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Abstract 

Background: For over two decades, Nitisinone (NTBC) has been successfully used to 

manipulate the tyrosine degradation pathway and save the lives of many children with hereditary 

tyrosinaemia type1 (HT1). More recently, NTBC has been used to halt homogentisic acid 

accumulation in alkaptonuria (AKU) with evidence suggesting its efficacy as a disease 

modifying agent. NTBC induced hypertyrosinemia has been associated with cognitive 

impairment and potentially sight-threatening keratopathy. In the context of a non-lethal condition 

(i.e. AKU), these serious risks call for an evaluation of the wider impact of NTBC on the 

tyrosine pathway. We hypothesized that NTBC increases the tyrosine pool size and 

concentrations in tissues.  

Methods: In AKU mice tyrosine concentrations of tissue homogenates were measured before 

and after treatment with NTBC. In Humans, pulse injection with L-[13C9]tyrosine and 

L-[d8]phenylalanine was used along with compartmental modelling to estimate the size of 

tyrosine pools before and after treatment with NTBC. 

Results: NTBC increased tyrosine concentrations in murine tissues by five to nine folds. It also 

significantly increased the tyrosine pool size in humans (p<0.001), suggesting that NTBC 

increases tyrosine not just in serum but also in tissues (i.e. acquired tyrosinosis). 

Conclusions: This study provides, for the first time, the experimental proof for the magnitude of 

NTBC-related acquired tyrosinosis which should be overcome to ensure the safe use of NTBC in 

AKU. 

 

Take-home message: This study provides, for the first time, the experimental proof for the 

magnitude of tyrosine increase following nitisinone therapy. 
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Introduction 

Alkaptonuria (AKU) is a rare inborn error of tyrosine metabolism, (OMIM 203500), caused by a 

deficiency in the homogentisate dioxygenase enzyme (HGD, EC 1.13.11.5) (O'Brien et al., 1963) 

which leads to increased homogentisic acid in body fluids and tissues. This results in the 

formation of a melanin-like pigment (Figure S1) in a process called ochronosis (Zannoni et al., 

1969). 

Ochronosis is the main pathophysiological process in AKU. It changes the mechanical properties 

of tissues and gives rise to the various manifestations of AKU (Ranganath et al., 2019). These 



include features such as stones (kidney, prostate, salivary and gall bladder), ruptures (tendons, 

muscle, ligaments), hearing impairment, external ocular and auricular ochronosis, cardiac 

(mainly aortic) valve disease, bone fractures and most significantly, arthritis (Ranganath et al., 

2019).  

The management of AKU has been mainly supportive without addressing the underlying 

pathophysiological mechanisms. However, NTBC, a competitive reversible inhibitor of the 

hydroxyphenylpyruvic acid dioxygenase enzyme (HPPD, E.C. 1.13.11.27), can decrease urinary 

excretion of homogentisic acid by 98.8% (Ranganath et al., 2016). NTBC is already licensed and 

has been used for over two decades for the treatment of HT1 in children (Ranganath et al., 2013). 

Since 2012, NTBC has been used off-label in the NHS England designated National 

Alkaptonuria Centre (NAC), at the Royal Liverpool University Hospital. All the known AKU 

patients from England and Scotland attend the NAC annually and receive NTBC 2 mg daily as 

part of their standard care. Animal studies have demonstrated that ochronosis can be arrested at 

any stage and completely prevented if the treatment with NTBC started early in life (Preston et 

al., 2014, Keenan et al., 2015). Data from the NAC cohort suggest that NTBC arrests ochronosis 

(Ranganath et al., 2018).  

