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ABSTRACT Mobile edge computing (MEC) has shown tremendous potential as ameans for computationally
intensive mobile applications by partially or entirely offloading computations to a nearby server to minimize
the energy consumption of user equipment (UE). However, the task of selecting an optimal set of components
to offload considering the amount of data transfer as well as the latency in communication is a complex
problem. In this paper, we propose a novel energy-efficient deep learning based offloading scheme (EEDOS)
to train a deep learning based smart decision-making algorithm that selects an optimal set of application
components based on remaining energy of UEs, energy consumption by application components, network
conditions, computational load, amount of data transfer, and delays in communication.We formulate the cost
function involving all aforementioned factors, obtain the cost for all possible combinations of component
offloading policies, select the optimal policies over an exhaustive dataset, and train a deep learning network
as an alternative for the extensive computations involved. Simulation results show that our proposed model
is promising in terms of accuracy and energy consumption of UEs.

INDEX TERMS Computational offloading, deep learning, energy efficient offloading, mobile edge
computing, user equipment.

I. INTRODUCTION
Mobile and wearable devices, herein after referred to as user
equipment (UE), have experienced a tremendous increase
in computational power over the years but, the applications
running on these devices are becoming increasingly complex
at the same time [1], [2]. The task of executing computation-
ally intensive applications on devices is not fully prepared to
handle the computational workload, which demands an alter-
native solution. Cloud computing gained much popularity
as a promising alternative [3]. However, the delays involved
in communication between the UEs and the cloud servers
pose serious challenges on the viability of such solutions [4].
Consequently, Mobile Cloud Computing (MCC) is not an
effective solution to manage the computational needs of
mobile devices [5], [6]. Recently, placing small edge servers

The associate editor coordinating the review of this manuscript and
approving it for publication was Yaser Jararweh.

close to end-users to reduce the latency was proposed by the
European Telecommunications Standards Institute (ETSI),
and has been studied in [7] and [8] as Mobile Edge Comput-
ing (MEC). MEC is particularly important for applications
that are delay sensitive, such as medical applications [9].
MEC involves the placement of small but powerful servers
close to mobile users in the form of a distributed network and
offers an effective solution for computation offloading in a
‘‘smart’’ way.

The traditional offloading schemes suffer from numer-
ous problems including, but not limited to, the assump-
tions of unlimited computational power of servers, constant
uplink and downlink network conditions for all users, and
equal priority to every mobile user regardless of the energy
requirements and network conditions [10], [11]. While these
assumptions do not seriously affect the traditional MCC, they
become the key factors in offloading decisions forMEC since
edge devices also have limited computational capabilities.
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A ‘‘smart’’ decision mechanism for achieving the maximum
benefits of offloading to the edge devices is required for the
optimal performance of the network.

A. NOVELTY AND CONTRIBUTIONS
In this paper, we propose a novel partial offloading scheme
based on the fine-grained partial offloading framework.
To the best of our knowledge, this is the first attempt
to consider the energy consumption of UEs in the deep
learning based modeling for partial offloading schemes in
MEC. The remaining energy and energy consumption by
each application component are very important parameters to
be considered in offloading decisions, because the decision
of the next component for offloading is directly dependent
on these parameters. Until now most of the deep learning
based approaches only consider the delay constraints and
ignore the energy consumption of the UEs. However, we are
generating data to train the Deep Neural Network (DNN),
by considering the remaining energy of UEs, the energy
consumed by previous component, local and cloud resources,
varying network conditions, amount of data to transfer, and
delays in communication. All these parameters are taken
into account by our cost function in the execution of each
application component either on the UE or on Mobile
Edge Server (MES). The novelty of our proposed work in
mathematical modeling improves the accuracy of offloading
decisions and minimizes the cost and energy consumption
of UE.

Our proposed scheme intelligently selects the optimal
combinations of application components to offload, reducing
the overall cost of execution per application. While making
such decisions, this approach prioritizes users with urgent
need, such as a dying battery, over others. Our contributions
are summarized as follows:

• We provide an optimal decision-making mechanism for
computational offloading in MEC. Our approach min-
imizes the overall cost of execution per application,
considering the remaining energy of the UE, cost of
local and server execution, previous offloading deci-
sions and varying network conditions. It means our
cost function considers all the important parameters in
decision-making process for computational offloading.
Most of the previous work does not consider the vary-
ing local execution cost [12] and finite cloud compu-
tation power of edge devices for deep learning based
models.

