
Ghobaei-Arani, M, Souri, A, Baker, T and Hussien, A

 ControCity: An Autonomous Approach for Controlling Elasticity Using Buffer
Management in Cloud Computing Environment

http://researchonline.ljmu.ac.uk/id/eprint/11135/

Article

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Ghobaei-Arani, M, Souri, A, Baker, T and Hussien, A (2019) ControCity: An
Autonomous Approach for Controlling Elasticity Using Buffer Management
in Cloud Computing Environment. IEEE Access. ISSN 2169-3536

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2932462, IEEE Access
 Author Name: Preparation of Papers for IEEE Access

(February 2017)

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

ControCity: An Autonomous Approach for
Controlling Elasticity Using Buffer Management in
Cloud Computing Environment
Mostafa Ghobaei-Arani1,2, Alireza Souri3, Thar Baker4* and Aseel Hussien5

1 Department of Computer Engineering, Qom Branch, Islamic Azad University, Qom, Iran
2Young Researchers and Elite Club, Qom Branch, Islamic Azad University, Qom, Iran

E-mail: m.ghobaei@qom-iau.ac.ir
3Young Researchers and Elite Club, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran

E-mail: a.souri@srbiau.ac.ir
4Department of Computer Science, Liverpool John Moores University, Liverpool, UK

*Corresponding Author E-mail: t.baker@ljmu.ac.uk
5Department of the Built Environment, Liverpool John Moores University, Liverpool, UK

E-mail: a.hussien@ljmu.ac.uk

ABSTRACT Cloud computing has been one of the most popular distributed computing paradigms. Elasticity is a crucial feature
that distinguishes cloud computing from other distributed computing models. It considers the resource provisioning and allocation
processes can be implemented automatically and dynamically. Elasticity feature allows cloud platforms to handle different loads
efficiently without disrupting the normal behavior of the application. Therefore, providing a resource elasticity analytical model
can play a significant role in cloud resource management. This paper presents Controlling Elasticity (ControCity) framework for
controlling resources elasticity through using “buffer management” and “elasticity management”. In the proposed framework,
there are two essential components called buffer manager and elasticity manager in the application layer and middleware layer,
respectively. The buffer management controls the input queue of the user’s request and the elasticity management controls the
elasticity of the cloud platform using learning automata technique. In the application layer, applications are received by cloud
applications and, then, placed in the control of the buffer. Buffer manager controls the queue of requests, and elasticity manager
of the middleware layer using the learning automata provides a solution for controlling the elasticity of the cloud platform. The
experimental results indicate that ControCity reduces the response time by up to 3.7%, and increases the resource utilization and
elasticity by up to 8.4% and 5.4%, respectively, compared with the other approaches.

INDEX TERMS Cloud Computing, Elasticity, Buffer Management, Learning Automata

I. INTRODUCTION
In recent years, the computing trend moved toward the cloud
computing paradigm, particularly when large computing
resources are required to serve a cloud application, using the
ideas of computing power as a utility to deliver a unified service
to the end-users [1, 2]. In cloud computing, the IT
infrastructures such as storage, servers, and network can be
dynamically provisioned according to the user requirements
using on-demand self-service delivery model [3, 4]. One of the
considerable properties that differentiate cloud computing from
other computing paradigm is elasticity [5]. Elasticity property
allows the cloud platforms to efficiently add or remove the
cloud infrastructures (e.g., VMs) automatically according to the
number of users for supporting the rapid fluctuation of loads to
serve better.

A. Research motivation and challenges
Since the end-users may have irregular access to cloud
applications over time, it is difficult to handle load fluctuations
with the traditional infrastructure [6, 7]. Load fluctuations are
the points where the workload of the system changes
continuously. This is one of the important issues that should be
considered for managing cloud infrastructure as the backbone
of the cloud platform. If load fluctuations of cloud applications
using elasticity property is not correctly managed, the whole
cloud platform can fail and Quality of Service (QoS) would be
adversely affected and it may face to the over-provisioning or
the under-provisioning issues [8-10]. In the over-provisioning
issue, the cloud infrastructures allocated are greater than the
user needs, and this leads to useless cost to lease the cloud
infrastructures while QoS requirements can be satisfied. In the
under-provisioning issue, the allocated cloud infrastructures are
smaller than the user needs, and this causes violation of Service

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2932462, IEEE Access
 Author Name: Preparation of Papers for IEEE Access (February 2017)

Level Objectives (SLOs) agreed between end-users and cloud
platform. Therefore, managing the cloud infrastructure to
guarantee elasticity property of cloud platform can play an
important role in cloud resource management to deal with the
under or over-provisioning issues.

B. Our approach

In this paper, we designed an autonomous framework for
controlling elasticity in a cloud platform that includes two
major components named buffer manager and the elasticity
manager. The buffer manager component is responsible for
controlling the input queue of the requests, and it follows a
reference autonomous computing model proposed by IBM
[11-13], which is called the MAPE (monitoring-analysis-
planning-execution) control loop. The monitoring phase
observes the number of incoming requests and the buffer
remaining space as inputs analysis phase to predict the number
of future requests. The planning phase using learning
automata [14] determines the size of buffer memory to be low
or high, or kept in the same state [15]. Besides, the elasticity
manager component is responsible for controlling the
elasticity of the cloud platform using the learning automata
technique based on QoS analysis.

C. Contributions
The main contributions of this research can be summarized as
follows:
• Designing an autonomous framework for managing of

elasticity feature in a cloud platform.
• Utilizing a learning automata technique as a decision-

maker into the elasticity manager component of the
proposed framework to control the elasticity of the cloud
platform.

• Evaluating the performance of the proposed solution
under three real workloads by performing a series of
experiments for improving elasticity and resource
utilization.

D. Organization of the paper
The rest of this paper is organized as follows: In Section 2, we
focus on a literature review of related works. Section 3
describes the proposed solution in more details. Section 4
presents an evaluation and discuss the experimental results. In
Section 5, we conclude the paper and present future works.

