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Abstract This paper proposes a reading of the history of equivalence in mathematics.
The paper has two main parts. The first part focuses on a relatively short historical
period when the notion of equivalence is about to be decontextualized, but yet, has
no commonly agreed-upon name. The method for this part is rather straightforward:
following the clues left by the others for the ‘first’ modern use of equivalence. The sec-
ond part focuses on a relatively long historical period when equivalence is experienced
in context. The method for this part is to strip the ideas from their set-theoretic for-
mulations and methodically examine the variations in the ways equivalence appears
in some prominent historical texts. The paper reveals several critical differences in
the conceptions of equivalence at different points in history that are at variance with
the standard account of the mathematical notion of equivalence encompassing the
concepts of equivalence relation and equivalence class.

Keywords Dedekind · Equivalence · Equivalence class · Equivalence relation ·
Euclid · Russell · Variations
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1 Introduction

This paper is a reading of the ‘history’ of different manifestations of equivalence
in the mathematical texts. In modern-day mathematics, the notion of equivalence
is captured by the two inseparable notions of equivalence relation and equivalence
class. However, when it comes to history, the connection, and even the coexistence,
of the two notions is not as clear as a mathematician might like to see. The 40-
year-long debate between two friends, the mathematician Christopher Zeeman and
the historian David Fowler beautifully portrays the existing historical uncertainties.
The subject of the debate was Euclid’s definition of proportionality. Both Zeeman
and Fowler agree that Euclid’s definition is reminiscent of an equivalence relation.
However, Fowler strongly disagrees with Zeeman (2008, p. 16) claiming, “Euclid
must have been thinking of a ratio as something like an equivalence class.” In a way,
the Fowler–Zeeman dispute is rooted in a methodological distinction between what
Zeeman expresses as “the traditional opposing roles of historian and mathematician”
(Zeeman 2008, p. 16):

The historian thinks extrinsically in terms of the written evidence and adheres
strictly to that data, whereas the mathematician thinks intrinsically in terms of
the mathematics itself, which he freely rewrites in his own notation in order to
better understand it and to speculate on what might have been passing through
the mind of the ancient mathematician, without bothering to check the rest of
the data.

The current paper bothers to check the rest of the data, not only in the Elements, but
also in a span of 2000 years beyond the Elements. The paper offers a picture of the
various conceptions of equivalence in the history of mathematics. As such, it might
also help the reader to see Euclid’s experience of equivalence in a new light.

The paper has two main parts.
In the first part, the texts under study are on the verge of decontextualizing the

mathematical notion of equivalence. Roughly speaking, this period covers about a
hundred years from the second half of the nineteenth century to the first half of the
twentieth century. The purpose of this part is to find out the main participants in the
standardization of the notion, as we know it today. This part is mostly indebted to
the clues left by Fowler (1998; http://mathforum.org/kb/message.jspa?messageID=
1174830) on the Historia Matematica Forum (regrettably, this forum is now closed;
hereafter any reference to Fowler with no date is from this forum).

In the second part, the texts under study manifest certain contextualized equiva-
lences. Roughly speaking, this period starts from Euclid and continues until the first
half of the nineteenth century. For this period, I adopted a variation approach in which
the texts under studies are being compared in the search of critical differences.

2 Decontextualized equivalence

On Aug 1, 1998, Moshé Machover posted a seemingly innocent question on the His-
toria Matematica Forum with the title “Equivalences classes as objects”:
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Who was the first to use the reductionist ploy of using equivalence classes—
themselves—as the required objects x∗ (where x∗ is the equivalence class of x ,
given an equivalence relation R).

On Aug 22, 1998, Fowler1 submitted a lengthy answer with a rather daunting starting
paragraph:

Not simple! In fact, I know of nobodywho has attempted a serious answer. I have
written an (enormous!) draft of an (unfinishable!) article on equivalence classes,
about which I had an (equally enormous!) correspondencewith others who know
a great deal more than I do; I’ve tried to get them to write up something, or to
correct and complete my thing, without success so far.

To the best of my knowledge, nobody has yet attempted a direct answer. There are
some attempts embedded within the history of relevant mathematics, say, the con-
cept of quotient group (Nicholson 1993), or the foundation of mathematics, and in
particular set theory (Ferreirós 2008), or the philosophy of mathematics (Dummett
1991; Rodriguez-Consuegra 1991). However, none has addressed the history of the
mathematical construction of equivalence exclusively. The current paper fills this gap,
starting from the end, naming.

2.1 Equivalence relation; the name

I call a relation which is reflexive, symmetrical, and transitive an isoid relation.
Jourdain (1912) presented his article On isoid relations and theories of irrational
number to the Fifth International Congress of Mathematics, starting with the sentence
above. At the time, the process of “definition by abstraction” (Russell 1903, pp. 219-
220) was quite well established but the term “equivalence” was mainly attached to the
context of cardinal numbers.

Consider the case of cardinal numbers. Where u, v, . . . are classes which have
the isoid relation of what Cantor called “equivalence,” and what Dedekind and
Russell called “similarity,” to each other. (Jourdain 1912, p. 492)

Jourdain was one of the first who suggested a decontextualized term for what we now
know as “equivalence relation”. However, he was not successful at popularizing the
term. Even Russell, one of his closest correspondences, refers to such relations with no
name and only qualify them as an “important kind of relation”, noting that, “similarity
is one of this kind of relations” (Russell 1919, p. 16).

