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ABSTRACT One of the most important challenges in the analysis of high-throughput genetic data is the 
development of efficient computational methods to identify statistically significant Single Nucleotide 
Polymorphisms (SNPs). Genome-wide association studies (GWAS) use single-locus analysis where each SNP is 
independently tested for association with phenotypes. The limitation with this approach, however, is its inability 
to explain genetic variation in complex diseases. Alternative approaches are required to model the intricate 
relationships between SNPs. Our proposed approach extends GWAS by combining deep learning stacked 
autoencoders (SAEs) and association rule mining (ARM) to identify epistatic interactions between SNPs. 
Following traditional GWAS quality control and association analysis, the most significant SNPs are selected and 
used in the subsequent analysis to investigate epistasis. SAERMA controls the classification results produced in 
the final fully connected multi-layer perceptron neural network (MLPNN) by manipulating the interestingness 
measures, support and confidence, in the rule generation process. The best classification results were achieved 
with 204 SNPs compressed to 100 units (77% AUC, 77% SE, 68% SP, 53% Gini, logloss=0.58, and MSE=0.20), 
although it was possible to achieve 73% AUC (77% SE, 63% SP, 45% Gini, logloss=0.62, and MSE=0.21) with 
50 hidden units – both supported by close model interpretation. 

INDEX TERMS Association Rules, Autoencoders, Deep Learning, Epistasis, Genome-Wide Association 
Studies (GWAS), Obesity. 

I. INTRODUCTION 
Understanding the genetic architecture of common diseases 
remains a significant challenge. Advances in the field have 
identified genetic variations that underlie common disorders 
such as obesity, type 2 diabetes, and certain cancers [1]. 
However, we are no closer to identifying the precise genetic 
markers that result in the manifestation of complex 
phenotypes.  

Single nucleotide polymorphisms (SNPs) [2] are the most 
common type of genetic variation among humans. These have 
become the genetic marker of choice in the genetic mapping 
of complex traits. Genome-Wide Association Studies 
(GWAS) [3] utilise SNP Information and this has helped to 
improve our knowledge and understanding of disease 
genetics. GWAS implements single-loci analysis where SNPs 
are independently tested for association with phenotypes of 
interest, without consideration of the interactions that occur 

between loci. This is a major limitation in GWAS, particularly 
when studying complex disorders caused by SNP-SNP, gene-
gene and gene-environment interactions. Therefore, to better 
understand the missing heritability inherent in GWAS it is 
necessary to examine epistasis interactions [4]. This approach 
assumes that genes do not work independently but create 
“gene networks” that have major effects on tested phenotypes. 
Hence, identifying epistatic interactions will help us to 
understand biological mechanisms and predict complex traits 
from genotype data.  

Combinatorial effects between genes are termed epistatic 
interactions or epistasis [5]. Different perspectives exist: 
biological (or functional epistasis) and statistical epistasis [5]. 
Statistical epistasis is investigated in this paper as it provides 
a suitable strategy for discovering new genetic pathways. This 
provides a foundation for new discoveries and testable 
hypotheses.  
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Traditional statistical methods such as logistic regression 
have shown limited power in modelling high-order nonlinear 
interactions between genetic variants [6]. Additionally, the 
high dimensionality present in genetic data makes it 
computationally difficult to exhaustively evaluate all SNP 
combinations. This is a well-known computational challenge 
in the field of computer science [7]. Finally, it is important to 
interpret gene-to-gene interactions in the context of human 
biology before any results can be translated into specific 
recommendations and treatment strategies. However, making 
etiological inferences from computational models has been 
considered the most relevant but difficult challenge [8].   

One approach worth considering is Association Rule 
Mining (ARM), which is an unsupervised learning method 
used to find relationships between items (variables) that co-
occur in large data sets [9]. The discovery of association rules 
depends on the discovery of frequent itemsets, where 
association rules are required to satisfy support and confidence 
user defined constraints. This technique has been used to 
discover binding cores in protein-DNA [10] and to find 
associations between the regulation of gene expression levels 
and phenotypic variations in gene expression analysis [11]. An 
application of the Apriori algorithm [12], in the context of 
case-control association studies and epistasis analysis, is 
AprioriGWAS [13]. This tool was applied to age-related 
macular degeneration (AMD) and bipolar disorder (BD) data 
with promising interactions between genes found. The 
approach in [13] uses frequent itemset mining (FIM) with 
Apriori to look for genotype patterns with different 
frequencies in cases and controls.  

With regards to the discovery of SNP-to-SNP interactions, 
deep learning (DL) has shown promise. Deep learning is a type 
of artificial neural network (ANN) and one of the most active 
fields in machine learning today. DL architectures have 
proved to be particularly useful in image and speech 
recognition, natural language understanding and most 
recently, in computational biology [14]. They are 
characterised by deep hidden layers and neurons. In 
Bioinformatics, DL has been used to select regulatory SNPs 
with functional impact before association analysis is 
conducted (DeepWAS) [15]. The study focused on variants 
(SNPs) that alter functional regulatory elements (i.e. elements 
that control gene expression and DNA methylation) which are 
identified using a deep learning-based algorithmic framework: 
DeepSEA [16].  

This paper extends these works and combines ARM and DL 
techniques to investigate genetic epistasis in obesity. Obesity 
is considered one of the most difficult clinical and health 
challenges worldwide [17]. It has become a global epidemic, 
also contributing to the growing rates of type 2 diabetes (T2D) 
and cardio vascular disease among other non-communicable 
diseases [18]. The ubiquitous availability of low-cost 
hypercaloric food combined with a sedentary lifestyle and 
other environmental factors, have played a fundamental role 
in the obesity epidemic. Surprisingly, not every individual 

exposed to such environments, also known as obesogenic 
environments, becomes obese. Therefore, the lack of 
understanding about the mechanisms that underlie individual 
differences in the predisposition to obesity have motivated this 
study. While GWAS has identified several variants associated 
with obesity traits (i.e. FTO and MC4R), they do not explain 
the variability of obesity attributable to genetic factors. 
Interactions between genes, namely epistasis, will help to 
provide a better understanding of polygenic obesity. This is 
regarded as a much more intuitive approach given that 
complex diseases cannot be reduced to single univariate SNP-
phenotype interactions.  

In body mass index (BMI) and obesity GWAS, gene-gene 
interactions have received little attention [19]. Thus, a novel 
methodology is considered in this paper, in which a subset of 
loci after quality-control (QC) and association analysis was 
selected (statistical filtering). Epistatic interactions within 
the remaining genetic variants are investigated using deep 
learning stacked autoencoders (SAE) and ARM. Basic 
statistical analysis methods and techniques for the analysis 
of genetic SNP data from population-based genome-wide 
studies are considered, particularly logistic regression. 
Subsequent analysis of epistasis is carried out using SAEs to 
learn the deep features and, ARM with the Apriori algorithm, 
to discover a set of frequent patterns expressed as association 
rules. Both, SAE and ARM describe relationships between 
SNPs in extreme cases of obesity (Body Mass Index (BMI) 
> 40 kg/m2) and normal samples from a subset of cases and 
controls within the Geisinger MyCode project [20]. The 
performance of the features selected by ARM and those 
extracted by SAE are objectively measured using a multi-
layer feedforward artificial neural network. 