II. RELATED WORKS
In this section, we review research studies about the elasticity
management mechanisms in cloud environments.
Ullah et al. [16] have studied the cloud elasticity property by
focusing on control theoretical mechanisms and provide a
comprehensive taxonomy from the point of view of control
theory as an implementation mechanism. Besides, they
investigate some research challenges such as heterogeneity,
interoperability, computational overhead analysis, uncertainty,

scalability, oscillation, and resource usage analysis that needs
to be further addressed. Albonico et al. [17] have proposed a
mechanism that manages the elasticity feature of web
applications according to their QoS requirements. Their
mechanism controls automatically the workload generation to
manage web applications using elasticity states including
scaling out, ready, and scaling in states. Finally, they evaluate
their solution on Amazon EC2 and indicated that their solution
can manage web applications in minimal time.
Salah et al. [18] design an analytical model using Markova
chains to ensure proper elasticity for cloud-hosted applications
and services. Their model utilizes the offered workload and the
number of VM instances as an input to estimate the minimal
number of VMs required to satisfy a given Service-Level
Objective (SLO) criterion. Besides, their proposed model can
estimate the number of load balancers needed to achieve proper
elasticity. They evaluated their proposed model using practical
scenarios of cloud elastic services that include web service,
Netflix video streaming, and the Amazon Web Services (AWS)
cloud platform. Their numerical results indicated the
effectiveness of their proposed analytical model outperforms in
capacity engineering and estimation of the cloud computation
and network resources for different real-world scenarios
compared with other algorithms.
Zhang et al. [19] have designed a lightweight container-based
framework named auto-scaler for controlling the elasticity
feature to deal with load fluctuations in the small devices. Their
proposed framework consists of four components namely, the
monitoring mechanism, history recorder, decision mechanism,
and execution mechanism. Further, they describe the elasticity
feature mathematically for quantifying cloud elasticity using
container-based auto-scaling mechanisms. They validate their
framework on the Mesosphere Data Center Operating System
cloud infrastructure using the stress workload and illustrated
that their framework can manage the tradeoff between stability
and elasticity. Nouri et al. [20] have presented an autonomic
decentralized elasticity controller for managing resources on
web applications in cloud environments. Their proposed
controller utilized a reinforcement learning-based technique to
handle workload arrival patterns using a set of states and
actions. Their simulation results under real-world workloads
demonstrated that their proposed controller reduces SLA
violations percentage and cost of provisioning cloud
infrastructure.
In [21] an elasticity control algorithm for containerized-based
cloud infrastructure for augmenting the load balancing is
introduced. Their proposed algorithm utilized two agents,
namely the master agent for coordinating between hosts and the
host agents for monitoring and predicting resource utilization
using Autoregressive Moving Average (ARMA) prediction
model. Their numerical results indicated that their proposed
algorithm outperforms in terms of elasticity and power
consumption compared with other algorithms. Jrad et al. [22]
have introduced a framework for evaluating elasticity
mechanisms for service-based business processes in cloud
environments. Their proposed framework includes a set of

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2932462, IEEE Access
 Author Name: Preparation of Papers for IEEE Access (February 2017)

domain-specific languages to facilitate the description and the
evaluation of elasticity mechanisms. Al-Dhuraibi et al. [23]
have proposed a model-driven elasticity management system
according to the Open Cloud Computing Interface (OCCI)
standard. Their solution considers both VM and container
virtualization technologies, both vertical and horizontal scaling,
and multiple cloud providers, simultaneously. Also, their
proposed elasticity system handles the heterogeneity of
elasticity mechanisms on three popular cloud providers namely,
Amazon Web Services (AWS), Microsoft Azure and Google
Cloud Platform.
Finally, Jamshidi et al. [24] propose a dynamic self-adaptive
method based on the fuzzy controller for organized elasticity
management in cloud computing. The proposed method has
applied to Azure and OpenStack based on self-learning fuzzy
controller that confirms and improves fuzzy rules at real-time
execution.
Overall, since elasticity property is trying to adapt the load
changes to available resources at any time by allocating
/reallocating/deallocating resources in an autonomous manner.
First, the current studies focused on controlling elasticity
property on behalf of resources and infrastructure and did not
pay attention to controlling the elasticity from the perspective
user requests using a buffering technique. Secondly, most of the
previous studies have only utilized the prediction models or
machine learning techniques for controlling elasticity, while
our proposed solution combines machine learning techniques
(i.e., learning automata) and prediction models (i.e., Moving
Average prediction model) to ensure elasticity feature.

III. PROPOSED CONTROCITY APPROACH
In this section, we explain our ControCity framework in
more details, as shown in Figure 1. The proposed framework
consists of three main layers: the application layer, the
middleware layer, and the infrastructure layer. In this
framework, there are two important components called buffer
manager in the application layer and the elasticity manager in
the middleware layer. In the application layer, applications are
received by cloud applications and then placed in the control of
the buffer. Buffer manager controls the queue of requests, and
the elasticity manager of the middleware layer using the
learning automata provides a solution for controlling the
elasticity of the cloud platform.
In the proposed approach, elasticity management has a part
called QoS mapper unit, which is responsible for receiving
cloud information including the amount of Machine Instruction
Per Second (MIPS) allocated and the MIPS consumed. The next
step of the workload and the degree of service provision
violation occurred and the learning automata will be used to
provide the right amount of resources. The infrastructure layer
is responsible for underlying cloud resource management. In
this layer, each VM is placed in one of these layers. The VM
may migrate from one layer to another by reconfiguration [2].
If the input requests to each layer exceed the service limit, the
load regulator on each layer creates a queue request, by which,
after being released, each virtual machine is offered a request.

In the following, we describe the main components of the
ControCity framework in more details. Also, the existing
applied notations of the proposed solution are shown in Table
1.

A. Buffer manager
Figure 2 shows the overall structure of the buffer in the
proposed method. Specifically, in the proposed solution, the
buffer is composed of two parts of an administrator and
decision-maker and a part of management. The decision-maker
part is responsible for increasing or decreasing buffer memory
based on the input request traffic, and the management part is
responsible for sorting and scheduling the input requests to
send. The amount of buffer remaining space and the input
request traffic are effective in decision making of the
monitoring and decision unit. Specifically, the decisions of the
monitoring and decision unit are applied to buffer memory by
management.

Table 1. Notations of the proposed solution
Description Notation

Request priority i-th 𝑃𝑟𝑖	%	
Time To Live of request TTL
Low Threshold for number of requests qmin

Removed request Drop
Ready request to send Send_Req
Response Time Violation Rate 𝑆𝐿𝐴_𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛	01234521
The cost of the violation 𝑆𝐿𝐴_𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛	6427
Final cost of answering requests 𝐶𝑜𝑠𝑡012
Initial request cost 𝐶𝑜𝑠𝑡01:
Low Threshold for queue capacity L_Thr
High Threshold for queue capacity H_Thr
The data volume of the input request in the i-
th queue

RequestedBytes_Queuei

The total capacity of the i-th queue AvailableBytes_Queuei

Current workload WLCurrent

Predicted workload WLPredict
Response time of the request R
Maximum Response Time of Request Rmax

Minimum response time of request Rmin

Request cost C
The maximum cost of request Cmax

The minimum cost of request Cmin
Scaling type Scaling_Type
Scaling rate Scaling_Amount

According to the structure in Figure 3, each request contains the
user ID, the cost, and the deadline for the response time. If the
cost and response time exceed this limit, the violation of the
terms of service has occurred. In the proposed method, the
buffer management comprises three queues; in which each
queue specifies the priority of the requests. In order to specify
the priority of requests, Eq. (1) is used.