The Subclinical Ochronotic Features in Alkaptonuria (SOFIA) study has demonstrated eye 

pigmentation in a 22-year-old patient and biopsy evidence of ear pigmentation in a 20-year-old 

patient. This suggests that ochronosis starts earlier in life than the major clinical signs (Cox et al., 

2019). Since the biochemical deficit is present since birth, treatment with NTBC to modify the 

course of AKU seems logical. However, NTBC causes a significant rise in serum tyrosine 

(Phornphutkul et al., 2002, Introne et al., 2011, Ranganath et al., 2016, Milan et al., 2017). This 

can result in ocular tyrosine keratopathy (Introne et al., 2011, Stewart et al., 2014, Khedr et al., 



2018, White and C Tchan, 2018) which spontaneously resolves upon discontinuation of NTBC. 

Furthermore, there are concerns regarding effects on neurocognitive function as a result of 

NTBC-induced hypertyrosinemia in children with HT1 (McKiernan, 2013, van Ginkel et al., 

2016, García et al., 2017). Although low phenylalanine levels, NTBC and the natural course in 

an older HT1 population may be responsible for neurocognitive impairment as well, not only 

tyrosine levels. These concerns are underscored by observations of significant dose-dependent 

increases in tyrosine metabolites following treatment with NTBC (Milan et al., 2019). This calls 

for further assessment of the extent of the NTBC-induced hypertyrosinemia.  

 

In this study, we have assessed the magnitude of NTBC-induced hypertyrosinemia by measuring 

tyrosine concentrations in tissues harvested from NTBC treated AKU mice. Assessing tissue 

tyrosine concentrations in humans would be impractical. Therefore, we have used stable isotope 

methodology with compartmental modelling to estimate the intracellular and extracellular pool 

size of tyrosine before and after NTBC.  

 

 

 

 

 

 

 

 

 



Materials and Methods 

Biochemical analysis: 

Subjects were asked to collect urine over the two hours of the blood sampling period. Collection 

bottles were stored away from light and in cool conditions. Urine was acidified using 5 N 

sulphuric acid to a pH of less than 2.5. Serum samples were collected in plain serum tubes 

(Sarstedt, Germany). At the end of the experiment, samples were centrifuged (10 min, 1500 xg, 4 

ᵒC). One serum aliquot was acidified (to stabilize HGA) by addition of a volume of 5.8 M 

perchloric acid (approx. 60% w/v) equivalent to 10% of the serum volume (Hughes et al., 2015). 

Acidified serum was centrifuged (10 min, 1500 xg, 4 ᵒC) and supernatant was taken. All samples 

were frozen and stored at -80 ᵒC until analysis. Tracer measurements were done in one batch for 

all samples. Measurement of native tyrosine, phenylalanine, HGA, HPPA and HPLA were done 

on all samples in a separate batch. 

 

Native tyrosine, phenylalanine, HGA, HPPA and HPLA concentrations were measured in human 

serum and urine using Liquid chromatography–mass spectrometry (LC-MS/MS) (Hughes et al., 

2015, Hughes et al., 2014). Tyrosine concentrations were also measured in murine plasma and 

tissue homogenates using LC-MS/MS (Hughes et al., 2015).  

 

L-[13C9]tyrosine (95%) was obtained from Sigma- Aldrich (Dorset, UK). L-[ring-13C6]tyrosine 

(99%), L-[ring-13C6]phenylalanine (99%), L-[d7]tyrosine (95%) and L-[d8]phenylalanine (98%) 

were obtained from Cambridge Isotopes Laboratories (Andover, MA, USA). Using matrix 

matched calibrators, we have modified an existing LC-MS/MS method (Hughes et al., 2015) to 

enable measurements of serum L-[13C9]tyrosine, L-[d8]phenylalanine and L-[d7]tyrosine. This 



was achieved following a 1 in 10 dilution with deionized water containing L-[ring-13C6]tyrosine,     

L-[ ring-13C6] phenylalanine internal standards. The prepared sample was injected onto an 

Atlantis dC18 column (3 mm x 100 mm, 3 µm) using an Agilent 6490 triple quadrupole LC-

MS/MS with Jet-Stream electrospray ionization (ESI-MS/MS) equipped with an Agilent 1290 

infinity pump and autosampler. Assay was validated in accordance with international guidelines . 

