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Abstract 

Since the United States Coast Guard (USCG) reported in 1993 that human factors had 

essentially caused approximately 80% of maritime accidents and near misses, there has 

been an overwhelming understanding that human factors play a significant role in a 

considerable number of incidents or catastrophes by triggering chain events. 

The work has initially documented a literature review underlining human factors in 

maritime accidents, mental workload study and functional Near-Infrared Spectroscopy 

(fNIRS) technique to imply how it can be studied for human factors in maritime 

transportation. It investigates how different risk factors generate an impact on different 

types of human-related maritime transportation accidents using a data-driven approach, 

and how mental workload influences neurophysiological activation and decision- making 

of seafarers by conducting an experimental study in bridge simulation.  

The results of the developed models formalise the causal interdependencies between the 

risk factors with human factors perspectives and highlight the implications through 

scenario analyses. On the other hand, the findings of the fNIRS experimental study 

revealed the role of the prefrontal cortex and functional connectivity in watchkeeping and 

collision avoidance during maritime operations. 

It is concluded that the understanding of risk factors contributing to human errors will 

help reduce the risk level or eliminate the potential hazards of ships, and provide the clue 

for accident investigation and generate insights for accident prevention. Also, the 

experimental study supports fNIRS as a valuable neuroimaging technique in realistic 

situations. It examines the mental workload and functional connectivity of seafarers, 

which helps generate insights for human performance and seafarers’ training. Finally, the 

inclusion of a broader range of human factors and experimental methods shows promise 

by associating neurophysiological experiment in the maritime section.  
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Chapter 1 Introduction 

1.1 Introductory remarks 

This chapter gives a brief introduction to the research background that helps to understand 

the research necessity from a practical viewpoint. The research aims and objectives are 

stated to demonstrate the purpose of conducting this particular study, followed by the 

statement of the problem associated with human factors in the maritime transportation 

industry. Then, the thesis outline is provided to explain the logic of conducting human 

factors research within different perspectives, followed by both subjective and objective 

analyses. It is particularly innovative that the quantitative method is applied to model the 

risk factors contributing to human errors in maritime accidents. Besides, an experimental 

study integrated with neuroscience knowledge is conducted to simulate the scenario 

eliciting the neurophysiological changes of brain activities with the application of fNIRS 

and bridge simulation, which further investigates the individual factors – mental workload 

for seafarers. Meanwhile, the discussions and challenges in the research have been 

specified to demonstrate the deliverables to the knowledge and to indicate the 

achievements against the defined objectives. 

1.2 Research background 

95% of world trade by volume - raw materials, finished goods and energy supplies is 

transported by sea, and a significant amount of capital is invested in shipping (Trafford, 

2009). However, about 75-96% of marine accidents are caused, at least in part, by human 

errors (Hanzu-Pazara et al., 2008). Human error is widely accepted to cover a variety of 

unsafe acts, behaviours, omissions and hazardous conditions. Besides, the activities on 

board or off board related to seafarers or mariners are influenced by internal and external 

factors. From a study analysing the specific onboard duties and off-board entities 
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involving Greek-flagged ships, during 1993–2006, 57.1% of all accidents were attributed 

to the human element (Tzannatos, 2010). Among them, 75.8% of maritime accidents were 

detected on board, and 80.4% of the onboard human-induced accidents were linked to 

errors and violations by the ship’s master. As the ship’s master is responsible for decisions 

made on board, it is evident that the master’s errors or violations affect other crews’ 

working procedures, manoeuvring behaviours, and emergency responses, which 

illustrates the risks with respect to human and organisational factors in maritime 

transportation.  

The questionnaire survey (Safahani, 2015) emphasised some issues: 75% stated that the 

team leader should discuss the work plan with other teammates; 90% thought monitoring 

the task provides an essential contribution to effective team performance; almost 

everyone in the survey believed that communication was a significant factor, and teams 

not communicating effectively increase their risk of committing errors. It broadens the 

definitions and classifications of human factors in maritime transportation. Thus, more 

attention has been paid to these skills to better understand the human factors in maritime 

accidents.  