II. MATERIALS AND METHODS 
This section introduces the data used in the study, quality 
control (QC), and association and statistical epistasis analysis. 

A. eMERGE DATA 
Case-control data was obtained from the database of 
Genotypes and Phenotypes (dbGaP) [21]. Controls were 
obtained from the eMERGE Geisinger eGenomic Medicine 
(GeM) - MyCode Project Controls (dbGaP study accession 
phs000381.v1.p1), while cases were obtained from the 
eMERGE Genome-Wide Association Studies of Obesity 
project (dbGaP study accession phs000408.v1.p1). 
The case-control dataset contains 2,193 participants (917 
males and 1,236 females). Each participant contains 594,034 
genetic markers. Furthermore, 99.5% of the participants are 
from a white ethnic background (Caucasians). 

B. DATA PRE-PROCESSING  
Individuals reported as white were selected to conduct GWAS 
to reduce potential bias caused by population stratification 
[22]. QC and filtering procedures were performed on 
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individuals and SNPs, following  standard QC protocols and 
guidance in [22]. 

Samples with discordant sex were removed. Related and 
duplicate samples were removed using Identity by Descent 
(IBD) coefficient estimates (IBD > 0.185). Principal 
component analysis (PCA) was performed to identify outliers 
and hidden population structure using EIGENSTRAT [23]. 
SNPs with minor allele frequency (MAF) lower than 5%, 
Hardy-Weinberg Equilibrium (HWE) P-value lower than 
1x10-5 in control subjects and, a call rate lower than 99% were 
excluded from further analysis. After QC, 1,997 individuals 
(879 cases and 1118 controls) and 240,950 genetic variants 
were retained for subsequent analysis. 

C. STATISTICAL FILTERING 
Association analysis is used to reduce the computationally 
large number of genetic variants (240,950 SNPs). Statistical 
association testing between SNPs and the obesity phenotype 
was conducted under an additive model using logistic 
regression [24].  

Statistical filtering is used to reduce SNPs with insignificant 
marginal effects to meet the computational needs required for 
epistatic analysis and machine learning tasks. Therefore, only 
SNPs with P-values lower than 1x10-2 are utilised for detecting 
epistatic interactions and to minimise computational 
overheads. 

D. MULTI-LAYER FEEDFORWARD ARTIFICIAL NEURAL 
NETWORK 
A multi-layer feedforward artificial neural network also 
known as the multilayer perceptron (MLPNN), is 
implemented based on the formal definitions in [25], to 
conduct binary classification. MLPNNs in this study use 
labelled training samples (x(i), y(i)) from case-control genetic 
data where y(i) ∈ ℝ2, to train the network for supervised 
learning tasks. A non-linear hypothesis hw,b(x) is defined using 
a feed forward ANN, with parameters W,b fitted to the data. 
The parameter x is a vector of input features representing 
individuals while outputs for the two class labels (obese or 
non-obese) are represented using y. The weight and bias 
parameters are learnt by minimising the cost function with 
stochastic gradient descent [26]. The learning process is 
performed using the back-propagation algorithm and gradient 
descent [27]. 

E. AUTOENCODERS 
Deep feedforward Autoencoders (AE) are used in this study 
for unsupervised feature learning and non-linear 
dimensionality reduction [28]. An AE is a three-layer neural 
network that learns an output  that is similar to the input x. 
Hence, an AE tries to learn a function hW,b(x) ≈ x, given a set 
of unlabelled training samples {x(1), x(2), x(3), …}, where x(i) ∈ ℝn. 
The second layer or hidden layer generates the deep features 
by minimizing the error between the input vector and the 
reconstructed output vector. 

First, the encode phase maps input data into a feature vector 
z so that, for each sample x(i) from the input set {x(1), x(2), x(3), 
…}, we have 

   (1) 

while in the decode phase, the decoder reconstructs the input 
x, producing a reconstructed space  defined as 

   (2) 

where W(1) and W(2) represent the input-to-hidden and the 
hidden-to-output weights respectively, b(1) and b(2) represent 
the bias of hidden and output neurons, whereas f(·) denotes the 
activation function.  

Parameters W(1), W(2), b(1) and b(2) in the AE are learnt by 
minimising the reconstruction error 

 .  (3) 

This is a measurement of discrepancy between input x and 
reconstructed  with respect to a single sample. For a training 
set of m samples, the cost function of an autoencoder is defined 
as: 

 (4) 

where m denotes the overall training set size, s denotes the 
number of nodes in layer l, λ is the weight decay parameter 
and the square error is used as the reconstruction error for each 
training sample. The second term is introduced to decrease the 
magnitude of the weights which helps prevent overfitting. 
Equation (4) can be minimised using stochastic gradient 
descent. 

AEs are stacked layer by layer to produce a Stacked 
Autoencoder (SAE) [29]. Once a single layer AE has been 
trained, a second AE is trained using the hidden layer from the 
first AE as shown in Fig. 1. By repeating this procedure, it is 
possible to create SAEs of arbitrary depth. 

FIGURE 1. Example of SAE formed by two single AEs. 

AEs are stacked to enable greedy layer-wise learning where 
the lth hidden layer is used as input to the l+1 hidden layer in 
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â1

Output

Features II

b2

W(1),b(1) W(2),b(2)

Features I

Filtered 
SNPs



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3002923, IEEE Access

 

VOLUME XX, 2017  4 

the stack. The results produced by the SAE are utilised to pre-
train the weights of a fully connected MLPNN, rather than 
randomly initialising the weights to small values. This 
approach helps models initialise parameters near to a good 
local minimum and improve optimisation.  

This shows that smoother convergence and higher overall 
performance in classification tasks is possible using this 
approach.  

An SAE with 2,000, 1,000, 500 and 50 hidden neurons in 
each hidden layer is used during experimentation. The 
proposed SAE architecture extracts a mapping that decodes 
the input (set of SNPs) as closely as possible without losing 
significant SNP-SNP patterns. 

The SAE configuration decreases the dimensionality of the 
original data stack by stack, leading to a reduction in noise 
while preserving the most important information for MLPNN 
tuning. The complexity of this approach is that it is difficult to 
determine what SNPs contribute to classification accuracy. 
ANN models in general are very difficult to interpret. 
Therefore, SAEs are combined with association rule mining to 
describe what SNPs and associated interactions contribute to 
classification results. 

F. ASSOCIATION RULE MINING (ARM) 
Association rules are implemented to reveal biologically 
relevant associations between SNPs. If SNPs frequently 
appear together, there is an underlying relationship between 
them. Exploring the intrinsic relationships in the data is 
performed using frequent pattern mining (FPM). This 
technique extracts all frequent itemsets from a dataset, which 
are then used to generate association rules. In the proposed 
method, the idea is to extract important rules identified in cases 
and controls separately. 

Using association rule mining, frequently occurring SNPs 
as items are identified (itemsets) in different individuals as 
transactions. In other words, individuals are transactions, 
SNPs are items, and SNP combinations are itemsets. Single 
SNPs tend to have small effect sizes in polygenic diseases. 
Therefore, by looking at the joint effect of multiple SNPs, 
explanatory power can be increased. 

Typically, ARM assumes a common strategy for 
decomposing mining problems into two principal subtasks: 1) 
Frequent itemset generation and, 2) rule generation.  

