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Identifying and Mitigating Security Risks for Secure and Robust 

NGI Networks   

 

Abstract 

Smart city development is important to achieve sustainable cities and societies which help 

enhance urban services, reduce resource consumption and decrease overall cost. The 

incorporation of smart cities with the Internet has given us the Next Generation of Internet 

(NGI) where every smart device exploits the interconnected services and infrastructure of 

the Internet. The underlying structure of NGI is composed of large scale heterogeneous 

multilevel systems-of-systems (SoSs) where each system represents a sensor, mobile 

phone, computer or smart device.  

Security and privacy is a fundamental requirement of NGI which is heavily dependent on 

the composition of services and connectivity of the underlying systems. Meaning any 

unsecure system can affect the security of the entire networked infrastructure/SoSs. 

Therefore, it is important to analyse and understand the composition of different systems at 

different levels in NGI in order to identify and mitigate vulnerabilities. This paper proposes 

a solution to identify and mitigate vulnerabilities within multilevel SoSs, to enhance 

security without deploying additional security at endpoints, and quantify security levels of 

individual systems and the entire composed system. The solution was tested and evaluated 

using simulation and a network testbed. Results show that NGI security can be enhanced 

with better composition of systems.      
            
Keywords: Next Generation Internet; Internet of Things; Wireless Sensor Networks; Optimisation; Network 

Security; Interoprability. 

1. Introduction 

The advancement in smart cities technologies undoubtedly affects peoples’ lives and it is 

clear that in the future, it will influence the reshaping of our communities and societies. 

Smart cities are bringing economic benefits, efficient public utilities, improved 

transportation, safety, sustainability, smart infrastructure, smart health care and more 

effective data driven decision making. All these benefits have been achieved through use of 



  

Next Generation Internet (NGI) infrastructure where all components of smart cities are 

connected and networked together through local networks and the Internet. NGI is an 

example of a complex system, complex network or system-of-systems (SoSs). In general, it 

is a large scale dynamic system composed of a large number of subsystems, that exhibit 

both highly nonlinear deterministic and stochastic characteristics and that are regulated at 

different levels, which evolves with the passage of time and emerges with a new set of 

challenges.  

The European Union NGI initiative has listed the following research challenges in NGI: 

Cybersecurity & Resilience, Trustworthy online Information Infrastructure, Online 

identities and Trust, Decentralize Powering, The right of Opt Out & Self-Govern, Data 

Sovereignty, Ethical AI and machine learning, A Diverse and Safe Internet, An Accessible 

and Open Internet, and Sustainable and Fair Infrastructure (Sestini et al., 2018). Also, the 

Federal Trade Commission Report on IoT highlights consumer privacy concerns and 

security risks, advising organisations to adopt best practices to address these problems. The 

report states that smart devices are responsible for collating vast amounts of both critical 

and personal data (Tariq et al., 2019), and data is not just at risk from unauthorised access it 

is vital to uphold data integrity. As data corruption can easily cause an object that is reliant 

upon that data to malfunction in unpredicted and dangerous ways. 

Cybersecurity is a major problem in today’s interconnected world, as there is a major 

theoretical and applied shortfall in current cybersecurity architecture (Walker-Roberts et al., 

2018). In addition, it is getting more complex, scalable and the threat surface is getting 

more dynamic due to the expansion of the Internet’s infrastructure, development of billions 

of new heterogeneous IoT devices, increasing interconnectedness, and the development of 

new software’s such as operating systems and applications (Networld, 2020). This naturally 

creates a high dependency between systems at different hierarchy which raise the risks of 

massive breakdowns, either through an accidental glitch or a malicious attack. Similar 

concept applies to security solutions proposed for NGI i.e. an unsecure wrongly connected 

system can directly affect the security of interconnected subsystems (Ai et al., 2019) and 

overall NGI.  

The security of NGI heavily depends on the composition of services (Meland, 2011, 

Papazoglou et al., 2006, Aniketos, 2011) and connectivity (Zhong-Yuan et al., 2019) of 

underlying systems. Many empirical studies (Zhong-Yuan et al., 2019, Albert et al., 2000, 

Jiang et al., 2018) have proved that important node set mining is very critical in a network, 

that is, a portion of vital nodes may lead to the collapse of the whole interdependent 

network (e.g. power grids and communication networks) (Jiang et al. 2018). It can also be 

used by IT infrastructure and service providers to control the Internet traffic on many 

critical nodes for virus search (Liu et al., 2011). Due to increases in the number of distinct 

interconnected devices, it has become difficult to develop a dynamic and reliable security 

solution that can safeguard the network against all potential security risks (Tariq et al., 

2019). Therefore, it is important to analyse and understand the connectivity of different 



  

systems at different levels in order to identify vulnerabilities and mitigate them (Holme et 

al., 2002, Carmi et al., Albert et al., 2000).  

These vulnerabilities include cascading effect (Liu et al., 2011, Buldyrev et al., 2010), 

node removal (Lekha and Balakrishnan, 2018), vital link identification (Liang et al., 2017), 

controllability of nodes (Liu et al., 2011), iterative path attacks (Pua et al., 2015) and 

seeding strategies for large scale propagation (Hinz et al., 2011). Moreover, robustness 

analysis and mitigation of such vulnerabilities has been investigated in Chen et al. (2017), 

Wu et al. (2018), Jiang et al. (2016), Du et al. (2016), Liu et al. (2016), and Liu et al. 

(2011). However, these solutions may not be as effective as they focus on network 

connectivity and its features (centralities) only. There are many other important properties 

of the system, network and their security which are not considered and directly affect the 

performance and security of the entire system.    

The presented solution in this paper, not only considers network connection properties, 

but also considers the actual properties of the system and network. This helps to identify 

vulnerable nodes more effectively. For example, IoT device architecture makes it difficult 

to embed security solutions on all devices (Tariq et al., 2019), therefore, it is vital to detect 

these nodes that have the potential to expose the entire infrastructure. An additional feature 

of the proposed solution is the quantification of the security levels of the subsystems and 

entire system (Section 4.1) which leads toward our third contribution, to find the best 

possible composition which will result in a secure system (Section 4.3). The robustness of 

the network can be more accurately analysed by accounting for weights in the system that in 

turn can make the entire system more resilient against different attacks.    

This paper is organised as follows: Section 2 describes related work, examines the data 

access control problem for smart cities, and considers the problematic relational states 

between nodes. Section 3 presents the proposed solution and its functions. Section 4 

provides details of the proposed solutions application, overview of the implementation 

process and the simulated environment, and provides initial results from the simulations. In 

Section 5 we conclude and discuss future work. 

2.  Related work 

This section presents related research work on vulnerability analysis, important node 

identification and the composition of different services in complex networks or SOSs 

scenario. These three domains directly relate to the proposed solution. The important node 

ranking research and development has attracted a lot of attention in the past few decades.  

The famous PageRank algorithm performs link analysis of the large scale interconnected 

web using different network centralities (degree, closeness, and betweenness) to identify 

important nodes. This area has also been widely explored in physics and mathematics as it 

has many real world applications. NGI is considered to be an adaptive complex system or 

network which has many dynamic features and evolves with the passage of time. It 

naturally produces many attack vulnerabilities, e.g. Boccaletti et al. (2007) proposed a 



  

solution to quantify the vulnerabilities of node and edge deletion of a multiscale complex 

network, Goldshtein et al. (2004) measures vulnerabilities in hierarchy of complex networks 

and Mishkovski et al. (2011) measure average edge betweenness vulnerability using a 

metric. Whereas Nie et al. (2015) proposed solution based two new attack strategies based 

on both degree and betweenness. Moreover, Lu et al. (2016) and Du et al. (2017) studied 

the identification of vital nodes in the network and concluded that adaptive recalculation 

strategies are more efficient in comparison to straightforward methods.  

According to Sindhu et al. (2018), most real-world networks are weighted and 

vulnerability analysis of weighted networks is a new area of research. The efficiency of the 

attacks is directly proportion to the network weights (Bellingeri and Cassi, 2018). It means 

vulnerability analysis without considering the weighted structure of networks could end in 

misleading results. Cascading vulnerability (Cadini et al., 2017, Feng et al., 2017) is another 

important area researched in complex networks. Its identification is similar to vital node and 

link identification work (Lu et al., 2016, Du et al., 2017). However, it focuses on 

minimising the damage of vital node (Liu et al., 2011, Buldyrev et al., 2010, Wu et al., 

2019, Brummitt et al., 2012, Cai et al., 2016).  

Other vulnerabilities include node removal (Sindhu et al., 2018, Boccaletti et al., 2007), 

controllability of nodes (Liu et al., 2011, Hinz et al, 2011) with suitable choice of seeding 

strategies for large scale propagation. Moreover, robustness analysis and mitigation of such 

vulnerabilities has been investigated in Chen et al. (2017), Wu et al. (2018), Jiang et al. 

(2016), Du et al. (2016), Liu et al. (2016), Liu et al. (2011), and Aia et al. (2019).  