It is also agreed that there are numerous reasons for an individual making errors. These 

may include communication failure, ineffective training, memory lapse, inattention, 

poorly designed equipment, exhaustion or fatigue, ignorance, noisy working conditions, 

other personal and environmental factors. According to the annual report on marine 

casualties and incidents issued by European Maritime Safety Agency (EMSA, 2017), 

from a total of 1,170 accidental events during the investigations, shipboard operations 

represented the main contributing factor at 71% of the total, compared to the shore 

management. These statistics suggest the significance of studying ship officers’ 

behaviours for navigation safety.  

Not only wrong or delayed technical operational skills prevent the seafarers from 

manoeuvring effectively, but also numerous non-technical skills (NTSs) affect the 
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performance of seafarers. The seafarer in the ship bridge (deck officer) is required to 

obtain plenty of skills, especially non-technical skills, including defining problems, 

managing workload, maintaining the standards of the watchkeeping, implementing the 

best solution, responding to the changes of information, anticipating future events, 

sending information clearly and concisely, maintaining concentration, coping with 

stressors, etc. (O'Connor and Long, 2011). Therefore, they are supposed to deal with 

multi-tasks during navigation within various levels of workload over the time and 

combined tasks. NTSs of cooperation, leadership and management, situation awareness 

and decision-making, are also considered in the training and assessment in the maritime 

industry (Saeed et al., 2016). 

Also, crews working on board tend to be fewer owing to the automation revolution of 

vessels in the shipping industry. From this point of view, it is the advance in automation 

and reallocation of crew responsibility, as well as shore-based equipment and onboard 

devices, that permitted reductions in crew size (Council, 1990). In the late 1980s, 

European and Japanese governments supported greater automation, centralising 

navigation, engine control, communications, and administrative functions on the bridge 

to build the “ship operation centre”, as well as throughout the vessel. From this 

perspective, the fast pace of innovation and development in shipping is continuing 

worldwide.  

Although the automation could eliminate the trivial stuff among the high workload 

seafarers, actually it induces unknown problems, as demonstrated by the grounding of the 

Royal Majesty (the Panamanian passenger ship grounded on Rose and Crown Shoal, 

Massachusetts in 1995) and evidence from other research results (Lutzhoft and Dekker, 

2002). Automation has a prospecting expectation of human work and safety, which cannot 

merely replace human action thoroughly. Fewer crew numbers do not lead to less 

workload. There also exists an increased mental workload affecting situation awareness 

(Aguiar et al., 2015). Therefore, it is impossible that nobody is responsible for the ships. 
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More concisely, the humans will still work on monitoring, remote control, and 

maintenance, even for the high seas unmanned ships where it has to coexist with manned 

ship systems (Porathe et al., 2014). In this regard, automation in the vessel creates new 

error pathways, especially resulting from human errors, deficiencies in mission shifts, and 

postpones chances to correct errors in the system further into the future.  

It is noteworthy that human error plays an essential role in exploring maritime 

transportation safety, no matter whether in the past or the future. Many cases of maritime 

accidents, as well as near-misses, reflect the risks and issues associated with maritime 

safety. With the revolution of advanced ships or even unmanned ships, there is an 

increasing number of research papers on inter-relationships between human factors to 

imply the potential measures taken for accident preventions, as well as introducing cross-

discipline knowledge into the traditional marine safety research for new findings. 

Moreover, the practical evaluation of seafarers’ mental workload will help understand the 

risks to which seafarers are exposed and improve navigation safety. Therefore, it is 

necessary to learn lessons from the past accidents with regards to human factors and 

explore the mental demands on duty for seafarers, which helps us to understand the risks 

in maritime transportation and introduce multi-discipline knowledge to human 

performance study in the maritime field.  

1.3 Research aims and objectives 

The primary purposes of this research are to investigate how human factors combined 

with common risk factors affect the safety of maritime transportation, and how an 

individual physiological factor - mental workload - influences neurophysiological 

activation, and decision making of experienced and inexperienced seafarers.  