Itemsets are sets of k-items where k starts with 1 to infinity. 
Unnecessary itemset candidates are produced if at least one of 
its subsets is infrequent. Hence, the frequent itemset 
generation is equipped with pruning steps to eliminate k-
itemset candidates based on a minimum support threshold. 
Support is the number of transactions that contain a particular 
itemset. 

Frequent itemsets are independent sets of SNPs (itemsets) 
in the Geisinger MyCode dataset whose support is greater than 
or equal to a given minimum support threshold . Itemsets 
whose support count is lower than the minimum  are 

removed. This strategy based on support measures is termed 
support-based pruning. 

Once frequent itemsets have been obtained the generation 
of association rules is performed. Association rule mining 
discovers sets of SNPs that frequently occur together in the 
MyCode dataset and creates a relationship between those 
SNPs in the form X →Y. This relationship implies that when 
X occurs it is likely that Y also occurs. Such a relationship is 
called an association rule. An association rule is defined as an 
implication of the form X→Y, where X, Y ⊆ I and X ∩ Y = ∅. 
X refers to the left-hand side (LHS) or antecedent of the rule, 
Y is the right-hand side (RHS) or consequent, and I is a set of 
items. 

Given a set of transactions T, ARM searches for all the rules 
with support ≥  and confidence ≥  where  and  are the 
corresponding minimum support and confidence thresholds. 
Support and confidence are formally defined as (5) and (6) 
respectively. 

   (5) 

   (6) 

Rules are generated from each of the frequent k-itemsets. 
Hence, the total candidate association rules produced can be 
up to 2k–2, excluding those that are null in the antecedent (X) 
or consequent (Y). 

The significance of the association rules is measured in 
terms of their support and confidence although other interest 
measures such as lift or Chi-Square can be used to validate 
rules. The support of a rule is the probability that the samples 
in a dataset contain both X and Y. Rules with very low support 
may occur by chance, therefore, support is an important 
measure that can be used to eliminate unimportant rules. 
Confidence of a rule, on the other hand, is the probability that 
a case contains Y given that it contains X. It provides an 
estimate of the conditional probability of Y given X, P(Y|X). 
1) APPRIORI ALGORITHM 
The generation of association rules is conducted using the 
Apriori algorithm [12]. The Apriori algorithm performs a 
breadth-first search (BFS), enumerating every single frequent 
itemset by iteratively generating candidate itemsets. Candidate 
itemsets of length k are generated from k-1 itemsets. The 
support of every candidate itemset is calculated iteratively 
where itemsets with support values under a defined threshold 
are disregarded.  

To manage the very large number of discovered association 
rules, the patterns are filtered, grouped and organized. This is 
a crucial step to focus on the most interesting association rules. 
Nearly all search algorithms rely on support-based pruning. If 
an itemset X is not frequent (given a minimum support), then 
none of its supersets Y ⊃ X can be frequent. This property is 
known as anti-monocity of the frequency. Furthermore, if the 
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support value is set too low (close to 0), a large number of 
spurious rules are generated. This makes the problem 
computationally intractable. Conversely, if the value for 
support is too high (close to 1), a very small number of rules 
(or no rules at all) are extracted, which means several 
significant rules could be missed. Accepting or rejecting 
spurious patterns (rules) is known in statistics as type 1 and 
type 2 errors respectively. To reduce type errors, the traditional 
support-confidence framework is replaced by a support-
dependence framework.   

Standard minimum support and confidence measures set by 
the user are employed by the algorithm to prune uninterested 
association rules. However, the minimum frequency and 
confidence requirements do not guarantee statistical 
dependence or significance. Hence, it is also possible to add 
additional objective interest measures to each rule, e.g. the P-
value threshold computed using the Chi-square test or Fisher’s 
exact test to evaluate the significance of the rules. 
2) ADDITIONAL INTEREST MEASURES 
Limitations with support-confidence based rule mining [30] 
has resulted in other interestingness measures to evaluate the 
quality of the patterns identified. Examples of these measures 
are lift, P-value thresholds computed using the Chi-square test 
or Fisher’s Exact test, and a collection of other objective 
symmetric and asymmetric interestingness methods [30]. In 
this study, those described previously are used in addition to 
lift and Chi-squared to determine significant rules, as they 
allow us to measure which rules are more correlated. 

Lift or interest, is a symmetric measure which divides the 
rule’s confidence by the support of the itemset in the rule 
consequent as shown in (7). It can be used to analyse the 
relativity of association rules mined and for measuring how 
many times more frequently X and Y occur together than 
expected under statistically independent conditions. Lift 
indicates a positive correlation between X and Y when its value 
is greater than one, negative correlation when its value is lower 
than one, and independence when lift is equal to one. As an 
example, a lift(X→Y) > 1 indicates that the appearance of X 
promotes the appearance of Y, resulting in a positive correlated 
rule. Thus, the higher the lift, the stronger the positive 
correlation and the more dependent the SNPs are. In this paper, 
only positive correlated rules are of interest 

 (7) 

Finding measures that can be used with lift to make the best 
selection of rules is crucial. Despite the numerous alternatives 
for expressing the dependence between the antecedent and the 
consequent of an association rule, the classic Chi-square test 
statistic ( ), can be used to determine the statistical 
significance level of association rules [31]. Thus, rules can be 
pruned in case of independency, meaning that the itemsets 
(SNPs) in the rule are not correlated.  helps deciding 
whether items in the rules are independent of each other, but it 

is not useful for ranking purposes by itself. The standard Chi-
squared test statistic ( ) is defined as: 

  (8) 

 is a summed normalized square deviation of the 
observed values from the expected values. An important fact 
about the Chi-square test is that it can be used to calculate the 
P-value to determine the significance level of the rule. For 
instance, if the P-value of the rule is lower than 0.05, that is a 

 value higher than 3.84, we can tell that X and Y are 
significantly dependent and, therefore, the rule X→Y can be 
considered for subsequent analysis. This is one way to identify 
the direction of a rule when summarizing unpruned rules, by 
the type of correlation the rules have, as similarly performed 
by lift (positive correlation, negative correlation or 
independence). To some extent,  improves the traditional 
framework of the interestingness measure provided by lift. 

A combination of different interest measures is necessary to 
assess the strength and the dependency of the antecedent and 
consequent of the rules. Discovered associations are pruned to 
remove non-significant rules, and then a special subset of the 
unpruned associations forms a summary of the discovered 
associations which represent candidates for epistatic 
interactions. 
3) REDUNDANCY  

Redundancy elimination tasks can be beneficial to reduce 
complexity by identifying smaller sets of more general rules 
which are easier to interpret than larger complex, and 
frequently overlapping rules. Rules are considered redundant, 
if a more general rule or rules with the same or higher 
confidence values are present. Formally, for X’ subset of X, a 
rule X →Y is redundant if, 

   (9) 

The idea is to find statistically significant rules after support 
and confidence pruning, in addition to redundant rule 
elimination. For this reason, several assumptions have been 
considered to rank the rules. First, the rules must be common 
in, at least, 60% of the individuals. Second, the higher the 
confidence the more likely it is for Y to be present in 
transactions that contain X. According to this, a support value 
of 0.6 and a confidence value of 0.8 are used to generate rules 
in this study. 