Intra-batch accuracy (n=6) was 98 ± 5% for L-[13C9]tyrosine, 101 ± 4% for L-[d8]phenylalanine 

and 101 ± 7% for L-[d7]tyrosine; inter-batch accuracy (n=6) was 98 ± 2% for L-[d7]tyrosine and 

93 ± 13% for both L-[13C9]tyrosine and L-[d8]phenylalanine. Precision, both intra- and inter-

batch (n=6 for each), was <10% for L-[13C9]tyrosine, L-[d8]phenylalanine and L-[d7]tyrosine. 

Hughes et al (Hughes et al., 2015) demonstrated that the internal standard normalized matrix 

factor had <10% coefficient of variation in acidified serum tyrosine calibrators. Analyses of this 

study samples were carried out using the same LC-MS/MS analyzer as well as the same mass 

spectrometric parameters and chromatographic conditions. Therefore, matrix effects were not 

assessed here. L-[13C9]tyrosine, L-[d8]phenylalanine and L-[d7]tyrosine were stable after 24h 

storage at 20 ºC, 4 ºC and -20 ºC. The assay was linear to 10 µM L-[13C9]tyrosine, 9.37 µM 

L-[d8]phenylalanine and 1.2 µM L-[d7]tyrosine. This range was sufficient to analyze all the study 

samples.  The lower limit of quantitation was 50 nM, 47 nM and 21 nM for L-[13C9]tyrosine, 

L-[d8]phenylalanine and L-[d7]tyrosine, respectively. No carry over was observed. 

Mice study  

Mice were bred, housed and maintained within the Liverpool John Moores University Life 

Science Support Unit in accordance with the Home Office UK guidelines. A total of 18 BALB/c 

mice were split into 3 groups:  



• Wild type (WT) group: (n=6; median age= 24.8 weeks; individual age values: 17.4, 

17.4,27.6, 27.6, 24.7, 24.9 weeks; all males) 

• AKU treated group (HGD-/-) :(n=6; median age= 8.5  weeks; individual age values: 6.6, 

8.6, 8.4, 8.4, 24.4, 24.4 weeks; 4males and 2 females ) 

• AKU control group (HGD-/-): (n=6; median age= 21.1 weeks; individual age 

values:6.7,6.7, 23.6, 23.7, 23.7, 18.6 weeks; 3 males and 3 females) 

 

Tissues homogenates were prepared as 30 mg/mL solution. Tyrosine concentrations were all 

normalized and expressed as µmol/gram tissue.  

Human study 

Study participants 

This was a non-randomized study involving a group of AKU patients aged 24 to 66 years; and a 

group of healthy volunteers aged 24 to 41 years. Healthy volunteers were recruited from the 

Royal Liverpool University Hospital Consent for Consent database. AKU patients were recruited 

from the National AKU center. Recruitment took place between July and December 2017. Seven 

AKU patients and seven healthy volunteers were enrolled in the study. Height was measured by 

stadiometer. Weight, whole body fat free mass, total body water and lean body mass were 

obtained using bioelectric impedance analysis (BIA,TANITA body composition analyzer DC-

430MA). The flow of participants in this study is shown in Figure S2. All participants completed 

the study. The characteristics of the study subjects are shown in Table S1.  

 

 



Study design 

The healthy volunteers received a single infusion of stable isotopes during the study. The AKU 

patients received two: one isotopes infusion was given while they were on NTBC and the other 

while off NTBC. Six of the AKU patients were already receiving NTBC 2 mg daily each and 

were asked to stop NTBC for at least four weeks. Only one AKU patient was not on NTBC when 

enrolled in the study. He was started on NTBC 2 mg daily after receiving the first isotopes 

infusion.  

Stable isotopes infusion Protocol 

Microbiological and Pyrogen Tested L-[13C9]tyrosine (99%) and L-[d8]phenylalanine (98%) 

were obtained from Cambridge Isotopes Laboratories (Andover, MA, USA). These were 

prepared into sterile infusions (20 mg of L-[13C9]tyrosine and 50 mg of L-[d8]phenylalanine in a 

50 mL of 0.9% saline), under good manufacturing practice conditions, in the radiopharmacy 

department at the Royal Liverpool University Hospital. 