From the perspectives of human factors in maritime transportation, it aims at investigating 

how different risk factors generate an impact on different types of human-related maritime 

transportation accidents. Allowing for the drawbacks arising from traditional studies on 
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human errors, it proposes a novel risk assessment of the human factors contributing to 

maritime accidents. Based on recorded maritime accident reports from maritime accident 

investigation organisations, a primary database for this study is developed. Moreover, a 

data-driven approach is used for modelling. In the developed models, it formalises the 

causal interdependencies between the risk factors. Furthermore, it highlights the 

implications through scenario analyses. The understanding of risk factors contributing to 

human errors will help reduce the risk level or eliminate the potential hazards of the novel 

ship in the future, and provide the clue for accident investigation and generate insights 

for accident prevention. 

From the above human factors research derived from accident reports and works of 

literature, there is insufficient evidence to study individual factors which do not exist or 

contain limited information in the raw database, but are associated with the mental 

workload for seafarers. This research has to find a way to obtain the evidence of the 

mental workload of seafarers to support the hypothesis of the study. Therefore, it 

investigates how the mental workload induced by scenarios in the ship bridge influences 

neurophysiological activation and whether there is a difference between experienced and 

inexperienced seafarers. In order to understand the neurophysiological activation of the 

brain and the relations to human performance, an experimental study is designed and 

conducted for mental workload research. The results support fNIRS as a valuable 

neuroimaging technique, which can be used in realistic situations and reveal the role of 

the prefrontal cortex in watchkeeping and decision-making mental workload analysis of 

deck officers on a ship bridge. It examines changes in functional connectivity in the brains 

of seafarers and helps understand the relations between workload and human performance, 

which helps generate insights for seafarers’ training and certification. 

In order to achieve the research aims, the objectives are addressed as follows: 

 To obtain the primary data representing frequencies of risk factors directly derived 

from maritime accident reports. 
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 To analyse the risk factors in maritime accidents. 

 To incorporate human factors into causational analyses to maritime accident types. 

 To develop a historical accident data-driven approach to train prior probabilities in 

the risk-based BN. 

 To conduct an empirical study to provide insights for the prevention of a particular 

type of accident involving human errors.  

 To design and conduct the experimental study aiming to study the mental workload 

of seafarers and the behavioural performance using fNIRS technology. 

 To explore the patterns of functional connectivity in the dorsolateral prefrontal cortex 

(DLPFC) of experienced and inexperienced seafarers. 

1.4 The statement of the problem 

Ship accidents are caused by various types of failures, e.g. deck officer error (26%), 

equipment failure (9%), structural failure (9%), crew error (17%), mechanical failure 

(5%), among others. (Guedes Soares and Teixeira, 2001). Since the USCG reported in 

1993 that human factors had essentially caused approximately 80% of maritime accidents 

and near misses, there has been an overwhelming understanding that human factors play 

a significant role in a considerable number of incidents or catastrophes by triggering chain 

events. Also, Branch et al. (2004) disclosed that watchkeeping manning levels and 

individuals’ abilities to discharge duties were essential factors resulting in collisions and 

groundings. In order to study human factors in maritime transportation and analyse 

mental workload for seafarers in watchkeeping, the research questions are generated to 

ensure that the research objectives are met, and the methodological points are specified, 

which are shown as: 
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 What are the common human factors in maritime transportation? 

 What are the most appropriate methods for analysing and evaluating the risk factors 

associated with human factors within the limited maritime transportation accidents, 

and how to implement the proposed methods? 

 How to obtain the raw data to generate the database for human factors analyses? 

 How to model the risk factors for human-related maritime transportation?  

 What is the mental workload of seafarers on board, and how to quantify them? 

 How mental workload influences neurophysiological activation? 

 How to design the experiment for the measurement of mental workload and 

neurophysiological activation? 

 How to reveal the decision-making of experienced and inexperienced seafarers in the 

experimental study within a ship bridge simulator? 