The zero trust security model has also been explored in regards to the complicated future 

internet. Walker-Roberts et al. (2018) review existing methods in order to ascertain existing 

technological capabilities that can mitigate insider threats within cybersecurity systems, 

identifying that most security measures require a breach to occur before the threat can be 

analysed and future malicious activity prevented. This type of reactive approach will not be 

effective to protect the future NGI, as a single breach has the potential to result in 

catastrophic events occurring or failures cascading across to other networked infrastructure 

that could impede collaborative systems. Belguith et al. (2018) aim to address high level 

security issues in today’s internet, proposing a cryptographic method to assure cooperative 

data aggregation based on the use of an attribute based signcryption scheme. The proposed 

method aims to ensure that data collated via IoT devices can be authenticated and that all 

devices will be protected from unauthorised access.  

Considering that some variants have existing common vulnerabilities and focusing on the 

vulnerability-aware diverse variants deployment problem as an integer-programming 

problem, Jianjian et al. (2019) propose the Vulnerability-aware Heterogeneous Network 

Devices Assignment (VHNDA) and outline their Simulated Annealing Vulnerability-aware 

Diverse Variants Deployment (SA-VDVD) method and present a low complexity algorithm 

named Graph Segemntation-based Simulated Annealing Vulnerbaility-aware Diverse 

Variants Deployment (GSSA-VDVD). In an attempt to prevent the spread of malicious 



  

packets. Effectively preventing the spread of malicious packet attacks compared to some 

baseline algorithms.  

Considering that some variants have existing common vulnerabilities and focusing on the 

vulnerability-aware diverse variants deployment problem as an integer-programming 

problem. Jianjian et al. (2019) propose a quantitative metric that prevents the spread of 

malicious packets, and outline a low complexity algorithm named Graph Segmentation-

based Simulated Annealing Vulnerability-aware Diverse Variants Deployment (GSSA-

VDVD). In order to address high computational complexity as network sizes increase. Tariq 

et al. (2019) survey the challenges of securing future digital infrastructures as they 

continuously evolve, and analyse the cybersecurity challenges, big data privacy and trust 

concerns associated with fog-enabled IoT. 

Meland (2011) explained the importance of service composition in future internet. Where 

users can mix, match and create rapid-growth services. However, all this comes with a new 

set of security challenges. This work has been investigated in detail in the major EU FP7 

funded project ANIKETOS (2017). Stanford University Security Lab (Datta et al., 2004) 

used a similar approach, using different security components to compose a secure protocol. 

It has also been highlighted that information revealed by one component may interfere with 

the security of the other. A similar idea has been applied to systems and software, Alfarhan 

and Alsohaily (2017) critically analyse self-organising networks, consider long-term 

evolution systems, and identify several network parameter optimisation challenges 

associated with the development of these types of network. Proposing a Mixed Integer 

Quadratic Program optimisation technique for each of the identified challenges 

(optimisation of frequency channel assignments, tracking area codes, physical cell 

identifiers, and long-term evolution). Whereas, Yao, et al. (2017) only simulate a small 

sized network graph. 

There is a severe theoretical deficit in cybersecurity architecture, and while many aspects 

of research and applied cybersecurity solutions attempt to address high level security issues 

in today’s internet and the NGI, numerous solutions only consider a single aspect of 

network vulnerabilities which is not effective when it comes to the security of the overall 

system. The proposed solution in this paper considers the composition between multiple 

elements and levels which add more complexity. It identifies vulnerable nodes in the 

context of its connectivity and measures local security properties and the composed system, 

which is different and not considered by any of the other approaches described in this 

section. Finally, it tries all possible combinations in order to find the best possible 

configuration of node connectivity and security properties.    

  



  

3. Security Risk Analysis and Mitigation (SCRAM) framework  
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Fig. 1.  Illustrated Overview of the SCRAM Framework 

 

The Security Risk Analysis and Mitigation (SCRAM) methodology is an extension of the 

Engineering and Physical Sciences Research Council Project (EPSRC) developed to secure 

component composition for personal ubiquitous computing (EPSRC 2017) and the 

European Union (FP7-ICT) funded project ANIKETOS (ANIKETOS, 2017). SCRAM has 

the ability to either generate a random network or import an existing network topology. The 

SCRAM framework is presented in Figure 1. The proposed solution simulates a subpart of 

an NGI environment, which demonstrates the feasibility of the techniques proposed. By 

simulating a small sector, graph and data sets are reduced allowing us to intuitively analyse 

results, and assess the framework and algorithms effectiveness. SCRAM components are as 

follows: 

 



  

User Interface Module: The User Interface Module allows security managers to utilise 

the Network Import Module to either import an existing network into the framework for 

vulnerability analysis and risk mitigation, or allows for a network to be simulated based on 

the selected parameters. This can assist with the design and development of ICT 

infrastructures by simulating networked systems, then analysing and reconfiguring the 

networks to mitigate risks and increase security. The interface allows for a single 

network/SoS infrastructure to be selected and developed for analysis or can initiate multi-

level SoS infrastructures (NGI) for evaluation, via the Network Import Module. 

Within the interface module the Graph Structure Module allows the user to select the 

graph structure type for security optimisation and risk mitigation, including the parameters 

for prioritisation during the risk mitigation process. For instance, if users wish to improve 

security and mitigate risks focusing on the networks node security grades and robustness, 

they will not wish to select the graph structure which prioritises and visualises node energy 

efficiency during the risk mitigation process.  

 

Network Discovery Module: The Network Discovery Module is an automated process 

that systematically discovers networked devices and assists to map devices identified and 

their communication links within the Physical Network infrastructure, including devices 

and systems which share a collaborative relationship. Producing a detailed inventory which 

includes device type, operating system, whether encryption, firewalls, and intrusion 

detection systems are utilised, if anti-virus and security software is installed on the nodes, if 

the device has internet access, and the assigned data access for the node, etc. This 

information is stored within the Topology Data database, which can be accessed and 

utilised by both the Vulnerability Analysis Module and Risk Analysis Module.  

 

Vulnerability Analysis Module: This module accesses the Topology Data database via 

the Vulnerability Data Processing unit, which is responsible for determining the appropriate 

vulnerability scans for each node that has been identified as unscanned or its scan is 

considered outdated. Once the necessary scans have been conducted utilising the Scan 

Engine unit, Vulnerability Data database and utilising the topology data, the Vulnerability 

Data Processing unit will assess the networks nodes and evaluate the risks, recording the 

findings and updating information as necessary in the Vulnerability Data and Security Data 

databases. 

Risk assessment methodologies when applied to networks directly can impact the 

functionality of some systems and their components. Therefore the Vulnerability Analysis 

Module will identify the nodes which are unable to be scanned for vulnerabilities, and the 

risk that these unscanned nodes pose to the network/SoS will be quantified as part of the 

vulnerability analysis. The vulnerability scoring and exploit databases currently 

incorporated into the SCRAM frameworks Vulnerability Analysis Module are examined in 

Section 4.2. 

 



  

Risk Analysis Module: This module serves several purposes; firstly the security data for 

each node is passed from the Security Data database to the Security Grade Processing unit. 

This unit is responsible for quantifying each nodes security grade based on the findings of 

the vulnerability analysis, these grades will then be compared to the relevant thresholds as 

part of the risk analysis process, and will be utilised as part of the attack graph generation 

method to assist with visualising node status. Security grade assignment is discussed in 

detail in Section 4.2. The Attack Graph Generation unit within this module utilises the 

updated topology data stored in the Topology Data database, threshold analysis data stored 

in the Threshold Data database, and the quantified security grades to generate an attack 

graph which will help establish a visualised representation of the network topology, 

security status, and data access violations, or can visualise nodes based on energy efficiency 

levels depending on the graph structure selected. After the evolutionary risk mitigation 

process has been implemented, the Attack Graph Generation Module will also be used to 

generate the improved optimal candidate graphs. The Attack Graph Analysis Engine 

evaluates each graph that has been generated, quantifying both network centralities 

(described in section 3.2) and node centralities, with the results being stored within the 

Graph Centralities database.  

 

Threshold Analysis module: This module is primarily used by Threshold Processing 

unit to identify data access violations and node security status. The thresholds will be 

established by the network security managers and these profiles will be stored within the 

Threshold Data database. During the risk analysis stage, as security grades are assigned to 

each node, for example, the Risk Analysis Module will pass these grades onto the Threshold 

Analysis Module for assessment, with results being stored within the Threshold Data 

database. The Security Grade Processing unit will then pass on the assessed results to the 

Attack Graph Generation unit which incorporates these results into the graph to ensure that 

insecure nodes and data access violations can be intuitively identified.  

 

Robustness Module: This module is responsible for measuring each node within the 

network by means of a robustness function after an attack graph has been generated and 

analysed. During the risk mitigation process the Robustness Module will quantify the 

robustness of each node based on five key parameters which have been generated by the 

Risk Analysis Module; this method is described in detail in Section 4.3Error! Reference 

source not found.. An overall robustness level is then quantified for the network, and 

during the risk mitigation process this level assists the evolutionary algorithm to produce a 

new generation of improved solutions. The robustness score of the network also is of great 

benefit as it provides an assigned numerical value to the entire network to establish its 

appropriateness, and can be used as a comparative evaluation number as improvements are 

made to the security of the network/SoS. 