All subjects were studied at the NIHR Royal Liverpool University Hospital Clinical Research 

Facility. All subjects were instructed to attend the facility in the morning after an overnight fast. 

One peripheral venous line was placed in each arm. One was used for blood sampling and the 

other for infusing stable isotopes. The sampling line was placed in the dorsum of the hand or as 

close to it as possible. Arterialized blood samples were obtained using a thermostatically 

controlled heated- hand box (air temperature 55ᵒC). Two patients could not tolerate the heated 

hand box and had a heating pad applied instead. Baseline samples were taken before the 

infusion. Subsequent samples were taken at the following time points: 

t=5,10,15,20,25,30,40,50,60,90,120 min.  

 



Statistics 

AKU is an ultra-rare metabolic disease with an estimated prevalence of 1 in 250,000 to 

1,000,000 people (11). Prevalence may be up to 1:120.000 in central Europe and much higher in 

other areas of the world. In the UK, at the time of planning this study, there were 58 AKU 

patients who attended the NAC. The sample size was chosen on what can be realistically 

achieved in term of subject recruitment.  

 

Continuous variables are presented with mean and standard deviation whereas categorical 

variables (such as gender and race/ethnicity of participants) are presented as counts. Shapiro-

Wilk test was used to assess normality of the data set in each group. Where data were normally 

distributed a paired t-test was used to conduct comparisons within the AKU groups; and unpaired 

t-test was used to compare data between HV and AKU groups. Depending on normality of the 

variable of interest, Mann-Whitney test was used to compare tyrosine concentrations in murine 

brain homogenates in the AKU on and off NTBC groups, one way ANOVA was used to 

compare L-[d8]phenylalanine doses given to human subjects in the three groups while a Kruskal-

Wallis test was used to compare                  L-[13C9]tyrosine doses given to human subjects as 

well as area under the curve (AUC) for L [13C9]tyrosine in the three groups. Analyses were 

conducted in GraphPad Prism version 8.1.0 (GraphPad software), using two-sided significance 

tests at the 5% statistical significance level. 

Data analysis 

Since one of the assumptions for non-compartmental modelling is the steady state of tracee, we 

calculated the Tracer-Tracee Ratio (TTR) at each time point as the ratio of the tracer 

concentration and the pooled tracee concentration, when the pooled tracee concentration is the 



median of the measured tracee in all blood draws and was calculated for each person separately. 

Moreover, the TTR values for each subject were normalized by the amount of administered 

tracer and fat free mass. We combined all TTR data for subjects in each group and fitted one 

curve on the combined dataset. The mean and standard deviation of parameters from the best fit 

were used for the calculation of tracee quantities by means of non-compartmental modelling. 

Curve fitting on the TTR data was performed using GraphPad Prism 8.0.2. Further details on 

compartmental modelling can be found in the supplementary material. 

Results  

Effect of NTBC on tyrosine concentrations in murine tissues 

NTBC leads to five- to nine-fold increase in tyrosine concentrations in tissues in the AKU 

treated group compared to the AKU control group. This is summarized in Table S2 and Figure 1. 

Effects of NTBC on serum compounds in the tyrosine pathway in humans  

Serum phenylalanine (s-Phe), serum tyrosine (s-Tyr), serum hydroxyphenyllactic acid (s-HPLA), 

serum hydroxyphenylpyruvic acid (s-HPPA) and serum homogentisic acid (s-HGA) were 

measured. The concentrations of s-Tyr, s-Phe, s-HGA and s-HPLA were all significantly higher 

in the non-treated AKU group when compared to healthy volunteers (p <0.001). s-HPPA was not 

measurable in either group. The use of NTBC in AKU caused significant increase in the 

concentration of s-Tyr (p <0.001), s-HPLA (p <0.001) and s-HPPA. It also reduced the 

concentrations of s-HGA by seven folds (p <0.001). No effect was noted on s-Phe. This is 

summarized in Figure S3 and Table S3.  