To analyse human factors, the maritime accident database is used as one of the most 

valuable sources to obtain the primary data, including the global database like Global 

Integrated Shipping Information System (GISIS) (Pristrom et al., 2016), and the historical 

accident data collected from local maritime administration (Zhang et al., 2016). However, 

such databases contain less detailed and comprehensive information than the extractions 

from maritime accident reports. From this perspective, previous studies relying mainly 

on the secondary database, e.g. GISIS, were unable to present primary information from 

accident reports. Unlike the secondary database, investigation reports from public 

accident investigation organisations provide the navigational circumstance, process of the 

failure chain, environmental information, direct or indirect causes of the accidents, and 

the actions taken during the accidents. Even the hidden potential hazards and causal 
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relations between various factors are demonstrated in some or part detail. However, few 

studies have utilised accident reports to obtain the raw data for risk factors and conduct 

human factors analyses due to the time-consuming process of extracting the context data 

from each report. Even studies utilising accident reports provided a small number of 

report sources and limited content of the risk factors, for example, 131 accident reports 

reviewed by Uğurlu et al. (2015b) and 27 collision reports reviewed by Chauvin et al. 

(2013).  

Secondly, human factors have complex causal relations with each other. Lema et al. (2014) 

applied a K-means clustering method to indicate that human factors coexist with the 

condition of a ship and other external factors. It was widely accepted that human factors 

were associated with a variety of unsafe actions, behaviours, omissions and hazardous 

conditions, and the human element was a critical factor in maritime accidents (Antão and 

Guedes Soares, 2008). The annual report on marine casualties and incidents issued by 

European Maritime Safety Agency (EMSA, 2019) stated that, from a total of 4,104 

accident events analysed during the investigations, 65.8% were attributed to a human 

actions category and 20% to system/ equipment failures. These statistics suggest the 

significance of studying seafarers’ shipboard operations for navigation safety. Besides the 

operational skills, non-technical skills (NTS) of co-operation, leadership and 

management skills, situation awareness and decision-making, are also considered in the 

training and assessment in the maritime industry (Saeed et al., 2016). Much attention has 

been paid to the risk analysis of accidents’ causes related to human factors. Celik and 

Cebi (2009) proposed a Human Factors Analysis and Classification System (HFACS) 

approach to identify human factors in shipping accidents. It revealed the hierarchy 

structure of human factors and the logic relations within the structure. Chen et al. (2013) 

modified the HFACS to make it more applicable to maritime accidents (i.e. HFACS-MA 

model), to comprehensively describe Human and Organisational Factors (HOFs) in the 

maritime sector. However, these given frameworks of HOFs illustrate several levels, but 

do not contain the patterns of risk factors contributing to human errors or the 
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interdependencies between each factor. It calls for a methodology to incorporate human 

factors into maritime accident analysis, combined with common risk factors, and to 

generate new insights on critical human factors contributing to different types of accidents. 

Thirdly, studying the human factors from these accident experiences or accident reports 

probably omits significant individual factors, e.g. mental workload, fatigue, stress, which 

is highly related to the human performance but cannot be reflected in the report recording 

or be described and quantified appropriately by words. Moreover, the research on patterns 

of the neurophysiological activation and behavioural performance of seafarers remains in 

blank space. In order to understand how mental workload influences neurophysiological 

activation and decision-making of experienced and inexperienced seafarers, it is 

necessary to develop an experimental study to quantify and measure mental workload and 

neurophysiological activation. The practical evaluation of the seafarer’s workload will 

help understand the risk exposed to seafarers and improve navigation safety. 

1.5 Scope and outline of the thesis 

The research scope is set up to surround the core of the thesis, which offers integrated 

methods to identify the subjective and objective human factors, model the 

interdependency among Risk Influence Factors (RIFs), and proposes an experimental 

study on human factors using bridge simulation for maritime transportation. The proposed 

methods consider both subjective and objective ways concerning human factors and are 

combined with multi-discipline knowledge. Incorporating human factors into risk 

analysis for maritime accidents and applying fNIRS technology into seafarers’ mental 

workload study, are particularly innovative, when being used to support the methodology 

of analysing human factors in maritime accidents, compared to the traditional human 

reliability research primarily based on the experts’ knowledge or limited secondary data. 

