Linenhall, which are closer to Poulton, and London.

Figure 4.15: Scatterplot for the comparison between non-pooled British samples

Predicted Group Membership												
	Sample	1	2	3	4	5	6	7	8	9	Total	
%	1	39.4	8.3	12.1	8.3	5.3	3.0	11.4	.8	11.4	100.0	
	2	.0	71.4	14.3	.0	.0	14.3	.0	.0	.0	100.0	
	3	17.2	12.1	48.3	6.9	6.9	1.7	.0	.0	6.9	100.0	
	4	2.1	1.0	5.2	74.0	4.2	.0	5.2	6.3	2.1	100.0	
	5	17.1	2.9	15.7	8.6	28.6	5.7	4.3	.0	17.1	100.0	
	6	1.0	3.5	5.5	1.5	7.5	72.4	4.5	.0	4.0	100.0	
	7	13.0	7.4	3.7	.0	.0	3.7	61.1	3.7	7.4	100.0	
	8	.0	.0	.0	5.6	.0	.0	.0	88.9	5.6	100.0	
	9	5.6	2.8	5.6	11.1	5.6	2.8	5.6	2.8	58.3	100.0	

58.2% of original grouped cases correctly classified.

Table 4.1: Non-pooled British samples classification results (1. Poulton; 2. Linenhall; 3. St Owen; 4. London; 5. St Gregory; 6. St Leonard; 7. Castle Hill; 8. Guisborough; 9.Ballumbie)

4.3.2 Pooled Samples Analysis

British Males

The results for the British male sample mostly follow the same pattern of the non-pooled sample analysis. The percentage for the correct classification of the individuals amounts at 58.8%, which is very close, but more accurate than the non-pooled sample (Table 4.2). The Eigenvalues (see Appendix 10) demonstrate that the first two functions, which are used to generate the scatterplot in Fig. 4.16, account for 81.4% of the total variance (Function 1 = 51.6% and Function 2 = 29.9%).

Table 4.2 shows how the groups were classified following the discriminant function analysis. The belonging of the individuals to the original groups is more varied than the classification of the non-pooled sample. Poulton shows the poorest classification results, with 40.2% of its sample classified in the original group, while 19.6% clusters with St Owen, 15.2 % with Castle Hill and 10.9% with Ballumbie. The other two groups that show the highest misclassification of the individuals are St Gregory (45.8%) and St Owen (48.7%). St Gregory seems to share similarities with Poulton (14.6%), St Owen (12.5%) and London (10.4%), while St Owens had 15.4% of misclassified cases in Poulton and 10.3% respectively in London and Ballumbie. A higher percentage of correct classification is shown by Castle Hill (61%), Ballumbie (64%) and St Gregory (67%). Ballumbie exhibits a lower misclassification rate than the nonpooled sample analysed in section 4.3.1, locating the higher amount of misclassified individuals in the London sample. The similarities remain equal for Castle Hill but change for the sample from St Leonard, which seems that the misclassification is mostly present in St Gregory. Finally, the highest degrees of correct classification is shown by London, Linenhall and Guisborough. Again, the results obtained for Linenhall (80%) and Guisborough (87.5%) can be a result of the small sample included in the analysis. London instead seems to share similarities with St Owens and Guisborough.

The results are well evident in Fig. 4.16, where it is noticeable a distribution similar to the non-pooled sample. Again, St Owen, St Gregory and Ballumbie form a cluster in the centre of the scatterplot. Linenhall and Poulton seem to have a closer association with this group, while Castle Hill tends to differentiate from it. Equally to the previous analysis, London forms a loose association with the main group and tends towards Guisborough that still highly discriminates from the rest of the samples. The sample from St Leonard shows remarkable discrimination. In fact, its individuals cluster in a nearly completely different group compared to the others and this is also confirmed by Table 4.2, reiterating the non-pooled sample analysis.

Figure 4.16: Scatterplot for the comparison between British male samples

Predicted Group Membership											
	Sample	1	2	3	4	5	6	7	8	9	Total
%	1	40.2	4.3	19.6	4.3	3.3	1.1	15.2	1.1	10.9	100.0
	2	.0	80.0	.0	.0	20.0	.0	.0	.0	.0	100.0
	3	15.4	7.7	48.7	10.3	5.1	.0	2.6	.0	10.3	100.0
	4	1.4	.0	7.0	73.2	5.6	.0	1.4	7.0	4.2	100.0
	5	14.6	2.1	12.5	10.4	45.8	.0	6.3	.0	8.3	100.0
	6	1.8	.9	3.6	1.8	17.0	67.0	4.5	.0	3.6	100.0
	7	7.3	9.8	2.4	.0	4.9	2.4	61.0	2.4	9.8	100.0
	8	.0	.0	.0	6.3	.0	.0	.0	87.5	6.3	100.0
	9	8.0	.0	8.0	12.0	.0	4.0	.0	4.0	64.0	100.0

58.8% of original grouped cases correctly classified.

Table 4.2: British male samples classification results (1. Poulton; 2. Linenhall; 3. St Owen; 4. London; 5. St Gregory; 6. St Leonard; 7. Castle Hill; 8. Guisborough; 9.Ballumbie)

British Females

The results for the analysis of the female sample show a classification accuracy of 67.4%, which is higher than the previous results discussed in this study (Table 4.3). The samples are plotted on the first two discriminant functions in Fig. 4.17 and the distribution is consistent with the non-pooled sample, with slight differences if comparing the results with the male group. The first two functions account for 71.9% of the total variance (Function 1 = 55% and Function 2 = 16.9%) (see Appendix 10), which is lower than the previous two analyses.

The samples analysed for the female sample are much smaller than the male ones, and this could affect the classification of the individuals, especially for Linenhall and Guisborough, which have just two individuals available for the analysis. In fact, the two samples show a correctly classified percentage of 100%. London and Ballumbie show a very high percentage, with results of respectively 80% and 81.8%. Although the sample size of females is substantially smaller than that of males, the total sample number was still large enough to be considered for the analysis. Ballumbie shows the only misclassification in St Gregory sample (18.2%), while the 8% of the individuals from London were misclassified into Ballumbie and 4% into St Owen and St Gregory. A 76.9% of correctly classified cases results for the group from Castle Hill, with a 23.1% assigned to Poulton. St Leonard as well has a good classification rate (74.7%), with a 5.7% of the cases misclassified in St Gregory's sample and 4.6% respectively into Poulton and Linenhall. St Owen has a reasonably good classification percentage (68.4%), with 10.5% of the individuals being classified both into Poulton and Linenhall. Finally, the poorest classification rates are shown for the Poulton sample (50%) and St Gregory (36.4%). The first sample shares most of the similarities with London (15%), while the second saw the 22.7% of the individuals assigned to Poulton and 18.5% with Gloucester.

The scatterplot in Fig. 4.17 shows a tight cluster formed by St Gregory, St Owen and Ballumbie. Poulton seems to get closer to this central cluster if compared to the analysis carried out for the male individuals, while Linenhall seems still to keep the same distance from the other centroids. There are evident changes for Castle Hill, which appears to be more isolated in the females comparison and this is also confirmed from the percentages shown in Table 4.3. The samples of London and Guisborough maintain the same position in the cluster, similarly to St Leonard. The only difference regarding this last group is that the individuals appear more spread in the scatterplot, compared to the male sample. In fact, the male sample tended to form a highly loose cluster on the side of the scatterplot, while the females show a broader spatial distribution.

Figure 4.17: Scatterplot for the comparison between British female samples

Predicted Group Membership											
	Sample	1	2	3	4	5	6	7	8	9	Total
%	1	50.0	2.5	7.5	15.0	7.5	2.5	7.5	.0	7.5	100.0
	2	.0	100.0	.0	.0	.0	.0	.0	.0	.0	100.0
	3	10.5	10.5	68.4	.0	5.3	5.3	.0	.0	.0	100.0
	4	.0	.0	4.0	80.0	4.0	.0	4.0	.0	8.0	100.0
	5	22.7	4.5	18.2	4.5	36.4	4.5	.0	.0	9.1	100.0
	6	4.6	4.6	2.3	1.1	5.7	74.7	3.4	.0	3.4	100.0
	7	23.1	.0	.0	.0	.0	.0	76.9	.0	.0	100.0
	8	.0	.0	.0	.0	.0	.0	.0	100.0	.0	100.0
	9	.0	.0	.0	.0	18.2	.0	.0	.0	81.8	100.0

67.4% of original grouped cases correctly classified.

Table 4.3: British female samples classification results (1. Poulton; 2. Linenhall; 3. St Owen; 4. London; 5. St Gregory;6. St Leonard; 7. Castle Hill; 8. Guisborough; 9.Ballumbie)

4.3.3 Comparison with W.W. Howells data set

British and Howells European Non-pooled Samples

This stage of the analysis compares the non-pooled British samples with Howells European groups to test whether there are any similarities between groups of individuals. The classification was carried out with an accuracy of 51.3% (Table 4.4), with Eigenvalues (see Appendix 11) showing that the first two discriminant functions account for 65.6% of the total variance (Function 1 = 47.2% and Function 2 = 18.4%).

The overall distribution of the individuals in the scatterplot tends to remain stable if compared to the ones discussed in the previous sections. However, the correct classification percentages diminish as the sample analysed is bigger and therefore there is an increased chance for the individuals to be misclassified. The highest classification accuracy is shown by Linenhall (71.4%) and Guisborough (88.9%). Again, this could be the result of the small sample sizes of these two collections, but it is worthy of attention that none of the individuals from these groups has been misclassified in the ones from mainland Europe. Good classification results are shown by St Leonard (69.8%) and London (62.5%), which both seem to have a misclassification mainly into the other British groups. London though shows six individuals (6.3%) that have been misclassified in the Zalavar group. Castle Hill reports some individuals that have been assigned to the Europe mainland groups, but the percentages are not significant (5.6% and 3.7%). St Owen seems to be the sample that shares more characteristics with the Norse sample (10.3%), but the same percentage of misclassified individuals can also be seen in the samples of Linenhall and Poulton. Finally, the poorest classification rates are represented by Poulton (28.8%) and St Gregory (24.3%). Poulton shares many of its individuals with the European groups: six were classified as Norse, eight as Zalavar and 11 into the Berg group. Even though, most of the classification percentage is still between the British samples. St Gregory instead seems more similar to the British than the ones from the Howells sample.

The scatterplot in Fig. 4.17 shows a tight cluster that is formed by Poulton and St Owen in the middle. A second, but looser cluster is formed by St Gregory, Ballumbie and the Berg sample. Slightly detached from the groups clustered in the middle are the Norse and Zalavar samples. Linenhall and Castle Hill seem to differentiate from the other samples, but still not isolated. Similarly, London seems to reiterate the classification given by the previous analyses, resulting as a separate group. Finally, Guisborough and St Gregory seem to not share any similarities with the other British and European groups, as they result as two isolated samples far removed from any of the other groups.

Figure 4.18: Scatterplot for the comparison between British and Howells' European non-pooled samples

Predicted Group Membership															
		Sample	1	2	3	4	5	6	7	8	9	10	11	12	Total
	%	1	28.8	7.6	10.6	4.5	3.8	4.5	11.4	.8	9.1	4.5	6.1	8.3	100.0
		2	.0	71.4	14.3	.0	.0	14.3	.0	.0	.0	.0	.0	.0	100.0
		3	10.3	10.3	46.6	5.2	6.9	1.7	.0	.0	6.9	10.3	1.7	.0	100.0
		4	1.0	.0	5.2	62.5	4.2	3.1	2.1	8.3	2.1	2.1	6.3	3.1	100.0
		5	10.0	2.9	14.3	10.0	24.3	5.7	4.3	1.4	11.4	5.7	5.7	4.3	100.0
		6	1.0	3.5	4.0	1.0	4.0	69.8	6.5	.0	2.5	.5	2.0	5.0	100.0
		7	14.8	3.7	3.7	.0	1.9	5.6	51.9	3.7	5.6	5.6	.0	3.7	100.0
		8	.0	.0	.0	5.6	.0	.0	.0	88.9	5.6	.0	.0	.0	100.0
		9	2.8	2.8	5.6	13.9	5.6	2.8	8.3	.0	44.4	2.8	.0	11.1	100.0
		10	4.5	7.3	8.2	4.5	6.4	.0	4.5	.0	3.6	43.6	15.5	1.8	100.0
		11	2.0	4.1	3.1	5.1	7.1	1.0	1.0	3.1	1.0	16.3	43.9	12.2	100.0
		12	6.4	.9	.0	6.4	1.8	1.8	1.8	.9	4.6	5.5	6.4	63.3	100.0

51.3% of original grouped cases correctly classified.

Table 4.4: British and Howells' European non-pooled samples classification results (1. Poulton; 2. Linenhall; 3. St Owen; 4. London; 5. St Gregory; 6. St Leonard; 7. Castle Hill; 8. Guisborough; 9.Ballumbie)

British and Howells European Male Samples

The comparison between the British and Howells' European males are shown in Fig. 4.18 and Table 4.5. The scatterplot confirms the results both given by the analyses of the non-pooled sample and the British samples. The correctly classified individuals amount at 52% and the Eigenvalues (see Appendix 11) show that the first two Functions account for 68.7% of the variability (Function 1 = 46.3% and Function 2 = 22.5%).

The correct classification rates rise when the samples are pooled, and they remain similar to the previous classification. Still can be seen a high classification rate for the samples of Linenhall (80%) and Guisborough (87.5%). Fairly good classification rates are shown for St Leonard (67.9%), London (62%) and the Berg group (62.5%). Overall the British samples tend to misclassify their individuals in the British groups. The poorest classification percentage is shown by Poulton (34.8%) and the Norse sample (36.4%). The only British samples that had a more significant amount of individuals misclassified in Howells' European sample are Poulton and Castle Hill, with respectively eight individuals assigned to the Norse group and four individuals to the Berg sample. The European samples seem to be share more similarities between them, apart from an 11.3% of the Zalavar sample classified into the St Gregory group and 9.1% of the Norse sample classified in the St Owen group.

The scatterplot in Figure 4.18 shows the distribution of the samples according to Function 1 and Function 2. It is clear that there are three main clusters. The first is represented by St Owen, St Gregory and Ballumbie that are plotted very closely together. This association remains constant over all the analyses carried out for this study. The second cluster is formed by Linenhall and Poulton. Close to this group is the third cluster formed by the European samples, which seem to differentiate from the British ones. London and Guisborough seem to be isolated from the rest of the samples in the same quadrant, but they do not form a cluster together as they seem quite far away from each other. Finally, St Leonard is the sample that seems to show the higher discrimination from the other groups. In fact, even if its individuals are fairly spread on the right side of the plot, most of them seem inclined to the opposite direction from the main clusters, both British and European.

Figure 4.18: Scatterplot for the comparison between British and Howells' European male samples

Predicted Group Membership														
	Sample	1	2	3	4	5	6	7	8	9	10	11	12	Total
	% _1	34.8	6.5	10.9	2.2	1.1	1.1	13.0	1.1	8.7	8.7	4.3	7.6	100.0
	2	.0	80.0	.0	.0	.0	20.0	.0	.0	.0	.0	.0	.0	100.0
	3	15.4	7.7	43.6	7.7	10.3	2.6	.0	.0	5.1	7.7	.0	.0	100.0
	4	1.4	.0	4.2	62.0	5.6	2.8	1.4	11.3	7.0	.0	1.4	2.8	100.0
	5	4.2	4.2	10.4	12.5	39.6	2.1	4.2	.0	8.3	4.2	6.3	4.2	100.0
	6	.0	1.8	1.8	.9	13.4	67.9	7.1	.0	2.7	.9	.9	2.7	100.0
	7	9.8	9.8	4.9	.0	4.9	4.9	46.3	2.4	2.4	4.9	.0	9.8	100.0
	8	.0	.0	.0	6.3	.0	.0	.0	87.5	6.3	.0	.0	.0	100.0
	9	4.0	.0	12.0	16.0	8.0	4.0	8.0	.0	44.0	.0	.0	4.0	100.0
	10	5.5	1.8	9.1	7.3	5.5	.0	9.1	.0	1.8	36.4	20.0	3.6	100.0
	11	.0	3.8	.0	1.9	11.3	.0	1.9	5.7	.0	13.2	52.8	9.4	100.0
	12	5.4	3.6	1.8	3.6	3.6	.0	1.8	.0	5.4	7.1	5.4	62.5	100.0

52.0% of original grouped cases correctly classified.

Table 4.5: British and Howells' European male samples classification results (1. Poulton; 2. Linenhall; 3. St Owen; 4. London; 5. St Gregory; 6. St Leonard; 7. Castle Hill; 8. Guisborough; 9.Ballumbie; 10. Norse; 11. Zalavar; 12. Berg)

British and Howells European Female Samples

The comparison between British and Howells' European females show results that are slightly different from the comparisons between the male samples. The classification accuracy amounts at 53.9% (Table 4.6) and the Eigenvalues (see Appendix 11) show that the first two Discriminant Functions account for 64.1% of the variation (Function 1 = 42.1% and Function 2 = 21.9%).

In Table 4.6 are shown the classification percentages. The highest rates are shown by Ballumbie (80%) and St Leonard (71.3%). Guisborough reports a 100% correctness in the classification, but the sample is too small to be analysed, just as the one from Linenhall. Ballumbie shows no misclassifications of its individuals in the European groups, but just in the group of St Gregory. This time St Leonard shows that five elements of its sample are classified in the Berg group, while the rest are assigned to British groups. Castle Hill reports a fairly correct classification (69.2%), with no similarities with the European sample, apart from one individual belonging to the Norse group. The other British groups see a relatively poor classification percentage, with St Owen reporting 47.4% and just one individual assigned to the Zalavar group. London appears as the most similar to the European groups, with 12% of the cases classified respectively in the Zalavar and Berg samples. Poulton (40%) results more similar to the British samples, with just four individuals misclassified in the European groups. Finally, the Berg group sees a misclassification of six of its individuals instead into Ballumbie.

As it is clear from Figure 4.19, the samples appear more spread in the scatterplot, and the connections between groups are looser than the previous male samples. The division between the British and the European groups does not seem evident from the analysis of the female samples. Poulton, St Owen and St Gregory seem to be the closest ones, but still not as close as the male samples. Reasonably close to St Owen seems Linenhall, even if the variability of the sample cannot be determined by a very small group for this sample. Guisborough and the Norse sample are relatively close, as well as London and the Zalavar sample. Ballumbie results to be slightly isolated from the other groups, as well as Castle Hill. The clear difference between St Leonard and the other groups also persists in the female samples. It is worthy of attention the outlier from this group, which is completely isolated. The individual is Skeleton 804 from St Leonard, which shows remarkably smaller measurements compared to the other ones.

Figure 4.19: Scatterplot for the comparison between British and Howells' European female samples

Predicted Group Membership														
	Sample	1	2	3	4	5	6	7	8	9	10	11	12	Total
%	1	40.0	5.0	7.5	12.5	12.5	.0	7.5	.0	5.0	2.5	5.0	2.5	100.0
	2	.0	50.0	50.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	100.0
	3	15.8	10.5	47.4	.0	5.3	5.3	5.3	.0	.0	5.3	5.3	.0	100.0
	4	4.0	.0	8.0	44.0	4.0	4.0	4.0	.0	8.0	.0	12.0	12.0	100.0
	5	13.6	4.5	18.2	4.5	36.4	4.5	.0	4.5	4.5	4.5	4.5	.0	100.0
	6	3.4	4.6	2.3	1.1	4.6	71.3	1.1	.0	2.3	2.3	1.1	5.7	100.0
	7	7.7	7.7	7.7	.0	.0	.0	69.2	.0	.0	7.7	.0	.0	100.0
	8	.0	.0	.0	.0	.0	.0	.0	100.0	.0	.0	.0	.0	100.0
	9	.0	.0	.0	.0	20.0	.0	.0	.0	80.0	.0	.0	.0	100.0
	10	3.6	5.5	9.1	3.6	3.6	1.8	1.8	.0	3.6	49.1	14.5	3.6	100.0
	11	8.9	.0	8.9	8.9	.0	4.4	.0	.0	.0	15.6	37.8	15.6	100.0
	12	3.8	.0	.0	5.7	1.9	3.8	.0	.0	11.3	5.7	9.4	58.5	100.0

53.9% of original grouped cases correctly classified.

Table 4.6: British and Howells' European female samples classification results (1. Poulton; 2. Linenhall; 3. St Owen; 4. London; 5. St Gregory; 6. St Leonard; 7. Castle Hill; 8. Guisborough; 9.Ballumbie; 10. Norse; 11. Zalavar; 12. Berg)

British and Howells Non-pooled Samples

The analysis was initially carried out on the complete Howells' sample. However, the number of crania comprising the British samples amounted at 3194 individuals and the results were difficult to interpret, especially the scatterplot. For this reason, the Howells sample was reduced in order to get a better performance of the statistical analysis. The number was reduced from 37 to 21 samples, which represent the major Howells' human groups, for a total of 1766 individuals.

The analysis of the non-pooled samples shows a classification accuracy of 57.8%. The Eigenvalues (see Appendix 12) indicate that the first two Functions account for 60.5% of the total variation (Function 1 = 39.5% and Function 2 = 21%). In Table 4.7 the results for the classification of the individuals can be observed. The first thing that can be noticed is that there is a very low misclassification between the European and the other Howells' groups. The misclassification regarding the British groups is mainly into the European samples and very low in the other samples. The most accurate classification for the British samples is once again seen for Guisborough (88.9%) and Linenhall (71.4%), which do not show any individuals assigned to the Howells groups. St Leonard shows a relatively good correct classification (68.3%). Most of the individuals are assigned to the British or European groups, while just three elements respectively to Hainan and Buriats groups and two individuals to Guam group. Castle Hill shows classification correctness of 51.9%, with the majority of its individuals assigned to the British and European groups. The poorest results are given by St Gregory (20%) and Poulton (25.8%). St Gregory shows six of its individuals assigned to the Yauyos group, while the majority is still comprised in the European sample. Poulton sees only three individuals assigned to the Buriats group and two to the Guam group. The rest of the misclassified skulls are spread between the European samples. Even though London has a good classification rate (47.9%), it is the group that has more similarities with the non-European groups. Seven individuals are assigned to Yauyos and six to Hainan samples.

Similarly, Howells' non-European groups report a very low misclassification in the European sample. The correct classification rates are more accurate than the European ones, showing results above 50% correctness. The highest results are given by Easter Island (89.5%), Buriats (87.2%) and Australian (83.2%) samples. The Shang Dynasty sample also shows a good classification rate (71.4%). A similar score is given by the Guam (66.7%) group, which show a misclassification into geographically close samples. The Yauyos group also has a reasonably good result (67.3%), but it appears as the group with the highest number of individuals assigned to the European samples (11.7%). Finally, the Hainan group shares similarities with the Shang Dynasty, according to their geographical proximity. The Zulu instead seems to show most of its affinity with the Australian group (9.9%).

The discrimination between samples can be better observed in the scatterplot in Fig. 4.20. The European sample is coloured in different shades of blue, while the non-European groups are represented by the other colours. There is a clear division between these two main groups. Most of the British samples form a cluster, where St Leonard, Castle Hill, Linenhall and London tend to be linked by looser associations. Guisborough is the British group that tends to differentiate more from this cluster, reiterating the previous analyses discussed in the sections above. This British sample is located very close to the Buriats, but as shown by the percentages of correctly classified individuals, there is no significant similarity between them. The Norse and Zalavar locate their centroids with a slightly increased distance from the British groups, differently from the Berg sample that is included in the main cluster. The Asian groups cluster together in the upper right side of the plot, confirming the similarities related to the geographical proximity. The Zulu and the Bushmen appear isolated, but both in the lower right side of the plot, close to the Australians. Finally, the Easter Island does not seem to cluster with any of the other groups, confirming the geographical isolation of this human group.

Figure 4.20: Scatterplot for the comparison between British and Howells' non-pooled samples

Predicted Group Membership

% 1 25.8 6.8 12.1 3.0 3.8 4.5 12.1 .8 7.6 3.8 4.5 9.1 .8 .8 .0	.8 .0	.0	15 0			
	0 0		1.0 .0	2.3	.0	100.0
<u>2</u> .0 71.4 14.3 .0 .0 14.3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0	.0	.0 .0	.0	.0	100.0
<u>3</u> 6.9 15.5 36.2 5.2 8.6 1.7 1.7 .0 6.9 12.1 1.7 .0 .0 .0 .0 .0 3	3.4 .0	.0	.0 .0	.0	.0	100.0
4 1.0 .0 6.3 47.9 2.1 4.2 2.1 8.3 3.1 2.1 3.1 4.2 .0 .0 .0 7	7.3 6.3	6.3	1.0 .0	1.0	.0	100.0
5 7.1 4.3 11.4 7.1 20.0 4.3 5.7 1.4 10.0 7.1 2.9 4.3 .0 .0 .0 8	3.6 .0	.0	.0 1.4	4.3	.0	100.0
6 .5 2.5 4.0 1.0 4.0 68.3 6.0 .0 3.0 1.0 1.0 4.0 .0 .0 .0 .0	.0 1.5	1.5	1.0 .5	1.5	.0	100.0
7 9.3 9.3 1.9 .0 3.7 3.7 51.9 1.9 3.7 5.6 .0 5.6 .0 .0 .0 .0	.0 .0	.0	1.9 .0	1.9	.0	100.0
8 .0 .0 .0 5.6 .0 .0 .0 88.9 5.6 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0	.0	.0 .0	.0	.0	100.0
9 2.8 .0 5.6 13.9 5.6 2.8 8.3 .0 36.1 5.6 .0 5.6 .0 .0 .0 .0 5	5.6 .0	.0	.0 .0	8.3	.0	100.0
10 6.4 5.5 8.2 4.5 4.5 .0 4.5 .0 3.6 35.5 14.5 1.8 1.8 2.7 .9 2	2.7 .0	.0	.0 2.7	· .0	.0	100.0
11 1.0 5.1 1.0 3.1 6.1 2.0 1.0 3.1 .0 14.3 33.7 11.2 2.0 2.0 2.0 3	3.1 3.1	3.1	1.0 1.0	1.0	3.1	100.0
12 4.6 .0 .0 6.4 2.8 1.8 1.8 .9 5.5 4.6 3.7 52.3 .0 .0 .0 4	4.6 .9	.9	.0 1.8	8.3	.0	100.0
15 .0 1.0 .0 1.0 .0 .0 2.0 .0 1.0 3.0 1.0 .0 62.4 9.9 5.0	.0 3.0	3.0	2.0 5.0	.0	4.0	100.0
16 .0 1.0 .0 .0 .0 .0 .0 .0 .0 <u>.0</u> 6.9 .0 .0 <u>5.0</u> 83.2 .0	.0 .0	.0	1.0 3.0	.0	.0	100.0
20 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 1.2 .0 .0 1.2 89.5 1	1.2 1.2	1.2	3.5 .0	.0	2.3	100.0
24 .0 .0 1.8 7.3 1.8 .0 .0 2.7 1.8 .0 1.8 1.8 1.8 .0 .0 67	7.3 7.3	7.3	2.7 .9	.0	.9	100.0
27 .0 .0 .0 2.4 1.2 .0 .0 1.2 .0 .0 3.6 1.2 3.6 .0 .0 4	4.8 55.4	55.4	4.8 .0	1.2	20.5	100.0
30 .0 .0 .0 .0 3.5 .0 .0 .0 .0 .0 3.5 .0 1.8 .0 5.3 1	1.8 12.3	12.3 6	66.7 .0	.0	5.3	100.0
32 1.1 2.2 1.1 .0 .0 .0 2.2 .0 2.2 .0 1.1 .0 4.4 4.4 .0 1	1.1 .0	.0	.0 80.0	0.	.0	100.0
35 .9 .0 .0 .0 2.8 1.8 .0 .9 .9 .0 .0 3.7 .0 .0 .0	.9 .0	.0	.9 .0	87.2	.0	100.0
37 .0 .0 .0 4.8 .0 .0 .0 .0 .0 .0 7.1 2.4 2.4 .0 2.4	.0 2.4	2.4	4.8 .0	2.4	71.4	100.0

57.8% of original grouped cases correctly classified

Table 4.7: British and Howells' non-pooled samples classification results (1. Poulton; 2. Linenhall; 3. St Owen; 4. London; 5. St Gregory; 6. St Leonard; 7. Castle Hill; 8. Guisborough; 9.Ballumbie; 10. Norse; 11. Zalavar; 12. Berg; 15. Zulu; 16. Australia; 20. Easter Island; 24. Yauyos; 27. Hainan Island; 30. Guam; 32. Bushmen; 35. Buriats; 37. Shang Dynasty)

British and Howells Male Samples

The sample analysed for the pooled data consists in 1036 male individuals. Just like for the non-pooled sample, the same selection of the main human groups from the Howells data set was included in the analysis. The classification accuracy amounts at 58.7% of the cases assigned correctly. The Eigenvalues (see Appendix 12) instead indicate that the first two functions account for 59.3% of the total variance (Function 1 = 39.2% and Function 2 = 20.1%).

Table 4.8 shows the classification results for the male samples analysed. Overall the percentage for correct classification of the individuals is higher than the non-pooled samples. Once again, the British and the European samples tend to locate the misclassified individuals into the British and European groups. The highest percentages of correctly classified cases are again showed by Guisborough (81.3%) and Linenhall (80%). St Leonard follows with 65.2% of correctly classified individuals, but five of its cases are misclassified in Yauyos and Far Eastern samples, while the majority are assigned to the other British groups. The results for the other British samples are quite similar, where Castle Hill sees just two misclassified cases, as well as Gloucester. Poulton shows the poorest classification value (32.6%), but the majority of its individuals are still misclassified in the British and European samples, apart from six cases. The same can be said for Ballumbie (40%), which sees just one individual assigned to the Buriats group. St Gregory also has a very poor classification percentage (33.3%), with six cases assigned to their group, but 14.1% (ten individuals) are assigned to the Yauyos group, which is quite a consistent amount of cases.

For the non-European sample, the correct classification rises. The best results are shown by the Buriats (90.9%), Easter Island (89.8%), Australians (88.5%) and Bushmen (82.5%). The Guam sample also reports good classification results (73.3%), with six individuals assigned to the other two Far-Eastern groups. The Yauyos sample follows with a 69.1% of correctly classified cases, even though five individuals are assigned to the London sample, three to St Gregory and one to Ballumbie. The Shang Dynasty instead (61.9%) saw two cases assigned to the London group and one to Castle Hill. Finally, the Zulu and Hainan Island samples report the same percentage (60%), but both do not show any significant affinity with the European groups, while they are more similar to other geographically close groups.

In Fig. 4.21 can be easily analysed the groups' distribution. As can be observed, the European groups in blue tend to cluster together in the left side of the scatterplot. Poulton and Castle Hill seem very close, while Linenhall, Ballumbie, St Leonard and London form a looser association. St Leonard is forming another cluster with St Owen and the Berg group. Guisborough is the only sample that remains isolated as in the previous analyses, while the

Norse and Zalavar are fairly close. On the other side of the scatterplot, the Far-Eastern samples form a cluster reflecting their geographical proximity. The Zulu and the Bushmen maintain their isolated position in comparison to the European cluster, and in between the two samples is located the Australian group. The Easter Island sample as well occupies an isolated position, reiterating the results given for the non-pooled sample. Finally, the Buriats result as very dissimilar from the British sample, but very close to Guisborough. However, observing the results listed in Table 4.8, there are no evident similarities between the two groups, as just one individual from the British sample is misclassified in the second and none vice versa.

Figure 4.21: Scatterplot for the comparison between British and Howells' male samples

													-										
Predicted Group Membership																							
	Sample	1	2	3	4	5	6	7	8	9	10	11	12	15	16	20	24	27	30	32	35	37	Total
%	1	32.6	5.4	9.8	1.1	1.1	2.2	14.1	1.1	8.7	5.4	5.4	6.5	1.1	.0	.0	1.1	.0	1.1	1.1	2.2	.0	100.0
	2	.0	80.0	.0	.0	.0	20.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	100.0
	3	15.4	5.1	43.6	7.7	7.7	2.6	.0	.0	7.7	5.1	.0	.0	.0	.0	.0	5.1	.0	.0	.0	.0	.0	100.0
	4	1.4	.0	2.8	49.3	1.4	2.8	1.4	9.9	8.5	.0	2.8	1.4	.0	.0	.0	14.1	2.8	.0	.0	1.4	.0	100.0
	5	4.2	2.1	12.5	12.5	33.3	.0	6.3	.0	8.3	4.2	.0	4.2	.0	.0	.0	4.2	2.1	.0	2.1	4.2	.0	100.0
	6	.0	2.7	.9	.0	10.7	65.2	7.1	.0	5.4	.9	.0	2.7	.0	.0	.0	1.8	.9	.9	.0	.9	.0	100.0
	7	12.2	7.3	2.4	.0	4.9	2.4	43.9	4.9	4.9	2.4	.0	9.8	.0	.0	.0	.0	.0	.0	2.4	2.4	.0	100.0
	8	.0	.0	.0	6.3	.0	.0	.0	81.3	6.3	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	6.3	.0	100.0
	9	4.0	.0	12.0	12.0	8.0	4.0	8.0	.0	40.0	4.0	.0	4.0	.0	.0	.0	.0	.0	.0	.0	4.0	.0	100.0
	10	5.5	.0	10.9	5.5	5.5	.0	9.1	.0	1.8	34.5	16.4	3.6	.0	3.6	1.8	1.8	.0	.0	.0	.0	.0	100.0
	11	.0	3.8	.0	1.9	11.3	.0	1.9	5.7	.0	11.3	37.7	9.4	.0	.0	3.8	3.8	1.9	1.9	1.9	.0	3.8	100.0
	12	5.4	1.8	.0	3.6	5.4	.0	1.8	1.8	1.8	5.4	3.6	60.7	.0	.0	.0	.0	1.8	.0	1.8	5.4	.0	100.0
	15	.0	1.8	.0	1.8	.0	.0	1.8	.0	.0	1.8	.0	.0	60.0	10.9	3.6	3.6	5.5	1.8	1.8	.0	5.5	100.0
	16	.0	.0	.0	.0	.0	.0	.0	.0	.0	1.9	.0	.0	5.8	88.5	.0	.0	.0	1.9	1.9	.0	.0	100.0
	20	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	89.8	.0	.0	6.1	.0	.0	4.1	100.0
	24	.0	.0	.0	9.1	5.5	.0	.0	.0	1.8	.0	.0	1.8	1.8	.0	.0	69.1	7.3	1.8	.0	.0	1.8	100.0
	27	.0	.0	.0	.0	4.4	.0	.0	.0	.0	.0	4.4	.0	2.2	.0	.0	6.7	60.0	2.2	.0	.0	20.0	100.0
	30	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	3.3	.0	3.3	.0	10.0	.0	.0	73.3	.0	.0	10.0	100.0
	32	.0	2.5	.0	.0	.0	.0	2.5	.0	2.5	.0	.0	.0	5.0	5.0	.0	.0	.0	.0	82.5	.0	.0	100.0
	35	1.8	.0	.0	.0	1.8	.0	.0	.0	.0	.0	.0	1.8	.0	.0	.0	.0	.0	1.8	.0	90.9	1.8	100.0

58.7% of original grouped cases correctly classified

.0

.0

4.8

.0

.0

.0

2.4

.0

37

Table 4.8: British and Howells' male samples classification results (1. Poulton; 2. Linenhall; 3. St Owen; 4. London; 5. St Gregory; 6. St Leonard; 7. Castle Hill; 8. Guisborough; 9.Ballumbie; 10. Norse; 11. Zalavar; 12. Berg; 15. Zulu; 16. Australia; 20. Easter Island; 24. Yauyos; 27. Hainan Island; 30. Guam; 32. Bushmen; 35. Buriats; 37. Shang Dynasty)

.0

.0 7.1

.0 4.8

.0

.0 4.8 11.9 2.4

.0

.0 61.9 100.0

British and Howells Female Samples

The samples analysed in the comparison between the females are considerably small. The Shang Dynasty group is excluded, as in Howells' dataset just the males were available. In this part of the study, the individuals used for the comparison are 728. The classification accuracy results now as 63.6%, and the Eigenvalues (see Appendix 12) indicate that the first two Functions account for 58.1% of the total variance (Function 1 = 37.4% and Function 2 = 20.7%).

The correctly classified cases into the original groups are shown in Table 4.9. Similar to the male sample, the British and Europeans tend to stay separated from the non-European groups. The best results for the classification are shown by Guisborough (100%) due to the very small sample included in the analysis. A reasonably good classification percentage is given by St Leonard (71.3%) that tends to be more similar to the British groups and the Berg sample, than the other groups. Another good result is shown by Castle Hill (69.2%), which shows no affinities with the non-European groups. Ballumbie reports 60% of its cases correctly classified, but two of its individuals are assigned to the Yauyos and one to the Buriats group. Even though Linenhall had a 50% classification accuracy, the sample size is very small, and it cannot be considered of vital importance for the analysis. St Owen saw the misclassified percentage assigned mostly to the British groups, while just one individual was assigned to the Easter Island sample. London (44% accuracy) reports most of the similarities with the Berg group and just two cases are assigned to the non-European groups and the same can be said for Poulton, which showed the poorest classification rate (32.5%).

The non-European groups, on the other hand, seem to report better values. The highest percentages are shown by Easter Island (94.6%), Buriats (92.6%) and Guam (85.2%) samples. The Australian group has also an excellent classification rate (79.6%) and one of its individuals is classified in the St Owen group. The Bushmen as well show a reasonably good percentage (77.6%), with most of the affinities encountered with the Zulu. The Yauyos seem to be the group with most of the similarities with the British samples. In fact, eight of its cases are classified into London (four), St Gregory (two), Guisborough (one) and Ballumbie (one). Finally the Zulu and Hainan which do not show any significant similarity to any other group analysed.

In the scatterplot in Fig. 4.22 can be seen the differentiation between the female samples analysed. The British groups seem to form a looser cluster, compared to the previous analyses. Two main clusters are formed by Ballumbie, St Gregory, Poulton and the Berg samples, and another one with poorer connections between Linenhall, Castle Hill and St Leonard. Even though the British samples are more scattered, they are still concentrated on one side of the plot. St Owen tends more towards the Norse and Zalavar samples, while Guisborough maintains

its isolated location. The groups from the Far East both cluster on the top of the main cluster, while the African ones tend to be isolated far away from the others in the lower left side. The Australians are plotted in between the Zulu and the Bushmen samples. It can be seen that in this analysis the Buriat females are more isolated than in the non-pooled and male samples. Finally, the Easter Island sample keeps its distance from all the other groups with no association confirmed also by the classification table.

Figure 4.22: Scatterplot for the comparison between British and Howells' female samples

Predicted Group Membership																						
	Sample	1	2	3	4	5	6	7	8	9	10	11	12	15	16	20	24	27	30	32	35	Total
%	1	32.5	7.5	7.5	12.5	7.5	.0	7.5	.0	5.0	.0	7.5	2.5	2.5	.0	.0	.0	.0	2.5	.0	5.0	100.0
	2	.0	50.0	50.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	100.0
	3	15.8	10.5	47.4	.0	5.3	.0	5.3	.0	.0	5.3	5.3	.0	.0	.0	5.3	.0	.0	.0	.0	.0	100.0
	4	.0	.0	8.0	44.0	4.0	4.0	8.0	.0	.0	4.0	4.0	16.0	.0	.0	.0	4.0	4.0	.0	.0	.0	100.0
	5	13.6	4.5	13.6	.0	31.8	9.1	4.5	4.5	4.5	4.5	4.5	.0	.0	.0	.0	4.5	.0	.0	.0	.0	100.0
	6	2.3	4.6	3.4	2.3	3.4	71.3	1.1	.0	2.3	1.1	1.1	4.6	.0	.0	.0	.0	1.1	1.1	.0	.0	100.0
	7	7.7	15.4	.0	.0	.0	.0	69.2	.0	.0	7.7	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	100.0
	8	.0	.0	.0	.0	.0	.0	.0	100.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	100.0
	9	.0	.0	.0	.0	10.0	.0	.0	.0	60.0	.0	.0	.0	.0	.0	.0	20.0	.0	.0	.0	10.0	100.0
	10	5.5	3.6	9.1	3.6	1.8	1.8	1.8	.0	1.8	40.0	16.4	.0	5.5	1.8	.0	3.6	1.8	1.8	.0	.0	100.0
	11	8.9	.0	8.9	8.9	2.2	4.4	.0	.0	.0	8.9	37.8	13.3	4.4	.0	.0	.0	.0	2.2	.0	.0	100.0
	12	3.8	.0	.0	3.8	1.9	1.9	.0	.0	9.4	5.7	9.4	45.3	.0	.0	.0	7.5	5.7	.0	.0	5.7	100.0
	15	4.3	.0	.0	.0	.0	.0	.0	2.2	.0	.0	4.3	.0	67.4	6.5	6.5	.0	.0	.0	8.7	.0	100.0
	16	.0	.0	2.0	.0	.0	.0	.0	.0	.0	8.2	.0	.0	6.1	79.6	2.0	.0	.0	.0	2.0	.0	100.0
	20	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	94.6	2.7	.0	2.7	.0	.0	100.0
	24	.0	.0	.0	5.5	3.6	.0	.0	1.8	1.8	.0	1.8	3.6	.0	.0	.0	74.5	5.5	.0	1.8	.0	100.0
	27	.0	.0	.0	5.3	.0	.0	.0	.0	.0	.0	5.3	2.6	2.6	.0	.0	5.3	60.5	13.2	.0	5.3	100.0
	30	.0	.0	3.7	.0	.0	.0	.0	.0	.0	3.7	.0	.0	.0	.0	.0	.0	7.4	85.2	.0	.0	100.0
	32	.0	.0	2.0	.0	2.0	.0	.0	.0	.0	.0	2.0	.0	10.2	4.1	.0	2.0	.0	.0	77.6	.0	100.0
	35	.0	.0	.0	.0	.0	.0	1.9	.0	.0	.0	1.9	3.7	.0	.0	.0	.0	.0	.0	.0	92.6	100.0

63.6% of original grouped cases correctly classified. Table 4.9: British and Howells' female samples classification results (1. Poulton; 2. Linenhall; 3. St Owen; 4. London; 5. St Gregory; 6. St Leonard; 7. Castle Hill; 8. Guisborough; 9.Ballumbie; 10. Norse; 11. Zalavar; 12. Berg; 15. Zulu; 16. Australia; 20. Easter Island; 24. Yauyos; 27. Hainan Island; 30. Guam; 32. Bushmen; 35. Buriats)

4.4 Principal Component Analysis

Differently from the previous discriminant function analysis, the means resulting from each variable in the different samples were employed for the data analysis. This procedure allowed to determine which variables had the most significance in discriminating between groups. After carrying out the PCA, the highest factor scores were retained to produce the threedimensional scatterplots. The factor scores that showed Eigenvalues loadings of 10% or more were chosen to produce the graphs.

As for the DFA, the analysis was initially carried out only on the British samples. First, the non-pooled samples were examined, and secondly, the pooled samples were compared. The following step was to compare the British against Howells' European samples (Norse, Zalavar and Berg). First, the non-pooled samples were compared, and then males and the females were analysed. Finally, a selection of 21 Howells' main groups and the British sample were analysed. Just like for the previous analysis, the non-pooled samples were first compared and then the pooled samples were analysed.

4.4.1 Inter-population Analysis: Non-pooled British Samples

The first stage of the principal component analysis was to compare the British nonpooled samples. Four principal components were extracted from the analysis, and the Eigenvalues show that these account for 91% of the total variance (see Appendix 13). For the production of the scatterplot (Fig. 4.23), only the first three components were used, which accounted for 81.7% of the total variance (PC 1 = 48.561%, PC 2 = 22.509% and PC 3 = 10.646%)

The component matrix in Table 4.10 explains the loadings that the different variables show for each principal component. The variables that drive most of the variation on the first principal component are 1.4.2 (nasal height) with a value of .962, 1.2.8 (height of the upper face) showing a value of .923, and 1.1.20 (nasion-bregma chord) with a value of .916. Fairly high loading values are also shown by 1.1.17 (nasion-bregma arch), 1.1.4 (cranial base length), 1.4.1 (nasal breadth) and 1.3.5 (orbital height). On the second principal component, most of the variation is driven by 1.1.21 (bregma-lambda chord) with a value of .922 and 1.1.18 (parietal longitudinal arch) showing a value of .871. The following, but slightly less significant loadings, were 1.1.19 (occipital arch) and 1.1.1 (maximum length of the neural skull). Finally, the third principal component saw the major discrimination driven by 1.1.23 (foramen magnum length) with a loading value of .637 and 1.1.5 (maximum neurocranial breadth) with a value of .604.

The first principal component seems to discriminate between the samples mainly on the facial measurements. The samples that most seem to differ on the first principal component are

Linenhall and Guisborough, while St Leonard seems to be fairly close to Linenhall. In fact, if considering the nasal height, the means for Linenhall and St Leonard are equivalent (47.8 mm) and report the minimum value for this measurement, while Guisborough records the highest mean measurement (53.8 mm). The same can be stated for the nasion-bregma chord, as Linenhall and St Leonard are reasonably close in the measurements (108.9 mm and 109.2 mm), while Guisborough has the highest value (114.6 mm). Differences are shown by the height of the upper face, as Linenhall reports the lowest value (63.3 mm) and Guisborough the highest (76.2 mm), while St Leonard stands somewhere in the middle of the two groups (67.7 mm). The other groups appear to be located in between these samples, with St Gregory, London, Ballumbie and St Owen forming the bigger cluster and Castle Hill forming another cluster.

When analysing the second principal component, St Leonard and Linenhall occupy the two opposite positions of the scatterplot. The loadings for the variable in this axis seem to involve the neurocranial length. Linenhall appears to share similarities with Poulton, while Castle Hill and St Owen seem to be fairly close on the axis. In fact, the measurements of the bregma-lambda chord for these samples is relatively high, with the highest mean value shown by Castle Hill (113.7 mm). The main cluster can be seen connecting London, St Gregory, Ballumbie and Guisborough. St Leonard keeps its isolated location, fairly separated by the other groups, reporting the lowest mean value for this measurement (107.2 mm). The same can be said in regard to the parietal longitudinal arch. St Leonard has the smallest mean value (120.3 mm), while Poulton reports the highest (126.7 mm).

The third principal component axis instead shows the discrimination based on the foramen magnum length and the maximum breadth of the neurocranium. The scatterplot displays the main cluster formed by Linenhall, St Leonard and Guisborough, occupying an average location. The extremes of the plot are represented by St Owen and Ballumbie. St Owen forms a loose cluster with London, while Poulton and Castle Hill occupy slightly isolated points.

Figure 4.23: Three-dimensional scatterplot showing PC1, PC2 and PC3 for the non-pooled British samples

Component											
	1	2	3	4							
B1.1.1	.615	.746	035	.128							
B1.1.4	.886	261	218	.287							
B1.1.5	.644	247	.604	.121							
B1.1.9	.552	204	392	.445							
B1.1.17	.889	.311	.029	.079							
B1.1.18	.404	.871	055	126							
B1.1.19	.122	.792	312	.269							
B1.1.20	.916	.203	.125	.269							
B1.1.21	.209	.922	.105	.273							
B1.1.22	468	540	307	.608							
B1.1.23	.514	345	.637	.369							
B1.2.1	.716	217	577	.059							
B1.2.6	.787	502	284	.011							
B1.2.8	.923	336	084	109							
B1.3.4	407	.107	.396	.660							
B1.3.5	.831	.030	.263	319							
B1.4.1	.871	338	.255	150							
B1.4.2	.962	.040	100	211							

Component Matrix

Extraction Method: Principal Component Analysis.

Table 4.10: Component matrix showing the loadings assigned to each variable for the non-pooled British samples (1.1.1 Max length of the neural skull; 1.1.4 Cranial base length; 1.1.5 Max neurocranial breadth; 1.1.9 Basion-bregma height; 1.1.17 Nasion-bregma arch; 1.1.18 Parietal longitudinal arch; 1.1.19 Occipital arch; 1.1.20 Nasion-bregma chord; 1.1.21 Bregma-lambda chord; 1.1.22 Lambda-opisthion chord; 1.1.23 Foramen magnum length; 1.2.1 Length of the face; 1.2.6 Max bimaxillary breadth of the midface; 1.2.8 Height of the upper face; 1.3.4 Orbital breadth; 1.3.5 Orbital height; 1.4.1 Nasal breadth; 1.4.2 Nasal height)

4.4.2 Pooled Samples Analysis

British Males

In the analysis of the British male sample, four principal components were extracted, and the Eigenvalues show that these account for the 88.1% of the total variance (see Appendix 13). For the production of the three-dimensional scatterplot in Fig. 4.24, only the first three components were used, which explain 79.2% of the total variation (PC 1 = 44.242%, PC 2 = 22.566% and PC 3 = 12.408%).