By 1919, neither the combination “equivalence relation” nor “equivalence class”
was in use. The necessity of naming was first felt with the relation, not with the classes
that are formed by that relation. For example, Hasse (1926) whomight be creditedwith
freeing the term Äquivalenzrelationen” from the context of the relation did not find
it necessary to name corresponding classes. Under the section Äquivalenzrelationen
und Klasseneinteilungen of the first chapter of the first edition of Höhere Algebra,
Hasse (1926) wrote:

1 I believe David Fowler’s answer to the question are the only words left from his lost work on the subject.
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We call such a decomposition a partition of M , and the subsets thereby deter-
mined its classes. (Hasse 1954, p. 22; Higher Algebra is the English translation
of the third edition of Höhere Algebra published in 1933)

Higher Algebra has every bit of a modern account but an attention to naming the
subsets of the partition2. The book was reviewed in the Bulletin of the American
Mathematical Society (Moore 1927; Ore 1928). Yet, Hasse’s terminology needed a
fewyearsmore to be established and usedwithout any reference to any other alternative
terminology. In the third edition of Mengenlehre (Hausdorff 1914; the third edition
was published in 1937 and then as Set Theory in English in 1957), the term equivalence
is still attached only to the context of cardinality. Also, Birkhoff (1935, p. 446) felt
obliged to footnote that “What Hasse (and I) call an “equivalence relation”, Carnap
calls an “equality relation”.” Interestingly, Birkhoff defined an equivalence relation to
be any reflexive and “circular” relation (i.e. a x b, b x c implies c x a), claiming that
this definition “amounts in effect to the more conventional one of Hasse” (Birkhoff
1935, p. 446). He also differs from Hasse in his attention to the naming of the classes
of a partition.

2.2 Equivalence class; the name

There is a (1, 1) correspondence between equivalence relations x on C and
partitions of the objects of C into non-overlapping “x-categories”‡, under which
axb if and only if a and b are in the same x-category”. (Birkhoff 1935, p. 446)

The symbol ‡ guides the reader to the footnotewhere it can be read that an “x-category”
is an “Abstraction class” according to Carnap (Der Logische Aufbau der Welt, Berlin,
1928, p. 102).” It is now 1935, and the classes of equivalent objects are called the
“x-categories” or “abstraction classes”, not yet, “equivalence classes”. Even in 1942
and in a paper with the title Theory of Equivalence Relations, Oystein Ore called them
“the blocks of the partition P” (Ore 1942, p. 574). Birkhoff (1948, 1940), Birkhoff and
Mac Lane (1941, p. 165) used R-classes for the non-overlapping classes determined
by the equivalence relation R.

Van der Waerden’s Moderne Algebra (1930, p. 4) explicitly uses Äquivalenzrela-
tion:

so nennt man die Relation a ∼ b eine Äquivalenzrelation.

Yet, even the English translation of the book (van der Waerden 1949) where he had
a “welcome opportunity for several minor changes” (p. iv) does not embrace the
combination “equivalence class”. Interestingly it seems that “equivalence class” was
enjoying a path of its own for a long time.

VonNeumann (1926, 1929), Hopf (1930), and Seifert and Threlfall (1934) used the
term “Äquivalenzklasse”, Von Neumann (1936) “equivalence-class” (with a hyphen)
and Solomon Lefschetz (1938, 1942) “equivalence class” (without a hyphen). The

2 It should also be mentioned that Higher Algebra does not give a set-theoretic account of relations as sets
of ordered pairs.
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terminology was for denoting the classes constructed by certain contextualized equiv-
alences, none of which was referred to as an “equivalence relation”.Moreover, none of
these authors felt obliged to define “equivalence classes” in general terms and outside
the contexts that they were working. To use Fowler’s words, these works were “within
a mathematical, as opposed to foundational contexts”. A foundational treatment is
found in the first chapter of Tukey’s Convergence and Uniformity in Topology (Tukey
1940, p. 4), where the combinations “equivalence relation” and “equivalence class”
appear in the same place.

It is well known that an equivalence relation (that is, one which generates a
reflexive, transitive and symmetric ordered system) divide the set on which it is
defined intomutually exclusive equivalence classes. If we denote the equivalence
relation by ∼ and the equivalence class containing a by [a], then b ∈ [a] if and
only If b ∼ a.

The class notation [] is also found in Lefschetz (1938, p. 292). Note that Lefschetz was
Tukey’s Ph.D. advisor. Within their academic family, they had a common language
freed from the context. Tukey (1940) and Lefschetz (1942) precede Steenrod’s The
Topology of Fibre Bundles (1951) that wasmentioned by Fowler as the first book to use
the combination equivalence class. Incidentally, Steenrod was also within the same
family: his Ph.D. advisorwas Lefschetz. Interestingly, if you find a text in this period of
history, say Set Theory and Metric Spaces (Spanier 1955), where the term “equivalence
class” and the class notation [] have been used in a clear and modern manner, you
might suspect that the author belongs to the Lefschetz’s academic family. In fact, in
my example, Spanier is one of the academic grandsons of Lefschetz, having Steenrod
as his academic father! Outside Lefschetz’s family, for such fundamental concepts, in
addition to the ones mentioned so far, there remains a large body of literature that need
to be addressed (e.g. the Göttingen tradition, the literature in algebra in general, and
in particular, cosets and quotient groups, etc.). However, it seems that, by and large,
the combination “equivalence class” was lagging behind the “equivalence relation”
as it is beautifully portrayed in the three editions of Garrett Birkhoff’s Lattice Theory
(1940, 1948, 1964), as we shall now see.

2.3 A portray of the evolution of the terminologies

In the first edition of Lattice Theory (Birkhoff 1940), there is a reference to Waerden
(1930) for using the mathematical construction of equivalence. However, Birkhoff
preferred not to use the terminology:

Theorem 1.2: The algorithm of identifying x and y when (and only when) x ρ y
and y ρ x , yields a partially ordered system from any quasi-ordered system Q.
Proof: Let x ∼ y mean that x ρ y and y ρ x . Then (van der Waerden 1930, vol.
1, p. 11), x ∼ y means that x and y belong to the same subdivision under some
partition of Q (Birkhoff 1940, p. 7)

In the second edition, the terminology “equivalence relation” is admitted, hence the
rewording of Theorem 1.2 that is Theorem 3 in the new edition. Immediately before
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the theorem, Birkhoff introduced the terminology, without assuming that the expected
readers are familiar with it:

Each such quasi-ordering is associated in a natural way with an equivalence rela-
tion (i.e., a reflexive, symmetric, and transitive relation) and a partial ordering.
(Birkhoff 1948, p. 4)

Then he reworded the original theorem and for the construction used in the proof cites
Birkhoff and MacLane (1941), not van der Waerden (the English edition of van der
Waerden’s book was published in 1949, a year after the publication of the second
edition of Birkhoff’s Lattice Theory).