Effects of NTBC on urinary compounds in the tyrosine pathway in humans  



We measured the two-hour urinary excretion of phenylalanine (u-Phe), urinary tyrosine (u-Tyr), 

urinary hydroxyphenyllactic acid (u-HPLA), urinary hydroxyphenylpyruvic acid (u-HPPA) and 

urinary homogentisic acid (u-HGA). The use of NTBC in AKU increased the concentration of u-

Tyr by six folds (p =0.014), u- HPLA by 31-folds (p =0.004) and u-HPPA by 18-folds (p 

=0.007). In contrast, it reduced the concentration of u-HGA by six folds (p =0.002). No effect 

was noted on u-Phe. This is summarized in Figure S4 and Table S4. 

 

Effects of NTBC on tyrosine decay curves in humans 

Tracer to tracee ratio (TTR) data for L-[13C9]tyrosine, L-[d8]phenylalanine and L-[d7]tyrosine 

were fitted using the two-exponential model. A summary of average parameters is included in 

Table S5. The area under the curve (AUC) for L-[13C9]tyrosine was significantly lower in 

NTBC- treated AKU group compared to the control AKU group (0.19+0.02 vs 0.70+0.21 min; p 

= 0.026). However, in AKU patients who were not on NTBC, there was no statistically 

significant difference in L-[13C9]tyrosine- AUC when compared to that in healthy volunteers 

(0.70+ 0.21 vs 0.88+0.07 min; p =0.845). Tyrosine degradation in the AKU patients who are not 

on NTBC is comparable to that in healthy volunteers; whereas in AKU patients who received 

NTBC, tyrosine undergoes a minimal degree of degradation (Figure2, panels A and B). In 

contrast, phenylalanine degradation is not affected (Figure 2, panel C). 

Effects of NTBC on Tyrosine pool size in humans 

Comparison of the tyrosine estimated pool size across the three groups has demonstrated that the 

tyrosine extracellular pool size in NTBC treated AKU patients is nearly five- folds larger than 

that of AKU patients who did not receive NTBC (p<0.001). Furthermore, the tyrosine 

intracellular pool size in NTBC treated AKU patients is almost three- folds larger than that of 



AKU patients who did not receive NTBC (p<0.001). Compared to healthy volunteers, the 

tyrosine extracellular pool size in AKU patients off NTBC is 2.7-folds larger (p= 0.044). 

Furthermore, the tyrosine extracellular pool size in AKU patients off NTBC is 1.4- folds larger 

when compared to healthy volunteers (p= 0.027). This is summarized in Figure 3 and Table S6. 

Discussion  

In this study, we have assessed the extent of acquired tyrosinosis in NTBC treated AKU mice 

and humans. We have used stable isotopes in AKU for the first time to assess the magnitude of 

increased tyrosine pools in the context of NTBC therapy. Since 1932, the term ‘tyrosinosis’ has 

been used to described various metabolic disorders in which elevated blood tyrosine is a 

common feature (Halvorsen et al., 1966). After establishing the biochemical and genetic basis, 

the term was dropped in favor of tyrosinaemia. In this study we have used ‘acquired tyrosinosis’ 

in the context of NTBC therapy to emphasize the fact that increases in tyrosine are not restricted 

to the blood and that it extends to the tissues too. 

 

Compared to healthy volunteers, the tyrosine extracellular pool size in AKU patients off NTBC 

is 2.7-folds larger (p=0.044). This is likely because the two groups are not matched for age or 

gender (control group participants were all Caucasian males aged 24-41 while the AKU group 

had 3 females and 4 males with an age range of 24-66). 