• We provide a mathematical model for local execu-
tion cost under varying energy conditions and cost of
offloading to the Cloudlet [10] under varying network
conditions. We formulate an exhaustive decision-
making process to find the optimal decision in a partial
offloading scheme. This process calculates the cost for
all possible policies for c components of a task (2c

possible decisions). The proposed work then selects the
decision with minimum cost. We consider this decision
as the optimal offloading decision.

• We propose a deep learning based algorithm, as an
alternative to the exhaustive decision-making process.
This algorithm can be trained over an exhaustive dataset
(generated by our mathematical model) and then used
for the said decision-making. Our algorithm takes vary-
ing local and network conditions as an input and learns
the optimal decision policy from the exhaustive scheme.
Once trained, this algorithm can be used as a decision-
maker for offloading the specific components of the
application to MES. The problem is formulated as a
multi-component binary classification problem where
each component should either be executed locally or
offloaded to the Cloudlet. This alternative saves us from
calculating cost for all 2c offloading policies and choos-
ing the best one for every application under varying
conditions.

The remainder of this paper is organized as follows:
Section II surveys the state-of-the-art. Section III describes
the problem formulation, mathematical model for local
execution and remote execution, and the decision-making
process. Section III also provides the cost function, the opti-
mization problem, and the algorithm design. Section IV dis-
cusses the simulation results, and finally, the paper concludes
in Section V.

II. RELATED WORK
A lot of research work is done on computational offload-
ing to improve the performance of UEs. However, different
proposed offloading techniques have different goals. Compu-
tational offloading problems are generally divided into two
categories: total offloading where all the computations are
handed over to the MES [10], and partial offloading where
only a subset of application components is offloaded to an
edge server [13]. Orsini et al. [14] explain that partial offload-
ing requires the calculations of computational cost for each
application component and, thus, puts an additional strain
on the computation resources as well as the energy reserves.
However, such calculations can be used to intelligently decide
the optimal set of components to be offloaded to minimize the
amount of data transfer as well as reduce the latency and over-
all energy consumption. In our proposed work we consider
partial offloading scheme. Because partial offloading reduces
latency, energy consumption, and unnecessary transmission
overhead as compared to total offloading scheme [12].
Al-Khafajiy et al. [15] present a collaborative edge offload-
ing method, which permits fog nodes cooperation for big
data processing, relying on pre-defined fog parameters. This
approach deems effective in processing data at the edge level
on-time due to the obvious reason that all necessary infor-
mation about the fog nodes capabilities (i.e., processors) are
known in advance. Yet, this approach overlooks the energy
consumption of fog nodes, thereof, it is not an energy efficient
one.

Mazouzi et al. [16] propose a computation offloading
policy for multi-user and multi-cloudlet MEC environment.
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Their main objective is to minimize the offloading cost
function, which depends on execution time and energy con-
sumption only. The computation resources of MES and
radio resources are ignored in the cost function. Due to
the heuristic approach, it will be very difficult to adapt to
complex and dynamic applications. Using dynamic program-
ming techniques, many researchers use Markov Decision
Process (MDP) to obtain an optimal policy for computa-
tion offloading in MEC. However, it requires a fixed state
transition probability matrix. Using the concept of MDP
Liu et al. [17] propose a delay-optimal single-user
task scheduling policies. However, the actual transition
probability matrix is very difficult to obtain.

Li et al. [18] propose a deep reinforcement learning
approach for the total offloading scheme. However, in rein-
forcement learning approaches the global minima may not
be guaranteed due to its unsupervised learning nature. There-
fore, in recent years supervised deep learning approaches
are gaining much popularity in computational offloading
in MEC. The main advantages of deep learning are high
accuracy in decision making and high calculation speed for
trained models. The trained deep learning algorithm can
avoid the exhaustive calculations for finding the optimal
solution. Cloud computing and MEC methods have been
studied extensively in [17] and [18]. Machine learning for
optimization problems in MEC has also been employed in
[20] and [21]. However, the previous work based on machine
learning mainly focuses on the total offloading scheme and
considers only delay constraints in cost function.