This research provides a perspective to understand the inter-relationships among RIFs 

and changed patterns of brain activities of seafarers when faced with navigational duty. A 
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graphical flowchart is presented in Figure 1.1 for outlining the structure of the thesis 

followed with the identification of research gaps, development of research, experimental 

study, and discussion. The thesis layout is highlighted and explained as follow. 

Chapter 1

Introduction

Chapter 2

Literature review

Chapter 3

Research methodology and 

approaches adopted

Chapter 4

Identification of risk factors 

Chapter 5

Analysis of maritime 

transport accidents

Chapter 6

Incorporation of human 

factors into maritime 

accident analysis

Chapter 7

Mental workload analyses for seafarers in 

the ship bridge

Chapter 8

Functional connectivity analyses for 

seafarers 

Chapter 9

Discussion and conclusion

 

Figure 1.1 The structure of the thesis 

This thesis is compiled in ten chapters. Following the introduction of the research process 

as presented in Chapter 1, Chapter 2 offers the first attempt at broadly understanding the 

human factors in maritime accidents, and discussing the state-of-the-art human reliability 

and neurophysiological research. Thematic analyses are conducted to gather the 

fragmental information to provide a systematic description of the research. It reviews the 

human factors in maritime accidents, risk assessment of HOFs, decision making theories, 

functional Near-Infrared Spectroscopy application in the field. From this perspective, it 
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is evident that the human factors in maritime transportation influence the performance of 

seafarers and affect transportation safety. Besides, it finds that practically conducting 

human reliability research within novelty methodology and neurophysiological 

knowledge in maritime transportation are a fertile area emerging from growing challenges. 

The distinctive gaps existing in current literature provide a future research agenda. 

In Chapter 3, the approaches adopted in the research are presented and discussed. It lays 

down the foundation for the study by indicating the main philosophical views behind the 

research methodologies. The multi-discipline knowledge is provided to reveal the overall 

plan and the priorities of the research. Furthermore, the chapter describes the 

methodologies of BN modelling and the neurophysiological methods, which are 

employed to identify, extract, quantify, and analyse human factors and seafarers’ mental 

workload. 

To identify the risk factors contributing to human errors in maritime transportation, 

Chapter 4 aims at analysing the human errors from the maritime accidents which 

happened from 2012 to 2017, and generating the contributing factors that influenced the 

human errors revealed in the reports and from the literature. From this perspective, it is 

evident that the common factors contributing to human errors existing in accident reports 

have valuable meaning for the shipping risk analysis and evaluation. Also, it will help 

reduce the risk level or eliminate the potential hazards of the novel ship in the future, and 

benefit the revolution of ship automation and innovation.  

Based on the risk factors screened from Chapter 4, Chapter 5 aims at investigating how 

different risk factors generate an impact on different types of maritime accidents in terms 

of likelihood. Manual case by case analysis of recorded maritime accidents from the 

Marine Accident Investigation Branch (MAIB) and the Transportation Safety Board of 

Canada (TSB) that occurred from 2012 to 2017 is undertaken to develop a primary 

database to support this study, as they are among the most representative from the 

literature (Chauvin et al., 2013, Graziano et al., 2015, Kum and Sahin, 2015). A Bayesian 



 

12 

 

Network-based approach is proposed to analyse accident types in maritime transport. The 

results highlight the implications through scenario analyses. 

Besides, there is another BN model developed for the RIFs influencing maritime 

accidents in the perspective of human factors. Chapter 6 investigates how human factors 

combined with factors in Chapter 5 affect maritime accidents in the perspective of risk 

analysis. It proposes a novel risk assessment of the human factors contributing to 

maritime accidents. Based on recorded maritime accident reports in Chapter 5, a primary 

database is extended. Using the extended database, the Tree Augmented Network (TAN) 

model is developed to construct BN structure and train the data, so as to propose a data-

driven BN-based approach for accident analyses accounting for inter-relationships among 

RIFs. It highlights the implications by providing a plausible explanation for the observed 

conditions.  