 

We found that NTBC-induced HPPD inhibition causes increases in tyrosine and tyrosine 

metabolites upstream. This is in keeping with what others found (Phornphutkul et al., 2002, 

Ranganath et al., 2016, Milan et al., 2017). Tyrosine is a small molecule and distributes freely in 

the extracellular and intracellular compartments. Tyrosine crystals have been found in the cornea 



in HT2 (Kocabeyoglu et al., 2014) and NTBC treated HT1 (Schauwvlieghe et al., 2013). 

Furthermore, tyrosine keratopathy has been reported in AKU patients treated with NTBC 

(Introne et al., 2011, Stewart et al., 2014, Khedr et al., 2018, White and C Tchan, 2018). But, the 

wider effects of increased tyrosine in other tissues (bone, heart, liver, muscles, brain and kidney) 

is largely unknown. It is not clear whether increased tyrosine in tissues leads to adverse impact 

on these tissues’ structure or function. 

 

Biochemically, NTBC produces a similar defect to what is seen in HT3 in which tyrosinosis is 

presumably present from the earliest embryonic stages. Neurological complications are common 

in HT3 despite reports of asymptomatic cases (Ellaway et al., 2001). In our study, NTBC caused 

an almost eight-fold increase in tyrosine concentration in the brains of AKU mice. Neural cells 

make up 70-80% of the total brain volume with the brain interstitial system taking up 10-20% of 

the total brain volume (Lei et al., 2017). It is reasonable to assume that the water in the brain is 

largely intracellular and that the measured tyrosine in brain tissue homogenates predominantly 

reflects the intracellular compartment. Studies in rats demonstrated that exposure to high levels 

of L-tyrosine were associated with impairment in energy metabolism in the brain (Ferreira et al., 

2013). In the context of AKU, NTBC-induced hypertyrosinemia in mice was associated with 

increased concentrations of urinary 3-methoxytyramine indicating a change in the peripheral 

metabolism of catecholamines. However, it did not alter monoamine neurotransmitter 

metabolism in murine brain tissues (Davison et al., 2019). In humans, NTBC-induced 

hypertyrosinemia was not associated with altered mood (Davison et al., 2018). 

 



The skin, also, can be affected by NTBC use with pruritus, erythematous rash and exfoliative 

dermatitis listed as side effects, but it is not clear if NTBC-induced hypertyrosinemia has any 

causative role in these NTBC related side effects. Notably, urticarial rash was reported in an 

AKU patient with NTBC-induced hypertyrosinemia. The rash resolved after discontinuation of 

NTBC (Stewart et al., 2014).  

 

Notably, the concentrations of serum tyrosine, phenylalanine, HGA and HPLA are all 

significantly higher in the non-treated AKU group when compared to healthy volunteers.  The 

AKU patients and healthy volunteers groups were not matched for age or gender. Furthermore, 

healthy volunteers were instructed not to make any changes to their diet whereas AKU patients 

were on protein- restricted diet to reduce the risks related to NTBC-induced hypertyrosinaemia. 

Fundamentally, the noted differences in these metabolites concentrations between the two groups 

are the likely result of HGD enzyme deficiency in AKU patients. It causes a block in the tyrosine 

pathway and an accumulation of HGA which could exert a negative feedback (product 

inhibition- like effect). This leads to an increase in the metabolites above the level of the block. It 

is unlikely that dietary factors could alone explain the differences between healthy volunteers 

and AKU groups. Of note, HPPA was not measurable in either group which may suggest that 

conversion of HPLA to HPPA is minimal in healthy and non-treated AKU subjects. This is 

supported by observations that HPPA and HPLA were undetected before starting NTBC in AKU 

(Milan et al., 2019).  

 

Our study has limitations. Firstly, the number of participants is relatively small making the 

statistical comparison not robust enough. Formal sample size calculation was not performed as 



this would be impractical in the context of this rare disease. Secondly, the subjects in the control 

group were not matched with the AKU subjects. In the context of rare disease, there is a very 

limited pool of patients to recruit from. Our cohort of AKU subjects is quite heterogeneous. They 

were not matched with the control group participants who were all Caucasian males aged 24-41. 