Eom et al. [10] propose a computational offloading tech-
nique based on machine learning. They show the best
scheduling decision is selected by their instance-based
online offloading scheduler. Similarly Eom et al. [11] pro-
pose a machine learning-based mobile offloading scheduler
(MALMOS) with online training. However, both of these
techniques consider total offloading schemes and are based
on the Local Area Network (LAN) and Wide Area Network
(WAN). Also, these schedulers are not able to handle partial
offloading because they do not consider the varying local and
network conditions for selecting the optimal set of compo-
nents to offload. Yu et al. [12] suggest a partial offloading
scheme using a deep learning approach. However, the cost
function does not consider the energy consumption of the
UEs. The energy consumption of UEs is a very important
parameter for the cost function. Therefore, a deep learning
approach is required to consider the energy consumption of
UEs and to obtain an energy-efficient and faster computa-
tional offloading scheme for MEC.

The previous work in this area has either assumed infi-
nite edge server resources or infinite energy reserves for
both mobile user and edge server [12]. Such decisions may
not always be optimal since they do not take into full
consideration the varying energy and network conditions.
Machine learning has replaced many conventional methods
in the areas of computer vision, speech recognition, natu-
ral language procession, etc. Deep learning has surpassed

FIGURE 1. (a) Total offloading of an application to MES; (b) Partial
offloading of an application to MES.

the performance of conventional machine learning (shallow
learning) methods [22], [23] and is now being employed in
almost every field of life [24]. Deep learning for communi-
cation networks has achieved wonderful results for runtime
scheduling [25], [10], [11], and saves a lot of energy and
time in decision-making applications with a pre-trained net-
work. Deep learning algorithms can learn complex decision
boundaries [26] and complicated patterns in the data and that
motivates us to design a deep learning algorithm for smart
offloading decision-making processes.

III. PROBLEM FORMULATION AND MODELING
This section first presents mathematical models for local
execution and remote execution (offloading toMES).We also
present the decision policies, cost function and its optimiza-
tion in this section. In our proposed work, called (EEDOS),
we consider the remaining energy parameter. To the best
of our knowledge, this is the first work to consider the
remaining energy of UE in such a mathematical model for
DNN approach. In the deep learning based modeling of the
partial offloading schemes, the remaining energy has not been
considered previously.

AUE can execute many tasks either locally (using the CPU
of UE) or remotely (offloading to MES). The coarse-grained
approach (total offloading scheme) is that the whole task can
either be executed locally or offloaded to MES, as shown
in Figure 1(a). However, a more efficient approach is partial
offloading, in which the UE can split a task into multiple
components. Each component can be executed locally or
offloaded to MES, as shown in Figure 1(b). All the notations
used in this paper are given in Table 1.

We use the concept of a partial offloading scheme in this
paper. Call graph [27] can be used to model the relation
between multiple components as a linear directed Graph,
A = (C,D), where C denotes the set of components and D is
the data required from one component to the next component.

A. LOCAL EXECUTION MODEL
Let the edge of the graph dc0,c1 , (dc0,c1 ∈ D) represents the
data of computation results between two components c0 and
c1. Similarly dc1,c2 is the data of computation results between
two components c1 and c2. dc0,c1 is the input data of c1 and
the output data of c0. Similarly dc1,c2 represents the output
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TABLE 1. Notations.

data of c1 and the input data of c2. Let Wc is the workload
which represents the weight of component c, measured in
CPU cycles, represented as:

Wc = Vdc−1,c, (1)

where V is measured in cycles per byte (cpb) and it represents
the number of clock cycles a microprocessor will perform per
byte. The study about this value is presented in [28]. Now,
if the component c is executed locally on the UE, the time
required to complete the execution of workload Wc is given
by:

Tl(c) =
Wc

fu
, (2)

where fu represents the CPU rate of the UE. It is measured
in Million Instructions Per Second (MIPS). Let the energy
consumption due to this workload is Ec, and Et represents
the total energy of the UE, then the remaining energy for the
next component (c+ 1) is given by:

Er = Et − Ec, (3)

where Er is the remaining energy of the UE. It means that
the remaining energy for the next component (c+ 1) will be
decreased by an amount of Ec, while the energy consumption
Ec for a component c is directly proportional to the amount
of data to be executed.

