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Abstract  

Atherosclerosis is a disease in which lipid-laden plaques are developed inside the vessel walls of 

arteries. The immune system is activated, resulting in inflammation and oxidative stress. 

Endothelial cells (ECs) are activated, arterial smooth muscle cells (SMCs) proliferate, 

macrophages are activated, and foam cells are developed, leading to dysfunctional ECs. Epigenetic 

regulatory mechanisms, including DNA methylation, histone modifications, and microRNAs are 

involved in the modulation of genes that play distinct roles in several aspects of cell biology and 

physiology, hence linking environmental stimuli to gene regulation. Recent research has 

investigated the involvement of DNA methylation in the etiopathogenesis of atherosclerosis, and 

several studies have documented the role of this mechanism in various aspects of the disease. 

Regulation of DNA methylation plays a critical role in the integrity of ECs, SMC proliferation and 

formation of atherosclerotic lesions. In this review, we seek to clarify the role of DNA methylation 

in the development of atherosclerosis through different mechanisms.  

Keywords: Atherosclerosis; Epigenetic regulation; DNA methylation; Oxidative stress; 

Inflammation 
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1. Introduction  

Atherosclerosis is considered to be the primary cause of numerous cardiovascular diseases 

(Hansson et al. , 2006). These disorders have been the predominant cause of mortality in the past 

decade (Singh and Bedi, 2013). During the development of atherosclerosis, slow and dynamic 

modifications in the cellular and molecular composition of vessel walls occur, resulting in 

atherosclerotic plaques (Sipahi and Tuzcu, 2008). Atherosclerosis is a complex disorder that is 

associated with the accumulation of lipids in the vessel walls, stimulation of the immune system, 

development of inflammatory responses (with the release of mediators, such as tumor necrosis 

factor (TNF)-α and interleukin (IL)-1), oxidative stress, development of oxidized low-density 

lipoproteins (ox-LDLs), activation of ECs, proliferation of arterial SMCs, stimulation of 

macrophage and promotion of foam cells, and finally endothelial dysfunction (Bennett et al. , 2015, 

Libby and Ridker, 2006, Sanjadi et al. , 2018, Študentová et al. , 2016, van Diepen et al. , 2013, 

Yu et al. , 2013). 

Among the epigenetic regulatory mechanisms, DNA methylation is of critical importance (Zhang 

et al. , 2014b). Research investigating abnormalities of  DNA methylation in atherosclerotic 

patients has identified a particular profile of DNA methylation and proposed various pathways and 

genes in the etiopathogenic mechanism of the disease (Table 1) (Zaina and Lund, 2014). In this 

article, we summarise the recent findings concerning abnormalities of DNA methylation, and their 

roles in the pathogenesis and progression of atherosclerosis. 

 

2. Mechanobiology of atherosclerosis  

Atherosclerosis is a complex disorder, and several contributing factors have been implicated with 

its development (Hopkins and Williams, 1981). The strongest risk factors are smoking, 
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hyperlipidemia, male gender, diabetes, obesity, sedentary lifestyle, and ageing. Hyperlipidemia 

has been reported to be the critical risk factor, and low lipid levels are associated with a decreased 

risk for the disease regardless of other risk factors (Poulter, 1999). It is important to note that 

coronary artery disease (CAD) may also develop in individuals lacking the known risk factors 

(Wilkins et al. , 2012). Genetic variations have partially explained the cumulative risk factors for 

CAD, and hyperlipidemia is partially explained by genetics (International Consortium for Blood 

Pressure Genome-Wide Association et al. , 2011). Environmental contributing risk factors may be 

epigenetically involved in the development of atherosclerosis. 

According to the ‘response to injury’ theory, atherosclerosis initially develops at regions with 

injuries to the endothelium, known as endothelial dysfunction which is characterized by decreased 

levels of nitric oxide (NO) in the vessel wall and enhanced generation of angiotensin II (ANGII), 

thromboxane, and endothelin 1 (ET1) (Ross and Glomset, 1976). Reduced generation of NO 

results in apoptosis of EC (Csiszar et al. , 2004) and increased ANGII (Endtmann et al. , 2011). In 

arteries, lipid retention is characterized by slow thickening of the intimal layer resulting from the 

accumulation of modified LDL in the extracellular region of the sub-intimal layer (Skålén et al. , 