 

  



  

Risk Mitigation Module: This module contains an Evolutionary Algorithm, to overcome 

the limitations of local search techniques in large complex networks. Utilising key 

parameters generated by both the Risk Analysis Module and Robustness Module, this 

process generates a new set of potential solutions which are then evolved for comparison, in 

order to find a set of best solutions. Inadequate solutions die out as they are replaced with 

new better identified solutions. Each solution is fully analysed via the Risk Analysis Module 

and Robustness Module to ensure that only the best individuals are directly passed to the 

next generation of solutions until the end criteria is met. Improved solutions are stored 

within the Optimal Candidates database, and will be passed to the User Interface Module to 

allow for the generated undirected graphs, combined with the reports generated by the Risk 

Analysis Module to be critically assessed by the security managers and decision makers.  

3.1. Data access control for smart city scenario 

NGI are composed of many different types of networks (System-of-Systems). Smart city 

infrastructure is a major part and a large network inside the NGI. In this paper we, assume 

smart cities infrastructure which relies upon the generation and distribution of data, the 

security of this data and access control is problematic. In part, due to the large generation 

and exchange of confidential and security sensitive data across a vast amount of distinct 

devices (Tariq et al., 2019, Walker-Roberts et al., 2018). Generated data could include 

sensitive data such as an individual’s location, personal or professional information, state of 

health, life events, habits, etc. (Belguith et al., 2018). 

A demonstrative example scenario based on a subpart of the NGI or smart city is 

provided in Figure 2, depicting communications between emergency services (mobile 

devices), transportation (sensor), and the local government (server) in response to an 

emergency. Collaborative nodes are connected via varying communication links that 

include smart devices and a static sensor, with differing security levels. 

 

Fig. 2.  Composed data access control scenario of a smart city 



  

 

Unencrypted data with a security level of 3 is being forwarded across the collaborative 

network, between A and F. Figure 2 visualises every possible secure and unsecure 

connection in which data with the appropriate security level can traverse between the two 

nodes, with thick red lines indicating data access violations.  

Fig. 3. Composed data access control Scenario 2, consisting of sensitivity levels and data flow  

 

We assume that many smart cities consist of a large number of IoT devices, that include 

physical devices such as actuators, sensors, smart phones, personal digital assistants 

(PDAs), radio-frequency identification (RFID) tags, wearable smart devices (e.g. health 

care monitors, smart watches), smart meters or any ‘thing’ with embedded software (Tariq 

et al., 2019). When we can overview the topology of such collaborative networks, we see 

that they are a combination of diverse, smart and resource constrained devices (Tariq et al., 

2019, Belguith et al., 2018) that sense data or control and interact with other systems and 

objects. 

This type of topology could form a complex series of differing communication links 

across a city, with devices connecting and transferring different types of data, in a variety of 

formats, and via various protocols. The majority of IoT devices used within smart cities are 

developed and distributed by different manufactures, and the security of these devices can 

lack any form of accepted industry standards. In addition, organisations also have different 

security frameworks and their own standards (Tariq et al., 2019), this means securing these 

devices and collaborative infrastructures is problematic and interoperability is more 

complex. The scenario in Figure 3 is a demonstrative example of such devices and 

connections.  In this scenario we cannot simply block and reroute data via different 

communication paths to devices, as the IoT objects are developed to connect, access data or 

control other devices. Moreover, devices with lower security and data access levels may be 



  

required to interact with devices that have higher security and data access levels within the 

city. 

Recognising the significance of the data access control problem as surveyed in (Zhou et 

al., 2008) which outlines a principal model of access control (MATTS), using these 

principal concepts and building upon previous solutions using the MATTS tool to identify 

such vulnerabilities within crisis management scenarios, we have evolved the model and 

propose a new solution to compose data security and improve the data flow security of the 

overall network, which we convey in Sections 3 and 4. 

3.2. Network centralities 

Table 1. Node centrality indicators and their respective equations 

Centrality Description Equation 

Degree 

(Freeman, 

1979) 

Identifies how popular or active a node is within a 

network, higher degree values indicate a nodes 

dominance within the network. Where deg(u) is the 

number of node 𝑢’s edges and V  is the set of 

nodes in the network. 

𝐶𝑑𝑒𝑔(𝑢)  =
𝑑𝑒𝑔(𝑢)

|𝑉|−1
      (1) 

Betweenness 

(Freeman, 

1977) 

Nodes situated on the shortest path route are often 

the nodes most relied upon to transfer data. High 

betweenness values indicate a nodes importance in 

regards to data flow, and can determine single 

points of failure in environments. where σs,t  is the 

total number of shortest paths from source node s  

to destination node t, and 𝜎𝑠,𝑡(𝑢) is the number of 

shortest paths from source node s to destination 

node t which actually pass through node u. 

𝐶𝑏𝑒𝑡(𝑢)  =
1

(|𝑉|−1)∙(|𝑉|−2)
∑

𝜎
𝑠,𝑡(𝑢)

𝜎𝑠,𝑡
𝑠≠𝑢,𝑡≠𝑢∈𝑉         (2)     

Closeness  

(Sabidussi, 

(1966) 

Identifies nodes with the shortest path, and those 

which are uniquely accessible to all nodes within 

the environment either directly or indirectly. Highly 

centralised networks are generally unstable, while 

low centralised networks in general are not prone to 

single points of failure. Where dist(u,v) is the 

length of the shortest path from node u  to node v. 

𝐶𝑐𝑙𝑜(𝑢)  =
[∑v≠u∈Vdist(u,v)]−1

|𝑉|−1
     (3) 

Eigenvector 

(Freeman, 

1979) 

Identifies nodes which play a more prominent role 

within the network. This centrality is considered 

more advanced than degree centrality and it 

differentiates links that are not equal to each other. 

Where N(u) is the set of nodes reachable directly 

from u and λ is a constant. With vector–matrix 

notation, this equation can be rewritten as λ ∙Ceig = 

W ∙Ceig Where Ceig – (Ceig(v))v∈V and W – (Wu,v)u,v∈V. 

Therefore Ceig is an eigenvector of the weighted 

adjacency matrix W with eigenvalue λ. 

𝐶𝑒𝑖𝑔(𝑢)  =
1

𝜆
∑ 𝑊𝑢,𝑣 ∙ 𝐶𝑒𝑖𝑔(𝑣)𝑣∈𝑁 𝑢ð Þ     (4) 

Bridging 

(Hwang et al., 

2016) 

Identifies nodes that are densely connecting other 

nodes within a network, and whether the nodes 

topological location and data flow are reliant upon. 

Bridging centrality is accomplished by quantifying 

the networks betweenness centrality CB and the 

bridging coefficient BC, thus measures a nodes 

global and local features. The bridging centrality 

CR(v) for v  of interest is defined. 

𝐶𝑅(𝑣)  = 𝐵𝐶(𝑣)𝑥𝐶𝐵(𝑣)     (5) 



  

In addition to the data access control problem we also consider the problematic relational 

states between nodes, in an attempt to identify vulnerabilities and critical risks which have 

the ability to expose NGI networks. Realised through the use of mathematical formulas and 

assignment of numeric numbers to risks, allowing for identified risks to be quantified and 

network topologies to be visualised. With advancements in the fields of graph theory, 

network theory and social network analysis, there has been considerable progress with 

mathematical and computational tools. This allows for important relationships between 

nodes to be conveyed, and can assist with ascertaining network behaviour characteristics. 

For instance, centrality indicators (degree, betweenness, closeness, eigenvector, and 

bridging) help to assist us with ascertaining a nodes (vertices) importance within a network 

(Kim and Song, 2013, Meghanathan, 2016), summarised in Table 1. 

3.3. Energy efficiency  

Although IoT devices or any device in the NGI can have a regular power supply within a 

smart city environment, it is strongly recommended and an NGI requirement as highlighted 

in the EU NGI project, that any proposed solution should be energy efficient. Typically, IoT 

is a combination of interconnected, diverse, smart and resource constrained devices that 

provide advanced services through the exchange of data.  IoT applications are also deployed 

as Low power and Lossy Networks (LLN), e.g. as wireless sensor networks (WSN), smart 

city and smart health applications. This class of networks is also resource constrained, has 

high loss rates, low data rates and volatile communication links (Tariq et al., 2019, Belguith 

et al., 2018).  

Organisations continually have concerns about the efficiency of their devices and 

networks, including how to reduce operational costs (Tariq et al., 2019). By reducing the 

amount of data transmitted via resource constrained and insecure networks and objects, we 

can enhance security, save energy, while reducing operational overheads (Belguith et al., 

2018). IoT devices are also prone to failure due to environmental factors, which can cause 

changes to the resource strained network topology and impact the energy consumption of 

remaining nodes (Gao et al. 2002, Qiu et al., 2017).  

4. Systems security composition 

The proposed solution considers high risk nodes within the networked topology 

throughout the optimisation process, focusing upon nodes with a high degree of 

connectivity (i.e. nodes measured through bridging centrality). Nodes with high bridging 

centrality pose a great threat to networks, as should these nodes be compromised or a failure 

occurs, the impact caused to these critical points has the capacity to interrupt data flow and 

reduce interoperability. To minimise these risks, we optimise the network connectivity by 

changing connections among the nodes in order to determine the most secure combination 



  

of links. In optimisation different techniques are used to evaluate their performance in 

different scenarios.  