G. MODEL PERFORMANCE 
The exactness of a classification can be evaluated by 
computing a contingency table. In this study, classifier 
performance is assessed through sensitivity (SE), specificity 
(SP), gini, logloss, area under the curve (AUC) and mean 
squared error (MSE) as performed in [32], [33]. Classifiers 
with good predictive capacity possess SE, SP, gini and AUC 
values close to 1 with logloss and MSE values close to 0. 
Additionally, hyperparameter optimisation is performed using 
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random search [34].  Random search has proven to be as good 
as, or even better than, pure grid search when applied to 
ANNs, saving computational time [34]. This is true since 
random grid search can effectively search a larger, and often 
less promising, configuration space. 

III. RESULTS 
In this section, the results are presented using the proposed 
methodology outlined above. This is reported in four 
experiments conducted after QC and association analysis 
(Statistical filtering): 1) Baseline classification with GLM 
using SNPs with P-value < 1x10-2; 2) MLPNN classification 
using SNPs with P-value < 1x10-2; 3) SAE-based 
classification using non-linear SNP-SNP interactions with P-
values < 1x10-2; and 4) our proposed approach, SAERMA . 

Genotype data for 960 cases and 1,223 control subjects 
were analysed. After QC, a total of 240,950 variants and 1,997 
individuals passed subsequent filter analysis and QC. Among 
the remaining phenotypes, 879 are cases and 1,118 are 
controls. These are used to conduct association analysis of 
extreme obesity trait as a statistical filtering approach. The 
results from association tests with P-value < 1x10-2 are 
considered, resulting in a subset of 2,465 SNPs. The resulting 
outcomes are therefore, considered as hypothesis generating. 

A. GLM CLASSIFICATION 
The first experiment conducted following QC and association 
analysis utilises classification tasks and the filtered SNPs 
(2,465). Before conducting experiments with more complex 
approaches such as ANNs or SAEs, classification is 
performed with a generalised linear model (GLM) [35].  

Four different sets of SNPs (5, 32, 248 and 2,465 SNPs) 
were derived using different P-value thresholds as indicated in 
Table 1, and used to train a GLM to classify extremely obese 
and non-obese observations. The data set is split randomly into 
training (60%), validation (20%) and testing (20%). 

TABLE 1 
SET OF SNPS SELECTED 

Set P-value Number of SNPs 
1 1x10-5 5 
2 1x10-4 32 
3 1x10-3 248 
4 1x10-2 2,465 

 
Regularisation parameters alpha and lambda were tuned, 

and the optimal values were obtained using a random search. 
Based on empirical analysis, alpha and lambda values for set 
1 (alpha=0.5 and lambda=0.00598), set 2 (alpha=0.5 and 
lambda=0.00204), set 3 (alpha=0.5 and lambda=0.00970) and 
set 4 (alpha=0.5 and lambda=0.00151) produced the best 
classification results. 

Using optimised F1 threshold values 0.3527, 0.4532, 
0.3969 and 0.6684 the results in the validation set were 
obtained as shown in Table 2 for 5 SNPs (1x10-5), 32 SNPs 

(1x10-4), 248 SNPs (1x10-5) and 2,465 SNPs (1x10-2) 
respectively. 

TABLE 2 
PERFORMANCE METRICS FOR VALIDATION SET 

Set SE SP Gini LogLoss AUC MSE 

1 0.8723 0.2819 0.2563 0.6619 0.6281  0.2348 

2 0.6862 0.7225 0.5010 0.5865 0.7505  0.2004 

3 0.8298 0.8194 0.8081 0.3938 0.9041  0.1261 

4 0.7606 0.9383 0.8317 0.3841 0.9158  0.1150 

 
The performance metrics for the test set are shown in Table 

3. These metric values were obtained using optimised F1 
thresholds 0.2893, 0.4533, 0.2368 and 0.4665 for 1x10-5, 
1x10-4, 1x10-3 and 1x10-2, respectively. 

TABLE 3 
PERFORMANCE METRICS FOR TEST SET 

Set SE SP Gini LogLoss AUC MSE 

1 0.9774 0.0909 0.2145 0.6736 0.6073 0.2404 

2 0.9548 0.2440 0.4186 0.6185 0.7093 0.2153 

3 0.9548 0.6316 0.7798 0.4119 0.8899 0.1350 

4 0.8531 0.9043 0.8725 0.3288 0.9362 0.0976 

 
The ROC curve comparison depicted in Fig. 2 is used as a 

graphical performance measure to summarise the predictive 
performance of the GLM models. The cut-off values for the 
false and true positive rates using the test set are shown in each 
of the ROC curves for the different implemented classifiers. In 
this first evaluation, there is a clear deterioration in 
performance as the number of SNPs decreases (P-value 
threshold increases).  

 
FIGURE 2: ROC curves for the test set using GLM models trained with 
different P-value thresholds. 

Note that SNPs with conservative P-value thresholds are an 
indication of how significant associations are. This 
demonstrates the limitations of the most significant SNPs in 
classifying case-control samples. The highest performance 
was obtained with 2,465 SNPs and the lowest with 5 SNPs. 
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B. MLPNN CLASSIFICATION 
Using the statistical filtering results in Table 1, an MLPNN is 
trained and used for classification analysis using the same 
performance metrics. For each MLPNN model, the network 
architecture and associated regularization parameters were 
tuned. This was achieved using random search and a 
maximum of 200 models. Model training is stopped when the 
logloss value fails to improve by at least 1% (stopping 
tolerance) for two scoring events (stopping rounds). The 
adaptive learning rate ADADELTA [36] was used for 
stochastic gradient descent optimisation, with parameters rho 
and epsilon set to 0.99 and 1x10-8 respectively, to balance the 
global and local search efficiencies. 

To prevent overfitting, stability and improved 
generalisation, Lasso (L1) and Ridge (L2) regularisation, and 
input dropout ratio are all tuned. L1 only allows strong weights 
to survive, L2 prevents them from getting too big and input 
dropout ratio regulates the number of neurons randomly 
dropped in the input layer - hidden dropout ratios do the same 
in hidden layers. Based on empirical analysis, these 
configurations produced the best results. 

The performance metrics for the validation set are provided 
in Table 4. The results show the four SNP configurations in 
Table 1, using optimized F1 threshold values 0.2674, 0.4463, 
0.3551 and 0.8084, respectively. 

Table 5 shows the performance metrics for the test data 
using optimised F1 thresholds 0.2675, 0.2157, 0.4312 and 
0.6303 for 1x10-5, 1x10-4, 1x10-3 and 1x10-2, respectively. The 
results are generally lower than those achieved with the 
validation set but, in some cases, not by much. 

TABLE 4 
PERFORMANCE METRICS FOR VALIDATION SET 

Set SE SP Gini LogLoss AUC MSE 

1 0.9415  0.1806  0.2556 0.6606  0.6278 0.2342  

2 0.6915  0.7490  0.5117 0.5828  0.7558 0.1987  

3 0.8564  0.8194 0.8474 0.3510  0.9237 0.1120  

4 0.9628  0.9780 0.9923 0.0883  0.9961 0.0259  

TABLE 5 
PERFORMANCE METRICS FOR TEST SET 

Set SE SP Gini LogLoss AUC MSE 

1 0.9943 0.0622  0.2074  0.6750  0.6037 0.2410 

2 0.9491  0.2871  0.4331 0.6151  0.7165 0.2140 

3 0.9039 0.7942  0.8512  0.3476  0.9256 0.1094  

4 0.9548  0.9761 0.9878  0.1061  0.9938 0.0291  

 
The ROC curves in Fig. 3 illustrate the cut-off values for the 

false and true positive rates using the test set. There is a clear 
deterioration in performance as the number of SNPs decreases 
(P-value threshold increases). In this instance, the results 
highlight the limited predictive capacity of highly ranked 
SNPs when discriminating between case and control samples. 