From a neurophysiological perspective, an experimental study is conducted in Chapter 7 

to analyse the mental workload and neurophysiological activations of seafarers in the ship 

bridge. It is done with simulated watchkeeping tasks in a maritime bridge simulator and 

using fNIRS to measure neurophysiological activation. Research using this technique 

provides further support for the activation of the DLPFC as a result of mental workload. 

It investigates when and how the mental workload induced by scenarios in the ship bridge 

influences neurophysiological activation and whether there is a difference between 

experienced and inexperienced seafarers, which may generate insights for seafarers’ 

training and certification in the future. 

In Chapter 8, it further analyses the functional connectivity of the brain area by 

conducting an experimental study. The functional connection between pairs of brain 

regions demonstrates the temporal correlation of regional haemodynamic. Thus 

symmetric correlation matrices are obtained of all pairwise combinations of channels in 

Chapter 7, followed by a reasonable method on choosing the threshold applied to the 

matrices, so as to create the cross-correlation matrix to represent these data in a 
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visualisation. In this way, it is supposed to demonstrate the patterns of brain activity for 

the watchkeeping and decision-making process, and explore an association between 

measures of functional connectivity and performance outcomes in an applied, safety-

critical scenario. 

Chapter 9 discusses the contributions of the research to the field, and highlights the 

novelty of the findings of the above chapters by adopting approaches in Chapter 3. It 

corresponds to the research gaps in Chapter 2. Then it briefly summarises the research 

objectives achieved and suggests the future work opportunities arising from the proposed 

methods. It highlights the research findings on the human factors analyses, modelling of 

the risk factors contributing to human errors, and the neurophysiological knowledge from 

the experimental study in all previous chapters. The research findings have been 

disseminated through academic publications in research journals and at international 

conferences making contributions to academic and industrial areas for further research on 

human factors in maritime transportation.  

1.6 The novelty of the study 

The novelty of the study lies in: 

 It reveals new features including new primary data directly derived from maritime 

accident records by two major databanks, MAIB and TSB from 2012 to 2017; also, 

the quantification of the extent to which different combinations of the factors 

influence each accident type.  

 It proposes BN-based risk analysis approaches to analyse the risk factors influencing 

maritime transport accidents. The network modelling the interdependency among the 

risk factors is constructed, then validated by sensitivity analysis.  

 It incorporates human factors into causational analysis concerning different maritime 
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accident types, and generates new insights on critical human factors contributing to 

different types of accidents using a historical accident data-driven approach. It also 

pioneers the analyses of various impacts of human factors on different maritime 

accident types.  

 It investigates how mental workload influences neurophysiological activation of 

seafarers, which has not been used in maritime scenarios. This was done with 

simulated watchkeeping tasks in a maritime bridge simulator, and using fNIRS 

technology to measure neurophysiological activation. It demonstrates the developed 

scenarios which distracted the ship officers at specific points, which is the common 

task requiring temporal mental workload in the real world.  

 It explores the decision-making mental workload analysis of deck officers on a ship 

bridge, which fulfils the blank space of application of the fNIRS technique in 

maritime transportation. And it reveals the patterns of brain activity of seafarers in 

different groups, which is evident to be one of the promising directions of multi-

discipline research related to human factors. 

1.7 Concluding remarks 

The following are the most significant remarks comprised in the chapter, and emphasised 

in the form of bullet points for the reader’s ease: 

 Human error is widely accepted to cover a variety of unsafe acts, behaviours, 

omissions and hazardous conditions. Although the automation in the shipping 

industry leads to fewer crew on board by eliminating the trivial stuff among the high 

workload seafarers, it probably induces problems and issues associated with human 

factors. Therefore it is necessary to learn lessons from past accidents with regards to 

human factors, which helps understand the risks in maritime transportation. 
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 Mental workload influences neurophysiological activation and decision-making of 

experienced and inexperienced seafarers. The practical evaluation of seafarers’ 

mental workload will help understand the risk to which seafarers are exposed and 

improve navigation safety. Therefore it is necessary to explore the mental demand on 

duty for seafarers, which helps explain human performance study in the maritime 

field using multi-discipline knowledge. With respect to individual factors and 

cognitive demands for seafarers during navigation, there is scanty research on mental 

workload for seafarers with neuroscience and psychophysiological perspectives.  
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Chapter 2 Literature review 