B. REMOTE EXECUTION MODEL
The UE can offload a component to MES for execution.
If we consider the network deployment utilizes the orthog-
onal frequency division multiple access (OFDMA), then we
can safely assume that the bandwidth B for transmission is
divided into N subcarriers. Let the available subcarriers that
will be allocated in each component execution period be
n ∈ 1, 2, 3, . . . ,N . Similarly, at the MES, if the total number
of available CPU cores are M , then m ∈ 0, 1, 2, 3, . . . ,M
denotes the number of CPU cores to be used in execution of
a component by MES, where m = 0 means that the MES is
busy and the offloading component is rejected for execution
in MEC.

Similarly, for transmission, the maximum achievable
uplink and downlink data rate for an additive white Gaussian
noise (AWGN) channel can easily be derived as in [12],

rul = n
B
N

log2

(
1+

pu|hul |2

0(gul)dβNo

)
, (4)

rdl = n
B
N

log2

(
1+

ps|hdl |2

0(gdl)dβNo

)
. (5)

We assume the same noise behavior in transmission for
uplink and downlink. Here, B is the bandwidth, d denotes the
distance between UE and MES, N0 is the noise power, pu and
ps refer to the transmit power of UE and MES, respectively,
hul and hdl are the channel fading coefficient for uplink and
downlink, respectively, β is the path loss exponent, while
gul and gdl are the required bit error rate for uplink and
downlink, respectively. The 0(gul) =

−2 log(5gul
3 ) represents

the SNR margin to meet the required bit error rate with QAM
constellation. We have considered Rayleigh-fading in our
scenario. In the offloading process, the energy consumption
of UE, due to transmission and reception, depends upon the
amount of data to be transferred.

C. DECISION POLICIES
We assume a time interval of t , called decision period,
in which a component can be executed completely either
locally or by MES. The UE sends information of its input
data dc−1,c for component c and channel quality to MES
at the beginning of each decision period. In LTE standards,
the Buffer Size Report (BSR) and Channel Quality Informa-
tion (CQI) messages are used for this process [29]. After the
reception of these messages, the MES allocates n number
of sub-carriers (communication resources) and m number
of CPU cores (computation resources) to the UE according
to the sent information by UE and the currently available
resources in MES. The parameters, namely, n,m, d, and the
energy consumption of UE for a single component Ec can be
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used to introduce a composite state S = (c, d, n,m,E). The
UE calculates a cost for local execution and remote execution
according to the given composite state. For execution of
component c, the UE takes a decision pc to execute locally
(pc = 0) on the UE or to offload to MES (pc = 1) on the
basis of cost value. For example, a three-component task may
have the decision scheme as P = [1, 0, 1]. It means that
the first and the last components are offloaded to MES and
the second component is executed on the mobile UE. Thus,
we can conclude that the state space of UE and possible action
space is given by:

State Space:

{S = (c, d, n,m,E) ∈ S|c ∈ C, d ∈ D, n ∈ N ,m ∈M}.

Action Space:

P = {pc ∈ {0, 1}, c ∈ C}.

The decision vector (offloading scheme) for a task depends
on the cost value of each component in the task. These cost
values are calculated from a cost function for each compo-
nent. In this paper, we propose a new cost function depending
on the time delay, energy consumption and other resources,
such as n sub-carriers and m CPU cores in MES. Time delay
means the time required for processing, transmission, and
reception of data for a single component. The next subsection
presents the proposed cost function, while the usefulness of
our new cost function will be demonstrated in Section IV.

D. COST FUNCTION
The cost function F(S, pc) for a current decision period is
expressed as:

F(S, pc) =

{
Fl(S), pc = 0
Fr (S), pc = 1,

(6)

where Fl(S) is the cost for local execution and Fr (S) is
the cost for remote execution. Fl(S) depends on time delay
and energy consumption for the execution of a component.
Mathematically, it can be written as:

Fl(S) = γ1Tl(c)+ γ2Ec, (7)

γ1 =
ξ1

Tmax
, (8)

γ2 =
ξ2

Emax
, (9)

where ξ1 and ξ2 are the weighting coefficients by which
we can change the contribution of time delay and energy
consumption in the cost function respectively. Tmax is the
maximum time for the execution of a single component by
UE. Similarly Emax is the expected maximum energy con-
sumption of UE for a single component execution. Therefore
we can say that γ1 and γ2 are the unit balancing and weight-
ing coefficients for the cost function. Tl(c) is the execution
time (given by (2)) of component c executed by UE. Ec
is the energy consumption of UE due to the execution of
component c.