The AKU group had 3 females and 4 males with age range of 24-66 years and BMI range of 

19.80 to 36.10 kg/m2. This heterogeneity could explain the wide distribution of data points 

observed in figure S4. Moreover, the SD values for the enrichment of tyrosine stable isotopes 

were quite high in the AKU off NTBC group (figure2). This is likely due to the use of fixed dose 

of stable isotopes in a heterogenous group of AKU patients. This source of variation would have 

been reduced by adjusting the stable isotope dose according to the participant’s weight. 

Logistically, it was a challenge to match all AKU participants with healthy volunteers. 

Nonetheless, the homogeneity of the control group (all Caucasian males aged 24-41) ensured 

consistent data are produced from this group. A further limitation was the use of BIA in 

estimating fat free mass. BIA has large individual prediction errors compared to the reference 

standard of dual energy X-ray absorptiometry (DEXA) (Buckinx et al., 2018). Lastly, Use of 

L-[d8]phenylalanine is reported to be associated with in-vivo conversion to L-[d7]phenylalanine 

(Preston and Small, 2010) which could lead to underestimation of L-[d8]phenylalanine. When 

setting up the stable isotopes analytical method, it was clear that 13C based internal standards 

were more robust and stable compared to deuterated ones. Furthermore, the use of comparison, 

within the AKU group and against healthy volunteers, ensured that any error related to this in 

vivo conversion of L-[d8]phenylalanine is replicated across groups without compromising the 

overall conclusion. 

 



In summary, this study provides, for the first time, the experimental evidence for the extent of 

NTBC-related acquired tyrosinosis. We propose the use of the term ‘acquired tyrosinosis’ 

instead of ‘hypertyrosinemia’ to reflect the magnitude of tyrosine increases with NTBC use. 

Further research is required to assess its wider impact on organ function, if any, in AKU; to 

overcome this potentially serious side effect of NTBC and facilitate its safe use in modifying the 

natural history of AKU.  
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Figure 1: Tyrosine concentrations in murine tissue homogenates. (A) femur bone, (B) brain, (C) 

heart, (D) kidney, (E) liver, (F) quadriceps muscle. Line and error bars are mean ± SD.                



* P < 0.05, ** P < 0.01, *** P < 0.001. Unpaired two-tailed t-test was used to compare data 

between the AKU on and off NTBC groups except for the brain homogenates where two-tailed 

Mann-Whitney test was used. 



 

 

Figure 2: Comparison of tyrosine and phenylalanine enrichment versus time following a 

bolus injection of 105 µmol L-[13C9]tyrosine and 270 µmol of L-[d8]phenylalanine in each of 

the three groups. A: comparison of L-[13C9]tyrosine enrichment versus time. C9TyrTTR is 



[L-[13C9]tyrosine]/[median of native tyrosine]; B: comparison of L-[d7]tyrosine enrichment 

versus time, d7TyrTTR is [L-[d7]tyrosine]/[median of native tyrosine]; C: comparison of 

L-[d8]phenylalanine enrichment versus time. d8-PheTTR is [L-[d8]phenylalanine]/ [median of 

native phenylalanine]. HV: healthy volunteers, AKU on NTBC: AKU patients on NTBC 

group, AKU off NTBC: AKU patients off NTBC group. 



 

 

Figure 3: Estimated tyrosine pool size across the study groups. A: estimated pool size of the 

extracellular tyrosine, B: estimated pool size of the intracellular tyrosine HV: healthy 

volunteers group, AKU on NTBC: AKU patients on NTBC group, AKU off NTBC: AKU 

patients off NTBC group. Line and error bars are mean ± SD. Comparison of data in the 

AKU on NTBC group against AKU off NTBC group was by paired two-tailed t-test. 



Comparison of data in the HV group against AKU off NTBC group was by unpaired two-

tailed t-test. * P < 0.05,  *** P < 0.001. 
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