 
FIGURE 3. ROC curves for test set using the MLPNN trained with 
different P-value thresholds 

C. EPISTATIC INTERACTIONS USING STACKED 
AUTOENCODERS 
In this evaluation, a SAE configuration is utilised to learn the 
deep features that exist in a subset of 2,465 SNPs (P-value < 
1x10-2), to capture information about important SNPs and the 
cumulative epistatic interactions between them. A layer wise 
approach is adopted by stacking four single layer AEs with 
2,000-1,000-500-50 hidden units, where the original 2,465 
SNPs are compressed into progressively smaller hidden 
layers. The final SAE hidden layer is used to initialise the 
weights of an MLPNN. The data set is again randomly split 
into training (60%), validation (20%) and testing (20%), while 
hyperparameter tuning is performed through random search. 

To measure the performance, each MLPNN classifier was 
initialized using different compressed unit configurations 
obtained from the SAE. Performance metrics for the validation 
and test sets are provided in Table 6 and Table 7 respectively. 
Using 2,000 hidden units, an optimised F1 threshold value of 
0.4977 is assigned to extract the validation set metrics as 
indicated in Table 6.  

TABLE 6 
PERFORMANCE METRICS FOR VALIDATION SET 

Layers SE SP Gini LogLoss AUC MSE 

1 AE 0.9202 0.9383 0.9608 0.1817 0.9804 0.0547 

2 AEs 0.8404 0.9383 0.9034 0.2889 0.9517 0.0848 

3 AEs 0.8670 0.8899 0.8828 0.3146 0.9414 0.0963 

4 AEs 0.9202 0.5771 0.6976 0.4776 0.8488 0.1593 

  AE = Auto Encoder 
 
Successive layers of the SAE are used to initialise and fine-

tune the remaining MLPNN models with 1,000, 500 and 50 
hidden units respectively and F1 threshold values 0.6188, 
0.4978 and 0.2701 for each of the remaining models 
respectively. 

Table 7 shows the performance metrics obtained using the 
test set. Optimised F1 threshold values 0.5363, 0.3356, 0.3899 
and 0.4615 were used to obtain these metrics with models 
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trained on 2,000, 1,000, 500 and 50 compressed input units 
respectively. 

TABLE 7 
PERFORMANCE METRICS FOR TEST SET 

Layers SE SP Gini LogLoss AUC MSE 

1 AE 0.9491 0.9330 0.9499 0.1956 0.9750 0.0540 

2 AEs 0.9152 0.8756 0.9102 0.2948 0.9551 0.0875 

3 AEs 0.9096 0.8756 0.9005 0.2851 0.9502 0.0872 

4 AEs 0.7853 0.7990 0.7036 0.4769 0.8518 0.1563 

AE = Auto Encoder 
 

The cut-off values for false and true positive rates in the test 
set are depicted in Fig. 4. The ROC curves show a gradual 
deterioration in classifier performance as the initial 2,465 
features (SNPs) are progressively compressed to 50 hidden 
units in the SAE. Despite the observable deterioration, the 
results remain high with 50 compressed hidden units. This is 
in stark contrast to the P-value approach adopted in the 
previous experiments with GLM and MLPNN without SAE 
weight initialisation. 

 
FIGURE 4. ROC curves for the test set using trained models with the 
different compressed units considered for the SAE. 

D. SAERMA: STACKED AUTOENCODER RULE MINING 
ALGORITHM 
In the final experiment QC, association analysis, rule mining, 
SAE and MLPNN classification are combined to form the 
SAERMA algorithm. Classification analysis in this 
experiment was conducted using a second feature selection 
step based on ARM. Rule mining allows us to find the most 
frequent SNPs (from the 2,465 SNPs considered) among 
individuals in cases and controls and then extract rules from 
them. The top 10 rules identified using the Apriori algorithm 
in cases and controls are listed in Table 8 and Table 9.  As 
shown in Supplemental Material, Figure S1 a) and b) in File 
1, these rules can be plotted to provide insights through rule 
inspection.  

Items from the rules (SNPs) are utilised as input features in 
our SAE for deep feature extraction (which includes the 
relationships between SNPs) and to initialise the weights of an 
MLPNN before fine-tuning for classification analysis. By 

adjusting support and confidence parameters in the rule 
generation process, the number of rules can be increased or 
decreased. This, in turn, impacts the performance of the SAE-
MLPNN models generated for feature extraction and 
classification tasks. The results in this section are, therefore, 
derived from the SNPs contained within the most significant 
rules extracted with support = 0.6 and confidence  = 0.8 as 
discussed in this paper. These are the lowest interest measure 
values which allow rule generation without overloading the 
system used in this study. 

TABLE 8 
TOP 10 RULES IDENTIFIED IN CASES 

# Rule   Lift  

1 {rs12053340_C_D} => {rs1527944_T_D} 0.61 1.00 1.640 870.6 
2 {rs1046724_T_D} => {rs7448421_C_D} 0.61 1.00 1.637 879.0 
3 {rs13171869_T_D} => {rs1046724_T_D} 0.61 0.99 1.628 849.8 
4 {rs13171869_T_D} => {rs7448421_C_D} 0.61 0.99 1.628 849.8 
5 {rs2073950_A_D, rs2301621_A_D} => {rs10849949_C_D} 0.61 0.99 1.625 858.2 
6 {rs2832503_G_D} => {rs977779_C_D} 0.62 1.00 1.622 879.0 
7 {rs12315146_A_D, rs2301621_A_D} => {rs2073950_A_D} 0.60 1.00 1.622 826.1 
8 {rs2301621_A_D} => {rs10849949_C_D} 0.61 0.99 1.622 854.1 
9 {rs2073950_A_D} => {rs10849949_C_D} 0.61 0.99 1.622 854.1 
10 {rs11682173_T_D} => {rs11692215_T_D} 0.61 0.99 1.619 845.9 

TABLE 9 
TOP 10 RULES IDENTIFIED IN CONTROLS 

# Rule   Lift  

1 {rs10501544_C_D} => {rs12280583_T_D} 0.61 1.00 1.637 1105.5 
2 {rs10828296_G_D, rs11593316_T_D} => {rs6482203_A_D} 0.61 1.00 1.635 1089.0 
3 {rs10828296_G_D, rs1926690_G_D} => {rs6482203_A_D} 0.60 1.00 1.635 1084.9 
4 {rs7171993_G_D} => {rs3743121_A_D} 0.61 1.00 1.630 1113.8 
5 {rs10828296_G_D} => {rs6482203_A_D} 0.61 1.00 1.630 1097.1 
6 {rs11593316_T_D, rs6482203_A_D} => {rs1926690_G_D} 0.61 1.00 1.627 1080.7 
7 {rs10828296_G_D, rs11593316_T_D} => {rs1926690_G_D} 0.60 1.00 1.627 1072.6 
8 {rs6482203_A_D} => {rs1926690_G_D} 0.61 0.99 1.615 1059.8 
9 {rs10828296_G_D} => {rs1926690_G_D} 0.60 0.99 1.613 1047.6 
10 {rs2042867_T_D, rs4979935_T_D} => {rs735638_G_D} 0.60 1.00 1.604 1013.7 

 
Several classification tasks are conducted using the top 300, 

200, 100 and 50 rules from the ARM analysis, which 
corresponds to 204, 161, 124, and 92 SNPs respectively. To 
accomplish this, the SNPs from each set of rules are 
compressed using SAEs as conducted in the previous 
experiment (See section III C). However, this time by utilising 
three AEs instead of four (since the number of input features 
was considerably lower), with a variable number of hidden 
units. The number of AEs and hidden neurons are arbitrarily 
selected to gradually reduce the number of initial features. The 
final layers of the SAEs are then utilised to initialise the 
weights of the MLPNNs before being fine-tuned for 
classification tasks.  