The component matrix in Table 4.11 shows the loadings that the variables have for the different principal components. The variables that drive most of the variation in the first component are 1.2.8 (height of the upper face) that shows a value of .973 and 1.1.4 (cranial base length) with a value of .944. Fairly significant are also the variables 1.4.2 (nasal height), 1.4.1 (nasal breadth) and 1.1.20 (nasion-bregma chord), with loadings not much dissimilar from the first two. On the second principal component, the majority of the difference between samples is determined by the measurements 1.1.18 (parietal longitudinal arch) with a loading value of .928 and 1.1.21 (bregma-lambda chord) showing loading of .873. The following measurements with fairly high influence on the variability between samples are 1.1.1 (maximum length of the neural skull) and 1.1.22 (lambda-opisthion chord). On the third principal component, only two measurements seem to have a significant impact on the variability between groups, that is 1.3.4 (orbital breadth) with a loading value of .824 and 1.2.1 (length of the face) with a value of -.742.

In Fig. 4.24 the spatial distribution of these samples can be observed. On the first principal component axis X, the samples seem to cluster mainly based on their affinities on the facial and frontal skeleton. The only two samples that result as outliers are Linenhall and Guisborough. In fact, regarding the facial height, Linenhall seems to have the lowest measurement (63 mm), while Guisborough shows the highest value (76.2 mm). The same can be said for the cranial base length, where again Linenhall reports the lowest value (95.3 mm) and Guisborough the highest (102.7 mm). The same can be stated regarding the dimensions of the nose and the nasion-bregma chord.

When analysing the second principal component, the samples appear more scattered, and their differences are mainly located on the neural skull. The samples that show most of the similarities are St Owen, Ballumbie, Linenhall and Castle Hill with a second cluster formed by London, Guisborough and Linenhall. St Gregory is slightly separated from this cluster, while the two extremities are occupied by St Leonard and Poulton. In fact, regarding both the measurements of the parietal longitudinal arch and the bregma-lambda chord, St Leonard reports the smallest values (122 mm and 108.9 mm) and Poulton the highest (127.7 mm and 114.3 mm). Finally, the third principal component distinguishes between the samples based on the orbital breadth and the length of the face. For this comparison, the samples form two different clusters. One is formed by St Leonard, Poulton and Ballumbie, while the second one sees St Owen and St Gregory sharing similarities. London and Linenhall are somewhat detached from these clusters, while the samples that differ the most for these traits are Guisborough and Castle Hill. In fact, for the orbital breadth Guisborough reports the greatest measurement (42.5 mm) and Castle Hill the smallest (38 mm).

Figure 4.24: Three-dimensional scatterplot showing PC1, PC2 and PC3 for the male British samples

		onent		
	1	3	4	
B1.1.1	.351	.860	.107	.179
B1.1.4	.944	154	.052	.204
B1.1.5	.786	163	.499	.012
B1.1.9	.348	583	268	073
B1.1.17	.912	.267	044	.046
B1.1.18	242	.928	071	070
B1.1.19	.062	.497	.270	.760
B1.1.20	.941	.225	.003	073
B1.1.21	193	.873	.289	136
B1.1.22	163	839	.300	.282
B1.1.23	.399	072	.460	742
B1.2.1	219	073	742	.129
B1.2.6	.843	261	.187	.392
B1.2.8	.973	129	181	.053
B1.3.4	269	100	.824	.001
B1.3.5	.808	.299	311	280
B1.4.1	.942	123	.053	167
B1.4.2	.943	.159	192	.073

Component Matrix

Extraction Method: Principal Component Analysis.

Table 4.11: Component matrix showing the loadings assigned to each variable for the male British samples (1.1.1 Max length of the neural skull; 1.1.4 Cranial base length; 1.1.5 Max neurocranial breadth; 1.1.9 Basion-bregma height; 1.1.17 Nasion-bregma arch; 1.1.18 Parietal longitudinal arch; 1.1.19 Occipital arch; 1.1.20 Nasion-bregma chord; 1.1.21 Bregma-lambda chord; 1.1.22 Lambda-opisthion chord; 1.1.23 Foramen magnum length; 1.2.1 Length of the face; 1.2.6 Max bimaxillary breadth of the midface; 1.2.8 Height of the upper face; 1.3.4 Orbital breadth; 1.3.5 Orbital height; 1.4.1 Nasal breadth; 1.4.2 Nasal height)

British Females

For the analysis of the British female groups, five principal components were extracted and these account for 91% of the total variance (see Appendix 13). To generate the scatterplot in Fig. 4.25, the first three principal components were used, which account for 73.1% of the overall variation between groups (PC 1 = 37.835%, PC 2 = 20.164% and PC 3 = 15.184%).

In Table 4.12 can be seen the component matrix, with the loadings assigned to each variable used for this analysis. The variables that show the most significant loadings for the first principal component are 1.1.21 (bregma-lambda chord) with a value of .973 and 1.1.1 (maximum length of the neural skull) showing a value of .964. Significant impact is given by other variables, that is 1.1.18 (parietal longitudinal arch), 1.1.22 (lambda-opisthion chord) and 1.1.19 (occipital arch). The differences that are determined by the second principal component are determined by the measurement 1.3.5 (orbital height) with a loading value of .881. Relatively high values, but less significant than the last one, are shown by the measurements 1.1.5 (maximum neurocranial breadth), 1.4.1 (nasal breadth) and 1.1.4 (cranial base length). Finally, the third principal component shows that the main differences are determined by the measurements 1.2.8 (height of the upper face), reporting a loading value of .752, and measurement 1.2.1 (length of the face), with a value of .745.

Fig. 4.25 shows how the samples are spatially related in the three-dimensional scatterplot. As it can be seen from the graph, it was not possible to include Guisborough in the analysis, as the female sample did not have a complete set of measurements and therefore it was not possible to carry out the comparison. The differences on the first principal component seem to distinguish the most by neurocranial measurements. A cluster is formed by Poulton, Linenhall, St Owen and St Gregory. London is located slightly on the side of this group, while St Leonard is plotted in a more isolated location of the graph. The two most differing samples are Ballumbie and Castle Hill. The first sample shows for both the bregma-lambda chord and the maximum length of the neural skull the lowest measurements (104 mm and 170.8 mm). On the other hand, Castle Hill showed the greatest measurements (113.4 mm and 180.7 mm).

Figure 4.25: Three-dimensional scatterplot showing PC1, PC2 and PC3 for the female British samples

Component					
	1	2	3	4	5
B1.1.1	.964	.181	.088	.122	011
B1.1.4	.599	658	.372	072	.246
B1.1.5	183	.694	353	.058	.568
B1.1.9	.671	510	.033	106	.471
B1.1.17	.810	.296	305	.070	.311
B1.1.18	.957	.037	.108	.188	.163
B1.1.19	.850	.281	232	.080	307
B1.1.20	.789	.290	.217	356	.143
B1.1.21	.973	.073	084	007	.003
B1.1.22	.875	098	115	017	133
B1.1.23	217	.057	.652	643	.245
B1.2.1	.123	572	.745	.217	.001
B1.2.6	196	413	633	.310	.391
B1.2.8	112	.378	.752	.241	.157
B1.3.4	.254	.266	226	530	196
B1.3.5	.185	.881	.204	153	255
B1.4.1	426	.671	.154	.018	.549
B1.4.2	.128	.462	.417	.756	129

Extraction Method: Principal Component Analysis.

Table 4.12: Component matrix showing the loadings assigned to each variable for the female British samples (1.1.1 Max length of the neural skull; 1.1.4 Cranial base length; 1.1.5 Max neurocranial breadth; 1.1.9 Basion-bregma height; 1.1.17 Nasion-bregma arch; 1.1.18 Parietal longitudinal arch; 1.1.19 Occipital arch; 1.1.20 Nasion-bregma chord; 1.1.21 Bregma-lambda chord; 1.1.22 Lambda-opisthion chord; 1.1.23 Foramen magnum length; 1.2.1 Length of the face; 1.2.6 Max bimaxillary breadth of the midface; 1.2.8 Height of the upper face; 1.3.4 Orbital breadth; 1.3.5 Orbital height; 1.4.1 Nasal breadth; 1.4.2 Nasal height)

The second principal component discriminates between the British female samples mainly by the orbital height. The scatterplot shows the main cluster formed by Linenhall, St Gregory, Poulton and Castle Hill. On the side of this cluster is located St Owen, with slightly lower values, while the samples that are located at the greatest distance are St Leonard and London on one side and Ballumbie on the opposite. Regarding the orbital height, Ballumbie does not have the greatest measurement (35.5 mm) that is shown by Castle Hill instead (35.8 mm). On the opposite side, London has the smallest mean (32.2 mm), which is very close to the one given by St Leonard (32.6 mm). Analysing the maximum neurocranial breadth instead, Ballumbie does not report the highest mean value (142.9 mm), but this is shown by Poulton (143.2 mm). In this case, London and St Leonard are equivalent, as they report an equivalent mean value (139.9 mm), but it is not the smallest, which is found in Poulton (138.2 mm). On the other hand, Ballumbie and London represent the opposites on the basis of the nasal breadth, where the first sample reports the highest value (24.4 mm), while the second reports the lowest (23.4 mm).

The differences between the groups displayed on the third principal component are mainly driven by the height of the upper face. Two clusters can be distinguished on the scatterplot. The first is formed by Castle Hill, Poulton and Ballumbie, while the second is formed by a looser association between London, St Gregory and St Leonard. The most differing samples, in this case, are Linenhall and St Owen. Linenhall reported the lowest measurement in the height of the upper face (63.5 mm), while St Owen the greatest (67.6 mm). In the case of the length of the face, the same can be said for Linenhall (86.5 mm), and the greatest measurement is reported by St Owen (94 mm).

4.4.3 Comparison with W.W. Howells data set

British and Howells European Non-pooled Samples

The first analysis carried out with the Howells' dataset aimed to compare the British and the European non-pooled samples. Five principal components were extracted, and the Eigenvalues show that these accounted for 92.5% of the total variation (see Appendix 14). To generate the three-dimensional scatterplot, the first three principal components were used, which account for 73.9% of the total variance (PC 1 = 43.087%, PC 2 = 18.138% and PC 3 = 12.724%). For a better understanding of the analysis, a further graph was produced with the first, second and fourth principal components, as the fourth principal component accounted for more than 10% of the variance (PC 4 = 11.398%) and it can be observed in Appendix 16.

The component matrix in Table 4.13 shows the loadings assigned to the variables for each component. The differences between the samples on the first principal component are mainly determined by the measurements 1.4.2 (nasal height) with a loading of .939, 1.2.8 (height of the upper face) reporting a value of .920, and 1.1.4 (cranial base length) showing loading of .905. Significant impact is shown by further measurements, such as 1.2.6 (maximum bimaxillary breadth of the midface) and 1.1.20 (nasion-bregma chord). The primary measurement driving the discrimination on the second principal component is 1.1.21 (bregma-lambda chord) with the loading of .733. Further measurements seem to have reasonably high loadings, such as 1.1.23 (foramen magnum length) and 1.1.1 (maximum length of the neural skull). On the third principal component, only one measurement seems to drive the differences between samples that is 1.1.22 (lambda-opisthion chord) with the loading of .751. Finally, the fourth principal component is mainly influenced by the measurement 1.1.5 (maximum neurocranial breadth), showing a slightly lower loading value of .569.

In Figure 4.26 is shown how the samples are distributed in a three-dimensional scatterplot based on the first three principal components. On the first principal component, the samples seem to be discriminated mainly on the measurements located on the frontal part of the cranium. The main cluster can be observed, formed by St Owen, Poulton, Castle Hill, London, the Norse and Zalavar samples. Another cluster is formed by St Leonard, Ballumbie and the Berg samples. The two groups that differ the most from each other and the other samples are Linenhall and Guisborough. In fact, in all the measurements that drive the difference on the first principal components, Linenhall shows the lowest measurements, while Guisborough stands out for much greater measurement values.

The second principal component differentiates between groups based on the length of the skull and the foramen magnum. In this case, the samples appear more scattered than on the first principal component. In fact, different clusters can be seen. The main group is formed by London, St Gregory, Norse and Zalavar. Another cluster, which is also plotted at one of the extremities of the graph, is formed by Poulton, Castle Hill, St Owen and Linenhall. St Leonard is located not far from the first cluster, but with a slightly looser connection. Somewhat isolated is Guisborough, while Ballumbie is plotted on a separate location of the graph. Berg is placed far away from the clusters, and it is located in the opposite position to the first group. In fact, Berg displays the smallest mean measurements concerning the maximum length of the neural skull (175.6 mm) and the largest foramen magnum length (37.6 mm), while the smallest mean value for the bregma-lambda length is showed by St Leonard (107.2 mm). On the other hand, Castle Hill seems to have the lowest mean value for 1.1.21 (113.7 mm), while Linenhall shows the minimum length of the foramen (33.2 mm). Finally, the largest mean value for 1.1.1 is reported by the Norse (184.2 mm).

The differences between samples on the third principal component are driven by the chord of the occipital. The scatterplot shows the main cluster created by St Gregory, London, Guisborough, Castle Hill, St Owen, Ballumbie and Poulton, showing that nearly all the British sample report a similar measurement for this variable. Linenhall is similar to these groups, but it is linked to them by a looser connection. The European samples seem to be separated by the British on the plot, regarding this measurement. The Berg sample is slightly more similar to the British group but still separated. Another cluster, which also represents one of the extremities of the cluster, is defined by the Norse and Zalavar samples. On the opposite side of the graph is located St Leonard, which also results significantly different from the other British samples. In fact, St Leonard reports the greatest measurement (102.2 mm), while the European groups result with the shortest occipital cords.

Finally, as can be seen in the graph in Appendix 10, it was also essential to take into account the fourth principal component. This component is mainly influenced by the cranial breadth. On this axis, the samples are more spatially spread than in the third, and they tend to form smaller clusters. In fact, one can be seen formed by Ballumbie and Poulton, while the second one comprises St Gregory and Guisborough, and a third one connects the Norse sample with London. Somewhat isolated positions are occupied by Linenhall, the Berg sample, which is remarkably close to the second cluster, and St Owen, which is in between the first and the third cluster. Finally, the opposites are represented by Castle Hill and Zalavar, which is very similar to St Leonard.

Figure 4.26: Three-dimensional scatterplot showing PC1, PC2 and PC3 for the non-pooled British and Howells' European samples

Component					
	1	2	3	4	5
B1.1.1	.523	.645	428	.290	042
B1.1.4	.905	.234	.062	230	.219
B1.1.5	.292	400	.572	.569	001
B1.1.9	.541	.460	.277	263	.174
B1.1.20	.829	.300	.094	.394	.091
B1.1.21	.161	.733	521	.319	.136
B1.1.22	157	.546	.751	255	.122
B1.1.23	.230	647	215	.076	.666
B1.2.1	.745	.181	159	526	.012
B1.2.6	.870	132	.239	367	.023
B1.2.8	.920	094	.331	.052	154
B1.3.4	386	.374	.302	.394	.552
B1.3.5	.707	100	.188	.526	313
B1.4.1	.716	552	235	035	.255
B1.4.2	.939	147	233	.069	146

Extraction Method: Principal Component Analysis.

Table 4.13: Component matrix showing the loadings assigned to each variable for the non-pooled British and Howells European samples (1.1.1 Max length of the neural skull; 1.1.4 Cranial base length; 1.1.5 Max neurocranial breadth; 1.1.9 Basion-bregma height; 1.1.20 Nasion-bregma chord; 1.1.21 Bregma-lambda chord; 1.1.22 Lambda-opisthion chord; 1.1.23 Foramen magnum length; 1.2.1 Length of the face; 1.2.6 Max bimaxillary breadth of the midface; 1.2.8 Height of the upper face; 1.3.4 Orbital breadth; 1.3.5 Orbital height; 1.4.1 Nasal breadth; 1.4.2 Nasal height)

British and Howells European Male Samples

As for the discriminant function analysis, the male sample was examined in the principal component analysis to determine which measurements drive the differences between the British and the Howells' European male samples. Five principal components were extracted, and the Eigenvalues show that these account for 90.7% of the total variance (see Appendix 14). To produce the three-dimensional scatterplot in Fig. 4.27, the first three principal components were used, which account for 71.7% of the total variance (PC 1 = 39.451%, PC 2 = 18.360% and PC 3 = 13.985%). A further scatterplot was produced with the first, second and fourth principal components, as this accounts for more than 10% of the variance (PC 3 = 10.814%) (Appendix 17).

The component matrix in Table 4.14 shows the factor loadings for each variable in the five principal components. The first component shows the most significant factor loadings assigned to the measurements 1.4.2 (nasal height) with a value of .947, 1.2.8 (height of the upper face) with a significance of .915, and 1.1.20 (nasion-bregma chord) with a value of .902. Fairly significant factor loadings are assigned to further measurements, such as 1.1.4 (cranial base length), 1.4.1 (nasal breadth) and 1.2.6 (maximum bimaxillary breadth of the midface). On the second principal component, three measurements report significant loadings, such as 1.1.21 (bregma-lambda chord) with a value of .875, 1.1.1 (maximum length of the neural skull) with a .790 loading, and 1.1.5 (maximum neurocranial breadth) with a value of -.744. On the third principal component, just two variables seem to show a significant correlation, that is 1.1.9 (basion-bregma height) with a value of .764 and 1.1.22 (lambda-opisthion chord) with a .699 loading. Finally, the fourth principal component shows just one significant correlation, that is 1.3.4 (orbital breadth) with a loading value of .827.

Figure 4.27 shows the spatial distribution on the graph of the male samples. On the first principal component, the groups are mainly discriminated based on the morphology of the frontal part of the cranium. The main cluster is formed by Poulton, London, St Owen, Ballumbie, St Gregory, St Leonard and the Berg sample. Another cluster is formed by Castle Hill and the Zalavar and Norse groups. The samples that most differentiate from these two clusters are Linenhall and Guisborough. In fact, regarding the measurement of the nasal height, Linenhall reports the lowest mean value (47 mm), while Guisborough the highest (53.8 mm). The same can be said for the height of the upper face, where Linenhall's mean measurement is 63 mm, while Guisborough amounts at 76.2 mm. The nasion-bregma chord also displays the same results, with a measurement of 109.2 mm for Linenhall and 115.7 for Guisborough. Similar results are given for the other significantly correlated measurements.

On the second principal component, the samples seem to differentiate mainly on the measurements of the neural skull. The central cluster is formed by St Owen, Castle Hill, Guisborough, London and St Gregory. Ballumbie and the Berg samples seem to slightly differentiate from this central cluster, showing some similarities between them. Poulton is also slightly detached from this group, while Linenhall is plotted more on the side of this cluster. The extremities are occupied by St Leonard, the Zalavar and Norse group. In fact, St Leonard seems to have the shortest neurocranium, with values for the bregma-lambda length and the maximum length respectively of 108.9 mm and 177.8 mm. The Norse sample instead reports the highest value for the maximum neurocranial length of 188.5 mm, while the Zalavar sample shows the highest measurement of the bregma-lambda chord (115.3 mm). On the other hand, regarding the maximum neurocranial breadth, St Leonard reports a broader neurocranium than the two European samples.

The third principal component is mostly influenced by the cranial height. At first, two main clusters can be distinguished. The first group is formed by London, St Owen, Guisborough, St Gregory and the Zalavar sample. The second cluster is formed by Poulton, Castle Hill and the Norse sample. In between these two groups is located Linenhall. On a slightly isolated position is situated Ballumbie. The two collections that differ the most from the others are the Berg group and St Leonard. The Berg sample reports the lowest basion-bregma height, as well as the lambda-opisthion chord, with measurements of respectively 130.3 mm and 94 mm. On the other hand, St Leonard has the highest value for the lambda-opisthion chord (108.5 mm), while the highest mean for the skull height is shown by the Zalavar sample (134.8 mm), a value that is very close to the one reported by St Leonard (134 mm).

Finally, the fourth principal component is discriminating between the samples based on the orbital breadth. On this axis, the samples seem to cluster in three main groups. The first is represented by Ballumbie, St Gregory, St Owen and the Berg sample. The second sees Poulton and the Norse sample very close, and the last one, which is also occupying one of the extremes of the graph, is grouping St Leonard, Castle Hill and the Zalavar sample. London and Linenhall are relatively close to each other, but in a distinct position compared to the first cluster. Finally, in an isolated position, far from the other groups in the graph, is Guisborough. Castle Hill reports the widest orbits, with a mean measurement of 42.5 mm, immediately followed by St Leonard (41.9 mm). On the other hand, Guisborough shows the narrowest orbits, with a mean measurement of 38 mm. The graph that shows the differences in the fourth principal component can be seen in Appendix 11.

Figure 4.27: Three-dimensional scatterplot showing PC1, PC2 and PC3 for the male British and Howells' European samples

Component					
	1	2	3	4	5
B1.1.1	.397	.790	132	.201	.356
B1.1.4	.896	.118	.292	.258	.027
B1.1.5	.471	744	303	.145	.119
B1.1.9	.247	.103	.764	.085	319
B1.1.20	.902	.153	.108	.012	.268
B1.1.21	015	.875	158	.329	.178
B1.1.22	250	483	.699	.375	.094
B1.1.23	.284	029	600	.331	628
B1.2.1	059	.612	.480	193	332
B1.2.6	.823	219	.207	.267	035
B1.2.8	.915	213	.264	172	.106
B1.3.4	312	141	056	.827	.304
B1.3.5	.686	147	166	511	.356
B1.4.1	.855	.002	216	.205	345
B1.4.2	.947	.142	119	049	129

Extraction Method: Principal Component Analysis.

Table 4.14: Component matrix showing the loadings assigned to each variable for the male British and Howells European samples (1.1.1 Max length of the neural skull; 1.1.4 Cranial base length; 1.1.5 Max neurocranial breadth; 1.1.9 Basion-bregma height; 1.1.20 Nasion-bregma chord; 1.1.21 Bregma-lambda chord; 1.1.22 Lambda-opisthion chord; 1.1.23 Foramen magnum length; 1.2.1 Length of the face; 1.2.6 Max bimaxillary breadth of the midface; 1.2.8 Height of the upper face; 1.3.4 Orbital breadth; 1.3.5 Orbital height; 1.4.1 Nasal breadth; 1.4.2 Nasal height)

British and Howells European Female Samples

For the analysis of the British and Howells' European females, the number of the samples is smaller, as the females analysed for Guisborough did not report some of the measurements used in the comparison. Four principal components were extracted, which account for 80.5% of the total variance (see Appendix 14). For the production of the three-dimensional scatterplot in Fig. 4.28, only the first three principal components were used and they account for 70.4% of the variation between samples (PC 1 = 32.144%, PC 2 = 24.618% and PC 3 = 13.651%). A further graph comparing the first, second and fourth principal components was also produced, as the fourth principal component accounts for more than 10% of the variance (PC 4 = 10.110%) (Appendix 18).

Table 4.15 shows the component matrix with the loadings assigned for each variable based on the principal components extracted for the analysis. The first principal component shows significant correlation for the measurements 1.1.1 (maximum length of the neural skull) with a value of .939, 1.1.22 (lambda-opisthion chord) with .910 loading and 1.1.21 (lambdabregma chord) with a value of .908. A further measurement reports a significant but slightly lower loading that is 1.1.20 (nasion-bregma arch). The discrimination on the second principal component is mainly determined by the measurement 1.3.5 (orbital height) with a loading value of .894 and 1.1.5 (maximum neurocranial breadth), with a .770 factor loading. A negative and slightly less significant correlation is shown by the measurements 1.1.4 (cranial base length) and 1.2.1 (length of the face). The factor loadings correlated with the third principal component show a lower significance if compared with the previous ones, showing a similar value in all the cases. The most correlated are 1.2.6 (maximum bimaxillary breadth of the midface) with the loading of -.595, and 1.4.2 (nasal height) reporting a value of .591. Slightly lower significant results for the measurements 1.2.1 (length of the face) and 1.1.23 (foramen magnum length). Finally, the fourth principal component reports a significant correlation with the variables 1.4.2 (nasal height) with the loading of .688, and 1.1.23 (foramen magnum length), but different from the previous component, the value is negative (-.665).

Figure 4.28 shows the distribution of the samples in the graph, based on the first three principal components. The first principal component divides the samples on the base of the neurocranial length, and it seems that there are some dissimilarities in this area of the skull between males and females. London and Zalavar appear very close in the plot. The same can be said about the cluster formed by Linenhall, St Gregory and the Norse sample. Another cluster is instead formed by St Owen and Poulton. St Leonard is plotted in an isolated position compared to the other groups, as well as Castle Hill that occupies one of the extremities of the graph. On the other side of the plot is the association between Ballumbie and the Berg sample. The females

from Castle Hill have the highest value for all the three measurements (respectively 180.7 mm, 97.2 mm and 113.4 mm), while the Berg sample has the smaller mean values for 1.1.1 and 1.1.21 (170.5 mm and 105.2 mm). Ballumbie instead shows the smallest mean measurement for 1.1.22 (104 mm).

The differences on the second principal component are given by the orbital height and the breadth of the neurocranium. In this case, the samples are more scattered in the plot. St Gregory and Poulton appear to be very close, as well as Castle Hill and Linenhall. St Owen is located close to the first two samples, but with a looser connection. The Berg group and St Leonard appear to be reasonably similar, likewise London and the Norse sample. The two samples that seem to differ the most are Zalavar and Ballumbie. The two samples show very different mean values for the first two variables. In fact, Ballumbie shows high orbits (35.5 mm), while Zalavar relatively narrow (32.1 mm). The same can be said for the neurocranial breadth mean, for which Ballumbie records a broad head (142.9 mm), while Zalavar's mean is lower (136.9 mm).

The differences that separate the samples on the third principal component are mainly on the facial skull. Poulton, Castle Hill, Berg and Zalavar samples form a cluster, which is relatively similar to the Norse group. London instead is very close to St Gregory. On the other hand, St Leonard is located in an isolated position on the plot. The extremities are represented by Linenhall and on the other side Ballumbie, together with St Owen. Even if these samples appear to be the most different, as the loadings show similar values, their position in the graph seems to be a result of the combination of the effect of the four measurements.

Finally, the fourth principal component represents the significance of the correlation with the nasal height and the size of the foramen magnum. The samples appear to be located in broader spatial distribution. The Zalavar sample and Poulton seem to form a first cluster, while St Gregory, Ballumbie and the Norse sample form another group. Reasonably close to this group is located Linenhall, while St Leonard is more isolated on the other side of the graph. The two samples that differ the most are St Owen and Castle Hill. In fact, St Owen seems to have the highest nose (50.3 mm), but an average foramen magnum length (33 mm). The lowest value for the measurement 1.4.2 seems to be held by St Leonard (46.2 mm), while the lowest mean value for the foramen magnum can be seen in Linenhall (30.5 mm).

144

Figure 4.28: Three-dimensional scatterplot showing PC1, PC2 and PC3 for the female British and Howells' European samples

Component						
	1	2	3	4		
B1.1.1	.939	.012	.093	109		
B1.1.4	.663	685	.175	.072		
B1.1.5	185	.770	267	.038		
B1.1.9	.631	563	176	.189		
B1.1.20	.781	.329	.131	.396		
B1.1.21	.908	053	084	.071		
B1.1.22	.910	.069	212	096		
B1.1.23	320	226	.578	.688		
B1.2.1	.235	682	.584	175		
B1.2.6	196	524	595	355		
B1.2.8	.197	.564	.448	229		
B1.3.4	.350	.426	330	.348		
B1.3.5	.277	.894	.199	.068		
B1.4.1	575	156	.329	.199		
B1.4.2	.200	.287	.591	665		

Extraction Method: Principal Component Analysis.

Table 4.15: Component matrix showing the loadings assigned to each variable for the female British and Howells European samples (1.1.1 Max length of the neural skull; 1.1.4 Cranial base length; 1.1.5 Max neurocranial breadth; 1.1.9 Basion-bregma height; 1.1.20 Nasion-bregma chord; 1.1.21 Bregma-lambda chord; 1.1.22 Lambda-opisthion chord; 1.1.23 Foramen magnum length; 1.2.1 Length of the face; 1.2.6 Max bimaxillary breadth of the midface; 1.2.8 Height of the upper face; 1.3.4 Orbital breadth; 1.3.5 Orbital height; 1.4.1 Nasal breadth; 1.4.2 Nasal height)

British and Howells Non-pooled Samples

The principal component analysis for the British and the Howells' craniometric data was carried out, as for the discriminant function analysis, on a set of selected samples of the Howells' data set. The first analysis was carried out on the non-pooled sample. Four principal components were extracted, which account for 83.2% of the total variation. For the production of the three-dimensional scatterplot in Fig. 4.29, the first three principal components were used, as the fourth accounts for less than 10% of the total variation (see Appendix 15). The first three principal components account for 75.4% of the total variation (PC 1 = 39.751%, PC 2 = 21.255% and PC 3 = 14.434%).

The component matrix in Table 4.16 illustrates the factor loadings that the variables have for each principal component. The first principal component has a significant correlation with the measurements 1.1.4 (cranial base length) with loading of .899, 1.1.20 (nasion-bregma chord) with a value of .881, 1.4.2 (nasal height) with loading of .842, and 1.1.9 (basion-bregma height) with loading of .835. The second principal component shows a high correlation with measurement 1.1.5 (maximum neurocranial breadth) with loading of .891. The following loadings show relatively high correlation, but less significant than the previous one. Measurement 1.4.1 (nasal breadth) correlates with the second component with a value of -.669, 1.2.1 (length of the face) has a loading value of -.653, and 1.2.8 (height of the upper face) reports a value of .620. The third principal component finally shows a reasonably high correlation with the measurements 1.1.1 (maximum length of the neural skull) and 1.1.21 (bregma-lambda chord), with loading values respectively of .653 and .641.

The first principal component seems to be mainly influenced by the anterior part of the cranium and the height of the skull. Observing the scatterplot can be noticed that the British samples are spread on the X axis. St Leonard is close to Ballumbie, while a greater cluster is formed by St Gregory, London, St Owen, Norse, Zalavar, Hainan Island and Australian sample. A further cluster is made by Poulton and Zulu samples. Castle Hill seems to share similarities with the Buriats, but this cluster has looser connections compared to the previous ones. Linenhall is also very close to the Yauyos sample. The extremities of the axis are occupied by the Bushmen and the cluster formed by the Shang Dynasty, Guisborough, Guam and the Easter Island samples. In fact, for all the variables the Bushmen show the lowest recorded values. On the other side, the Eastern Island group has the longest cranial base (187.2 mm), with a mean value that highly differs from the other samples. The highest mean value for the nasion-bregma chord is recorded instead in Castle Hill and Guisborough (respectively 114.6 mm and 114.5 mm), which represent the highest values for the British samples, with only ~1mm difference with the Far Eastern groups. The highest mean value for the nose height is shown by the Buriats (55.1 mm), which is

very close to the cluster. Finally, the highest skull is recorded for the Eastern Island sample (141.5 mm), which does not significantly differ from the Guam and Shang Dynasty groups (respectively 140.3 mm and 140.5 mm).

The second principal component is majorly influenced by the maximum breadth of the skull. On the Y axis, the British groups seem to be clustering together with some loose connections with the Norse, Berg and Guam samples. Similarities are shared between the Zalavar and Hainan Island samples. The Shang Dynasty sample is slightly detached from these groups, while the Zulu, Easter Island, Bushmen and Australian samples are entirely plotted on the opposite of the graph, showing great dissimilarities from the European and Far Eastern groups. The smallest mean measurement for the cranial breadth is reported by the Australian sample (129.8 mm), while the greatest value can be found in Guisborough (151.7 mm). Regarding the nasal breadth, the highest value is reported by the Zulu and the Shang Dynasty (28.3 mm), while the lowest is measured in Linenhall (23.5 mm). Finally, the length of the face is highest in the Easter Island group (104.2 mm), while the lowest value is again given by Linenhall and Ballumbie (90.3 mm).

The third principal component is correlated with the length of the skull. In this case, the samples are widely spread, and there does not seem to be any similarity on the basis of geographical proximity. Poulton, Castle Hill and St Owen are close on the graph, similarly to the Norse, Australian and Easter Island samples. Close to this cluster is located the group formed by St Gregory, Zalavar, St Leonard and London, which are relatively close to the Zulu sample. Similarities are also encountered between the Guam sample and Ballumbie. The cluster formed by Guisborough, Shang Dynasty and the Bushmen samples differentiates from the previous ones, which are plotted very close together on the graph. Fairly distant on the plot are located the Yauyos, Berg and Hainan Island groups. The two opposites in relation to the length of the head are represented by Linenhall and the Buriats. In fact, the Buriat sample reports the shortest mean value for the bregma-lambda chord (106.2 mm) and also falls into the group that has the lowest values for the maximum length, even if the Yauyos sample has the shortest head. On the other side, Linenhall is part of the samples that show the highest measurement of the bregma-lambda chord (112.3 mm), differing from the Shang Dynasty for only ~1 mm.

Figure 4.29: Three-dimensional scatterplot showing PC1, PC2 and PC3 for the non-pooled British and Howells' samples

Component						
	1	2	3	4		
B1.1.1	.579	266	.653	.241		
B1.1.4	.899	248	.139	034		
B1.1.5	.181	.891	120	.271		
B1.1.9	.835	090	.025	430		
B1.1.20	.881	.184	.184	.116		
B1.1.21	.504	401	.641	.003		
B1.1.22	.500	.411	.325	511		
B1.1.23	.311	403	466	.490		
B1.2.1	.651	653	035	.013		
B1.2.6	.686	129	574	148		
B1.2.8	.702	.620	184	.017		
B1.3.4	.170	.149	.491	.519		
B1.3.5	.599	.558	100	.198		
B1.4.1	.481	669	482	.090		
B1.4.2	.842	.348	298	.038		

Extraction Method: Principal Component Analysis.

Table 4.16: Component matrix showing the loadings assigned to each variable for the non-pooled British and Howells sample (1.1.1 Max length of the neural skull; 1.1.4 Cranial base length; 1.1.5 Max neurocranial breadth; 1.1.9 Basion-bregma height; 1.1.20 Nasion-bregma chord; 1.1.21 Bregma-lambda chord; 1.1.22 Lambda-opisthion chord; 1.1.23 Foramen magnum length; 1.2.1 Length of the face; 1.2.6 Max bimaxillary breadth of the midface; 1.2.8 Height of the upper face; 1.3.4 Orbital breadth; 1.3.5 Orbital height; 1.4.1 Nasal breadth; 1.4.2 Nasal height)

British and Howells Male Samples

In the principal component analysis for the British and Howells' male samples, four components were extracted that account for 82.03% of the total variation. For the production of the three-dimensional scatterplot in Figure 4.30, only the first three components were used, as the fourth accounts for less than 10% of the total variation (see Appendix 15). The first three components account for 73.4% of the total variation (PC 1 = 39.197%, PC 2 = 22.052% and PC 3 = 12.173%).

The component matrix in Table 4.17 shows the loadings for each variable analysed. The first principal component shows a significant correlation with the measurements 1.1.4 (cranial base length), 1.1.20 (nasion-bregma chord) and 1.4.2 (nasal height), with loading values of respectively .931, .846 and .831. Two further measurements seem to influence the analysis, but with lower loadings (.789 and .722) and these are respectively 1.1.9 (basion-bregma height) and 1.2.6 (maximum bimaxillary breadth of the mid-face). The second principal component reports a significant correlation with two measurements: 1.1.5 (maximum neurocranial breadth) and 1.2.8 (height of the upper face). The loadings for these two measurements are respectively .867 and .737. Finally, the third component shows less strong correlations than the previous ones with four measurements. The highest correlation (-.556) is shown by 1.4.1 (nasal breadth), followed by 1.1.23 (foramen magnum length) with a loading value of -.537, 1.1.22 (lambda-opisthion chord) with a value of .512 and 1.2.6 (maximum bimaxillary breadth of the mid-face) with a loading value of -.502.

The measurements that are correlated to the first principal component are mainly located on the face. On the X axis, the majority of the British samples are plotted close to each other, creating two main clusters formed by Ballumbie, St Gregory and St Leonard on one side and London, St Owen and Poulton on the other. The samples that seem to differ slightly from these clusters are Linenhall, Castle Hill and Guisborough, but still located not at a far distance in the graph. Castle Hill seems to share some similarities with the Norse and Zalavar sample, while the Yauyos group is plotted in between the British cluster and Linenhall. In between the second British cluster and Guisborough, are located the Zulu, Australian and Shang Dynasty samples. A difference is marked by the distance between the main clusters and the Buriats and the Guam groups. Finally, the samples that most differ from the others are on one side the Bushmen and on the other side the Easter Island group. In fact, the Easter Island reports the longest face with a value of 111 mm for the measurement 1.1.4, against the shortest shown by the Bushmen (94.8 mm). The same can be said for the nasion-bregma chord, as the Easter Island falls in the highest range for this measurement, with the Guam sample (respectively 116.1 mm and 116.4 mm), while the Bushmen seem to be very similar to Linenhall (both 109.2 mm). Finally, even if the

Buriats sample is closer to the central clusters, the value for the nasal height is the highest (56.9 mm), ~3 mm more than the Easter Island sample. On the other hand, the Bushmen show the lowest nose measurement (43.8 mm).

On the second principal component, different clusters between the British samples are created. In fact, the samples seem to be divided into two main groups: one is formed by Guisborough and St Leonard and the second is formed by London, St Owen, Ballumbie, St Gregory, Castle Hill and Poulton. Few of the Howells' samples seem to share some similarities with the British clusters, which are the Buriats, Berg and the Yauyos group. Slightly separated from this cluster are plotted the Guam and the Hainan Island samples, which are also close to the Norse and Linenhall and Zalavar groups. On the opposite side of the graph in respect to the British cluster, are plotted the Zulu and Easter Island, and slightly farther the Bushmen and Australia samples. The groups that are plotted on the extremes of the graph are Guisborough and the Australian group. In fact, according to the maximum breadth of the neurocranium, the British sample falls in the group with the highest measurements (145.9 mm) followed by St Leonard with just ~0.7 mm difference and the Berg sample, that reports the largest neurocranium. On the other side, the Australian sample shows the narrowest head, with a measurement of 131.9 mm. Regarding the height of the upper face, Guisborough shows the highest face (76.2 mm), but in the case of the lowest measurement, this is reported by Linenhall (63 mm), with a difference of ~1.8 mm from the Australian group.

The third principal component is influenced by a higher number of measurements compared to the previous two, but with lower loading values. In this case, the British samples are split into two main clusters formed by Linenhall, St Owen, Poulton, St Leonard and Castle Hill and St Gregory, London and Ballumbie. Between the two groups are located the Norse and the Easter Island samples, while the Zalavar, Australian and Guam samples share similarities with the second cluster. On the other half of the graph, the remaining samples seem fairly scattered, without any significant link between each other. The closest groups to the second cluster are the Zulu sample and Guisborough, followed by the Shang Dynasty and the Yauyos groups. Lastly, there can be seen the Berg, Bushmen, Hainan Island and Buriats. Regarding the nasal breadth, Linenhall seems to have the narrowest nose (23.5 mm), while the largest is represented by the Zulu (28.7 mm) and the Buriats (28.4 mm). Comparing the length of the foramen magnum instead, St Owen has the shortest (34 mm), while the Berg group shows the highest measure, exceeding ~5 mm compared to the previous sample. In the case of the lambdaopisthion chord, St Leonard reports the highest value (108.5 mm), which is much higher than the mean measurement for the Australians, which is 92.1 mm. Finally, the measurement 1.2.6 sees Linenhall with the lowest value (87 mm), while the Buriats seem to have the largest midface (104.3 mm).

Figure 4.30: Three-dimensional scatterplot showing PC1, PC2 and PC3 for the male British and Howells' samples

Component						
	1	2	3	4		
B1.1.1	.635	402	.470	.314		
B1.1.4	.931	125	.143	068		
B1.1.5	.059	.867	041	.404		
B1.1.9	.789	.050	.123	474		
B1.1.20	.846	.173	.199	.119		
B1.1.21	.548	601	.406	.093		
B1.1.22	.245	.443	.512	485		
B1.1.23	.310	390	537	.347		
B1.2.1	.685	574	.037	121		
B1.2.6	.722	.035	502	108		
B1.2.8	.605	.737	078	008		
B1.3.4	.213	058	.418	.600		
B1.3.5	.616	.575	077	.172		
B1.4.1	.584	502	556	063		
B1.4.2	.831	.422	250	.050		

Extraction Method: Principal Component Analysis.

Table 4.17: Component matrix showing the loadings assigned to each variable for the male British and Howells sample (1.1.1 Max length of the neural skull; 1.1.4 Cranial base length; 1.1.5 Max neurocranial breadth; 1.1.9 Basion-bregma height; 1.1.20 Nasion-bregma chord; 1.1.21 Bregma-lambda chord; 1.1.22 Lambda-opisthion chord; 1.1.23 Foramen magnum length; 1.2.1 Length of the face; 1.2.6 Max bimaxillary breadth of the midface; 1.2.8 Height of the upper face; 1.3.4 Orbital breadth; 1.3.5 Orbital height; 1.4.1 Nasal breadth; 1.4.2 Nasal height)

British and Howells Female Samples

The principal component analysis was carried out on the British and Howells' samples. Similarly to the previous analyses, the number of groups for the female sample is lower, as Guisborough did not have a complete set of measurements, while the Shang Dynasty sample only included male individuals.

Four principal components were extracted, which account for 82.6% of the total variation. For the production of the three-dimensional scatterplot in Fig. 4.31, only the first three principal components were used, as the fourth accounted for less than 10% of the total variation (see Appendix 15). The three components account for 74.5% of the total variation between the samples (PC 1 = 32.475%, PC 2 = 24.849% and PC 3 = 17.239%).

The component matrix in Table 4.18 shows the loading values for the measurements in each principal component. The first principal component shows a significant correlation with the measurements 1.1.22 (lambda-opisthion chord) and 1.1.20 (nasion-bregma chord), with values of respectively .837 and .832. Lower loading values (.752 and .742) are reported by the measurements 1.4.2 (nasal height) and 1.1.9 (basion-bregma height). The second principal component shows high correlation with the measurements 1.2.1 (length of the face), which reports a loading of .854, while 1.1.5 (maximum neurocranial breadth) shows a negative loading of -.843. Measurement 1.4.1 (nasal breadth) shows a less significant association (.729) if compared to the previously mentioned. Finally, the third principal component results as significantly correlated with the measurements 1.2.6 (maximum length of the neural skull) (respectively .729, -.725 and -.706).

The differences on the first principal component are mainly affected by the measurements on the neurocranium. The British samples seem to split in different groupings, where the first one is formed by Castle Hill, the Buriats and the Easter Island samples. Close to this cluster, Poulton, St Gregory and St Owen are plotted. Not far, Linenhall clusters with the Norse, Zulu and Hainan Island. Slightly detached from this last group, there are London and the Zalavar groups, followed by another cluster formed by St Leonard, Ballumbie and the Australian sample. Finally, the Berg and Yauyos seem to share some similarities, while the Bushmen are located in an isolated position in the graph, similarly to the Guam sample, on the opposite side of the scatterplot. If comparing the distribution of the samples on the first principal component with the measurements, it can be seen that for the lambda-opisthion chord the Bushmen show the lowest value (88.5 mm), while the Guam sample falls into the highest range (96.2 mm). The same can be said for measurement 1.1.20, where the Bushmen record the shortest chord (105.1

mm) similarly to the Yauyos group, while in this case the highest value is shown by Castle Hill and Poulton (113.9 mm and 111.7 mm).

The second principal component seems to associate the British samples in a loose cluster on one half of the graph together with the Buriats, Berg and Yauyos, while the other groups are plotted on the other half of the graph. The Norse and the Zalavar samples are located close to the British group, while the other non-European samples are more scattered on the scatterplot. The Hainan Island group seems to have some similarities with the Guam sample, while the Australian and the Zulu groups are grouped with a distance from the previous cluster. Between these two groupings is plotted the Bushmen group, which results as reasonably isolated. On the other extreme of the plot, in comparison with the British groups, is the Easter Island sample. In fact, the Easter Island group seem to have the longest face between the groups (101.2 mm), while the shortest is recorded on Linenhall (86.5 mm). On the other hand, as the loading resulted as negative, the Easter Island shows the narrowest head (128.5 mm), while Poulton reports the largest neurocranial breadth (143.2 mm).

The third principal component does not group the British samples, and these can be seen spread along the Z axis. In one of the extremes of the graph is located Castle Hill, which is close to Linenhall. Poulton, St Owen, the Australian and the Norse sample form a cluster, while another one is formed by London, St Gregory and the Zalavar, Zulu, Bushmen and Easter Island groups. Close to this cluster is located St Leonard. Distant from this group can be seen another cluster formed by Ballumbie, Berg, Yauyos, Hainan Island and the Guam samples. Finally, on the other extreme of the graph are located the Buriats. In fact, the Buriats report the largest bimaxillary breadth of the mid-face (96.5 mm) together with the Guam sample (96.7 mm), while on the other side the sample from Castle Hill seems to have the narrowest face (87.5 mm). The same can be said for the bregma-lambda chord, where the Buriats group records a mean measurement for the females of 102.7 mm, while Castle Hill exceeds this one of ~11 mm. The same result is reflected in the maximum length of the neural skull, as the mean calculated for Castle Hill is above the highest ones (180.7 mm), together with the Easter Island sample, while the one calculated for the Buriats is one of the lowest (171.8 mm), following the Berg sample (170.5 mm).

Figure 4.31: Three-dimensional scatterplot showing PC1, PC2 and PC3 for the female British and Howells' samples

Component						
	1	2	3	4		
B1.1.1	.533	.312	706	.157		
B1.1.4	.683	.619	048	061		
B1.1.5	.307	843	.227	.120		
B1.1.9	.742	.418	.170	342		
B1.1.20	.832	070	196	.200		
B1.1.21	.492	.283	725	054		
B1.1.22	.837	161	144	373		
B1.1.23	.011	.388	.444	.637		
B1.2.1	.336	.854	.139	.123		
B1.2.6	.372	.240	.729	205		
B1.2.8	.679	566	.344	.064		
B1.3.4	.404	290	357	.533		
B1.3.5	.619	532	.075	.225		
B1.4.1	.129	.729	.469	.256		
B1.4.2	.752	308	.447	075		

Extraction Method: Principal Component Analysis.

Table 4.18: Component matrix showing the loadings assigned to each variable for the female British and Howells sample (1.1.1 Max length of the neural skull; 1.1.4 Cranial base length; 1.1.5 Max neurocranial breadth; 1.1.9 Basion-bregma height; 1.1.20 Nasion-bregma chord; 1.1.21 Bregma-lambda chord; 1.1.22 Lambda-opisthion chord; 1.1.23 Foramen magnum length; 1.2.1 Length of the face; 1.2.6 Max bimaxillary breadth of the midface; 1.2.8 Height of the upper face; 1.3.4 Orbital breadth; 1.3.5 Orbital height; 1.4.1 Nasal breadth; 1.4.2 Nasal height)

4.5 Hierarchical Cluster Analysis

The Hierarchical Cluster Analysis was used to show better the similarities between the samples analysed and to create dendrograms to illustrate the clustering of the groups. After carrying out the PCA, the most significant factor scores were retained, and these were used to produce the dendrograms. Only two methods were included in this thesis, the between-groups linkage and Ward's method, to show that both the approaches give equal results and to confirm the validity of the analysis.

As for the DFA and the PCA, the analysis was initially carried out only on the British samples. First, the non-pooled samples were examined, and secondly, the pooled samples were compared. The following step was to compare the British against Howells' European samples (Norse, Zalavar and Berg). The same procedure was applied: first, the non-pooled samples were compared, and then males and the females were analysed. Finally, a selection of 21 main Howells' groups and the British sample were analysed. Similarly to the previous analysis, the non-pooled samples were first compared and then the pooled samples were analysed.

4.5.1 Inter-population Analysis: Non-pooled British Samples

For the production of the two dendrograms shown in Figures 4.32 and 4.33, the factors extracted by the principal component analysis of the non-pooled British samples were used. Four principal components were extracted, and the Eigenvalues show that these account for 91% of the total variance.

Comparing the two dendrograms, it is visible that the two most similar samples to be clustered are St Owen and London. St Owen seems to be also similar to St Gregory, which is the second pair of groups to be clustered. The third pair to be similar is formed by Poulton and Castle Hill, which are not closely linked to the first group. In fact, it seems that Linenhall has closer linkages to St Owen, compared to the previous cluster. Another pair is formed by Guisborough and Ballumbie, but their similarities appear less significant than the previous ones. In both the dendrograms, it is visible that St Leonard does not tend to cluster with any of the other samples. This confirms the results also given by the previous statistical analyses, where the sample from Kent tended to be isolated from the others.