THEOREM3. Let ρ be any quasi-ordering of a set. The relation x ∼ y , meaning
that x ρ y and y ρ x, is an equivalence relation. If “equivalent” elements are
identified, ρ becomes a partial, ordering.
Proof. …This shows that ∼ is an equivalence relation, or (Birkhoff-MacLane,
Ch. VI, Thm. 27) that there is a partition of X into non-overlapping subclasses,
such that x ∼ y if and only if x and y are in the same subclass…It follows
immediately from this that … xρy and yρx imply x ∼ y (i.e., x = y in the
system formed by the subclasses). (Birkhoff 1948, p. 4)

The third edition has no reference for the terms used or the relevant construction.
Theorem 1.2 (1940, p. 7) evolved into the following lemma in the third edition of
Lattice Theory:

We will now show how to construct a poset from any given quasi-ordering.
LEMMA 1.In any quasi-ordered set Q = (S,≺), define x ∼ y when x ≺ y and
y ≺ x . Then:
(i) ∼ is an equivalence relation on S;
(ii) if E and F are two equivalence classes for ∼, then x ≺ y either for no

x ∈ E , y ∈ F or for all x ∈ E , y ∈ F;
(iii) the quotient-set S/ ∼ is a poset if E � F is defined to mean that x ≺ y for

some
(hence all) x ∈ E , y ∈ F . (Birkhoff, 1967, p. 21)

The third edition is a typical example of what we observe in the texts written by
mathematicians for mathematicians after 1950. Before 1950, we might find all differ-
ent sorts of the use of terminology: no mention at all (e.g. Russell 1903), alternative
terms (e.g. Jourdain 1912; Carnap 1928), only “equivalence relation” with no men-
tion of the term “equivalence class” (e.g. Weyl 1949) or an alternative (e.g. Birkhoff
1935). Generally, the combination “equivalence class” became common much later
than the “equivalence relation” while closer to 1950 we can observe clear uses of
both combinations alongside each other (e.g. outside Lefschetz’s family, Neal McCoy
1948).

Overall, the first half of the twentieth-century witnessed a rapid use of the mathe-
matical construction of equivalence in every branch of mathematics, resulting in the
decontextualizing of the construction and the unification of the terminology.
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3 Contextualized equivalence

Some early examples of equivalence-class-style arguments do occur in contexts
where some specific well-defined concrete set underlies the subject—Gauss’
number theory in his Disquisitiones Arithmeticae is an outstanding example—
but the general technique of appealing to equivalence classes appeared only
around the time of Dedekind, when set theory began to be introduced as a basis
formathematics in general, and it took some time to become established. (Fowler
2003, p. 371)

The originator of “the general technique of appealing to equivalence classes” is much
disputed. Fowler’s candidate is Dedekind. Dummett’s choice (1991) is Frege. Weyl
(1949, p. 11) traces back the idea to Leibniz, claiming that it “was consciously formu-
lated in all generality by Pasch” in 1882 (Pasch 1882), and “still more clearly by Frege
(1884, Sections 63–68).” Rodriguez-Consuegra (1991, pp. 155–156) credits Russell
who independently fromFrege gave his definition of cardinal numbers. Russell himself
has contributed to this view on his Introduction to mathematical philosophy (Russell
1919, p. 11). Yet, in 1936, when von Neumann (1936, p. 96) wanted to remind the
readers of an analogous procedure to the one that he used to define the notion of a
numerical dimensionality, he mentioned not Russell but Cantor:

Our primary objective is the definition of a numerical dimensionality for a ∈ L .
Following a procedure used by F. J. Murray and the author we define first the
notion of equidimensionality for two a, b ∈ L . This is analogous to G. Cantor’s
classical procedure of defining equality of power (i.e., equivalence) for sets
before defining the powers (i.e., alephs) themselves. But while G. Cantor was
led by this procedure to a new kind of quantities, the alephs, our axioms will
lead us back to the well-known system of real numbers.

Even before Cantor’s 1895, the procedure was so much in the air that Hermann Schu-
bert (1894) in his Monism in Arithmetic, written “for beginners”, freely (i.e. with
no citation), though implicitly, employed it to define negative numbers. According to
Schubert, the workwas a reproduction of his “System of Arithmetic” (written a decade
ago) that “was the first to work out the idea referred to, fully and logically and in a form
comprehensible for beginners.” In fact, Schubert approach resembles the earlier work
of Dedekind in 1854, modified in 1872, where he defined integers as pairs of natural
numbers in the way that “is exactly the one that is still being employed today: except
that in a modern exposition one would deal with equivalence classes of pairs.” (Sieg
and Schlimm 2005, pp. 136–137; more on this in the next sections). As Nicholson
(1993, p. 76) says: “It may be that several of these mathematicians came across the
idea of equivalence independently.” As such, we might never be able to single out one
person as the originator. However, we might be able to figure out the role of some
of the “main” characters by examining the conceptual requirements of equivalence-
class-style arguments. The problem is that for a modern reader, acquainted with the set
theory, the conceptual distance between an equivalence relation and its corresponding
equivalence classes is a one-line theorem linking the two via ‘the’ three defining prop-
erties of the equivalence relation: reflexivity, symmetry, and transitivity. But, most
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historical appearances of equivalence originally occurred in non-set theoretic contexts
in which our normative understanding of equivalence as a relation could hardly distin-
guish between historical variations in experiences of equivalence in different contexts.
To capture and describe such variations, we have adopted the variation method.