2002, Ylä-Herttuala et al. , 1989). Monocytes are recruited to the affected region and become 

macrophages, which engulf the excessive LDL and develop to foam cells, resulting in the 

generation of lesions (Steinberg, 2002). Upon local injury, the SMC of vessel wall lose their 

function and begin to proliferate, leading to obstruction of the arterial lumen. Modified SMCs 

secrete mediators and thereby trigger growth of the lesion. Infiltration of immune cells leads to a 

local inflammatory condition. Atherosclerosis is usually regarded as an inflammatory condition, 

and enhanced inflammatory cytokines in the blood may be useful in the prediction of 

complications, such as plaque rupture, fibrosis, thrombosis, and calcification of vessel wall (Glass 
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and Witztum, 2001). These events are accompanied by elevated levels of extracellular mediators, 

such as vascular cell adhesion molecule 1 (VCAM1), intercellular adhesion molecule 1 (ICAM1), 

Monocyte chemoattractant protein 1 (MCP1), vascular endothelial growth factor (VEGF), and IL-

8 (Findley et al. , 2008, Hoogeveen et al. , 2005). Among the critical triggering factors of 

inflammatory responses are monocytes recruited to the vessel wall (Hansson, 2005), modified 

LDL (Wiesner et al. , 2010), hypomethylated self-DNA (Zhang et al. , 2014a), and Toll-like 

receptors (TLRs) recognizing self RNA (Fabbri et al. , 2013). Inflammation seems to be present 

throughout the progression of atherosclerosis, and modifications to the methylation profile of DNA 

is thought to regulate the continuous state of inflammation. 

 

3. Mechanisms of DNA methylation 

The mechanisms underlying the regulation of gene expression through DNA methylation have 

previously been described (Figure 1) (Jones and Takai, 2001, Robertson, 2005). DNA methylation 

is considered as an epigenetic mechanism in the mammalian cells that is mediated by DNA 

methyltransferase (DNMT) enzymes, and S-adenosyl-methionine (SAM) acts as the donor of 

methyl groups. By transfer of the methyl group (CH3) onto the C5 position of cytosines, the 5-

methylcytosine (5mC) is generated (Quintero-Ronderos and Montoya-Ortiz, 2012). Currently, five 

members of DNMT enzymes have been recognized that are categorized into two major groups: 

maintenance DNMTs (DNMT1, DNMT2) and de novo DNMTs (DNMT3a, DNMT3b, and 

DNMT3L). While the maintenance DNMTs are involved in the methylation of the cytosine in the 

hemimethylated DNA during DNA replication, the de novo DNMT enzymes play a specific role 

in the methylation across the embryonic development (Huang and Fan, 2010). These enzymes have 

been attributed with reciprocal activities, in which they are involved in adding and removal of 



6 

 

methyl groups. The methylated DNA confers a suppressed transcription state that is mediated 

through facilitated binding of methyl-CpG-binding domain (MBD) proteins and reduced binding 

of transcription factors to the methylated DNA sites. In addition, DNA methylation impresses the 

chromatin structure and causes the generation of co-repressor complexes. On the other hand, the 

unmethylated DNA confers a euchromatin structure that facilitates the binding of transcription 

factors to the target sites, leading to gene transcription (Fan and Zhang, 2009). 

DNA hypermethylation has been reported to occur as part of the development of numerous human 

disorders. In the absence of disease, DNA hypomethylation is observed in the CpG islands located 

in the promoter region of genes, while hypermethylation is seen in the CpG islands found within 

the non-promoter region of genes. Global hypomethylation of DNA, in which there is a decreased 

methylation level of DNA within the non-promoter regions, perhaps leads to a structural alteration 

and chromosome instability, resulting in transcriptional activity in undesirable sites and in 

normally silent (inactive) regions. That notwithstanding, global hypermethylation of DNA may be 

accompanied by downregulation of genes which suppress or protect against the development of 

diseases. As an example, decreased transcription of transposable elements, such as short 

interspersed nucleotide element (ALU) and long interspersed nucleotide elements-1 (LINE-1) 

located within the non-promoter sites, has been associated with the regulation of genome integrity 

by means of enhanced methylation status at their sequences (Zhang and Zeng, 2016). In malignant 

diseases, a severe hypomethylation is seen in the transposable elements, conferring DNA 

recombination, mutations, and chromosomal instability,  thereby contributing to the development 

of tumors (Roman-Gomez et al. , 2005).  DNA hypermethylation is regarded as a critical epigenetic 

signature seen in the promoter site of tumor suppressor genes in various malignancies (Sharma et 

al. , 2010). Considering the shared risk factors between malignancies and atherosclerotic 
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cardiovascular disease (CVD) (Koene et al. , 2016), it has been suggested that there might be a 

dysregulation in the methylome and, therefore transcription, of the cardiovascular-related genes 

(Table 1). 