Dendrogram using Ward Linkage

Figure 4.33: Ward's linkage dendrogram for the non-pooled British samples

4.5.2 Pooled Samples Analysis

British Males

The dendrograms for the comparison between the British male samples are shown in Figures 4.34 and 4.35. To produce these graphs, the four principal components that were extracted by the principal component analysis were used. The Eigenvalues show that these account for the 88.1% of the total variance.

It is clear that the first four steps of the analysis agree in their results. The first cluster that is formed is the one between London and St Gregory. The second pair is then formed between Castle Hill and Ballumbie. Secondly, another cluster is formed by Castle Hill and Poulton, while another one is later formed by London and St Owen. The two methods then assign the similarities in different ways. The between groups linkage tend to locate all the connections between the remaining samples and Poulton, while Ward's method sorts out the correspondences more homogeneously. However, the difference is limited, as the samples that tend not to be tightly clustered are St Leonard, Linenhall and Guisborough in both the hierarchical clusters. This means that there is a certain degree of differentiation that remains constant in both the classification procedures.

Figure 4.34: Between-groups linkage dendrogram for the male British samples

Figure 4.35: Ward's linkage dendrogram for the male British samples

British Females

In the comparison between the British female samples, for the production of the dendrograms in Figures 4.36 and 4.37, the five principal components extracted for the principal component analysis were used. These account for 91% of the total variance.

It also seems to be the case for the analysis of female samples, where a similar consistency in results can be observed. In fact, the first cluster is formed by Poulton and St Gregory in both graphs. The second most similar samples are St Owen and London. Then, the grouping of the samples seems to differ in the clustering graphs slightly. While the between groups linkage tends to connect all the remaining groups to Poulton, Ward's method results form further clusters between St Leonard and Castle Hill and St Leonard and Ballumbie. However, the fusion of these clusters seems to be somewhat distant, which means that the similarities are not particularly significant between these last groups.

Figure 4.36: Between-groups linkage dendrogram for the female British samples

Figure 4.37: Ward's linkage dendrogram for the female British samples

4.5.3 Comparison with W.W. Howells data set

British and Howells European Non-pooled Samples

The first comparison carried out with the Howells' data set is the one between British and European non-pooled samples. The five principal components extracted for the previous analysis were used for the production of the dendrograms in Figures 4.38 and 4.39, and the Eigenvalues show that these accounted for 92.5% of the total variation.

Once again, the results for the two different methods used show use accordant outcomes. The first samples that cluster together are St Owen and London, followed by the Norse and Zalavar that form a completely different pair. St Owen then is also connected to St Gregory, while Poulton and Castle Hill form a separate cluster. The only cluster formed by a British and one of the Howells' samples is the group formed by Ballumbie and Berg. Another linkage can be seen between Linenhall and the Norse sample, even though the fusion between the two clusters is fairly distant, which indicates a minimal similarity between the two groups. Furthermore, both the methods locate St Leonard and Guisborough in an outlier position compared to the other samples.

Figure 4.39: Ward's linkage dendrogram for the non-pooled British and Howells' European samples

British and Howells European Male Samples

The analysis between pooled samples was carried out and, similarly to the previous analyses, the British and Howells' European samples were first compared. For the creation of the graphs in Figures 4.40 and 4.41, the five principal components previously extracted were used and the Eigenvalues show that these account for 90.7% of the total variance.

In both the dendrograms, the most similar samples that form the first cluster are London and St Gregory. The second samples that cluster are Poulton and Castle Hill, followed by the Norse and Zalavar groups, but connected in a different grouping. St Owen is also clustered with Poulton, forming a branch together with the aforementioned Castle Hill and a further more distant fusion with Ballumbie. Guisborough connects with the first cluster, followed by Linenhall, which shows less strong similarities with this group. Finally, the Berg and St Leonard samples occupy an isolated position as they represent two outliers, even though they have a very loose connection with respectively Norse and Poulton.

Figure 4.41: Ward's linkage dendrogram for the male British and Howells' European samples

British and Howells European Female Samples

The last analysis of the British and Howells' European groups involved the female samples. The two dendrograms that can be seen in Figures 4.42 and 4.43 were made using the four principal components extracted from the principal component analysis, which account for 80.5% of the total variance.

The sample form Guisborough, just like for the principal component analysis, was not analysed in this case, as the measurements were incomplete and therefore it was not possible to include it in this dendrogram. The two graphs show that the first two most similar samples are London and the Norse group, which are also linked to the Zalavar sample, with a slightly less similarity. Another cluster is formed by Poulton and St Gregory. St Leonard, in this case, is not isolated but shows some similarities with the Berg sample. While in the dendrograms resulting from the application of Ward's method Ballumbie is forming a branch with the last cluster mentioned, in the between groups linkage this is connected very loosely with Poulton. The two samples that in this case seem to constitute two outliers are Castle Hill and Linenhall, which differ the most from the other groups.

Figure 4.43: Ward's linkage dendrogram for the female British and Howells' European samples

British and Howells Non-pooled Samples

The hierarchical cluster analysis involved, as for the previous analyses, also the selection of Howells' samples. To produce the two dendrograms in Figures 4.44 and 4.45, the four principal components extracted by the principal component analysis were used, which account for 83.2% of the total variation.

The two graphs agree in the results given, and the samples seem to cluster on the basis of geographical affinity. The two samples that share the most similarities are St Gregory and St Leonard, followed by London, which creates a branch together with St Owen, which seems to cluster later in the Ward linkage method. Another cluster is formed by the Norse and Zalavar samples, which are linked to the previously mentioned branch in the between-group linkage dendrograms, while Ward's method tends to connect it with the cluster formed by Poulton and Castle Hill. In both the graphs, Linenhall does not seem to closely cluster with any other sample, although the fusion of its linkage is located at a greater distance than the ones above with St Owen. A further cluster is formed by Poulton and Castle Hill, while Ballumbie is connected to the Berg sample. The only exception for the British samples is Guisborough, which clusters with the Buriats, also reiterating the results given by the previous analyses. This pair seems to reconnect

in both dendrograms with the European group, but the fusion point is located relatively distant in the graphs.

The Howells non-European samples tend to cluster on the basis of geographical affinities. A branch is formed by the eastern groups, which are connected into a group formed by different clusters. The first one is formed by the Shang Dynasty and the Guam samples. Also, this group is linked to the Easter Island with a more distant fusion of the linkages. Another cluster is formed by the Hainan Island sample and the Yauyos, which is not an eastern group but can have some morphological affinities with Asian samples. A further cluster that is separate from the European and the eastern groups are formed by the Zulu and the Australian samples. These two groups demonstrate to have several morphological similarities, which are also confirmed from the discriminant function and the principal component analysis. Finally, the Bushmen result to be slightly isolated in the dendrograms produced with Ward's method, but still linked to the previously mentioned cluster. On the other hand, the between-groups linkage locates this sample as an outlier, as can be seen in Fig. 4.44.

Figure 4.44: Between-groups linkage dendrogram for the non-pooled British and Howells' samples

Figure 4.45: Ward's linkage dendrogram for the non-pooled British and Howells' samples

British and Howells Male Samples

The graphs showing the comparison between the British and the Howells male samples are shown in Figures 4.46 and 4.47. The four components that were extracted by the principal component analysis were used and these account for 82.03% of the total variation.

The first cluster is formed by London and St Gregory, which also is connected to St Leonard. In both graphs, these samples are associated with St Owen, Ballumbie and Linenhall, which show linkages fusion in different positions. Different clusters are formed by Norse and Zalavar and Poulton and Castle Hill, which are all linked into a branch connecting to the other British samples. As for the non-pooled samples, Guisborough is located in two different locations in each method. The between groups linkage locates the sample as an outlier but connected by a distant point of fusion with the branch formed by the Hainan Island, Shang Dynasty and Yauyos samples. The Ward linkage clusters Guisborough with the Berg and the Buriats sample. Regarding the non-European samples, the eastern males seem to split in two different groups. The Hainan Island and the Shang Dynasty form a cluster, which is also connected with the Yauyos sample. On the other hand, the Guam and the Easter Island form another cluster, which is not connected to the other Asian samples. This last group is part of a branch that is connected to the cluster formed by the Zulu and Australian group.

Figure 4.46: Between-groups linkage dendrogram for the male British and Howells' samples

Dendrogram using Ward Linkage

Figure 4.47: Ward's linkage dendrogram for the male British and Howells' samples

The Bushmen result as an outlier in the between-groups linkage, which is not directly connected to any other sample. In the case of Ward's linkage instead, this sample is part of a branch with a reasonably distant fusion, which includes the group formed by the Hainan Island, Shang Dynasty and Yauyos.

British and Howells Female Samples

The final stage of the hierarchical cluster analysis involves the comparison between the female samples. Just as for the previous analyses, it was not possible to include the female sample from Guisborough due to the unavailability of some of the measurements. The graphs in Figures 4.48 and 4.49 were produced using the four principal components extracted by the principal component analysis, which account for 82.6% of the total variation.

The two most similar samples are in both graphs St Owen and St Gregory, which form a bigger branch together with Poulton. The second pair that is clustered by the analysis is the Norse and Zalavar samples, which further connect to the above-described branch. Another cluster is formed by St Leonard, Berg and Ballumbie, which do not seem to link to the primary European cluster. Linenhall is represented as a sort of outlier if compared to the European samples, which is connected to the first cluster by a distant fusion of the linkages. A further outlier is represented by Castle Hill, which, in the between-groups linkage is connected to Linenhall, while in Ward's linkage is isolated and connected to Poulton, but with a very distant linkage fusion. In both graphs, London seems to share more similarities with the Yauyos group, rather than the European samples. The Guam and Easter Island groups seem to agree in both graphs, being cluster together, while the Hainan Island sample is linked to London and the Yauyos group in Fig. 4.48, while in Fig. 4.49 it belongs to the eastern samples' group. Finally, the Zulu and Australian samples maintain their cluster as in the previous analyses, while the Bushmen seem to be an outlier in the between-groups linkage. In Ward's linkage instead, the Bushmen are part of this last branch that connects the sample with a fusion that is at a great distance, showing that their similarities are less if compared to these samples. The Buriats as well represent an outlier, as they do not seem to cluster with any other group in the first method, while in the second they report some similarities with the London sample.

Figure 4.48: Between-groups linkage dendrogram for the female British and Howells' samples

Dendrogram using Ward Linkage

Figure 4.49: Ward's linkage dendrogram for the female British and Howells' samples

5. Discussion

5.1 Introduction

Chapter 5 discusses the importance of skeletal reconstruction and the results obtained by the statistical analysis. Section 5.2 debates the importance of cranial and skeletal reconstruction for research, teaching and display purposes. Section 5.3 interprets the results regarding the comparison between British samples. The aim is to understand the reasons that lead to differentiation between British samples from a morphological and historical point of view. The same is done for the comparison between British and Howells' European samples in section 5.4.1. Finally, section 5.4.2 discusses the variation that is encountered among the main Howells' population samples that were selected for this study. The aim is to understand if the discrimination follows a geographical pattern and whether craniometrics reflect geographical adaptation or genetic variability.

5.2 Skeletal and Cranial Reconstruction

Cranial reconstruction was essential for the implementation of this study. The restoration of 300 skulls was fundamental as most of them were recovered fragmented during the excavation. The damage of these elements is usually due to taphonomical events that affect the bone after the burial of the individual or can be the result of excavation and post-excavation damage (Borrini *et al.*, 2012). Post-depositional damage can lead to fractures on the skull, and it can occur in different forms. The two main processes that affect the bones in a post-depositional environment are the pressure caused by soil after the decomposition of soft tissues and the compression after the collapse of the lid if the individual was interred in a coffin (Pokines and Baker, 2014a). The eventuality of individuals being buried into coffins is low for the Middle Ages, even if the pattern of distribution of these structures is not yet well understood. In a common funeral, the individual was placed into a coffin, after the activities of washing and dressing, to be brought in procession to the church. After the funeral, most of the individuals would have been removed from the coffin and buried in their shroud alone (Gilchrist and Sloane, 2005).

The gradual breakdown of a coffin allows the infiltration of sediments and the growth of roots in the internal side of the container that comes in contact with the remains. The collapse of the cover exposes the bones to the weight of the soil, causing damage and fracturing of the bones. Warping is also frequent, as the structure of the skull is weak and is combined with a
small number of soft tissues that usually decomposes before the bone surface comes in contact with the coffin floor (Pokines and Baker, 2014a). Fractures are also caused in a non-coffin burial, where the subsequent pressure of the soil would lead to the fragmentation of the skull. Further damage to the remains can be caused by excavation or post-excavation activities. In fact, during the excavation and the lifting of the remains, the skull can be subject to damage and fractures can appear on the surface of the bone. Some damage can also be caused by the use of mechanical machinery during the opening of excavation, if the remains are particularly close to the surface (Fig. 5.1).

Figure 5.1: Example of excavation damage from Gloucester

Buried remains can be accidentally discovered by citizens during construction work, farming activities, gardening or digging by pets. If the bone has become more friable for a consequent loss of organic content, an impact from a shovel or any other tool can lead to a crack on the impact site (Pokines and Baker, 2014b). Once the remains are brought from the field to the laboratory, appropriate handling is crucial to avoid additional taphonomical damage (Cronyn, 1990). The effects of poor transport and storage are another reason for the appearance of fractures on the bones. The storage in hard boxes with an inadequate cushioning may result in further damage to the remains. All these post-mortem damage events can lead to a reduction of information on the biological profile, with a loss of intact surface morphology and the number of measurements that are allowed to be taken for metric estimates of sex, age, stature and ancestry (Pokines and Baker, 2014b).

For this reason, the reassembling of an anatomical part, especially the skull, is essential for the analysis of human remains. Bone reconstruction was very popular in the past, and it is frequent to come across the reassembling of the earlier recovered remains. However, some attempts of reconstruction of the bones that were carried out in the past are poor curation examples, which can be considered more as damage than care for human remains. The reason can be related to the fact that people with a poor knowledge of anatomy and training in the

Figure 5.2 A and B: Example of poor cranial reconstruction from Skeleton 67 from Poulton

curation of skeletal material were allowed to carry out reconstruction, with poor final results (Fig. 5.2 A and B).

Another reason could be that the materials used for reconstruction were not adequate for this purpose (not reversible) and led to the deterioration of the sample. This was noted by the author when analysing some of the samples. Consequently, in the last years, reconstruction of human remains has been abandoned by researchers. With the increase in awareness of appropriate care of human remains, various guidelines have been published for the treatment and conservation of skeletal material. The main guidelines used in Great Britain are the Code of Practice published by the British Association of Biological Anthropology and Osteoarchaeology (2018). The code states that "if a bone is broken, and if appropriate (i.e., for display purposes), it may be joined together using a reversible glue (HMG Paraloid B-72) and the process should be documented". Mays, Brickley and Dodwell (2004) instead suggest that only minor reconstruction is worthwhile, to enable researchers to record measurements. Odegaard and Cassman (2006) discuss whether reconstruction is damaging the bone or any other analysis that could be done after the restoration of the sample and propose alternative solutions to the use of glue and adhesives. Their main concern is whether the glue would be damaging the surface of the bones in the long term, if it is reversible and if the application of this polymer is adding thickness to the overall structure of the bone. They also propose as an alternative to the use of Parafilm M. for the long bones and microcrystalline wax strips for the temporary reconstruction of the skulls. Another alternative that is proposed by the same authors is the scanning of the individual skeletal material so that reconstruction could be done virtually and made available for researchers that are not able to be physically present to conduct their research directly on the bones.

The methods above are proposed in order to avoid the damage to the skeletal material, which would result in an irreversible loss of information and permanent damage to the bone. At the same time, these solutions are not stable, and they do not ensure the correctness of the analysis of a specimen. The curatorial part of the present study involves, as suggested in the BABAO code of practice (2018), the use of a 60% solution of B72 mixed with acetone. Once the fragments have been appropriately washed with water, avoiding the persistence of any soil residue, and dried, the remains can be joined together. The compound used to reconstruct the fragmented elements is suitable for human remains, as it does not affect the integrity of the bone. Differently, from other glues that have been used in the past, this solution is reversible with acetone, and it can be removed immediately after the reconstruction, both when the glue is not dry yet, and after the glue has dried. If the compound is created with the right amount of components and the fragments are placed in a stable position to dry, it will not create a thickness between the fragments, as criticised by Odegaard and Cassman (2006). The solution needs to

be liquid enough to not create a layer of solid glue between the bone portions, and its composition needs to be checked frequently, as the acetone tends to evaporate quickly.

The other method that was employed in the cranial reconstruction in this study is the replacement of missing parts with a customized wax. This compound was designed by Borrini (2007) and tested by him and the author at the Forensic Anthropology laboratory at the University of Florence. The wax, made of a mix of beeswax, paraffin, pine rosin, casting powder and calcium carbonate (please refer to section 3.3.1 for the exact quantity of each component), can be mixed with natural pigments to recreate bone's natural colour. This method is completely reversible and does not damage the bone. The wax does not leave any oily residue on the bones and can be easily removed from the specimen. The reason why this technique has been applied is due to the frequent loss of small parts of the cranium. The bones that are most damaged or lost during excavation are nasal and lacrimal bones and zygomatic processes. The integrity of these parts is significant for the stability of its whole structure.

It is crucial to reconstruct these elements in order to obtain stability in the skull. It is also fundamental that the reconstructed parts are recognisable from the bone, as it needs to be evident that some parts are missing. The reason for this is that craniometric measurements and other types of analyses cannot be recorded on a reconstructed area, as the wax is intended to improve the stability of the bone, not recreate the anatomical part. On the other hand, if the reconstruction is not done, a remarkable amount of data can be lost. It is important to underline that the reconstruction has to be made by trained anthropologists. To carry out this practice, it is fundamental that the person performing the reconstruction has excellent knowledge about the anatomy of the human skeleton. The incorrect placement of fragments during a reconstruction does not only lead to permanent damage of the specimen but would also affect future data collection and lead to wrong results. It is also essential that the conditions of the specimen are assessed before the reconstruction. In fact, the restoration of a warped skull or severely damaged by the burial environment, is not convenient because no metric analysis can be carried out.

The majority of the skeletal collections analysed presented less than 50% of complete skulls, which means that the ones that were analysed are only a small part of the samples representing the collection. The collections that were measured by the author reported a conspicuous number of fragmented skulls or showed poor attempts of cranial reconstruction made during the past (Fig. 5.4 A and B). These conditions inhibited the data recording, reducing the potential of the amount of data collected. Another sample from which the data was acquired from accessible sources was the one stored at the Museum of London. As it is clear from the data available, most of the skulls are not complete, and a remarkable number of specimens was

Figure 5.4 A and B: Examples of poor cranial reconstruction from St Gregory's sample

excluded from the statistical analysis. Similarly, the data published by Anderson (1994) on the human remains excavated from Guisborough priory, involved only 32 skulls out of 40 adults that were recovered. From these 32 adults, more were excluded from this study, as the completeness of the data did not reach 50%.

Many anthropological samples are stored in Universities and represent a valuable resource for students, researchers and lecturers. However, as described before, most of the collections are fragmentary, and this often represents an obstacle to the examination of the remains, especially if they present trauma or a pathological condition. In the case of cranial reconstruction, a complete skull collection is extremely advantageous for students and researchers to appreciate not only the variability within a population but also to analyse the cranial features as a whole. An example of useful cranial reconstruction could be represented by Skeleton 107 from Gloucester. The individual was analysed and published by Valoriani, Eliopoulos and Borrini (2017) as a case study of sharp force trauma in medieval Gloucester. The reconstruction allowed to observe better the sharp force trauma on the skull and the consequent radiating fractures caused by the impact of a sharp object. As the complete skeleton was reconstructed, a sharp force trauma was also identified on the right scapula, which would not have been possible to locate without a restoration of the anatomical part (Fig. 5.5).

Skeletal reconstruction is not only useful for research and teaching purposes but also for museum display. Many museums exhibit skeletal specimens, which have been excavated from different sites in Great Britain. The display of human remains can be a controversial topic if these are less than 100 years old. In the case of archaeological remains, these can be displayed if they do not outrage public decency (Woodhead, 2013). Museums are accessed by both experts and the general public, which is often not familiar with physical anthropology. Skeletal reconstruction would be a useful tool for the better comprehension of the remains by a wider

Figure 5.5: Skeleton 107 from Gloucester showing sharp force trauma following the reconstruction (from Valoriani, Eliopoulos and Borrini, 2017)

public. A fragmented skull would not be understood in its completeness by someone that is not familiar with human anatomy. If a fragmented skeleton with trauma or pathology was displayed, it would not be possible to appreciate and observe the condition, as the nature of the remains would not allow a vision in its complex. If the skeleton instead underwent a full restoration, the public, as well as researchers, would have the benefit of better observing the case. A further advantage of cranial reconstruction consists in offering the opportunity of carrying out facial reconstruction. There are many techniques used for facial reconstruction, and the digital option is very popular (Wilkinson, 2004). For the digital reconstruction, the skull needs to be laser scanned, so that the anthropologist can work on the digital copy. A fragmented skull can be reconstructed virtually, but every cranial fragment needs to be scanned. This method is timeconsuming, and the equipment is expensive, which would constitute a limit for the researchers, Universities and Museums interested.

Cranial reconstruction would be suitable, as for a complete reconstruction takes around three hours for experts who are trained for the task. This would also be suitable for a later scanning of the skull, which would be faster than having to scan every fragment and then digitally reconstruct the sample. To carry out facial reconstruction, a complete skull is needed, as it is not possible to reconstruct the features of a face with an incomplete cranium. If a facial reconstruction is presented in a museum, it will increase the chance of engaging the visitors and make them aware of the history of a particular historical person. At the same time, facial reconstruction is also used in forensic cases. The recovery of fragmented remains is not an unusual event and to identify the individual, a biological profile needs to be done. In many cases, facial reconstruction would be a useful tool for the investigators to give a chance of recognising this person.

For this reason, in case of a fragmented skull, reconstruction is the easiest, quickest and accurate way to facilitate the identification of the remains. For many reasons, cranial reconstruction is essential, both in physical and forensic anthropology. This method should be

reconsidered, as the loss of information is conspicuous and research should not be considered complete with the lack of information caused by the fragmentary nature of the remains.

5.3 Inter-Population Analysis: British Samples

The initial interpretation of the comparison between British samples is that there is no clustering based on geographical affinity. This result is partly expected, as this analysis is not looking at an extensive geographical area or a wide range of time. A consistent geographical variation occurs when there is a bioclimatic effect on the population that leads to climatic adaptation with different anthropometric distributions (Beals *at al.*, 1984). The British samples are geographically close. It is therefore likely that the climate differences would not have an impact on these samples' cranial measurements variability, as there are no substantial differences between the northern and the southern regions. Furthermore, the samples analysed are not chronologically distant, as they all belong to the Middle Ages. Therefore, it is probable that the differences determined by the statistical analyses are not a consequence of climate adaptation or a change based on the period.

Previous studies regarding British samples proved that there is a temporal trend that leads to a microevolutionary change over time (Mays, 2000). The degree of variation between Neolithic and Bronze Age remains is reasonably high. It is therefore unlikely that the later population derived from the earlier (Brothwell, 2014). An example was adopted by Brothwell (2014) regarding the craniometric differences between the Anglo-Saxon groups and the later medieval samples. The author states that the discrepancies between the two cannot be explained in terms of rapid microevolution. Brothwell and Krzanowski (1974) underlined the differences between the early Neolithic and the Beaker/Food Vessel samples, strongly suggesting a significant change in population composition. They compared two further medieval groups, which are described as brachycephalic in contrast with the previous dolichocephalic samples. The authors detected a further separation between Saxons and medieval samples. The theory of brachycephaly's prevalence (or at least high mesocephaly) in the Middle Ages is also confirmed by Tattersall (1968) and Goose (1981), who stated that, before and after this period, dolicocephalic skulls were predominant.

Anthropometric data provide a valuable source of information on biological similarities between historical populations (Relethford, 1988), and the differences observed among British medieval samples can be a result of migrations from outside this geographical area. The effect of regional changes as a result of population admixture has also been proved by Relethford (1988). The author analysed the craniometric variation in some modern Irish populations, comparing the results with blood group variation. He concluded that the results agree in both analyses and that the degree and pattern of population differentiation are due to the effects of English admixture.

The comparison among British samples suggests that there is some homogeneity in the craniofacial morphology during the Middle Ages. However, some groups show a few dissimilarities from the others and are worthy of consideration. During the data analyses, the sample from Guisborough seems to differentiate consistently from the others. The archaeological and historical records do not mention any occurrence of migration during the Middle Ages, neither the presence of Viking or Roman settlements in the previous periods. The discrepancy among craniometric data could be due to the small number of individuals available for examination. The number of skulls included consists of 32 individuals (18 males and 14 females). Another problematic aspect is the quantity of data available for this sample. As seen throughout the statistical analysis, the females lack most of the facial measurements, which is the reason why these have been excluded from some of the comparisons. The deficiency led to an analysis mainly based on the males, and the discrimination cannot be considered in its totality, especially when analysing the non-pooled samples.

Another sample that does not cluster with any other is Scarborough. From the classification results given by the DFA, it is clear that for both non-pooled and pooled samples the misclassification rate is low. That is, the similarities between Castle Hill and the other British groups are limited. These results are also confirmed in the early study made by Little (1943). The author describes the cranial series as "aberrant" (1943: 33) and underlines how this sample cannot belong to any of the populations that inhabited the British Isles since the Mesolithic times. Moreover, Little states that there is a significant difference between the Scarborough sample and the one form Hythe, which can also be observed in the results of this thesis. Further validation is proposed by Tattersall (1968), who states that the cranial series from Kent is considerably different in cranial length from the one from Castle Hill. Brothwell and Krzanowski (1974) included Scarborough in their comparison among British populations from different periods, and reiterate its dissimilarities even in relation to non-medieval samples.

Several hypotheses can explain the difference in measurements between Castle Hill and the other medieval samples. Most of the authors agree that this group's origins could be found outside Britain. Little (1943) reports that Scarborough was a base for Vikings, who probably occupied the site until the 11th Century. The author also reports that the town was the only known settlement of Icelanders in England. By the late 13th century, Great Britain's eastern ports were reached by a significant number of foreign sailors. Foreigners were mainly arriving from Flanders, northern France, Germany, Denmark and Norway. Scarborough was indeed the busiest port and hosted 235 naval landings just during 1305. It is estimated that approximately 4500 foreign fishermen were visiting Yorkshire fishing grounds each year. Furthermore, the eastern ports of Britain had commercial links with Iceland. The demand for dried cod and stockfish encouraged British fishers to exploit Icelandic fisheries (Kowaleski, 2003; 2007). This exchange of goods could have also brought to an exchange of people, who decided to establish in Scarborough.

Different hypotheses were suggested for the interpretation of the place-name for the town. Whaley (2010) offers different options for the origin of the name Scarborough, proposing as well as Icelandic and Old Norse toponym's origins. The Nordic form is *Skarðaborg* in both languages. The name originates from the word *borg*, which probably means "fortification", together with the word *Skarð* "gap, cleft". Different options are proposed for the first part of the name, which indicates an anthroponym or the landscape surrounding the town. In the first case, it could refer to *Skarði*, a personal name that appears in the early Nordic world as a forename or nickname. The second option could originate from the word *skarð*, indicating a topographical etymology linked to the landscape features of the area (Field, 1980; Room, 1988).

It is worth considering the difference that there is between the two sites of Guisborough and Castle Hill. The two towns are geographically close, but one is a coastal site, while the other is a rural town. As Anderson (1994) suggests in her report, the remains from Guisborough could represent a close breeding group. The difference between the two samples could be a consequence of a major influx of people in Scarborough's port, compared the rural town of Guisborough. Another explanation could be given by the different background and origin of the towns. The possible presence of a Nordic settlement in Scarborough before the Middle Ages could have brought a variation in this group's cranial measurements.

London's sample also appears as an outlier for most of the analysis. As the national centre for government and trading, London attracted people from all over Britain and Europe. It is important to remember that, likely many British towns, London had a Roman background. This could be the reason that makes London, St Gregory and St Owen share some similarities throughout the statistical analysis. As discussed in chapter 2, the city had different communities of foreigners that lived and worked there. Many Italian merchants from Lucca lived in London, and they were well known for silk's trade (Lambert, 2018). There were also different communities from outside Europe, such as Muslims from North Africa and the Middle East, and Jewish groups (Ormrod, Lambert and Mackman, 2018).

Resident immigrants formed at least 6% of the population in London (Bolton, 1998). According to a study carried out by Lutkin (2016), between 1336 and 1584, 17376 foreign residents can be positively identified in the city, of which the majority were men. In London's suburbs, other 6725 foreigners were reported living in Southwark and Middlesex. The largest identified group was "Teutonic", followed by Italians, French, Greek, Irish, Icelanders, Portuguese, and Danish. The first group brought to England highly specialised artisans, such as weavers, cobblers, cordwainers, cappers, hat makers, goldsmiths, tailors, and beer brewers. Italian merchants, factors and clerks were using the city as a trading outpost. French immigrants were instead mainly servants. Most of the foreigners might have used London as the first point of entry and then moved to other areas of the country to seek employment (Lutkin, 2016). It is also reported that immigrants who reached Britain in the 15th and 16th Centuries, founded several "alien fraternities". Few examples of these ordinances can be found in the Fraternity of the Holy Trinity for German Blackfriars, the Fraternity of St Barbara for Brabanters and Lorrainers, and St Cornelius in Westminster for Dutch immigrants (Colson, 2010). Based on the record of the alien subsidies and information of the time, the foreign community did not remain a closed group. Though numerus immigrants relocated with their nuclear family, evidence suggests that many married into the local community (Lutkin, 2016).

The sample that most differs from the other British groups is the one from St Leonard, Hythe. The results for the Kentish sample's statistical analysis demonstrate that there is a clear separation from the main British cluster. The comparison among the pooled samples confirms that there is a more significant difference between the males than the females, even if both groups show a considerable variation. This result is consistent with Stoessinger and Morant (1932), who also stress on the fact that the series from Hythe is widely removed from the other series analysed in their early study. The sample shows the highest cranial index, together with the cranial height/length ratio and the orbital index. The series reports the shortest cranial length and the narrowest orbits, which is also observed by the authors. Tattersal (1968) found that the sample differs from the other British samples at the 95% level of probability for the same indices and measurements.

Several authors (Parsons, 1908; Stoessinger and Morant, 1932; Wrathmell, 2012) agree that this variability reflects people's movement from Continental Europe. The singularity of this group could not be linked to a battle, as the female sample is also reiterating the difference and there are no evident signs of trauma on the individuals. The authors believe that this sample may be considered alien in the sense that it cannot represent the population of the country at any time. As they find a similarity with the Spitafields collection, which resembles Italian crania, they suppose that the Hythe sample could represent direct descendants of the Roman marine and auxiliaries who stationed in the area in previous times (Stoessinger and Morant, 1932; Wrathmell, 2012). Additional information that is given by the authors is that in the town there were many Frenchmen, who reached 58% of people with known nationality among the foreigners (Ormrod, Lambert and Mackman, 2018) and people with a Flemish or Walloon origin. The influx could be a result of the town's importance as one of the Cinque Ports. The major towns, especially on the southern coast, were indeed natural magnets for immigrants to England (Ormrod, Lambert and Mackman, 2018). In the 14th century, King Edward III encouraged skilled workers to move to the East Anglia's and Kent's historic centres of woollen cloth production. The latter, together with Sussex, Hampshire, Surrey and Middlesex report the highest concentration of immigrants in the country. The Cinque Ports and London covered 41.2% of the national figure for taxpayers (Edwards, 2002; Ormrod, Lambert and Mackman, 2018). The arrival of foreigners in Hythe would have therefore contributed to the variation in the skeletal morphology that can be detected by craniometric analysis.

Even though St Gregory and Hythe are located in the same region, they do not resemble each other as expected. Canterbury is not a port and, even if there was an influx of foreigners in the town, it happened in later times (16th and 17th centuries) (Edwards, 2002). As stated in section 2.2.12, Canterbury has a Roman background, just like Hythe. If the hypothesis proposed by Stoessinger and Morant (1932) was correct, the two samples would cluster together. It is true that, according to the discriminant function analysis, the highest misclassification rate for Hythe is found in St Gregory's sample. Yet, the correctly classified crania show high percentages around 70% of the cases. The results, therefore, indicate that probably the Roman background did not influence the conformation of the two samples.

Another important aspect of the pooled analysis is the difference between males and females. The scatterplots show that there are differences among British and Hythe's females, but it becomes stronger among male groups. The dissimilarity could thus be explained with a significant influx of men from Continental Europe. It could reflect that the town was one of the major ports in medieval times and sailors were mainly men. The same can be said for the arrival of skilled artisans mentioned above. The movement of the workforce would have been mainly made up by males even if a movement of women could have happened as part of the family. As reported by Kowaleski (2007), during the Middle Ages, labour shortages raised demand for sailors, and foreign men were recruited for ship crews. English kings employed foreign ships to transport troops or supplies for the Crown. The crews comprised Flemish, Dutch, Irish, Prussians, Portuguese, Spanish and Italians. Some of these people stayed in the ports for few days or weeks and often contributed to the local economy. However, other sailors chose to remain in Britain, especially in the ports (as confirmed by the alien subsidies).

Chester was also considered as one of the chief ports for the Irish trade and was one of the main ports of entry for Irish immigrants. As discussed in section 2.2.2, Chester witnessed the presence of Roman and Viking communities, and it is noticeable in the architectural component of the town. Yet, the sample does not resemble the one from Scarborough that also had a Viking background. Neither has it resembled the samples from London, Hythe or Gloucester. The result might indicate that the Roman background cannot be detected in any of these comparisons. Another hypothesis, which is the most likely, could be linked to the number of individuals in the sample. Linenhall is represented by ten individuals, which is a low number if compared to the other groups. The small quantity could, therefore, lead to misclassification or misinterpretation of the results.

Regarding the remaining samples, they all tend to cluster in a group that comprises Poulton, Linenhall, St Owen, St Gregory and Ballumbie. Poulton and Ballumbie represent rural towns' individuals, which probably had similar lifestyles. Gloucester and Canterbury are instead more open to the movement of people. As previously described, probably Canterbury experienced a later influx of peregrines, and it is likely that the sample is part of a cemetery that was used in earlier years. Gloucester, even being a Roman colony, did not experience the Viking occupation, similar to St Gregory. In fact, throughout the analysis, they never cluster with samples from sites with a Viking background. Gloucester was also known for its importance as an administrative and trading centre (see section 2.2.3), but probably its importance was obfuscated by the nearby port of Bristol. According to Kowaleski (2007), Bristol witnessed abundant immigration during the Middle Ages, while Gloucester attracted more people from the surrounding countryside.

Overall, it could be supposed that the samples from cities that witnessed waves of immigration immediately before and during the Middle Ages, tend to differ most from the samples considered more geographically isolated. Therefore, the variation in craniometric measurements proves the possible impact that immigration had on population history and human variability.

5.4 Comparison with W.W. Howells data set

5.4.1 British vs Howells' European samples

The clusters resulting from the comparison among British and European samples reflect geographical distance. Most of the British groups resemble each other, apart from the outliers (Guisborough, Castle Hill, London and Hythe). As noted in the previous section, Guisborough's removed position in the scatterplots can be a consequence of the smaller sample size which can lead to a deviation of the results. The high discrimination is also evident in the comparison among the British samples, where Guisborough persistently acts as an outlier. As discussed in section 5.3, there is no proof of immigration from other parts of Europe to this area. The only reason for the divergence of the site can be therefore explained with a smaller sample size in comparison with the other ones analysed.

A significant resemblance between the groups with a Viking background and the Norse sample would be expected. Again, the sample from Linenhall is smaller than the others included in this thesis, and this could have an impact on the final results. In the case of Scarborough's sample, the misclassification of the individuals in the Norse group is very low. As described in section 5.3, the Yorkshire port was one of the first Icelandic colonies. This could be a reason why there are no similarities between the two groups. Howells' dataset does not include other Viking groups, and it would be useful to compare the craniometrics from this sample to the data provided from a coeval sample from Iceland. It is proved that the presence of Scandinavian people has been a constant in British history, especially in many parts of the eastern coast (Ormrod, Lambert and Mackman, 2018). On the other hand, Scandinavians are scarce in the denization records. Icelanders are often listed with names that resemble the Scandinavian ones (e.g. Johnson, Deryckson), and therefore they are easily mistaken with other nationalities (Ormrod, Lambert and Mackman, 2018).

British individuals' overall misclassification in the European samples is poor, and it could be a consequence of the samples' origin. The other two samples come from central Europe (Hungary and Austria). According to Ormrod, Lambert and Mackman (2018), the majority of the immigrants in medieval Britain came from France, Low Countries, Germany, Italy and Greece. There is no evidence of migrants coming from the eastern area of Europe, and this could be an explanation of the difference in craniometric measurements. The minor misclassification reported by St Leonard in the Berg sample is linked to the neurocranial measurements. The Berg sample reports indeed a brachycranic skull, a characteristic that distinguishes this group from the other Europeans (Howells, 1973; Carson, 2006). The same can be said for Hythe that acts as an outlier for the entire statistical analysis and reports a peculiar round and short skull. The resemblance does not imply that the town housed Austrian immigrants. Further analysis should be carried out for a comparison between Hythe and medieval samples from territories closer to Britain (e.g. Low Countries and France).

Another sample that has a high misclassification in the European group, especially for the females, is London. The capital was the city with a significant flow of foreign people (see also section 5.3). According to historical records (Ormrod, Lambert and Mackman, 2018), this influx, however, did not involve Scandinavian or eastern Europeans in particular. The majority of the immigrants joining the city were mostly from Italy, France and Low Countries. The trading links with Bordeaux seemed to attract many visitors from Gascony. Another significant community in the capital was the Dutch, also called "Teutonics", in the 1483 tax returns. At the beginning of the 15th century, 309 oath takers were based in London, while 204 lived in Surrey and 110 in Middlesex. Yet, the most significant group of immigrants in London was formed by the Italians. The trade with Southern Europe was well established, for both commercial and religious reasons. Italians belonged to richer social classes. Between 1440 and 1483, 1150 Italians were taxed in London and they were from the major trading cities such as Genova, Venice, Florence, Lucca, Milano and Ferrara (Ormrod, Lambert and Mackman, 2018). All these groups are not part of Howells' data set and the comparison to prove the presence of these people in the city was not possible. On the other hand, this could be an explanation of the difference between London, other British samples and European ones.

Studies involving European craniometric variation in the Middle Ages are still scarce, as the majority point towards the analysis of variation among continents. Crognier (1981) analysed the differences between anthropometric measurements in European and Mediterranean modern samples, also taking into consideration few craniometric measurements (head maximum length and breadth, and cephalic index). His results were compared with climatic dissimilarities in the different areas to evaluate whether the measurements changed based on different environments. The hypothesis proposed by the author was confirmed, with 17% of the total variation between European populations explained by climatic adaptation. A similar study was published by Sokal and Uytterschaut (1987) and Derish and Sokal (1988). The authors found that even though Europe is represented by a continuum of populations (none of the groups has been isolated from each other), genetic and morphological differences exist among regions, and these are linked to geography and language. Bakken et al. (2011) found that a significant skull and brain variation along NW-SE cline resembles genetic and archaeological evidence. The suggestion of a craniometric and genetic cline could be explained with a movement of prehistoric populations who contributed to the variation in Europe. A further theory proposed by the authors is that local environmental factors and selection produced a clinal variation or affected the variation after a gene flow occurred.

5.4.2 British vs Howells' samples

Even though there are discrepancies in the measurements driving the differences in the male and female samples, the clusters formed by the different statistical analyses reiterate a separation based on geographical distribution. Both in non-pooled and pooled samples' analysis, British populations cluster with the Europeans. On the other hand, Far Eastern groups (Hainan Island, Shang Dynasty and Guam) form another cluster, while African samples are far removed from the others, close to the Australian one. The Yauyos is somewhat always located in between European and Far Eastern samples. Easter Island and Buriats instead, act as outliers for the entire

statistical analysis. The results are consistent with the classification proposed by Howells (1973; 1989). In his statistical analysis, the European groups tend to tightly cluster together, with the native American populations showing the lowest distance from them. African samples do not result in a tight cluster as the European samples, but they are still reasonably close to each other. The Buriats reiterate the results of this study, showing the greatest distance from the other populations (Howells, 1973; 1989). According to Howells (1973) and Relethford (2010), Europeans and Americans are similar, so that there is no distinction in their analysis. In this case, with the addition of the British samples, there is a clear distinction between the UK groups and other Europeans. However, in a broader view of the samples analysed, they are still closer to other Europeans than to other groups. This because European populations share a common ancestry if compared to the other World populations, and therefore they are more likely to resemble each other (Roseman, 2004).

Skull breadth is of primary importance for the distinction between populations, followed by facial and nasal heights (Howells, 1973). The resemblance of Yauyos and European samples can be explained by their maximum cranial breadth and facial measurements. Both groups show medium values for both dimensions so that the statistical analysis associates them. They, however, differ from each other on the third principal component, which is linked to nasal breadth, even though the correlation is not strong (-.556) (see also Howells, 1973). Native Americans are also characterised by a broad cranial base and lower face, together with short and high vaults (Howells, 1989). Maximum cranial breadth is also fundamental for the differentiation of the Buriats, especially from the Africans. The Siberian sample reports a great value for this measurement, together with facial height. On the other side, Zulu and Bushmen are characterised by a long skull and short face.

The Easter Island sample shows a constant separation from the other groups. Both for non-pooled, male and female samples, this group results as the most isolated. Even though Howells (1989) analysed more than one Polynesian sample, the separation is consistent with his analysis. The difference underlined both by the DFA and PCA can be linked to the isolation-bydistance model. The theory predicts that genetic similarity (which is reflected by craniometrics) between populations will decrease as the geographic distance increases (Cavalli-Sforza *et al.*, 1994; Relethford, 2004). Geographic isolation also limits migration, so that the genetic similarity between populations decreases (Morton, 1973; Relethford, 2004). When a population sample is removed far away from a centroid, could be because the exchange of migrants with other populations is low or it consisted in a small group of people and therefore the drift was faster (Relethford and Harpending, 1994). A similarity that is not expected is the one between the African and Australian samples. As observed by Howells (1989) and Guglielmino-Matessi, Gluckman and Cavalli-Sforza (1979), the Australian group is not significantly removed by the Africans. In Howells' analysis, these two samples cluster together on the first function, which is also correlated with temperature variables. Both African and Australian groups show the lowest means for the maximum cranial breadth and upper face height, which differently from Buriats, is correlated with warmer environments.

There is a clear separation into the geographic regions proposed by Howells, and the clusters prove that craniometric variation is geographically structured. Human biological variation is reflected by traits that are affected by natural selection (e.g. skin colour) and neutrally distributed traits (e.g. craniometrics) (Relethford, 2009). The theories behind the reasons that brought to a morphological differentiation are numerous. The literature that proposes various hypotheses for the phenotypical difference between populations is extensive, and the main hypotheses are divided between adaptation and genetic drift. The theory that the morphology of the splanchnocranium is linked to environmental factors, while temporal bone and neurocranium are more correlated with genetic factors, has been supported by several authors (Guglielmino-Matessi, Gluckman and Cavalli-Sforza, 1979; Beals *et al.*, 1984; Jantz and Meadows Jantz, 2000; Roseman, 2004; Roseman and Weaver, 2004; Carson, 2006; Harvati and Weaver, 2006).

Facial form, especially the shape of the nose, has been linked to climatic adaptation through a combination of evolutionary responses to the environment and genetic adaptation (Roseman, 2004; Roseman and Weaver, 2004; Harvati and Weaver, 2006). Differences between samples are strongly associated to mean temperatures during the year's coldest months (Howells, 1989; Roseman, 2004). When Howells' groups are analysed, the Buriat sample is consistently far removed from the others. They indeed report the greatest nasal height and the highest neurocranial breadth. The nasal shape is linked to the thermoregulatory breathing hypotheses that are used to explain the among-region differences in nasal morphology. Tall and narrow noses are indicative of a colder environment, while short and broad noses are linked to warmer environments (Roseman, 2004). A further hypothesis links the maximum neurocranial breadth with environmental factors. Natural selection for a colder environment is supposed to lead to brachycephalization (Guglielmino-Matessi, Gluckman and Cavalli-Sforza, 1979; Beals et al., 1984; Roseman, 2004). The bioclimatic model proposed by Beals et al. (1984) predicts that the cranial capacity also increases with distance from the equator and it is correlated to the decrease in solar radiation. The hypothesis is supported by the position of Buriats in the scatterplot resulting from the DFA. Regarding the British samples, these also report a broader

skull if compared to the groups associated with warm environments. These results are consistent with the bioclimatic hypothesis.

On the other hand, craniometric and DNA variation produce a similar pattern of population relationship. That is, the geographic configuration is reflected by craniometric variation in accordance with the underlying pattern of genetic relationships between populations (Roseman, 2004; Relethford, 2009). According to Relethford (1994), there is a low level of among-region variation in modern humans. It is however unlikely that selection produced the same amount of variation in different traits, such as craniometric and mitochondrial DNA, which is considered neutral. The comparison between molecular distances and craniometric data showed that the morphology of the entire cranium is significantly correlated with the molecular matrix (Harvati and Weaver, 2006; Smith, 2009). The separation by geographical areas is consistent with the results of this thesis. In fact, according to Smith (2009) populations from the same continent tend to share small morphological distance values, due to a close genetic relation.

Even though it has been proven that different factors lead to variability between cranial measurements among populations, this study found that craniometrics are an indicator of population history. A factor that can complicate the understanding of the causes of human variation can be that climatic variables may pattern geographically, making the association between climate, genetic relationships and cranial measurements difficult to distinguish (Smith, 2009). It is clear though that the entire cranial shape is a good indicator of human population history (González-José *et al.*, 2004; Roseman, 2004; Harvati and Weaver, 2006; von Cramon-Taubadel, 2014) and that the analysis of craniometric measurements reflects the geographical distribution of human population samples. It is possible that the interaction between cranial morphology and climate could be a result of a correlation of these with neutral patterns of interregional difference resulting from population history and structure (Relethford, 1994; Roseman, 2004).

6. Conclusions

6.1 Summary and Conclusions

The research presented for this thesis yielded to the conclusion that there are differences in craniometric measurements among British medieval samples. The dissimilarities for the non-pooled and male samples are driven mainly by the facial measurements on the first principal component, while on the second principal component, the discrimination is based on neurocranial measurements. The female sample is instead mainly discriminated by neurocranial measurements. These differences led to the identification of a few outlier samples: Scarborough, London and Hythe. The reason for the craniometric differences could be linked to a migration of people from outside Britain. The findings of this thesis reflect historical records of immigrants arriving and living in these cities. Scarborough is defined as one of Britain's main eastern ports in the Middle Ages, with foreigners mainly arriving from Iceland, Flanders, northern France, Germany, Denmark and Norway (Kowaleski, 2003; 2007). Another hypothesis could be linked to Scarborough's Nordic origins, which reflect the name-place *Skarðaborg* (Whaley, 2010).

Another outlier is represented by London's sample. The city was the national centre for government and trading, which attracted a conspicuous number of foreign people. Mainly, these people were identified as "Teutonic", followed by Italians, French, Greek, Irish, Icelanders, Portuguese, and Danish (Lutkin, 2016). The number of immigrants living and working in the city is confirmed by the records of the alien subsidies and information of the time.

Hythe, which was one of the Cinque Ports, results as far removed from the other samples in the statistical analysis. The hypothesis of the presence of immigrant communities is supported by several authors (Stoessinger and Morant, 1932; Tattersal, 1968; Ormrod, Lambert and Mackman, 2018). In fact, in the town, there were many French foreigners and people with a Flemish or Walloon origin.

The further comparison between British and Howells' European samples leads to separation by geographical distance. The European groups included in the analysis do not resemble the outliers (Scarborough, London and Hythe) or any other British sample. The reason for this separation could be found in the origin of the individuals analysed. The Nordic origin suggested for Scarborough is not the same for Howells' Norse group. In fact, the Nordic people that were present in the Yorkshire port were mainly Icelandic. The other Howells' samples originate from Central Europe (Hungary and Austria). However, the majority of the immigrants in medieval Britain came from France, Low Countries, Germany, Italy and Greece (Ormrod, Lambert and Mackman, 2018). There is no evidence of migrants coming from the eastern area of Europe. Thus, this could be an explanation of the difference in craniometric measurements. The results support the theories proposed by other authors (Crognier, 1981; Sokal and Uytterschaut, 1987; Derish and Sokal, 1988; Bakken *et al.*, 2011) that suggest that craniometric variation in Europe reflects an adaptation to climatic dissimilarities in different regions.