𝑃𝑟𝑖	%	= 𝛼	 × 	 =

		6>??157_7%@1A
+ (1 − 𝛼) 	× 	 =

		G1HIJ%51K%@1A
 (1)

In Eq. (1), the Current_Time i, is the arrival time of the request
and the DeadlineTimei is the time limit for the response. α is the
amount of weight for each of the parameters. Therefore, the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2932462, IEEE Access
 Author Name: Preparation of Papers for IEEE Access (February 2017)

input requests are placed in one of the queues based on the
request time and the priority. The three types of priorities of top,
normal and low are considered.
Figure 4 shows the structure of the input request segmentation.
If the length of each queue is considered in buffer B, the buffer
length is equal to B* 3 and generally, if the queues are B1, B2,
and B3 respectively, then, the following relationship can be
used about the buffer memory.

 (2)

According to Figure 4, the input request is initially prioritized
by the classifier and then it is placed in its queue. Due to the
attempts made in the previous step, the size of buffer memory
varies with traffic, but the overflow may happen due to any
reason; so, there is no more space in buffer memory to add a
new request; in this case, the request must be deleted from the
buffer.

Fig 1. A high-level overview of ControCity framework

Fig .2. The overall buffer structure in the proposed method

In the proposed solution, the user’s request is made under SLA
rules. Each SLA consists of several objectives or SLOs. In this
research, the user’s request structure includes two objectives of
cost and response time. The user can simultaneously submit
multiple requests to the cloud provider. Figure 3 shows the

structure of each user’s request.

User SLA

Time User id SLO2 SLO1

Deadline
Time Cost

Fig. 3. Structure of each user request

The deletion of requests from each queue is made separately.
The key point in eliminating the request from the queue is that
a request must be removed from a queue that has the maximum
amount of survival time. This means that the oldest request with
the longest queuing time in the queue will be excluded; but the
most important thing is that low- priority queries must be

{ }1 2 3B B B B= ! !

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2932462, IEEE Access
 Author Name: Preparation of Papers for IEEE Access (February 2017)

removed first, and then in the absence of space, the medium-
priority queries, and at last in the absence of space, high priority
queries will be removed. So, if the buffer memory space is full
and a new request arrives, one of these three modes will occur:

A) First mode (receiving a high- priority request)
In this mode, equation (4) is performed. First, if the number of
requests in the low- priority queue is more than the considered
threshold, it will be removed. Otherwise, if the number of
requests in the average-priority queue is more than the
considered threshold, it will be removed and, otherwise, the
queue will be executed from the high- priority queue.

(4)

Fig .4. Buffer Management structure.

B) Second mode (receiving an average priority request)
In this mode, equation (5) is performed. First, if the number of
requests in the low- priority queue is more than the considered
threshold, it will be removed. Otherwise, the elimination is
done from the average-priority queue.

𝐷𝑟𝑜𝑝 = O
𝑅𝑒𝑞	𝐹𝑟𝑜𝑚	𝑄V		𝑊𝑖𝑡ℎ	𝐿𝑒𝑎𝑠𝑡	𝑇𝑇𝐿							𝑖𝑓				𝐶𝑜𝑢𝑛𝑡	(𝑄V) > 𝑞@%5	

	
𝑅𝑒𝑞	𝐹𝑟𝑜𝑚	𝑄]		𝑊𝑖𝑡ℎ	𝐿𝑒𝑎𝑠𝑡	𝑇𝑇𝐿																										𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒		

 (5)

C) Third mode (receiving a low priority request)
In this mode, equation (6) is applied, in which the request is
only deleted from the lower priority queue.

 (6)

When there are multiple requests in queues, and each one is
ready to be sent, first, the buffer scheduler sends the top queue
requests and after completing, it will go to the average and low
priority queue, respectively. Equation (7) shows the structure of
sending requests according to their priority.

 (7)

The requests are submitted to the Elasticity Management Unit,
respectively, so that the unit decides on resource allocation
based on the information received from the service quality
mapping unit.

B. Monitoring and Decision System
The monitoring and decision system in the proposed approach
acts on the MAPE structure. Due to the fact that this structure
consists of 4 phases of monitoring, analysis, planning, and
execution, all phases have a specific function in the proposed
method. The proposed method is based on the loop and acts on
the buffer decision-maker. Figure 5 shows the MAPE structure.
According to Figure 5, the monitoring phase observes the
number of incoming requests and the buffer remaining space as
inputs analysis phase. Data collected by the monitoring system
is provided to the analysis phase. The analysis phase is
responsible for predicting the future status of input requests
based on the current status. According to the prediction of the
analysis phase and the amount of buffer space remaining, the
planning phase using learning automata determines the size of
buffer memory to be low or high, or kept in the same state. The
decisions taken by the planning phase is sent to the execution
phase to make this decision operational.

Fig .5. Monitoring decision system in buffer management.

3

2

1

3 min

2 min

Re

Re

Re

 ()

 ()

Otherwise

q From Q With Least TTL

Drop q From Q With Least TTL

q From Q With Least TTL

if Count Q q

if Count Q q

=

 >

 >

ì
ï
í
ïî

3
Re Drop q From Q With Least TTL=

3 3

2 2

1

Re
_ Re Re

Re Otherwise

q Q if Q empty
Send q q Q if Q empty

q Q

is not
is not

Î

= Î

Î

 ì
ï í
ïî

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2932462, IEEE Access
 Author Name: Preparation of Papers for IEEE Access (February 2017)

The monitoring phase of the MAPE structure monitors the
received traffic requests and the amount of buffer space
available. The monitoring phase has a knowledge base. It
checks the buffer status at certain intervals and extracts its
required variables and records them in its knowledge base. The
knowledge base consists of two parts: the storage sections of
input traffic and remaining buffer space. The structure of the
knowledge base records part I is shown in Table 2 and the
structure of the knowledge base records part II is shown in
Table 3.

Table 2. Structure of the Knowledge Base Records Part I

data Required
layer data Request ID

Table 3. Structure of the Knowledge Base Records Part II

The amount of
Residual buffer
from queue 3

The amount of
Residual buffer
from queue 2

The amount of
Residual buffer amount

from queue 1

C. QoS Mapper Unit
This unit is responsible for saving responsive information and
service delivery to the request. After recording the data, the unit
calculates the amount of violation of service terms and informs
the elasticity management about it. The data storage structure
of this unit is presented in Table 4.

Table 4. Structure of Service Quality Information for a Request

Cost
Layer

III

Respo
nse

Time
Layer

III

Cost
Layer

II

Respo
nse

Time
Layer

II

Cost
Layer

I

Respon
se

Time
Layer I

The
reque
st ID

The
user
ID

The amount of violations of service conditions is calculated by
the knowledge of service quality. If the response time exceeds
the allowed response time to the request, the Equation (8) shows
how to calculate the amount of service violation for the
response time. Similarly, if the cost of responding to a request
exceeds the intended cost, Equation (9) shows how to calculate
the amount of service violation for the cost.