3.1 Method

The variation method is particularly aimed at identifying “the variation in how the
phenomenon in question might be experienced by people with certain background
characteristics…in different situations” (Marton and Booth 1997, p. 128). In practic,
the most difficult task of the variation method is to bracket our own understanding of
the phenomenon of interest (here, equivalence) and suspend our normative judgement,
and instead, “to look at it with others’ eyes” (Marton and Booth 1997, p. 129). In
concrete terms, instead of measuring the historical texts against the modern account
of equivalence, we compare the texts under study with each other in search of critical
differences between the ways that equivalence has been tackled. As such, the outcome
of our study would not be the story of a particular mathematician or a group of
mathematicians. The outcome would be a variation, “captured in qualitatively distinct
categories, of ways of experiencing the phenomenon in question, regardless ofwhether
the differences are differences between individuals or within individuals” (Marton
and Booth 1997, p. 124). As a starter for this way of thinking, we can see the two
familiar notions of equivalence relation and equivalence class just as two categories of
understanding the notion of equivalence. Historically, there are three other categories
aswell:matching conception, single-group conception andmultiple-group conception.
As we shall see, the term “group” is used in its vernacular sense as in “grouping certain
elements with each other.” Any other use will be clear from the context.

3.2 Matching conception

Matching is the pre-set theoretic counterpart of the equivalence relation: the focus of
both is on the pairs of elements and they both underlie any experience of equivalent
elements (more than two). However, they differ critically.

An equivalence relation is firstly a relation. The relation is defined so that for any
two elements (of the underlying set) it is known whether the first is related to the
second. Then, the defining properties show that the initial order was redundant and
allow us to say, “two objects are equivalent to each other.” That ending is the starting
point for amatching conception that begins with a pair of two things that are equivalent
to each other.

Euclid and Hilbert clearly exemplify the distinction between the conception of
equivalence as a matching experience and equivalence as a relation.

In Euclid’s geometry, equivalence is maintained by the given definitions: “Parallel
straight lines are…”, “Those magnitudes are said to be commensurable which …”
and so on (the references from Euclid are all from Heath 1956). In Hilbert’s geometry,
it is only after establishing the symmetry of segment congruence (If AB ≡ A′B′, Then
A′B′ ≡ AB) that Hilbert allowed himself to say:
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Due to the symmetry of segment congruence one may use the expression “Two
segments are congruent to each other.” (Hilbert 1902, pp. 10–11)

Not only the symmetry property as an if-then statement, but also the reflexivity as
we know it, is redundant in the Euclid’s geometry. Euclid never expresses a phrase
like, ‘a is equivalent to (read it “is equal to”, “is parallel to”, or “is commensurable
with”) itself’. Hilbert has to consider the reflexive property, though he does not name
it (Asghari 2009):

Since congruence or equality is introduced in geometry only through these
axioms, it is by no means obvious that every segment is congruent to itself.
(Hilbert 1902, p. 10)

The only similarity between Euclid’s treatment of equivalence and Hilbert’s is when
an equivalence of more than two objects is involved. Both used a property that is
sometimes referred to as Euclidean property:

If two objects are equivalent to a third, then they are also mutually equivalent.
Concrete examples are:

Euclid: Things which are equal to the same thing are also equal to one another.
Straight lines parallel to the same straight line are also parallel to one
another.

Hilbert: If two segments are congruent to a third one they are congruent to each
other.

It is of prime importance to note that the Euclidean property differs from the transitive
property. The former is a characteristic of equivalence, separating it from the order
(relation). It is also equally important to note that we cannot distinguish between the
Euclidean property and the transitive property in Euclid sincewhenever an equivalence
is concerned it is an equivalence between two thingswith no order. Thus, strictly speak-
ing, Euclid did not have the standard properties of the equivalence relation (reflexivity,
symmetry, and transitivity) and yet managed two of the most important applications
of equivalence relations:

(1) Deducing and expressing the equivalence of two objects based on their equiva-
lence with a third object.

This is when we are only concerned with pairs of equivalent objects and not with the
groups or the partition determined by the equivalence. A modern example is provided
by Hasse (1954, p. 94):

Definition 30. Two systems of linear equations are said to be equivalent if they
have the same totality of solutions.
This is naturally an equivalence relation…However; we have no need of the
partition thereby determined.

(2) Treating “one” individual object as “any”.

This is at the heart of Euclid’s Elements and an indication of single-group conception.
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3.3 Single-group conception

When we prove a statement on one specific circle drawn on a piece of paper, it is
understood as a statement about any circle, all of them. Similarly, when we prove a
statement about parallel lines, it does not matter in which direction they have been
drawn; one pair of parallel lines stands for any pair of parallel lines, all of them.
The same holds true for all the other figures/objects in Euclid’s Elements. However,
sometimes Euclid cared to justify the shift from “one” to “any”. Interestingly, these
occasions arewhere some kind of equivalence is directly addressed by a contextualized
Euclidean property and there is a focus on a single object as a representative of a group
of equivalent objects, hence, single-group conception. In such situations, there is a
contextualized in-out pair of propositions, deciding what is in the group and what is
out. Perhaps the most famous of such propositions in Euclid is the two that are related
to the Fowler–Zeeman debate about Euclid’s ratios.

In-Proposition, Proposition 11, Book V: Ratios which are the same with the same
ratio are also the same with each other.

Out-Proposition, Proposition 13, Book V: If a first magnitude have to a second the
same ratio as a third to a fourth, and the third have to the fourth a greater ratio than a
fifth has to a sixth, the first will also have to the second a greater ratio than the fifth to
the sixth.

Proposition 11 justifies Definition 6 where a single group of proportional ratios is
formed

inside which any two ratios are the same.

Definition 6, Book V: Let magnitudes which have the same ratio be called pro-
portional.