In Fig. 5 the AUC values for the different classifiers are 
depicted. The different colours in the plot correspond to the 
different AEs (compression layers) considered in the stack, 
where the first, second and third layers are represented in blue, 
orange and green respectively. These results demonstrate that 
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the classifier is not randomly assigning labels to the samples 
(AUC > 50%). 

 
FIGURE 5: AUC values for the different classification analyses 
conducted for the top 300, 200, 100 and 50 rules. 

Table 10 contains the best classifier performance values for 
the test set using the SAE and SNPs from the top 300, 200, 
100 and 50 rules. In this instance 204 SNPs are compressed 
using the following layer configuration: 150-100-50. 
Nevertheless, using two AEs (150-100) achieved the best 
results. Similarly, 161 SNPs are compressed using a 125-75-
50 layer configuration, 124 SNPs are compressed using a 90-
50-25 layer configuration, and 92 SNPs compressed using a 
75-50-25 configuration. 

TABLE 10 
BEST RESULTS FROM SAERMA USING THE TEST SET 

Top 

Rules 
Layers SE SP Gini LogLoss AUC MSE 

300 150-100 0.77 0.68 0.53 0.58 0.77 0.20 

200 125 0.74 0.66 0.47 0.61 0.74 0.21 

100 90 0.69 0.66 0.42 0.62 0.71 0.22 

50 75-50 0.77 0.63 0.45 0.62 0.73 0.21 

 
Sensitivity, specificity and AUC values presented in Table 

10 are depicted in Fig. 6. This represents the best results 
obtained with SAERMA. 

 
FIGURE 6. Best results AUC, SE and SP from SAERMA. 

IV. DISCUSSIONS 
GWAS can identify common variants with modest to large 
effects on phenotypes. However, in GWAS studies, SNPs 

are independently tested for association with phenotypes, 
without considering the epistatic relationships that exist 
between genetic variants. Hence, a novel methodology was 

considered in this study, in which QC and association analysis, 
performed in GWAS, are combined with ARM and DL 
stacked autoencoders to detect epistatic interactions between 
SNPs. A multilayer feedforward artificial neural network 
classifier is initialised using SNPs and epistatic information 
learned by the DL SAE (guided and interpreted by ARM), to 
classify case-control samples from the eMERGE MyCode 
dataset. The complete network models the epistatic effects of 
SNP perturbations while ARM provides model interpretation. 

In the first experiment, following QC and association analysis, 
the capacity of the filtered SNPs to discriminate between case 
and control samples using a GLM was evaluated. Results 
indicate that GLM can accurately identify case and control 
individuals using 2,465 features (SNPs) with an AUC of 94% 
(SE = 85%, SP = 90%, Gini = 87%, Logloss = 0.3288 and 
MSE = 0.0976) when using the test set, as shown in Table 3. 
Although AUC values remained high when 248 and 32 SNPs 
were used as input features (see Table 3), specificities 
deteriorate when the number of SNPs is reduced. The major 
limitation with GLM models, however, is that it is not possible 
to model interactions between SNPs. 

In order to address this, the second evaluated experiment 
modelled MLPNNs. MLPNNs are non-parametric models 
capable of capturing complex non-linear relationships 
between dependent and independent variables through hidden 
nodes. Using an MLPNN classifier with the rectifier activation 
function with dropout regularisation and genetic variants with 
P-value < 1x10-2 (2,465 SNPs) it was possible to obtain SE = 
95%, SP = 98%, Gini = 99%, LogLoss = 0.1061, AUC = 99% 
and MSE = 0.0291. In contrast, using 5 SNPs (P-value < 1x10-

5) resulted in a significant performance drop (SE = 99%, SP = 
0.6%, Gini = 21%, LogLoss = 0.6750, AUC = 60% and MSE 
= 0.2410)., indicating that the model was unable to correctly 
recognise actual negative cases (i.e. non-obese individuals).  

Acceptable results were obtained using MLPNNs with 
2,465 and 248 SNPs, with high AUCs and relatively balanced 
SE and SP values as shown in Table 5. However, compared 
with the GLM experiment, specificities deteriorate when the 
number of input features reached 32 or less. These results 
reveal that MLPNNs achieve overall better results than GLM, 
probably due to the nonlinear nature of the interactions 
occurring between SNPs.  

While the MLPNN can learn and capture epistatic 
information, a high number of features are required to achieve 
good performance. It is not clear to what extend those SNPs 
interact and what proportion of the data actually represents 
noise. Investigating this further, autoencoders were used to 
determine if a low-dimensional representation of our input 
data (2,465 SNPs) could be achieved, while retaining all 
relevant information. This helps to remove any redundant 
features with a particular focus on epistasis. 

Therefore, in the third experiment, a set of 2,465 SNPs (P-
value < 1x10-2) and four single layer AEs were implemented 
to compress SNPs through 2,000-1,000-500-50 hidden units. 
The best result with the test set was obtained using 2,000 
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hidden units (SE = 95%, SP = 93%, Gini = 95%, Logloss = 
0.1956, AUC = 97% and MSE = 0.054057) and a rectifier 
activation function with dropout regularisation. Conversely, 
the worst result was achieved when the features were 
compressed to 50 hidden units (SE = 78%, SP = 80%, Gini = 
70%, Logloss = 0.476864, AUC = 85% and MSE = 0.156315), 
which are still encouraging. See Table 7 for details. 

Although a gradual deterioration in performance is 
observed, the classifier performance is still high even with 50 
units, over 85% AUC with SE = 78% and SP = 80% with no 
evidence of overfitting. This supports our previous argument 
and shows that there is significant noise within the initial 2,465 
SNPs. This, thus, demonstrates the potential of the proposed 
deep learning methodology to abstract large, complex and 
unstructured data into latent representations capable of 
capturing the epistatic effect between SNPs in GWAS.  

Sensitivities and specificities are generally more balanced – 
for example, compare the results in Table 5, for 32 SNPs (P-
value < 1x10-4), where SE = 95% and SP = 29% with those in 
Table 7, for 2,000-1,000-500-50, where SE = 79% and SP = 
80%. In addition to SE, SP and AUC values, SAEs also 
improved Gini, Logloss and MSE values when compared with 
models using a similar number of input features. More 
importantly, the results obtained using SAEs with 50 hidden 
nodes are close to those achieved with 248 SNPs using the 
GLM and MLPNN. A summary of these results is shown in 
Table 11. 