Similarly Fr (S) can be modeled as:

Fr (S) = γ3[(1− pc−1)Tt (dc−1,c)+ Te(dc−1,c)

+Tr (dc,c+1)+ td ]+ γ4[E(dc,c+1)

+E(dc−1,c)(1− pc−1)]+ ξ5K (m)

+ ξ6K (n), (10)

γ3 =
ξ3

TD
, (11)

γ4 =
ξ4

Emax
, (12)

where ξ3, ξ4, ξ5, and ξ6 are the weighting coefficients by
which we can change the contribution of each parameter in
the cost function. TD is the maximum time for a component
to be executed on MES, which is also called deadline time.
γ3 and γ4 are called the unit balancing and weighting coeffi-
cients. td is the decoding delay for UE to decode the compu-
tation results sent by MES, and pc−1 represents the previous
decision. The first term in (10) represents the time delay for
transmission data dc−1,c (input data of component c), and is
given by:

Tt (dc−1,c) =
dc−1,c
rul

. (13)

If the decision for previous component pc−1 = 1, it implies
the previous component has executed by MES and MES has
the data dc−1,c as output of component c−1. Therefore, we do
not need to transmit this data toMES. This is whywemultiply
Tt (dc−1,c) by (1 − pc−1). Thus, we have zero delay for the
transmission process if the previous decision is offloaded
to MES.

The second term in (10) represents the execution time delay
for the workload Wc by m CPU cores in MES, and it can be
written as:

Te(dc−1,c) =
Wc

mfs
, (14)

wherem is the number of CPU cores allocated for component
c to execute in MES, and fs is the CPU rate of MES.
The third term in (10) represents the time delay for the

reception of the output data of component c, (dc,c+1). It is
given by:

Tr (dc,c+1) =
dc,c+1
rdl

. (15)

In (10) E(dc−1,c) denotes the energy consumption of UE
due to transmission of dc−1,c data toMES. Therefore, we have
multiplied this term by (1 − pc−1) for the same reason as
explained for transmission delay term. When the previous
decision pc−1 = 1, we do not need the transmission process.
The term E(dc,c+1) represents the energy consumption of UE
due to reception of the output data dc,c+1 of component c,
whereK (m) is the cost for computation resources and is given
by:

K (m) =
m
M
. (16)
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Here m is the number of CPU cores used in execution of
component c, M is the total number of CPU cores in MES,
and K (n) is the cost due to radio resources given by:

K (n) =
n
N
, (17)

where n is the number of sub-carriers allocated for transmis-
sion and N is the total number of sub-carriers.

E. OPTIMIZATION PROBLEM
From the above mathematical modeling, we can generate a
data set with optimal offloading decision vectors as labels.
Therefore, we can use the supervised deep learning approach
to train a DNN [13]. We aim to find the optimal offloading
policy for an application to execute. We have a decision
matrix P = pc, c = 1, 2, 3 . . . |C|, where |C| is the total
number of components of a task to be executed. Therefore,
the order of decision matrix is 2|C|×|C|. For each task, there
are 2|C| possible offloading schemes. It means each row of
matrix P is a possible offloading scheme or decision vector.
We need to find the optimal offloading scheme P∗,P∗ ∈ P.
Note that the optimal offloading scheme is one of the row
vector of matrix P with minimum cost. Therefore, we can
write the objective function as:

P∗ = argPmin

(∑
c∈C

F(S, pc)

)
. (18)

The optimization problem is obviously non-convex and the
complicated data patterns make rule-based algorithms not
realistic. The main idea of our solution, instead of applying
traditional optimization approaches, is to compute all possi-
ble offloading schemes according to our mathematical model
and then select the optimal offloading scheme (minimum
cost) as a training data set. Using the data set, we design
a deep learning algorithm for a smart offloading decision-
making process. More specifically, we train a DNN with the
data generated by our mathematical model. After training,
we obtain a trained DNN for computing the optimal and
energy efficient offloading scheme. The improved accuracy
and minimized energy consumption and cost are the main
advantages of our EEDOS, which will be demonstrated in
Section IV.