Proposition 13 stresses that none outside a group of proportional ratios is the samewith
any inside the group. Although Euclid never uses a ratio alone, he needs Propositions
11 and 13 to justify Definition 7 of Book V, where the definition of a greater ratio is
introduced.

Definition 7, Book V: When, of the equimultiples, the multiple of the first mag-
nitude exceeds the multiple of the second, but the multiple of the third does not
exceed the multiple of the fourth, then the first is said to have a greater ratio to
the second than the third has to the fourth.

Following Propositions 11 and 13, the disproportionality defined in Definition 7 is
justified since any ratio in a group of proportional ratios is greater or lesser than any
ratio in another group of proportional ratios. Generally, the pair of in-out propositions
guarantees that one ratio stands for any one of the group of proportional ratios. In
Book X, another similarly worded pair guarantees the unambiguity of definition and
naming of the group of rational lines commensurable with an “assigned straight line”,
and thirteen disjoint groups of irrational lines (for a well-informed description of
these groups see Fowler 1992 or van der Waerden 1954). The following are the in-out
propositions used in Book X.
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In-Proposition, Proposition 12, Book X: Magnitudes commensurable with the same
magnitude are commensurable with one another also.

Out-Proposition, Proposition 13, Book X: If twomagnitudes be commensurable, and
the one of them be incommensurable with any magnitude, the remaining one will also
be incommensurable with the same.
It is of prime importance to note that in all these cases, “Euclid always considers
individuals, never sets” (Fowler 2003, p. 370). However, in each case, he was formally
able to use an individual as any individual and Euclidean property is quite suitable for
such purpose. Euclid’s Elements does not use the full potential of equivalence that is
relying on a multiple-group conception.

3.4 Multiple-group conception plus unity

Russell’s definition of numbers provide a complete picture of a multiple-group con-
ception plus unity, showing where the Euclid’s use of equivalence ceased.

Euclid startedwith the definition of proportionality (inBookV) and commensurability
(in Book X).

Russell started with the definition of similarity:

Two classes are said to be “similar” when there is a one-to-one relation which
correlates the terms of the one class eachwith one termof the other class. (Russell
1919, pp. 15–16)

Euclid confirmed Euclidean properties of proportionality and commensurability.

Russell confirmed that the similarity has the properties of that “important kind of
relation” (that is reflexive, symmetrical, and transitive).

Euclid set up the relevant contextualized in-out pair of propositions.

Russell relied on the following in-out pair:

In-Proposition: Classes similar to the same class are similar to one another also.

Out-Proposition: If two classes be similar, and the one of them be not similar to any
class, the remaining one will not also be similar to the same.
There is a remarkable resemblance between Euclid’s ingredients and Russell’s, and
even more in Book X in which naming brings Euclid close to a multiple-group con-
ception.

Euclid chose a straight line as the “assigned” one, fixes it and names it “rational” at
the outset.

Russell did not “assign” anything at the outset.

Eucliddefined “rational” lines, using the in-out propositions tomake sure that the name
“rational” can be unambiguously applied to any individual straight line that is commen-
surable with the “assigned” straight line. The relevant out-proposition guarantees that
every other individual line outside the group of rational lines can be unambiguously
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called “irrational”. Then, using the same approach, constructing, fixing and naming,
he continued to construct thirteen different irrationals (medial, binomial, major, and
so forth), proving that the same name can be applied to any individual irrational com-
mensurable with one of the named irrationals.

Russell let the relation itself (i.e. similarity) divide the classes into disjoint sets, initially
giving any class a tentative focal status to define its number.

The number of a class is the class of all those classes that are similar to it. (Russell
1919, p. 18)

The in-out propositions guarantee that any individual class similar to the tentative
focal class has the same number, and then allow Russell to eliminate the centrality of
that focal class.

A number will be a set of classes such as that any two are similar to each other,
and none outside the set is similar to any inside the set. (Russell 1919, pp. 18–19;
emphasis added to show the role of the in-out propositions)

Euclid left a large infinite collection of individual irrational lines unattended and
unnamed, not because of his approach (the same approach works for Gauss; see the
next section), but because of the domain of discourse.

Russell succeeded in defining any natural number, not because of his approach, but
because of the domain of discourse.
If the main difference between Euclid and Russell is not in their approaches, what is
it?

Euclid always considers individuals.

Russell considers the set of the equivalent individuals.
To see the difference, let us name 5 as Euclid might have done it, and define 5 as
Russell did it.

Euclid: Let any individual class of objects that is similar to the fingers on my right
hand be called 5.

Russell: Let the set of similar classes to which the class of the fingers on my right
hand belongs be 5.
Euclid’s naming approach unavoidably leads the mind of an informed observer to
equivalence classes. Even Fowler who argued against the presence of equivalence
classes in the Elements could not avoid the language commonly used for equivalence
classes when summarising some of the propositions of Book X.

(72/73 & 111/112, strengthened). The thirteen classes of alogoi lines, (medial,
binomial, apotome, first bimedial, first apotome of a medial, …) are all disjoint;
and any line that is commensurable or commensurable-in-square with a line in
a given class is also in that class. (Fowler 1992, p. 251)

There is one critical differences between Euclid and Russell:
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Euclid’s equivalent individuals remain as individuals, Russell’s equivalent indi-
vidual form a whole, a unit.

Russell addressed “the unity of a class” by distinguishing “the many from the whole
which they form” (Russell 1903, p. 70) or by considering “the in the plural” (Russell
1919, p. 181; Hausdorff 1914, p. 11).When defining numbers, Russell used a “bundle”
to capture the unity.

We can suppose all couples in one bundle, all trios in another, and so on. In this
way we obtain various bundles of collections, each bundle consisting of all the
collections that have a certain number of terms. Each bundle is a class whose
members are collections, i.e. classes; thus each is a class of classes. The bundle
consisting of all couples, for example, is a class of classes: each couple is a class
with two members, and the whole bundle of couples is a class with an infinite
number of members, each of which is a class of two members. (Russell 1919, p.
14)

To sum up, a partition (as we know it) is a multiple-group conception plus unity.
Without unity, the best that an informed observer can get is a completely divided
domain of discourse. Gauss provides an example for us.