2.1 Introductory remarks 

This chapter presents the process of carrying out a structured and comprehensive 

literature review in terms of human factors in maritime accidents, the evaluation of risk 

methods utilised in human reliability research, as well as new technologies derived from 

other transportation fields. The fragments of separate investigations are gathered within 

the research domain to provide critical insights into addressed human factors and mental 

workload. An emerging trend of using the technique - functional Near-Infrared 

Spectroscopy - for brain activity in the transport field, is also reviewed in a relatively broad 

range of research fields, in order to facilitate its further application in human factors study. 

The identified research gaps indicate the valuable points of additional work, which are 

used to clarify the research conducted in the following chapters. 

2.2 Background information 

In the late 1980s, European and Japanese governments supported greater automation, 

centralising navigation, engine control, communications, and administrative functions on 

the bridge to build the “ship operation centre”, as well as throughout the vessel. From this 

perspective, the fast pace of innovation and development in shipping is continuing 

worldwide. It is the advance in automation and reallocation of crew responsibility, as well 

as shore-based equipment and onboard devices, that permitted reductions in crew size 

(Council, 1990). Although fewer crew are on board with the automation in the shipping 

industry, there are increasing risks and pathways for maritime accidents with human 

factor perspectives.  

Human factors in this work are risk factors derived from unsafe actions or omissions of 

people, which are associated with human, ship, organisation, and environment. They not 
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only reflect interactions with human’s performance, response, and decision making, but 

also explain the pattern of failure chains and the clue of investigation on maritime 

accidents or near misses. 

The maritime system is a human-machine system, and about 75-96% of marine accidents 

are caused, at least in part, by human errors (Hanzu-Pazara et al., 2008). Human error is 

widely accepted to cover a variety of unsafe acts, behaviours, omissions and hazardous 

conditions. SAFETY-II perspectives see human as a necessary resource that provides 

solutions to the potential problems rather than a hazard or problem to be fixed in the 

systems, with the purposed of ensuring that “as many things as possible go right” rather 

than “as few things as possible go wrong” (Hollnagel et al., 2015). The SAFETY-II 

assumes that everyday performance variability provides the adaptations that respond to 

varying conditions, and hence is the reason why things go right. From these perspectives, 

SAFETY-II is based on the agreement that human factors behind the incidents and 

accidents are complex and correlated with each other, so as the adaptations from everyday 

performance variability work well (Schröder-Hinrichs et al., 2012). In this way, human 

factors spread into a large number of causative factors in accidents.  

From a study analysing the specific onboard duties and off-board entities involving 

Greek-flagged ships, during 1993–2006, 57.1% of all accidents were attributed to the 

human element (Tzannatos, 2010). The old view of human error treats it as a cause of 

accidents (Dekker, 2014). To explain the failure, it is important to find people’s mistakes 

and wrong decisions. However, the new view of human error sees it as a symptom of 

deeper trouble in the system. To explain the failure, it is necessary to find how people’s 

assessments and actions made sense at the time, instead of trying to find where people 

went wrong (Dekker, 2014). Woods (2010) emphasises that the enemy of the safety is not 

the human, but a complex story of how people succeed and sometimes fail in the way to 

get success. It cares human error after the fact. In addition, it is also agreed that there are 

numerous reasons for an individual making errors. These may include communication 
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failure, ineffective training, memory lapse, inattention, poorly designed equipment, 

exhaustion or fatigue, ignorance, noisy working conditions, other personal and 

environmental factors. The questionnaire survey (Safahani, 2015) emphasised these 

issues: 75% stated that the team leader should discuss the work plan with other teammates; 

90% thought monitoring the task provides an essential contribution to effective team 

performance; almost everyone in the survey believed that communication was a 

significant factor, and teams not communicating effectively increase their risk of 

committing errors. 

2.3 Human reliability in maritime field 

As one of the most significant factors causing maritime accidents, the elimination or 

minimisation of human error is vital in the process of navigation and operation on board. 