F. ALGORITHM DESIGN
We use a deep supervised learning algorithm for optimal
offloading decision making, which is a multi-label classifica-
tion framework[18]. The input of our model is the composite
state of all components and the output will be an energy-
efficient and optimal offloading scheme, which is a row
vector of matrix P.
The first phase of this approach focuses on generating

optimal decision policies for various local and network
conditions through the mathematical modeling presented in
Section IV, Subsection C. Since these decision policies are
calculated from an exhaustive 2|C| policy set, the approach

Algorithm 1 Train Deep Network Using EEDOS Data
BEGIN
Require: d ∈ [100, 500], V ∈ [4000, 12000], E ∈ [1, 100],
m ∈ [0, 16], n ∈ [1, 256]

Ensure: P∗ = argPmin
(∑

c∈C F(S, pc)
)

while i ≤ datasize do
while j ≤ c do
Wc← Vdc−1,c
Si← {ci, di,mi, ni,Ei}
if pc = 0 then
Fl(S)← γ1 Tl(c)+ γ2 Ec

else

Fr (S) ← γ3[(1− pc−1)Tt (dc−1,c)+ Te(dc−1,c)

+Tr (dc,c+1)+ td ]+ γ4[E(dc,c+1)

+E(dc−1,c)(1− pc−1)]+ ξ5 K (m)+ ξ6 K (n)

end if

F(S, pc) =

{
Fl(S), pc = 0
Fr (S), pc = 1

end while
Fi← F(S, pc)
P∗← argPmin

(∑
c∈C F(S, pc)

)
end while
divide data into Training, Validation and test sets
network ← pattennet([64, 64])
while i ≤ datasize do
nettrained = train(network, S, label)

end while
Test performance on test set
efficiency← number of correct policies /total policies
repeat for different dataset sizes

END

is computationally intensive but, 100% accurate. We gener-
ate 10 datasets of size 1000 samples to 10,000 samples by
generating data for the state variables from their respective
distributions, calculating the cost for all possible decision
policies, and then selecting the decision policy with the mini-
mum cost. The state vectors as well as their corresponding
optimal offloading decision policy are stored in a matrix
with columns representing the features, and the last column
containing the label (100% accurate decision vector), for
training the DNN.

DNNs are becoming more popular due to the supremacy
of their accuracy when trained with big data [30]. We can
generate huge datasets using our mathematical model with
the optimal decision vector. By increasing the number of
components, the input data parameters and the length of the
decision vector increases due to which the calculation of
output from input parameters becomes hard and complex.
Therefore, we use a DNN to present our proposed EEDOS.
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FIGURE 2. A deep neural network with 2 hidden layers.

It is important to note that this exhaustive scheme requires
extensive calculations and the objective of training a neu-
ral network on this exhaustive dataset is to avoid these
calculations for all future decisions with high accuracy.

After obtaining state vectors and their corresponding deci-
sion policies, a deep network can be trained on this dataset.
The network takes the state vector as the input and the optimal
decision policy as the label. The data is divided randomly
into training, validation, and test sets of ratios 75%, 15%, and
15%, respectively. The dimension of the input is the number
of components times the length of the state vector, and the
label is a vector of length equal to number of components.
We use pattennet deep learning network [31] with 2 hidden
layers and 64 neurons in each hidden layer (through cross
validation) as shown in Figure 2.

By increasing the number of neurons and hidden layers,
the complexity of the network increases. However, 2 hidden
layers with 64 neurons give the maximum accuracy in our
dataset. Through numerical analysis, we have established that
a higher number of neurons and hidden layers yields the
same accuracy. Thus, we have chosen 2 hidden layers with
64 neurons in each layer. By increasing the input data param-
eters and the number of components, one can increase the
number of neurons and hidden layers [32]. Sigmoid activation
functions [1], [33] are used in the hidden layers whereas
softmax is used in the output layer for classification [34].
We use the standard cross-entropy as the loss function [35].
The network architecture is shown in Figure 3.

FIGURE 3. Network architecture.

The trained network can then be used for testing the perfor-
mance on the test set, and can be used for all future decisions.
The performance of the network is tested on the unseen
15% data we kept separate for the testing phase. Having
a pre-trained network takes away the computation load of
calculating cost for 2c possible policies and selecting the
optimum policy. Generating exhaustive datasets of various
sizes trains the network over an extensive range of local and
network conditions, so the future decisions can be made by
giving the state vector to the trained network and obtaining
the decision policy for that state as output. The performance
of this network is compared against various other offloading
schemes, as shall be demonstrated in the next section.