Finally, the analysis of the British and Howells' main population samples reiterates a separation based on geographical distribution. The British samples this time cluster with the European groups, as these populations share a common ancestry, and therefore they are more likely to resemble each other (Roseman, 2004). The Far Eastern groups (Hainan Island, Shang Dynasty and Guam) instead cluster together, just like the Africans (Zulu and Bushmen). Australians are close but still removed from the Africans, while the Yauyos are located in between the Far Eastern and the European samples. The only outliers in this analysis are represented by the Buriats and Easter Island. The results support the geographical structure of craniometric variation proposed by Howells (1989). In fact, the distribution of the samples in the graphs reflects a climatic adaptation through a combination of evolutionary responses to the environment and genetic adaptation (Roseman, 2004; Roseman and Weaver, 2004; Harvati and Weaver, 2006). An example is given by the Buriats, which report the greatest nasal height and the highest neurocranial breadth that can be associated to the mean temperatures during the year's coldest months (Howells, 1989; Roseman, 2004). Cranial capacity also increases with distance from the equator, and it is associated with the decrease in solar radiation (Beals et al., 1984). On the other hand, craniometric variability also reflects DNA distribution patterns (Roseman, 2004; Relethford, 2009). To conclude, it is likely that the interaction between cranial morphology and climate could be the effect of a correlation of these with neutral patterns of interregional difference resulting from population history and structure (Relethford, 1994; Relethford and Harpending, 1994; Roseman, 2004).

6.2 Research Hypotheses

The most systematic way to answer the hypotheses proposed in section 3.1 of this thesis is to identify and explain them below. The results of this thesis are briefly summarised in relation to the hypothesis to which they relate.

Null Hypothesis 1: There are no statistically significant differences in the craniometric measurements among the British medieval samples.

The first null hypothesis is rejected, as the statistical analyses detected a significant difference in craniometric measurements among British medieval samples. Based on the

rejection of the first null hypothesis, alternative hypotheses are then proposed, and these are the following.

• Alternative Hypothesis 1: There are differences in the craniometric measurements among the British medieval samples.

The first alternative hypothesis is supported by the statistical analyses. British medieval samples do not cluster based on geographical proximity. However, discrimination could be a consequence of different craniometric measurements resulting from a movement of people from outside Britain. The samples recovered from cemeteries located in towns with a historical record of resident immigrants are identified as outliers by the statistical analysis. These samples can be identified as Hythe, Scarborough and London. As differences are identified by the statistical analysis, the following alternative hypotheses were proposed:

- Alternative Hypothesis 1a: If there are differences among British medieval samples, the differences are determined by the neurocranial measurements.
- Alternative Hypothesis 1b: If there are differences among British medieval samples, the differences are determined by the facial measurements.
- Alternative Hypothesis 1c: If there are differences among British medieval samples, the differences are determined by both the neurocranial and facial measurements.

Alternative hypotheses 1a, 1b and 1c, were proposed to understand what measurements drive the difference among British samples. On the first principal component, the non-pooled samples differ mainly on the facial measurements (e.g. nasal height, height of the upper face and nasion-bregma chord). On the second principal component, significant loadings are associated with the neurocranium (e.g. bregma-lambda chord and parietal longitudinal arch). The male samples reiterate these results. There is however a discrepancy in the female sample analysis that shows major discrimination based on the neurocranial measurements (e.g. bregma-lambda chord, parietal longitudinal arch). The second principal component is associated with orbital height instead. Although the presence of this discrepancy, the discriminant function analysis and hierarchical cluster analysis show the same subdivision of the samples.

The comparison was also carried out among British samples and Howells' dataset. A second null hypothesis was proposed and is the following:

Null Hypothesis 2: There are no differences between the British medieval samples and the W.W. Howells dataset groups. The second null hypothesis is rejected, as the statistical analyses detected a significant difference both among British and Howells' European groups and British and Howells' main human population samples. Following the rejection of the second null hypothesis, alternative hypotheses are proposed below:

• Alternative Hypothesis 2: There are differences in the craniometric measurements among British medieval samples and the W. W. Howells dataset groups. These samples will cluster based on their geographical proximity.

The second alternative hypothesis is supported both for the comparison with the European and Howells' main human samples. There is a clear separation among British and European samples based on geographical proximity. The majority of British samples resemble each other, apart from Guisborough, Castle Hill, London and Hythe. The reasons could be detected in a major presence in these towns of foreign people. However, there is no evidence of migration from the areas where Howells' samples belong to (Norway, Austria and Hungary). For this reason, it is possible that the groups do not resemble each other.

In regard to the discrimination among British and Howells' main human groups, the clustering is indeed based on geographical distance. In this case, British samples tend to cluster with Europeans, mainly because, compared to other populations, they share a common ancestry. Peruvian Yauyos are in between the European and the Far Eastern samples, which form a separate cluster. Finally, the Africans are removed from the others, but close to each other. Australians, Buriats and Easter Island are isolated on the graphs. The reasons for the resemblance of geographical distribution are linked both to climatic adaptation and genetic drift. Samples associated with an adaptation to cold climates show brachycephaly (Buriats), while the ones associated with warmer climates report dolichocephaly (Zulu, Bushmen and Australians). Similarly, the nasal shape is associated with climate. The results are consistent with the pattern showed by DNA variability. Because differences in cranial measurements among British and Howells' samples were detected, the following hypotheses were then proposed:

- Alternative Hypothesis 2a: If there are differences among British medieval samples and the W. W. Howells dataset groups, the differences are determined by the neurocranial measurements.
- Alternative Hypothesis 2b: If there are differences among British medieval samples and the W. W. Howells dataset groups, the differences are determined by the facial measurements.

• Alternative Hypothesis 2c: If there are differences among British medieval samples and the W. W. Howells dataset groups, the differences are determined by both the neurocranial and facial measurements.

Alternative hypotheses 2a, 2b and 2c, were proposed to understand which measurements drive the difference among British samples and Howells' main human groups. For both non-pooled and male samples the discrimination on the first principal component is driven by cranial base length, nasion-bregma chord and nasal height, while on the second axis it is mainly correlated to the maximum cranial length. Females instead are mainly divided on the base of the lambda-opisthion chord and nasion-bregma chord, while the second component is correlated with maximum neurocranial and nasal breadth. Even though there is a discrepancy between sexes, the geographical subdivision is consistent among the samples. The discrimination seems to reflect the adaptation to different environments and reiterates the pattern followed by mean annual temperatures.

6.3 Research Limitations

Even though the analysis was carried out on a remarkable number of individuals (946 skulls from 16 British medieval samples), this study was not exempt from limitations. The primary restriction encountered during the data collection is the poor preservation of the skeletal remains. As already discussed in section 5.2, human remains are usually recovered fragmented, and the skull is the anatomical part that is most affected by taphonomical agents. Because of the fragmentary status of the cranium, the data collection was limited. As a solution for the fragmentary nature of the remains, a reconstruction technique that is not invasive and is entirely reversible was proposed. The procedure was only adopted for the restoration of the samples stored at Liverpool John Moores University, while further complete skulls were part of other more extensive samples which also comprise fragmented material. For this reason, the number of individuals analysed could have been higher if the reconstructive method was adopted for all the skeletal remains in the UK.

A further limitation faced for data collection is linked to the distribution of the samples across Britain. The majority of the skeletal remains available for this thesis are located in England. The reduced availability is due to the different preservation of the skeletal material across geographical areas, and the number of archaeological investigations carried out. The presence of acidic soils in Wales is a reason that led to the poor preservation of the bones in Welsh cemeteries (Hemer *et al.*, 2013). Another mechanism affecting the preservation of human remains is linked to a cemetery's continuity of use or its subsequent obliteration by the following building on the land (author's personal observation). The continuous use of a cemetery can bring to grave's disturbance and a loss of integrity and information about the individual. The same can be said about the successive building over a land that was occupied by a cemetery. An example could be represented by Linenhall, which was uncovered during a building process. The lack of samples dating to the Middle Ages is also encountered in Scotland. The deficiency could be linked to the scarcity of excavation projects carried out in comparison to the southern regions.

A further issue is represented by the number of individuals in each collection and their completeness. The problem regarding missing data was already discussed by Howells (1973), who proposed different methods. For this thesis, the input of means for each sample was adopted, but yet this does not give the missing real value. Another problem is the difference in sample sizes. A rule of thumb in statistical analyses is that the number of variables should not be higher than the number of individuals in the smallest sample (Tabachnick, Fidell and Ullman, 2007). Additional assumption is that the sample sizes analysed should comprise the same amount of individuals (Kovarovich *et al.*, 2011). However, these assumptions are often violated in archaeology for the various reasons described above. Human remains' reconstruction would be therefore crucial for the samples' correct analysis.

Accessibility to the skeletal collections could also constitute a limit for data collection. Most of the human remains are stored in Universities and museums. However, sometimes access is restricted by the institutions' policies or collections' unavailability. Several research projects might be carried out on a sample at the same time, so further access from other researchers is not possible due to the stress that could be applied to the remains following handling. The time-limited nature of doctoral research restricted the possibility of delaying data collection.

The lack of craniometric research carried out in Britain regarding medieval samples also affected the comparative data available for this thesis. As seen in previous chapters, most of the data available for comparison was published at the beginning of the 20th century. The accuracy of the methods used is therefore not always verifiable. However, as stated in chapter 3, craniometry is a discipline that has been used for centuries by anthropologists, and it is supposed that data collection methods have not changed over times. Another difficulty is represented by the uncertainty in the exact dating of some samples. For skeletal remains uncovered at the end of the 19th century or beginning of the 20th century, accurate stratigraphic excavation cannot be proved. Hythe's sample can be named as an example. The dating is considered as previous to the 17th century, but accurate dating is unknown. All these factors were considered before and during the data collection and acquisition, and even though they can constitute a limitation, they do not affect the quality of this research.

6.4 Future Suggestions

The results given by this thesis arise different questions and future suggestions that need further investigation. First, it would be beneficial to carry out skeletal reconstruction on other anthropological collections. As already stated in section 5.2, the reconstruction of skeletal assemblages would allow more extensive research to be performed. It would especially be a valuable tool to increase craniometric and ancestry examination that would lead to a better understanding of Britain's population history.

Secondly, as comparative methods, isotopic and DNA analyses are suggested. Even though the effectiveness of craniometric analysis was proven by this thesis, it is important to understand if it is validated by other scientific analyses. It is fundamental to understand whether British medieval craniometrics detect a difference in measurements from the first or later generation's migrants. Further craniometric analysis would be useful to understand the variation in the whole of British territory, especially for Scottish and Welsh samples. A more indepth analysis of these regions would also help to comprehend the relationships with other British areas and non-British people. Dental traits' analysis would also represent a valid comparison to cranial measurements.

People movement can also be detected by material culture, historical documents and place names. For this reason, an accurate comparison between these fields and craniometric analysis is suggested. As identified in section 5.3, there is a correspondence between historical records and evidence with migration. Further comparative research could lead to the knowledge of foreign people who were living in Britain in the Middle Ages.

Finally, an additional comparison with skeletal samples from European regions where most migrants came from, would be beneficial. The analysis would confirm whether there is a craniometric correspondence between the outlier samples in this thesis and other European populations (e.g. Low Countries, France, Italy and Iceland). All these suggestions would help to value the significance of craniometric analysis in detecting population history and contribute to a change of the outdated definition of craniometrics.

References

AlQahtani, S. J., Hector, M. P., and Liversidge, H. M. (2010). Brief communication: the London atlas of human tooth development and eruption. *American Journal of Physical Anthropology*, *142*(3), 481-490.

Anderson, S. (1994) the human remains from Gisborough priory, Cleveland 1985-86. Ancient Monuments Laboratory Report 47/94

Anderson, T., and Andrews, J. (2001). The human remains. In: Hicks, M., Hicks, A. (Eds.), *St Gregory's Priory, Northgate, Canterbury: Excavations 1988-1991* (Vol. 2). Canterbury Archaeological Trust Limited, p. 338-370

Anthony, D.W., (1990). Migration in archeology: the baby and the bathwater. *American Anthropologist*, *92*(4), pp.895-914.

Arnold, C.J. (2005). An archaeology of the early Anglo-Saxon kingdoms. Routledge.

Atkin, M., (1990). Excavations in Gloucester 1989: an interim report. *Glevensis Gloucester District Archaeol Res Group Rev, 24*, pp.2-13.

Atkin, M. (1992). Gloucester archaeology, 1900-1990: an historical review. *Transactions of the Bristol and Gloucestershire Archaeological Society, 110,* pp. 13-36

Atkin, M., and Garrod, A. P. (1990). Archaeology in Gloucester, 1989. *Transactions of the Bristol and Gloucestershire Archaeological Society*, 108, pp. 185-192

Atkinson, G., and Nevill, A. M. (1998). Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. *Sports medicine*, *26*(4), 217-238.

Bakken, Trygve E., Anders M. Dale, Nicholas J. Schork, and Alzheimer's Disease Neuroimaging Initiative (2011). "A geographic cline of skull and brain morphology among individuals of European Ancestry." *Human heredity* 72, no.1: 35-44.

Bass, W. (1995). Human osteology: a laboratory and field method. Springfield, IL: Charles C. Thomas.

Beals, K. L., Smith, C. L., Dodd, S. M., Angel, J. L., Armstrong, E., Blumenberg, B., Girgis, F. G., Turkel, S., Gibson, K. R., Henneberg, M., Menk, R., Morimoto, I., Sokal, R. R. and Trinkaus, E. (1984). Brain size, cranial morphology, climate, and time machines [and comments and reply]. *Current Anthropology*, *25*(3), 301-330.

Beddoe, J. (1885). The races of Britain: A contribution to the anthropology of western Europe. JW Arrowsmith.

Berry, R.J. and Firth, H.N. eds., (1986). The people of Orkney (Vol. 4). Orkney Press.

Besant, W. (1904). London in the Time of the Tudors (Vol. 4). A. & C. Black.

Boas, F. (1912) Changes in the bodily form of descendants of immigrants. American Anthropologist. 14 (3) Pp. 530-562

Bolton, J. L. (Ed.). (1998). *The Alien Communities of London in the Fifteenth Century: The Subsidy Rolls of 1440 & 1483-84*. Paul Watkins.

Borrini, M. (2007) Archeologia forense. Metodo e tecniche per il recupero di resti umani: compendio per l'investigazione scientifica. Bologna. Lo Scarabeo

Borrini, M. (2013) The chaotic numerology of anthropometry: a proposal for a univocal numeric codification of bone measurements. In: *Proceedings of the American Academy of Forensic Sciences -65th Annual Scientific Meeting. Washington DC, 18/23 February 2012*, vol. 19

Borrini, M., Mariani, P. P., Murgia, C., Rodriguez, C., and Tumbarello, M. V. (2012). Contextual taphonomy: superficial bone alterations as contextual indicators. *Journal of Biological Research-Bollettino della Società Italiana di Biologia Sperimentale*, *85*(1).

Bowron, E. L. (2003). A new approach to the storage of human skeletal remains. *The Conservator*, *27*(1), 95-106.

Bowsher, D., Dyson, T., Holder, N. and Howell, I. (2007). *The London Guildhall: an archaeological history of a neighbourhood from early medieval to modern times*. Museum of London Archaeology Service.

Brayley, E. W., Britton, J., Brayley, E. W., and Mantell, G. A. (1850). A topographical history of Surrey (Vol. 3). G. Willis.

Brettell, R., Evans, J., Marzinzik, S., Lamb, A. and Montgomery, J., (2012). 'Impious Easterners': Can Oxygen and Strontium Isotopes Serve as Indicators of Provenance in Early Medieval European Cemetery Populations?. *European Journal of Archaeology*, *15*(1), pp.117-145. British Association of Biological Anthropology and Osteoarchaeology (2018). *Code of Practice of the British Association of Biological Anthropology and Osteoarchaeology* [online]. Available at: http://www.babao.org.uk/assets/Uploads-to-Web/code-of-practice.pdf. (Accessed 27th April 2018)

Brothwell, D. R. (1960). The Bronze Age people of Yorkshire; a general survey. Advancement of Science, 16, 311-322.

Brothwell, D. R. (1981). *Digging up bones: the excavation, treatment, and study of human skeletal remains*. Cornell University Press.

Brothwell, D.R. (2014) The biology of early British populations. In B. O'Donnabhain, M. Lozada (eds): *Archaeological human remains: global perspectives*. Heidelberg, Springer, p 65-84

Brothwell, D. and Krzanowski, W., (1974). Evidence of biological differences between early British populations from Neolithic to Medieval times, as revealed by eleven commonly available cranial vault measurements. *Journal of Archaeological Science*, 1(3), pp.249-260.

Brown, W. Ed. (1889) Guisborough Chartulary I. Surtees Society 86. Andrews & Co., Durham

Brown, T. A., and Brown, K. (2011). *Biomolecular archaeology: an introduction*. John Wiley & Sons.

Bryant, R., and Heighway, C. (2003). Excavations at the St Mary de Lode Church, Gloucester 1978-9. *Transactions of the Bristol and Gloucestershire Archaeological Society*, *121*, 97-178.

Buikstra, J. E., and Ubelaker, D. H. (1994). Standards for data collection from human skeletal remains. *Arkansas Archaeological Survey Research*, *44*, 206.

Burmeister, S. (2000). Archaeology and migration: Approaches to an archaeological proof of migration. *Current Anthropology*, *41*(4), pp.539-567.

Burns, R. and Burns, R. (2008) Chapter 25: Discriminant analysis. *Business Research Methods and Statistics Using SPSS* (pp. 499-608). [online] Available at: http://www.uk.sagepub.com/burns/websitematerial/Chapter 25-Discriminant Analysis.pdf. (Accessed 25th May 2018)

Burrell, C. L., and Carpenter, R. J. (2013). Analysis of human skeletal material from the Poulton research project 1995-2012. *The Poulton Project*.

Burton, J. (1994). *Monastic and religious orders in Britain, 1000-1300*. Cambridge University Press.

Buxton, L. D. (1935). The racial affinities of the Romano-Britons. *The Journal of Roman Studies*, *25*(1), Pp. 35-50.

Buxton, L. D. (1937). The anthropology of medieval Oxford. Oxoniensia, 2, 118-128.

Cachart, R., and Hall, D. (2014) Early Christian Long cists at Pitkerro, Drumsturdy Road, Dundee and Market Knowe, Longforgan. *Tayside and Fife Archaeological Journal*, 19/20, pp. 49-60

Camper, P. (1791). Verhandeling van Petrus Camper, over het natuurlijk verschil der wezenstrekken in menschen van onderscheiden landaart en ouderdom: over het schoon in antyke beelden en gesneedene steenen. Gevolgd door een voorstel van eene nieuwe manier om hoofden van allerleye menschen met zekerheid te tekenen. B. Wild en J. Altheer

Capelli, C., Redhead, N., Abernethy, J.K., Gratrix, F., Wilson, J.F., Moen, T., Hervig, T., Richards, M., Stumpf, M.P., Underhill, P.A. and Bradshaw, P., (2003). AY chromosome census of the British Isles. *Current Biology*, *13*(11), pp.979-984.

Carson, E. A. (2006). Maximum likelihood estimation of human craniometric heritabilities. *American Journal of Physical Anthropology: The Official Publication of the American Association of Physical Anthropologists*, *131*(2), 169-180.

Cavalli-Sforza, L. L., Cavalli-Sforza, L., Menozzi, P., and Piazza, A. (1994). *The history and geography of human genes*. Princeton university press.

Chenery, C., Müldner, G., Evans, J., Eckardt, H. and Lewis, M., (2010). Strontium and stable isotope evidence for diet and mobility in Roman Gloucester, UK. *Journal of Archaeological Science*, *37*(1), pp.150-163.

Colson, J. (2010). Alien communities and alien fraternities in later medieval London. *The London Journal*, *35*(2), 111-143.

Connell, B. (2012) Introduction. In Powers, N. *Human osteology method statement*. London: Museum of London.

Connell, B., Jones, A. G., Redfern, R., and Walker, D. (2012). A bioarchaeological study of medieval burials on the site of St Mary Spital: Excavations at Spitalfields Market, London E1, 1991-2007. Museum of London Archaeology.

Corruccini, R. S., Henderson, A. M. and Kaul, S. S. (1985) Bite-force variation related to occlusal variation in rural and urban Punjabis (North India). *Archs oral Biol. 30. No 1*. Pp. 65-69

Cowan, I. B. (1967). The parishes of medieval Scotland (Vol. 93). Scottish Record Society.

Crawford, B.E., (1995). Scandinavian settlement in northern Britain. London/New York.

Crick, J. and van Houts, E. eds., (2011). *A Social History of England, 900–1200*. Cambridge University Press.

Crognier, E. (1981). The influence of climate on the physical diversity of European and Mediterranean populations. *Journal of Human Evolution*, *10*(8), 611-614.

Cronyn, J. M. (1990) The Elements of Archaeological Conservation. Routledge, London, U.K.

Cunningham, C., Scheuer, L., and Black, S. (2016). *Developmental juvenile osteology*. Academic Press.

Cuvier, G. (1802) Lectures on comparative anatomy. London: Longman & Rees

Daniell, C. (2005). Death and burial in medieval England 1066-1550. Routledge.

Davenport, CAL (2018) Combining forensic anthropological and geological approaches to investigate the preservation of human remains in British archaeological populations and their effects on palaeodemography. Doctoral thesis, Liverpool John Moores University.

Davis, J. B., & Thurnam, J. (1865). Crania Britannica: Delineations and Descriptions of the Skulls of the Aboriginal and Early Inhabitants of the British Islands: with Notices of Their Other Remains (Vol. 1).

Dawes, J.D. and Magilton, J.R., (1980). *The cemetery of St Helen-on-the-walls, Aldwark* (Vol. 12). Humanities Pr.

Derish, P. A., and Sokal, R. R. (1988). A classification of European populations based on gene frequencies and cranial measurements: A map-quadrat approach. *Human biology*, 801-824.

DeWitte, S. N., and Bekvalac, J. (2011). The association between periodontal disease and periosteal lesions in the St. Mary Graces cemetery, London, England AD 1350–1538. American journal of physical anthropology, 146(4), 609-618.

Duckworth, W.L.H. and Pocock, W. I., (1909) On the human remains found on the site of the Augustine Friary, Benet Street, Cambridge. *Cambridge Antiquarian Society Proceedings*, 14 (1). Pp:7-38

Dyson, T., Samuel, M., Steele, A., and Wright, S. M. (2011) The Cluniac priory and abbey of St Saviour Bermondsey, Surrey: excavations 1984-95. Monograph 50. Museum of London Archaeology

Dytham, C. (2011). Choosing and using statistics: a biologist's guide. John Wiley & Sons.

Edward, R. (1616-1696) Angusia Provincia Scotiae sive The Shire of Angus. Shire of Angus. Jassonius Waesberghe, Moses Pitt and Stephanus Swart, 1678, Amsterdam

Edwards, E. (2002). Interpretations of the influence of the immigrant population in Kent in the sixteenth and seventeenth centuries. *Archaeologia Cantiana*, *122*, 275-92.

Emerson, R. W. (2015). Causation and Pearson's correlation coefficient. Journal of Visual Impairment & Blindness, 109(3), 242-244.

Emery, M. M. (2000). *The Poulton Chronicles: Tales from a Medieval Chapel*. Poulton Archaeology Press. Williamsburgh, Virginia.

Emery, M. M. (2010). The Prehistory of Poulton-Pulford In *Pulford and Poulton in Cheshire Through the Ages*. Bury St Edmunds: Arima Publishing; pp. 5-30

Emery, M. M., Gibbins, D. J., and Matthews, K. J. (1996). *The Archaeology of an Ecclesiastical Landscape: Chapel House Farm, Poulton (Cheshire) 1995*. Chester City Council, Department of Development and Leisure Services.

English Heritage (2015) *Scarborough Castle. Overall plan of the castle and town.* [Online]. Available at: https://www.english-heritage.org.uk/siteassets/home/visit/places-tovisit/scarborough-castle/history/scarborough-castle-phased-plan.pdf. [Accessed: 19th April 2018]

Faden, W. and Wyld, J. (1829). A topographical map of the country twenty miles round London planned from a scale of two miles to an inch. London: Published by Jas. Wyld, Geographer to His Majesty and H.R.H. the Duke of York, 5 Charing Cross

Fancourt, H. S., and Stephan, C. N. (2018). Error measurement in craniometrics: The comparative performance of four popular assessment methods using 2000 simulated cranial length datasets (g-op). *Forensic science international*, *285*, 162-171.

Fellows-Jensen, G. (2000). Vikings in the British isles: the place-name evidence. Acta Archaeologica, 71(1), 135-146.

Fereday, J. (1956). Statistics and the study of prehistoric races. *The Incorporated Statistician*, 7(1), 23-40.

Field, J. (1980). Place-Names of Great Britain and Ireland. David & Charles Publishers.

Fisher, R. A. (1936a). "The Coefficient of Racial Likeness" and the Future of Craniometry. *The Journal of the Royal Anthropological Institute of Great Britain and Ireland*, *66*, 57-63.

Fisher, R. A. (1936b). The use of multiple measurements in taxonomic problems. *Annals of eugenics*, 7(2), 179-188.

Gaimster, D. R., Margeson, S., and Barry, T. (1989). Medieval Britain and Ireland in 1988. *Medieval Archaeology*, 33(1), 161-241.

Gilchrist, R., (1999). Landscapes of the Middle Ages. Churches, castles and monasteries in J. Hunter and I. Ralston. *The Archaeology of Britain: an introduction from the Upper Palaeolithic to the Industrial Revolution*, pp.228-246.

Gilchrist, R., and Sloane, B. (2005). *Requiem: the medieval monastic cemetery in Britain*. Museum of London Archaeological Service.

Gillingham, J., and Griffiths, R. A. (2000). Medieval Britain: a very short introduction. OUP Oxford.

González-José, R., Van der Molen, S., González-Pérez, E., and Hernandez, M. (2004). Patterns of phenotypic covariation and correlation in modern humans as viewed from morphological integration. *American Journal of Physical Anthropology*, *123*(1), 69-77.

González-José, R., Ramírez-Rozzi, F., Sardi, M., Martínez-Abadías, N., Hernández, M., and Pucciarelli, H. M. (2005). Functional-cranial approach to the influence of economic strategy on skull morphology. *American Journal of Physical Anthropology*, *128*(4), 757-771.

Goodman, C. N. and Morant, G. M. (1940) The Human Remains of the Iron Age and Other Periods from Maiden Castle, Dorset. *Biometrika*. 31. Pp. 295-312

Goose, D. H. (1981). Changes in human face breadth since the Mediaeval period in Britain. *Archives of oral biology*, *26*(9), 757-758.

Gould, S. J. (1978). Morton's ranking of races by cranial capacity. Unconscious manipulation of data may be a scientific norm. *Science*, *200*(4341), 503-509.

Graham, R. (1926). The Priory of la Charité-Sur-Loire and the Monastery of Bermondsey. *Journal of the British Archaeological Association*, *32*(2), 157-191.

Grainger, I. and Hawkins, D. (1988). Excavations at the Royal Mint site 1986–1988. *The London Archaeologist*, *5*, 429-436.

Grainger, I., Hawkins, D., Cowal, L., and Mikulski, R. (2008). *The Black Death cemetery, East Smithfield, London* (Vol. 43). Museum of London Archaeology Svc.

Grainger, I., and Phillpotts, C. (2011). *The Cistercian abbey of St Mary Graces, East Smithfield, London*. Museum of London Archaeology.

Gravlee, C. C., Bernard, H. R., and Leonard, W. R. (2003). Heredity, environment, and cranial form: A reanalysis of Boas's immigrant data. *American Anthropologist*, *105*(1), 125-138.

Green, J. R. (1884). A short history of the English people. Harper & brothers.

Guglielmino-Matessi, C. R., Gluckman, P., and Cavalli-Sforza, L. L. (1979). Climate and the evolution of skull metrics in man. *American Journal of Physical Anthropology*, *50*(4), 549-564.

Hall, R.A., (2000). Scandinavian Settlement in England. Acta Archaeologica, 71(1), pp.147-157.

Hall, D. (2007). The lost lairds of Ballumbie. Current Archaeology, 207, pp. 46-48.

Hall, D., and Cachart, R. (2005) Ballumbie Church (Murroes parish), long cist emetery; medieval church and graveyard. *Discov Excavation Scotl*, 6, p. 21

Harben, H. A. (1918). A dictionary of London: Being notes topographical and historical relating to the streets and principal buildings in the city of London. H. Jenkins limited.

Härke, H. (1990). "Warrior Graves"? The Background of the Anglo-Saxon Weapon Burial Rite. *Past & present*, (126), pp.22-43.

Harrison, W. (1877). Harrison's Description of England in Shakspere's Youth: Being the Second and Third Books of His Description of Britaine and England (Vol. 1). New Shakespere Society.

Harrison, S. A. and Heslop, D. H. (1999). Archaeological survey at the Augustinian Priory of Gisborough, Cleveland. *Yorkshire Archaeological Journal*, 71, pp. 89-127.

Harvati, K., and Weaver, T. D. (2006). Human cranial anatomy and the differential preservation of population history and climate signatures. *The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology: An Official Publication of the American Association of Anatomists*, 288(12), 1225-1233.

Hasted, E. (1799). The History and Topographical Survey of the County of Kent (Vol. 4). Canterbury

Hasted, E. (1800). The history and topographical survey of the County of Kent (Vol. 11). W. Bristow.

Hawkins, D. (1990). The Black Death and the new London cemeteries of 1348. *Antiquity*, *64*(244), 637.

Hemer, K. A., Evans, J. A., Chenery, C. A., and Lamb, A. L. (2013). Evidence of early medieval trade and migration between Wales and the Mediterranean Sea region. *Journal of Archaeological Science*, *40*(5), 2352-2359.

Herbert, N. M. (ed.) (1988). Victoria County History of Gloucestershire 4. The City of Gloucester.

Heslop, D. H. (1995). Excavation within the Church at the Augustinian Priory of Gisborough, Cleveland 1985-6. *Yorkshire Archaeological Journal*, 67, pp. 51-126.

Hicks, M., and Hicks, A. (2001). St Gregory's Priory, Northgate, Canterbury: Excavations 1988-1991 (Vol. 2). Canterbury Archaeological Trust Limited.

Hill, T., Lewicki, P., and Lewicki, P. (2006). *Statistics: methods and applications: a comprehensive reference for science, industry, and data mining*. StatSoft, Inc.

Hills, C., (1999). Early Historic Britain. In J. Hunter and I. Ralston. *The archaeology of Britain: an introduction from the Upper Palaeolithic to the Industrial Revolution*. Psychology Press.

Hooke, B. G. (1926). A third study of the English skull with special reference to the Farringdon Street crania. *Biometrika*, 18 (1/2). Pp. 1-55.

Hooke, B. G., and Morant, G. M. (1926). The present state of our knowledge of British craniology in late prehistoric and historic times. *Biometrika*, 18 (1/2). Pp. 99-104.

Horton-Smith, R. J. (1897). The cranial characteristics of the South Saxons compared with those of some of the other races of South Britain. *The Journal of the Anthropological Institute of Great Britain and Ireland*, 26, Pp. 82-102.

Howells, W. W. (1937). The iron age population of Great Britain. *American Journal of Physical Anthropology*, *23*(1), Pp. 19-29.

Howells, W. W. (1938). The prehistoric craniology of Britain. Antiquity, 12(47), Pp. 332-339.

Howells, W. W. (1957). The cranial vault: factors of size and shape. *American Journal of Physical Anthropology*, *15*(1), 19-48.

Howells, W. W. (1969). Criteria for selection of osteometric dimensions. *American journal of physical anthropology*, *30*(3), 451-457.

Howells, W.W. (1973). Cranial variation in man. A study by multivariate analysis of patterns of difference. Among recent human populations. *Papers of the Peabody Museum of Archaeology and Ethnology*, (67), pp.1-259.

Howells, W. W. (1989). Skull shapes and the map: craniometric analyses in the dispersion of modern Homo. *Papers of the Peabody Museum of Archaeology and Ethnology*, 79.

Hunter, J., and Ralston, I. (Eds.). (1999). *The archaeology of Britain: an introduction from the Upper Palaeolithic to the Industrial Revolution*. Psychology Press.

Huxley, T. H. (1866). Notes upon the human remains. In Laing, S. (ed.) *Pre-Historic Remains of Caithness*. London: Williams & Norgate

Jantz, R. L., and Meadows Jantz, L. (2000). Secular change in craniofacial morphology. *American Journal of Human Biology: The Official Journal of the Human Biology Association*, *12*(3), 327-338.

Jolliffe, I. T. (2002). *Principal component analysis*. 2nd Ed. Springer New York.

Jones, L. B. (2014). A Craniometric Analysis of English Skeletal Samples: Change and Continuity Between the Iron Age and Post-medieval Time Periods (400 BCE-1850 CE).

Kaiser, H. F. (1960). The application of electronic computers to factor analysis. *Educational and psychological measurement*, *20*(1), 141-151.

Keith, A. (1913). Report on the Human Remains Found by FJ Bennett, Esq., FGS, in the Central Chamber of a Megalithic Monument at Coldrum, Kent. *The Journal of the Royal Anthropological Institute of Great Britain and Ireland*, *43*, Pp. 86-100.

Keith, A. (1915). Presidential Address. The Bronze Age Invaders of Britain. *The Journal of the Royal Anthropological Institute of Great Britain and Ireland*, 45, 12-22.

Knowles, D., and Hadcock, R. N. (1971). *Medieval religious houses, England and Wales*. Addison-Wesley Longman Ltd.

Kohn, L. A. P. (1991). The role of genetics in craniofacial morphology and growth. *Annual Review* of Anthropology, 20(1), 261-278.

Kovarovic, K., Aiello, L. C., Cardini, A., & Lockwood, C. A. (2011). Discriminant function analyses in archaeology: are classification rates too good to be true?. *Journal of Archaeological Science*, *38*(11), 3006-3018.

Kowaleski, M. (2003). The commercialization of the sea fisheries in medieval England and Wales. *International Journal of Maritime History*, 15(2), 177-231.

Kowaleski, M. (2007). "Alien" Encounters in the Maritime World of Medieval England. *Medieval Encounters*, *13*(1), 96.

Krogman, W. M. (1978). The human skeleton in forensic medicine, 3rd Printing. *Charles C. Thomas, Springfield, IL*.

Krogman, W.M. and Isçan, M.Y. (1986). *The Human Skeleton in Forensic Medicine*, Charles C. Thomas, Springfield, IL.

Lambert, L. (2018) 'Nostri Fratelli da Londra': The Lucchese Community in Late -Medieval England in Fulton, H., & Campopiano, M. *Anglo-Italian Cultural Relations in the Later Middle Ages*. York Medieval Press, 87-102

Landauer, C. A. (1962). A factor analysis of the facial skeleton. *Human biology*, 34(4), 239-253.

Langley, N. R., Jantz, L. M., Ousley, S. D., Jantz, R. L., and Milner, G. (2016). Data collection procedures for forensic skeletal material 2.0. *University of Tennessee and Lincoln Memorial University*.

Leach, S., Lewis, M., Chenery, C., Müldner, G., and Eckardt, H. (2009). Migration and diversity in Roman Britain: a multidisciplinary approach to the identification of immigrants in Roman York, England. *American Journal of Physical Anthropology*, *140*(3), 546-561.

Leese, M. (1991) A preliminary statistical survey. In Stead, I. M. *Iron Age cemeteries in East Yorkshire: Excavations at Burton Fleming, Rudston, Garton-on-the-Wolds, and Kirkburn.* London. English Heritage

Liebenberg, L., Stull, K. E., L'abbé, E. N., and Botha, D. (2015). Evaluating the accuracy of cranial indices in ancestry estimation among South African groups. *Journal of forensic sciences*, *60*(5), 1277-1282.

Lieberman, D. E., Krovitz, G. E., Yates F. W., Devlin, M., and St Claire, M. (2004) Effects of food processing on masticatory strain and craniofacial growth in a retrognathic face. *Journal of Human Evolution*. *46*. Pp. 655-677

Little, K.L., (1943). A study of a series of human skulls from Castle Hill, Scarborough. *Biometrika*, *33*(1), pp.25-35.

Lovejoy, C. O. (1985). Dental wear in the Libben population: its functional pattern and role in the determination of adult skeletal age at death. *American journal of physical anthropology, 68*(1), 47-56.

Luther, F. (1993). A cephalometric comparison of medieval skulls with a modern population. *The European Journal of Orthodontics*, *15*(4), 315-325.

Lutkin, J. (2016). Settled or fleeting? London's medieval immigrant community revisited. *Medieval merchants and money: essays in honour of James L. Bolton. London: Institute of Historical Research*, 137-55.

Lysons, D. (1792). Environs of London-Volume 1, County of Surrey. *London: A. Strahan for T Cadell*.

MacDonnell, W. R. (1904) A Study of the Variation and Correlation of the Human Skull, with Special Reference to English Crania. *Biometrika*. 3, No 2/3. Pp. 191-224

Malden, H. E. (Ed.). (1967). *The Victoria History of the Counties of England: Surrey*. Dawsons for the University of London, Institute of historical research.
Mahoney, P., Schmidt, C. W., Deter, C., Remy, A., Slavin, P., Johns, S. E., Miszkiewicz, J. J. and Nystrom, P. (2016). Deciduous enamel 3D microwear texture analysis as an indicator of childhood diet in medieval Canterbury, England. Journal of Archaeological Science, 66, 128-136.

Malcolm, G., Bowsher, D., and Cowie, R. (2003). *Middle Saxon London: Excavations at the Royal Opera House, 1989-99* (No. 15). Museum of London Archaeology Svc.

Martin, R., and Saller, K. (1957). *Lehrbuch der anthropologie. In systematischer Darstellung mit besonderer Berucksichtigung der anthropologischen Methoden*. Gustav Fischer Verlag. Stuttgart

Mays, S. (1997). A perspective on human osteoarchaeology in Britain. *International Journal of Osteoarchaeology*, *7*(6), pp.600-604.

Mays, S. (2000). Biodistance studies using craniometric variation in British archaeological skeletal material. In Cox, M. & Mays, S. *Human osteology in archaeology and forensic science*. London: Greenwich Medical Media.

Mays, S. (2007) The human remains. In *The churchyard, Wharram,* ed. S. Mays, C. Harding and C. Heighway. 77-91. York: University of York

Mays, S. (2010). Human osteoarchaeology in the UK 2001–2007: a bibliometric perspective. *International Journal of Osteoarchaeology*, *20*(2), pp.192-204.

Mays, S., Brickley, M., and Dodwell, N. (2004). *Human Bones from Archaeological Sites: Guidelines for producing assessment documents and analytical reports*. English Heritage.

Meindl, R. S., and Lovejoy, C. O. (1985). Ectocranial suture closure: a revised method for the determination of skeletal age at death based on the lateral-anterior sutures. *American journal of physical anthropology*, *68*(1), 57-66.

Mikulski, R. (2012) Metric data. In Powers, N. *Human osteology method statement*. London: Museum of London.

Morant, G. M. (1926). A first study of the craniology of England and Scotland from Neolithic to early historical times, with special reference to the Anglo-Saxon skulls in London Museums. *Biometrika.* 18. Pp. 56-98

Morant, G. M. (1929). A contribution to Basque craniometry. *Biometrika*, 67-84.

Morton, S. G. (1849). Observations on the size of the brain in various races and families of man. *Proc. Acad. Nat. Sci. Phila.* 4. 221-224

Morton, N. E. (1973). Isolation by distance. In *Genetic structure of populations*, N.E. Morton, ed. Honolulu: University Press of Hawaii, 76-79.

Myers, C. S. (1897). An account of some skulls discovered at Brandon, Suffolk. *The Journal of the Anthropological Institute of Great Britain and Ireland*, *26*, 113-128.

Nicholson, E. and Harvati, K. (2006) Quantitative Analysis of Human Mandibular Shape Using Three dimensional Geometric Morphometrics. *American Journal of Physical Anthropology*. *131*. Pp. 363-383

Odegaard, N., and Cassman, V. (2006). Treatment and invasive actions. In *Human Remains: Guide for Museums and Academic Institutions* (pp. 77-95). Altamira Press Lanham, MD.

Ordnance Survey (1856) Yorkshire 17 1:10,560, Southampton: Ordnance Survey

Ordnance Survey (1877) Kent LXXXII 1:10,560, Southampton: Ordnance Survey

Ordnance Survey (1898) Middlesex XVII 1:10,560, Southampton: Ordnance Survey

Ormrod, M., Lambert, B., and Mackman, J. (2018). Immigrant England, 1300–1550. Manchester University Press

Page, W. (1909). A History of the County of London: Volume 1: London Within the Bars, Westminster and Southwark. *Victoria County History. London*.

Page, W. (Ed.). (1923). The Victoria history of the county of York, North Riding: Vol. 2. Constable.

Page, W., (1926). The Victoria History of the County of Kent: Volume 2. London

Parsons, F. G. (1908). Report on the Hythe crania. *The Journal of the Royal Anthropological Institute of Great Britain and Ireland, 38,* 419-450.

Pearson, T. (1999) Scarborough Castle, North Yorkshire. *Archaeological Investigation Report Series.* AI/11. York: English Heritage

Pérez-Pérez, A., Alesan, A., and Roca, L. (1990). Measurement error: inter-and intraobserver variability. An empiric study. *International Journal of Anthropology*, *5*(2), 129-135.

Perrin, C., and Anderson, K. (2013). Reframing craniometry: human exceptionalism and the production of racial knowledge. *Social Identities*, *19*(1), 90-103.

Platt, C. (2003). *Medieval England: a social history and archaeology from the Conquest to 1600 AD*. Routledge.

Pokines, J. T., and Baker, J. E. (2014a) Effects of burial environment on osseous remains. *Manual of forensic taphonomy* (pp. 73-114). CRC Press: Boca Raton, FL.

Pokines, J. T., and Baker, J. E. (2014b) Effects of recovery methods. *Manual of Forensic Taphonomy*, 447-465.

Prince, D. A., Kimmerle, E. H., and Konigsberg, L. W. (2008). A Bayesian approach to estimate skeletal age-at-death utilizing dental wear. *Journal of forensic sciences*, *53*(3), 588-593.

Reid, R. W., and Morant, G. M. (1928). A study of the Scottish short cist crania. *Biometrika*, 379-388

Relethford, J. H. (1988). Effects of English admixture and geographic distance on anthropometric variation and genetic structure in 19th-century Ireland. *American journal of physical anthropology*, *76*(1), 111-124.

Relethford, J. H. (1994). Craniometric variation among modern human populations. *American Journal of Physical Anthropology*, *95*(1), 53-62.

Relethford, J. H. (2002). Apportionment of global human genetic diversity based on craniometrics and skin color. *American Journal of Physical Anthropology*, *118*(4), 393-398.

Relethford, J.H. (2004a). Boas and beyond: migration and craniometric variation. *American Journal of Human Biology*, *16*(4), pp.379-386.

Relethford, J. H. (2004b). Global patterns of isolation by distance based on genetic and morphological data. *Human biology*, 499-513.

Relethford, J. H. (2009). Race and global patterns of phenotypic variation. *American journal of physical anthropology*, *139*(1), 16-22.

Relethford, J. H. (2010). Population-specific deviations of global human craniometric variation from a neutral model. *American Journal of Physical Anthropology: The Official Publication of the American Association of Physical Anthropologists*, *142*(1), 105-111.

Relethford, D. J. H., and Harpending, H. C. (1994). Craniometric variation, genetic theory, and modern human origins. *American Journal of Physical Anthropology*, *95*(3), 249-270.

Relethford, J. H., and Crawford, M. H. (1995). Anthropometric variation and the population history of Ireland. *American Journal of Physical Anthropology*, *96*(1), 25-38.

Richards, J. D. (1991). English Heritage Book of Viking Age England. London. B. T. Batsford Ltd

Richards, J.D. (1999). The Scandinavian presence in J. Hunter and I. Ralston. *The archaeology of Britain: an introduction from the Upper Palaeolithic to the Industrial Revolution*. Psychology Press.

Room, A. (1988). Dictionary of Place-names in the British Isles. London: Bloomsbury.

Roseman, C. C. (2004). Detecting interregionally diversifying natural selection on modern human cranial form by using matched molecular and morphometric data. *Proceedings of the National Academy of Sciences*, *101*(35), 12824-12829.

Roseman, C. C., and Weaver, T. D. (2004). Multivariate apportionment of global human craniometric diversity. *American Journal of Physical Anthropology: The Official Publication of the American Association of Physical Anthropologists*, *125*(3), 257-263.

Russell, C. K. (2007). Whence came the English?: exploring relationships between the Iron Age, Romano-British and Anglo-Saxon periods in Britain and Denmark: a craniometric biodistance analysis (Doctoral dissertation, Durham University).

Sahni, D., Jit, I., & Suri, S. (1998). Time of fusion of the basisphenoid with the basilar part of the occipital bone in northwest Indian subjects. *Forensic science international*, *98*(1-2), 41-45.

Sawyer, P.H., (2002). From Roman Britain to Norman England. Routledge.

Schaefer, M., Black, S. M., and Scheuer, L. (2009). *Juvenile osteology: a laboratory and field manual*. Elsevier, Academic Press.

Schofield, J. (1997). Excavations on the site of St. Nicholas Shambles, Newgate Street, City of London, 1975-9. Transactions of the London and Middlesex Archaeological Society, 48, 77-135.

Schofield, J., and Maloney, C. (1998). Archaeology in the City of London, 1907-1991: a guide to records of excavations by the Museum of London and its predecessors (Vol. 1). London: Museum of London.

Schwarcz, H. P., Gibbs, L., Knyf, M., Pfeiffer, S., and Williamson, R. F. (1991). Snake Hill: An Investigation of a Military Cemetery from the War of 1812.

Scott, C. S. (1889). St Leonard's Church, Hythe. Archaeologia Cantiana (Vol. 18), p. 403-420

Sheppard, F. H. W. (1957). Survey of London, volume 27: Spitalfields and Mile End New Town. Athlone Press

Smith, H. F. (2009). Which cranial regions reflect molecular distances reliably in humans? Evidence from three-dimensional morphology. *American Journal of Human Biology: The Official Journal of the Human Biology Association*, *21*(1), 36-47.

Smith, H. F., Terhune, C. E., and Lockwood, C. A. (2007). Genetic, geographic, and environmental correlates of human temporal bone variation. *American Journal of Physical Anthropology*, 134(3), 312-322.

Sokal, R. R., and Uytterschaut, H. (1987). Cranial variation in European populations: A spatial autocorrelation study at three time periods. *American journal of physical anthropology*, 74(1), 21-38.

Somner, W., (1703). The Antiquities of Canterbury. EP Publishing Limited.

Sparks, M., (2001). The documentary evidence. In: Hicks, M., Hicks, A. (Eds.), *St Gregory's Priory, Northgate, Canterbury: Excavations 1988-1991* (Vol. 2). Canterbury Archaeological Trust Limited, p. 371-376

Sparks, C. S., and Jantz, R. L. (2002). A reassessment of human cranial plasticity: Boas revisited. *Proceedings of the National Academy of Sciences*, *99*(23), 14636-14639.

Stamper, P., (1999). Landscapes of the Middle Ages. Rural settlement and manors in J. Hunter and I. Ralston. *The Archaeology of Britain: an introduction from the Upper Palaeolithic to the Industrial Revolution*, p.249-263.

St Leonard's church ossuary, Hythe – skulls [online image] (n.d.). Available from https://commons.wikimedia.org/wiki/File:Skulls_in_St_Leonards.jpg. [Accessed 15th March 2018]

Stoessiger, B. N., and Morant, G. M. (1932). A study of the crania in the vaulted ambulatory of Saint Leonard's Church, Hythe. *Biometrika*, 135-202.

Tabachnick, B. G., Fidell, L. S., and Ullman, J. B. (2007). *Using multivariate statistics* (Vol. 5). Boston, MA: Pearson.

Tattersall, I., (1968). Multivariate analysis of some medieval British cranial series. *Man*, *3*(2), pp.284-292.

Thacker, A. T., Laughton, J. W., and Kermode, J. I. (2003). Later medieval Chester 1230–1550. *A history of the county of Cheshire*, *5*(part 1), 34-89.