 

4. Genome-wide DNA methylation and atherogenesis 

Global DNA hypermethylation of cytosines in the CpGs has been identified in both human subjects 

and animal studies that was attributed to the clinical aspects of atherosclerosis (Rangel-Salazar et 

al. , 2011, Yoo et al. , 2012). Using genome-wide DNA methylation sequencing, a positive 

correlation was found between DNA methylation level and the grade of the atherosclerotic lesion 

in the atherosclerotic human aortas (Morales et al. , 2015). Moreover, using the methylated DNA 

immunoprecipitation sequencing (meDIP-seq), the differentially methylated regions were 

observed in the cardiovascular disease-associated genes in the ECs obtained from porcine aortas 

(Jiang et al. , 2015). Such observations imply that the DNA methylation profiling can divulge the 

biomarkers of atherosclerosis, proposing a plausible role of DNA methylation in the progression 

of the disease. 

 

5. DNA methylation abnormalities in atherosclerosis 

5.1. Oxidative stress and DNA methylation in atherosclerosis 

Oxidative stress is controlled in the body by maintaining a balance between the daily production 

of reactive oxygen species (ROS) and the systems which remove antioxidants. Under normal 

physiological conditions, a balance exists between ROS generation and enzymatic and non-

enzymatic antioxidant factors, which are involved in reducing or scavenging the ROS (Liu and 

Timmons, 2016). Dysfunction of the mechanisms which remove antioxidants, or increased 
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generation of ROS can result in a redox imbalance (Kim et al. , 2011). It has been demonstrated 

that prolonged oxidative stress can lead to ageing and a range of disorders, including cancers, 

inflammation, cardiovascular disorders, and infectious diseases (Berlett and Stadtman, 1997, 

Finkel and Holbrook, 2000, Kobayashi et al. , 2002). Furthermore, investigations have shown that 

oxidative stress during the development of atherosclerosis can modify the methylation status of 

DNA (Lim et al. , 2008, Nanduri and Prabhakar, 2015, Niu et al. , 2015). These observations 

followed the findings in tumor cells, that oxidative stress is associates with substantial alterations 

in methylation (Afanas’ev, 2015). Early investigations indicated an association between 8-

hydroxyguanine (8-OHdG) (a marker of ROS) and inverse alterations of DNA methylation 

(Weitzman et al. , 1994). In addition, it was reported that oxidative damage of guanines through 

8-OHdG in the parental DNA strand would allow normal copying of methylation profile through 

pathways involved in the maintenance of DNA methylation; however oxidative damage of 

guanines via 8-OHdG in the newly copied DNA strand could suppress the methylation of DNA 

(Turk et al. , 1995). It has been reported that ROS, especially hydrogen peroxide (H2O2), can alter 

the methylation profile of  DNA. H2O2 was shown to be able to change the DNA methylation 

through the facilitation of DNA methyltransferase1 (DNMT1) binding to chromatin (O'Hagan et 

al. , 2011). During atherosclerosis, ROS production can alter makers of DNA methylation. 

Furthermore, increased methylation of the superoxide dismutase 2 (SOD2) gene, leads to its 

suppression and has been reported to result in SMC proliferation. Treatment with the DNMT 

inhibitor 5-azacytidine (5-azaC) caused upregulation of SOD2 expression and decreased SMC 

proliferation. The hypermethylation of SOD2, which causes decreased expression of SOD2, can 

stimulate the Hypoxia-inducible factor 1-alpha (HIF-1α); hence the methylation status of this gene 

is important for the development of atherosclerotic lesions. (Baccarelli and Bollati, 2009). Little is 
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known about the involvement of oxidative stress in the alteration of DNA methylation during 

atherosclerotic lesion development. That notwithstanding, due to an evident impact of oxidative 

stress on the modulation of DNA methylation, and considering the fact that atherosclerosis is 

associated with chronic oxidative stress, it has been suggested that global modifications of DNA 

methylation may occur during atherosclerosis. 