IV. RESULTS AND DISCUSSIONS
The mathematical model is used as a benchmark for the
performance evaluation of other offloading policies. The
decision policies calculated through extensive mathematical
model (EMM) are assumed to be 100% accurate. The per-
formance of all other schemes is calculated as the ratio of
the number of decision policies that match the mathematical
model and the total number of decision policies. We used
MATLAB (R2019a) on Intel Core i7 CPU @3.4GHz for
simulations. In simulations, we consider 6 components of
an application. It means the proposed work divides each
task of UE into six components which will be executed
sequentially either on UE or on MES. The input and out-
put data of the components follow the uniform distribution
with d ∈ [100, 500]. Similarly the CPU cycles per byte
(V ), the available energy of UE (Er ), sub-carriers (n), and
CPU cores (m) are also considered as uniformly distributed
as: V ∈ [4000, 12000], Er ∈ [1100], n ∈ [1, 256], and
m ∈ [0, 16]. All these random variables are independent for
different components.

The proposed EEDOS redefines the local execution cost
and the remote execution cost, considering the remaining
battery of the UE and the amount of energy consumed in
each component execution. From literature, we take three
offloading policies and compare their performance against
EMM. These three policies are explained as follow:

• Total offloading scheme (TOS) [12] is a coarse-grained
approach, which offloads all the computation load to
MES. Since all the computations are being offloaded,
this strategy does not require any decision making about
offloading policies.

• Random offloading scheme (ROS) [12] randomly
selects application components regardless of the amount
of data transfer required, network conditions, and local
and remote resources.
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TABLE 2. Network parameters.

TABLE 3. Offloading accuracy.

FIGURE 4. Comparison of offloading accuracies of TOS, ROS, DOS, and
EEDOS.

• Deep learning based offloading scheme (DOS) [12]
takes into account the network conditions and amount of
data transfer required and uses a deep learning network
with 2 hidden layers and 128 neurons in each layer.
This approach does not consider the remaining battery
of the UE, and the amount of energy consumed in each
application component execution.

Table 2 provides various network parameters used in this
paper. Most of the parameters used were the same as for [12],
however, the CPU rates (fu and fs) were redefined based
on the assumption that MES has higher CPU rates than the
UE. Table 3 provides the offloading accuracy for different
offloading schemes for a dataset of 10,000 samples. ROS has
the worst accuracy whereas EEDOS has the best. EEDOS has
considerably higher accuracy than DOS.

Figure 4 shows the comparison of offloading accuracy
for different decision policies against the size of the dataset
used. As shown in the figure, the accuracy of all the schemes
improves by using a larger dataset, but EEDOS outper-
forms all other schemes. This is because we consider the

FIGURE 5. Comparison of energy consumption of TOS, ROS, DOS, and
EEDOS.

FIGURE 6. Comparison of overall cost of TOS, ROS, DOS, and EEDOS.

energy consumption parameter in our mathematical model
due to which the input information becomes stronger and,
consequently, the result of training based on the DNN is
improved.

An important parameter to evaluate the decision policies
is the amount of energy consumed by overall application
execution. Compared with EEDOS, the approach in [12] con-
sumes more energy. For the sake of comparison, the amount
of energy consumed is calculated and shown in Figure 5 for
all the approaches. EEDOS reduces the amount of energy
consumption by 3%, 6%, and 10% when compared to DOS,
ROS, and TOS, respectively. This is because our mathemat-
ical model has parameters that also make the cost function
dependent upon energy consumption.

Figure 6 shows the comparison of the total cost of appli-
cation execution for a different number of data samples
used. EEDOS executes the applications at minimum overall
cost when compared with other methods. DOS closely fol-
lows EEDOS but never outperforms it, because DOS ignores
the energy consumption parameter in the cost function.
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FIGURE 7. Comparison of offloading accuracy with respect to distance for
TOS, ROS, DOS, and EEDOS.

FIGURE 8. Comparison of offloading accuracy with respect to distance for
TOS, ROS, DOS, and EEDOS.

DOS mainly focuses on the delay constraints while EEDOS
also considers the energy consumption dependency on the
cost function. It is important to note that although energy
consumption was not taken into account originally by the
DOS approach, the overall cost was recalculated for the sake
of this plot, taking account of the energy consumption for all
the schemes.