In addition to security factors (degree, bridging centrality and communication security 

level) and energy efficiency, we examine two natural factors during the optimisation 

process. These are average minimum path length, which takes the average of all shortest 

paths between pairs of nodes within the network, and the cost of communications. This is 

the sum of all link weights, calculated as the geodesic distance between connected nodes. 

4.1. Data security level of the network 

To determine the data security level of the network, we assume that the nodes which 

form the topology are static, yet have dynamic connectivity (i.e. nodes can change 

communication links). Each node within the NGI environment will be assigned an 

authorisation level, using the principal concepts surveyed in (Zhou et al., 2008) which we 

discussed in Section 2.2. In terms of security, it is vital that data is only passed via nodes 

along communication links with sufficient authorisation levels for that data flow. S(N) 

represents the proportion of secure paths between pairs of nodes that are entitled to 

communicate. 
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In this equation G is the set of different grades that nodes inside the network N might 

have assigned, Vg is the set of nodes in the network that reach the required authorisation 

level to access the given data at level g, δs,t(g) is a step function taking the value 1 if it’s 

possible to find a secure path between s and t, given the sensitivity level g and 0 otherwise; 

and n=|N| is the number of nodes within the network.   

4.2. Node security grade assignment 

Typically, vulnerabilities are initially identified using a network vulnerability scanner, 

which provides an automated approach for hosts and network topology to be scanned. 

Popular scanners include Nessus, Retina, Nmap, Nespose and MaxPatrol. These tools 

identify and provide data on vulnerabilities within the networks topology and hosts, 

generating details on weaknesses such as open ports, network configurations, system 

components, software applications and services, logins, and active IP addresses, etc.  

Vulnerability scanners though must be used as part of a risk assessment strategy and not 

as a full standalone security solution, as they can struggle to identify vulnerabilities 

resulting in false positives. Unlike firewalls, anti-virus and intrusion detection systems, 



  

vulnerability scanners provide a proactive approach to ICT security rather than purely 

endeavouring to defend against attacks. 

In addition, vulnerability scoring and exploit databases can also be incorporated into the 

risk assessment strategy for the identification and quantification of vulnerabilities. The 

Common Vulnerability Scoring System (CVSS), National Vulnerability Database (NVD), 

Common Vulnerabilities and Exposures (CVE), SecurityFocus Forum, Open Source 

Vulnerability Database (OSVDB), and Bugtraq Security Database, have been developed to 

identify and quantify vulnerabilities in a variety of ways with differing focuses. Some 

methods provide threat warning systems, others provide vulnerability databases, while 

several vulnerability scoring techniques assist with vulnerability identification. 

CVSS has heavily influenced our research and implementation, as the algorithms within 

the methodology (FIRST.Org, 2019) have been widely incorporated into many vulnerability 

applications as they have the capacity to assist with assigning numerical values to risks and 

vulnerabilities. Scores are composed based on three metric groups (base, temporal and 

environmental). Providing a platform that assigns risk in a standardised manner, including a 

schema that has the functionality to accommodate industry specifics. 

We also incorporate the principals of NVD (Nvd.nist.gov, 2019) which supports 

automation of vulnerability management and security. NVD is an open repository of 

vulnerabilities, including essential details in regards to security-related software flaws, 

security checklists, impact metrics, product names, and misconfigurations. This database is 

reliant upon the CVE repository; nonetheless NVD expands additional analysis and thus can 

be considered its superior. While NVD is synchronised to automatically update when new 

vulnerabilities are identified and published by CVE, it cannot be categorised as a real-time 

vulnerability and reporting mechanism. As NVD analysts can take as long as two full 

working days to analyse the vulnerabilities and extend the vulnerability attributes.  

Using the metrics within CVSS along with scoring systems and vulnerability databases, 

in additional to the data security level and energy efficiency grade, we quantify a security 

grade for each node within the NGI environment based upon the nodes individual software, 

hardware and firmware. Security is graded on a scale of 0 to 10, with a security grade of 0 

being considered the most secure and 10 least secure. Data types retrieved and assigned 

using its risk probability score to each node include firewall status, intrusion detection 

system status, encryption status and if used type of encryption, operating system, staff skill 

level, system update status, anti-virus/security, internet access, data security level etc. 

Table 2 demonstrates example parameters and their associated risk probability scores; 

values are assigned based on the specific domain security requirements and expertise of the 

security managers and administration. In this example scenario we assigned these constants 

to reflect our initial network environment, and the values are assigned depending on the 

importance of the concerned factor and their magnitude. 

 

 
  



  

Table 2. Example parameters and their associated risk probability scores 

 

Risk Type 

Risk Probability Score 

Low Risk                  High 

Risk 

 1 2 3 4 5 6 7 8 9 10 

Firewall Status True         False 

IDS True         False 

Encryption Status True         False 

Encryption Type AES - 256 TDES - 

168 

  RC2 - 128  WEP - 114    

Operating System Linux Mac OS X   Windows 

Server 

2000 

Windows 

8 

Windows 

XP 

 HP-

UX11

i 

Solaris 

Staff Skill Level High    Medium     Low 

System Updated True         False 

Anti-Virus/Security True         False 

Internet Access False         True 

Data Security Level 1 2 3 4 5 6 7 8 9 10 

 

We consider the data security level as a risk, therefore it contributes to the quantification 

of the final security grade for the node. These grades are then incorporated into the 

optimisation process. All parameters used to quantify and assess the appropriateness of the 

optimised network as shown in Table 3. 

 
Table 3 Simulated optimisation parameters and associated risk probability scores 

Centralities Risk Type  and Probability Score Other 

Degree (0-1) Firewall Status (0 or 10) Fitness 

Betweenness (0-1) IDS (0 or 10) Energy Level 

Closeness (0-1) Encryption Status (0 or 10) Cost 

Eigenvector Encryption Method (0 – 10) Minimum Path Average 

Bridging (0-1) Operating System (0 – 10) Security Grade (0 – 10) 

 Staff Skill Level (0 – 10)  

 System updated (0 or 10)  

 Anti-Virus/Security (0 or 10)  

 Internet Access (0 or 10)  

 Data Security Level (0 – 10)  

 Identified Vulnerabilities (NVD Score)  



  

4.3. Robustness function 

Robustness analysis and mitigation of network vulnerabilities is very important (Chen et 
al., 2017, Wu et al., 2018, Jiang et al., 2016, Du et al., 2016, Liu et al., 2016, Liu et al., 
2011) to combat cyberattacks in an effective manner. However, existing solutions (Chen et 
al., 2017, Wu et al., 2018, Jiang et al., 2016, Du et al., 2016, Liu et al., 2016, Liu et al., 
2011) may not be as effective as they focus on network connectivity and its features 
(centralities) only. There are many other important properties of the system, network and 
their security, which are not considered that they directly affect the performance and 
security of the entire system. The proposed robustness function is novel and a major part of 
the proposed solution. It considers network centralities, network parameters and security 
properties.  

The proposed solution can be applied to a network. At the first stage, it takes all 

properties of the network and models a simulated environment where the robustness 

function evaluates each node. To determine the optimal secure network, five main criteria 

are used as a guide. These are the communication security level S(N) outlined in Section 4.1 

calculates the security level of a node, highest bridging centrality score CR (v*), degree 

centrality of the network CD (G), average minimum path length fmin, and total cost C. The 

robustness function is defined as: 

)(/])()([(i) 4min321 NSCafaGCavCa DR +++=   (7) 

 

Here v* is the node with the highest bridging centrality. As the robustness function 

shows, the main factor is the communications security level achieved. Values for the 

constants (weights) are as follows: 
 

a1 = 50000, a2 = 4000, a3 = 60, a4 = 10.5 

 

The purpose of assigning weights to the robustness function is to give flexibility so it can 

be adjusted as per application requirement, e.g. a certain application may give preference to 

data flow compared to local node parameters. In this example scenario we assigned these 

constants to components that when combined reflect a section of the NGI environment, a1 

represents the highest bridging centrality, a2 is assigned the centrality degree, a3 minimum 

path average, and a4 associated network cost. As per application, the values assigned to 

these constants not only depend on the importance of the concerned factor, but also on the 

magnitude. For example, while centralities generate low numbers, the cost tends to be 

significantly higher. The lower the robustness, the more appropriate the individual 

evaluated. It has been ascertained that the robustness increase is inversely proportional to 

S(N), and that as the other factors increase so does the robustness. The motive being, that 

we require S(N) to be maximised and all other factors to be minimised. As searching for a 

lower robustness, means instigating higher communication security, while preserving low 

cost, degree centrality, bridging centrality, and average minimum path length. 