 

5.2. DNA methylation during aging and atherosclerosis  

Investigations have revealed that the severity of clinical presentations due to atherosclerosis is 

associated with ageing (Denke and Grundy, 1990, Tanaka et al. , 1988). In addition, it has been 

shown that the expression level of several genes undergoes remarkable alterations as we age, 

although the mechanisms underlying these changes are not completely understood. However, it is 

evident that the ageing process is accompanied by an alteration in the extent of DNA methylation 

(Holliday, 1987). Moreover, in vitro experiments have demonstrated that the continuous passaging 

of normal fibroblast leads to hypomethylation of DNA (Holliday, 1985, Wilson and Jones, 1983). 

Additionally, aged tissues have been observed to have a similar DNA hypomethylation pattern 

(Drinkwater et al. , 1989, Mays‐Hoopes et al. , 1986, Wilson et al. , 1987). Among the important 

genes that have been indicated to undergo a hypomethylation during aging are Estrogen receptor 

alpha (ERα), BMP/retinoic acid-inducible neural-specific 1 (BRINP1), E-cadherin, insulin-like 

growth factor-2 (IGF-2), P15, c-Fos, PAX6, c-Myc, versican, myogenic differentiation 1 

(MYOD1), HIC ZBTB transcriptional repressor 1 (HIC1) (Issa, 2000). Several genes that had 

previously been speculated to be methylated solely during tumor developments have recently been 

observed to be among the age-related methylation alteration genes. Clearly, aging is the primary 

cause of hypermethylation during malignancies (Issa, 2000). Furthermore, it has been reported that 
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the methylation of the gene coding for ERα in heart muscle occurs as a result of ageing (Post et al. 

, 1999). In vitro evaluation of the methylation status of SMCs demonstrated that there was a 

remarkable divergence in the extent of methylation of the gene coding for  ERα in tissues obtained 

from an infant (19%) and an adult (99%) cadaver (Ying et al. , 2000). Hence, aging-associated 

alteration in the DNA methylation is not exclusively seen in the tumors, but might be critically 

involved in other age-related disorders including atherosclerosis. In spite of aging-associated 

global hypomethylation, gene-specific hypermethylation has also been observed that may result in 

an increased rate of mutations and DNA instability (Liu et al. , 2003). Thus, it seems that aging is 

accompanied by alteration in the DNA methylation of several genes that might also be involved in 

the cardiovascular system, and therefore, etiopathogenesis of atherosclerosis.  

 

5.3. DNA methylation and inflammation in atherosclerosis  

Atherosclerosis is an inflammatory condition, in which there is a systemic increased level of 

cytokines and recruitment of circulating leukocytes, especially monocytes to the endothelium. 

Monocytes reside in the sub-endothelial layer, and development into macrophages, and alter, foam 

cells.  

A chronic inflammatory condition has been reported to stem partially from modifications in 

methylation status (Figure 2). It has been shown that inflammation might be connected to a 

hypermethylated status of DNA and that DNA hypermethylation was related to increased mortality 

in patients with atherosclerosis-related disorders (Stenvinkel et al. , 2007). A global DNA 

methylation investigation demonstrated a strong association between an altered DNA methylation 

profile, and inflammation (Karimi et al. , 2006). In addition, altered methylation and expression of 

cytochrome C oxidase subunit II (Cox-II) has been associated with inflammation in cardiovascular 
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disease. It has been reported that Cox-II is linked with the progression of atherosclerosis, and its 

transcription may be triggered through pro-inflammatory mediators, including TNF-α. In addition, 

a negative correlation was identified between Cox-II protein and mRNA expressions and DNA 

methylation status. The authors suggested a link between the epigenome and the regulation of the 

expression of Cox-II (Ianni et al. , 2013). It has been established that downregulation of 

cyclooxygenase-2 (COX-2) expression in subjects at high-risk and treated with aspirin may confer 

a protective role against the development of atherothrombosis (Cipollone and Fazia, 2006). 