Figure 7 displays the comparison of offloading accuracies
with respect to distance from MES. As the UE moves away
from MES, TOS is affected the most because of all com-
ponents offloading to MES at various distances. However,
EEDOS considers the distance dependency on cost function
in generating data set for DNN. Therefore, EEDOSmaintains
its accuracy and allows the UE to move around while offload-
ing computation-intensive components of an application to
MES.

Figure 8 illustrates the results of offloading accuracy
for all the schemes as the number of components varies.

As expected, the offloading accuracy decreases as the number
of components of a task increases. Increasing the number of
components raises the complexity of the decision boundaries
for the DNN, hence the decline in accuracy for the same
number of samples. However, the performance of EEDOS
remains consistently higher than other schemes for a small
number of components as well as for a large number of
components.

Comparison of offloading accuracy of different schemes
with respect to number of data samples, number of appli-
cation components, and distance of the UE from MES is
provided in the previous section. We conclude from the
figures that the accuracy of the deep learning approaches
increases by using a larger dataset, while the accuracy of the
TOS and ROS schemes is not affected by the size of data since
there is no learning involved. Dividing an application into
more number of components decreases the accuracy of all the
schemes. The accuracy of TOS and ROS decreases because
the increment in the number of components increases the
number of offloading policies and the likelihood of the opti-
mal policy being TOS (or ROS) is decreased. The accuracy
of the deep-learning-based approaches is decreased because
of the decision boundaries becoming more complex with the
increase in the number of components. The distance only
affects the TOS scheme since at zero distance the accuracy of
TOS is likely to be more than its accuracy at other distances
(all components are more likely to be offloaded if the distance
is very small, making the cost of offloading very small). All
the simulation results show a better performance of EEDOS
because of its comprehensive mathematical model. For the
cost function, all the important and realistic parameters are
considered. The accuracy of DNN is improved because the
data has a clearer underlying pattern. The proposed approach
comprehensively models the real environment and is better
suited for implementation in practical scenarios). Our pro-
posed work selects the offloading policy with minimum cost.
It means that the optimal offloading policy selected by our
proposed work will consume minimum energy and take a
minimum delay for the execution of a task. A limitation
of our proposed model is that it considers a single user
and the application components are assumed to be executed
sequentially (linear call graph model). If an application has
several components being executed in parallel, the results
of which are being used subsequently by other components,
or if the application has callbacks or loops through previ-
ous components (non-linear call graph), then our proposed
approach cannot handle that scenario. All loops, callbacks,
and parallel executions are merged into a single component
that will either be executed locally or offloaded to MES and
the overall application is always divided into components that
can be executed sequentially. Such division can sometimes
result in some very large application components, and the
offloading scheme can be further optimized by allowing the
subdivisions of such components into smaller components
with loops, callbacks, and parallel execution. However, that
is beyond the scope of this paper and should be considered
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as an extension of this work in the form of a proposed future
research challenge.

V. CONCLUSION AND FUTURE WORK
In this paper, we demonstrated a novel approach to intel-
ligently offload application components to cloudlets using
comprehensive mathematical modeling and deep learning
approach named as EEDOS. We modeled a cost function for
the application execution on UEs as well as on the cloud
server under the constraints of energy consumption, network
conditions, delays, and available computation resources. Due
to the consideration of these parameters in the cost function,
our proposed work (EEDOS) is more comprehensive and
high accuracy for optimal decision making for the offloading
problem in MEC. Through an exhaustive analysis of cost,
accuracy, and energy consumption we showed that EEDOS
is more comprehensive and accurate. To avoid the exhaustive
calculation and make the decision-making process faster we
trained a DNN. The data set for training the DNN is generated
from the derived mathematical model in which we consider
all the important parameters in the cost function derivation.
We achieved upto 3%decrease in the energy consumption and
2% decrease in the overall cost as compared with the previous
methods. We also achieved 12% increase in the accuracy of
the DNN, with fewer neurons.

This proposed work considers a single-user scenario,
in which the total task of a single user is divided into multiple
components. These multiple components are then executed
sequentially. Therefore, we consider a linear directed graph
for problem formulation. For future work, the multi-user
scenario can be considered to generate the training data set for
DNN. For multi-user scenario the problem can be considered
as a non-linear graph.
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