TABLE 11 
RESULT COMPARISON FOR GLM, MLPNN AND SAE USING 248, 248 AND 

50 FEATURES RESPECTIVELY IN TEST SET 

Model Feat. SE SP Gini LogLoss AUC MSE 

GLM 248 0.95  0.63 0.78 0.41  0.89 0.13  

MLPNN 248 0.90  0.79  0.85 0.35  0.93 0.11 

SAE 50 0.78  0.80 0.70  0.48  0.85 0.16  

 
The SAE experiment provides a novel approach for feature 

extraction and classification tasks, using latent information 
extracted from high-dimensional genomic data. This allows us 
to screen individuals with higher predisposition to obesity. 
However, compressing the features using SAEs alone makes 
it difficult to identify which of the 2,465 SNPs contributes to 
the compressed hidden units. This is a well-known problem in 
neural networks where model interpretation is difficult to 
achieve. In order to address this issue, the final experiment 
combines the strength of SAE and ARM via the Apriori 
algorithm, to provide an interpretation of the DL networks 
utilised in this study. 

ARM is more transparent than other machine learning 
algorithms as it provides knowledge based explanative rules, 
serving therefore as a white-box model. Hence, this approach 
allows us to investigate relevant epistatic patterns and 
determine the direction of associations between SNPs, while 
SAE and MLPNN classification provides an objective 
performance measure to validate the models ARM produces. 

These are tightly correlated in that altering the interest 
measures (support and confidence) in ARM impacts on the 
performance metrics of the SAE and MLPNN models.  

In the rule generation process, redundant rules are removed 
to alleviate the high number of rules being generated in the 
rule mining which aids computational efficiency. Although lift 
values for all the top 10 rules in cases and controls were 
slightly higher than 1, the dependency of the rules was 
supported by very high values of . The inference made by 
an association rule does not necessarily imply causality. 
Counterwise, it suggests a strong relationship between SNPs 
in the antecedent and consequent of the rule. Hence, ARM 
results need to be carefully interpreted. 

The rules generated help to reveal new insights in obesity 
as a complex disease. While the genes in rules 1, 2, 3, and 4 in 
cases have not been associated with obesity, the genes in rules 
5 to 10 reveal something different. In fact, the ATXN2 gene 
present in rules 5, 7, and 9 has been involved in severe early 
onset obesity in children [37]. In rule 7, the ATXN2 gene also 
interacts with the MAPKAPK5 gene, which has shown 
gender-dependent differences in anxiety-related processes and 
locomotor activity in mice [38]. A weak but positive 
association between anxiety and obesity in humans has been 
reported, although further studies were recommended in [39]. 
Furthermore, the GRIK1 gene in rule 6, has been reported as 
a novel obesity candidate gene that may contribute to highly 
penetrant forms of familial obesity [40]. Finally, the gene 
AFF3 in rule 10, has shown associations with triglycerides in 
Asian populations [41].  

One of the possible reasons why obesity related variants 
within the genes FTO or MC4R were not identified in any 
stages of the proposed methodology may be due to the effect 
of removing a very large number of variants by using stringent 
thresholds in the per-marker QC step. It is known that 
statistical power to detect a SNP of a given effect via GWAS 
increases with both sample size and the density of genetic 
variants across the genome. In this study, the sample size is 
relatively small (1,997 individuals after QC) and the density 
of markers was also reduced considerably (240,950 SNPs after 
QC). In the top 10 rules identified in cases, the genetic variants 
identified within or close to the SGOL2, AOX1, ZNF354B, 
ZFP2, ATXN2, MAPKAPK5, GRIK1 and AFF3 genes form 
interactions. Four of these genes have implications with 
obesity related traits (ATXN2, MAPKAPK5, GRIK1 and 
AFF3) whereas SGOL2, AOX1, ZNF354B, ZFP2 have not 
previously been associated with obesity. In Table 12, the SNPs 
within the top 10 rules in cases have been summarised. The 
table includes five columns with information about the SNP 
ID, risk allele, overlapped or closest gene, whether it has been 
previously associated with obesity related traits or not, and the 
name of the related trait in cases of previous association. 

After rule mining was applied to the filtered SNPs (2,465 
SNPs), several classifiers were pre-trained with the 
compressed units extracted from the top 300, 200, 100 and 50 
rules. For each set of rules, their SNPs (forming the rules) were 
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used as input features for several SAEs. Then, the MLPNN 
classifiers were initialised and fine-tuned with the final hidden 
layer of the SAE. The best results are presented in Table 10. 

TABLE 12 
SUMMARY OF GENETIC VARIANTS IDENTIFIED USING ARM IN CASES OF 

OBESITY 

SNP ID Allele Gene 
Previous 
Assoc. 

Related trait 

rs12053340 C SGOL2 No - 

rs1527944 T AOX1 No - 

rs1046724 T ZNF354B No - 

rs7448421 C ZNF354B No - 

rs13171869 T ZFP2 No - 

rs2073950 A ATXN2 Yes 
Severe early onset 
obesity 

rs2301621 A ATXN2 Yes Severe early onset 
obesity 

rs10849949 C ATXN2 Yes 
Severe early onset 
obesity 

rs2832503 G GRIK1 Yes Familial obesity 

rs977779 C GRIK1 Yes Familial obesity 

rs12315146 A MAPKAPK5 Yes 
Anxiety-related 
processes and 
locomotor activities 

rs11682173 T AFF3 Yes Triglycerides 

rs11692215 T AFF3 Yes Triglycerides 

 
In the first set of 300 rules with 204 SNPs, the best result in 

the test set was achieved when the input features were 
compressed to 100 units, with an AUC of 77%, SE = 77%, SP 
= 68%, Gini = 53%, Logloss = 0.5769 and MSE = 0.1968, as 
shown in Table 10. Although a higher AUC was achieved with 
a single AE and 150 hidden units (AUC = 78%, SE = 80%, SP 
= 63%, Gini = 56%, Logloss = 0.5770 and MSE = 0.1952), the 
sensitivity value was inferior. In these situations, it is up to the 
expert/clinician to decide whether it is more important to 
detect cases of obesity more accurately than normal 
individuals. However, in this study, the capacity of our 
proposed solution to detect cases and controls in a balanced 
manner has been prioritised. This means that results with a 
balanced SE and SP and high AUC were selected. 

Using the top 200 rules (161 SNPs) and the above criteria, 
the best result in the test set was accomplished when a single 
AE and 125 hidden units were used as input for the MLPNN 
classifier (see Table 10). The classifier achieved an AUC = 
73% with SE = 74% and SP = 66% (Gini = 47%, Logloss = 
0.6099 and MSE = 0.2104). 

Using the top 100 rules with 124 SNPs, it was possible to 
achieve 71% AUC with 69% sensitivity and 66% specificity 
(Gini = 42%, Logloss = 0.6231 and MSE = 0.2167) by 
compressing 124 SNPs down to 90 units. 

Finally, the models trained with the lowest number of 
features (92 SNPs from the top 50 rules) achieved the best 
classification results using a 75-50 layer configuration (See 

Table 10). This model reached an AUC value of 73% with 
sensitivity and specificity values of 77% and 63% respectively 
(Gini = 45%, Logloss = 0.6178 and MSE = 0.2142).  