  

4.4. Optimisation algorithm 

4.4.1 Genetic algorithm 

The proposed solution uses Genetic Algorithms when measuring the security of overall 

networks. It helps to reduce the processing time, especially in large scale networks. The 

basis of the algorithm is to take an initial set of potential solutions, then evolve the set to 

become a set of best solutions. Through the evolutionary process, inadequate solutions die 

out, whereas the qualities of the superior solutions are amalgamated and disseminated 

through new solutions, which are added to the set. Set size remains constant, so as new 

better solutions are identified, they replace the older inadequate solutions. Random mutation 

applied to new generated solutions, ensures that the new set of best solutions does not 

evolve into a set of duplicated solutions. The evolutionary process would continue until a 

predetermined end criterion is met (Grefenstette, 1986, Kaur, 2016). An outline of the 

algorithm’s pseudo-code is as follows: 
 

Algorithm 1 Pseudo-Code for Genetic Algorithm 

1: Initialise population with original network (encoded as an individual) Norig  

2: Next generation array NGen[10] equals Norig plus nine randomly generated populations 

3: while stopping criteria is not reached do 

4: for generations g do 

5: Calculate the robustness of NGen [g] 

6: end for 

7: for generations g do 

8: if Fbest = 0 or NGen [g](robustness) < Fbest then 

9: Fbest  ←  NGen [g](robustness) 

10: end if 

11: end for 

12: NGen[0]  ← Fbest  (next population) 

13: Select three random individuals from previous generation, put in random contest with best individual 

passed to next generation (next population) 

14: Four individuals from new generation  are chosen by crossing over two different individuals which have 

been randomly chosen, then passed to next population 

15: Generate new random individuals and add to the new generation until next population equals 10 

individuals  

16: end while 

17: return best individual from improved solutions 

 

The initial population of individuals used by the Genetic Algorithm (GA) is the original 

NGI environment (encoded as an individual), along with a collection of randomly generated 

alternatives. For the purpose of our work, the population size is set to be 10 individuals (i.e. 

the original network plus 9 random networks). Once a population has been generated, every 

individual is measured by means of the robustness function summarised in Section 3.3. 

After evaluating every individual within the population, the best individual is directly 

passed to the next generation. Three individuals in the new generation are chosen by contest 



  

from the previous generation, the contest passes the best one of these three to the new 

population. Four individuals in the new generation are chosen by crossing over two 

different individuals, which have been randomly chosen. Finally, new random individuals 

are generated and added to the new population, so that the next generation has 10 new 

populations. After running the cross over and random generation processes, the feasibility 

of the new individual is checked. Unconnected nodes are prohibited, so if any node is 

identified as isolated, the new individual is mutated until it is feasible. 

New generations are built consecutively. At this point we run the evolutionary process 

for 2000 rounds, after which we discontinue the application for the GA and the best 

individual among the remaining solutions is selected.  

4.4.2 Ant colony optimisation combined with local search 

The ant colony optimisation algorithm is based on the natural foraging behaviour of ants. 

While the algorithm has assisted greatly when applied as part of the optimisation process, it 

does have limitations and commonly has to be combined with an alternative optimisation 

algorithm. The basis of the ant colony optimisation algorithm is to initiate a solution and 

then update the pheromone trails (i.e. update the comparison parameters). Throughout all 

iterations, as a new solution is constructed, the pheromone trails are compared (i.e. checking 

for the optimum path in the graph). After the improved solution is identified the pheromone 

trail (comparison parameters) is updated with the enhanced parameters. For example, with 

ants this would be based on the quantity and quality of the food found, trails with a high 

pheromone would guide ants to the better source. The optimisation process continues until a 

predetermined end criterion is met (Blum, 2005, Monteiro et al., 2013, Olivas et al., 2017). 

The local search method is a simplistic algorithm. The basis of the algorithm is to initiate 

a solution; the solution is then iteratively evolved, i.e. throughout all iterations the algorithm 

searches for a better solution, until the predetermined end criterion is met (Monteiro et al., 

2013).  

The initial population of individuals used by the Ant Colony optimisation combined with 

Local Search (ANT) is the original NGI environment (encoded as an individual), along with 

a collection of randomly generated alternatives. Similarly, we generate and compare 10 

individuals for each cycle of the evolutionary process. Once the population has been 

generated, the solution trail is assigned the original networks comparison parameters (i.e. 

this is the best solution we begin with hence these are the parameters that need to be 

compared and improved). Every individual is then measured by means of the robustness 

function (described in Section 3.3). 

After evaluating every individual within the population, each solution is compared 

against the best robustness, in an attempt to find an improved generation. Should the cycle 

produce a better solution, the solution trail is then updated with the new solutions 

comparison parameters. After each cycle, we compare each improved generation’s 

parameters in the solution trail, placing them into descending order, ensuring that we only 



  

keep the 5 most improved solutions. New generations are built consecutively, and the 

process runs for 2000 rounds. We then discontinue the application for the algorithm and the 

best individual among the remaining solutions is selected, along with reporting the 5 most 

improved solutions and identify their respective costs.  

An outline of the algorithm’s pseudo-code based on a combination of ant colony 

optimisation and local search is as follows: 
 

Algorithm 2 Pseudo-Code for Ant Colony Optimisation combined with Local Search 

1: Initialise population with original network (encoded as an individual)  

2: Calculate original populations robustness Fold 

3: Initialise parameters  

4: Initialise solution trails 

5: while stopping criteria is not reached do 

6: Generate a new random solution  

7: Calculate new solutions Robustness Fnew 

8: Calculate parameters 

9: if Fnew  <  Fold  then 

10: Fold  ←  Fnew   

11: Update solution trails with parameters 

12: end if 

13: Compare all solutions sort into descending order 

14: end while 

15: return five improved solutions and identify solutions with their respective costs 

4.4.3 Tabu search 

Tabu search is a metaheuristic search method, which uses local search methods for 

optimisation, along with adaptive memory to explore beyond local optimality and to 

generate dynamic search method performance. The basis of the search is to prevent the 

method from re-examining solutions that have already been considered, and to ensure that 

inadequate solutions are not developed further. Parameters of preference can also be 

introduced, influencing the search into producing a more favourable solution. Tabus tend to 

only be stored as a limited quantity, as typically there are several possibilities and tabu lists 

can quickly grow in size, making storage of these parameters and comparison expensive. 

Therefore, restricting the tabu list to only recent improvements and preventing reverse 

evolvement ensures quick and non-costly optimisation.  The optimisation process continues 

until a predetermined end criterion is met (Brownlee, 2011, Monterio et al, 2013).  

Initial population used by the Tabu optimisation process (TABU) is the initial NGI 

environment (individually encoded), along with nine randomly generated alternatives. Once 

the population has been generated, the tabu list is assigned our predefined comparison 

parameters from the original environment, as at this stage this is the best solution and we 

aim to prevent inferior solutions from being considered. Each solutions predefined 

parameters are then compared against the tabu list, if parameters match the tabu list they are 



  

dropped. Else, if parameters are not tabu, then we calculate the robustness of the solution by 

means of the robustness function (Section 3.3). 

We then compare the solutions robustness against the best robustness, to ensure that the 

generation is improved. Should the cycle produce a better solution, then the robustness of 

the new solution replaces the best solutions robustness, and at the end of the cycle the tabu 

list is updated ensuring that only improved solutions are considered. New generations are 

built consecutively, and we run the search for 2000 cycles. The search application is then 

discontinued, and the best individual among any remaining solutions is presented. An 

outline of the search method’s pseudo-code is as follows: 
 

Algorithm 3 Pseudo-Code for Tabu Search 

1: Initialise population with original network (encoded as an individual) 

2: Calculate original populations robustness Fold. 

3: Initialise parameters Pbest 

4: Generate tabu list ← Pbest 

5: while stopping criteria is not reached do 

6: for generations g  do 

7: Let g  construct new random solution  

8: Calculate parameters Pnew 

9: if  Pnew  not tabu  then 

10: Calculate new solutions Robustness Fnew 

11: if  Fnew  <  Fold  then 

12: Fold  ←  Fnew 

13: end if 

14: end if 

15: Update tabu list  

16: end for 

17: end while 

18: return best solution Pbest 

5. Applying the methods: simulation results 

Optimisation algorithms have the ability to manage large, complex optimisation 

problems, with the focus of our work being that of the NGI specifically smart cities. The 

optimisation algorithms, principal concepts and robustness function described in Section 3 

have been implemented as part of the proposed solution. This tool was developed for proof 

of concept and to critically analyse the effectiveness of the techniques discussed in this 

paper. This work has already been applied to a real network, where agents were installed on 

the local machine and connected to the server where the SCRAM application operates. It 

considers connectivity, collaborative analysis reports and warning systems, securing 

globalised network view, accessibility between collaborative organisations, congestion 

avoidance and control, and limiting the impact of resources used for processing.  

 



  

 

 
Fig. 4-a. Primary simulated NGI environment, Network A Security graph 
 

 
 

Fig. 4-b. Primary simulated NGI environment, Network B Energy Efficiency graph 
 



  

 
Fig. 4-c. Primary simulated NGI environment data report 
 

Similar to the work of Ali et al. (2016), Rullo et al. (2017), Yan et al. (2017) and Yao, et 

al. (2017), we use simulation to generate our initial results and conduct evaluation, which 

ensures we do not negatively impede the functionality of a deployed network, while 

evaluating the framework and implemented algorithms capabilities. The framework also 

provides an inexpensive simulation model to conduct experiments within, allowing us to 

study the behaviour of the systems and techniques. 