 (8)

𝑆𝐿𝐴_𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛	6427 = 	 𝐶𝑜𝑠𝑡012 −	𝐶𝑜𝑠𝑡01:
𝑆𝐿𝐴_𝐶𝑜𝑢𝑛𝑡	6427 = 	𝐶𝑜𝑢𝑛𝑡	(𝑆𝐿𝐴_𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛6427 > 	0) (9)

In Equation (8), Response Time is the response time to the
request, and Deadline Time is the allowed response time for a
request. In Equation (9), CostReq is the initial cost considered for
the request and CostRes is the final cost of responding to the
request.

D. Workload Prediction
One of the most important parts of the MAPE structure is the
analysis of results. Future requests will be considered in the
traffic prediction analysis phase. The more accurate the
prediction is in this part; the planning design phase will have a
higher quality. In the proposed method, the average mobility
prediction structure of Moving Average (MA) has been used.
In this model, the prediction is obtained based on the average
number of requests in the preceding steps, and the number of
requests in the following steps. Equation (10) displays how to
calculate the number of requests in the following step by using
MA,

 (10)

where µ is the average number of requests in the previous steps.
θ1…θq are the parameters of the MA prediction model that are
determined based on the number of requests. 𝜖7 … 𝜖7c: are
random values with the normal distribution and zero mean.
Generally, these values are referred to as white noise. In the
planning phase, each queue of the buffer consists of three
modes of busy, idle and normal. In order to determine the
different states of a queue, the upper and lower thresholds need
to be defined. The method is that if the buffer is not in normal
mode, it should be modified. If each buffer queue is placed in a
state for two successive times and the predicted workload is
proportional to the buffer queue state, the changes in the buffer
queues will be adapted and strengthened. The amount of buffer
overflow (Eq. (11)) is obtained by dividing the two variables of
Available Bytes (the available residual space) and Requested
Bytes (bytes required for current requests). These are two input
variables. Comparing the amount of overflow determines the
upper and lower thresholds. Buffer increasing, decreasing or
being idle is done based on these actions.

𝐵𝑢𝑓𝑓𝑒𝑟_𝑄𝑢𝑒𝑢𝑒e% = 	

01:>1271Ifg712_h>1>1i
A

jkH%lHml1fg712_h>1>1A
 (11)

𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑𝐵𝑦𝑡𝑒𝑠_𝑄𝑢𝑒𝑢𝑒e% 	determines the data volume of the
input request in the i-th queue at time t and
𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐵𝑦𝑡𝑒𝑠_𝑄𝑢𝑒𝑢𝑒% determines the total capacity of the i-
th queue. In the following, three modes of busy, idle and normal
are introduced. Suppose that the amount of input traffic to the
provider is greater than the queue length in the buffer. In this
case, the provider confronts a lack of memory to hold input
requests. Then, the queue is fully engaged, and the algorithm
increases the buffer length queue. Equation (12) shows the busy
mode of the i-th queue in the buffer.

 (12)

()
Re

Re Re

_ Re

_ _ 0
sponse Time time

sponse sponse

SLA Violation sponse Deadline

SLAV Count Count SLA Violation

= -

= >

1 1 1 2 2

1

..

1
t t t t q t q

n

t i
i

W

W
n

µ q q q

µ

+ - - -

-
=

= +Î + Î + Î + + Î

= å

_ _

_ _

i

t

i

t

Buffer Queue H Thr

Buffer State Queue UP

³

=

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2932462, IEEE Access
 Author Name: Preparation of Papers for IEEE Access (February 2017)

 The queue memory is generally idle when the amount of input
traffic to the queue is lower than the least capacity considered
for the queue in the buffer. Then the buffer queue will be in the
idle mode and memory space reduction must be done. Equation
(13) shows the idle mode of i-th queue in the buffer.

 (13)

When the buffer queue is sufficient for input traffic, the buffer
is in a normal state and it does not do anything. Equation (14)
shows the normal mode in the queue.

 (14)

Let denote the buffer state of the i-th

queue at time t and , be the lower threshold
and the higher threshold to determine the buffer state according
to the capacity of the i-th queue, respectively, where

. Generally, the buffer state is expressed by
Equation (15):

(15)

, depends on the amount of input traffic to
the queue (i.e., workload changes) and determined according to
the queue capacity. Let denote the
difference between the lower threshold and the higher threshold
for the capacity of the i-th queue. The higher value leads to
waste of the provided queue capacity (i.e., under-load state) and
extra and unnecessary cost while QoS requirements can be
satisfied. Whereas, the lower value results in performance
degradation due to inadequate the provided queue capacity (i.e.,
over-load state) for serving user requests. Therefore, we will
need to adjust an appropriate value to determine the buffer
state, accurately.

According to the i-th queue state at time t (),
for comparative training, the values of U and P are calculated
as adding and decreasing queues.

(16)

 (17)

Then, based on A and B, the final calculation is done.

r
𝑈7c= + t	𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑𝐵𝑦𝑡𝑒𝑠_𝑄𝑢𝑒𝑢𝑒e% − 	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑%	t	𝑖𝑓	𝐴 = 1	𝑎𝑛𝑑	𝐵 = 1	𝑎𝑛𝑑	𝑈7c= > 0

t	𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑𝐵𝑦𝑡𝑒𝑠_𝑄𝑢𝑒𝑢𝑒e% − 	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑% 	t	𝑖𝑓	𝐴 = 0	𝑎𝑛𝑑	𝐵 = 1	𝑎𝑛𝑑	𝑈7c= = 0
0																																																𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(18)

𝐿7 = r
𝐿7c= + t	𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑𝐵𝑦𝑡𝑒𝑠_𝑄𝑢𝑒𝑢𝑒e% −	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑%	t	𝑖𝑓	𝐴 = 1	𝑎𝑛𝑑	𝐵 = 0	𝑎𝑛𝑑	𝐿7c= > 0

t	𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑𝐵𝑦𝑡𝑒𝑠_𝑄𝑢𝑒𝑢𝑒e% −	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑%	t	𝑖𝑓	𝐴 = 0	𝑎𝑛𝑑	𝐵 = 0	𝑎𝑛𝑑	𝐿7c= = 0
0																																																𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (19)

According to the values, Ut is considered as increasing the
queue and Lt is considered as decreasing the queue. Increasing
and decreasing the length of each queue are performed,
respectively, by Equations (19) and (20).

(20)

(21)

After calculating the amount of increasing or decreasing, the
value and its decision are announced to the implementation
unit. After decision making in the planning phase, the decision
is to implement in the implementation section. According to the
type and amount of change, the implementation section
announces the changes to the buffer manager to adjust the
structure based on the decision-maker. According to the type of
a decision, the volume of the buffer increases or decreases in
one of the queues 1, 2, or 3.