However, when the beneficial contribution of COX-2 inhibitors is assessed, it is necessary to 

consider the multifaceted aspects of the prostanoid biology as well as the important role of the 

COX-2-derived prostaglandin I2 (PGI2) in the regulation of systemic hemodynamics that may lead 

to inadequate circulatory volume. 

It has been reported that an inflammatory state during atherosclerosis may alter the DNA 

methylation of NF-κB coding gene and, therefore, result in altered signaling and the production of 

further inflammatory mediators that may contribute to the development of atherosclerosis (Ding 

et al. , 2015).  

Comparison of genome-wide DNA methylation of 440,292 CpG sites between human monocytes, 

naïve macrophages, activated macrophages with a pro-inflammatory phenotype or an anti-

inflammatory state, and monocyte-derived foam cells indicated differences in methylation level 

between these cells. Moreover, DNA methylation highly different during monocyte-to-

macrophage differentiation, that was limited to single CpGs or very short regions, and co-localized 

with lineage-specific enhancers (Dekkers et al. , 2019). These data show that localized modulation 

of DNA methylation at regulatory regions plays a role in cell differentiation, hence implying the 

involvement of DNA methylation in pathologic cell differentiation during cardiovascular 
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disorders. Additionally, DNA methylation status of M1/M2 macrophage polarization markers was 

evaluated in CAD patients, resulting in the identification of differently methylated STAT1, STAT6, 

MHC2, IL12b, iNOS, JAK1, JAK2 and SOCS5 genes (Bakshi et al. , 2019). 

 

5.4. DNA methylation and modulation of SMCs during atherosclerosis  

During the development of atherosclerosis, inflammatory mediators cause stimulation of SMCs, 

and their proliferation leads to plaque development. Moreover, activated SMCs generate numerous 

extracellular matrix components and produce a fibrous cap on the lesion (Steucke et al. , 2015). 

The high rate of oxidized phospholipids may result in an expansion of vascular SMC (VSMC) 

(Berliner and Watson, 2005, Krychtiuk et al. , 2015, Libby et al. , 2011, Sazonova et al. , 2015). 

Given that the VSMCs have critical roles in the development of atherosclerotic plaques, control of 

VSMC biology could present a promising approach to the management of atherosclerosis. 

Differentiation and proliferation of VSMCs occur early in the development of atherosclerotic 

lesions, and the developing plaques are maintained by the fibrous cap to generate a stable mass 

(Sazonova et al., 2015). Using whole-genome shotgun bisulfite sequencing, Zaina et al. indicated 

that the atherosclerotic portion of the aorta was hypermethylated in numerous genomic loci. 

Moreover, high-density DNA methylation microarray led to the recognition of genes involved in 

the function of endothelial cells as wells SMCs (Zaina et al. , 2014). Matrix metalloproteinases 

(MMPs) have been reported to be associated with VSMC biology and the progression of 

atherosclerosis. MMP-9 was reported to play a role in the migration of VSMCs to other organs 

(Choi et al. , 2005, Johnson et al. , 2005, Luttun et al. , 2004).  In spite of MMP-9 involvement in 

the development of primary lesions during atherosclerosis, this enzyme can also play a role in the 

prevention of the development of end-stage lesions in the process of atherosclerosis (Jeong et al. , 
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2015, Lacolley et al. , 2012). It has been shown that VSMCs take part in the promotion of 

cholesterol influx, reduced rate of efflux, and development of foam cells during the early stages of 

development of atherosclerotic lesions. Furthermore, VSMCs undergo a process of senescence and 

programmed cell death that may be involved in the progression of atherosclerosis.  

Reports have indicated that SMCs may develop altered expression of several genes and proteins 

during atherosclerosis. Profiling of the gene expression signature in the SMCs has demonstrated 

that several genes are underlying a transcriptional modulation of the epigenetic mechanisms, 

especially DNA methylation (Alexander and Owens, 2012, Spin et al. , 2012). These genes have 

been observed to participate in the differentiation and phenotypic alteration of SMCs as well as 

the migration of these cells, leading to the development of vascular complications. A number of 

these genes that play a role in the differentiation of SMCs are regulated via DNA methylation. 

These include SMC-specific SM22α, platelet-derived growth factor (PDGF), serum response 

factor (SRF), ERα, and ERβ (de Oca et al. , 2010). Animal studies into the proliferation of intimal 

SMCs indicated a global hypomethylation of DNA (Laukkanen et al. , 1999). 