3.5 Multiple-group conception minus unity

If a number a divides the difference of the numbers b and c, b and c are said to
be congruent relative to a; if not, b and c are noncongruent. The number a is
called themodulus. If the numbers b and c are congruent, each of them is called a
residue of the other. If they are noncongruent they are called nonresidues. (Gauss
1801, p. 1)

Gauss started with the definition of congruence, giving an equal status to twomatching
numbers (as Euclid whenever he dealt with equivalence). Unlike Euclid, he directly
addressed reflexivity (though of course without using the term):

Since every number divides zero, it follows that we can regard any number as
congruent to itself relative to any modules. (Gauss 1801, p. 1)

TheEuclidean property of congruence is expressed as one of “properties of congruence
that are immediately obvious”:

If many numbers are congruent to the same number relative to the same modulus,
they are congruent to one another (relative to the same modulus). (Gauss 1801,
p. 2; italics in the original)

Euclid needed to construct each irrational number before using it as a naming tool for
the lines commensurable to it. He succeeded in constructing 13 naming tools, leaving
a large infinity of irrationals unnamed. The names come naturally in the domain of
integers: the least residues.
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Each number therefore will have a residue in the series 0, 1, 2…m–1 and in the
series 0,−1,−2…−(m−1). We will call these the least residues. (Gauss 1801,
p. 2).

Take one of the least residues, say a, and an arbitrary number, say A. The following
in-out propositions are used to check whether A belongs to the group determined by
a, or not:

In-Proposition: If (a − A) /m is an integer then a ≡ A.

Out-Proposition: If it [(a − A) /m] is a fraction then a �≡ A. (Gauss 1801, p. 2).
Gauss was obviously aware that the equivalence defined has divided all of the integers
into disjoint groups of congruent numbers.

Congruent numbers have the same least residues; noncongruent numbers have
different least residues. (Gauss 1801, p. 3; italic in the original)

His approach, and even the language used, bears a remarkable resemblance toRussell’s
approach. However, his outcome is more in line with Euclid: multiple-group concep-
tion minus unity. He continued working with the individual integer numbers, never
distinguishing “the many from the whole which they form”. Unlike Euclid, he did not
need to create new names since each number has a natural tag in the list of the least
residues. In a way, the least residues play the role of the names. Any two numbers with
the same tag can be used interchangeably without affecting the result of a calculation
involving addition and multiplication. For example, let X = x3 − 8x + 6 and m = 5.
Then for x = 0, 5 the value of X is 1; for x = 1, 6 the value of X is 4. Generally,
“The values of X produce these least positive residues: 1, 4, 3, 4, 3, 1, 4, etc. where
the first five numbers 1, 4, 3, 4, 3 are repeated infinitely often” (Gauss 1801, p. 3).
Gauss continued touse theold entities endowedwith anewstructure.Russell structured
the old entities to define new units. However, it seems that Russell was not the first.

4 The originator

Adopting a variation approach, we have not been primarily concernedwith the individ-
uals for their own sake. However, now that we have different historical appearances
of equivalence we might use the variations to examine the role of some individual
who might be considered as the originator of mathematical notion of equivalence by
which we define a new entity. Wemainly focus on Dedekind who is Fowler’s favourite
nominee for introducing the idea of equivalence classes. Then we shortly compare the
role of some of the other favourite nominees with Dedekind.

4.1 Dedekind

In 1857, in the study of “congruence with respect to a double modulus”, Dedekind
(1857; Fricke et al. 1930, pp. 46–47) treated certain congruence classes explicitly
as objects/units. He first considered an equivalence with respect to a prime mod-
ulus p, on polynomials with integer coefficients. Accordingly, we have infinitely
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many function-classes (Funktionenklassen) of “the whole system of infinitely many
functions congruent to one another according to the modulus p.” Now the second
congruence was defined on the infinitely many disjoint equivalent classes of the first
congruence (hence, the name double modulus):

Two function-classes or their representative A and B are called congruent with
respect to the function-class with representative M …

Interestingly, Dedekind freely moved from the congruence to the classes of congruent
elements without any further explanation about the property (or properties) of the
congruence which makes the “creation” of the classes possible. In fact, he played
with the idea for a long time: in 1857, no mention of any property at all; in 1863,
in Dirichlet’s lectures on number theory, he addressed the break of matching in the
notation introduced by Gauss, a ≡ b (modk); there is the left and right of the ≡ sign.

Since the two numbers a and b play the same role in the congruence relation [the
word relation has been added by Stillwell in the translation], one may obviously
exchange the numbers to the left and right of the≡ sign” (Dirichlet 1863, p. 22).

Then reflexivity and transitivity appear as the theorems that “are clear from the concept
of congruence.” In the same publication, he moved beyond just dividing the integer
numbers into the classes of congruent numbers; he came close to the unity of each
class.

All numbers belonging to the same class have many properties in common, so
that they behave almost as a single number relative to the modulus k. (Dirichlet
1863; italic is mine)

In 1871, in Supplement X, in order to classify all existing numbers into classes (mod
a) he mentioned only the Euclidean property of congruence.

Since two integers congruent with the same integer are congruent with one
another, Then one can classify all existing numbers into classes (mod a) by
taking two congruent numbers into the same class, two incongruent ones into
two different classes. (1871; my translation)

In 1888, he explicitly wrote, “Every system is similar to itself”, and then stated and
used the Euclidean property of similarity to classify sets.

We can classify sets by putting in one class those sets that are similar to each
other. So if Q, R, S, …are similar to a particular set R, then they will all be in the
same class, and we may call R a representative of that class. According to [33],
that class is not changed by choosing a different representative from the same
class.