E. Elasticity Manager
Specifically, no decision will be made for the first workload,
because the output of the service quality mapping unit does not
exist; but in the later stages, based on workload prediction,
scaling is performed at the buffer management stage. So,
according to the need for each layer request, the scaling is done

_ _

_ _

i

t

i

t

Buffer Quete L Thr

Buffer State Quete Down

£

=

_ _ _

_ _

i

t

i

t

L Thr Buffer Queue H Thr

Buffer State Quete Normal

£ £

=

_ _ i

t
Buffer State Quete

_L Thr _H Thr

_ _H Thr L Thr>

_ _

_ _

_ _ _

_ _

i

t

i
t

i
t

i
t

Buffer State Quete

UP if Buffer Queue H Thr

Normarl if L Thr Buffer Queue H Thr

DOWN if Buffer Quete L Thr

 >

= £ £

 <

ì ü
ï ï
í ý
ï ï
î þ

_L Thr _H Thr

_ _D H Thr L Thr= -

D

D

D

_ i
tBuffer Queue

11 if Buffer_State_Queue _

0 Otherwise

i i

t tBuffer State Queue

A
-

= -

=

ì
ï
í
ï
î

1 if Buffer_State_Queue

 0 if Buffer_State_Queue =DOWN

i

t

i

t

UP

B

=

=

ì
ï
í
ï
î

{ _ 1
_

0

t i

i

U AvailableBytes Queue if B
AvailableBytes Queue

Otherwise

+ =
=

 0
_

0
i

i

AvailableBytes Queue Lt if B
AvailableBytes Queue

Otherwise
- - =ì

= í
î

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2932462, IEEE Access
 Author Name: Preparation of Papers for IEEE Access (February 2017)

proportionally for that layer. For scaling each layer, the
decision-making structure is based on the current and the
predicted workload of each layer. Equation (22) specifies how
to calculate the type and the extent of scaling.

 (22)

In the proposed structure, a learning automaton is placed on
each layer. If the structure of each layer is considered as an
automaton performance environment, this environment can be
represented by the triplet E≡ {α, β, c}, in which the set of
environmental inputs or actions selected by the automaton α =
{ScaleDown, ScaleUp, NoOp}, and the outputs of β and C are
likely to be penalized. The key point about the environment
inputs is that these actions have been taken by the previous
decision-maker and will be reinforced or weakened by the
automaton. In this environment, β = 1 is considered as an
undesirable response or failure, and β = 0 is considered as a
desirable or successful response. C specifies the probabilities of
the penalty (i.e., failure) for the environment responses and is
defined as follows.

 (23)

Figure 6 shows the structure of the automata connection with
each application layer. According to the mentioned parameters,
by choosing any action by automata, the probability of doing
that will change. The equations (24) and (25) are used for the
reward or penalty of the selected operation, where a is a reward
coefficient and b is a penalty coefficient. Pi (n) is the probability
of the occurrence of the action i in the step n, and specifically
Pi (n + 1) is the probability of the occurrence of the future event.

Fig .6. Automaton connection with the layer

(24)

 (25)

One of the most important points is how to fine and encourage
selective action. In each cycle, after action selection, if the Scale
Up, Scale Down or No Op action is selected, respectively the
equations (26), (27) or (28) of the β - reinforcement signal will
be calculated. If β = 1, then, the selected operation is fined by
equation (26); otherwise, if β = 0, then it is rewarded according
to equation (27). If R_Ci is the mean of the response time of the
i-th layer and C_Ci is the average cost of the i-th layer, then it
is rewarded according to equation (28).

(26)

(27)

 (28)

The dependent structure is used to determine the amount of
penalty and reward. Equation (29) specifies how to calculate the
reward coefficient.

 (29)

Equation (30) specifies how to calculate the penalty
coefficient.

 (30)

IV. PERFORMANCE EVALUATION
In this section, we evaluate the effectiveness of the proposed
approach for improving the elasticity feature in the cloud
environment. We first explain the experimental setup and

_ ()

WL

WL

 WL

WL

Current predict

Current predict

Current predict

Current predict

UP

Scaling NO UP

DOWN

Scaling Amount ABS

WL

WL

WL

WL

= -

=

<

=

>

-

ì
ï
í
ïî

{ }Pr 1c ob b= =

() () ()
() ()

1 1

1 1 1
i i i

j i

P n P n P n

P n P n

a+ = + -é ùë û
+ = - +

() () ()
() ()
1 1

1 1 1
i i

j i

P n b P n

P n P n

+ = -

+ = - -

. . . .

. .

max min max min
1 R_C and C_C

2 2
0 R-C max or C-C max

i i i i
i i

i ii i

C R C R C C C C

C R C C
b

+ +ì ü
< <ï ï= í ý

ï ï³ ³î þ

. . . .

. . . .

max min max min
1 R_C and C_C

2 2
max min max min

0 R_C and C_C
2 2

i i i i
i i

i i i i
i i

C R C R C C C C

C R C R C C C C
b

+ +ì ü
³ ³ï ïï ï= í ý+ +ï ï< <ï ïî þ

{ }. .
1 R-C max or C-C max

0

i ii i
C R C C

Otherwise
b

> >
=

. .

1

_ max _ maxi ii i

a
R C C R C C C C

=
- + -

æ ö
ç ÷
è ø

. .

1
1

R_C max C_C max
i ii i

b
C R C C

= -
- + -

æ ö
ç ÷
è ø

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2932462, IEEE Access
 Author Name: Preparation of Papers for IEEE Access (February 2017)

performance metrics, and, then, the experimental results
are discussed.

A. Experimental setup
In this section, we explain the simulation setup in more details.
The CloudSim toolkit [25] as a simulation framework is
utilized for modeling and developing the cloud computing
infrastructures. Besides, there are five physical hosts at each
cloud data center, so they all have the existing specification
according to Tables 5 and 6.

Table 5. Data centers specification
Architecture Operating System Virtual Machine

Manager
X64 Cloud Linux XEN

Table 6. Host specification

Name Processor
Type

Number
of cores

Frequency
(MIPS)

main
memory

(GB)

Bandwidth

Host1 Intel
Xeon
5370

16 4096 16 1 Gbit/s

Also, we can consider three types of VMs that are offered
by any cloud provider: small, medium, and extra-large. The
configuration details of different types of VMs into the
three categories with the different capabilities are shown in
Table 7.

