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Abstract. Ovonic threshold switches are a favored choice for chalcogenide-based amorphous  

(a-) GeSex selector devices used in cross-point arrays of non-volatile memories. Previous models 

of their non-linear high-field conduction proposed a largely electronic-only switching 

mechanism, within a fixed density of electronic states. Here, we use a density functional 

molecular-dynamics supercell calculations to show that the high-current excited state 

configuration of a-GeSex has structural changes such as additional Ge-Ge bonds and over-

coordinated Ge sites, giving lower effective mass, more delocalized conduction states and a 

lower ON resistance.  

There has recently been considerable interest in two-terminal non-linear conduction elements to 

act as selector devices for non-volatile memory devices arranged in XY cross-point arrays [1]. 

The non-volatile memories can be phase-change memories (PRAM) or resistive random access 

memories (RRAM), and are needed not only for storage class memory uses, but also for 

neurormorphic computing and artificial intelligence applications. Some of the favored materials 

for selectors [2-6] are the so-called Ovonic threshold switches (OTS) [7,8]. These are typically 

amorphous (a-) chalcogenides such as a-GexSe1-x semiconductor alloys. The OTS alloys have a 

similar composition to the phase change memory materials (PCMs) [9-13], but are typically 

selenides rather than tellurides as for PCMs. Functionally, the PCMs differ in that they undergo a 

rapid, bipolar structural phase transition between the low and high resistivity states of their 

crystalline and amorphous phases respectively [9-10]. On the other hand, the OTS materials 

undergo a rapid, unipolar resistivity change which was generally assumed to be electronic in 

origin [7,8].  

Adler et al [7] suggested this type of OTS mechanism. Building on this, Ielmini [14] adapted a 

model of Poole-Frenkel high-field hopping in insulators like SiO2 to show how a non-linear 

conduction process could arise. This model created a negative differential resistance by the non-

equilibrium occupation of localized tail states within an essentially fixed density of states, which 

implied a fixed under-lying bonding network. However, transport data [15] and density 

functional modeling [5] showed that a-GeSex was a more typical semiconductor material than an 

insulator, with a moderate carrier mobility, no inter-molecular tunnel barriers, and a calculated 

effective mass of 0.3 me [16]. Thus, the Ielmini model was modified into one suitable for 

semiconductors of moderate band gap, using the ideas of quasi-Fermi levels [17].  

We initially took the a-GeSex to consist of a chemical ordered a-GeSe2 network of heteropolar 
Ge-Se bonds which gave rise to the conduction band minimum (CBM) state. The non-linear 

conduction process itself arose from some additional Ge-Ge bonds which introduced localized 

gap states below the CBM [17]. 
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Recently, Chai et al [18] showed that the quasi-Fermi level model needed further 

modification. They observed that OTS selector devices undergo filamentary conduction in 

both their ON and OFF states, as in resistive RAM. They noted that once the OTS entered 

the ON state, when its current exceeded a threshold current, the device voltage was still 

less that in the OFF state, despite a many times higher current flowing. Thus, the ON state 

conductance was too large to be consistent with hopping in localized tail states and it would 

require conduction in extended states with a lower effective mass m*. Chai et al [18] proposed a 

state relaxation process to account for this. This implied that OTS switching was not a purely 

electronic process, and involved some structural re-arrangements, creating states of more 

delocalized character. Here, we show that the excited ON state configuration indeed differs 

from the ground state by the creation of more delocalized states, due to additional Ge-Ge 

bonds, and some over-coordinated Ge sites, which cause a lower m*. 

In order to evaluate the amount of structural rearrangements involved in the high-field 

conductivity of OTS devices, we constructed various periodic supercell models of chemically 

ordered Ge40Se60 random networks, as previously. The networks are topologically disordered by 

a density functional molecular dynamics (MD) process. The calculations use the plane-wave 

pseudopotential code CASTEP [19], with ultra-soft pseudopotentials and the PBE-style 

generalized gradient approximation (GGA) for the exchange-correlation energy. The plane wave 

cut off energy is 340 eV. Only the Γ point was used for the supercell calculation. Spin 

polarization is not included here. The initial structure was created by running the MD for 3 ps at 

2000K, then quenching a liquid sample from 1000K to 300K with isobaric-isothermal molecular 

dynamics at a quenching rate of 10K per ps. The atomic positions are then fully relaxed, and the 

ground state is noted.  