Even though the best results were achieved in the largest set 
of SNPs (300 rules), we observed that some of the models 
were able to compress the features down to 50 hidden units 
and get over 70% AUC, as can be seen in Fig. 5. Additionally, 
the AUC, SE and SP values from the best models achieved by 
SAERMA are depicted in Fig. 6. The results indicate that there 
is not much variation between the performance values (AUC, 
SE and SP) among classifiers despite the reduction in the 
number of SNPs and hidden units within the AEs. 

Therefore, the best overall result from the different 
classifiers was AUC = 77%, attained by 100 compressed units 
from the top 300 rules as can be observed in Table 10. The 
classifier was able to classify obese individuals (SE = 77%) 
more effectively than normal samples (SP = 68%). These 
results can be achieved with a maximum of 204 SNPs 
although the SAE is able to reduce noise and achieve that 
value (AUC = 77%) with 100 hidden neurons (this is a 50.99% 
reduction in the feature space). However, it is not possible to 
accurately determine which of those 204 SNPs correspond to 
the 100 compressed hidden neurons.  

For a more granular mapping of the interactions between 
SNPs, we can refer to the top 50 rules result (92 SNPs), where 
the input was compressed to 50 hidden units (see Table 10). 
Even though dimensionality reduction in this case affects the 
performance of the classifier with respect to the best result 
(using 204 SNPs), the SE value remains the same (77%), while 
SP is reduced by 0.05% and AUC by 0.04 %. Thus, it is true 
to say that the 50 hidden nodes representing epistatic 
interactions can be interpreted using the 92 SNPs selected by 
ARM. Although this does not represent a full interpretation of 
the results obtained using SAEs, the approach presented in this 
paper provides a close approximation of the epistatic 
interactions that likely occur in the MyCode data. 

The best overall performance was achieved by the SAE 
using 204 SNPs. Hence, utilising SNPnexus [42] it was 
possible to query the 204 SNPs and report the overlapped or 
closest genes according to the GRCh37 assembly. A table 
containing genomic annotations for the 204 SNPs reported in 
this study has been included in the supplemental material 
(Table S1 in File 2). It is expected that these findings will help 
future researchers to better understand how epistasis in obesity 
occurs using genome-wide data, providing candidate SNPs to 
investigate obesity further. 

V. CONCLUSIONS AND FUTURE WORK 
Overall, the results in this study highlight the benefits of 
using deep learning stacked autoencoders to detect epistatic 
interactions between SNPs in genomic data and how these 
can be used to model MLPNNs to classify obese and non-
obese observations from the eMERGE MyCode dataset. This 
contributes to the computational biology and bioinformatics 
field and provides new insights into the use of deep learning 
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algorithms when analysing GWAS that warrants further 
investigation. However, the minute non-linear 
transformations of the input space that occur in the 
autoencoders, makes it is very difficult to trace the amount 
of variance they contribute from case-control data. This is a 
common problem in neural network modelling that seriously 
hinders genomic analysis. To aid with this issue, association 
rule mining was used in combination with stacked 
autoencoders. This allowed us to identify patterns in the form 
of rules which represent interactions between a filtered 
subset of SNPs. The benefits of incorporating rule mining to 
the proposed pipeline were twofold. First, it allowed us to 
generate significant rules and plot their interactions. Second, 
feeding the stacked autoencoders with the most significant 
rules allowed us to obtain dynamic classification 
performances by adjusting the number of rules generated in 
the rule mining process, serving thus as a validation and 
interpretation technique for epistatic feature extraction in the 
neural network utilised in the study. Adjusting support and 
confidence coefficients to increase the number of rules also 
requires more computational complexity. Therefore, in this 
study only rules generated with support and confidence 
values of 0.6 and 0.8 respectively were presented. This 
allowed us to empirically produce the best results without 
reaching computational overload with the resources 
available. 

While work exists in biological analysis of variants that 
alter functional regulatory elements (i.e. elements that 
control gene expression and DNA) using deep learning 
methods [15] and epistasis analysis based on frequent 
itemset mining using the Apriori algorithm [13], to the best 
of our knowledge this research is the first comprehensive 
study of its kind that combines GWAS quality control and 
logistic regression with association rule mining and deep 
learning stacked autoencoders for epistatic-drive GWAS 
analysis and case-control classification. 

Several novel contributions have been provided using the 
proposed methodology. However, there are still areas for 
improvement. In future work, biological validation of the rules 
identified by SAERMA needs to be provided. A common 
approach to achieve this is via gene set enrichment analysis 
which is based on the functional annotation of gene sets. Any 
identified rules including more than one gene involved in a 
particular pathway can be considered potential true obesity 
epistasis. Moreover, spatial information such as chromosome 
arm or gene neighbourhood may be considered as additional 
features to tease out the epistatic interactions between genes 
on the same chromosome. This will add spatial context for the 
associations discovered by SAERMA Overall, the results in 
this study highlight the benefits of using deep learning stacked 
autoencoders to detect epistatic interactions between SNPs in 
genomic data and how these can be used to model MLPNNs 
to classify obese and non-obese observations from the 
eMERGE MyCode dataset. This contributes to the 
computational biology and bioinformatics field and provides 
new insights into the use of deep learning algorithms when 
analysing GWAS that warrants further investigation. 

However, the minute non-linear transformations of the input 
space that occur in the autoencoders, makes it is very difficult 
to trace the amount of variance they contribute from case-
control data. This is a common problem in neural network 
modelling that seriously hinders genomic analysis. To aid with 
this issue, association rule mining was used in combination 
with stacked autoencoders. This allowed us to identify patterns 
in the form of rules which represent interactions between a 
filtered subset of SNPs. The benefits of incorporating rule 
mining to the proposed pipeline were twofold. First, it allowed 
us to generate significant rules and plot their interactions. 
Second, feeding the stacked autoencoders with the most 
significant rules allowed us to obtain dynamic classification 
performances by adjusting the number of rules generated in 
the rule mining process, serving thus as a validation and 
interpretation technique for epistatic feature extraction in the 
neural network utilised in the study. Adjusting support and 
confidence coefficients to increase the number of rules also 
requires more computational complexity. Therefore, in this 
study only rules generated with support and confidence values 
of 0.6 and 0.8 respectively were presented. This allowed us to 
empirically produce the best results without reaching 
computational overload with the resources available. 

While work exists in biological analysis of variants that 
alter functional regulatory elements (i.e. elements that control 
gene expression and DNA) using deep learning methods [15] 
and epistasis analysis based on frequent itemset mining using 
the Apriori algorithm [13], to the best of our knowledge this 
research is the first comprehensive study of its kind that 
combines GWAS quality control and logistic regression with 
association rule mining and deep learning stacked 
autoencoders for epistatic-drive GWAS analysis and case-
control classification. 

Several novel contributions have been provided using the 
proposed methodology. However, there are still areas for 
improvement. In future work, biological validation of the rules 
identified by SAERMA needs to be provided. A common 
approach to achieve this is via gene set enrichment analysis 
which is based on the functional annotation of gene sets. Any 
identified rules including more than one gene involved in a 
particular pathway can be considered potential true obesity 
epistasis. Moreover, spatial information such as chromosome 
arm or gene neighbourhood may be considered as additional 
features to tease out the epistatic interactions between genes 
on the same chromosome. This will add spatial context for the 
associations discovered by SAERMA. 
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