Table 7. Virtual machines specification
Machin
Name

CPU(MIPS) RAM
(GB)

Storage
(GB)

BW
(Gbps)

Price
($ per
Hour)

t2.small 10200 2 1 GB - 16
TB

100Mbps 0.023

m3.Medium 12000 3.75 1×4 GB 1Gbps 0.070

m4.4Xlarge 15000 64 1 GB - 16
TB

1Gbps 0.862

r3.4Xlarge 80000 122 1×320
GB

10Gbps 1.330

m4.10Xlarge 97000 160 1 GB - 16
TB

10Gbps 2.155

d2.4Xlarge 105000 122 12×2000
GB(24
TB)

10Gbps 2.76

m4.16Xlarge 280000 256 1 GB - 16
TB

100Gbps 3.447

r4.16Xlarge 350000 488 1 GB - 16
TB

100Gbps 4.256

d2.8Xlarge 500000 244 24×2000
GB(48
TB)

100Gbps 5.52

To evaluate our approach, we used three types of real
workloads, including three data sets of FIFA World Cup,
ClarkNet and NASA. NASA data set includes 2 months of
workload and 3461612 requests. FIFA World Cup data set
includes 88 days of workload and 1352804107 requests.
ClarkNet data set includes two weeks of workload and 338587
requests. These workload traces extracted from well-known
websites and indicates realistic load variations which make the
results more realistic and reliable to be used in a real cloud
platform. In this paper, the time intervals are considered in 15-

min intervals. Thus, each day includes 96-time intervals. These
three real workloads traces are shown in Figure 7.

 (a)

(b)

(c)

Fig 7. Workload patterns: (a) FIFA world cup (b) NASA (c) ClarkNet

B. Performance Metrics
We applied the following metrics for a comparison of our
approach with other strategies:
Elasticity: This metric is defined as the degree to which a cloud
computing platform adapted upon the fluctuation of workloads
and can be measured by the percentage of time when the cloud
platform is in normal-provisioning states and is calculated by

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2932462, IEEE Access
 Author Name: Preparation of Papers for IEEE Access (February 2017)

Equation (31) [26]:

 (31)

where denotes the total time that a system is operating for a
sufficiently long time period, be the total time period that the

system is in the over-provisioning state, be the total time

period that the system is in the under-provisioning state, and
be the total time period that the system is in the normal-
provisioning state. Therefore, includes all the time periods
in the normal, over-provisioning, and under-provisioning
states; that is,
Utilization: The CPU utilization of the cloud platform is
defined as the ratio of the average amount of the allocated
Machine Instruction Per Second (MIPS) of VMs for serving
user requests to the average amount of the total MIPS that is
potentially offered by VMs into the cloud platform, and is
expressed by Equation (32):

(32)

Response time: The actual response time is the time difference
between the user request start time and the first response time

received from the user by the cloud platform.

C. Experimental Results
To evaluate the performance of the proposed approach,
we design three scenarios based on three real workload
traces and performance metrics that were discussed in
the previous subsections, as shown in Table 8. We
compare our approach with two baseline approaches. The
first on is called Automatic Elasticity- Fuzzy Based
System “AE_FBS” algorithm [24, 27], which is a fuzzy
rule-based controller linked with a reinforcement learning
algorithm that learns and modifies elasticity policies at
runtime for auto-configuration of VMs in a cloud
environment. The second approach is called “CTMC”
[18], which uses an analytical model based on
Continuous-Time Markov Chain (CTMC) to estimate the
number of virtual machines needed to adjust the resource
elasticity value of a cloud platform. Finally, our
ControCity approach is called Automatic Elastic-Buffer
Management Automata Learning “AE_BMLA”
algorithm. The reason for choosing these approaches for
comparison with ours is (i) these approaches are
proactive, i.e., try to predict the number of resources at
any given time to deal with workload fluctuations, and,
(ii) these approaches follow horizontal scaling (i.e.,
replication) for adding/removing VM instances from a
cloud platform to provide elasticity.

Table 8. Different scenarios for evaluating the proposed approach

C.1 First scenario: Impact of elasticity metric

In this scenario, the elasticity of the AE_BMLA algorithm is
examined against CTMC and AE_FBS algorithms. One of the
important parameters in comparing the performance of the
resource allocation algorithm is elasticity. To conduct this
experiment, ten different time intervals were selected from each
workload in a way that the number of requests from the first to
the tenth interval is ascending. Figure 8 displays the elasticity
of the AE_BMLA algorithm in comparison with the CTMC and
AE_FBS algorithms in the FIFA workload. According to Figure
8, due to the queuing and use of the controller structure to select
the appropriate host and accurate increasing and decreasing the
virtual machine, the proposed method shows a better
performance about elasticity.

Fig .8. Comparison of elasticity in FIFA workloads

Figures 9 and 10 illustrate the elasticity of the AE_BMLA

1 o un T TT
E

T T
+

= = -

T
oT

uT

nT

T

o u nT T T T+= +

()
()
VMAllocated MIPS

Total MIPS
sU

VMs

=

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

1 2 3 4 5 6 7 8 9 10

E
L

A
ST

IC
IT

Y
 (%

)

TIME INTERVAL

AE-BMAL CTMC AE_FBS

Scenario Workloads type Objective
Scenario 1 FIFA, NASA, ClarckNet Studying the simulation results AE_FBS , CTMC, and

AE_BMLA approaches in terms of the elasticity

Scenario 2 FIFA, NASA, ClarckNet Studying the simulation results AE_FBS , CTMC, and
AE_BMLA approaches in terms of the CPU utilization

Scenario 3 FIFA, NASA, ClarckNet Studying the simulation results AE_FBS , CTMC, and
AE_BMLA approaches in terms of the response time

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2932462, IEEE Access
 Author Name: Preparation of Papers for IEEE Access (February 2017)

algorithm in comparison with the CTMC and AE - FBS
algorithms in the NASA and ClarkNet workloads. The elasticity
of the proposed method is higher than the CTMC and AE_FBS
algorithms at all three workloads.

Fig .9. Comparison of elasticity in NASA workload

Fig. 10. Comparison of elasticity in ClarkNet workload

The average improvement of elasticity in the proposed method
for all three workloads compared to the CTMC and AE_FBS
algorithms is 13.3% and 42%, respectively.

C.2. Second scenario: Impact of response time
metric
Response time as one of the most effective objectives of SLA
plays an important role in choosing a virtual machine. If the
requested response time identified by the allowed response
time, does not meet, then the correct scaling must be done.

Figure 11 shows the average response time of the AE_BMLA
algorithm in comparison with the two CTMC and AE_FBS
algorithms in the FIFA workload. Due to the desirable
performance of learning automata as the decision-maker in the
increasing section of virtual machine system and the two-stage
queuing structure and finally, the correct control of the
controller section as one of the important decision- making
factors, resource allocation is done correctly. More accurate
resource allocation will increase the response rate. According
to the results, the proposed method has a better performance
about the response time. Figure 12 shows the average response
time in the AE_BMLA algorithm compared to the two CTMC
and AE_FBS algorithms in the NASA's work load.

Fig. 11. Comparison of the average response time in FIFA workloads

According to Figure 13, the average response time of the
ClarkNet workload in the proposed method is lower than the
CTMC and AE_FBS algorithms. This is due to the proper
performance of the learning automata and the appropriate
buffer management. In all three workloads, the average
response time in the proposed method is lower than the two
CTMC and AE_FBS algorithms, which indicates the improved
quality of service delivery in this structure. Compared to the
CTMC and AE_FBS algorithms, the average response time in
the proposed method for all three workloads has decreased by
11.4% and 18.8%, respectively.