Thompson, A., Westman, A., and Dyson, T. (Eds.). (1998). *Archaeology in Greater London, 1965-1990: A Guide to Records of Excavations by the Museum of London*. Museum of London.

Thornbury, W., (1878). Old and New London (Vol. 2). London: Cassell, Petter & Galpin Publishers

Töpf, A. L., Gilbert, M. T. P., Dumbacher, J. P., and Hoelzel, A. R. (2005). Tracing the phylogeography of human populations in Britain based on 4th–11th century mtDNA genotypes. *Molecular biology and evolution*, *23*(1), 152-161.

Trafford, S., (2000). Ethnicity, migration theory, and the historiography of the Scandinavian settlement of England. *Cultures in contact: Scandinavian settlement in England in the ninth and tenth centuries*, *2*, pp.17-42.

Turner, W. (1915). V.—A Contribution to the Craniology of the People of Scotland. Part II. Prehistoric, Descriptive and Ethnographical. *Earth and Environmental Science Transactions of The Royal Society of Edinburgh*, *51*(1), 171-255.

Utermohle, C. J., and Zegura, S. L. (1982). Intra-and interobserver error in craniometry: a cautionary tale. *American Journal of Physical Anthropology*, *57*(3), 303-310.

Valoriani, S., Eliopoulos, C., and Borrini, M. (2017). Sharp Force Trauma Death in a Young Individual From Medieval Gloucester. *The American journal of forensic medicine and pathology*, 38(2), 111-114.

Varrela, J. (1992) Dimensional variation of craniofacial structures in relation to changing masticatory-functional demands. *European Journal of Orthodontics.* 14. Pp. 31-36

von Cramon-Taubadel, N. (2009). Revisiting the homoiology hypothesis: the impact of phenotypic plasticity on the reconstruction of human population history from craniometric data. *Journal of Human Evolution*, 57(2), 179-190.

von Cramon-Taubadel, N. (2011). The relative efficacy of functional and developmental cranial modules for reconstructing global human population history. *American journal of physical anthropology*, *146*(1), 83-93.

von Cramon-Taubadel, N. (2014). Evolutionary insights into global patterns of human cranial diversity: population history, climatic and dietary effects. *J. Anthropol. Sci*, *92*(4).

Warden, A. J. (1882). Angus Or Forfarshire: The Land and People, Descriptive and Historical (Vol. 3). C. Alexander & Company.

Weale, M. E., Weiss, D. A., Jager, R. F., Bradman, N., and Thomas, M. G. (2002). Y chromosome evidence for Anglo-Saxon mass migration. *Molecular Biology and Evolution*, *19*(7), 1008-1021.

Wells, L. H. (1956-1957) A survey of human remains from long cist burials in the Lothians. *Proceedings of the Society of Antiquaries of Scotland, 90*. Pp. 180-191

Whaley, D. (2010). Scarborough revisited. Nomina, 33, 87-100.

White, W. J., and Dyson, T. (1988).*Skeletal remains from the cemetery of St. Nicholas shambles, City of London* (Vol. 9). London: London & Middlesex Archaeological Society.

White, T. D., and Folkens, P. A. (2005). The human bone manual. Elsevier.

Wilkinson, C. (2004). Forensic facial reconstruction. Cambridge University Press.

Wilks, D. S. (2011). Cluster analysis. In *International geophysics*, (Vol. 100), 603-616. Academic press.

Willows, M. A. (2016). Health status in Lowland Medieval Scotland: a regional analysis of four skeletal populations. Unpublished doctoral thesis. University of Edinburgh

Woodhead, C. (2013). Care, custody and display of human remains: legal and ethical obligations. Curating *human remains: caring for the dead in the United Kingdom*, 31-42.

Wrathmell, S. (Ed.). (2012). A history of Wharram Percy and its neighbours. University of York.

Wright, W. (1904). Skulls from the Round Barrows of East Yorkshire. *Journal of anatomy and physiology*, *38*(Pt 2), 119-132

Young, M. (1915) IX. A Contribution to the Study of the Scottish Skull. *Earth and Environmental Science Transactions of The Royal Society of Edinburgh*, *51*(1), 347-454.

Zadora-Rio, E. (2003). The making of churchyards and parish territories in the early-medieval landscape of France and England in the 7th-12th centuries: a reconsideration. *Medieval archaeology*, *47*(1), 1-19.

Appendix 1. Data Collection Sheets

SITE:

SKELETON:

1.1 NEUROCRANIUM			
1.1.1 Maximum length of the neural skull			
1.1.2 Glabella-inion length			
1.1.3 Glabella-lambda length			
1.1.4 Cranial base length			
1.1.5 Maximum neurocranial breadth			
1.1.6 Biauricular breadth			
1.1.7 Biasterionic diameter			
1.1.8 Bimastoid breadth of the cranial base			
1.1.9 Basion-bregma height			
1.1.10 Total height			
1.1.11 Porion-bregma height			
1.1.12 Porion-vertex height			
1.1.13 Horizontal cranial circumference			
1.1.14 Horizontal cranial circumference above-			
ophryon 1.1.15 Transverse curve			
1.1.16 Total longitudinal arch			
1.1.17 Nasion-bregma arch			
1 1 18 Parietal-longitudinal arch			
1.1.10 Cocinital arch			
1.1.19 Occipital arch			
1.1.20 Nasion-bregma chord			
1.1.21 Bregma-lambda chord			
1.1.22 Lambda-opisthion chord			
1.1.23 Foramen magnum length			
1.1.24 Foramen magnum breadth			

1.2 FACIAL SKULL			
1.2.1 Length of the face			
1.2.2 Minimum frontal breadth			
1.2.3 Maximum frontal breadth			
1.2.4 Upper facial breadth			
1.2.5 Bizygomatic facial breadth			
1.2.6 Maximum bimaxillary breadth of the midface			
1.2.7 Morphological height of the face			
1.2.8 Height of the upper face			

1.3 ORBITAL SKELETON			
1.3.1 Biorbital breadth			
1.3.2 Interorbital breadth from dacryon			
1.3.3 Interorbital breadth			
1.3.4 Orbital breadth			
1.3.5 Orbital height			

1.4 NASAL SKELETON				
1.4.1 Nasal breadth				
1.4.2 Nasal height				
1.4.3 Nose-malar chord				
1.4.4 Nose-malar breadth				

1.5 MAXILLARY SKELETON				
1.5.1 Maxillo-alveolar length				
1.5.2 Maxillo-alveolar breadth				
1.5.3 Palate length				
1.5.4 Palate breadth				

Appendix 2. Cranial Measurements Coding System

1.1 NEUROCRANIUM					
Borrini Code	Martin & Saller Code	USA Standards Code	Howells Code	British Code	Fordisc Code
1.1.1 Maximum length of the neural skull	MS 1	1	GOL	L	Maximum Ln
1.1.2 Glabella-inion length	MS 2	-	-	-	-
1.1.3 Glabella-lambda length	MS3	-	-	-	-
1.1.4 Cranial base length	MS 5	5	BNL	LB	Basion-Nasion Ln
1.1.5 Maximum neurocranial breadth	MS 8	2	ХСВ	В	Max Cranial Br
1.1.6 Biauricular breadth	MS 11	9	AUB	-	Biauricular Br
1.1.7 Biasterionic diameter	MS 12	-	ASB	Biast B	Biasteronic Breadth
1.1.8 Bimastoid breadth of the cranial base	MS 13	-	-	-	-
1.1.9 Basion-bregma height	MS 17	4	ВВН	H'	Basion-Bregma Ht
1.1.10 Total height	MS 18	-	-	Н	-
1.1.11 Porion-bregma height	MS 20	-	-	РВН	-

1.1.12 Porion-vertex height	MS 21	-	-	-	-
1.1.13 Horizontal cranial circumference	MS 23	-	-	-	-
1.1.14 Horizontal cranial circumference above- ophryon	MS 23-a	-	-	U	U
1.1.15 Transverse curve	MS 24	-	-	BQ'	BQ'
1.1.16 Total longitudinal arch	MS 25	-	-	S	-
1.1.17 Nasion-bregma arch	MS 26	-	-	S ₁	S ₁
1.1.18 Parietal-longitudinal arch	MS 27	-	-	S ₂	S ₂
1.1.19 Occipital arch	MS 28	-	-	S ₃	S ₃
1.1.20 Nasion-bregma chord	MS 29	19	FRC	S'1	Frontal Chord
1.1.21 Bregma-lambda chord	MS 30	20	PAC	S'2	Parietal Chord
1.1.22 Lambda-opisthion chord	MS 31	21	OCC	S'3	Occipital Chord
1.1.23 Foramen magnum length	MS 7	22	FOL	FL	Foramen Magnum Ln
1.1.24 Foramen magnum breadth	MS 16	23	-	FB	Foramen Magnum Br

1.2 FACIAL SKULL					
1.2.1 Length of the face	MS 40	6	BPL	GL	Basion-Prostion Ln
1.2.2 Minimum frontal breadth	MS 9	11	-	B'	Minimum Frontal Br
1.2.3 Maximum frontal breadth	MS 10	-	XFB	-	-
1.2.4 Upper facial breadth	MS 43	12	FMB	-	-
1.2.5 Bizygomatic facial breadth	MS 45	3	ZYB	J	Bizygomatic Br
1.2.6 Maximum bimaxillary breadth of the midface	MS 46	-	ZMB	GB	Zygomaxillary Br
1.2.7 Morphological height of the face	MS 47	-	-	-	-
1.2.8 Height of the upper face	MS 48	10	NPH	G'H	-

1.3 ORBITAL SKELETON					
1.3.1 Biorbital breadth	MS 44	17	EKB	-	Biorbital Br
1.3.2 Interorbital breadth from dacryon	MS 49-a	18	DKB	DC	Interorbital Br
1.3.3 Interorbital breadth	MS 50	-	-	-	-
1.3.4 Orbital breadth	MS 51	15	OBB	O'1	Orbital Br
1.3.5 Orbital height	MS 52	16	ОВН	O'2	Orbital Ht

1.4 NASAL SKELETON					
1.4.1 Nasal breadth	MS 54	14	NLB	NB	Nasal Br
1.4.2 Nasal height	MS 55	13	NLH	NH'L	Nasal Height
1.4.3 Nose-malar chord	MS 44-a	-	-	-	-
1.4.4 Nose-malar breadth	MS 44-1	-	-	-	-

1.5 MAXILLARY SKELETON					
1.5.1 Maxillo-alveolar length	MS 60	8	-	-	-
1.5.2 Maxillo-alveolar breadth	MS 61	7	MAB	-	-
1.5.3 Palate length	MS 62	-	-	G'1	G'1
1.5.4 Palate breadth	MS 63	-	-	G'2	G'2

Appendix 3. Cranial Landmarks

Gnathion (gn)	The lowest median point on the lower border of the chin	Bass, 1995; Borrini, 2013; Buikstra & Ubelaker, 1994; Krogman & Isçan, 1986
Pogonion (pg)	The most protruding point in the midline on the mandible	Bass, 1995; Borrini, 2013; Krogman & Isçan, 1986
Alveolare (ids)	The lowest point on the alveolar margin between the first upper incisors	Bass, 1995; Borrini, 2013
Prosthion (pr)	The most anterior point on the alveolar margin between the first two upper incisors	Bass, 1995; Borrini, 2013; Buikstra & Ubelaker, 1994; Krogman & Isçan, 1986
Nasospinale (ns)	The midpoint on the line drawn between the lower rims of both nasal apertures	Bass, 1995; Borrini, 2013; Buikstra & Ubelaker, 1994; Krogman & Isçan, 1986
Nasion (n)	The point on the nasofrontal suture on the midsagittal plane	Bass, 1995; Borrini, 2013; Buikstra & Ubelaker, 1994; Krogman & Isçan, 1986
Glabella (g)	The most forward projecting point of the frontal bone on the supra-orbital ridges and above the nasion	Bass, 1995; Borrini, 2013; Buikstra & Ubelaker, 1994; Krogman & Isçan, 1986
Bregma (b)	The point on intersection of the coronal and sagittal sutures	Bass, 1995; Borrini, 2013; Buikstra & Ubelaker, 1994; Krogman & Isçan, 1986
Vertex (v)	The highest point of the skull on the midsagittal plane, as seen from norma lateralis	Bass, 1995; Borrini, 2013
Lambda (l)	The intersection of the sagittal and lambdoidal sutures in the midline	Bass, 1995; Borrini, 2013; Buikstra & Ubelaker, 1994; Krogman & Isçan, 1986
Opisthocranion (op)	The most posterior point on the skull	Bass, 1995; Borrini, 2013; Buikstra & Ubelaker, 1994; Krogman & Iscan, 1986
Inion (i)	The intersection of the midsagittal plane with the height of the triangle formed by the nuchal crest lines	Bass, 1995; Borrini, 2013; Krogman & Isçan, 1986
Opisthion (o)	The midpoint of the posterior margin of the foramen magnum	Bass, 1995; Borrini, 2013; Buikstra & Ubelaker, 1994; Krogman & Isçan, 1986
Basion (ba)	The midpoint of the anterior margin of the foramen magnum	Bass, 1995; Borrini, 2013; Buikstra & Ubelaker, 1994; Krogman & Isçan, 1986
Endobasion (endoba)	The most posterior point of the anterior border of the foramen magnum, internal to the basion	Bass, 1995; Borrini, 2013

UNPAIRED CRANIAL LANDMARKS ON THE MIDSAGITTAL PLANE

Alveolon (alv)	The midpoint on the line drawn through the termini of the alveolar ridges	Bass, 1995; Borrini, 2013; Buikstra & Ubelaker, 1994
Staphylion (sta)	The midpoint on the line drawn tangent to the curves of the posterior margin of the palate	Bass, 1995; Borrini, 2013
Orale (ol)	The midpoint on the line drawn tangent to the curves in the alveolar margin at the back of the two first incisors	Bass, 1995; Borrini, 2013; Krogman & Isçan, 1986
Ophryon (on)	The deepest point immediately above the glabella	Borrini, 2013

PAIRED CRANIAL LANDMARKS ON THE MIDSAGITTAL PLANE

Euryon (eu)	The most widely separated points on the two sides of the skull	Bass, 1995; Borrini, 2013; Buikstra & Ubelaker, 1994; Krogman & Isçan, 1986
Porion (po)	The uppermost lateral point in the margin of the external auditory meatus	Bass, 1995; Borrini, 2013; Krogman & Isçan, 1986
Mastoidale (ms)	The apex of the mastoid process	Bass, 1995; Krogman & Isçan, 1986
Dacryon (d)	The point on the median wall of the orbit at the junction of the lacrimomaxillary suture and the frontal bone	Bass, 1995; Borrini, 2013; Buikstra & Ubelaker, 1994; Krogman & Isçan, 1986
Maxillofrontale (mf)	The point of intersection of the anterior lacrimal crest with the frontomaxillary suture	Bass, 1995; Borrini, 2013; Krogman & Isçan, 1986
Alare (al)	The most lateral point on the nasal aperture taken perpendicular to the nasal height	Bass, 1995; Borrini, 2013; Buikstra & Ubelaker, 1994
Zygion (zy)	The most lateral point of the zygomatic process	Bass, 1995; Borrini, 2013; Buikstra & Ubelaker, 1994; Krogman & Isçan, 1986
Ectoconchion (ec)	The point of maximum breadth on the lateral rim of the orbit	Bass, 1995; Borrini, 2013; Buikstra & Ubelaker, 1994; Krogman & Isçan, 1986
Ectomolare (ecm)	The most lateral point on the outer alveolar margin, located on the second upper molar	Bass, 1995; Borrini, 2013; Buikstra & Ubelaker, 1994
Endomolare (enm)	The point on the inner surface of the alveolar margin corresponding to the second upper molar	Bass, 1995; Borrini, 2013
Frontotemporale (ft)	The most medial point on the incurve of the temporal line	Bass, 1995; Borrini, 2013; Buikstra & Ubelaker, 1994
Frontomalare temporale (fmt)	The most lateral point on the fronto-zygomatic suture	Borrini, 2013; Buikstra & Ubelaker, 1994
Auricolare (au)	The point on the lateral margin of the root of the zygomatic process at the deepest incurvature	Borrini, 2013; Buikstra & Ubelaker, 1994
Asterion (ast)	The meeting point lambdoid, occipito-mastoid and parieto-mastoid sutures	Borrini, 2013; Krogman & Isçan, 1986
Zygomaxillare (zm)	Lowest point on the zygomaxillary suture	Borrini, 2013; Krogman & Isçan, 1986
Coronale (co)	Most lateral point on the coronal suture	Borrini, 2013

<u>Appendix 4.</u> Measuring instruments

MEASUREMENT	INSTRUMENT
1.1.1 MAXIMUM LENGTH OF THE NEURAL SKULL	Spreading calliper
1.1.2 GLABELLA-INION LENGTH	Spreading calliper
1.1.3 GLABELLA-LAMBDA LENGTH	Spreading calliper
1.1.4 CRANIAL BASE LENGTH	Spreading calliper
1.1.5 MAXIMUM NEUROCRANIAL BREADTH	Spreading calliper
1.1.6 BIAURICULAR BREADTH	Spreading calliper
1.1.7 BIASTERIONIC DIAMETER	Sliding calliper
1.1.8 BIMASTOID BREADTH OF THE CRANIAL BASE	Sliding calliper
1.1.9 BASION-BREGMA HEIGHT	Spreading calliper
	Spreading calliper; Mollison's
	craniophor; auricular head spanner
	Spreading calliper; Mollison's
	craniophor; auricular head spanner
1 1 12 PORION-VERTEX HEIGHT	Spreading calliper; Mollison's
	craniophor; auricular head spanner
1.1.13 HORIZONTAL CRANIAL CIRCUMFERENCE	Measuring tape
1.1.14 HORIZONTAL CRANIAL CIRCUMFERENCE ABOVE-	Measuring tane
OPHRYON	Wedsuning tupe
1.1.15 TRANSVERSE CURVE	Measuring tape
1.1.16 TOTAL LONGITUDINAL ARCH	Measuring tape
1.1.17 NASION-BREGMA ARCH	Measuring tape
1.1.18 PARIETAL-LONGITUDINAL ARCH	Measuring tape
1.1.19 OCCIPITAL ARCH	Measuring tape
1.1.20 NASION-BREGMA CHORD	Sliding calliper
1.1.21 BREGMA-LAMBDA CHORD	Sliding calliper
1.1.22 LAMBDA-OPISTHION CHORD	Sliding calliper
1.1.23 FORAMEN MAGNUM LENGTH	Sliding calliper
1.1.24 FORAMEN MAGNUM BREADTH	Sliding calliper
1.2.1 LENGTH OF THE FACE	Spreading calliper
1.2.2 MINIMUM FRONTAL BREADTH	Spreading calliper
1.2.3 MAXIMUM FRONTAL BREADTH	Spreading calliper
1.2.4 UPPER FACIAL BREADTH	Sliding calliper
	Spreading calliper
	Sliding calliper
	Sliding calliper
	Sliding callinor
	Sliding calliper
	Sliding calliper
1.3.4 ORBITAL BREADTH	Sliding calliper
1 3 5 ORBITAL HEIGHT	Sliding calliner
1.3.1 BIORBITAL BREADTH	Sliding calliper
1.3.2 INTERORBITAL BREADTH FROM DACRYON	Sliding calliper
1.3.3 INTERORBITAL BREADTH	Sliding calliper
1.3.4 ORBITAL BREADTH	Sliding calliper
1.3.5 ORBITAL HEIGHT	Sliding calliper
1.4.1 NASAL BREADTH	Sliding calliper
1.4.2 NASAL HEIGHT	Sliding calliper
1.4.3 NOSE-MALAR CHORD	Measuring tape
1.4.4 NOSE-MALAR BREADTH	Measuring tape
1.5.1 MAXILLO-ALVEOLAR LENGTH	Spreading calliper
1.5.2 MAXILLO-ALVEOLAR BREADTH	Sliding calliper
1.5.3 PALATE LENGTH	Sliding calliper
1.5.4 PALATE BREADTH	Sliding calliper

Appendix 5. Cranial indices

(after Bass, 1995)

Cranial Index

Cranial Index: (maximum cranial breadth x 100)/maximum cranial length

Range:

Dolichocrany ≤ 74.99 = Narrow or long headed Mesocrany 75-79.99 = Average Brachycrany 80-84.99 = Round headed

Cranial Length/Height Index

Cranial Length/Height Index: (basion-bregma height x 100)/maximum cranial length

<u>Range</u>: Chamaecrany ≤ 69.99 = Low skull Orthocrany 70-74.99 = Average Hypsicrany ≥75= High skull

Cranial Length/Height Index

Cranial Breadth/Height Index: (basion-bregma height x 100)/maximum cranial breadth

Range:Tapeinocrany ≤ 91.99 = Low skullMetriocrany 92-97.99 = AverageHypsicrany ≥98= High skull

Nasal Index

Nasal Index: (nasal breadth x 100)/nasal height

Range:Leptorrhiny \leq 47.99 = Narrow nasal apertureMesorrhiny 48-52.99 = AveragePlatyrrhiny \geq 53 = Broad nasal aperture

Orbital Index

Orbital Index: (orbital height x 100)/orbital breadth

Range:Chamaeconchy ≤ 82.99 = Wide orbitsMesoconchy 83-89.99 = AverageHypsiconchy ≥ 89 = Narrow orbits

Appendix 6. Cranial measurements recorded by the author

<u>Gloucester</u>

1.1 NEUROCRANIUM

11M1881801871871818718181871818187181818718191018 <th< th=""><th>SKELETON</th><th>SEX</th><th>1.1.1</th><th>1.1.2</th><th>1.1.3</th><th>1.1.4</th><th>1.1.5</th><th>1.1.6</th><th>1.1.7</th><th>1.1.8</th><th>1.1.9</th><th>1.1.10</th><th>1.1.11</th><th>1.1.12</th><th>1.1.13</th><th>1.1.14</th><th>1.1.15</th><th>1.1.16</th><th>1.1.17</th><th>1.1.18</th><th>1.1.19</th><th>1.1.20</th><th>1.1.21</th><th>1.1.22</th><th>1.1.23</th><th>1.1.24</th></th<>	SKELETON	SEX	1.1.1	1.1.2	1.1.3	1.1.4	1.1.5	1.1.6	1.1.7	1.1.8	1.1.9	1.1.10	1.1.11	1.1.12	1.1.13	1.1.14	1.1.15	1.1.16	1.1.17	1.1.18	1.1.19	1.1.20	1.1.21	1.1.22	1.1.23	1.1.24
24M?192177188146147148141915017010117130438913012012012012012026M171781681679213612012010512012	11	M	188	180	184				115									375	128	135	112	114	94			
25M	24	M?	192	177	188		146	124		99			110	117			304	389	133	136	120	121	120	100		
Image: Property or propert	25	М						128	119	100			120							141	122		128	98		
28M185177177107104145128107107104105107107105107105107102107102102107102107107103110107107107107103113113113117107107103107103113113113117107127137113113113113127127113113113113127127113113113113127127113 </th <th>26</th> <th>F</th> <th>174</th> <th>168</th> <th>167</th> <th>92</th> <th>136</th> <th>122</th> <th>105</th> <th>105</th> <th>123</th> <th>127</th> <th>106</th> <th>115</th> <th>500</th> <th>488</th> <th>286</th> <th>346</th> <th>118</th> <th>121</th> <th>107</th> <th>103</th> <th>106</th> <th>91</th> <th>35</th> <th>30</th>	26	F	174	168	167	92	136	122	105	105	123	127	106	115	500	488	286	346	118	121	107	103	106	91	35	30
29M18189711101213131313131331MM1213	28	М	185	177	177	104	145	128	109	107	134	135	113	115	532	526	306	370	122	123	125	109	112	102	30	26
31M	29	М			188		139		97				115	120					127	133		113	118			
32F174160170921461221081001311321071121212711711311297292934M1861801801809715313411510513013211211354453230937612713111611011697363235M13318018010010012017111012213111112253253331637112513111511311697363236M183180180104105171110132132131141131532533316371140135131115131313297292937M183182190104105137137131113132532533543543541 <t< th=""><th>31</th><th>М</th><th></th><th></th><th></th><th></th><th></th><th>121</th><th>111</th><th>100</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>111</th><th></th><th></th><th>91</th><th>30</th><th>25</th></t<>	31	М						121	111	100											111			91	30	25
34 M 186 180 180 97 153 134 115 105 130 112 113 544 532 309 376 127 131 116 110 116 97 36 32 35 M 183 180 180 180 180 100 150 170 110 132 131 111 115 131 116 97 36 32 35 M 183 180 <t< th=""><th>32</th><th>F</th><th>174</th><th>160</th><th>170</th><th>92</th><th>146</th><th>122</th><th>108</th><th>100</th><th>131</th><th>132</th><th>107</th><th>112</th><th></th><th></th><th>304</th><th>371</th><th>127</th><th>127</th><th>117</th><th>113</th><th>112</th><th>97</th><th>29</th><th>29</th></t<>	32	F	174	160	170	92	146	122	108	100	131	132	107	112			304	371	127	127	117	113	112	97	29	29
35 M 183 180 180 104 107 110 123 110 125 131 115 113 116 97 30 28 37 M 188 180 180 100 145 124 110 125 124 125 131 115 110 97 30 28 36 M 198 182 180 182 191 100 145 124 131 125 131 131 110 97 30 28 36 M 198 182 191 182 191 110 11	34	М	186	180	180	97	153	134	115	105	130	132	112	113	544	532	309	376	127	131	116	110	116	97	36	32
37 M 38 M 198 182 191 100 145 124 112 105 137 119 122 549 542 321 402 144 132 126 123 120 110 135 24 39 F \cdot	35	М	183	180	180	104	150	127	117	110	132	135	114	119	532	523	316	371	125	131	115	113	116	97	30	28
38 M 198 182 191 100 145 124 112 105 137 137 139 549 540 540 540 540 140 132 126 123 120 101 35 24 39 F 119 111 <th>37</th> <th>М</th> <th></th>	37	М																								
39 F 111 111 111 111 111 111 111 110 111 111 110 111 111 110 111 111 110 111 111 110 111 111 111 110 111	38	М	198	182	191	100	145	124	112	105	137	137	119	122	549	542	321	402	144	132	126	123	120	101	35	24
40 M V V 138 119 110 V 128 121 111 106 37 333 42 \mathbf{F} V V 136 115 114 105 133 112 \mathbf{V} \mathbf{S} 120 118 108 98 35 28 46 M 170 166 95 34 114 140 138 112 \mathbf{V} \mathbf{S} 120 121 120 131 100 98 35 28 46 M 170 166 95 34 141 140 138 112 167 \mathbf{S} \mathbf{S} 120 121 120 \mathbf{S}	39	F						119	111												115			89	33	28
42F136115114105133112 301 12012011810898352846M17016716695 34 114140138112116 501 501 2301241201171071059833333154F17616616610114012310412110410751050429334311810212310495103332856F1831731739613612210112110410751050429334311810212310495103332856F1831731739613612210112110110151050429334311810212310495103332857M18317313612211312312811151151150929736613111711811410792342557M194194136113 <th>40</th> <th>М</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>138</th> <th>119</th> <th>110</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>128</th> <th></th> <th>121</th> <th>111</th> <th></th> <th>106</th> <th>37</th> <th>33</th>	40	М						138	119	110									128		121	111		106	37	33
46M17016716695134114140138112116 \cdot 36112017110710598333154F17616616610114012311010612112110410751050429334311810212310495103332856F1831731739613612210198129128110111511509297366131117118114107923432857M \cdot <	42	F					136	115	114	105	133		112				301			120	118		108	98	35	28
54 F 176 166 166 101 140 123 106 121 104 107 510 504 293 343 118 102 123 104 95 103 33 28 56 F 183 173 173 96 136 122 101 98 129 128 110 511 509 297 366 131 117 118 114 107 92 34 25 57 M T <th>46</th> <th>М</th> <th>170</th> <th>167</th> <th>166</th> <th>95</th> <th></th> <th>134</th> <th>114</th> <th>114</th> <th>140</th> <th>138</th> <th>112</th> <th>116</th> <th></th> <th></th> <th></th> <th>361</th> <th>124</th> <th>120</th> <th>117</th> <th>107</th> <th>105</th> <th>98</th> <th>33</th> <th>31</th>	46	М	170	167	166	95		134	114	114	140	138	112	116				361	124	120	117	107	105	98	33	31
56 F 183 173 173 96 136 122 101 98 129 128 110 111 511 509 297 366 131 117 118 114 107 92 34 25 57 M V	54	F	176	166	166	101	140	123	110	106	121	121	104	107	510	504	293	343	118	102	123	104	95	103	33	28
57 M 10 10 88 58 M 194 183 186 145 113 118 120 552 533 382 133 124 125 116 113 106	56	F	183	173	173	96	136	122	101	98	129	128	110	111	511	509	297	366	131	117	118	114	107	92	34	25
58 M 194 183 185 113 118 120 552 533 382 133 124 125 116 113 106	57	М																			110			88		
	58	М	194	183	186		145		113				118	120	552	533		382	133	124	125	116	113	106		

no no<	122 122 1	63 123	3 36	308	511	518	119	114			102	117	131	150		170	160	173	M	59
i.e. j.e. j.e. j.j.g. j.j.g.	128											107							F	60
62 M M I <thi< th=""> <thi< th=""> <thi< th=""></thi<></thi<></thi<>	119 113 1	48 119	9 34;	289	484	492	112	108	134	130	105	111	120	137	95	161	159	166	F	61
77F18617510110111214211711031531478M19318118410713712711111112812711111553953130237613085M190177187981351141019312312411311553351930438112898F1219998126108100F18116617595139116100102133112117520510313314128100F181166171146124113115538533308368127110M182172174146124113112116116529521308368127111M185178100145130122111134115538533308378130111F17316016799135121109105128128116114502493295351120113F17316016799135121109105128128112114	124	124																	M	62
78 M	124 122 1	66 12 ⁴	36							131					101	175	175	186	F	77
83 M 193 181 184 107 127 111 111 125 121 111 111 125 533 531 302 376 130 85 M 190 177 187 98 135 114 101 93 123 124 113 115 533 519 304 381 128 98 F U U 127 95 139 116 100 102 133 112 117 520 510 301 366 123 100 F 181 165 175 95 139 116 100 138 139 116 123 523 510 313 371 125 108 M 182 171 104 128 130 126 133 120 133 130 146 123 130 146 123 533 308 308 378 130 110 M 187 185 178 100 155 </th <th>124 1</th> <th></th> <th>5</th> <th>315</th> <th></th> <th></th> <th>117</th> <th></th> <th></th> <th>142</th> <th>112</th> <th>119</th> <th>131</th> <th>149</th> <th></th> <th></th> <th></th> <th></th> <th>M</th> <th>78</th>	124 1		5	315			117			142	112	119	131	149					M	78
85 M 190 177 187 98 135 114 101 99 123 124 113 115 533 519 304 381 128 98 F 121 99 98 126 108 107 301 366 123 100 F 181 166 175 95 139 116 100 138 139 116 123 520 510 301 366 123 107 M 182 179 174 174 128 133 106 138 139 116 123 523 510 313 371 125 108 M 182 173 174 146 124 113 112 116 116 529 521 308 368 127 112 M 187 180 16 122 116 116 52 533 308 308 378 130 113 F? 133 165 124 135<	130 125 1	76 13(2 37(302	531	539	115	111	127	128	111	111	127	137	107	184	181	193	M	83
98F	128 138 1	81 128	4 38 :	304	519	533	115	113	124	123	93	101	114	135	98	187	177	190	M	85
100 F 181 166 175 95 139 116 100 102 133 112 117 520 510 301 366 123 107 M 182 169 171 104 128 113 106 138 139 116 123 523 510 313 371 125 108 M 182 172 174 146 124 113 112 116 116 529 521 308 368 127 112 M 187 185 178 100 145 130 122 111 134 116 122 545 538 308 368 131 113 F7 T V V V 133 125 135 139 116 122 545 538 309 366 131 114 M 193 183 165 121 109 105 128 139 116 122 545 538 309 36	114 1							108		126	98	99	121						F	98
107M182169171104128113106138139116123523510313371125108M110M182172174146124113112116116529521308368127112M187185178100145130122111134155155538533308378130113F?185178100145133125135139116122545538309386131115F?17316016799135121109105128128112114502493295351120125M18217316016799135121100128128122114502493295351120126M18417017699135121101131171114120527522307367123136F17616117487136112101131171114120527522307367123133F186179173101150126124125109114120527522307367	123 123 1	56 12:	1 36	301	510	520	117	112		133	102	110	116	139	95	175	166	181	F	100
108 M 110 M 182 172 174 146 124 113 112<	125 120 1	71 125	3 37:	313	510	523	123	116	139	138	106	113	128		104	171	169	182	M	107
110M182172174146124113112116166529521308368127112M187185178100145130122111134115538533308378130113F7F7114M193183186103145133125135139116122545538309386131115F7116F817316016799135121109105128128112114502493295531120116F817316016799135121109105128128122114502493295531120125M182173175147132110110131171114120527522307367123130M18417017698124111103131171114120527522307367123133F6186179173101152111103131134109116116124363123133F186173174176122120111103131134109116116124363 </th <th></th> <th>M</th> <th>108</th>																			M	108
112 M 187 185 178 100 145 130 122 111 134 115 538 533 308 378 130 113 F? F? F <th>127 115 1</th> <th>58 127</th> <th>3 368</th> <th>308</th> <th>521</th> <th>529</th> <th>116</th> <th>116</th> <th></th> <th></th> <th>112</th> <th>113</th> <th>124</th> <th>146</th> <th></th> <th>174</th> <th>172</th> <th>182</th> <th>М</th> <th>110</th>	127 115 1	58 127	3 368	308	521	529	116	116			112	113	124	146		174	172	182	М	110
113 F? 114 M 193 183 186 103 145 133 125 135 139 116 122 545 538 309 386 131 115 F? 173 160 167 99 135 121 109 105 128 128 112 114 502 493 295 351 120 116 F 173 160 167 99 135 121 109 105 128 128 112 114 502 493 295 351 120 125 M 182 173 175 147 132 110 101 131 171 114 120 527 522 307 367 123 130 M 184 170 176 98 124 111 103 131 134 109 116 122 373 127 133 F 186 179 173 100 124 101 124 <	130 117 1	78 13(3 378	308	533	538		115		134	111	122	130	145	100	178	185	187	М	112
114 M 193 183 186 103 145 133 125 135 139 116 122 545 538 309 386 131 115 F7 116 F 173 160 167 99 135 121 109 105 128 128 112 114 502 493 295 351 120 125 M 182 173 175 147 132 110 110 128 128 112 114 502 493 295 351 120 129 M 181 169 171 101 150 125 117 101 131 171 114 120 527 522 307 367 123 130 M 184 170 176 98 124 111 103 131 144 109 116 105 127 128 109 116 100 121 133 F 186 179 173 <	138																		F?	113
115 F? 116 F 173 160 167 99 135 121 109 105 128 128 114 502 493 295 351 120 1125 M 182 173 175 147 132 110 110 111 540 531 304 380 130 129 M 181 169 171 101 150 125 117 101 131 171 114 120 527 522 307 367 123 130 M 184 170 176 98 124 111 103 131 134 109 116 - 531 304 380 123 130 M 184 170 176 98 124 111 103 131 134 109 116 - 373 127 133 F 186 179 173 120 111 100 124 125 109 114 500 4	131 125 1	36 131	3 386	309	538	545	122	116	139	135		125	133	145	103	186	183	193	М	114
116 F 173 160 167 99 135 121 109 105 128 128 112 114 502 493 295 351 120 125 M 182 173 175 147 132 110 110 111 540 531 304 380 130 129 M 181 169 171 101 150 125 117 101 131 171 114 120 527 522 307 367 123 130 M 184 170 176 98 124 111 103 131 134 109 116 123 361 121 133 F 186 179 173 172 120 111 100 120 121 120 121 120 121 120 121 120 116 124 120 114 500 496 294 369 121 134 F 176 161 174 87 <																			F?	115
125 M 182 173 175 147 132 110 111 540 531 304 380 130 129 M 181 169 171 101 150 125 117 101 131 171 114 120 527 522 307 367 123 130 M 184 170 176 98 124 111 103 131 171 114 120 527 522 307 367 123 133 F 186 179 173 120 361 121 133 F 186 179 173 120 361 121 134 F 176 161 174 87 136 112 102 113 114 500 496 294 369 121 135 F 176 161 174 87 136 <th< th=""><th>120 115 1</th><th>51 12(</th><th>5 35:</th><th>295</th><th>493</th><th>502</th><th>114</th><th>112</th><th>128</th><th>128</th><th>105</th><th>109</th><th>121</th><th>135</th><th>99</th><th>167</th><th>160</th><th>173</th><th>F</th><th>116</th></th<>	120 115 1	51 12(5 35:	295	493	502	114	112	128	128	105	109	121	135	99	167	160	173	F	116
129 M 181 169 171 101 150 125 117 101 131 171 114 120 527 522 307 367 123 130 M 184 170 176 98 124 111 103 131 134 109 116 · · 373 127 133 F 186 179 173 · · · 120 · · 361 121 134 F 186 179 173 · · · 120 · · 361 121 134 F · 161 174 87 136 112 102 96 124 125 109 114 500 496 294 369 121 135 F 176 161 174 87 136 101 127 128 108 111 500 496 294 369 121 136 M 180 171 173 <th>130 131 1</th> <th>30 130</th> <th>4 380</th> <th>304</th> <th>531</th> <th>540</th> <th></th> <th>111</th> <th></th> <th></th> <th>110</th> <th>110</th> <th>132</th> <th>147</th> <th></th> <th>175</th> <th>173</th> <th>182</th> <th>M</th> <th>125</th>	130 131 1	30 130	4 380	304	531	540		111			110	110	132	147		175	173	182	M	125
130 M 184 170 176 98 124 111 103 131 134 109 116 373 127 133 F 186 179 173	123 126 1	57 123	7 367	307	522	527	120	114	171	131	101	117	125	150	101	171	169	181	M	129
133F186179173361121134F186179173120111100114500496294369121135F1761611748713611210296124125109114500496294369121136M180171173100126106101127128108111111514306371124139M18117217110314011710398133113114511514306371124143M187174176141125110101 \cdot 114119533528307370128146F18517016912911010796 \cdot 106111524513294365126148M19418218713911710991 \cdot 120535532314388128150M186166176141126122109105106534524286367124	127 125 1	73 127	373				116	109	134	131	103	111	124		98	176	170	184	M	130
134 F 120 111 100 135 F 176 161 174 87 136 112 102 96 124 125 109 114 500 496 294 369 121 136 M 180 171 173 100 126 101 127 128 108 111 500 496 294 369 121 136 M 180 171 173 100 126 106 101 127 128 108 111 511 514 306 371 124 139 M 181 172 171 103 140 101 127 128 108 111 511 514 306 371 124 143 M 187 174 176 141 125 110 101 114 119 533 528 307 370 128 146 F 185 170 169 117 109 91 120 <th< th=""><th>121 130 1</th><th>51 121</th><th>36:</th><th></th><th></th><th></th><th></th><th>120</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>173</th><th>179</th><th>186</th><th>F</th><th>133</th></th<>	121 130 1	51 121	36:					120								173	179	186	F	133
135 F 176 161 174 87 136 112 102 96 124 125 109 114 500 496 294 369 121 136 M 180 171 173 100 126 106 101 127 128 108 111 ···· ···· 360 122 139 M 181 172 171 103 140 117 103 98 133 113 114 511 514 306 371 124 143 M 187 174 176 141 125 110 101 ···· 114 119 533 528 307 370 128 146 F 185 170 169 129 110 107 96 ···· 106 111 524 513 294 365 126 148 M 194 182 187 139 117 109 91 ···· 120 535 532 314	120 1										100	111	120						F	134
136 M 180 171 173 100 126 106 101 127 128 108 111 360 122 139 M 181 172 171 103 140 117 103 98 133 113 114 511 514 306 371 124 143 M 187 174 176 141 125 110 101 114 119 533 528 307 370 128 146 F 185 170 169 129 110 107 96 106 111 524 513 294 365 126 148 M 194 182 187 139 117 109 91 120 535 532 314 388 128 150 M 186 166 176 141 126 122 109 105 106 534 524 286 367 124	121 128 1	59 121	1 369	294	496	500	114	109	125	124	96	102	112	136	87	174	161	176	F	135
139M18117217110314011710398133113114511514306371124143M187174176141125110101114119533528307370128146F18517016912911010796106111524513294365126148M19418218713911710991120535532314388128150M186166176141126122109105106534524286367124	122 129 1	50 122	360				111	108	128	127	101	106	126		100	173	171	180	M	136
143 M 187 174 176 141 125 110 101 114 119 533 528 307 370 128 146 F 185 170 169 129 110 107 96 106 111 524 513 294 365 126 148 M 194 182 187 139 117 109 91 120 535 532 314 388 128 150 M 186 166 176 141 126 122 109 105 106 534 524 286 367 124	124 120 1	71 124	3 72	306	514	511	114	113		133	98	103	117	140	103	171	172	181	M	139
146 F 185 170 169 129 110 107 96 106 111 524 513 294 365 126 148 M 194 182 187 139 117 109 91 120 535 532 314 388 128 150 M 186 166 176 141 126 122 109 105 106 534 524 286 367 124	128 122 1	70 128	7 37(307	528	533	119	114			101	110	125	141		176	174	187	M	143
148 M 194 182 187 139 117 109 91 120 535 532 314 388 128 150 M 186 166 176 141 126 122 109 105 106 534 524 286 367 124	126 103 1	55 126	1 365	294	513	524	111	106			96	107	110	129		169	170	185	F	146
150 M 186 166 176 141 126 122 109 105 106 534 524 286 367 124	128 137 1	38 128	1 388	314	532	535		120			91	109	117	139		187	182	194	M	148
	124 120 1	57 124	5 367	286	524	534	106	105			109	122	126	141		176	166	186	M	150

2	119	108	111	102		
3			113			
5	116	104	100	99	30	30
		111		102	120	106
2	120	107	110	92	33	29
Ļ	123		113	102	34	30
)	122	112	112	95	34	30
6	117	114	121	93	32	
Ļ	100		102	84	34	26
5	120	111	111	101		
)	126	113	105	112	32	33
)	126	116	104	104		
,	131	113	107	104	36	36
5			117			
;	130	117	113	105	38	32
,	119	108	104	99	33	29
	119	111	118	94		
;	118	108	111	99	33	32
)	124	111	110	101	34	28
)	110	107	118	91		
)	117		108	97		
}	121	107	113	96	33	33
)	109	109	112	89	32	28
)	130	109	110	101	33	28
2	120	111	109	99		
5	137	112	95	109		
,	123	111	125	102		
)	125	109	109	100		

151	М	170	163	163	95	146	126	126	109	129	130	109	114	507	503	299	351	114	122
152	М	184	180	177	102	146	130	113	112	134	132	113	118	530	522	306	371	129	121
159	М	188	185	181	109	143	124	116	110	138	140	112	118	542	531	301	369	130	124
161	М	186	176	180		149	129	123	102	133		115		546	533	310			128
167	М	176	162	173	90	145	125	107	101	117		106				297			130
168	F	182	170	176				107											126
170	Μ	174	164	171	101	149	126	105	108	132	133	115	116	514	508	315	365	128	124
171	F	175	164	170	102	150	128	110	100	118	119	108	111	519	513	302	354	122	123
173	Μ	182	167	176	94	149	128	117	99	131	130	113	118	536	526	308	376	127	125
174	Μ	198	190	186		141	121	101	95			110	114			302	389	134	125
178	F	188	174	185	106	141				122									142
182	F	177	171	171		132	112	104	93			103	110	501	499	287	350	115	123
183B <mark>183.1</mark>	М	186	178	177	110	134	119	111	116	125	125	104	105	517	504	281	360	128	109
183A <mark>183.2</mark>	M?	180	169	176			131	114	108			115	115				373	130	126
184	F	184	172	179		131	112	99	97			111	117	519	509	288	362	124	128
196 (1326) <mark>196.1</mark>	М	192	178	190	98	153	130	119	104	144	144	120	126	556	548	328	401	137	146
196 (1353) <mark>196.2</mark>	F	181	180	175	104	146	122	105	103	130	132	112	117			311	363	130	125
196 (1038) <mark>196.3</mark>	M?																		
196 (1069) <mark>196.4</mark>	F	181	168	179	94	140	118	103	91	126	125	113	118	518	511	310	381	130	131
197 (1230) <mark>197.1</mark>	Μ	187	176	182	102	142	126	115	104	133	135	111	118	535	523	298	378	125	130
1511A <mark>151.1</mark>	Μ	188	171	181	105	150	127	111	112	139	141	118	121	541	532	324	379	130	128
197 (1155) <mark>197.2</mark>	Μ	186	179	173	103	133	121	105	100	124	125	110	112	521	516	294	367	121	116
GLA 43 43	F	172	157	169	88	140	116	111		125		107		504	501	299	370	128	130
GLA 45 <mark>45</mark>	Μ	182	167	172	101	140	126	112		132	137	110	117	524	512	297	365	123	124
DIS 1 1.1	Μ	188	172	182	96					123							370	130	122
DIS 2 2.1	Μ	183	161	177	95	131	119	106	102	129		109			507	288	373	121	129
DIS 3 3.1	F	184	169	179	94	141	118	114	100	126	126	108	111	522	517	291	367	120	130
DIS 4 4.1	М	198	181	189	95	144	127	107	108	118		110		553	538	305	396	133	128
DIS 5 5.1	F?	183	172	174	97	132	113	99	96	127		106		512	509	287	371	123	128

115	104	105	92	34	28
122	114	109	100	33	30
115	114	110	99	38	
126		114	102	33	31
113	105	111	89	31	25
112		113	93		
113	113	109	98	32	24
109	105	109	89	33	30
125	113	112	102	33	29
131	116	111	101		
109		123	92	35	27
117	99	109	93		
123	113	99	103	35	31
117	114	112	97		
110	109	114	92		
117	119	126	104	37	31
111	113	108	92	34	30
120	111	115	98	35	27
124	112	116	103	32	29
120	115	116	100	35	31
130	105	104	103	37	26
112	106	113	94	30	27
118	110	108	102	36	
118	113	108	93	36	
123	106	115	101	33	31
117	106	115	94	36	30
135	113	115	99	36	
120	106	113	96	32	30

SKELETON	SEX	1.2.1	1.2.2	1.2.3	1.2.4	1.2.5	1.2.6	1.2.7	1.2.8	1.3.1	1.3.2	1.3.3	1.3.4	1.3.5	1.4.1	1.4.2	1.4.3
11	M		101												25		
24	M?			119	103		83			94				33			93
25	М																
26	F		91	116	97									29			
28	М	93	105	120	117		100	124	76	110	32		46	38	25	57	108
29	М		105	131	107		98		83	99		22	43	40	23	59	99
31	М																
32	F	88					89	104	70	95	19	17	42	35	22	51	95
34	М	98	104	127	109		95		70	101	21	19	42	30	29	50	99
35	М		103	126	111			117		104	30		43	33			103
37	М																
38	М	100	92	121	102		97	126	71			25	34	28		49	
39	F																
40	М		94														
42	F		91	114	103												
46	М	92						106	59				44	30		45	
54	F	100	98	122	102		94	114	70	99	24	22	41	35	23	50	99
56	F		96	116	103	127	90	100		95				32		48	95
57	М																
58	М		102	123	108		94			97				39			
59	М		100	123	106		90	110	67	98	24	22	40	33	24	48	98
60	F		103		106		87			100							
61	F	87	98	117	104			105	65		24	22	42	37	24	51	
62	М																
77	F	95						115	75		23	21	40	34	24	54	
78	М		102	126	111									33			

1.2 FACIAL SKULL, 1.3 ORBITAL SKELETON, 1.4 NASAL SKELETON AND 1.5 MAXILLARY SKELETON

1.4.4	1.5.1	1.5.2	1.5.3	1.5.4
		64		43
123	56	70	46	48
120				
	50	62		44
103				
112			46	
120				
	50		41	43
113	53			
105				
111	54			
	50	39		59
		57		39
	54	61	44	39