In 1877 (pp. 64–65), he explicitly mentioned only the transitivity as the property
that “leads to the notion of a class of numbers relative to a module a.” In the same
publication, he referred only to the Euclidean property to partition the ideals of a field
into classes (Dedekind 1877, p. 146).
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If two ideals a′, a′′ are equivalent to a third, a, then a′ and a′′ are equivalent to
each other… It follows that the ideals can be partitioned into classes. [Notice
the use of the word equivalent]

Eventually—following some unfinished and unpublished previous attempts at defining
negative numbers—it is in an unpublished manuscript dated 1890, where Dedekind
specified the three defining properties (of an equivalence relation) that we use today
to “create” the integer numbers (negatives, zero, and positives).

Consider all the pairs of natural numbers α1, α2 (which must be clearly dis-
tinguished from the pair of numbers α2, α1. To be brief, let us denote a pair
of numbers α1, α2 by a single letter α. Let α be the pair of numbers α1, α2
and β the pair of numbers of β1, β2. Let the congruence α ≡ β mean that
α1 + β2 = β1 + α2. Then it is obvious the congruence of two pairs off numbers
α, β is symmetrical, reciprocal [eine symmetrische, gegenseitige] i.e. if α ≡ β

it follows β ≡ α; moreover, we always have α ≡ α; finally, of α ≡ β and β ≡ γ

always follows α ≡ γ . (Dedekind 1890)

If we just replace “the pairs of natural numbers α1, α2” with “the ordered pairs
(α1, α2)” and use the language of sets, the above excerpt would be hardly distin-
guishable from what we can find in a modern textbook (e.g. Stewart and Tall 2015).
So would the rest of the article in which Dedekind completes the “act of creation”
in which he explicitly treats each distinct class of congruent pairs as a unit. It is
denoted by n if one of the representatives is the pair m, n + m, hence positive; by
n if one of the representatives is the pair n + m, m, hence negative; and by 0 (Null
Klasse) if “the class (α) contains a pair α whose numbers α1, α2 are identical to one
another.”
It seems that “It’s already in Dedekind” (Es steht schon bei Dedekind, as Emmy
Noether used to say about Dedekind’s works in ideal theory). Intriguingly, rarely has
a publication close to the time of Dedekind cited him as someone who contributed
to the idea of equivalence classes, let alone as the one who introduced it. The next
section gathers the reasons that can be given within the scope of the paper for such an
oversight.

4.2 Why not Dedekind

Let us examine the role of someof the favourite nominees for the title “TheOriginator”.

FregeMost of the time it does not seem that Dedekind was concerned with the whole
procedure of forming equivalence classes as something worthy of particular attention
on its own; he was simply applying it in the context at hand. Frege, on the other hand,
was too concerned with meaning (not necessarily formulation) of the procedure in
all generality, being aware that it is something out of ordinary “to use the concept of
identity, taken as already known, as a means for arriving at that which is to be regarded
as being identical” (Frege 1884, § 63). Of the two, Frege was more willing to take the
newly defined objects to be the equivalence classes themselves (Ziegler 2013; https://
mathoverflow.net/a/135375/29316). Dedekind was reluctant to take a set itself as the

123

https://mathoverflow.net/a/135375/29316
https://mathoverflow.net/a/135375/29316


Synthese (2019) 196:4657–4677 4673

created object. For example, in a letter to Weber, dated 24 January 1888, he wrote
(Scheel 2014, p. 277; my translation):

I would advise under the number (number, cardinal number) not to understand
the class (the system) of all finite systems similar to one another, but rather
something new (corresponding to the class), what the mind creates. (Underlined
in the original.)

And in a few lines down, regarding his definition of real numbers, he wrote:

You say that the irrational number is nothing at all other than the cut itself, while
I prefer to create something new (of the cut), which corresponds to the cut, and
of which I say that it produces the cut. We have the right to associate ourselves
with such a creative power.

In both cases, Dedekind just expressed his preference and encouragedWeber to go the
way that he wishes. Weber’s way was somehow the same as Frege’s and the way that
we treat equivalence classes today; hence the name of Frege as a pioneer. However, it
is not easy to find in Frege’s examples the common properties that would lead to the
formation of equivalence classes. The clearest indication of those properties is in the
context of parallel lines, where Frege mentioned the essential role of the Euclidean
property:

If it were false that “straight lines parallel to the same straight line are parallel
to one another”, then we could not transform a ‖ b into an identity.

Of the two (Dedekind and Frege), Dedekind (at least in his later work) was more atten-
tive to properties of equivalence leading to equivalence classes. Years later, Russell
polished Frege’s treatment, paying a full attention to the properties of equivalence (see
below).

Cantor As Stillwell (1996, p. 44; Dedekind 1877) puts it, “fighting 2000 years of
tradition” and against “the horror of infinity”, Dedekind, as early as 1857, dealt with
infinite equivalence (congruence) classes as mathematical objects. This is when most
mathematicians were not willing to consider a theory based on infinite sets (Stillwell,
ibid). In the context of congruence classes, those mathematicians could happily resort
to the representatives (individuals) in the fashion of Gauss. However, when it came to
cardinal numbers, they could not avoid Cantor’s approach, and hence years later, you
might find “G. Cantor’s classical procedure of defining …a new kind of quantities”
(Von Neumann 1936, p. 96) as the origin of making the equivalence classes and
working with them as objects.

Russell (nominated by Halmos 1982, and many others). Russell’s definition of num-
bers had the philosophical standing of Frege, the precision of Dedekind’s unpublished
manuscript in 1890 (see above), and Cantor’s set theory (1895, 1897, 1915 in English)
in a relatively matured state of its development.3 In a way, Russell’s approach to the
relation of equivalence and the relevant classes of equivalent individuals had nearly

3 Russell truly stood on the shoulders of giants. In addition to Frege, he attentively read both Dedekind
and Cantor (who himself was directly influenced by Dedekind; see Ferreirós 2008).
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all the features that eventually became established but the names of “equivalence rela-
tion” and “equivalence class”. The names brings us back to where we started our long
journey in this paper, which means that, it is the time to conclude the paper.