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

1 2 3 4 5 6 7 8 9 10

E
L

A
ST

IC
IT

Y
 (%

)

TIME INTERVAL

AE-BMAL CTMC AE_FBS

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

1 2 3 4 5 6 7 8 9 10

E
L

A
ST

IC
IT

Y
 (%

)

TIME INTERVAL

AE-BMAL CTMC AE_FBS

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10

R
E

SP
O

N
SE

 T
IM

E
 (m

se
c)

TIME INTERVAL

AE-BMAL CTMC AE_FBS

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2932462, IEEE Access
 Author Name: Preparation of Papers for IEEE Access (February 2017)

Fig. 12. Comparison of the average response time in NASA's

workload

Fig. 13. Comparison of Average Response Time in ClarkNet

Workload

C.3. Third scenario: Impact of utilization metric
Figure 14 shows the average utilization in the FIFA workload.
The precise monitoring of learning automata over request logs
is a very effective way to control the status of resources. Due to
the optimal performance of the controller program and the use
of learning automata, resource allocation is done in a desirable
manner. Correct resource allocation will provide accurate
service delivery to the requests. Specifically, due to the correct
supply of resources, the processor is best suited for requests. Of
course, when the number of requests is high, the utilization
level may reach to threshold one, and this is due to the high
number of requests that need to be received by the processor.

Fig. 14. Comparison of the utilization in the FIFA workload

Fig. 15. Comparison of the utilization in the NASA workload

The use of buffer management has greatly influenced the proper
control of requests and the decision making about the elasticity
of the cloud system. It means that the learning automata can
easily decide whether to increases/decreases the virtual
machine for the occurrence or response to an incoming service.
Figures 15 and 16 show the utilization of the AE_BMLA
algorithm in comparison to the two CTMC and AE_FBS
algorithms in NASA and ClarkNet workloads. In all three
workloads, the utilization of the proposed method is higher than
the CTMC and AE_FBS algorithms, which indicates an
improvement in the quality of service delivery in this structure.
Compared to the CTMC and AE_FBS algorithms, the average
utilization in the proposed method for all three workloads
increased by 8% and 17.2%, respectively.

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

R
E

SP
O

N
SE

 T
IM

E
 (m

se
c)

TIME INTERVAL

AE-BMAL CTMC AE_FBS

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10

R
E

SP
O

N
SE

 T
IM

E
 (m

se
c)

TIME INTERVAL

AE-BMAL CTMC AE_FBS

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00

1 2 3 4 5 6 7 8 9 10

U
T

IL
IZ

A
T

IO
N

(%
)

TIME INTERVAL

AE-BMAL CTMC AE_FBS

50.00

60.00

70.00

80.00

90.00

100.00

110.00

1 2 3 4 5 6 7 8 9 10

U
T

IL
IZ

A
T

IO
N

(%
)

TIME INTERVAL

AE-BMAL CTMC AE_FBS

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2932462, IEEE Access
 Author Name: Preparation of Papers for IEEE Access (February 2017)

Fig. 16. Comparison of the utilization in the ClarkNet workload

V. CONCLUSION
Cloud computing is the on-demand delivery of resources
through a cloud platform via the internet to the end-users. The
application providers use cloud infrastructures for hosting their
applications due to its elasticity feature. The cloud elasticity
feature allows application providers to grow or shrink
computing resources on-demand, which enables automatic
scaling of cloud resources according to workload changes.
Therefore, any elasticity mechanism must have the capacity to
estimate the desired resources to deal with workload
fluctuations and satisfying the SLO requirements for avoiding
over-provisioning or under-provisioning problems. In this
paper, an approach was developed to improve elasticity using
buffer management and centralized elastic management. The
buffer management is responsible for controlling the input
queue of the request, and the elastic management is responsible
for controlling the elasticity of the system using the learning
automata technique. We evaluated the proposed solution under
real workloads traces, including three data sets of FIFA World
Cup, ClarkNet and NASA, and their experimental results
indicated that it significantly outperforms in terms of the
elasticity value, response time, and CPU utilization compared
with the other approaches. In future work, we will arrange to
investigate: integration of the proposed solution with auto-
scaling mechanisms, evaluation the proposed solution in a real
cloud infrastructure such as OpenStack and extension of
proposed solution using colored Petri Net models. Also, we will
utilize the deep Q-learning instead of learning automata to gain
higher accuracy.

REFERENCES
[1] K. Chandrasekaran, Essentials of cloud computing:

Chapman and Hall/CRC, 2014.
[2] M. Aloqaily, I. Al Ridhawi, H. B. Salameh, and Y.

Jararweh, "Data and service management in densely
crowded environments: Challenges, opportunities, and
recent developments," IEEE Communications Magazine,

vol. 57, pp. 81-87, 2019.
[3] R. Buyya, C. Vecchiola, and S. T. Selvi, Mastering cloud

computing: foundations and applications programming:
Newnes, 2013.

[4] Y. Kotb, I. Al Ridhawi, M. Aloqaily, T. Baker, Y.
Jararweh, and H. Tawfik, "Cloud-Based Multi-Agent
Cooperation for IoT Devices Using Workflow-Nets,"
Journal of Grid Computing, pp. 1-26, 2019.

[5] M. Ghobaei-Arani, R. Khorsand, and M. Ramezanpour,
"An autonomous resource provisioning framework for
massively multiplayer online games in cloud
environment," Journal of Network and Computer
Applications, 2019.

[6] S. S. Manvi and G. K. Shyam, "Resource management for
Infrastructure as a Service (IaaS) in cloud computing: A
survey," Journal of network and computer applications,
vol. 41, pp. 424-440, 2014.

[7] M. Aloqaily, S. Otoum, I. Al Ridhawi, and Y. Jararweh,
"An intrusion detection system for connected vehicles in
smart cities," Ad Hoc Networks, vol. 90, p. 101842, 2019.

[8] M. Ghobaei-Arani, S. Jabbehdari, and M. A. Pourmina,
"An autonomic approach for resource provisioning of
cloud services," Cluster Computing, vol. 19, pp. 1017-
1036, 2016.

[9] S. Otoum, B. Kantarci, and H. T. Mouftah, "On the
feasibility of deep learning in sensor network intrusion
detection," IEEE Networking Letters, vol. 1, pp. 68-71,
2019.

[10] Q. Yaseen, F. AlBalas, Y. Jararweh, and M. Al-Ayyoub,
"A fog computing based system for selective forwarding
detection in mobile wireless sensor networks," in 2016
IEEE 1st International Workshops on Foundations and
Applications of Self* Systems (FAS* W), 2016, pp. 256-
262.

[11] J. O. Kephart and D. M. Chess, "The vision of autonomic
computing," Computer, pp. 41-50, 2003.