83	М	108	102	124	108		100	125	75	101	24	22	41	40	25	53	100	
85	М	101	96	120	102		94	112	67	93			38	33		49	93	
98	F																	
100	F		101	120	103		89				23							
107	М	98	97	119	108		89	113	68	98	23	21	41	33	22	51	100	
108	М																	
110	М		94	120	106		95		72	95	21	19	41	35	26	55	95	
112	М		102	122	109													
113	F?																	
114	М	99	96	123	101				65		25			32	24	48		
115	F?																	
116	F	101	91	116	99	127	92	103	65	92	19	18	39	33	22	48	93	
125	М		102	126	106		96		67	98			41	35		51	98	
129	М	89		120	101		90	119	72				40	37	24	51		
130	М	94	93		103		82	109	60	93				31		42	93	
133	F		103	118	105						25							
134	F		98		107								41	33				
135	F		86	112	95		93			89			38	32			90	
136	М	96	97	120	105		97		68	96	24	23	40	32	24	49	97	
139	М	91	99	125	103		91	112	69					32		53		
143	М		97	125	101		94	109	65				42	33	23	48		
146	F		97	115	103		90	107	66	93	22	19	39	34	24	50	92	
148	М		95	122	102													
150	М		97	121	103	127	91			98	25	21	42	32			97	
151	М	85	93	115	101		96	107	67	96	22			31	25	51	96	
152	М		101	116	106		97	112		99		22	41	32			99	
159	M		99	123	11		99	126		104				36			104	
161	М		97	124	109													
167	М													32				
168	F		97	117	102													

)		58	65		43
	103				
			54	40	
)	109	53	64		41
		54	59	46	38
	110			39	
		52			
		22			
	103	55	60	43	44
	108	55	00	42	
	100	52	61	40	40
		-	-	40	-
	99				
	110	57	64	46	41
		51			39
	102				
	111				
		48	61	40	40
	115				
ļ					35

170	М	93	93	122	103		95		69	95	24	22	38	34	23	52	95	1
171	F	91	98	125	102		88	107	64	98	26	21	41	35	23	47	98	1
173	М	93	102	126	109		101	121	69	99			42	35	26	49	98	1
174	М		97	126	108	132	89			99	24	23	41	40			99	1
178	F		101		106										24			
182	F		95	116	101			101					38	34				
183B 183.1	М	101	94	150	103		101			96	23	20	39	31	22	51	96	1
183A <mark>183.2</mark>	M?		104	132	111						26	26	40	32				
184	F		95	113	101		84	105	61	91	23	19	38	32	26	48	92	1
196 (1326) <mark>196.1</mark>	М		104	131	110					101	25	21	42	32			101	1
196 (1353) <mark>196.2</mark>	F	104							67							50		
196 (1038) <mark>196.3</mark>	M?		91	115	102		92		68	93	25	24	36	33	23	49	94	1
196 (1069) <mark>196.4</mark>	F	86	94	119	97		89		73	90	22	19	38	37	22	55	90	1
197 (1230) <mark>197.1</mark>	М	100	96	120	102		96		70	94		22	38	36		51	94	1
1511A <mark>151.1</mark>	М	101	105	130	109		93	123	71	101	22	21	43	36	22	51	101	1
197 (1155) <mark>197.2</mark>	М	97	95	117	102		97		74	97	26	24	38	33	26	53	98	1
GLA 43 43	F		100	121	102						25							
GLA 45 <mark>45</mark>	М	93	97	115	106		99		66	101	26	24	41	33	26	49	100	1
DIS 1 1.1	М	93											38	39		50		
DIS 2 2.1	М	95		114					67		23	20	40	35	25	47		
DIS 3 <mark>3.1</mark>	F		91	118	94	119	80			91	17	17	41	38	24	52	91	1
DIS 4 4.1	М		100	124	108							23						
DIS 5 5.1	F?		97	116	100													

	107				
	111	55	65	46	42
	109	59		43	
	112				
	106	53			
	106	55	57		33
-	111				
	105	54	60	44	40
	104	52		42	
	105	58	61		
	118	58		47	41
	111	57	67		47
)	115	51	60	40	37
				44	
	104			40	

<u>Poulton</u>

1.1 NEUROCRANIUM

SKELETON	SEX	1.1.1	1.1.2	1.1.3	1.1.4	1.1.5	1.1.6	1.1.7	1.1.8	1.1.9	1.1.10	1.1.11	1.1.12	1.1.13	1.1.14	1.1.15	1.1.16	1.1.17	1.1.18	1.1.19	1.1.20	1.1.21	1.1.22	1.1.23	1.1.24
50	М	180	172	172	92	142	131	116	111	122	122	105	109	520	519	293	370	125	120	125	109	109	104	40	35
53	М	191	176	189	107	145	127	114	107	132	133	112	116	559	542	310	389	135	133	121	120	118	100	33	30
67	F						115	110	103											114			94		
82	М	193	188	186	107	145	130	115	110	136	136	114	117	552	544	312	394	132	142	120	113	123	94	33	30
83	М	192	184	185	107	139	122	110	97	133	132	113	116	535	532	305	380	132	126	118	118	111	95	34	29
84	F	194	182	188	105	141	119	107	95	137	139	119	126	541	540	314	398	135	145	118	117	126	99	38	31
86	М	189	177	183	107	137	117	108	96	125	126	110	116	532	523	302	368	130	126	112	116	113	93	34	25
90	М					136	121	108	98	131										119		117	98	34	
93	F	177	164	174	100	141	115	112	97	131	133	117	124	510	504	307	365	125	130	110	112	113	94	30	24
94	М	192	189	188		143	123	119	103			111		543	536	306		134	138		116	123			
95	F	170	159	166		145	131	108	103			105	111	503	495	285	348	122	110	116	112	118	100		
96	F	185	169	177		140	123	105	98			112	117	521	522	308	381	136	131	114	114	115	93		
103	М					135	110	108	95	115		104				300			129	106		115	86	33	31
110	М	189	171	178		135	115	114	94			112	116	530	519	301	371	122	121	128	108	106	103		
112	М	181	175	180	95	141	120	108	94	128	129	109	111	525	517	298	376	134	128	114	116	113	98	33	28
114	М	193	176	182		146	130	112	107			115	119	548	541	316	380	125	126	129	112	113	104		
119	М	184	176	177		149	128	118	103			121	119	538	526	320	370	134	130	106	117	114	91		
121	М	191	183	189	103	137	120	114		135	135	117	120	537	524	311	386	130	128	128	118	117	104	34	28
122	М	188	176	181	102	147	129	118	115	138		115		546	537	307	383	132	131	120	116	116	100	38	30
123	М	176	176	174	104	150	126	116	108	130		112				312	365	120	134	111	108	116	91	35	34
125	М					156	133	121	111			119				326			127	137		113	107		
131	М	188	174	180	97	158	136	119	119	135	135	114	121			332	387	130	134	123	116	117	100	37	32
132	F	181	170	175		136	118	104	90			111		513	509	300	373	129	118	126	114	106	99		

134	F					147	122	108	98	115						312			110
140	М						133	116	107										
142	F					142	120	111	94							314			145
155	М	177	170	171	91	143	127	111		124	124	108	112	521	506	298	355	121	116
156	М	201	190	192		146	120	109	100						553	324	398	135	
166	F	180	171	174	102	146	129	115	108	134	134	114	116	524	522	312	369	133	120
169	М	185	180	177	101	150	127	115	106	134	134	116	120	546	540	318	382	134	121
171	M?					144		119											121
173	F?					149	127	114	111										
174	М	179	170	172	98	147	118	109	102	134	134	112	135	525	522	306	374	123	130
176	М	179	171	169	95	149	125	108	106	121	126	108	114	526	517	303	361	117	123
187	M?					154	134	116	111							325			120
189	М	189	175	177			122	103	103				109				371		
209	М	192	178	185	100	148	124	115	102	135		117		553	545	323	391	137	117
219	М	172	159	166		146	122	108	101			109	114	515	512	302	361	125	116
227	М	180	168	173	95	137	118	105	101	127	127	108	110	525	515	296	361	122	130
230	м	179	170	172		152		115						531	529		385	129	133
246	М	193	183	183		136		102									372	126	130
268	F	172	159	167		151	125	116	100			110	117	520	512	301		123	126
286	М	195	183	189		145	124	111	102			123	125	558	552	334	386	128	139
288	м	206	185	198		151	129	111	110			116	121	578	578	326	422	143	146
292	М	196	182	184		153	140	121	120			115	119	563	549	315			125
293	F?	183	158	173	87	143	124	118	102	131	126	112	115	532	517	301	370	130	107
295	М	181	177	170	94	146	124	111	101	140	140	116	116	531	528	316	373	135	127
297	м	191	180	186		153	133	122	115			116		551	542	318	381	137	128
298	М	192	178	186		145	127	116	104			119		554	550	321	395	135	130
303	м	178	174	170		149	129	116	107			112	116	532	523	308	365	121	119
305	М	182	174	173		143		113							523		361	126	122
306	F	176	158	171		144	121	110	102			111	118	519	512	298		121	129
309	F	177	165	169	96		123	108	104	128	130	111	116				364	125	115

)	111		100	91	33	25
	117			94		
5	112		125	95		
5	118	110	103	95	35	29
	130	118		102		
)	116	117	108	99	39	29
L	126	113	112	105	39	28
L	118	108	88			
	111			91	31	26
)	121	107	114	102	32	25
3	121	102	107	96	35	29
)			110			
	124			99		
7	137	119	113	103	38	32
5	120	105	103	97		
)	109	105	115	91	33	28
3	123	113	116	93		
)	116	112	116	94		
5		107	109			
)	119	111	127	98		
5	133	121	130	101		
5	140		114	105		
7	133	117	99	102	36	33
7	111	112	112	91	41	33
3	121	119	115	103		
)	130	116	116	106		
)	125	107	105	100		
2	113	105	110	89		
)		107	129			29
5	124	112	100	100	31	27

310	м	186	177	175	103	156	136	120	122	135	134	114	116	546	545	324	379	138	113	1
313	F	189	180	179	96	142	121	111	99	128	126	106	107	538	528	283	374	131	123	1
318	М	183	169	174		148	128	113	108			110	114	533	529	302		127	118	
324	F	173	164	169	94	144	122	112	99	115	114	107	109	511	505	298	350	121	117	1
325	F		159	173		154	126	116	106			117	124			318	376	132	125	1
336	М	191	183	180	100	156	126	110	108	142	140	126	127	553	545	338	401	137	143	1
337	F	176	164	175	93	133	110	109	97	129	131	110	115	519	508	296	370	125	139	1
340	М	194	175	185	104	143	122	117	102	145		123			536	318	394	137	130	1
342	М	183	174	173		150		120						537	533			128	121	
346	М					151	129	114	109	127	128	113	113			313			131	1
352	м	181	178	168	105	144	123	114	105	135		116		526	525	321	367	123	124	1
354	М	190	182	183		138	123	113	97			111	111	538	523	300	370	132	121	1
366	F	173	166	169	102	150	122	112	106	133	133	114	117	516	514	320	364	132	120	1
371	M?	180	167	170	99	139	126	106	106	121	120	105	106	516	515	290	358	125	116	1
372	м					155	136	116	115			117				323			130	1
375	M?	177	163	172	99	146	128	119	100	115	118	110	112	527	522	303	350	122	117	1
380	М	182	165	180	93	143	128	110	109	125	126	107	110	532	524	295	369	129	120	1
381	F	186	172	180		139	121	109	97			111	111	525	526	307	369	130	129	1
382	F	175	164	169		149	129	106	109			107	109	516	512	292	355	124	116	1
391	F	170	160	162	99	147	130	114	102	124	124	106	108	514	505	296	328	116	109	1
392	F?	182	158	176	96	140	122	109	102	130	131	110	116	521	515	297	371	134	121	1
395	F	178	154	173	94	134	118	108	103	131	132	105	112	510	498	288	357	119	122	1
408	М					142	123	114	102	125		114				316			136	1
419	М	188	170	183		143	127	115	106			106	107	538	527	282	371	128	123	1
423	М	203	180	200	103	154	129	117	103	132		115		580	561	316	396	142	127	1
432	M?	187	172	181	95	152	133	117	117	129	128	112	116			310	386	141	127	1
428	F	182	173	177	89	150	134	114	113	135		116		534	532	312	385	135	126	1
435	М	185	175	176	102	147	123	109	108	138		118	119			322	376	132	127	1
436	м	186	173	180	112	138	112	109	92	136	136	114	116	525	522	304	369	130	129	1
443	М	189	176	183		147	125	112	103			116	121	551	541	320	380	129	123	1

128	117	106	102	41	35
120	118	111	95	35	30
	109	108			
112	105	105	89	32	27
119	113	107	96		
121	118	125	92	34	27
106	109	119	87	33	25
127	118	120	102	40	30
	112	120		40	30
119		118	93	32	29
120	107	109	95	35	32
117	114	111	93		
112	113	106	99	36	30
117	108	103	92	34	
114		114	94		
111	104	106	88	36	31
120	112	109	99	38	33
110	110	116	89		
115	106	105	96		
103	104	99	88	38	30
115	116	110	95	39	32
116	107	110	99	38	
115		122	88	32	31
120	115	113	96		
127	130	117	102	40	37
118	121	113	96	33	35
124	118	112	103	41	30
117	108	114	99	34	
110	114	115	92	36	28
128	114	112	102		

447	М	185	173	184	109	134	121	104	98	128	129	112	113	526	514	290	377	140	127
458	F				101	146	129	110	104	130	131	111	114			297			126
460	М	185	170	178		145		111									354	117	120
467	М	186	174	180		145	122	115	100			104	109	536	529	293	366	134	120
479	М	190	180	188	102	148	118	107	98	128	133	113	117	548	539	317	376	131	130
481	М	167	157	163	88	147	125	112	105	120	120	111	112	508	504	307	350	125	117
483	М	186	177	173	102	136	125	113	101	127		108		524	522	291	370	124	110
484	М	193	183	180		143	123	116	107			112		550	544	311	387	133	120
487	F	181	161	177	92	136	120	110	98	122	122	105	108	517	509	282	362	129	126
513	М	181	167	172	99	144	129	110	100	131	131	114	114	520	513	307	379	127	114
515	М	182	172	175	99	136	126	113	98	129	129	112	114	513	507	301	367	133	116
522	М	196	180	196		154	134	124	111			115		566	557	315	395	137	137
524	М	189	165	175	90	134	112	102	88	119	158	106	106			288	363	122	122
526	F	179	164	172		135	116	107	94			117				311	370	125	122
532	M?					152		111											132
536	F	191	168	188		147	127	109	104			116	118	540	544	315	394	142	137
537	М	178	166	174	98	142	118	106	98					515	512				
538	М	187	173	180	111	146		108		138				534	525		377	131	123
545	F	174	159	165	92	149	118	120	103	126	126	108	111	515	514	302	359	124	124
548	М	182	161			154	124	121	107			105	112	541	533	293	371	125	
555	F	183	171	180	98	143	127	112	106	135	136	116	121	527	526	310	385	134	133
559	М	177	166	174	92	146	118	114	98	120				515	505	290			142
560	M?	196	175	186		148	122	119	106			113	119	557	555	315	397	134	142
566	М	178	171	172		155	131	119	113			113	118	539	534	317	377	130	122
569	М	179	162	172		147	129	112	102			109		522	519	296	376	130	125
570	M?	175	153	171		140	116	112	97			106		519	512	310	362	123	114
572	М					146	126	111	109	134						320			123
576	F	178	158	172	95	145	116	116	99	127	126	114	115	518	514	311	378	126	125
578	м	175	162	171	98	158	127	112	103	129	129	116	116	535	531	332	365	126	122
585	М	185	171	183	100	149	130	118	111	140	140	117	123	550	534	321	377	128	128

7	110	120	114	92	32	29
5	112	108	111	92	33	30
)	117	106	111	92		
)	112	117	107	90		
)	115	116	117	97	39	
7	108	111	103	89	40	31
)	136	107	104	102	29	28
)	134	115	110	102		
5	107	113	112	88	33	27
ł	138	112	104	108	32	27
5	118	116	103	93	34	29
7	121	119	125	97		
2	119	108	111	92	33	
2	123	113	111	97		
2	117		112	93		
7	115	118	119	93		
	116			92	34	27
3	123	115	110	100	32	28
ļ	111	107	110	91	33	29
		109				
3	118	118	114	99	33	28
2	116		121	95	32	26
2	119	117	119	99		
2	125	111	106	98		
5	121	112	114	98		
ł	125	105	104	104		
3	124		112	99	33	30
5	127	111	113	103	31	28
2	117	107	110	93	33	28
3	121	114	114	106	40	35

587	F	185	163	175	101	150	130	115	103	136		116			533	320	380	132	136
589	М	182	164	178		150	132	122	114			115	119	545	532	311	381	124	138
592	М	183	171	180	95	159		116		121				550	545		381	121	136
596	М	187	171	180	94	144	125	108	104	126	127	113	117	528		302	374	126	133
597	М	180	165	177	89	153	141	125	119	137		118			531	323	383	134	140
598	М	178	165	174	92	140	117	103	96	125	126	110	116			296	373	124	121
599	F?	179	162	172		151	135	119	108			109	113	526	516	300	366	124	130
605	F	173	159	166	93	143	124	107	103	127		109		512	507	299	359	130	117
608	М	189		182	100	144		117	100	134		122		537	534	317	387	131	134
615	F	187	166	180	100			105		120							372	132	124
616	М	194	181	186	107	141	127	116	100	138	140	120	122	542	531	310	394	131	137
617	М	186	176	180	95	149	133	118	110	136	136	120	122	542	539	323	395	133	138
622	F	175	161	169	93	137	117	105	97	119		105	107	499	499	290	353	122	118
632	F	190	175	180	95	149	123	108	104	121		106			544	308	387	132	122
639	М	195	183	189		153	128	114	113			117	119	556	551	320	407	146	138
643	M?					144	114	103	92	122						308			129
649	м	182	173	174	104	149	126	114	111	138		113		537	529	310	368	115	135
658	М	197	177	190	107	148	128	113	110	144	146	122	126	554	551	324	402	133	141
663	F	183	167	177		144	119	106				115	118	529	518	306	366	129	120
675	F	194	187	189	96	131	110	99	101	121	121	109	109	528	522	290	384	131	143
678	F	182	180	176		144	123	110	101			105	108	528	519	292	356	120	125
679	F	180	164	177	92	140	119	101	95	128	128	109	110	518	518	298	370	137	127
685	F	170	156	164	96	140	119	109	98	127	125	111	111	501	497	301	350	123	117
688	М	179	177	172	95	146	130	111	106	127	126	114	116	528	524	315	377	135	132
691	М	194	174	186	112	145	126	110	107	138	140	113	116	543	542	309	376	123	131
696	М	184	176	179	96	149	123	111	107	142	141	121	122	531	532	326	389	139	135
697	М	176	162	171		148	130	115	102			114	115			309	360	127	123
698	М	181	173	174	103	141	116	108	101	138	142	112	118	520	511	298	364	121	123
700	м	184	170		100	151	133	120	111	134		113			536	316	380	123	
702	М	191	187	181	109	142	126	119	107	139	139	119	121	546	526	308	373	131	122

112	114	120	93	33	29
119	110	122	96		
124	108	119	98	36	32
115	113	117	92	34	31
109	116	121	94	39	33
128	107	107	100	33	
112	111	113	91		
112	111	109	95	34	32
122	114	121	95	33	27
116	112	111	92	35	28
126	115	123	104	34	33
124	116	121	97	34	30
113	107	106	93	31	
133	109	110	101	33	29
123	124	123	100		
111		113	94	40	27
118	102	119	101	37	33
128	107	126	116	37	31
117	116	108	97		
110	112	129	87	35	
116	108	113	95		
116	115	111	88	30	25
110	107	106	91	31	29
110	113	116	90	35	31
122	109	119	102	36	27
115	116	119	95	34	32
110	112	112	90		
120	109	109	98	36	32
	107			31	29
120	117	111	104	37	34

705	М	181	162	173	94	137	121	107	102	124	125	111	112	508	509	297	361	126	118	1
711	М	176	167	167	104	135	127	112	109	137	138	112	114	508	497	290	350	111	124	1
713	М	195	183	191	98	143	129	109		141		121		551	549	317	407	142	140	1
721	F	185	172	181	97	133	122	112	103	131	132	110	112	522	516	287	375	129	124	1
725	М	190	170	182		146	118	107	101			119	119	538	540	324	399	138	139	1
733	М	180		176		148	128	120	112			115	117	532	523	317	368	127	124	1
737	М	189	180	186		140	116	115	100			121	119	543	541	328	396	140	142	1
739	М	197	182	188		140	114	109	95			118	123	540	542	312	398	135	130	1
740	M?	193	172	186		143	126	114	104			108		552	544	301	381	126	131	1
744	М	196	180	186		153	120	116	92			119	122	562	560	332	402	141	126	1
752	F	181	167	176	93	144	116	115	99	125	124	106	113	519	514	294	371	128	128	1
755	М	183	173	176		144	118	110	90			111		531	520	306	373	128	122	1
756	М					153	137	125	120			122	123			321			124	1
762	М	178	178	174		147	126	115	104			119	119	535	530	327	366	129	128	1
775	М	182	165	180	100	139	117	102	95	131	131	114	116	521	510	306	360	125	130	1
778	M?	172	157	163	95	140	115	114	99	131	131	111	114	502	498	296	354	118	121	1
797	М	179	170	173	95	161	135	119	116	135	133	124	124	542	540	343	386	135	131	1
798	F	177	162	171	102	138	118	99	103	141	142	114	115	509	508	306	363	126	121	1

117	110	109	93	35	32
115	103	113	95	37	32
125	122	126	101	33	29
122	111	116	97	34	28
122	118	127	98		29
117	114	110	99		
114	119	126	94		
133	119	116	104		
124	109	118	95		
135	121	113	96		
115	112	114	94	34	28
123	114	108	102		
120		110	97		
109	114	114	87		
105	113	116	89	38	30
115	106	109	93	35	27
120	117	117	95	34	31
116	113	109	96	36	

1.2 FACIAL SKULL	, 1.3 ORBITAL SKELETON	, 1.4 NASAL SKELETON	AND 1.5 MAXILLARY	SKELETON

SKELETON	SEX	1.2.1	1.2.2	1.2.3	1.2.4	1.2.5	1.2.6	1.2.7	1.2.8	1.3.1	1.3.2	1.3.3	1.3.4	1.3.5	1.4.1	1.4.2	1.4.3	1
50	М	93	92	130	97		91	104	67	91	23	21	36	31	23	54	91	
53	М	98	101	131	108	135	90	118	72	98	22	21	41	39	24	55	97	3
67	F																	
82	М	99	103	130	110	137	100	112	69	101	27	25	41	32	24	49	101	-
83	М	102	104	120	107		92	115	71	100	21	20	44	35	24	52	100	:
84	F	95	96	120	102	127	90	119	73	95	25	21	40	34	22	54	94	
86	М		102	121	105	125	86	110		96			42	35			96	
90	М													34	23			
93	F	90	90	116	98	123	90	101	63	93	19	15	42	36	23	54	93	
94	М		95	125	102													
95	F		88	117	97		91	101	62		21	21	39	32	23	48		
96	F		102	129	102		91	107	69	95	24	21	40	32	25	52	96	
103	М																	
110	М		97	115	103				62		21	19	41	34	30	51		
112	М	92	99	125	107	124	102	99	66	100	24	22	41	33	23	47	100	:
114	М		103	125	111		83			102				32				
119	М		101	124	108		71			99			43	30				
121	М	95	96	121	106	134	103		69	99	25	22	43	36	30	56	100	
122	М		99	126	106													
123	М			130														
125	М																	
131	М	86					104	120	71						25	56		
132	F		97	116	103			108										
134	F																	
140	М																	
142	F			126														

3	1.4.4	1.5.1	1.5.2	1.5.3	1.5.4
	100	57	63		45
	116	52	58	44	41
	115	56		47	
)	117	53	57		35
	111	53		43	
	114				
	104				
		47	58		40
	108				
			55		36
)	112	57		44	
)	114				
				40	
			61		39

155	М	89	98	120	150		97	122	75	100	126			35		55	100	1
156	М		103	126	105						23	21	39					
166	F	97	101	129	106	132	93	116	74	98	27	25	41	34	26	55	97	1
169	М	97	102	131	111	136	99	114	69	103	22	20	44	33	28	48	105	1
171	M?																	
173	F?	88																
174	М	96	99	129	106		89		69			21	42	37	25	49		
176	М	96	98	128	106			117	73				42	34	27	54		
187	M?			132														
189	М		95	120	102		89		65	97	25	22	40	33	26	50	97	1
209	Μ		100	125	106		90											
219	М		99	120	104		85		61	99	24	23	42	32	22	47	99	1
227	М		103	124	107		98	112		99	25	24	40	34	23	48	100	1
230	М		101	126	108		94	118		99				32		49	100	
246	Μ		91	114	100													
268	F		101	121	107		90	104	66	98	21	19	42	36	23	49	99	1
286	М		106	130	108		87			102							101	
288	М		113	146	117			118	73				39	35	27	53		
292	М		107	132	112	152	108			106				38				
293	F?		97	122	106			113		100	19	18	43	35	25		100	1
295	Μ	84	98	127	105		93	115	70	98	27	24	38	29	25	54	98	1
297	М		102	130	103													
298	М		109	136	110									34				
303	Μ		98	125	107		95		72	102	26	24	41	35	25	49	102	
305	Μ		99	121	106													
306	F		92	117	97		86	100	59	93		22	37	30	23	44	94	1
309	F	89					86		69		21	18	38	33	21	51		
310	М		103	132	109							30	37					
313	F		105	123	109		85	102		103			43	39			102	1
318	М		94	121	100	131	81	106		93				30		44	93	
I																		

)	112	54	61		39
	113				
Ì	114	57	63	46	40
		53	61		41
		53		43	
	110	51	58	40	39
		55	61		38
	112				
)	112		61		39
)			62		
	113	53			
)	111				
	108	51	63	42	41
<u>)</u>		57		43	
	101				
		50	58	40	38
				44	
<u>)</u>	123				

324	F	88	95	121	100	124	83	122	72					36	26	50		
325	F		100	127	106		92	109		97			37	34				
336	М	94	101	126	108	134	91	104	64	101		22	42	30	24	45	100	-
337	F	95	96		102		83	110	65	93		21	37	31		43	93	
340	М		93	115	101								45	37				
342	М		104	126	107		92			97				33			96	
346	М		106	126	115	133	88			105				31				
352	М		103	131	110						35	32	39	35				
354	М		98	121	106		101	120	70	97	28	26	38	35	26	50	96	-
366	F	85	92	125	98		94	116	69	93	19	17	40	37	23	53	93	-
371	M?	92	96	124	106		95		63	98		20	42	31	23	46	98	-
372	М																	
375	M?	103	108	127	113	139	98	107	66	103	29	25	42	31	28	47	104	-
380	М		94	115	101		99			96			40	32			96	:
381	F		98		101					88				30				
382	F		94	120	102		90	106	66	98			41	34	25	51	99	
391	F	88	103	117	111						27	24	42	36	28	52		
392	F?	95	88	118	99		94	101	64	91			36	32	23	48	92	
395	F	91	89	115	99		87		64	95				34	24	48	95	
408	М		104	124	110									34				
419	М		91	115	106		93			103				35		56	102	
423	М		108	133	116													
432	M?			126										38				
428	F		95		104													
435	М												43	35				
436	М	95	100	123	103		87	108	68	94	22	23	40	34	25	53	94	-
443	М		105	126	111	139	90			104	28	26	43	36			105	-
447	М	95	100	116	107	127	92	119	72	101				37		50	102	
458	F	96				135	92	111	71	98	24	24	41	34	26	52	98	-
460	М		100	119	108				72					38	27	53		

			39	
113	50			
			41	
407	F 4	60	10	10
107	54	63	43	40
105	48	62	41	41
114	52	58		38
100			44	
120	59		50	
106				
		60		43
		66		11
115		00		44
115				
110				
111	53	66	42	43
			41	.5
			•	

467	М		99	125	106									35				
479	М	93	94	125	103		92	126	77	93	19	19	41	39	23	54	94	105
481	М		102	126	108		101			102	26	25	41	31			102	115
483	М		97		101													
484	М		103	125	112													
487	F	90	104	122	109	124	94	108	67	100	24	22	43	35	25	49	100	114
513	М	95	101	120	107		98	105	62	103	27	26	41	31	27	45	102	114
515	М	91	99	118	104		81	116	70	98			42	37	25	53	97	115
522	М		109	136	110	144								32	24			
524	М	95					95	110	68	96	23	23	39	36	22	46	96	107
526	F			121														
532	Μ?		98		105													
536	F		104	137	104		89		64	99			41	33	25	42	99	
537	М	95	95		101		85	107	64	92	20	18	39	32	23	48	92	103
538	М	85	98	120	103		95	126	75	95	22	20	41	35	23	54	96	
545	F	87	95	123	101		82		58	92		21	38	32		43	93	99
548	М		104	126	111		90	112	65	102			43	36	25		102	
555	F		103	126	107		90	114		100		22	42	35	24	49	100	114
559	Μ		89		97													
560	M?		99	128	104								42	39		51		
566	Μ		95	128	105		90	118		98	20	19	42	39	24	54	98	
569	М		97	126	103													
570	M?		100		102													
572	М																	
576	F	92	96	115	100	125	85		66	93	26	23	37	31		50	94	104
578	М	93	106	141	108	137	100	113	66	102	27	26	42	33		48	102	118
585	М	87	102	125	115		99		78	104			46	37		57	105	
587	F			133														
589	М		98	123	106	140	92	109	62	99		19	42	29	23	46	99	114
592	Μ		101	130	108							27						

105	55	63	44	41
115				
	46		40	
114	51	60	41	38
114	55	65	45	
115	51	61	41	42
107		63	44	44
			40	
103	51		40	
	52			
99	48	57		38
		55		36
114				39
			46	
104			43	
118	53	63	46	42

114	40

596	М	89			104	132	90	117	71	99	29	25	41	37	24	50	100	1
597	М	90		130				126	74					30		55		
598	М			113			96			97								
599	F?		96	114	103		94		68	99	22	18	43	33	25	51	98	1
605	F		95		103								40	32				
608	М			125	103													
615	F	92			100				64			21	43	38	23	49		
616	М	104	101	121	109	138	99	115	70	102	26	23	42	32	27	50	102	1
617	М	95	101	129	110		98	132	72	104	26	21	43	33	26	53	103	1
622	F		90	116	94		83	108	66	88			38	37	21	50	88	
632	F		102	131														
639	М		92		103		96		75	97		19	42	39		53	97	1
643	M?																	
649	М		104	124	107								42	32				
658	М	101	98	126	104		96	106	64	100	26	24	42	29	24	46	100	1
663	F			119	104						25	21		36				
675	F	93	90	112	97		87		68	92	18	16	40	32	23	45	93	1
678	F		95	120	101		94	121	77	94	18	17	42	36		57	94	1
679	F	91	105	121	108		90	110	67	99	24	22	41	33	27	47	99	1
685	F	92	96	119	104		89	101	64	96		20	39	33	25	46	96	1
688	М		108	127	113		88			102			43	31			103	1
691	М	108	105	128	109	133	102	107	67	98		26	40	32	27	52	98	1
696	М	82	100	135	102	128	90	102	63	94	20	18	41	32	24	49	95	1
697	М						91	122	68			20	41	33	22	49		
698	М	91	90	115	96	126	82		74	89			36	37	24	54	90	9
700	М			132			98											
702	М	109	94	117	106		95	118	72	99	19	20	42	34	24	51	98	1
705	М	86	98	124	101		80	113	69	95	23	21	40	37	23	51	96	1
711	М	97	93	111	106	136	98	106	65	100	25	22	41	33	25	51	101	1
713	М		103	125	106							26						

114	49	61	40	42
	54		46	
112			41	
118	56		45	46
114	58	71	45	44
		58	36	
114				
118				
106			41	
109	55	61		40
109		56	44	38
107	49	60		39
120				
116	56	67	47	43
106			37	51
97			42	
	54	69	42	44
116	60	62		39
106	47			36
114	57		48	

721	F	88	89	110	98		90		64	93	18	17	39	32		49	93	-
725	М		98	126	101	126	94			93	22	22	40	32	24	51	93	-
733	М		101	131	107		99			100	23	22	41	34			100	-
737	М		102	132	106									31				
739	М		94		98	120	94	132	78	92	18	17	40	37	24	57	92	-
740	M?		98	124	105													
744	М		101	135	105		95	124	73	100	22	20	43	38	24	54	100	-
752	F	87	88	110	96	119	89	112	71	91	20	19	39	35	24	51	91	-
755	М		95	116	107													
756	М		95	126	108		102			101			45	31	24		102	-
762	М		107	131	109	133	97	110	66	100	23	22	41	32	24	56	100	-
775	М	97	97	116	106		88	125	74	99	26	24	41	35			98	-
778	M?	92	93	119	98	114	87		59	91	20	19	38	31	21	44	91	-
797	М	100	104	135	111		101		70	105		23	43	31	24	53	104	
798	F																	

103				
107				
115			45	
105	55	64	41	38
114				
102	52	55	40	38
115	56			46
113	52	64	45	41
114	56	60		38
102			39	
<u>Linenhall</u>

1.1 NEUROCRANIUM

SKELETON	SEX	1.1.1	1.1.2	1.1.3	1.1.4	1.1.5	1.1.6	1.1.7	1.1.8	1.1.9	1.1.10	1.1.11	1.1.12	1.1.13	1.1.14	1.1.15	1.1.16	1.1.17	1.1.18	1.1.19	1.1.20	1.1.21	1.1.22	1.1.23	1.1.24
1	Μ	185	171	178		144	129	120				108	109	531	522	301		130	126		114	112			
2	F	176	156	170	86	144	117	111	98	121	123	109	113	512	510	311	371	126	126	119	107	113	94	30	29
3	Μ	164	150	162										521	513		383	129	130	124	109	116	102		
4	Μ	173	159	165	100	142	125	113	104	134		112	117	506	494		350	101	130	119	93	115	102	35	28
6	Μ	186	177	178	95	133	122	108	101	133		114		520	518	306	380	130	132	118	110	118	97	36	29
10	Μ	188	177	182			124	115	113			115		537	530	305	373	135	123	115	116	112	99		
11	Μ	169	156	166		141	117	115	97						505	306	378	125	133	120	109	113	98		
14	Μ	173	163	170	91	141	127	106		129		109		511	501	300	362	128	122	112	113	107	94	34	29
18	F	154	144	154				109						477	464		338	115	117	106	100	105	89		
19	F	180	171	174	99	140	119	105	103	130	130	111	113	519	516	303	366	128	118	120	109	109	98	31	27

1.2 FACIAL SKULL, 1.3 ORBITAL SKELETON, 1.4 NASAL SKELETON AND 1.5 MAXILLARY SKELETON

SKELETON	SEX	1.2.1	1.2.2	1.2.3	1.2.4	1.2.5	1.2.6	1.2.7	1.2.8	1.3.1	1.3.2	1.3.3	1.3.4	1.3.5	1.4.1	1.4.2	1.4.3
1	М		105	124	106				57		25	22	40	34	23	46	
2	F	78	99	128	103		87	104	60	97	24	22	41	36	23	48	97
3	М		105	130	117												
4	М	98	98	113	102		89	117	69	97	23	19	40	30	24	48	95
6	М		90	113	96												
10	М		95	120	100		85			92	22	19	39	36			92
11	М			125													
14	М		95	117	103					97			42	32			97
18	F		95	110	105												
19	F	95	103	125	105		94	110	67	99	28	23	41	32	24	49	98

1.4.4	1.5.1	1.5.2	1.5.3	1.5.4
108	48	58	40	37
104	55	62	47	43
103	53	60		41
	56		47	42
		59	43	38
111	54	64	44	42

St Gregory

1.1 NEUROCRANIUM

SKELETON	SEX	1.1.1	1.1.2	1.1.3	1.1.4	1.1.5	1.1.6	1.1.7	1.1.8	1.1.9	1.1.10	1.1.11	1.1.12	1.1.13	1.1.14	1.1.15	1.1.16	1.1.17	1.1.18	1
NGA12	М	180	173	175	96	138	127	113	105	132		112		518	509	299	367	130	119	
NGA48	М	173	156	173	95	142	124	108	107	135		113		513	509	306	371	136	130	
NGA72	М	177	170	173	91	142	124	112	104	126		108		522	513	292	371	126	130	
NGA74	М	179	172	168	101	147	131	112	103	135		117		526	527	316	369	130	130	
NGA103	М	182	175	177	101	140	127	113	107	137		113		525	513	299	369	121	127	
NGA118	М	181	173	183	97	138	115	101	98	129		110		526	516	302	373	128	124	
NGA143	F	187	175	181	107	132	115	106	92	127		106		520	514	287	360	121	121	
NGA148	М	186	172	180	103	139	126	111	110	132		110		526	516	294	368	124	122	
NGA153	M?	184	165	177	100	137	118	110	104	125		108		520	513	290	358	120	122	
NGA158	М	178	169	168	102	137	118	110	99	129		108		506	504	289	354	112	126	
NGA170	F	186	169	177	98	151	125	106	97	133		115		542	542	325	375	130	121	
NGA188	М	180	170	168	94	131	122	100	112	133	134	107	108	504	501	279	360	125	122	
NGA227	М	174	158	170	92	155	141	125	122	132		115		530	524	312	365	123	131	
NGA229	F	179	153	173	92	132	118	104	97	120	120	101	107	507	507	278	357	121	123	
NGA248	М	187	175	182	93	147	123	111	101	134				542	541	324	392	130	144	
NGA263	F	185	175	76	99	144	123	111	99	131	132	109	115	530	529	302	369	123	126	
NGA295	М	185	175	178	100	136	123	108	102	130		110		521	512	294	366	125	130	
NGA311	М	199	187	194	106	146	131	123	114	150		129		567	560	335	417	150	137	
NGA331	M?	182	164	173	98	139	118	106	94	124		108		523	522	295	357	128	107	
NGA341	М	188	165	180	93	141	125	108	102	126		107		538	530	301	377	130	125	
NGA409	М	181	173	174	100	134	109	104	103	128		106		500	493	287	356	124	112	
NGA410	F	176	159	173	91	135	123	103	97	125		104		517	511	282	360	120	125	

1.1.19	1.1.20	1.1.21	1.1.22	1.1.23	1.1.24
120	118	104	101	36	29
105	118	114	92	35	31
115	111	114	95	30	30
109	112	116	90	33	31
121	108	114	103	36	30
121	114	113	100	34	28
118	110	108	97	34	27
122	112	113	95	35	
116	107	108	93	38	31
116	101	111	98	37	34
124	114	108	100	33	28
113	110	111	90	40	32
111	112	115	91	37	35
113	101	111	93	34	30
118	112	128	97	36	28
120	106	113	98	36	28
111	111	117	89	34	31
130	131	124	105	35	32
122	112	100	100	32	26
122	112	113	100	36	30
120	112	101	102	38	32
115	106	109	100	34	28

NGA411	F?	174	164	166		141	128	105	102			102		510	508	295	352	121	117
NGA429	F	163	157	161		130	118	104	99			108		484	477	287	341	121	117
NGA444	М	179	167	171	101	138	126	108	100	136	136	115	115	510	502	303	358	128	122
NGA467	М	175	163	171	97	151	133	117	113	138		116		529	520	311	373	122	133
NGA480	М	179	174	176	100	153	133	119	113	148	147	125	126	530	531	336	389	141	141
NGA486	М	167	163	161	100	141	120	110	100	129		106		493	494	293	335	120	105
NGA491	М	190	177	185	95	147	130	117	110	138		116		542	538	307	388	130	135
NGA539	F	172	165	164	93	133	118	105	101	127		109		496	489	291	360	121	120
NGA542	F	182	175	172		143		108											122
NGA563	F	188	167	182	100	139	118	109	96	125		108		532	520	287	373	126	125
NGA587	М	183	176	176		147	129	120	102			110		535	531	308	367	127	120
NGA593	F	176	152	167	92	144	126	115	100	126	126	109	114	513	510	300	364	125	119
NGA632	F?	177	172	172		140	121	116	97					516	511	300	357	127	106
NGA660	М	183	175	179	93	154	131	120	111	134		115		541	538	317	384	133	127
NGA692	F	179	173	174	92	154	131	121	109	128	128	115	116	527	526	309	371	123	133
NGA742	М	179	172	175	102	141	131	112	111	139	140	117	123	525	510	312	371	121	124
NGA749	М	186	179	108	108	154	130	113	110	144	145	121	122	544	548	333	385	128	137
NGA750	М	178	170	170	97	139	121	105	102	128	128	113	115	516	504	302	365	128	107
NGA766	F	169	157	165	92	146	128	111	103	118	120	104	101	505	501	294	348	121	122
NGA752	F	169	165	164	89	139	113	106	98	127	126	111	110	490	490	307	363	127	120
NGA826	М	179	174	174	92	155	132	120	111	136		120		537	532	324	370	131	120
NGA830	F	170	161	167	94	146	119	111	99	127	129	109	115	512	501	307	351	122	113
NGA847	М	181	172	175	110	134	120	106	103	137		114		523	511	301	361	129	120
NGA897	М	182	175	177	102	148	126	114	108	136	135	116	122	526	530	315	385	130	131
NGA917	М	181	178	179	100	140	115	98	95	132	133	116	118	518	506	310	362	135	110
NGA919	М	195	186	188	106	145	121	115	111	137	140	124	128	553	554	335	398	137	136
NGA932	М	174	167	169	97	134	120	111	102	132	132	111	112	507	500	290	359	122	122
NGA969	F?	176	160	171	102	141	124	104	105	132		113		510	505	303	360	125	118
NGA1001	F	169	161	167	96	148	125	113	102	136	136	119	115	512	510	317	369	132	131
NGA1053	F	175	160	171	90	129	113	102	99	129	129	106	110	497	490	284	368	134	117
	I																		

114	107	106	94		
104	106	104	92		
108	113	110	93	35	29
118	109	115	101	34	30
107	115	122	91	37	30
110	104	97	95	36	31
123	116	121	99	38	29
119	105	107	96	34	
119		111	99		
122	114	111	100	35	30
120	114	109	102		
120	109	105	96	34	29
124	110	99	106		
124	114	115	102	33	29
115	108	119	93	36	30
126	107	110	109	36	31
120	109	122	97	39	31
130	110	98	105	29	27
105	105	107	88	35	30
116	111	117	92	31	26
119	115	109	99	36	33
116	107	104	96	34	26
112	112	108	99	39	34
124	113	115	102	36	35
117	118	102	95	32	38
125	118	122	102	36	28
115	110	108	98	34	29
117	111	107	97	32	27
106	114	111	94	38	32
117	114	107	95	34	27

NGA1067	M	178	173	173	98	140	117	113	107	133	132	114	118	519	508	303	370	133	129
NGA1130	F	175	164	172	95	150	122	117	102	137	138	126	122	526	525	326	382	131	121
NGA1136	М	177	158	172	98	142	124	107	97	133	133	113	116	516	508	309	363	129	116
NGA1146	м	166	163	156	103	141	132	107	109	139	141	115	116	502	492	303	342	116	117
NGA1156	М	171	163	165	94	134	112	105	95	124		108		502	490	290	352	120	121
NGA1212	м	185	171	178	105	140	121	109	105	140	142	114	120	531	526	305	381	122	126
NGA1218	F	188	167	179	95	137	118	105	96	124	125	107	102	520	517	293	374	127	125
NGB1 (1.1)	М	184	181	177	105	155	14	113	111	123	127	112	120	558	542	310	376	119	119
NGB9 (9.1)	М	181	169	174	97	143	128	115	110	133	134	113	118	528	523	310	370	124	126
NGB4 (4.1)	М	171	157	168	97	145	125	111	103	135	136	107	108	507	497	309	359	128	117
NGB6 (6.1)	F	177	169	171		140	125	107	105			112	115	513	509	299	357	121	117
NGB7 (7.1)	М	182	172	171	102	139	128	109	104	133		112		518	513	288	364	124	125
NGB10 (10.1)	F	169	161	167	93	132	111	102	94	126		109		498	490	295	350	120	127
NGB16 (16.1)	F	175	159	171	95	147	120	108	98	124	126	111	115	518	514	305	354	118	127
NGB24 (24.1)	М	188	180	178	108	155	138	126	117	136	136	116	118	549	544	318	369	128	118
NGB33 (33.1)	F?	189	175	179	102	152	129	115	104	134		118		546	542	318	385	137	110
NGB36 (36.1)	М	189	178	185	105	145	132	113	111	142	142	120	124	547	546	320	395	146	134
NGB52 (52.1)	F	175	163	172	92	147	125	114	100	126	125	112	116	517	510	305	367	123	123
NGB71 (71.1)	M?	176	167	169	97	139	126	114	103	128				511	500	292	350	119	122
NGB72 (72.1)	М	168	164	164	93	147	128	120	113	129		111		514	507	300	354	127	112
NGB73 (73.1)	М	183	174	176		136	126	116	109			108		526	517	293	370	123	124
NGB81 (81.1)	М	181	170	178	104	142	125	112	102	132	135	116	120	521	517	305	381	123	131

108	115	113	90	34	30
130	115	108	109	34	30
118	112	103	98	34	28
109	104	103	91	36	27
111	106	107	90	33	27
133	107	114	110	35	32
122	108	114	98	34	24
138	106	105	110	35	30
120	109	111	99	38	30
114	113	105	96	33	29
119	109	105	104		
115	108	111	95	37	35
103	106	111	88	36	30
109	108	102	97	35	29
123	112	107	101	37	30
138	117	102	106	32	27
115	121	118	99	38	29
121	108	112	95	33	27
109	102	111	94	35	32
115	114	96	95	35	27
123	109	110	104		
127	109	112	102	29	28

1.2 FACIAL SKULL, 1.3 ORBITAL SKELETON, 1.4 NASAL SKELETON AND 1.5 MAXILLARY SKELETON

SKELETON	SEX	1.2.1	1.2.2	1.2.3	1.2.4	1.2.5	1.2.6	1.2.7	1.2.8	1.3.1	1.3.2	1.3.3	1.3.4	1.3.5	1.4.1	1.4.2	1.4.3
NGA12	М		87	113	96								21		22		
NGA48	М		94	122	97												
NGA72	М		94	123	104	132											
NGA74	М		99	132	106							25					
NGA103	М		98	117	107												
NGA118	М		88	112	101	127					21	20					
NGA143	F		93	110	97												
NGA148	М		96	117	100												
NGA153	M?		92	116	101								37	34			
NGA158	М		95	118	103						26	24					
NGA170	F		100	135	103						30	29					
NGA188	М	83	90	105	95		93	107	62	92		21	40	30	25	46	90
NGA227	М	94	93	125	106		101	121	71		26	26	42	33	24	53	
NGA229	F	85	95	117	100		85	109	70	93		24	37	38	26	51	92
NGA248	М		104	130	105												
NGA263	F	93	103	129	105	128	89	112	66	97	22	21	39	32	23	49	97
NGA295	Μ		98	117	106							19					
NGA311	Μ		104	126	118												
NGA331	M?		95	118	98												
NGA341	Μ		101	118	108												
NGA409	М		86	108	97	126					23	22					
NGA410	F		100	120	105	126											
NGA411	F?		96	121	102												
NGA429	F		93		94							22					
NGA444	М	98	95	118			94	117	71		23	21	39	33	24	51	
NGA467	Μ	94	99	130	106		95	107	64	97	23	21	39	31	23	47	97

1.4.4	1.5.1	1.5.2	1.5.3	1.5.4
				38
			43	
			45	
101		62		42
104	44	54		37
107	49	59	39	39
				20
				38
	50	60		2.5
104	53	62	45	36
104	53	62	45	38 36

NGA480	М	91	109	140	112	141	98	108	67	104	27	25	43	36	25	49	105	
NGA486	М		97	118	100													
NGA491	М	89	95	116	103		96	128	74	96	24	20	40	36	26	50	96	
NGA539	F		94	119	100													
NGA542	F			129														
NGA563	F		95	112	105													
NGA587	М		103	134	108	137					24	23			20			
NGA593	F	81	99	121	103				56		21	19	41	38		49		
NGA632	F?		96	114	101	124						19						
NGA660	М	92	99	127	109		91		72	103		28	41	34	25	48	102	
NGA692	F	88	100	123	104	128	89	107	62	98	23	22	41	36	24	48	98	
NGA742	М	96	96	120	106		87	111	67	96	20	16	41	35	25	51	97	:
NGA749	М	95	110	139	112		99	112	63	102	24	21	42	35	25	53		
NGA750	М	96	93	118	102		98	115	70	97	23	21	38	32	30	49	96	:
NGA766	F	87	94	116	101				63			22	40	33		45		
NGA752	F	84	88	115	95	117			64	91		20	38	33		46	91	:
NGA826	М		98	129	108							25						
NGA830	F	90	94	124	105	124		106	65		25	24	39	35	24	46		
NGA847	М		101	120	108							22	41					
NGA897	М	92	100	131	102	132	96	106	64	96	23	22	40	32	25	50	95	:
NGA917	М	88	80	111	95		93	115	74	90	18	16	39	36	22	53	90	
NGA919	М	101	100	134	107	132	88	118	69	99	23	22	42	35	25	52	99	
NGA932	М	93	97	115	106		103	107	63	96	22	22	41	34	23	45	97	
NGA969	F?		96	114	102						23	21						
NGA1001	F	89	96	133	101	131	94	116	65	93	22	19	38	34	25	45	93	
NGA1053	F		89	113	97	122	94	112		94	25	24	38	36	22		92	:
NGA1067	М	94	94	119	101	121	91	109	70	94	21	20	39	34	23	50	95	
NGA1130	F	91	100	125	106	125	87	122	71	99	20	19	42	35	26	49	98	:
NGA1136	М	90	96	120	106	134		100	64	64	26	25	39	33	23	46	99	
NGA1146	М		91	117	104	144						26	41	33				