We then create an excited configuration by occupying the conduction band with two or 

four extra carriers. The excited state corresponds to where the semiconductor is held in its 

ON state above the threshold current. The CASTEP code used provides a compensated 

background charge for the extra electrons. An alternative would be an optical excitation 

generating unpaired electrons and holes, but the first method was computationally simpler. 

Molecular dynamics at 300K is further performed, and then the geometry was fully relaxed 

until the energy difference between three consecutive steps is below 10-3 eV and the residual 

forces are below 0.03 eV/Å. 

A typical random network of Ge40Se60 of 480 atoms in the ground state is shown in Fig. 1. This 

is chemically ordered and has mainly 4-fold coordinated Ge sites and 2-fold coordinated Se 

sites. The Ge excess above a stoichiometric GeSe2 composition and chemical disordering leads 

to 20% 3-fold Ge sites, 80% 4-fold Ge sites, and 18% Ge-Ge bonds.

We found earlier that the chemically ordered a-GeSe2 network has a band gap of ~1.5 eV, 

and that introducing an excess of Ge-Ge bonds gives rise to states at or below the conduction 

band edge [16,5]. Vertices of multiple Ge-Ge bonds given rise to a tail of localized states 

below the conduction band edge, which forms the basis of the non-linear conduction 

mechanism. 

(Our networks differ from the more chemical ordered networks of a-Ge1-xSex for x=0.67 of 

Massobrio et al [20] and Micoulet et al [21]. These authors generated networks by MD at 1000K, 

below the melting temperature of a-Ge2Se3, which disordered the network topology to represent 

bulk glasses. In our case, a higher initial temperature of 2000K breaks network bonds, and allows 

a mixture of 4-fold and 3-fold Ge sites as in [22], which models deposited thin films.) 
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Fig. 2 shows an excited state for the 72 atom random network model. The bond connectivity map 

has been updated. Interestingly, although the atomic positions have not changed by much, some 

additional bonds have been formed. The new bonds are shown in blue in Fig. 2 and are found to 

be mainly Ge-Ge bonds. 

Fig. 3 shows a Ge partial radial distribution function (RDF) for the excited state in the 480 atom 

supercell. The first peak occurs at 2.45 Ǻ, which corresponds to direct Ge-Ge bonds for a 

tetrahedral bond angle as in pure Ge. The RDF shows a second peak at 2.7 Ǻ. This is due to 

elongated Ge-Ge bonds and non-tetrahedral sites. These consist mostly of 3-fold Ge sites that 

have been converted to 4-fold Ge’s. 

Fig 4(a,b) shows some typical geometries of Ge sites in the excited state.  Fig 4A shows a 4-fold 

site derived from an octahedral geometry, with only 4 of the 6 bonds present. This is similar to 

the ‘octahedral’ 4-fold Ge site in GeSbTe alloys seen by Cavaratti [23,24]. Fig 4B shows a 5-fold 

Ge site, also derived from a distorted octahedral Ge site.  This 5-fold Ge site resembles the 5-fold 

Ge site found by Konstantiou et al [25] for defects in a GeSbTe alloy. Thus, some configurations 

in the excited state of GeSe resemble those in the ground state of GeTe. 

     We then calculated the local density of states (DOS) for various networks (Fig 5). Fig 5A 

compares the total DOS of the ground state and an excited state for one particular network. We 

see that the ground state has a local gap of ~0.8 eV with the Fermi level lying in midgap, while 

the excited state has a gap of 0.3 eV with EF in the conduction band as a degenerate 

semiconductor. (There is no GGA error for this gap, as it is within the occupied states). At the 
bottom of each panel, we show the inverse participation ratio (IPR) or localization of each 

energy level. There is a peak in IPR for the localized levels at the bottom of the conduction, as 

expected,  and interestingly the extra bonds washes this out in the excited state. 

Fig 5B compares the partial DOS in an excited state of a typical 3-fold Ge site and one of the 4-

fold Ge sites, with a newly formed Ge-Ge bonds. In some configurations, the partial density of 

states shows a gap state (Fig 5C) whose wavefunction is a bonding state on one of the new 

elongated Ge-Ge bonds, Fig 5D. Thus, overall the excited conducting state of the OTS GeSe 
based system with the additional Ge-Ge bonds has a much reduced band gap with a lower m* 

than the semiconducting ground state with EF in midgap, and this explains the low resistivity of 

this structure. 

a-GeSe networks with 4:2 coordination have a similar network connectivity as SiO2 but with

different bond angles for the group VI site. Similarly, a 3:3 coordinated GeSe network with 50%

Ge will resemble orthorhombic GeSe, with trigonal Ge and Se sites. A formal charge transfer to

give Ge-- Se+ means that such trigonal sites obey the 8-N bonding rule. Any Ge excess above a

fraction of 33% for a 4:2 coordinated GeSe2 network or 50% for a 3:3 coordinated GeSe network

requires the presence of Ge-Ge bonds. On the other hand, alloy compositions between 33% and

50% Ge are possible by varying the fraction of 4- and 3-fold Ge sites, or by adding Ge-Ge bonds.