Moreover, investigations conducted on ApoE−/− mice as well as human atherosclerotic lesions 

demonstrated that there was a hypomethylated state of the genomic DNA (Hiltunen et al. , 2002).  

A low DNMT activity, as well as global hypomethylation of DNA, were reported during 

proliferation and phenotypic differentiation of SMCs in vitro (Chen et al. , 2011, Little et al. , 

2013).  Alterations in DNA methylation affect the SMC phenotype via the extracellular matrix, 

which in turn results in vascular calcification (Couffinhal et al. , 1994). 

In vitro experiments on human aortic smooth muscle cells and rat aortic rings to evaluate the 

phenotypic difference of VSMCs triggered by high phosphate indicated that high phosphate level 

was associated with increased DNMT activity and methylation of the promoter region of SM22α. 
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This resulted in a gain of the osteoblast transcription factor Cbfa1 by VSMCs. The demethylating 

compound procaine led to declined DNMT activity and inhibited methylation of the SM22α, which 

culminated in an increase in SM22α transcription and less calcification of VSMCs. Therefore, 

methylation of SM22α is critical in VSMC calcification (de Oca et al., 2010), and might offer a 

pathologic pathway in atherosclerosis or CVD by impairing VSMC normal physiology. 

The ten-eleven-translocation (TET) family has been implicated in modulation of the extent of 

DNA methylation (Tahiliani et al. , 2009). TET proteins, containing TET1–TET3, possess DNA 

demethylation activity through oxidizing 5- methylcytosine (5mC) and generating 5-

Hydroxymethylcytosine (5hmC). In vitro treatment of human VSMCs with 5-azacitidine (5-azaC), 

which is a DNA methylation inhibitor agent, resulting in the overexpression of MMP1, implying 

to the regulation of MMP1 in VSMCs through methylation (Azechi et al. , 2014). In addition, 5-

azaC was reported to inhibit the expansion and migration of SMCs in the airway by altering the 

methylation of PDGF as well by enhancing the contractile potential of SMCs (Ning et al. , 2013). 

These observations established a notion that DNA methylation of SMC might be involved in the 

progression of atherosclerosis. In general, DNA hypomethylation culminates in the expansion and 

migration of SMCs, eventuating in the expedition of plaque generation (Figure 2). 

 

5.5. DNA methylation and elevated homocysteinemia (eHcy) during atherosclerosis 

Homocysteine (Hcy), is a non-classic sulfur-containing amino acid that is produced during the 

process of methionine metabolism. Hcy plays a physiologic function in DNA metabolism through 

methylation (Perna and Ingrosso, 2015). Methionine is converted to S-adenosylmethionine 

(SAM), which is the major donor of the methyl group for DNA methyltransferase enzymes. By 

losing methyl groups, SAM is converted to S-adenosylhomocysteine (SAH), which is a strong 
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competitive inhibitor for methyltransferase enzymes. SAH hydrolysis leads to the generation of 

adenosine and Hcy (Mandaviya et al. , 2014). Under normal physiological conditions, Hcy levels 

in plasma range from 5 μM to 15 μM (Ji and Kaplowitz, 2004). It has been reported that elevated 

levels of Hcy, by modulation of the DNA methylation level, is a predisposing risk factor for the 

progression of atherosclerosis and plays a role in the proliferation of VSMCs as well as endothelial 

dysfunction. Dysregulated levels of DNA methylation, alongside with elevated levels of Hcy, has 

been observed in patients with CVD (Castro et al. , 2003). Reduced methylation of Alu and LINE-

1 elements were reported upon incubation of VSMCs with high doses of Hcy, which increased 

DNMT function, increased SAH levels, and reduced SAM levels  (Yideng et al. , 2007). It was 

also observed that incubation of VSMCs with different doses of Hcy resulted in the decreased 

methylation and increased expression of PDGF, hence increasing the expansion of VSMC (Han et 

al. , 2014, Jiang et al. , 2007). It has been shown that Hcy might impress the ER, which has been 

implicated in the pathogenesis of atherosclerosis. It was reported that there was a positive 

association between estrogen receptor 1 (ESR1) gene prompter methylation level and the intensity 

of plaque lesions in atherosclerosis (Huang et al. , 2009). Studies have documented that elevated 

levels of Hcy may contribute to the onset of atherosclerosis development through mechanisms 

such as the proliferation of VSMC, stimulation of immune system, and oxidative stress (Bao and 