118			43	
	54	62	45	41
110		65		44
	53	62	39	
108	50	57	41	38
110	51		44	
			42	
106		60	43	36
104				
109			42	
104		55	37	38
112		39	42	
107	49	64	39	43
		65		44
104	49		40	
102		60		40
101				
110			41	
115	48	62	40	41

NGA1156	М	83	89	113	96	114	75				19	18				50	
NGA1212	М	97	100	127	108	130	92	120	74	99	23	22	42	36	21	52	99
NGA1218	F	92	99	118	101	121	88	112	70	94	24	23	39	32	23	49	94
NGB1 (1.1)	м	113	102	128	115	141	106	123	71	108	29	25	44	30	30	54	107
NGB9 (9.1)	м		106	129	111		84			99	25	26	40	35			100
NGB4 (4.1)	М	95	90	116	100	132	92	110	66	92	20	18	39	32	27	58	93
NGB6 (6.1)	F		94	120	101	130	99		74	91	22	22	40	36	24	53	96
NGB7 (7.1)	М		90	115	101	134											
NGB10 (10.1)	F	85	95	118	103		96		70			19	42	38	28	51	
NGB16 (16.1)	F	93	95	120	99		87		70	94	22	21	38	34	23	54	94
NGB24 (24.1)	М	96	102	134	108		90	114	71	102	25	26	42	35	29	52	102
NGB33 (33.1)	F?		106	132	109												
NGB36 (36.1)	М	92	105	132	112	137	98		71	105	23	22	44	35	26	56	103
NGB52 (52.1)	F	93	100	120	104	129	88	109	70	97	24	23	39	34	23	48	97
NGB71 (71.1)	M?		94	115	103												
NGB72 (72.1)	М		95	123	104												
NGB73 (73.1)	М		98	117	108		91						40		23		
NGB81 (81.1)	М	94	94	119	101	131	91	115	69	93	24	21	38	31	22	50	93
	1																

		43	52	39	36
	109	54	61	42	39
	108	52	62	41	41
	122	64	66	56	44
1	114				
	105	52		44	
	109			39	41
		44	60		42
	103	48		40	
	117	53	60		39
	121			41	
	110	53	63	46	40
				41	
	106	51	65	44	40

<u>Ballumbie</u>

1.1 NEUROCRANIUM

SKELETON	SEX	1.1.1	1.1.2	1.1.3	1.1.4	1.1.5	1.1.6	1.1.7	1.1.8	1.1.9	1.1.10	1.1.11	1.1.12	1.1.13	1.1.14	1.1.15	1.1.16	1.1.17	1.1.18	1.1.19	1.1.20	1.1.21	1.1.22	1.1.23	1.1.24
314 A	М	185	177	180	97	135	117	112	100	122		107		530	522	297	368	131	123	114	112	107	91	34	29
314 E	M?	174	165	166		140		105						508	504		364	125	120	119	107	108	96		
314 F	F	171	155	163	90	141	121	112	98	122	124	105	109	506	499	288	348	121	108	119	106	97	97	32	29
341	М	190	178	186	100	148	126	116	110	136	137	116	124	543	541	307	399	132	143	124	114	123	102	35	28
417	F	173	165	170		141	125	111	107				115	512	500	290		123	115		110	103			
419	М	186	170	181	97	151	129	113	104	124		110			541	308	377	126	137	114	107	120	98	37	32
425 B	F	165	144	159	89	145	117	110	97	117				503	502	297	346	118	123	105	97	106	88	33	30
432	F?	172	163	163	89	139	121	110	104	121				504	495	284	350	116	116	118	103	102	98	34	
435	F?	171	165	170	86	141	124	114	101	122	121	112	107	509	505	293	356	121	123	112	108	109	91	35	32
447 A	М	191	183	184	106	145	128	111	107	136	140	113	122	549	536	311	380	125	135	120	111	118	100	39	31
467	F		161	167		140	124	105	96			106	114			292	353	122	113	118	108	100	91		
512	F	171	164	167	85	143	118	113	96	114				510	508	295	345	118	115	112	104	103	88	38	30
521	М	185	173	179	101	156	134	117	110	136	136	119	122	543	538	318	383	130	125	128	116	112	105	36	31
525	M?	175	161	166	90	139	115	108	92	127				505	500	297	369	128	121	120	110	107	94	34	29
527	М	180	175	176	102	144	123	113	100	126	128	110	115	529	524	303	358	119	126	113	104	113	97	35	30
552	М	169	160	168	81	141				120				503	496		357	127	121	109	111	106	89	35	28
554	М	165	162	160	91	145	127	111	109	131	133	110	112	503	497	303	356	122	124	110	106	107	89	33	30
566 A	М	197	190	187	107	151	129	124	103	136	138	118	124	566	556	322	392	126	130	136	112	120	112	37	30
566 B	М	197	190	189	107	149	130	113	106	139	139	118	121	559	553	321	392	139	127	126	120	115	101	38	31
566 C	М	176	173	172	109	145	122	109	101	132	132	113	116	519	510	307	355	126	114	115	110	104	96	35	28
567	М	176	168	169	97	149	128	114	109	132	134	111	115	524	521	310	364	127	117	120	111	104	99	36	
599	M?	181	171	177	93	142	119	110	98	120	120	108	113	522	519	300	367	128	128	111	112	115	90	34	27
606	М	176	170	171	95	143	124	116	100	128		113	116	517	510	306	362	125	125	112	109	111	94	39	28

622	F		157	172	89	148	128	112	1003	125	126	111	113			298	359	125	124	1
623	М	188	177	185	95	138	118	99	102	130	131	112	111	531	524	296	387	136	135	1
630	М	181	174	176	105	150	130	114	108	133	133	115	119	531	526	317	373	131	129	1
653	М	171	157	170	95	139	113	109	101	130	132	108	116	504	497	294	353	115	130	1
701	М	186	178	180	99	144	131	111	106	132	133	116	120	527	525	310	381	133	121	1
717	F	169	160	164	95	144	125	113	102	125	124	111	113	510	504	302	349	121	122	1
721	F	170	156	164	92	141	120	102	103	125	125	107	110	501	498	300	351	128	113	1
725	М	183	179	174	104	152	133	115	113	135	137	113	116	541	529	303	362	126	126	1
760	М	177	169	172	98	144	121	116	100	120		107		522	515	300	349	125	111	1
763	M?	189	176	183	96	144	121	112	102	135	134	117	117	533	527	312	385	135	132	1
790	М		160	172		152	131	121	108			118	120			325	389	139	120	1
793	F	175	165	173	95	149	123	122	97	119	120	108	116	527	519	311	359	128	119	1
832	М	179	168	175		151	127	114	103			113		531	522	315	355	127	118	1
844	М	179	178	175	104	139	126	106	106	131		109		519	522	302	361	120	126	1

1.2 FACIAL SKULL, 1.3 ORBITAL SKELETON, 1.4 NASAL SKELETON AND 1.5 MAXILLARY SKELETON

SKELETON	SEX	1.2.1	1.2.2	1.2.3	1.2.4	1.2.5	1.2.6	1.2.7	1.2.8	1.3.1	1.3.2	1.3.3	1.3.4	1.3.5	1.4.1	1.4.2	1.4.3	1.4.4	1.5.1	1.5.2	1.5.3	1.5.4
314 A	М		99	127	108																	
314 E	M?		98	120	102																	
314 F	F	92	95		103		93		64		22	20	38	32	25	47			54	62	45	40
341	М	88	96	125	100		89		67		22	21	37	33	24	50					40	
417	F		97	108	108		95	110			22	22	40	37	26	51				60	38	40
419	М		107	132																		
425 B	F	95	100	121	105		93		67	99	26	25	41	34	25	51					47	
432	F?		96	112	102						23	22	38	36								
435	F?	84	94	115	103	126	85	116	72	95	19	18	39	34	22	53	94	102	47	60	41	40
447 A	М	102	96	126	106	140	92	117	72	101	26	24	40	35		48	100	112		65	46	43
467	F		96	114	100	126	86	106	65	93	20	20	37	36	22	50	92	101	47	55	38	34
512	F		94	119	100																	

110	111	111	93	37	30
116	118	119	98	33	30
113	113	111	91	38	33
108	104	113	97	37	32
127	115	110	99	33	28
106	107	109	89	35	28
110	110	101	92	34	
110	113	112	93	38	31
113	110	103	92	35	32
118	118	118	96	40	
130	118	106	105		
112	112	103	94	36	28
110	114	106	91		
115	104	111	93	34	30

521	М	92	98	125	105		93	113	70	100	25	23	42	35	23	52	100	-
525	M?	89	95	114	100		88		64	92	20	20	37	31	23	44	91	-
527	М	97	101	123	104		96	115	71	94	22	21	39	35	25	51	95	-
552	М	77	88	111	100		91	108	62	97	22	20	40	37		46	97	
554	М	81	97	122	101		90		60	96	22	21	39	32	22	46	96	-
566 A	М	106	104	130	109		105		73	102	26	23	41	34	26	50	103	-
566 B	М	102	97	128	108	141	97		69	102	24	20	43	37	24	51	102	-
566 C	М	97	101	121	104	130	92		70	95	22	21	40	28	23	49	94	-
567	М	90	98	128	104			118	69		22	21	40	34	25	51		
599	M?	86	100	130	105				62		25	22	39	37		46		
606	М	87	92	114	103	136	88	121	69	100	23	22	42	35	25	49	99	-
622	F	77	96	114	105		84		63	95	20	19	40	35	21	46	95	-
623	М	81	93	118	103		88	103	61	94	24	23	38	33	24	49	94	-
630	М	89	98	131	102	139	93		77	97	21	21	42	40	26	55	96	-
653	М	95	95	121	99		88		65	92	21	21	37	33	24	44	93	-
701	М	100	104	120	165		95	127	76	97	22	21	41	37	23	53	96	-
717	F	97	95	122	105	130	93		70	99	23	22	40	35	25	52	100	-
721	F	82	92	125	97		83	106	64	92	21	20	38	37	28	46	94	:
725	М	90	91	126	109	140	92	108	70	100	21	21	41	35	27	55	100	-
760	М		97	126	105						24	23						
763	M?	82	99	121	106				65	102	23	23	41	35	27	48	101	-
790	М		109	130	112		103	131	76	105	29	28	41	34	31	56	105	-
793	F	90	97	131	104		85	111	71	97	20	20	40	39	26	52	97	-
832	М		105	127	106		97		68	99	23	22	40	37	25	50	98	-
844	М		100									20						

113	49	62	42	42
100			40	
108	53	63	46	38
	44	56		38
102			39	
113	56		47	47
113	56	61	49	40
105			44	
	51		40	
116	49	62	40	41
106	42	58	36	36
108	45	60	43	40
117			42	
103	50	59	43	38
110	55	65	46	43
111	56	63	47	41
105	43	55	38	32
113			44	
120	48		39	
119			43	
107			44	
110				
	48	58	40	39

Appendix 7. Inter-observer error

Correlation for parametric data

Correlations

		observer_1	Author
observer_1	Pearson Correlation	1	.992**
	Sig. (2-tailed)		.000
	Ν	270	270
Author	Pearson Correlation	.992**	1
	Sig. (2-tailed)	.000	
	Ν	270	270

**. Correlation is significant at the 0.01 level (2-tailed).

Correlations

		Author	observer_2
Author	Pearson Correlation	1	.993**
	Sig. (2-tailed)		.000
	Ν	270	270
observer_2	Pearson Correlation	.993**	1
	Sig. (2-tailed)	.000	
	Ν	270	270

**. Correlation is significant at the 0.01 level (2-tailed).

Correlation for non-parametric data

Correlations

			observer_1	Author
Spearman's rho	observer_1	Correlation Coefficient	1.000	.963**
		Sig. (2-tailed)		.000
		Ν	60	60
	Author	Correlation Coefficient	.963**	1.000
		Sig. (2-tailed)	.000	
		N	60	60

**. Correlation is significant at the 0.01 level (2-tailed).

Correlations

			Author	observer_2
Spearman's rho	Author	Correlation Coefficient	1.000	.969**
		Sig. (2-tailed)		.000
		Ν	60	60
	observer_2	Correlation Coefficient	.969**	1.000
		Sig. (2-tailed)	.000	
		Ν	60	60

**. Correlation is significant at the 0.01 level (2-tailed).

Appendix 8. Intra-observer error

Correlations

		Author_1	Author_2
Author_1	Pearson Correlation	1	.964**
	Sig. (2-tailed)		.000
	Ν	33	33
Author_2	Pearson Correlation	.964**	1
	Sig. (2-tailed)	.000	
	Ν	33	33

**. Correlation is significant at the 0.01 level (2-tailed).

<u>Appendix 9.</u> Comparison among British samples and complete Howells' data set

Non-pooled samples

				Canonical
Function	Eigenvalue	% of Variance	Cumulative %	Correlation
1	2.303 ^a	34.2	34.2	.835
2	1.163ª	17.3	51.5	.733
3	.782ª	11.6	63.1	.662
4	.537ª	8.0	71.0	.591
5	.500ª	7.4	78.5	.577
6	.453ª	6.7	85.2	.558
7	.234ª	3.5	88.7	.436
8	.213ª	3.2	91.8	.419
9	.189 ^a	2.8	94.6	.399
10	.093 ^a	1.4	96.0	.291
11	.085ª	1.3	97.3	.280
12	.068ª	1.0	98.3	.252
13	.051ª	.7	99.0	.219
14	.043ª	.6	99.7	.204
15	.022ª	.3	100.0	.147

Eigenvalues

a. First 15 canonical discriminant functions were used in the analysis.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
B1.1.1	.372	621	.444	525	954	.211	516	419	.237	.073	.578	-1.029	224	780	606
B1.1.4	516	070	.249	.154	.117	841	.642	.728	.648	488	868	.358	.297	259	.349
B1.1.5	734	.100	264	.424	421	.084	467	102	013	189	.173	.094	.211	287	.242
B1.1.9	.533	.618	.273	.154	.174	149	719	215	483	.329	.578	369	.050	588	796
B1.1.20	101	055	066	.046	.090	260	.164	.557	.344	.329	076	.221	.305	1.273	.120
B1.1.21	009	123	072	.029	.263	436	.511	336	242	.270	252	.683	.185	.172	.940
B1.1.22	200	.115	.109	.100	.608	067	.186	007	.164	196	073	069	642	.391	.753
B1.1.23	020	055	172	060	.064	.053	.510	.571	396	259	.573	.126	079	.073	.257
B1.2.1	.721	.218	.137	.254	053	.733	526	271	204	443	.338	.374	.235	.467	.208
B1.2.6	009	.303	303	476	.198	.384	.166	.219	034	.262	335	689	.423	172	.380
B1.2.8	680	027	090	152	.664	096	.813	648	.533	271	.468	.025	.399	024	580
B1.3.4	106	601	.356	.597	.292	.390	.082	.062	391	.367	250	056	093	.026	240
B1.3.5	.147	.362	.179	186	048	.381	117	.236	.517	.459	.214	.476	112	325	.233
B1.4.1	.317	.046	578	.572	110	230	.327	139	.415	.134	.132	012	290	136	164
B1.4.2	.334	.515	.215	.037	881	.088	175	127	908	006	618	.011	621	.469	.113

Standardized Canonical Discriminant Function Coefficients

Function

Classification Results^a

	011-	1	2	3	А	5	6	Predicted C	Group Membe	ership 9	10	11	12	13	14	15	16	17	18	19	20	21	22 23	a	24	25	26	27	28	29	30	31	32	33	34	35	36	37	Total
Original	Count 1	22	- 0	12	-	5	5	15	1	11	10	5	12	10	0	10	10	- 1	10	10	20		0	, ,	-1		20	21	1	n	1	4	02	0	27	4	1	0	122
Onginai		33	9	13	4			10	0		0	0	12	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	1	4	0	0	3	4		0	7
	-2	4	0	10	2	6	1	1	0	2	6	1	0	0	0	0	0	1	0	0	0	1	0	2	1	4	0	0	0	0	0	2	0	0	0	0		0	50
		4	9	10	3	5	2	1	7	3	5	0	2	0	0	0	0	0	0	0	0	1	0	2	4	2	0	0	0	0	0	2	0	0	0	0		0	06
	4		0	5	41	2	3	2	1	3	4	0	2	0	0	0	0	0	0	0	0	1	0	3	4	3	5	3	0	0	0	4	U	1	0	2		0	90
		3	3	0		14	100	4	0	7	- U	0	2	0	0	0	0	0	0	0	0	1	1	0	4	0	0	1	0	0	1	0	1	2	1	3		1	100
		2	6	0	2	0	120	14	2	1	2	2	3	0	0	0	0	0	0	U 4	0	2	0	1	0	0	0	0	0	0	0	0	0	2	0	3		1	199 64
		5	5	1	0	2	3	21	4.5	1	3	0	2	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0		0	54
		U	U	U	1	U	0	U	15	1	U	U	0	U	U	U	0	0	U	0	U	0	0	1	U	0	U	0	U	U	0	0	U	0	U	0		U	18
	9	2	U	2	5	2	1	2	U	13	1	U	2	U	U	U	U	U	U	U	U	U	U	1	1	U	U	U	U	U	U	1	U	U	U	3	U	U	36
	10	5	4	10	4	6	U	5	U	4	34	6	2	1	U	U	2	U	U	1	U	2	U	0	1	U	1	U	1	U	U	9	2	U	8	U		U	110
		1	3	1	2	7	2	1	2	0	7	22	9	0	1	1	0	3	0	0	2	- 1	0	0	2	3	2	0	5	0	0	11	0	2	4	1		2	98
	12	5	0	0	6	3	3	2	1	7	5	4	44	0	2	0	0	1	0	1	0	0	3	2	2	1	0	1	0	0	0	0	1	5	0	10		0	109
	13	0	0	0	0	0	0	0	0	0	0	0	0	49	1	7	6	0	4	0	2	1	0	2	0	0	0	1	2	1	0	0	5	0	1	0	0	1	83
	14	0	0	1	0	0	0	1	0	0	0	0	0	6	46	6	0	2	3	0	0	1	3	3	3	0	0	3	4	4	1	0	1	5	5	0	0	1	99
	15	0	1	0	0	0	0	2	0	1	3	1	0	7	3	39	6	3	9	0	3	0	1	0	0	0	3	0	4	2	0	1	4	0	6	0	1	1	101
	16	0	0	0	0	0	0	0	0	0	4	0	0	3	0	3	70	10	5	0	0	1	0	1	0	0	0	0	0	0	1	0	1	0	0	0	2	0	101
	17	1	1	0	0	0	0	0	0	0	1	0	0	0	0	4	4	57	11	1	1	0	0	0	0	0	0	0	0	0	1	0	4	0	1	0	0	0	87
	18	0	0	0	0	0	0	0	0	0	0	2	0	5	2	1	3	4	78	2	5	2	0	0	0	0	0	0	1	0	1	0	0	1	1	0	2	0	110
	19	0	0	0	1	0	0	0	0	0	0	0	0	0	1	1	0	0	0	66	6	4	1	1	1	1	1	0	0	1	7	0	0	3	2	2	0	1	100
	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2	74	0	0	0	0	0	0	0	2	1	3	1	0	0	1	0	0	1	86
	21	0	1	3	0	1	0	0	3	0	1	0	0	1	1	3	0	0	1	8	0	64	3	1	1	4	1	0	0	1	1	0	0	0	7	2	0	0	108
	22	0	0	0	0	0	0	0	1	0	3	1	2	1	1	0	0	0	0	1	0	2	32	5	3	3	1	2	2	1	1	0	1	0	1	4	0	1	69
	23	1	0	2	1	0	0	0	0	1	0	0	1	0	1	1	1	0	0	0	0	2	2	70	13	1	0	1	0	D	1	0	0	2	0	0	1	0	102
	24	0	0	2	6	1	0	0	3	3	0	1	1	2	1	0	0	0	0	0	0	0	1	7	57	2	3	4	3	1	2	0	1	6	1	0	1	1	110
	25	0	0	0	2	2	1	0	1	2	2	5	2	0	1	1	1	0	0	4	1	4	8	1	7	9	10	2	4	2	5	1	0	2	4	0	1	2	87
	26	0	1	0	2	1	0	0	1	0	0	2	0	1	4	5	0	0	1	4	2	1	2	0	9	4	20	6	5	1	4	4	0	3	0	0	3	5	91
	27	0	0	0	1	0	0	0	0	0	0	2	1	1	6	1	0	0	0	1	0	1	6	2	2	6	4	21	3	5	0	3	0	3	0	1	0	13	83
	28	0	0	0	0	0	0	0	0	0	0	1	1	1	3	1	0	1	0	0	0	0	3	0	0	1	1	3	20	1	0	2	0	4	0	0	1	3	47
	29	0	0	0	0	0	0	0	0	0	0	0	1	2	2	2	0	0	1	3	1	1	1	2	0	2	0	5	2	14	5	0	0	0	0	0	0	6	50
	30	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	7	2	1	2	0	1	4	2	2	1	0	26	0	0	0	3	0	1	3	57
	31	4	4	3	10	7	0	3	0	0	8	10	0	4	1	0	0	0	0	0	1	2	3	1	3	0	0	2	1	D	2	38	0	2	1	0	0	1	111
	32	1	1	1	0	0	0	1	0	3	0	0	0	3	1	1	3	4	0	0	0	0	0	1	0	1	0	0	1	0	0	0	66	2	0	0	0	0	90
	33	0	0	0	0	0	0	0	0	0	2	0	0	۵	1	0	0	0	0	2	0	0	0	1	4	٥	2	0	4	0	0	0	0	53	٥	0	1	٥	70
	34	0	2	0	0	- 1	0	4	0	0	2	2	0	1	4	1	1	1	0	- 5	0	5	1	n	1	2	1	0	3	1	0	0	1	2	44	0	1	0	86
	25	1		0	0	2	2	n	0	1	0	0	2	n	, n	n		n	0	0	0	1		1	0	0	, n	0	0	n	0	0	, n	0	0	00		0	100
		0	0	0	0	2	2	2	0	0	0	0		1	0	1	0	0	1	4	1	1	0	- -	0	2	4	0	1	0	2	0	0	0	1	30		0	100
	- 30	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	1	1	1	2	2	0	0	2	4	0	1	7	3	1	0	0	1	1	0	22	100
	37	U	U	U	2	U	U	0	U	U	U	U	0	U	U	U	0	U	U	1	1	U	3	0	U	U	1	2	1	/	U	1	U	U	U	1		22	42
	% 1	25.0	6.8	9.8	3.0	3.8	3.8	11.4	.8	8.3	.8	3.8	9.1	.0	.0	.0	.0	.8	.0	.0	.0	.0	.0	1.5	.8	.0	.0	.0	.8	.0	.8	3.0	.0	.0	2.3	3.0	.8	.0	100.0
	2	.0	71.4	14.3	.0	.0	14.3	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	100.0
	3	6.9	15.5	31.0	5.2	8.6	1.7	1.7	.0	5.2	8.6	1.7	.0	.0	.0	.0	.0	1.7	.0	.0	.0	1.7	.0	3.4	1.7	1.7	.0	.0	.0	.0	.0	3.4	.0	.0	.0	.0	.0	.0	100.0
	4	1.0	.0	5.2	42.7	2.1	3.1	2.1	7.3	3.1	4.2	.0	2.1	.0	.0	.0	.0	.0	.0	1.0	.0	1.0	.0	3.1	4.2	3.1	5.2	3.1	.0	.0	.0	4.2	.0	1.0	.0	1.0	.0	.0	100.0
	5	7.1	4.3	11.4	7.1	20.0	4.3	5.7	1.4	8.6	7.1	.0	2.9	.0	1.4	.0	.0	.0	.0	.0	.0	1.4	1.4	1.4	5.7	.0	.0	.0	.0	1.4	.0	.0	1.4	.0	1.4	4.3	.0	.0	100.0
	6	1.0	3.0	4.0	1.0	4.0	64.3	7.0	.0	3.5	.5	1.0	4.5	.0	.0	.0	.0	.0	.0	.0	.0	1.0	.5	.0	.0	.0	.0	.5	.0	.0	.5	.0	.5	1.0	.0	1.5	.0	.5	100.0
	_7	9.3	9.3	1.9	.0	3.7	5.6	50.0	3.7	1.9	5.6	.0	3.7	.0	.0	.0	.0	.0	.0	1.9	.0	.0	.0	1.9	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	1.9	.0	.0	100.0
	8	.0	.0	.0	5.6	.0	.0	.0	83.3	5.6	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	5.6	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	100.0
	9	5.6	.0	5.6	13.9	5.6	2.8	5.6	.0	36.1	2.8	.0	5.6	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	2.8	2.8	.0	.0	.0	.0	.0	.0	2.8	.0	.0	.0	8.3	.0	.0	100.0
	10	4.5	3.6	9.1	3.6	5.5	.0	4.5	.0	3.6	30.9	5.5	1.8	.9	.0	.0	1.8	.0	.0	.9	.0	1.8	.0	.0	.9	.0	.9	.0	.9	.0	.0	8.2	1.8	.0	7.3	.0	1.8	.0	100.0
	11	1.0	3.1	1.0	2.0	7.1	2.0	1.0	2.0	.0	7.1	22.4	9.2	.0	1.0	1.0	.0	3.1	.0	.0	2.0	1.0	.0	.0	2.0	3.1	2.0	.0	5.1	.0	.0	11.2	.0	2.0	4.1	1.0	1.0	2.0	100.0
	12	4.6	.0	.0	5.5	2.8	2.8	1.8	.9	6.4	4.6	3.7	40.4	.0	1.8	.0	.0	.9	.0	.9	.0	.0	2.8	1.8	1.8	.9	.0	.9	.0	.0	.0	.0	.9	4.6	.0	9.2	.0	.0	100.0
	13	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	59.0	1.2	8.4	7.2	.0	4.8	.0	2.4	1.2	.0	2.4	.0	.0	.0	1.2	2.4	1.2	.0	.0	6.0	.0	1.2	.0	.0	1.2	100.0
	14	.0	.0	1.0	.0	.0	.0	1.0	.0	.0	.0	.0	.0	6.1	46.5	6.1	.0	2.0	3.0	.0	.0	1.0	3.0	3.0	3.0	.0	.0	3.0	4.0	4.0	1.0	.0	1.0	5.1	5.1	.0	.0	1.0	100.0
	15	.0	1.0	.0	.0	.0	.0	2.0	.0	1.0	3.0	1.0	.0	6.9	3.0	38.6	5.9	3.0	8.9	.0	3.0	.0	1.0	.0	.0	.0	3.0	.0	4.0	2.0	.0	1.0	4.0	.0	5.9	.0	1.0	1.0	100.0
	16	.0	.0	.0	.0	.0	.0	.0	.0	.0	4.0	.0	.0	3.0	.0	3.0	69.3	9.9	5.0	.0	.0	1.0	.0	1.0	.0	.0	.0	.0	.0	.0	1.0	.0	1.0	.0	.0	.0	2.0	.0	100.0
	17	1.1	1.1	.0	.0	.0	.0	.0	.0	.0	1.1	.0	.0	.0	.0	4.6	4.6	65.5	12.6	1.1	1.1	.0	.0	.0	.0	.0	.0	.0	.0	.0	1.1	.0	4.6	.0	1.1	.0	.0	.0	100.0
	18	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	1.8	.0	4.5	1.8	.9	2.7	3.6	70.9	1.8	4.5	1.8	.0	.0	.0	.0	.0	.0	.9	.0	.9	.0	.0	.9	.9	.0	1.8	.0	100.0
	19	.0	.0	.0	1.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	1.0	1.0	.0	.0	.0	66.0	6.0	4.0	1.0	1.0	1.0	1.0	1.0	.0	.0	1.0	7.0	.0	.0	3.0	2.0	2.0	.0	1.0	100.0
	20	.0	.0	.0	.0	.0	.0	0	.0	.0	.0	0	.0	.0	.0	.0	.0	.0	1.2	2.3	86.0	.0	.0	.0	0	.0	.0	.0	2.3	1.2	3.5	1.2	0	.0	1.2	.0	.0	1.2	100.0
	21	0	9	2.8	0	9	n	n	2.8	n	9	n	0	9	9	2.8	0	 N	9	7 4	0	59.3	2.8	9	9	3.7	9	n	0	9	9	n	n	n	6.5	19		n	100.0
	22	 n	.s	2.0 N	. N		n	n	1.4	n	4 7	1 4	29	14	1.4	2.0 N			 N	1 4	. n	29	46.4	7.2	4.3	43	14	29	29	1.4	1.4	n	14	0	1.4	5.8	n	14	100.0
		1.0	.0		1.0	.0	.0	.0	0	1.0	4.5	1.4	1.0	1.4	1.4	1.0	1.0	.0	.0	0	.0	2.0	20 6	1.2 0.6	12.7	1.0	1.4	1.0	2.5	0	1.9	.0	0	2.0	0	0.0	1.0	1.4	100.0
	23	1.0	.0	1.0	6.6	.0	.0	.0	.0	7.0	.0	.0	1.0	.0	1.0	1.0	1.0	.0	.0	.0	.0	2.0	2.0 0	6.4	61.0	1.0	.0	2.6	.0	.0	1.0	.0	.0	2.0 E.E	.0	.0		.0	100.0
	24	.u	.0	1.0	0.0	.9 		.0	2.1	2.1		.3	۳. د د	1.0	.9					.0				1.1	0.0	10.3	11.5	3.0	4.1	.9	5.7		.9 0	3.3	.9	.0	.9	.9 C C C	100.0
	25	.U	.U	.U	2.3	2.3	1.1	.U	4.4	2.3	2.3	5./	2.3	.U.	1.1	1.1	1.1	.U	.U	4.0	1.1	4.0	3.2	0	0.U	10.3	11.0	2.3	4.0	2.3	3.7	1.1	.U	2.3	4.0	.U	1.1	2.3	100.0
	26	.U	1.1	.U	2.2	1.1	.U	.U	1.1	.U	.U	2.2	.U	1.1	4.4	5.5	.U	.U	1.1	4.4	2.2	1.1	2.2	.0	9.9	4.4	22.U	0.0	5.5	1.1	4.4	4.4	.U	3.3	.U	.U	3.3	5.5	100.0
	27	.0	.0	.0	1.2	.0	.0	.0	.0	.0	.0	2.4	1.2	1.2	7.2	1.2	.0	.0	.0	1.2	.0	1.2	1.2	2.4	2.4	1.2	4.8	25.3	3.6	6.0	.0	3.6	.0	3.6	.0	1.2	.0	15.7	100.0
	28	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	2.1	2.1	2.1	6.4	2.1	.0	2.1	.0	.0	.0	.0	6.4	.0	.0	2.1	2.1	6.4	42.6	2.1	.0	4.3	.0	8.5	.0	.0	2.1	6.4	100.0
	29	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	2.0	4.0	4.0	4.0	.0	.0	2.0	6.0	2.0	2.0	2.0	4.0	.0	4.0	.0	10.0	4.0	28.0	10.0	.0	.0	.0	.0	.0	.0	12.0	100.0
	30	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	1.8	.0	.0	1.8	.0	.0	.0	.0	12.3	3.5	1.8	3.5	.0	1.8	7.0	3.5	3.5	1.8	.0	45.6	.0	.0	.0	5.3	.0	1.8	5.3	100.0
	31	3.6	3.6	2.7	9.0	6.3	.0	2.7	.0	.0	7.2	9.0	.0	3.6	.9	.0	.0	.0	.0	.0	.9	1.8	2.7	.9	2.7	.0	.0	1.8	.9	.0	1.8	34.2	.0	1.8	.9	.0	.0	.9	100.0
	32	1.1	1.1	1.1	.0	.0	.0	1.1	.0	3.3	.0	.0	.0	3.3	1.1	1.1	3.3	4.4	.0	.0	.0	.0	.0	1.1	.0	1.1	.0	.0	1.1	.0	.0	.0	73.3	2.2	.0	.0	.0	.0	100.0
	33	.0	.0	.0	.0	.0	.0	.0	.0	.0	2.9	.0	.0	.0	1.4	.0	.0	.0	.0	2.9	.0	.0	.0	1.4	5.7	.0	2.9	.0	5.7	.0	.0	.0	.0	75.7	.0	.0	1.4	.0	100.0
	34	.0	2.3	.0	.0	1.2	.0	4.7	.0	.0	2.3	2.3	.0	1.2	4.7	1.2	1.2	1.2	.0	5.8	.0	5.8	1.2	.0	1.2	2.3	1.2	.0	3.5	1.2	.0	.0	1.2	2.3	51.2	.0	1.2	.0	100.0
	35	.9	.0	.0	.0	1.8	1.8	.0	.0	.9	.0	.0	2.8	.0	.0	.0	.0	.0	.0	.0	.0	.9	7.3	.9	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	82.6	.0	.0	100.0
	36	.0	.0	.0	.0	.0	.0	1.9	.0	.0	.0	.0	.0	.9	.0	.9	.0	.0	.9	.9	.9	1.9	.0	4.6	.0	1.9	3.7	.0	.9	.0	2.8	.0	.0	.0	.9	.0	76.9	.0	100.0
	37	.0	.0	.0	4.8	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	2.4	2.4	.0	7.1	.0	.0	.0	2.4	4.8	2.4	16.7	.0	2.4	.0	.0	.0	2.4	.0	52.4	100.0
									-								-		-			-	-					-		-				-					

a. 50.5% of original grouped cases correctly classified.

Male samples

				Canonical
Function	Eigenvalue	% of Variance	Cumulative %	Correlation
1	2.548 ^a	33.2	33.2	.847
2	1.317ª	17.1	50.3	.754
3	.938ª	12.2	62.5	.696
4	.711ª	9.3	71.8	.645
5	.601ª	7.8	79.6	.613
6	.478 ^a	6.2	85.8	.569
7	.255ª	3.3	89.2	.451
8	.221ª	2.9	92.0	.425
9	.203ª	2.6	94.7	.411
10	.105ª	1.4	96.0	.308
11	.095ª	1.2	97.3	.295
12	.072ª	.9	98.2	.259
13	.064ª	.8	99.0	.244
14	.043ª	.6	99.6	.204
15	.030ª	.4	100.0	.171

Eigenvalues

a. First 15 canonical discriminant functions were used in the analysis.

								Function							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
B1.1.1	.310	314	.783	613	625	.015	530	.165	211	302	.006	.861	.000	.639	590
B1.1.4	550	.106	.107	.355	.111	.661	.755	.347	.615	.045	355	594	705	117	049
B1.1.5	611	.188	.029	575	.328	.142	396	109	.016	290	.150	072	265	.089	.136
B1.1.9	.614	.497	.062	.112	108	.135	693	522	298	.119	.544	.523	020	.262	583
B1.1.20	086	071	113	.206	.111	.190	.147	.185	.575	.391	252	.057	.381	939	.468
B1.1.21	079	097	183	.253	.133	.298	.500	.062	359	.280	.025	517	204	014	1.030
B1.1.22	338	.158	202	.710	.345	075	.197	.139	.088	260	458	133	.375	.267	.505
B1.1.23	.009	050	067	029	.084	016	.682	313	.349	363	.394	.105	.293	018	.258
B1.2.1	.735	.110	.142	076	.240	468	603	096	102	542	.289	340	.264	414	.318
B1.2.6	.061	.251	191	064	180	523	.281	121	.090	.069	382	.506	589	.009	.203
B1.2.8	561	.090	195	.358	052	094	.407	.830	469	061	.663	.366	090	338	324
B1.3.4	066	440	.547	.156	.553	326	.065	329	185	.418	.021	.029	.076	043	214
B1.3.5	.150	.296	006	033	168	343	280	.298	.562	.323	.345	260	.014	.475	.306
B1.4.1	.297	053	469	253	.556	.339	.110	.476	007	.179	.047	.103	.151	.268	183
B1.4.2	.379	.482	.276	503	095	.070	016	651	382	.038	729	498	.565	.015	.096

Classification Results^a

							Predicted Gr	roup Member:	rship																												
Site	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25 26	27	28	29	30	31	32	33	34	35	36	37	Total
Original Count 1	28	6	7	1	0	2	10	1	8	3	1	8	0	0	0	0	1	0	0	0	1	0	4	1	0	1	0 0	0	1	3	1	0	2	2	0	0	92
2	0	4	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	5
3	6	2	14	3	3	1	0	0	3	2	0	0	0	0	0	0	0	0	0	0	2	0	0	2	0	0	0 0	0	0	1	0	0	0	0	0	0	39
4	1	0	1	32	2	3	0	4	7	1	1	0	0	0	0	0	0	0	0	0	0	0	2	7	2	1	1 1	0	0	3	0	0	0	2	0	0	71
5	2	1	6	4	18	0	2	0	4	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0 0	1	0	1	1	0	1	2	0	0	48
6	0	1	1	0	13	72	6	0	8	0	1	4	0	0	0	0	0	0	1	0	1	0	1	0	0	0	1 1	0	0	0	0	0	0	1	0	0	112
7	5	2	1	0	2	1	18	2	2	1	0	4	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0 0	0	0	0	1	0	0	1	0	0	41
8	0	0	0	1	0	0	0	12	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0 0	0	0	0	0	0	0	1	0	0	16
9	1	0	3	3	2	1	2	0	9	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	1	0	0	1	1	0	0	25
10	4	1	5	1	2	0	4	0	1	15	4	2	2	0	0	1	1	0	0	0	0	0	0	0	0	0	0 2	0	0	6	0	0	4	0	0	0	55
11	0	2	0	1	6	0	1	2	0	7	12	4	0	0	0	0	1	0	0	2	0	0	0	2	3	2	0 1	0	0	5	0	0	1	0	0	1	53
12	3	1	0	1	3	0	1	1	1	4	0	33	0	0	0	0	0	0	٥	0	0	2	0	0	0	0	0 0	1	0	0	1	0	1	3	0	0	56
13	0	0	0	0	0	0	0	0	0	0	0	0	18	0	4	3	0	2	0	1	0	0	1	1	0	0	0 2	0	0	0	1	0	0	0	0	0	33
14	0	0	0	0	0	0	1	0	0	0	0	0	2	24	2	0	3	2	0	٥	0	0	1	2	0	0	1 2	4	0	0	0	1	1	0	0	1	47
15	0	1	0	0	0	0	1	0	0	1	0	0	3	3	18	5	1	6	1	2	0	0	0	1	0	2	2 2	2	0	0	1	0	2	0	0	1	55
16	0	0	0	0	0	0	D	D	0	0	0	٥	2	0	2	40	5	2	0	0	0	0	0	0	0	0	0 0	0	1	0	0	0	D	D	0	0	52
17	1	1	0	0	0	0	0	0	0	0	1	0	0	0	1	2	32	5	0	٥	0	0	0	0	0	٥	0 0	0	1	0	0	0	1	0	0	0	45
18	0	0	0	0	0	0	0	0	0	0	0	0	1	0	2	2	3	45	1	1	0	0	0	0	0	0	0 0	0	0	0	0	0	1	0	0	0	56
19	0	0	- n	0	0	0			0	- n	- N	0	n	0	- 1			0	33	2	2	2	0	0	2	2	n n	1	4	0	0	- n	n	1	0	1	
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	n	0	0	0	3	41	0	0	0	0	0	1	0 0	, 	2	0	0	0	1	n	0	1	49
20	0 0	0	n	0	0 0	n	n	1	n	1	n	0	0	1	1	0	0	n	3	n	41	n	3	0	2	1	0 0	n 0	- 1	0	0 0	0 0	2	n	0	n	
21	0	0	0	0	0	0	0	0	0	1	1	0	0		0	0	0	0	1	0	1	26	2	0	4	0	0 1	0	1	0	0	0		2	1	1	42
22	1	0	1	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	2	25	40	4	4	0	0 1	0	1	0	0	1	0	0	0	0	
23	0	0	0	0	0	0	0	1	1	0	0	1	0	1	0	0	0	0	0	0	0	0	40	4	4	0	2 4	0	1	0	0	1	0	0	0	1	56
24	0	0	0	4	3	0	0	0	4	0	0	1	0	2	0	0	0	0	0	0	0	U	4	20	1		3 4	1	1	0	0	2	0	0	0	-	
25	U	U	U	1	2	U	U	U	1	2	5	2	U	U	U	U	0	1	4	U	1	ь	U	5	8	4	2 2	U	3	3	U	U	1	1	U	1	
26	U	1	U	U	U	U	U	0	0	U	U	U	1	1	3	U	0	U	2	1	2	1	U	2	3	9	5 4	U	1	1	U	U	U	U	1	2	50
27	U	U	0	0	1	0	0	0	0	0	1	0	0	0	1	U	0	0	1	U	1	2	0	1	1	3	20 1	3	U	1	0	2	0	0	0	6	45
28	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	2	1	0	1	2 12	1	0	2	0	4	1	0	0	1	29
29	0	0	0	0	0	0	0	0	0	0	0	٥	2	3	2	0	1	0	3	0	1	0	1	2	1	0	6 4	17	2	0	0	1	0	0	0	4	50
30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	4	1	0	0	0	0	0	0 0	0	17	1	0	0	0	0	0	3	30
31	4	1	1	2	4	0	2	0	0	3	7	0	3	0	0	0	0	0	0	0	2	1	1	0	0	2	1 2	0	2	18	1	0	1	0	0	0	58
32	0	0	0	0	0	0	1	0	2	0	0	0	1	0	1	2	2	0	0	0	0	0	0	0	0	0	0 0	0	0	0	32	0	0	0	0	0	41
33	0	1	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	1	0	1	0 2	0	0	0	0	28	0	0	0	0	35
34	0	0	0	0	0	0	0	0	0	2	2	0	1	1	0	0	1	1	1	1	1	0	1	0	1	1	0 0	1	0	0	0	0	33	0	0	0	48
35	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	1	0	0	0	0 0	0	0	0	0	0	0	47	0	0	55
36	0	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0	0	1	1	0	1	0	2	0	0	1	0 0	0	0	0	0	0	1	0	43	0	53
37	0	0	0	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	2	1	0	0	1	3 2	4	0	1	0	0	0	0	0	23	42
% 1	30.4	6.5	7.6	1.1	.0	2.2	10.9	1.1	8.7	3.3	1.1	8.7	.0	.0	.0	.0	1.1	.0	.0	.0	1.1	.0	4.3	1.1	.0	.1	.0 .0	.0	1.1	3.3	1.1	.0	2.2	2.2	.0	.0	100.0
2	.0	80.0	.0	.0	.0	20.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0 .0	.0	.0	.0	.0	.0	.0	.0	.0	.0	100.0
3	15.4	5.1	35.9	7.7	7.7	2.6	.0	.0	7.7	5.1	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	5.1	.0	.0	5.1	.0	.0	.0 .0	.0	.0	2.6	.0	.0	.0	.0	.0	.0	100.0
4	1.4	.0	1.4	45.1	2.8	4.2	.0	5.6	9.9	1.4	1.4	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	2.8	9.9	2.8	.4	.4 1.4	.0	.0	4.2	.0	.0	.0	2.8	.0	.0	100.0
5	4.2	2.1	12.5	8.3	37.5	.0	4.2	.0	8.3	2.1	2.1	2.1	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	2.1	2.1	.0	.0	.0 .0	2.1	.0	2.1	2.1	.0	2.1	4.2	.0	.0	100.0
6	.0	.9	.9	.0	11.6	64.3	5.4	.0	7.1	.0	.9	3.6	.0	.0	.0	.0	.0	.0	.9	.0	.9	.0	.9	.0	.0	.0	.9 .9	.0	.0	.0	.0	.0	.0	.9	.0	.0	100.0
7	12.2	4.9	2.4	.0	4.9	2.4	43.9	4.9	4.9	2.4	.0	9.8	.0	.0	.0	.0	2.4	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0 .0	.0	.0	.0	2.4	.0	.0	2.4	.0	.0	100.0
8	.0	.0	.0	6.3	.0	.0	.0	75.0	6.3	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	6.3	.0	.0	0	.0 .0	.0	.0	.0	.0	.0	.0	6.3	.0	.0	100.0
9	4.0	0	12.0	12.0	8.0	4.0	8.0	n	36.0	0	0	4.0	0	0	0	n	0	0	0	n	0	0	0	0	0	n	0 0	0	0	4.0	0	0	4.0	4.0	0	0	100.0
10	7.3	1.8	9.1	1.8	3.6	n	7.3	 n	1.8	27.3	73	3.6	3.6	 n	.e N	1.8	1.8	.u	 N	 n	 N	 n	 N	 N	 n	n	.0 .0	 n	 n	10.9	 n	 N	7.3	n			100.0
11	0	3.8	0	1.9	11.3	0	1.9	3.8	0	13.2	22.6	7.5	0	0	0	0	1.9	0	0	3.8	0	0	0	3.8	57	8	0 19	0	0	9.4	0	0	1.9	0	0	1.9	100.0
12	5.4	1.0	.0	1.0	5.4	.0	1.0	1.0	1.0	7.1	0	50.0		.u n	.0	.u n	1.5	.0	.0	0.0		2.6		0.0	n	n	n r	1.0	.0	0.4	1.0	.u n	1.0	5.4		n.5	100.0
12	0	1.0	.0	0	0	.0	0	0	0	0	.0	0.5	54.5	.0	12.1	.0		61	.0	3.0	.0	0.0	3.0	3.0	.0	n	.0 .0	1.0	.0		3.0	.0	1.0	0.4	.0	.u	100.0
14	.0	.0	.0	.0	.0	.0	.0	.u	.0	.u n	.u n	.0	12	51.1	12.1	3.1 0	6.4	4.2	.0	3.0 n	.0	.0	2.0	1.2	.0	n	.0 0.1	.0	.0		J.U 0	.0	.0	.0	.0	.0	100.0
14	.0	1.0	.0	.0	.0	.0	1.0	.0	.0	.0	.0	.0	4.J	51.1	4.5	.0	1.0	4.3	.0	.0	.0	.0	2.1	4.5	.0	.0 	4.3	0.5	.0	.0	1.0	2.1	2.1	.0	.0	1.0	100.0
16	.0	1.0	.0	.0	.0	.0	0	.u	.0	1.0	.u n	.0	3.5	0.5	20	76.0	0.6	20	0	3.0 N	.0	.0	.0	0	.0 .	.0 .	0 0	0.0	1.0		1.0	.0	5.0 n	.0	.0	0	100.0
10	.0	.0	.u	.u	.u	.0	.u	.u	.0	.u		.u	3.8	.u	3.8	70.9	9.0	3.8	.0	.u	.0	.u	.0	.0	.0	.0	.0 .0	.0	1.9	.0	.u	.0		.u	.0	.u	100.0
	2.2	2.2	.0	.0	.0	.0	.0	.0	.0	.0	2.2	.0	.U	.U	2.2	4.4	/1.1	11.1	.0	.0	.0	.0	.0	.0	.0	.0	.0 .0	.0	2.2	.0	.0	.0	2.2	.0	.0	.0	100.0
18	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	1.8	.0	3.6	3.6	5.4	80.4	1.8	1.8	.0	.0	.0	.0	.0	.0	.0 .0	.0	.0	.0	.0	.0	1.8	.0	.0	.0	100.0
19	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	2.0	.0	.0	.0	64.7	3.9	3.9	3.9	.0	.0	3.9	.9	.0 .0	2.0	7.8	.0	.0	.0	.0	2.0	.0	2.0	100.0
20	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	6.1	83.7	.0	.0	.0	.0	.0 2	.0	.0 .0	.0	4.1	.0	.0	.0	2.0	.0	.0	2.0	100.0
21	.0	.0	.0	.0	.0	.0	.0	1.8	.0	1.8	.0	.0	.0	1.8	1.8	.0	.0	.0	5.3	.0	71.9	.0	5.3	.0	3.5	.8	.0 .0	.0	1.8	.0	.0	.0	3.5	.0	.0	.0	100.0
22	.0	.0	.0	.0	.0	.0	.0	.0	.0	2.4	2.4	.0	.0	2.4	.0	.0	.0	.0	2.4	.0	4.8	59.5	4.8	.0	2.4	.0	.0 2.4	.0	2.4	.0	.0	.0	2.4	7.1	2.4	2.4	100.0
23	2.0	.0	2.0	.0	.0	.0	.0	.0	.0	.0	.0	2.0	.0	2.0	.0	.0	.0	.0	.0	.0	.0	.0	78.4	7.8	2.0	.0	.0 .0	.0	2.0	.0	.0	2.0	.0	.0	.0	.0	100.0
24	.0	.0	.0	7.3	5.5	.0	.0	1.8	1.8	.0	.0	1.8	.0	3.6	.0	.0	.0	.0	.0	.0	.0	.0	7.3	47.3	1.8	.0	.5 7.3	1.8	1.8	.0	.0	3.6	.0	.0	.0	1.8	100.0
25	.0	.0	.0	1.8	3.6	.0	.0	.0	1.8	3.6	9.1	3.6	.0	.0	.0	.0	.0	1.8	7.3	.0	1.8	10.9	.0	9.1	14.5	.3	.6 3.6	.0	5.5	5.5	.0	.0	1.8	1.8	.0	1.8	100.0
26	.0	2.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	2.0	2.0	6.0	.0	.0	.0	4.0	2.0	4.0	2.0	.0	4.0	6.0 38	.0 1	.0 8.0	.0	2.0	2.0	.0	.0	.0	.0	2.0	4.0	100.0
27	.0	.0	.0	.0	2.2	.0	.0	.0	.0	.0	2.2	.0	.0	.0	2.2	.0	.0	.0	2.2	.0	2.2	4.4	.0	2.2	2.2	.7 4	.4 2.2	6.7	.0	2.2	.0	4.4	.0	.0	.0	13.3	100.0
28	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	3.4	3.4	.0	.0	.0	.0	.0	.0	.0	.0	6.9	3.4	.0 :	.4	i.9 41.4	3.4	.0	6.9	.0	13.8	3.4	.0	.0	3.4	100.0
29	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	4.0	6.0	4.0	.0	2.0	.0	6.0	.0	2.0	.0	2.0	4.0	2.0	.0 1:	.0 8.0	34.0	4.0	.0	.0	2.0	.0	.0	.0	8.0	100.0
30	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	0.	.0	13.3	13.3	3.3	.0	.0	.0	.0	.0	.0 .0	.0	56.7	3.3	.0	.0	.0	.0	.0	10.0	100.0
31	6.9	1.7	1.7	3.4	6.9	.0	3.4	.0	.0	5.2	12.1	.0	5.2	.0	.0	.0	.0	.0	.0	.0	3.4	1.7	1.7	.0	.0 :	.4	.7 34	.0	3.4	31.0	1.7	.0	1.7	.0	.0	.0	100.0
32	0.0	0	0	.0	.0	.0	2.4	.0	4.9	.0	0		2.4		24	4.9	4.9		0	.0	.0	0	.0	.0	.0	.0	.0 r	.5	0.1	0	78.0		0	0		.0	100.0
33	 n	20	n	0	0	n	0	n	n	n	29	 n	0	 7 a	n	 N	 0	 n	0	n	n	 n	n	2.9		9	0 67		 n	 n	n	80.0	n	n	n	n	100.0
31	.u n	2.5 N	 n	 n	 n	 n	 N			4.2	4.7	 n		2.5	.u n	.u n	 ว 1	.0		21	21	 n	21	0	21	1	0 0		 n	.u n	.u n	00.0 n	69.9	 n	 n	 n	100.0
34	.u 4 0	.u	.u	.u	.u 1.0	.0	.0	0	.0	*.Z	4.2	.u	2.1	2.1	.u	.u	2.1	2.1	2.1	2.1	4.1	.u	1.0	.0	2.1	n		2.1	.u	.u	.u	.u n	0.0	.0	.0		100.0
	1.8	.u	.u	.u	1.8	.u	.0	.u	.0	.0	.u	.u	.u	.u	.U	.u		.U	.0	.u	1.0	3.I	1.0	.u		0		.U	.u	.u	.u	.u	.U	00.5 n	U.	.u	100.0
	.u	.u	.u		.0	.0	0.9	.0	.0	.u	.u	.u	1.9		1.9	.U		1.9	1.9		1.9	U.	3.0	.0				.0	.U		.U	.U	1.9	.u	01.1	.U	100.0
31	.U	.U	.0	2.4	2.4	.0	.u	.U	.u	.0	.U	.U	.U	2.4	.U	.U	.0	.U	2.4	∠.4	.U	4.8	2.4	.U	.0	.4	.1 4.8	9.5	.U	2.4	.U	.U	.U	.0	.U	D4.6	100.0

a. 53.8% of original grouped cases correctly classified.