[12] M. Al-khafajiy, T. Baker, H. Al-Libawy, Z. Maamar, M.
Aloqaily, and Y. Jararweh, "Improving fog computing
performance via fog-2-fog collaboration," Future
Generation Computer Systems, vol. 100, pp. 266-280,
2019.

[13] I. Al Ridhawi, M. Aloqaily, B. Kantarci, Y. Jararweh, and
H. T. Mouftah, "A continuous diversified vehicular cloud
service availability framework for smart cities," Computer
Networks, vol. 145, pp. 207-218, 2018.

[14] A. Rezvanian, A. M. Saghiri, S. M. Vahidipour, M.
Esnaashari, and M. R. Meybodi, Recent advances in
learning automata vol. 754: Springer, 2018.

[15] M. Ghobaei-Arani, A. A. Rahmanian, M. Shamsi, and A.
Rasouli-Kenari, "A learning-based approach for virtual
machine placement in cloud data centers," International
Journal of Communication Systems, vol. 31, p. e3537,
2018.

[16] A. Ullah, J. Li, Y. Shen, and A. Hussain, "A control
theoretical view of cloud elasticity: taxonomy, survey and
challenges," Cluster Computing, vol. 21, pp. 1735-1764,

50.00
55.00
60.00
65.00
70.00
75.00
80.00
85.00
90.00
95.00

100.00

1 2 3 4 5 6 7 8 9 10

U
T

IL
IZ

A
T

IO
N

(%
)

TIME INTERVAL

AE-BMAL CTMC AE_FBS

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2932462, IEEE Access
 Author Name: Preparation of Papers for IEEE Access (February 2017)

2018.
[17] M. Albonico, J.-M. Mottu, and G. Sunyé, "Controlling the

elasticity of web applications on cloud computing," in
Proceedings of the 31st Annual ACM Symposium on
Applied Computing, 2016, pp. 816-819.

[18] K. Salah, K. Elbadawi, and R. Boutaba, "An analytical
model for estimating cloud resources of elastic services,"
Journal of Network and Systems Management, vol. 24, pp.
285-308, 2016.

[19] F. Zhang, X. Tang, X. Li, S. U. Khan, and Z. Li,
"Quantifying cloud elasticity with container-based
autoscaling," Future Generation Computer Systems, vol.
98, pp. 672-681, 2019.

[20] S. M. R. Nouri, H. Li, S. Venugopal, W. Guo, M. He, and
W. Tian, "Autonomic decentralized elasticity based on a
reinforcement learning controller for cloud applications,"
Future Generation Computer Systems, vol. 94, pp. 765-
780, 2019.

[21] W. A. Hanafy, A. E. Mohamed, and S. A. Salem, "A New
Infrastructure Elasticity Control Algorithm for
Containerized Cloud," IEEE Access, vol. 7, pp. 39731-
39741, 2019.

[22] A. B. Jrad, S. Bhiri, and S. Tata, "STRATFram: A
framework for describing and evaluating elasticity
strategies for service-based business processes in the
cloud," Future Generation Computer Systems, vol. 97, pp.
69-89, 2019.

[23] Y. Al-Dhuraibi, F. Zalila, N. Djarallah, and P. Merle,
"Model-Driven Elasticity Management with OCCI," IEEE
Transactions on Cloud Computing, 2019.

[24] P. Jamshidi, A. Sharifloo, C. Pahl, H. Arabnejad, A.
Metzger, and G. Estrada, "Fuzzy Self-Learning Controllers
for Elasticity Management in Dynamic Cloud
Architectures," in 2016 12th International ACM SIGSOFT
Conference on Quality of Software Architectures (QoSA),
2016, pp. 70-79.

[25] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose,
and R. Buyya, "CloudSim: a toolkit for modeling and
simulation of cloud computing environments and
evaluation of resource provisioning algorithms," Software:
Practice and experience, vol. 41, pp. 23-50, 2011.

[26] K. Li, "Quantitative modeling and analytical calculation of
elasticity in cloud computing," IEEE Transactions on
Cloud Computing, 2017.

[27] D. Milios, G. Sanguinetti, and D. Schnoerr, "Probabilistic
model checking for continuous-time Markov chains via
sequential Bayesian inference," in International
Conference on Quantitative Evaluation of Systems, 2018,
pp. 289-305.

Mostafa Ghobaei-Arani received his
Ph.D. degree in Software Engineering
from Islamic Azad University, Science and
Research Branch, Tehran, Iran. He has
published more than 50 journal and
conference papers in the area of distributed
computing. He has served as a member of

editorial board and review committee for a number of peer-
reviewed international journals and PC member of various
conferences international conference
(https://publons.com/researcher/1267819/mostafa-ghobaei-
arani/). His research interests include Distributed Computing,
Cloud Computing, Autonomic Computing, Edge/Fog
Computing, Exascale Computing, Soft Computing, and IoT.

Alireza Souri received his B.S. degree
in Software Engineering from
University College of Nabi Akram,
Iran, and his M.Sc. and PhD degrees in
Software Engineering from Science
and Research Branch, Islamic Azad
University, Iran. Up to now, he has
authored/co-authored more than 40

academic articles. He currently is Associate Editor of Human-
Centric Computing and Information Sciences (Springer),
Cluster Computing (Springer) and IET Communications
(IEEE) journals. His research interests include Formal
Specification & Verification, Model checking, Fog & Cloud
computing, IoT, Data mining and social networks.

Thar Baker is Senior Lecturer in
Distributed Systems Engineering and
Head of Applied Computing Research
Group (ACRG) in the Faculty of
Engineering and Technology at
Liverpool John Moores University
(LJMU, UK). He received his PhD in
Autonomic Cloud Applications from
LJMU in 2010, and became a Senior

Fellow of Higher Education Academy (SFHEA) in 2018. Dr
Baker has published numerous refereed research papers in
multidisciplinary research areas including: Big Data, Algorithm
Design, Green and Sustainable Computing, and Energy Routing
Protocols. Dr Baker has been actively involved as member of
editorial board and review committee for a number of peer-
reviewed international journals, and is on program committee
for a number of international conferences. For example, he is
Associate Editor of Future Generation Computer System. Dr.
Baker is Expert Evaluator of EU H2020, ICTFund, and British
Council.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2932462, IEEE Access
 Author Name: Preparation of Papers for IEEE Access (February 2017)

Aseel Hussien is a Program Leader in
Building Surveying and Facilities
Management at Liverpool John Moores
University. She holds a (BSc) Degree in
Architecture Engineering, and a Master
of Science (MSc) in Computing
Information Systems. Her Doctor of
Philosophy Degree (PhD) was obtained

from Liverpool John Moores University titled ARGILE: A
Conceptual Framework Combining Augmented Reality with
Agile Philosophy for the UK Construction Industry. Aseel’s
research interest related to the virtual reality, smart city,
augmented reality, agile project management, and Building
information model BIM.