Figure 4-a visualises the primary network (Network A), displaying key parameters so we 

can examine the graph intuitively, this figure depicts the security of the network. Figure 4-b 

visualises the same simulated NGI section, however, exhibits the energy levels of the 

nodes. Figure 4-c shows part of the data report which is quantified and helps form the 

networks that are visualised in Figure 4-a and 4-c. Table 4 defines the visualised parameters 

used to generate the undirected graphs. 

The simulated network consists of 8 static nodes with a low connectivity of 30%, and is 

formed using a variety of ICT devices which include sensors and mobile devices. This 

section represents IoT devices within a smart city, with each device randomly assigned the 

relevant node software, hardware, and firmware parameters such as the type of operating 

system, energy level, data access grade, whether it supports encryption, Internet access, 

incorporates firewalls, IDS, and anti-virus/security, and if the node has been completely 

updated or has vulnerabilities.  



  

Then the framework randomly assigns all nodes with a security level and connects them 

via a series of primary links. It then quantifies the networks degree, betweenness, closeness, 

eigenvector, and bridging centralities, the communications security, minimum path average, 

and the networks associated cost. Our framework, then assigns a random network data 

level, which all nodes will be compared against replicating data access control principals. 

 For security grades/levels to be accurate, it is vital that we identify vulnerabilities that 

have the potential to expose nodes to risks, which in turn can negatively impede the entire 

networked topology. Vulnerabilities often are identified using a vulnerability scanner, 

allowing for vulnerability scoring and exploit databases to be incorporated into the risk 

assessment methodology. Conducting risk assessment in an NGI environment is highly 

problematic, great consideration must be taken when applying methods directly to systems 

which are deployed or deemed critical, as methods could impact the collaborative 

components and their ability to interoperate. 

We incorporated risk assessment into SCRAM to simulate vulnerability identification, 

and assign reported NVD vulnerabilities to nodes, in a random method based on the type of 

device and its operating system. Simulating this scan means security scores are quantified 

with greater accuracy, SCRAM then generates detailed reports on all security parameters, 

centralities and identified vulnerabilities with their associated CVSS v3 base scores. 

 
Table 4. Security Risk Analysis and Mitigation (SCRAM) frameworks visualised parameters 

Graph Parameter  Symbol Description 

All graphs Scanned node no vulnerabilities 
 

Dark green node/tag 

 
Scanned nodes identified 

vulnerabilities  
Blue node/tag 

 Unscanned node 
 

Dark red node/tag 

 
Node size represents quantified bridging centrality, i.e. small nodes low and large 

nodes equal high. 

Security Insecure node 
 

Node encased with a solid 

orange box 

 Blocked node 
 

Node encased with a solid red 

box 

 Blocked and insecure node 
 

Node encased with a solid red 

box with orange border 

Energy 

efficiency 
High node energy level 

 
Node encased with a solid green 

box 

 Medium node energy level 
 

Node encased with a solid 

orange box 

 Low node energy level 
 

Node encased with a solid red 

box 

  



  

 

 
(a) First mutated candidate using GA 

 
(b) Final optimum candidate using GA 

 
(c) First mutated candidate using ANT 

 
(d) Final optimum candidate using ANT 

 
(e) First and Final optimum candidate using TABU 

 

Fig. 5. Security optimisation evolutions for Network A visualising all improved solutions, prioritising security and data access control 



  

 
(a) First mutated candidate using GA 

 
(b) Final optimum candidate using GA 

 
(c) First mutated candidate using ANT 

 
(d) Final optimum candidate using ANT 

 
(e) First and Final optimum candidate using TABU 

 

Fig. 6. Security optimisation evolutions for Network B visualising all improved solutions, prioritising network energy efficiency 



  

When each algorithm is applied it is integrated with the methods robustness function, 

then the network is evolved into a set of best solutions as described in Section 4. Through 

the evolutionary process random mutations are made to each generated solution, and these 

configurations are produced from a single run generating 20,000 evolvements. Figures 4 

and 5 visualise the first and the final optimum solution for each of the applied algorithms, as 

examples of how the network has evolved in comparison to the original network. 

5.1. Network robustness 

 
(a) Robustness monitor for Network A optimisation 

focusing on security and data access. 

 
(b) Robustness monitor for Network B optimisation 

focusing on energy consumption. 

Fig. 6. Robustness monitor graphs for the applied algorithms 

Throughout the optimisation process each node is measured by means of the robustness 

function (Section 3.3), Emphasis is placed on the robustness level of the network as it 

assists the algorithms to produce the next generation of improved solutions, utilising the key 

parameters of individuals being selected. Other factors are also reported and considered 

such as the degree centrality of the graph and energy efficiency, and key parameters are also 
reported and analysed as standalone risks, as illustrated in Section 4.3. As the robustness 

level is a combination of parameters, it provides an intuitive overview of the networks 

security suitability and risks posed, and a demonstrative measure of general improvement. 

Therefore, low robustness scores show evolved improvements so are considered, while high 

robustness scores demonstrate degeneration so are omitted. There is no guarantee that as a 

network is mutated improvements to the network and its robustness will be achieved, even 

when evolvement is positive it can take a vast number of cycles before progress is attained.  

The robustness graphs in Figure 6 visualise network robustness when each of the 

algorithms was applied to both scenarios throughout all evolutionary processes. These 

graphs record a notable reduction in network robustness, for both Networks A and B. When 

the algorithms were applied they randomly mutated new candidates in a positive method, 

meaning the reported improved solutions are more appropriate. The robustness monitor for 

Network A (Figure 4-a) shows the original network had a robustness score quantified as 



  

463.3917. The GA achieved a 56.51% improvement; ANT achieved a 50.72% 

improvement, while TABU improved robustness by 52.31%. 

The robustness for Network B (Figure 4-b) was also quantified as 463.3917, in some 

simulations, we see marginal fluctuations of difference between the original robustness 

scores because the framework is quantifying the robustness focusing on different key 

parameters. GA improved the robustness by 52.85%, ANT improved robustness by 52.37%, 

while TABU reduced robustness by 39.52%. In both scenarios robustness is improved from 

the first reported evolvement for GA and ANT, ranging between 39.52% and 52.31%. This 

positive development continues to advance throughout the optimisation process. 

5.2. Data analysis 

During evolution stages the applied principals search for an optimal combination, using 

processes that removes and replaces links within the WSN. Figures 5-a, 5-c, 5-e, 6-a, 6-c 

and 6-e, visualise the first improved generations which assure communication security, each 

showing an increase of communication links. The cost increase (Figures 8-a and 9-a) for 

both scenarios reflects this growth of communication paths, with the applied algorithms 

increasing the cost of Network A on average by 104.8% and Network B by an average of 

104.2%. It is essential that the optimisation process when adding and removing links, 

balance connectivity with improvements to the WSN robustness and security, while unduly 

impacting centrality factors. The framework is not attempting to revise cost, simply 

associate network cost with suggested WSN modifications. Network A which prioritises 

security and data access, shows that GA has the lowest costing optimal solution (Figure 7-a) 

increasing by only 98.04%. Network B which prioritises energy levels, shows that ANT has 

the lowest costing optimal solution (Figure 9-a) resulting in an increase of 88.59%. 

Through the improved robustness, the algorithms and processes sustain low degree 

centrality (Figures 8-b and 9-b) for both scenarios. While the networks optimal solutions do 

not have the lowest degree centrality score, each solution with the exception of TABU, has 

a reported improved centrality score compared to the original network. For example, 

Network A (Figure 8-b) both GA and ANT optimum candidates decrease degree centrality 

by 62%. While degree centrality is not a key parameter used to quantify network 

robustness, as the algorithms process network mutation, they reject mutated candidates that 

critically increase degree centrality, i.e. minor negative increases are acceptable and 

considered to be within a tolerable range. 

There are notable fluctuations between reported candidates for minimum path average 

(Figures 8-c and 9-c). In both scenarios the only increase in minimum path average 

occurred when TABU was applied to Network B which focuses on energy levels. This 

negative increase is reflected in the TABUs robustness score (Figure 7-b) which is slightly 

higher compared to the other algorithms robustness scores. Minimal path average reduced 

by 24.25% using GA and 25.43% using ANT on Network A, and by 28% using GA and by 



  

15.29% using ANT on Network B. These scores directly correlate to the new established 

links between nodes. 