Female samples

		-		
				Canonical
Function	Eigenvalue	% of Variance	Cumulative %	Correlation
1	2.370 ^a	32.0	32.0	.839
2	1.266 ^a	17.1	49.0	.747
3	1.026 ^a	13.8	62.9	.712
4	.624 ^a	8.4	71.3	.620
5	.481ª	6.5	77.8	.570
6	.434 ^a	5.9	83.6	.550
7	.282ª	3.8	87.4	.469
8	.257ª	3.5	90.9	.452
9	.197ª	2.7	93.5	.406
10	.136ª	1.8	95.4	.346
11	.098ª	1.3	96.7	.299
12	.089 ^a	1.2	97.9	.286
13	.086ª	1.2	99.1	.281
14	.042ª	.6	99.6	.200
15	.027ª	.4	100.0	.162

Eigenvalues

a. First 15 canonical discriminant functions were used in the analysis.

								Function							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
B1.1.1	473	384	.547	343	206	.573	468	227	.201	410	-1.176	.215	.595	191	062
B1.1.4	.297	.068	.301	.153	567	559	.145	.575	.422	585	.638	.066	564	.093	.427
B1.1.5	.715	011	.000	.452	005	.234	346	312	.024	.045	056	.172	.040	244	.400
B1.1.9	275	.547	.004	.138	.365	427	403	266	349	080	980	035	.489	389	195
B1.1.20	.130	040	047	.044	323	151	.051	.531	.243	.680	.845	.121	.001	023	613
B1.1.21	042	014	.040	.006	280	330	.778	253	110	.437	.751	224	132	015	.544
B1.1.22	.089	.224	025	123	.068	199	.356	097	.231	.448	.353	.185	362	.944	.213
B1.1.23	.069	065	043	.017	.033	.133	.192	.579	605	.365	089	.264	274	.111	.301
B1.2.1	543	.361	030	.051	.568	.557	322	419	281	.349	.434	.297	128	212	053
B1.2.6	.102	.131	362	333	.138	.124	.073	.387	.029	240	.193	.027	.783	.228	.329
B1.2.8	.605	246	.016	119	.369	310	.966	.003	.308	340	206	.702	271	300	291
B1.3.4	.070	263	.621	.330	.520	113	.049	.045	139	.032	.081	514	.152	.261	177
B1.3.5	106	.327	123	412	.200	.173	100	.253	.565	.321	146	392	191	425	.315
B1.4.1	263	037	281	.750	129	.099	.391	.100	.358	001	375	030	175	.004	063
B1.4.2	182	.631	.008	.044	575	.614	275	389	712	.007	.186	637	.107	.405	311

Classification Results^a

		2	2		E	e	Predict	ed Group Mem	bership	10	aa	42	12		45	10	47	10	10	20	24	22	22	24	25	26	27	20	20	24	22	22	24	25	26	T-4-1
Site	1	2	3	4	5	0	/	0	9	10		12	13	14	15	10	1/	10	19	20	21	22	23	24	25	20	21	20	30	31	32	33	34	30	30	Total
Original Count 1	13	3	3	4	3	1	3	0	1	0	3	1	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	2	0	40
	2	2	10	0	1	0	1	n	n	1	n	n	n	n	0	0 0	1	n	n	n	n	n	1	0	n	n	n	n	n	n	n	0	n	0	n	19
4	0	0	3	7	0	1	2	0	0	1	0	4	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	0	0	4	0	0	0	0	0	25
5	3	1	2	0	4	3	1	1	2	1	1	0	0	0	0	0	0	0	0	0	0	1	0	1	1	D	0	0	0	0	0	0	0	0	0	22
6	1	5	4	2	3	60	1	0	2	0	1	5	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	87
7	1	2	0	0	0	0	9	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13
8	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
9	1	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	٥	0	0	1	1	1	0	0	0	0	0	0	0	0	0	1	0	10
10	3	2	5	1	0	1	1	0	1	18	5	0	2	0	0	0	1	0	0	0	1	1	0	1	1	0	0	0	0	6	0	0	4	٥	1	55
11	4	0	2	1	1	2	0	0	0	3	8	5	0	0	1	0	1	0	٥	0	1	0	٥	0	1	0	0	3	1	9	0	0	1	0	1	45
12	2	0	0	2	1	1	0	0	4	4	4	21	0	1	0	0	0	0	0	0	0	3	2	1	2	0	1	0	0	0	0	1	0	3	0	53
13	0	0	0	0	0	0	0	0	0	0	0	0	32	2	3	1	1	1	0	1	0	0	2	0	0	0	1	0	0	1	5	0	0	0	0	50
14	0	0	0	0	0	1	0	0	0	0	0	0	3	21	3	0	1	3	1	0	1	1	0	2	1	0	3	4	0	0	1	3	3	0	0	52
15	2	0	0	0	0	0	0	1	0	0	1	0	4	0	24	2	2	3	0	2	0	0	0	0	2	0	0	0	0	0	2	0	1	0	0	46
10	U	0	U	0	U	0	U	U	U	2	U	U	1	U	2	33	3	3	U	U	1	U	U	0	U	U	U	U	U	U	0	U	1	U	3	49
17	0	0	0	0	0	0	0	0	0	0	0	1	1	2	2	4	28	42	n	1	1	0	U O	0	0	0	0	2	0	0	4	0	0	0	1	
18	0	0	0	0	0	0	0	0	0	0	0	0	n	2	2	0	0	42	35	4	3	0	1	0	1	0	1	2	0	0	0	0	0	2	n	
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	35	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	37
21	0	0	1	0	0	0	0	0	0	0	0	0	0	0	3	1	0	1	3	0	31	2	1	0	0	0	0	0	2	0	0	0	3	2	1	51
22	0	0	1	0	0	0	0	1	0	2	0	1	1	0	0	0	0	0	0	0	0	13	1	2	1	1	2	0	0	0	0	0	0	1	D	27
23	0	0	1	0	0	0	0	0	2	٥	0	0	0	1	1	0	0	0	0	0	1	2	36	5	0	0	0	0	0	0	0	1	0	0	1	51
24	0	0	0	2	1	0	0	1	0	0	2	0	0	1	0	0	0	0	٥	0	0	2	2	33	1	4	1	0	0	1	1	3	0	0	0	55
25	0	0	0	0	1	1	0	0	1	٥	0	0	0	2	1	0	0	0	1	0	0	2	1	2	9	3	1	3	2	1	0	0	0	0	1	32
26	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	1	2	1	0	3	0	2	4	12	2	3	1	3	0	2	2	0	1	41
27	0	0	0	1	0	0	0	0	0	0	1	0	1	5	0	0	0	0	0	0	1	2	0	0	2	2	16	2	1	1	0	1	0	2	0	38
28	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	2	11	1	0	0	1	0	0	0	18
30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	2	1	٥	0	1	1	2	1	14	0	0	0	1	0	0	27
31	1	0	2	6	2	0	1	0	0	7	4	0	1	0	0	0	0	0	0	0	0	1	0	0	1	1	4	2	0	20	0	0	0	0	0	53
32	0	0	1	0	0	0	0	0	0	0	0	0	2	1	2	1	1	0	٥	0	0	2	0	0	0	0	0	0	0	0	35	2	2	0	0	49
33	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	2	0	0	1	29	0	0	0	35
34	0	0	1	0	1	0	0	0	1	2	0	1	0	1	2	0	0	0	2	0	2	2	0	0	1	0	1	2	1	0	0	0	18	0	0	
30	0	0	0	0	0	0	1	0	0	0	1	2	0	0	0	0	0	0	0	0	2	3	1	0	0	0	0	0	2	0	0	U	0	45	46	54
	22.5	7.5	7.5	10.0	7.5	2.5	7.5	0	2.6	0	7.5	2.5	0	0	2.5	0	0	0	0	0	0	0	25	0	3	0	0	0	25	0	0	0	0	50	40	100.0
2	32.5	50.0	50.0	10.0	7.5	2.5	7.5	.u n	2.5	.0 n	7.J	2.5	.u n	.0	2.3	.0	.u n	.u n	.u n	.u	.u n	.u n	2.5	.u	.0	.u	.u n	.0	2.5	.u n	.0	.0	.0	0	.u n	100.0
3	10.5	10.5	52.6	.0	5.3	.0	5.3	.0	.0	5.3	.0	.0	.0	.0	.0	.0	5.3	.0	.0	.0	.0	.0	5.3	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	100.0
4	.0	.0	12.0	28.0	.0	4.0	8.0	.0	.0	4.0	.0	16.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	4.0	.0	4.0	.0	4.0	.0	.0	.0	16.0	.0	.0	.0	.0	.0	100.0
5	13.6	4.5	9.1	.0	18.2	13.6	4.5	4.5	9.1	4.5	4.5	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	4.5	.0	4.5	4.5	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	100.0
6	1.1	5.7	4.6	2.3	3.4	69.0	1.1	.0	2.3	.0	1.1	5.7	.0	.0	.0	.0	.0	.0	1.1	.0	.0	.0	.0	.0	.0	.0	1.1	.0	.0	.0	.0	1.1	.0	.0	.0	100.0
7	7.7	15.4	.0	.0	.0	.0	69.2	.0	.0	7.7	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	100.0
8	.0	.0	.0	.0	.0	.0	.0	100.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	100.0
9	10.0	.0	.0	.0	.0	.0	.0	.0	50.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	10.0	10.0	10.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	10.0	.0	100.0
10	5.5	3.6	9.1	1.8	.0	1.8	1.8	.0	1.8	32.7	9.1	.0	3.6	.0	.0	.0	1.8	.0	.0	.0	1.8	1.8	.0	1.8	1.8	.0	.0	.0	.0	10.9	.0	.0	7.3	.0	1.8	100.0
11	8.9	.0	4.4	2.2	2.2	4.4	.0	.0	.0	6.7	17.8	11.1	.0	.0	2.2	.0	2.2	.0	.0	.0	2.2	.0	.0	.0	2.2	.0	.0	6.7	2.2	20.0	.0	.0	2.2	.0	2.2	100.0
12	3.8	.0	.0	3.8	1.9	1.9	.0	.0	7.5	7.5	7.5	39.6	.0	1.9	.0	.0	.0	.0	.0	.0	.0	5.7	3.8	1.9	3.8	.0	1.9	.0	.0	.0	.0	1.9	.0	5.7	.0	100.0
13	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	64.0	4.0	6.0	2.0	2.0	2.0	.0	2.0	.0	.0	4.0	.0	.0	.0	2.0	.0	.0	2.0	10.0	.0	.0	.0	.0	100.0
14	.0	.0	.0	.0	.0	1.9	.0	.0	.0	.0	.0	.0	5.8	40.4	5.8	.0	1.9	5.8	1.9	.0	1.9	1.9	.0	3.8	1.9	.0	5.8	7.7	.0	.0	1.9	5.8	5.8	.0	.0	100.0
15	4.3	0.	.0	.0	0.	.U	0.	2.2	.0	.0	2.2	.0	8.7	.0	52.2	4.3	4.3	б.5 е 4	.0	4.3	.0	.0	.0	.0	4.3	.0	.0	.0	.0	.0	4.3	.0	2.2	.0	.0	100.0
10	.0	.U	.U	.U	.U	.0	.U	.U	.U	4.1	.0	.U	2.0	.U	4.1	67.3	6.1	0.1	.0	.0	2.0	.U	.U	.U	.U	.0	.U	.0	.U	.U	.0	.0	2.0	.0	6.1	100.0
- 18			.0			.0		.0	.0	.0	.0	.0	.0	.0	4.0	9.5	00.7	4.0	2.4	2.4	1.0	.0	.u n		.u n	.u	.u	.0	.u	.u	9.5	.0	.0	.0	.0	100.0
19	.u	.u	 n	.u n	.u n	.u n	.u n	.u n	.u n	.u n	.u n	1.9 N	1.9 N	5.7 N	3.7 N	1.3 N	.u n	n	71.4	8.2	61	.u n	.u 2 N	.u n	2.0	.u n	2.0	3.r 4.1	.u n	.u n	.u n	.u n	.u n	4.1	1.9 N	100.0
20	0.	.0	.0	 0	.0	.0	.0	.0	0.0	0.	0.	.0	 0	0	0.	.0	 D	.0	0	94.6	0.1	.0	0	.0	2.0	.0	0	27	.0	.0	.0	 0	.0	0	.0	100.0
21	.0	.0	2.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	5.9	2.0	.0	2.0	5.9	.0	60.8	3.9	2.0	.0	.0	.0	.0	.0	3.9	.0	.0	.0	5.9	3.9	2.0	100.0
22	.0	.0	3.7	.0	.0	.0	.0	3.7	.0	7.4	.0	3.7	3.7	.0	.0	.0	.0	.0	.0	.0	.0	48.1	3.7	7.4	3.7	3.7	7.4	.0	.0	.0	.0	.0	.0	3.7	.0	100.0
23	.0	.0	2.0	.0	.0	.0	.0	.0	3.9	.0	.0	.0	.0	2.0	2.0	.0	.0	.0	.0	.0	2.0	3.9	70.6	9.8	.0	.0	.0	.0	.0	.0	.0	2.0	.0	.0	2.0	100.0
24	.0	.0	.0	3.6	1.8	.0	.0	1.8	.0	.0	3.6	.0	.0	1.8	.0	.0	.0	.0	.0	.0	.0	3.6	3.6	60.0	1.8	7.3	1.8	.0	.0	1.8	1.8	5.5	.0	.0	.0	100.0
25	.0	.0	.0	.0	3.1	3.1	.0	.0	3.1	.0	.0	.0	.0	6.3	3.1	.0	.0	.0	3.1	.0	.0	6.3	3.1	6.3	28.1	9.4	3.1	9.4	6.3	3.1	.0	.0	.0	.0	3.1	100.0
26	.0	.0	.0	.0	.0	.0	.0	2.4	.0	.0	.0	.0	.0	.0	2.4	.0	.0	2.4	4.9	2.4	.0	7.3	.0	4.9	9.8	29.3	4.9	7.3	2.4	7.3	.0	4.9	4.9	.0	2.4	100.0
27	.0	.0	.0	2.6	.0	.0	.0	.0	.0	.0	2.6	.0	2.6	13.2	.0	.0	.0	.0	.0	.0	2.6	5.3	.0	.0	5.3	5.3	42.1	5.3	2.6	2.6	.0	2.6	.0	5.3	.0	100.0
28	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	5.6	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	5.6	5.6	11.1	61.1	5.6	.0	.0	5.6	.0	.0	.0	100.0
30	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	14.8	.0	7.4	3.7	.0	.0	3.7	3.7	7.4	3.7	51.9	.0	.0	.0	3.7	.0	.0	100.0
31	1.9	.0	3.8	11.3	3.8	.0	1.9	.0	.0	13.2	7.5	.0	1.9	.0	.0	.0	.0	.0	.0	.0	.0	1.9	.0	.0	1.9	1.9	7.5	3.8	.0	37.7	.0	.0	.0	.0	.0	100.0
32	.0	.0	2.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	4.1	2.0	4.1	2.0	2.0	.0	.0	.0	.0	4.1	.0	.0	.0	.0	.0	.0	.0	.0	71.4	4.1	4.1	.0	.0	100.0
33	.0	.0	.0	.0	.0	0.	.0	.0	.0	.0	.0	2.9	.0	2.9	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	2.9	5.7	.0	.0	2.9	82.9	.0	.0	.0	100.0
34	.0	.0	2.6	.0	2.6	0.	.0	.0	2.6	5.3	.0	2.6	.0	2.6	5.3	.0	.0	.0	5.3	.0	5.3	5.3	.0	.0	2.6	.0	2.6	5.3	2.6	.0	.0	.0	47.4	.0	.0	100.0
35	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	1.9	3.7	.0	.0	.0	.0	.0	.0	.0	.0	3.7	5.6	1.9	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	83.3	.0	100.0
36	.0	.0	.0	.0	.0	.0	1.8	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	1.8	.0	1.8	.0	5.5	.0	.0	.0	5.5	.0	.0	.0	.0	.0	83.6	100.0

a. 56.4% of original grouped cases correctly classified.

<u>Appendix 10.</u> Eigenvalues and Standardized Canonical Discriminant Function Coefficients for British medieval samples

Non-pooled samples

		Ligenvalu	63	
				Canonical
Function	Eigenvalue	% of Variance	Cumulative %	Correlation
1	1.533ª	56.3	56.3	.778
2	.656ª	24.1	80.5	.630
3	.218ª	8.0	88.5	.423
4	.141 ^a	5.2	93.6	.351
5	.084ª	3.1	96.7	.278
6	.058ª	2.1	98.8	.234
7	.022ª	.8	99.6	.148
8	.010 ^a	.4	100.0	.098

Eigenvalues

a. First 8 canonical discriminant functions were used in the analysis.

	Function											
	1	2	3	4	5	6	7	8				
B1.1.1	.212	.352	404	.504	445	363	.102	810				
B1.1.4	015	117	.309	153	.255	.287	378	.725				
B1.1.5	.124	.015	.005	085	431	.557	158	128				
B1.1.9	.075	136	210	084	.313	527	1.025	313				
B1.1.17	224	329	521	261	264	.803	.370	.366				
B1.1.18	.058	409	.060	.796	625	.024	224	.724				
B1.1.19	.512	.356	009	283	.339	033	440	.990				
B1.1.20	.286	.321	.805	.008	.662	281	436	335				
B1.1.21	.197	.578	.058	-1.019	.698	.290	.194	468				
B1.1.22	789	536	099	.092	181	104	072	446				
B1.1.23	094	021	.430	472	.030	.134	332	.232				
B1.2.1	.175	022	250	.520	.337	.233	060	450				
B1.2.6	.019	289	114	078	.043	335	239	.384				
B1.2.8	216	527	.710	.311	.202	.230	049	.024				
B1.3.4	759	.774	005	.214	.115	020	.113	.207				
B1.3.5	.259	045	.296	.067	342	530	019	315				
B1.4.1	.115	.007	.348	006	324	.006	.379	011				
B1.4.2	.509	.408	389	.121	034	.036	.337	.353				

Males

	Ligenvalues											
				Canonical								
Function	Eigenvalue	% of Variance	Cumulative %	Correlation								
1	1.648 ^a	51.6	51.6	.789								
2	.955ª	29.9	81.4	.699								
3	.250ª	7.8	89.2	.447								
4	.139 ^a	4.4	93.6	.350								
5	.095 ^a	3.0	96.6	.294								
6	.056ª	1.8	98.3	.231								
7	.032 ^a	1.0	99.3	.176								
8	.022 ^a	.7	100.0	.146								

Eigenvalues

a. First 8 canonical discriminant functions were used in the analysis.

	Function											
	1	2	3	4	5	6	7	8				
B1.1.1	.248	380	150	.587	326	551	027	836				
B1.1.4	040	.157	.274	136	.629	.244	541	.625				
B1.1.5	.040	.056	.106	.144	.521	.237	.105	286				
B1.1.9	.064	.110	125	188	-1.004	194	.362	033				
B1.1.17	077	.287	550	250	.725	.565	.485	.598				
B1.1.18	.197	.597	077	.858	.778	579	106	.429				
B1.1.19	.701	288	116	186	.161	.543	550	.527				
B1.1.20	.087	140	.771	.062	624	002	391	521				
B1.1.21	027	642	.160	-1.075	198	.844	.305	113				
B1.1.22	970	.550	175	.115	.199	137	.079	270				
B1.1.23	026	.038	.255	562	.161	.195	056	043				
B1.2.1	.101	.090	125	.526	542	.138	.479	391				
B1.2.6	.001	.203	148	031	.045	011	603	.286				
B1.2.8	223	.472	.615	.138	.042	.325	220	031				
B1.3.4	542	903	.059	.124	150	.024	014	.210				
B1.3.5	.165	.195	.207	071	.085	614	125	190				
B1.4.1	010	.057	.346	079	.126	306	.325	.009				
B1.4.2	.402	333	205	.218	193	.059	.540	.559				

Standardized Canonical Discriminant Function Coefficients

- ..

Females

				Canonical
Function	Eigenvalue	% of Variance	Cumulative %	Correlation
1	1.943 ^a	55.0	55.0	.813
2	.596ª	16.9	71.9	.611
3	.310ª	8.8	80.7	.486
4	.273ª	7.7	88.4	.463
5	.203ª	5.7	94.2	.411
6	.101ª	2.9	97.0	.303
7	.094ª	2.7	99.7	.293
8	.011ª	.3	100.0	.104

Eigenvalues

a. First 8 canonical discriminant functions were used in the analysis.

	Function											
	1	2	3	4	5	6	7	8				
B1.1.1	.078	225	.125	.570	774	237	.465	-1.103				
B1.1.4	045	.153	410	223	.547	.037	.164	.350				
B1.1.5	.110	199	052	233	699	.180	.126	127				
B1.1.9	023	220	294	.226	374	074	.407	654				
B1.1.17	295	330	343	.422	528	328	025	.654				
B1.1.18	167	026	.466	.376	.739	.349	.164	.241				
B1.1.19	.328	.769	023	621	.775	.119	553	.542				
B1.1.20	.494	.686	.012	751	.600	.567	061	.017				
B1.1.21	.500	.418	641	421	122	292	129	.540				
B1.1.22	422	388	.073	.530	.107	487	.443	358				
B1.1.23	230	.162	.253	488	.260	.436	.039	195				
B1.2.1	.285	045	106	.462	.153	.500	480	170				
B1.2.6	099	354	.001	152	.185	476	.282	.067				
B1.2.8	212	253	.367	.019	.364	.187	.741	.346				
B1.3.4	813	.612	082	.441	117	.000	183	.148				
B1.3.5	.470	.238	.443	.057	.059	312	.083	227				
B1.4.1	.229	.031	.336	090	120	.146	.343	.147				
B1.4.2	.601	005	118	.268	316	.226	695	.058				

<u>Appendix 11.</u> Eigenvalues and Standardized Canonical Discriminant Function Coefficients for British and Howells' European samples

Eigenvalues											
				Canonical							
Function	Eigenvalue	% of Variance	Cumulative %	Correlation							
1	1.282ª	47.2	47.2	.749							
2	.499 ^a	18.4	65.6	.577							
3	.410ª	15.1	80.7	.539							
4	.253ª	9.3	90.1	.450							
5	.101ª	3.7	93.8	.302							
6	.084ª	3.1	96.9	.278							
7	.040ª	1.5	98.4	.197							
8	.031ª	1.1	99.5	.172							
9	.008ª	.3	99.8	.091							
10	.003ª	.1	99.9	.058							
11	.002ª	.1	100.0	.047							

Non-pooled samples

a. First 11 canonical discriminant functions were used in the analysis.

	Function										
	1	2	3	4	5	6	7	8	9	10	11
B1.1.1	.573	.603	.489	.075	579	278	231	.046	271	305	.257
B1.1.4	251	223	.157	002	.511	.050	093	619	368	809	.176
B1.1.5	007	342	065	.658	583	.034	.502	095	084	144	.153
B1.1.9	.209	045	.130	381	172	.522	111	.939	.398	.199	.336
B1.1.20	033	104	.091	.185	.533	.369	.139	582	.448	.271	.090
B1.1.21	.068	.143	021	.027	.292	.475	.126	110	430	.268	536
B1.1.22	509	157	034	331	.022	181	264	354	097	.128	.297
B1.1.23	063	055	767	.071	.435	.069	109	393	.133	.088	158
B1.2.1	.312	.146	092	342	.036	426	.602	.047	.476	.870	058
B1.2.6	.014	240	.053	234	095	022	325	006	.174	566	808
B1.2.8	621	808	.496	.116	.475	071	.320	.084	524	.079	261
B1.3.4	786	.800	019	.102	.077	025	.111	.221	.195	037	086
B1.3.5	.215	154	.234	.373	.169	263	663	.150	.186	.402	060
B1.4.1	.177	009	297	.146	.378	052	059	.425	639	.081	.392
B1.4.2	.749	.530	307	076	227	144	.286	.316	.663	358	.265

Males

Eigenvalues											
				Canonical							
Function	Eigenvalue	% of Variance	Cumulative %	Correlation							
1	1.437ª	46.3	46.3	.768							
2	.698ª	22.5	68.7	.641							
3	.362ª	11.7	80.4	.516							
4	.267ª	8.6	89.0	.459							
5	.162ª	5.2	94.2	.374							
6	.080ª	2.6	96.8	.272							
7	.038ª	1.2	98.0	.192							
8	.032ª	1.0	99.0	.176							
9	.014ª	.4	99.5	.117							
10	.011ª	.4	99.8	.107							
11	.005ª	.2	100.0	.073							

a. First 11 canonical discriminant functions were used in the analysis.

	Function										
	1	2	3	4	5	6	7	8	9	10	11
B1.1.1	638	.448	731	072	202	.224	106	.067	.529	013	174
B1.1.4	.291	166	.081	192	.460	022	471	.585	237	572	319
B1.1.5	.052	102	.124	712	133	.405	.491	.121	111	068	081
B1.1.9	252	142	154	.462	244	548	.328	678	.115	.105	126
B1.1.20	.068	158	.089	.012	.425	270	.238	.213	.410	.140	140
B1.1.21	002	.115	.162	.082	.178	204	.117	.581	764	.130	.261
B1.1.22	.704	293	.140	.234	076	.309	273	.327	026	.275	308
B1.1.23	015	.092	.847	.040	.076	215	105	.254	.409	.101	.152
B1.2.1	292	003	.148	.498	.020	.520	.440	544	.257	.574	.507
B1.2.6	.010	165	040	.123	097	013	207	.153	.131	858	.414
B1.2.8	.475	585	236	138	.694	229	.313	.150	058	.053	.305
B1.3.4	.569	.881	119	.059	.136	112	.097	286	.067	057	.089
B1.3.5	145	226	071	388	.114	079	548	370	.089	.324	.282
B1.4.1	123	017	.301	.035	.303	050	338	.082	534	.385	096
B1.4.2	600	.410	.256	.248	212	.448	.195	425	238	251	727

Females

Eigenvalues											
				Canonical							
Function	Eigenvalue	% of Variance	Cumulative %	Correlation							
1	1.367ª	42.1	42.1	.760							
2	.712ª	21.9	64.1	.645							
3	.441 ^a	13.6	77.6	.553							
4	.271ª	8.3	86.0	.461							
5	.183ª	5.7	91.6	.394							
6	.128ª	3.9	95.6	.336							
7	.061ª	1.9	97.5	.240							
8	.052ª	1.6	99.1	.221							
9	.023ª	.7	99.8	.151							
10	.005ª	.2	99.9	.073							
11	.002ª	.1	100.0	.044							

a. First 11 canonical discriminant functions were used in the analysis.

	Function										
	1	2	3	4	5	6	7	8	9	10	11
B1.1.1	.321	.240	297	.077	449	665	.275	275	.957	152	255
B1.1.4	139	.252	.045	317	.463	.466	101	.034	.252	.044	582
B1.1.5	058	325	.545	.021	.223	430	247	316	.349	.015	.153
B1.1.9	.016	035	130	225	.145	761	.362	.213	079	726	.099
B1.1.20	.081	.214	.265	.334	.566	.402	438	.049	199	.185	.128
B1.1.21	.204	.278	.056	.047	.481	.332	.092	.267	580	.496	.044
B1.1.22	061	.281	044	089	041	.618	.260	.046	100	044	.587
B1.1.23	178	428	249	.343	.090	.413	155	.425	.315	057	.336
B1.2.1	.390	.074	246	.003	318	024	732	.194	256	158	.470
B1.2.6	029	105	.090	454	069	.298	.395	134	.356	.497	.311
B1.2.8	692	.067	.727	549	075	.124	020	.641	.113	.137	312
B1.3.4	731	.448	463	.339	112	267	053	032	238	.206	.223
B1.3.5	.291	.295	.435	.345	352	.362	.256	.021	007	410	186
B1.4.1	.177	248	.056	.355	014	236	.413	.527	.051	.141	259
B1.4.2	.824	140	315	.170	149	439	295	174	541	.082	.509

<u>Appendix 12.</u> Eigenvalues and Standardized Canonical Discriminant Function Coefficients for British and Howells' samples

Non-pooled samples

		3		
				Canonical
Function	Eigenvalue	% of Variance	Cumulative %	Correlation
1	2.642 ^a	39.5	39.5	.852
2	1.404 ^a	21.0	60.5	.764
3	.695ª	10.4	70.9	.640
4	.623ª	9.3	80.3	.620
5	.504ª	7.5	87.8	.579
6	.273ª	4.1	91.9	.463
7	.162ª	2.4	94.3	.374
8	.124ª	1.9	96.2	.332
9	.106ª	1.6	97.8	.309
10	.070ª	1.1	98.8	.256
11	.029 ^a	.4	99.2	.167
12	.026ª	.4	99.6	.158
13	.014 ^a	.2	99.8	.119
14	.008ª	.1	100.0	.091
15	.002ª	.0	100.0	.048

Eigenvalues

a. First 15 canonical discriminant functions were used in the analysis.

	Function														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
B1.1.1	.348	452	151	-1.090	337	324	167	.051	.110	272	224	268	.028	-1.412	127
B1.1.4	376	130	.435	.049	035	.837	.418	670	.200	312	.616	247	477	.555	.673
B1.1.5	723	.270	315	321	.233	.247	.006	174	039	086	538	.175	.244	150	.283
B1.1.9	.507	.524	.565	.015	083	045	565	.264	.243	.173	691	.329	147	824	277
B1.1.20	.001	080	.006	.182	.048	.294	.429	.077	.401	240	.454	.362	.426	.798	683
B1.1.21	007	072	.106	.143	012	.162	.147	.637	271	.153	.109	.024	.133	.928	.726
B1.1.22	219	042	.300	.512	063	180	.114	166	216	.207	.208	582	.690	.372	.150
B1.1.23	.011	092	330	.351	.066	.403	012	.020	214	.578	.541	.230	.263	189	.078
B1.2.1	.606	.122	044	117	.400	466	.043	306	604	.272	474	.606	.399	.222	284
B1.2.6	.028	.328	241	.289	158	525	321	053	.226	523	.585	.234	.068	170	.442
B1.2.8	717	.041	.322	.496	348	104	1.008	.411	494	173	.213	.112	523	426	177
B1.3.4	215	731	.265	.187	.716	202	364	.199	.128	.028	.024	022	175	.013	172
B1.3.5	.204	.251	.004	159	.027	413	.401	183	.644	.574	104	.115	.065	.041	.359
B1.4.1	.360	.097	286	.354	.275	.350	.503	.255	.173	141	339	506	062	168	.022
B1.4.2	.377	.550	222	696	.445	.008	950	.040	279	.190	.116	516	.101	.567	358

Males

Eigenvalues										
				Canonical						
Function	Eigenvalue	% of Variance	Cumulative %	Correlation						
1	2.974 ^a	39.2	39.2	.865						
2	1.520ª	20.1	59.3	.777						
3	.901ª	11.9	71.1	.688						
4	.694ª	9.2	80.3	.640						
5	.631ª	8.3	88.6	.622						
6	.285 ^a	3.8	92.4	.471						
7	.183ª	2.4	94.8	.393						
8	.114ª	1.5	96.3	.319						
9	.108ª	1.4	97.7	.312						
10	.078ª	1.0	98.7	.269						
11	.037ª	.5	99.2	.189						
12	.030ª	.4	99.6	.170						
13	.019ª	.3	99.9	.137						
14	.008ª	.1	100.0	.087						
15	.002ª	.0	100.0	.047						

Figonyalı

a. First 15 canonical discriminant functions were used in the analysis.

	Function														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
B1.1.1	.227	360	825	100	683	361	153	072	116	208	131	.138	.350	125	-1.185
B1.1.4	396	.027	.228	.275	161	.790	.543	196	313	333	201	.575	651	.474	.462
B1.1.5	606	.328	497	.032	.174	.199	.076	239	056	093	199	460	.218	.220	115
B1.1.9	.548	.460	.106	.141	392	140	641	.119	247	.289	059	592	.029	161	753
B1.1.20	.025	118	.208	.038	.054	.285	.318	.000	348	111	.736	033	.165	462	.797
B1.1.21	.003	020	.160	.109	.128	.198	.009	.538	.282	080	060	.049	.143	.739	.892
B1.1.22	338	.074	.758	.200	.156	058	.126	270	.282	.020	129	.400	.553	.098	.342
B1.1.23	.053	100	.069	127	.363	.580	050	091	.373	.380	.490	.246	.107	.168	096
B1.2.1	.613	.043	074	.188	.066	392	.201	418	.615	.292	.176	821	.144	203	.138
B1.2.6	.092	.268	.026	143	.281	493	203	206	254	339	.455	.369	195	.496	130
B1.2.8	568	.202	.418	144	106	025	.657	.879	.298	212	.380	002	309	110	498
B1.3.4	174	609	062	.736	.298	191	305	.208	074	.116	.042	009	189	188	067
B1.3.5	.190	.215	046	072	021	289	.399	130	412	.837	131	.021	.185	.355	.096
B1.4.1	.385	.017	.149	088	.500	.308	.348	.392	288	161	457	.004	.303	152	149
B1.4.2	.404	.441	615	.244	.007	058	713	332	.400	002	363	.311	.137	424	.604

Females

Eigenvalues											
	Canonical										
Function	Eigenvalue	% of Variance	Cumulative %	Correlation							
1	2.766 ^a	37.4	37.4	.857							
2	1.535ª	20.7	58.1	.778							
3	.916ª	12.4	70.5	.692							
4	.581ª	7.9	78.4	.606							
5	.569ª	7.7	86.1	.602							
6	.343ª	4.6	90.7	.505							
7	.241ª	3.3	93.9	.441							
8	.150ª	2.0	96.0	.361							
9	.091ª	1.2	97.2	.289							
10	.085ª	1.2	98.4	.280							
11	.060ª	.8	99.2	.239							
12	.029 ^a	.4	99.6	.168							
13	.014 ^a	.2	99.8	.119							
14	.013ª	.2	99.9	.114							
15	.004 ^a	.1	100.0	.061							

a. First 15 canonical discriminant functions were used in the analysis.

	Function														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
B1.1.1	536	358	.033	.082	720	005	528	165	.154	768	650	.320	.629	136	534
B1.1.4	.216	092	.455	177	.091	630	.271	310	524	.812	027	.274	.057	432	.471
B1.1.5	.711	.123	.003	.344	196	291	116	044	078	268	188	140	.351	.378	.236
B1.1.9	283	.433	.316	397	.441	043	474	156	.363	928	194	159	.194	.119	247
B1.1.20	.058	.033	.011	.104	.084	079	.793	215	.107	.690	.028	497	438	.084	465
B1.1.21	.005	.018	.157	106	046	002	.703	.645	.191	.367	.406	145	049	014	.752
B1.1.22	.119	.071	.091	169	.034	.296	.467	.305	266	.509	.543	.583	077	.519	.010
B1.1.23	.078	108	235	.321	.320	100	.139	.154	104	.030	.716	042	.439	242	234
B1.2.1	482	.300	.049	.424	091	.392	336	.310	266	028	.254	670	139	.586	.008
B1.2.6	.090	.276	342	174	.123	.322	271	.053	.360	.602	239	.062	.538	161	049
B1.2.8	.698	231	.135	329	.389	.400	.437	.493	772	169	446	.092	.033	540	208
B1.3.4	.118	624	.535	.281	.326	.258	189	050	.438	.069	.169	.125	281	.077	.012
B1.3.5	210	.224	040	159	296	.556	.229	740	111	144	.143	235	.255	072	.359
B1.4.1	203	.194	119	.469	.357	064	.477	087	114	362	365	.452	072	061	.149
B1.4.2	222	.696	.046	.438	568	317	504	.184	.648	.052	.500	.135	655	.032	059

<u>Appendix 13.</u> Eigenvalues for British medieval samples

Non-pooled samples

Total Variance Explained

		Initial Eigenvalu	es	Extraction Sums of Squared Loadings				
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %		
1	8.741	48.561	48.561	8.741	48.561	48.561		
2	4.052	22.509	71.071	4.052	22.509	71.071		
3	1.916	10.646	81.717	1.916	10.646	81.717		
4	1.678	9.323	91.039	1.678	9.323	91.039		
5	.757	4.206	95.246					
6	.430	2.390	97.635					
7	.359	1.992	99.627					
8	.067	.373	100.000					
9	6.383E-16	3.546E-15	100.000					
10	5.438E-16	3.021E-15	100.000					
11	2.010E-16	1.116E-15	100.000					
12	1.342E-16	7.456E-16	100.000					
13	9.197E-17	5.110E-16	100.000					
14	4.687E-17	2.604E-16	100.000					
15	-4.135E-18	-2.297E-17	100.000					
16	-1.951E-16	-1.084E-15	100.000					
17	-3.020E-16	-1.678E-15	100.000					
18	-1.303E-15	-7.241E-15	100.000					

Extraction Method: Principal Component Analysis.

Males

Total Variance Explained

		Initial Eigenvalu	es	Extraction Sums of Squared Loadings				
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %		
1	7.964	44.242	44.242	7.964	44.242	44.242		
2	4.062	22.566	66.807	4.062	22.566	66.807		
3	2.233	12.408	79.216	2.233	12.408	79.216		
4	1.602	8.902	88.118	1.602	8.902	88.118		
5	.997	5.541	93.659					
6	.700	3.891	97.550					
7	.309	1.715	99.265					
8	.132	.735	100.000					
9	2.333E-15	1.296E-14	100.000					
10	6.476E-16	3.598E-15	100.000					
11	3.573E-16	1.985E-15	100.000					
12	2.495E-16	1.386E-15	100.000					
13	1.071E-16	5.948E-16	100.000					
14	3.108E-17	1.727E-16	100.000					
15	-1.420E-16	-7.889E-16	100.000					
16	-2.922E-16	-1.623E-15	100.000					
17	-3.309E-16	-1.838E-15	100.000					
18	-6.834E-16	-3.796E-15	100.000					

Extraction Method: Principal Component Analysis.
Females

Initial Eigenvalues Extraction Sums of Squared Loadings Component Total % of Variance Cumulative % Total % of Variance Cumulative % 1 6.810 37.835 37.835 6.810 37.835 37.835 3.630 20.164 57.999 3.630 57.999 2 20.164 2.733 15.184 73.183 2.733 3 15.184 73.183 1.699 82.623 1.699 9.440 9.440 82.623 4 1.520 8.445 91.068 1.520 5 8.445 91.068 5.531 96.599 6 .996 3.401 100.000 7 .612 7.432E-16 4.129E-15 100.000 8 9 4.353E-16 2.419E-15 100.000 10 3.209E-16 1.783E-15 100.000 11 1.262E-16 7.008E-16 100.000 12 7.258E-17 4.032E-16 100.000 13 -1.401E-16 -7.783E-16 100.000 14 -1.683E-16 -9.349E-16 100.000 -2.213E-16 -1.230E-15 100.000 15 100.000 16 -3.530E-16 -1.961E-15 -3.708E-15 100.000 17 -6.674E-16 18 -1.620E-15 -9.000E-15 100.000

Total Variance Explained

<u>Appendix 14.</u> Eigenvalues for British and Howells' European samples

Non-pooled samples

Total Variance Explained

	Initial Eigenvalues		Extraction Sums of Squared Loadings			
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	6.463	43.087	43.087	6.463	43.087	43.087
2	2.721	18.138	61.225	2.721	18.138	61.225
3	1.909	12.724	73.948	1.909	12.724	73.948
4	1.710	11.398	85.346	1.710	11.398	85.346
5	1.078	7.189	92.536	1.078	7.189	92.536
6	.677	4.514	97.050			
7	.224	1.493	98.543			
8	.129	.862	99.406			
9	.048	.319	99.724			
10	.032	.215	99.939			
11	.009	.061	100.000			
12	6.398E-16	4.265E-15	100.000			
13	1.020E-16	6.800E-16	100.000			
14	8.045E-17	5.364E-16	100.000			
15	-4.825E-16	-3.216E-15	100.000			

Males

Total Variance Explained

	Initial Eigenvalues			Extraction Sums of Squared Loadings		
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	5.918	39.451	39.451	5.918	39.451	39.451
2	2.754	18.360	57.810	2.754	18.360	57.810
3	2.098	13.985	71.796	2.098	13.985	71.796
4	1.622	10.814	82.610	1.622	10.814	82.610
5	1.227	8.181	90.791	1.227	8.181	90.791
6	.580	3.864	94.656			
7	.469	3.129	97.785			
8	.150	.999	98.784			
9	.111	.739	99.523			
10	.050	.337	99.860			
11	.021	.140	100.000			
12	2.563E-16	1.708E-15	100.000			
13	1.991E-16	1.327E-15	100.000			
14	-8.090E-17	-5.394E-16	100.000			
15	-3.488E-16	-2.325E-15	100.000			

Females

Total Variance Explained

	Initial Eigenvalues			Extraction Sums of Squared Loadings		
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	4.822	32.144	32.144	4.822	32.144	32.144
2	3.693	24.618	56.762	3.693	24.618	56.762
3	2.048	13.651	70.414	2.048	13.651	70.414
4	1.517	10.110	80.524	1.517	10.110	80.524
5	.976	6.509	87.033			
6	.807	5.379	92.412			
7	.684	4.559	96.971			
8	.349	2.329	99.299			
9	.101	.674	99.974			
10	.004	.026	100.000			
11	5.311E-16	3.541E-15	100.000			
12	2.533E-16	1.689E-15	100.000			
13	2.002E-16	1.335E-15	100.000			
14	-5.265E-17	-3.510E-16	100.000			
15	-5.170E-16	-3.447E-15	100.000			

<u>Appendix 15.</u> Eigenvalues for British and Howells' samples

Non-pooled samples

	Initial Eigenvalues			Extraction Sums of Squared Loadings		
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	5.963	39.751	39.751	5.963	39.751	39.751
2	3.188	21.255	61.006	3.188	21.255	61.006
3	2.165	14.434	75.440	2.165	14.434	75.440
4	1.174	7.824	83.264	1.174	7.824	83.264
5	.880	5.868	89.131			
6	.615	4.102	93.233			
7	.349	2.327	95.560			
8	.220	1.464	97.023			
9	.167	1.111	98.135			
10	.131	.872	99.007			
11	.070	.467	99.474			
12	.048	.323	99.796			
13	.020	.130	99.927			
14	.007	.047	99.974			
15	.004	.026	100.000			

Total Variance Explained

Males

Total Variance Explained

	Initial Eigenvalues			Extraction Sums of Squared Loadings		
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	5.880	39.197	39.197	5.880	39.197	39.197
2	3.308	22.052	61.249	3.308	22.052	61.249
3	1.826	12.173	73.422	1.826	12.173	73.422
4	1.292	8.612	82.034	1.292	8.612	82.034
5	.956	6.371	88.405			
6	.636	4.243	92.649			
7	.303	2.023	94.672			
8	.289	1.926	96.598			
9	.190	1.265	97.863			
10	.123	.823	98.686			
11	.084	.561	99.246			
12	.057	.378	99.625			
13	.039	.257	99.882			
14	.016	.106	99.987			
15	.002	.013	100.000			

Females

Total Variance Explained

	Initial Eigenvalues			Extraction Sums of Squared Loadings		
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	4.871	32.475	32.475	4.871	32.475	32.475
2	3.727	24.849	57.324	3.727	24.849	57.324
3	2.586	17.239	74.563	2.586	17.239	74.563
4	1.215	8.102	82.665	1.215	8.102	82.665
5	.730	4.864	87.528			
6	.506	3.376	90.904			
7	.473	3.154	94.058			
8	.362	2.416	96.474			
9	.205	1.366	97.840			
10	.115	.767	98.606			
11	.098	.652	99.259			
12	.065	.433	99.692			
13	.029	.195	99.887			
14	.012	.082	99.968			
15	.005	.032	100.000			

<u>Appendix 16.</u> Three-dimensional scatterplot for PC1, PC2 and PC4 for the non-pooled British and Howells' European samples

<u>Appendix 17.</u> Three-dimensional scatterplot for PC1, PC2 and PC4 for the male British and Howells' European samples

<u>Appendix 18.</u> Three-dimensional scatterplot for PC1, PC2 and PC4 for the female British and Howells' European samples