5 Conclusions

The rather simple set-theoretic treatment of equivalence might mislead us to read our
own understanding into the history of equivalence. The main thesis of this paper is
that the history of equivalence relation and equivalence class should be studied within
the history of equivalence, not as the history of equivalence. There is a distinction
between equivalence as an experience (of matching) and equivalence as a relation,
and between a group (of equivalent individuals) and a set—“formed by the grouping
together of single objects into a whole” (Hausdorff 1914, p. 11). As an experience of
matching, the equivalence of two objects is established from the outset (e.g. Euclid
starts by saying that “two segments are congruent to each other”); as a relation, the
equivalence of two objects is derived by showing that the initial imposed order is
irrelevant (e.g. Hilbert finishes by saying that “two segments are congruent to each
other”). In matching, transitivity and the Euclidean property are indistinguishable
(e.g. Euclid, Gauss, Cantor, and many others); in relating, which is initially based
on ordered pairs, transitivity needs to be accompanied by some other properties to
give the Euclidean property (e.g. almost every author after Russell’s classification of
relations). In both experiences of equivalence (matching and relating), intuitively at
least two objects are involved. Thus reflexivity might be overlooked or bypassed (e.g.
Euclid), disallowed by the context (e.g. parallel lines in Euclid and Hilbert), enforced
by the context (e.g. congruent numbers in Gauss), derived (e.g. congruent segments
in Hilbert), or chosen (e.g. Peano’s definition by abstraction).

In fact, all of the three defining properties of equivalence relations have been chosen
to recreate different aspects of our experience of equivalence in which:

(1) We work with two unordered equivalent objects, replacing one with the other.
(All)

(2) We work with equivalent objects, giving them the same name or using one of
them as a representative of all. (Euclid)

(3) We restructure the universe of our discourse into disjoint groups of equivalent
objects. (Gauss)

Up to this point, we have worked with the individuals (of the universe of our dis-
course); using Frege’s famous example, it is like working with parallel lines without
any attention to the notion of direction. Then, “around the time of Dedekind”, we
gradually learned to work with the groups of equivalent individuals, regarding each
group as an object of its own. Dedekind himself contributed to this approach in several
different contexts. Then, some philosophical considerations (notably, Frege, Peano,
Russell, and Dedekind himself) helped us to realize that forming equivalence classes
is a new way to define mathematical objects, old or new. This changed equivalence
from being an organisational tool (used to organize the objects at hand) to being a cre-
ative tool (used to create new objects). This was not just recreating different aspects of
our everyday experience of equivalence; rather, it was creating something out of the
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original equivalence. Thus, let us put it here, further away from the other three aspects
mentioned above, to highlight its fundamental difference.

(4) We learned to appreciate equivalence classes on their own differentiated from
their individual representatives.

Cantor’s definition of cardinal numbers andRussell’s definition of numbers contributed
to the popularity of the approach. Meanwhile, the development of set theory gave us
a powerful tool to formalize and express it. To quote Quine (1940, p. 121):

This is the end; no abstract object other than classes are needed—no relations,
function, numbers, etc., except insofar as these are constructed simply as classes.

That end has made the study of the relevant history a very complicated endeavour. Set
theory, as powerful as it is, has nearly hidden all the distinctions made in this paper.
As such, Euclid’s definition of ratio is hardly distinguishable from amodern definition
of ratio as an equivalence class; after all, both start with this fundamental observation
that “Ratios which are the same with the same ratio are also the same with each other.”
No wonder that Fowler could not convince Zeeman for about 40 years. The only tool
that Fowler had was the normative account of equivalence relations and equivalence
classes. The approach used in this study allowed us to see the variation in historical
examples that seemed to be the same through the window of the standard framework.
However, our approach shares something critical with Fowler’s: both are less attentive
to philosophical discussions historically interwoven with the subject; Fowler even less
so.

Philosophers of math say they can find it in Frege; I couldn’t, at least not in a
form recognisable to me! (Perhaps you may have noticed that mathematicians
are in general ignorant and lukewarm about Frege, so I won’t say any more!)

Yet, perhaps the main contribution belongs not to a person, a mathematical theory,
a domain of study, but it belongs to the acceptance of what Timothy Gowers (2002,
p, 18) calls “the abstract method in mathematics”, that “can be encapsulated in the
following slogan: a mathematical object is what it does.” The following comment on
the definition of cardinal numbers, written by Hausdorff about a century ago, shows
the influence of this attitude on our understanding of equivalence.

This formal explanation says what the cardinal numbers are supposed to do,
not what they are. More precise definitions have been attempted but they are
unsatisfactory and unnecessary. Relations between cardinal number are merely
a more convenient way of expressing relations between sets; we must leave the
determination of the “essence” of the cardinal number to philosophy. (Hausdorff
1914, pp. 28–29)

How and why this attitude started and spread is another story. Whatever that story
is, it seems that equivalence is one of its main characters. Equivalence has had many
different faces and for a long time, no name (generally accepted) and at the same time
many different names (locally used). As JeremyGray has eloquently summed it up: “It
is striking, though, as you show, that when subsequent mathematicians felt the need for
these concepts they found themselves inventing new words, which strongly suggests
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that they were unaware that the concepts were already out there. But history does
not favour the discoverers of modest concepts.” (Private communications) The four
aspects of the created equivalence can be used to study the works overlooked in the
current paper (e.g. Kronecker or Gauss’ theory of binary quadratic forms). However,
it seems that the acceptance, polishing and mathematicising the equivalence had been
mainly an unplanned collaborative work fertilizing its own underlying ground of “the
abstract method in mathematics”.
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