 
 

(a) Cost of Network  (b) Degree Centrality of the Graph (c) Minimum Path Average 

(d) Max Bridging Centrality (e) Communications Security 

 

Fig. 8. Network evolution results comparison for Network A data 

(a) Cost of Network Communications  (b) Degree Centrality of the Graph (c) Minimum Path Average 

(d) Max Bridging Centrality (e) Communications Security 

 

Fig. 9. Network evolution results comparison for Network B energy 



  

Analysing bridging centrality (Figures 8-d and 9-d) there are significant fluctuations 

between candidate scores for both scenarios and all algorithms. Network A (Figure 8-d) 

indicates that the final optimum solution when ANT was utilised has a minor increase of 

4.17% in comparison to the original network. In contrast to GA, which decreased bridging 

centrality by 59.09% and TABU which decreased by 62.03%. Analysing Network B (Figure 

9-d) each of the applied algorithms generated final solutions with decreased bridging 

centrality scores, GA decreased by 58.79%, TABU decreased by 56.1%, while ANT had the 

lowest decrease of 46.15%.  Despite the single minor increase, which is within a tolerable 

range, the analysis corroborates that as the WSN is mutated and algorithms applied, each of 

the methods support the mutation of the network ensuring that evolvements that negatively 

impede developments are rejected. As evident by not only sustained low centralities, but 

also in the improvement to the robustness score. 

Table 4. Aggregated node centrality scores for all improved evolutions of Network A 

Evolution No. Links Cost Robustness Degree Betweenness Closeness Eigenvector Bridging 

0 (Primary Network) 12 1682 463.391 0.428 0.102 0.00054 190.984 0.0165 

GA Evolution 2 low-cost 14 2901 234.834 0.5 0.066 0.00053 374.265 0.0063 

GA Evolution 9 optimum 17 3331 210.548 0.607 0.049 0.00058 465.484 0.0083 

ANT Evolution 3 low-cost 16 3172 239.015 0.535 0.062 0.00053 401.484 0.0073 

ANT Evolution 6 

optimum 

17 

3595 228.368 0.607 0.058 0.00058 488.640 0.0145 

TABU Evolution 1 

optimum 

20 4225 220.986 0.714 0.035 0.00059 686.593 0.0051 

Table 5. Aggregated node centrality scores for all improved evolutions of Network B 

Evolution No. Links Cost Robustness Degree Betweenness Closeness Eigenvector Bridging 

0 (Primary Network) 12 1682 463.391 0.428 0.102 0.000545 190.984 0.0165 

GA Evolution 10 low-cost 18 3255 218.686 0.607 0.058 0.000572 462.75 0.0122 

GA Evolution 11 

optimum 

20 

3813 218.479 0.678 0.044 0.000592 609.015 0.0058 

ANT Evolution 4 low-cost 16 2998 226.595 0.535 0.058 0.000568 376.906 0.0119 

ANT Evolution 8 

optimum 

16 

3172 220.717 0.535 0.066 0.00056 433.281 0.0088 

TABU Evolution 1 

optimum 

16 

3935 280.238 0.571 0.058 0.000314 544.109 0.0092 

 

We observe for both scenarios, there are significant increases to communication security 

from the first evolved candidate (Figures 8-e and 9-e), with minor fluctuations occurring 

from 95% to 100% for both networks. Each of the optimum generated solutions report 

100% secure network communications, increasing security by 51%. 



  

Alternatively, via the use of the frameworks detailed reports we can evaluate each node 

and analyse how individual centralities are impacted due to network evolvement, Tables 4 

(Network A) and 5 (Network B) present aggregated node centrality scores for the primary, 

lowest costing, and optimum network. Evaluating individual nodes assists in determining 

how individual nodes are impacted compared to analysing the network as a single entity. An 

example report is shown in Table 6, reporting data for Network A when GA was applied, 

showing individual node bridging centrality for each improved evolution.  

We ascertain that bridging centrality utilising GA in both scenarios decreased by over 

58%. However, for Network A average node bridging centrality only improved by 49.38%, 

while Network B improved by 64.87%. In both scenarios utilising ANT, Network A 

decreased bridging centrality by 63% yet the average node centrality only improved by 

12.23%, while Network B reported an 56.1% centrality improvement while its average node 

bridging centrality scored an 46.5% improvement. The report indicates that in all instances 

the values are in an acceptable range, but these reports provide a solution for quick analysis 

to assist with decision making processes. 

Additionally, these reports help ascertain the values of the most optimum solution, and 

can identify if there are cheaper alternative candidates that are more cost effective to 

implement and don’t impact centrality values and security, identifying suitable alternatives 

than optimum solutions. Reviewing TABU results, there are no cheaper alternatives to 

consider, due to algorithms rigid methods failing to yield alternative optimised solutions. 

When GA and ANT is applied to both scenarios, cheaper candidates to implement are 

reported, which improve network robustness and security compared to the original Smart 

City WSN. 

However, just because cheaper alternatives are established, they should only be 

considered if they maintain a series of alternative links between secure nodes, thus results 

are compared against the undirected graphs. 
 

Table 6. Security optimisation node bridging centrality scores for Network A evolutions when GA is applied 

 
node 0 node 1 node 2 node 3 node 4 node 5 node 6 node 7 

Evolution0 0 0 0.046 0 0 0.047 0.030 0.007 

Evolution1 0 0 0.017 0 0 0.029 0 0.012 

Evolution2 0 0 0.008 0 0 0.023 0 0.019 

Evolution3 0 0 0.014 0 0 0.022 0 0.013 

Evolution4 0 0.011 0.023 0 0.0088 0 0.020 0.010 

Evolution5 0 0.019 0.015 0 0.0064 0.010 0.006 0.021 

Evolution6 0 0 0.015 0 0 0.016 0 0.006 

Evolution7 0 0.009 0.013 0 0.0210 0.019 0 0.019 

Evolution8 0 0 0.010 0 0 0.014 0.010 0.018 

Evolution9 0 0 0.015 0 0.0111 0.014 0.006 0.019 



  

5.3. Observations 

Analysing the undirected graphs that focus on security and data access (Figure 5), we 

intuitively identify in Figure 5-a, that the first evolved candidate produced using GA 

increased the number of links between nodes from 12 to 17, ensuring that a secure route 

was established between all secure nodes. Figure 5-b shows that as the WSN evolved 

further, a secure route between nodes 2, 3, and 5 was maintained using 17 links. Analysing 

ANT we identify that the first candidate increased the number of networked links (Figure 5-

c) from 12 to 19, and the optimum solution (Figure 5-d) maintained a secure route between 

nodes and is formed using 17 links. Figure 5-e visualises the only candidate produced using 

TABU, this algorithm establishes a secure route between nodes using 20 links, which is 

greater than solutions generated via GA and ANT. Reviewing the undirected graphs that 

focus on energy efficiency (Figure 6) we see similar characteristics. 

For each final optimum solution for Network A (Figures 5-b, 5-d, 5-e) we intuitively see 

that all candidates have multiple links between secure nodes, meaning if a secure link was 

removed, a single secure route will be maintained. Limiting the risk of a single point of 

failure, and ensuring that nodes are unlikely to become isolated and cut off from the 

remainder of the WSN. Should multiple secure links be removed, there are alternative paths 

between secure nodes. However, data will have to traverse via nodes which have been 

quantified as insecure placing the data at risk. Fortunately, these links have been identified 

and reported via the method, and visualised in the undirected graph, providing advanced 

warning and an opportunity to make changes to improve the security of these nodes. 

Likewise, final optimum candidates for Network B (Figures 6-b, 6-d,) identify significant 

links maintained between high energy nodes. In Figure 6-d there is only a single path 

between secure nodes. Should a single link be removed, then there are no secure paths for 

data to traverse, and data will be transmitted across paths between insecure nodes. 

For Network B the priority of the principles and algorithms was to quantify and optimise 

the WSN based on node energy efficiency, as well as to maintain low centralities, high 

network security, data access violations, and node vulnerability. While this has been 

achieved, due to the methods prioritisation of energy efficiency there is a lack of alternative 

paths between secure nodes that are present within optimum candidates of Network A. 

Which is expected as the methods priority is shifted from network vulnerabilities and data 

access. Figure 6-b is the only exception, the optimum solution utilising GA shows there are 

multiple links between nodes 2, 3 and 5, therefore if a single link was removed nodes can 

maintain a secure path for data to be routed. The applied algorithms and principles 

adequately can also support network optimisation based on energy efficiency and can 

succeed in extending network life, evident from our initial simulation results. 

In WSN while the data access control problem would be less likely to be a priority over 

energy efficiency, we aim to improve data flow security. Implementing the new methods to 

focus on energy efficiency we see unstructured behaviour forming for both GA and ANT. 

This is due to the optimisation process focusing on the energy efficiency levels and 



  

combing security and data access grades into the algorithms process. As random mutations 

occur while the algorithms are prioritising node energy levels, ensuring that high energy 

nodes stay linked in case low level nodes fail, the algorithms still have to ensure as 

mutations are made to the network, security and data access control is maintained. 

While TABU ensures a quick and non-costly optimisation process, completing its run in 

38 seconds compared to GA which completed in 1 minute and 4 seconds and ANT that 

completed in 45 seconds, it fails to report or consider inadequate solutions, and only 

improved solutions are developed further. This is due to its restricted comparison 

parameters that must be matched or improved. The tabu list influences cycles preventing 

reverse evolvement from being considered in order to improve processing time and costs, 

but as we analyse results we note that other configurations can be appropriate. 

Should organisations have financial restrictions in regards to network security, because 

the framework did not only just present the optimum solution but alternative candidates 

utilising GA and ANT. These alternative evolutions can be considered for adoption, in the 

awareness that the framework has optimised and improved the overall robustness of the 

network. These evolvements and recommended improvements assure network security and 

reduce potential risks to data communications.  