Zheng, 2015, Leach et al. , 2014). It was also reported that incubation of monocytes with Hcy 

promoted the methylation of DNA in the promoter region Peroxisome proliferator-activated 

receptor alpha (PPARA) and PPAR gamma (PPARG) genes, culminating in a decreased levels of 

genes translation and transcription. Furthermore, there were a decrease and increase in the SAM 

and SAH levels, respectively. Such observations suggest that PPARA and PPARG gene 

methylations are stimulated through Hcy that might confer an important tool in the progression of 
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atherosclerosis, proposing a potential therapeutic target for ameliorating Hcy-triggered 

atherosclerotic lesions (Yideng et al. , 2008). Elevated level of Hcy was shown to result in DNA 

hypomethylation in the genes implicated in the atherosclerosis pathogenesis like Cyclin A, which 

plays a role in the inhibition of cell cycle progression as well as the endothelial remodeling. 

Furthermore, elevated concentrations of Hcy resulted in decreased activity of DNMT1; 

nonetheless, upregulation of DNMT1 reversed the inhibitory effects of Hcy on Cyclin A 

transcription and growth inhibition of EC. As a consequence, hypomethylation of Cyclin A through 

elevated levels of Hcy may be a critical mechanism that is responsible for EC proliferation 

ultimately leading to progression of atherosclerosis (Jamaluddin et al. , 2007).  

Circulating concentrations of cholesterol might also be regulated by Hcy. It was reported that 

clinically important levels of Hcy (100 mM) resulted in increased serum levels of cholesteryl ester, 

free cholesterol, and total cholesterol. Incubation of 100 mM of Hcy with human monocytes 

resulted in underexpression of apolipoprotein E (ApoE) (Yi-Deng et al. , 2007). Elevated levels of 

Hcy was shown to regulate DNA hypermethylation of ApoE and, therefore, its expression in 

atherosclerotic lesions (Wang et al. , 2013).  

Elevated levels of Hcy may contribute to the abnormal deposition of lipid in the proximal aorta, a 

manifestation mirroring the progress of atherosclerosis (Chen et al. , 2001). Furthermore, Hcy 

might alter the methylation state of genes involved in cholesterol efflux (Liang et al. , 2013). 

Elevated levels of Hcy may promote a global hypomethylation of DNA and, therefore, modulate 

the expression profile of genes implicated in atherosclerosis (Hsi et al. , 2019, Mandaviya et al., 

2014). That notwithstanding, the exact molecular mechanisms underlying the DNA methylation 

modulation by Hcy and the association between the global DNA methylation and regulation of 

atherosclerosis-specific genes are not fully understood. Further investigations to resolve these 
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issues may lead to the identification of novel therapeutic targets to treat atherosclerosis induced by 

Hcy. 

 

6. Therapeutic potential of controlling DNA methylation in the treatment of atherosclerosis 

Although relatively little is known concerning the DNA methylation alterations during 

atherosclerosis, several promising results in the field of pharmacoepigenetics have been obtained 

from preclinical studies and clinical trials. In a phase III trial, it was reported that apabetalone, 

which is an inhibitor of bromodomain and extra-terminal proteins (BET, a histone modification 

reader), resulted in elevated circulating concentrations of HDL, reduced CRP level, and 

upregulation of ApoAI, that was accompanied by fewer cardiovascular events in the patients 

(Nicholls et al. , 2018). In addition, several agents that target epigenetic regulators are now in 

preclinical or clinical assessments to treat cancers and may have applications in the treatment of 

cardiovascular events. It has been reported that Decitabine (5-aza-dC) can stimulate the expression 

of ESR1 and ESR2 in tumor cells and that it plays a role in maintaining the stability of anti-

inflammatory phenotype in the ECs obtained from a mouse model of atherosclerosis (Dunn et al. 

, 2014). Furthermore, decitabine was reported to be involved in the amelioration of atherosclerosis 

by repressing the recruitment and activation of monocytes and other immune cells (Cao et al. , 

2014).  