For tellurides, Raty et al [22] related the resistance drift in GeTe phase change materials to a

gradual change from 3:3 bonded GeTe towards a more 4:2 bonded GeTe with Ge-Ge bonding.

The change from tellurides to selenides in OTS might be expected to favor more molecular

bonding, a stronger adherence to the 8-N rule and less over-coordination. From our calculations,

we see that this is indeed true for the ground state, but the excited states of the network follow

more over-coordinated bonding.
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A general understanding of the nature of defects in these materials is important not only for 

selectors, but also the key problem for the basic origin of resistance contrast in PRAMs as a 

whole [10]. In crystalline GST or GeTe, the main defect is the Ge vacancy which pins the Fermi 

level near the valence band edge [26], giving the low ON state resistance. Defects observed by 

photo-modulation spectroscopy of the amorphous phase pin the Fermi level near midgap [27,28], 

giving a high resistance OFF state. The nature of these defects is only recently becoming clearer 

[25], and it must also be related to those of OTS materials. 

A-Se is a typical covalently bonded amorphous chalcogenide. Its key defects are valence

alternation pairs (VAP)[29]. VAPs consist of a negatively charged 1-fold coordinated site

denoted C1
- and a positively charged 3-fold coordinated site C3

+, where C denotes chalcogen and

subscript denotes the coordination. The stability of VAPs was based on the idea that they

conserved the number of bonds, so their creation energy would be relatively low, and thus the

VAP density would be high. Also, VAPs followed the 8-N rule of bonding, when including all

on-site electrons, including formal charge.

VAPs are likely to exist in a-As2Se3, as the basis of their photo-structural changes. VAPs were 

proposed as possible defects in a-GST [30], but to date, in PCM tellurides, despite the 

observation of gap states, there is no strong evidence in favor of VAPs [31,32].  

In PCM tellurides, defect gap states have a complex structure, and tend to consist of over-

coordinated sites [24,33]. The defects tend to be on cation sites and could consist of Ge5
+ and 

Ge3
- sites. On the other hand, the defects in selenides in their ground states have more molecular 

bonding and tend to follow the 8-N bonding rule. However, our calculations suggest that the 

defects of excited states of a-GeSe follow those of telluride PCMs with over-coordinated sites.  

In summary, we have calculated the excited state configuration of amorphous GeSe alloy Ovonic 

threshold switches, with electronic occupation of the conduction band, using density function 

molecular dynamics. We find that these states undergo a mild structural transition with the 

formation of additional Ge-Ge bonds mainly between previously 3-fold coordinated Ge sites. 

This leads to over-coordinated distorted octahedral Ge sites, and a delocalization of conduction 

states, which accounts for the high conductivity of the ON state. Thus, the previously proposed 

electronic only transition using fixed density of states to explain the non-linear resistivity of OTS 

materials needs modification to include the effect of varying density of states and state 

delocalization due to mild structural transitions. 
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Figure Captions 

Fig 1.   Ground state of the 480 atom network. (Green = Ge, orange = Se) 

Fig 2.    Excited state of the 72 atom random network. Blue = new bonds. 

Fig. 3.   Ge-Ge partial radial distribution function for ground state and excited state, showing 

extra Ge-Ge bonds at 2.70 Ǻ. 

Fig 4(A).  Showing the distorted octahedral coordination of Ge sites of a new Ge-Ge bond (in 

blue).  (B). Other mis-coordinated Ge defect sites in the excited state (in blue) 

Fig, 5A. Comparison of total DOS for the ground and excited state of 480 atom model. The 

Inverse participation ratio (IPR) of the energy levels in each condition is shown at the bottom of 
the panels. (B) Partial density of states (PDOS) of new Ge-Ge bond ‘defect’ state and adjacent 

Ge site in the excited state. (C) PDOS of newly formed Ge defect bond that is forming a 

localized state below conduction band edge. (D) Bonding state wavefunction of a new Ge-Ge 

bond. 
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Fig. 1. 
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Fig. 2. 
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Fig. 3. 



10 

(a) (b) 

Fig. 4. 
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Fig. 5. 
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