While new communication links help to establish secure routes across the WSN, as well 

as supporting node connectivity, they negatively impact network security as they are the 

basis for additional risk factors. In addition, these new communication links come at a price, 

as in order to achieve improved network robustness and lower centralities, there is a 

significant increase in network communication costs. 

5.4. Simulation analysis 

We have run six different simulations which reflect sections of an NGI environment, 

each of which is based on a WSN or IoT topology. Figure 10 visualises these six sections in 

a series of undirected graphs, which we have experimentally tested by applying the 

principals and algorithms discussed in Sections 2 and 3. These graphs visualise all 

implemented and tested network node energy efficiency levels, which not only observes the 

data access control problem, security levels and identified vulnerabilities. But also focuses 

on mutating the network during the process considering each nodes energy efficiency level, 

in an effort to extend the life of the network.  



  

 (a) 8 nodes 30% connectivity (b) 8 nodes 40% connectivity 

(c) 10 nodes 30% connectivity (d) 10 nodes 40% connectivity  

(e) 12 nodes 30% connectivity  (f) 12 nodes 40% connectivity  

Fig. 9. Simulated smart city networks used in experimental visualising node energy efficiency levels, and their final optimal evolution 



  

 

Each NGI section contains 8, 10 or 12 nodes, with a low connectivity level of either 30% 

or 40%. Nodes are then assigned their relevant parameters, data access level, security grade, 

energy efficiency level, and are connected via a series of primary links. The NGI sections 

were then imported back into SCRAM and we applied GA and ANT to each scenario 

consecutively.  
 

 

(a) Populations Robustness when GA applied to networks  (b) Communication Security when GA applied to networks 

 

 (c) Populations Robustness when ANT applied to networks 
 (d) Communication Security when ANT applied to networks 

Fig. 11. Network evolution results for experimental network simulations 

For these investigations, we did not utilise TABU as we have ascertained it does not 

yield adequate results or report alternative optimised candidates. In each instance, we 

prioritised energy efficiency as part of the optimisation process, after initial simulation 

results showed a great capacity for optimisation, and in an attempt to extend the network 

life in NGI scenarios. Figures 11-a (GA) and 11-c (ANT) visualise each of the networks 

population robustness during the entire evolutionary process. These graphs clearly indicate 



  

a notable reduction on the network robustness for all scenarios, corroborating that all final 

optimal solutions are more appropriate as their robustness grades have been quantified 

lower. Similar to the above discussed results, when we analyse the evolution results in 

Table 7 and Figure 11 we ascertain that GA produced more evolved candidates for analysis, 

and for all six scenarios GA generated mutated optimum solutions with lower robustness 

scores in contrast to ANT. 

For example, when GA was applied to Network A (Figure 10-a) the network robustness 

improved by 24.97%, which is 0.4% more than ANT, and when GA was applied to 

Network D (Figure 10-d) the network robustness improved by 13.28% which is 4.13% 

greater than ANT. On average GA had a 1.4% better optimal robustness score for scenarios 

in comparison to ANT. Each of these mutated optimal solutions not only increases the 

robustness of each scenarios topology, but also increases network communication security 

as visualised in Figures 11-b and 11-c. It is evident that after the first reported candidate 

security never drops below 97%, and only 4 of the evolved candidates report a security 

score that does not equal 100% evident in Figures 11-b and 11-d. 

While the replacement and removal of communication links balances connectivity with 

advances to security and robustness, these improvements impact the overall cost of the 

communication network (Table 7). In some instances, we note that evolvement can decrease 

or cause minimal cost increases, e.g. Network D (Figure 10-d) both GA and ANT reduce 

network cost. Similarly, through the analysis of the reported evolvements for each network, 

there were alternative cheaper reported evolved candidates. 

Analysing the degree centrality for the simulated NGI environments, we ascertain that the 

applied algorithms during the optimisation process have mutated the networks and selected 

only evolvements that lower and maintain low degree centrality with the exception of 

Network F (Figure 10-f) when GA was applied, i.e. minor increase from 0.272727 to 

0.290909, which is a 6.67% increase.  

Minimum path length for each of the optimum solutions reported in Table 7; 

demonstrates that the applied processes have assisted in evolving each of the networks and 

ensured that only candidates that improve the network, or maintain centralities that are 

considered with an acceptable range are selected as suitable reported candidates. In all but 

three networks, minimum path average is reduced.  

The mutation of the communication links within each scenario greatly influences 

bridging centrality, and throughout the evolvement for each network, we noted fluctuations 

of bridging centrality scores. This is expected due to the removal and replacement of 

communication. In all instances with the exception of Network B (Figure 10-b) when GA 

was applied (20% increase) and Network D (Figure 10-d) when both algorithms were 

utilised (GA 27.06 %, ANT 56.79% increase), we see a decrease in bridging centrality for 

all optimal evolutions. The applied algorithms and processes when establishing secure 

communication links between nodes are influenced by the security score of the node and 

data access control. The mutated networks reflect the decisions of the applied algorithms 



  

and processes, along with the positions of the nodes within each of the network topologies 

and the communication links which nodes are reliant upon for data transfer. 

The results for these simulations are similar to the reported case study outlined in Section 

4. These simulations and generated reports provide sufficient data and initiate warnings, so 

minor fluctuations and increases are thoroughly reported and identified to assist with all 

decision making processes. Due to network mutations we cannot guarantee that 

evolvements will not negatively impact centrality scores, what is evident is that the 

algorithms and processes are ensuring that only acceptable negative centralities are 

considered as part of the wider evolvement process and robustness evaluation. 

As optimal evolutions for each NGI network maintain a series of prime links between 

nodes that have good energy efficiency, this ensures that data communication transfer can 

be conducted via nodes that have high energy efficiency and bypass low energy nodes. This 

means lower energy nodes will not be responsible for transferring or processing 

unnecessary volumes of data, and will extend the life of these nodes and the NGI 

environment in which they play a key role. 

 

Table 7. Network evolution results comparison for experimental NGI simulations 

Evolution Cost Robustness Degree Min Path Average Bridging Security 

8 node 30% connectivity  (Network A) 1664 212.583 0.190 192.821 0.028 75 

GA Evolution 14 optimum 2801 159.508 0.095 181.714 0.019 100 

ANT Evolution 5 optimum 2745 160.142 0.095 181.928 0.022 100 

8 node 40% connectivity  (Network B) 2950 274.558 0.476 253.25 0.025 81 

GA Evolution 12 optimum 2899 200.206 0.047 241.642 0.030 100 

ANT Evolution 4 optimum 3293 202.170 0.285 231.5 0.017 100 

10 node 30% connectivity  (Network C) 2317 300.471 0.333 296.6 0.085 86 

GA Evolution 15 optimum 5416 227.940 0.111 264.777 0.015 100 

ANT Evolution 12 optimum 3628 230.737 0.305 269.977 0.037 100 

10 node 40% connectivity  (Network D) 5153 229.322 0.361 219.977 0.016 91 

GA Evolution 8 optimum 3869 198.870 0.194 233.622 0.020 100 

ANT Evolution 1 optimum 4758 207.437 0.138 231.977 0.025 100 

12 node 30% connectivity  (Network E) 3669 330.591 0.4 275.106 0.023 68 

GA Evolution 7 optimum 6980 233.850 0.163 263.939 0.015 100 

ANT Evolution 5 optimum 5939 237.328 0.327 272.394 0.017 100 

12 node 40% connectivity  (Network F) 4783 395.788 0.272 271.697 0.043 60 

GA Evolution 14 optimum 6763 240.481 0.290 270.712 0.014 100 

ANT Evolution optimum 6113 242.278 0.236 283.181 0.0189 100 

 



  

6. Conclusion & Future Work 

As the complex systems or networks are dynamic and adaptive with emerging behaviours 

therefore it is very likely that it will produce a large number of vulnerabilities. Therefore, 

any solution proposed to counter these vulnerabilities must be dynamic. The proposed 

solution works in a dynamic fashion using evolutionary algorithms and probabilistic 

techniques and optimises the level of security in NGI environments and extends network 

life, while considering factors such as energy efficiency, access control, high centrality node 

risks, and cost associated with the distance between nodes. The proposed solution has been 

evaluated with good results against a series of simulations based on smart cities topologies 

and configurations. Meaning in advance, we can attempt to secure these vulnerable nodes 

that expose the network to risk or identify if alternative links need to be established before 

failures occur. 

Analysis of these early results, suggest an evolutionary approach is practical for 

optimising relatively small networks in a small number of steps. The future work will 

extend this methodology, applying the principals outlined to a larger physical NGI 

environment generating greater graphs and data sets. We are also interested in deploying the 

framework in a distributed format across NGI infrastructure, and will be examining 

associated issues with deployment. In addition, we aim to examine different approaches to 

optimising NGI environments, and will evaluate the effects and differences between 

optimising sections of an NGI instead of optimising the NGI topology as a whole. This will 

allow us to analyse and ascertain the most effective approach to NGI optimisation and the 

methodologies applications within these environments. 
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