 

7. Conclusions 

Although the knowledge on the role of epigenetics in the pathogenesis of atherosclerosis is in 

infancy, the involvement of alterations of DNA methylation is indisputable. Additionally, other 

epigenetic regulatory mechanisms, including histone modifications and microRNAs, play critical 
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roles in the etiology and pathogenesis of atherosclerosis. These epigenetic regulatory mechanisms 

present a promising approach to the treatment of atherosclerosis. However, to date, there is little 

evidence relating to the treatment of atherosclerosis by modulation of DNA methylation. 

Additional research is needed into the environmental stimuli of DNA methylation pattern as well 

as the molecular mechanisms underlying these methylation alterations implicated in atherogenesis. 

A more detailed understanding of the mechanisms by which abnormalities of DNA methylation 

result in atherosclerosis would allow the development of diagnostic biomarkers and efficient 

therapies. Of note, there is evidence suggesting that statins, as the major class of drugs used for 

the treatment of atherosclerotic cardiovascular disease, can affect epigenetic events including 

DNA methylation (Ishikawa et al. , 2014, Li et al. , 2014, Zhu et al. , 2017). This finding may 

imply that epigenetic effects of statins can explain, at least in part, the putative anti-atherosclerotic 

as well as the wide range of pleiotropic activities described for these drugs (Allen and Mamotte, 

2017, Chruściel et al. , 2016, Parizadeh et al. , 2011, Sahebkar et al. , 2015a, Sahebkar et al. , 

2015b, Storino Farina et al. , 2015). Finally, future investigations may be directed toward epi-

drugs, such as those that inhibit the DNMT enzymes, in order to treat atherosclerosis. 
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Table 1. Atherosclerosis-specific genes modulated via DNA methylation during the disease. 

Gene Involvement in Ref 

Insulin like growth factor 2 (IGF-II) Cell differentiation and expansion 
(Hara et al. 

, 2014) 

Paired box 6 (PAX6) Cell differentiation and expansion 
(Wang et 

al. , 2011) 

Interferon-γ (IFN-γ) Inflammatory response 
(Canani et 

al. , 2015) 

Intercellular adhesion molecule 1(ICAM-I) Inflammatory response 
(Joyce et al. 

, 2015) 

Interleukin 4 (IL-4) Inflammatory reaction 
(Deaton et 

al. , 2014) 
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Tumor protein p53 (P53) Apoptosis 

(Rasmussen 

et al. , 

2014) 

B-cell lymphoma 2 (BCL-2) Apoptosis 
(Ma et al. , 

2013) 

Platelet derived growth factor receptor alpha (PDGF-α) SMCs proliferation 
(Ning et al., 

2013) 

Estrogen receptor alpha/beta (ERα/β) Atherosclerotic tissues remodeling 

(Baccarelli 

and Bollati, 

2009) 

Myogenic differentiation 1 (MYOD1) Atherosclerotic tissues remodeling 
(Carless et 

al. , 2013) 

Nitric oxide synthase 3 (eNOS) Endothelial cell remodeling 
(Chan et al. 

, 2004) 

Fos proto-oncogene (c-Fos) Shear stress 
(Hastings et 

al. , 2007) 

Cadherin 1 (E-cadherin) Extracellular matrix 
(Park and 

Jang, 2014) 

TIMP metallopeptidase inhibitor 3 (TIMP-3) Extracellular matrix 
(Yang et al. 

, 2011) 

Matrix metallopeptidase (MMP)-2, MMP-7, MMP-9 Extracellular matrix 

(Choi et al., 

2005, 

Johnson et 

al., 2005, 

Luttun et 

al., 2004) 

C-C motif chemokine receptor 5 (CCR5) Inflammation 
(Wierda et 

al. , 2012) 

Forkhead box P3 (Foxp3) Inflammation 

(Kennedy 

et al. , 

2014) 

Nitric oxide synthase 2 (iNOS) Inflammation, macrophage activation 
(Kim et al. , 

2016) 

15-Lipoxygenase (15-LO) Plaque development 
(Liu et al. , 

2004) 

Fatty acid desaturase 2 (Fads2) Plaque development 
(Hastings et 

al., 2007) 

Superoxide dismutase 3 (SOD) Plaque development 
(Laukkanen 

et al., 1999) 

 

Figure legends 

Figure 1. Molecular mechanism of DNA methylation. Reproduced from (Zheng et al. , 2017) 

 

Figure 2. DNA methylation regulation of pathogenic pathways during atherosclerosis.  

 