The naval system is a human-machine system. Various studies have been conducted on 

human errors and human factors in maritime transportation from different perspectives to 

illustrate the causal evolution from human errors to maritime accidents.  

For human errors research, there are Human Reliability Analysis (HRA) methods that 

focus on the quantification of human operations (Precondition of human and contexts 

error). HRA is developed from engineering risk analysis and aims to predict likely failure 

event sequences quantitatively to analyse human factors in maritime accidents; error 

frequency and expert opinion have been used to predict reasons behind such accidents 

(Kirwan, 1994).  

At the beginning, human reliability analysis methods assign a probability of failure of a 

human operator in performing tasks (Zio, 2009), including the Technique for Human 

Error Rate Prediction (THERP) (Swain and Guttmann, 1983), Accident Sequence 

Evaluation Program (ASEP) (Swain, 1987) and Human Cognition Reliability (HCR) 

(Hannaman et al., 1985). However, none of these studies went beyond individual human 

errors to consider personnel, situational or organisational factors. Consequently, this HRA 
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approach has been developed further.  

Latterly, methods including the Cognitive Reliability and Error Analysis Method 

(CREAM) (Hollnagel, 1998), considering the situational influences on human errors with 

local conditions and task-specific factors to categorise errors, and A Technique for Human 

Error Analysis (ATHEANA) (Cooper et al., 1996), try to model the relationship between 

the context and the probability of human failure (Zio, 2009). In this way, cognitive failures 

are traced back to the psychological and situational precursors with relatively fewer 

organisational conditions involved.  

In recent research of human errors in maritime transportation, Celik and Cebi (2009) 

generated a HFACS derived from the aviation field (Wiegmann and Shappell, 2017) based 

on a Fuzzy Analytical Hierarchy Process (FAHP), to identify human errors in shipping 

accidents. In line with the HFACS, as well as Reason's Swiss Cheese Model and Hawkins' 

SHEL model, Chen et al. (2013) proposed HFACS for a Maritime Accidents (HFACS-

MA) model to measure the HOFs. Some studies exist on human reliability to define 

human performance in accidents and estimate human failure probabilities (Yang et al., 

2013, Yoshimura et al., 2015, Yang and Wang, 2012). Soner et al. (2015) combined Fuzzy 

Cognitive Mapping (FCM) and HFACS to generate a proactive model in fire prevention 

modelling on board ships. Also, Systems-Theoretic Accident Modeling and Processes 

(STAMP) was proposed by Leveson (2004) based on systems theory to help engineers to 

learn all the factors related to social and organizational structures. It provided a theoretical 

foundation for the introduction of new types of accident analysis, hazard analysis, 

accident prevention strategies.  
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Figure 2.1 Human reliability analysis methods used in the maritime sector 

As the human error in maritime operations raised the public’s and industry’s concern, 

more attention has been paid to accidents’ causes related to human factors. John et al. 

(2014) proposed the methodology consisting of a FAHP, evidential reasoning (ER) 

approach, fuzzy set theory and expected utility to optimise performance effectiveness in 

seaport operation matters. It also reveals that human errors are a significant factor leading 

to the disruption of maritime operations with an enormous and long-term loss to the 

operator. Besides the concepts and theories of human errors research in naval operations, 

the investigation of human errors in maritime accident reports reveals more specific and 

realistic phenomena. There are frequent errors highlighted giving the practical human 

errors during the accidents.  

i. Firstly, it is common for seafarers or passengers not to be routinely wearing  

lifejackets or personal flotation devices (PFDs) in the process of manoeuvring or 

navigation activities. It contributes to the miss or lose of chance to survive in 

emergency. From the accident report MAIB 3-2017, the master’s intervention in 

the operation during the navigation, 14 seconds before the collision, was too late to 
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be effective. Unlike the characteristics of transportation accidents that happen on 

the road, the reaction time left for the crew working on the ship during sailing is 

considerably more before the accidents. In many cases, the master has no choice if 

the chance of intervention in manoeuvring is missed, but waiting for when the 

collision or grounding comes. 

ii. Secondly, insufficient passage planning by the command team appears commonly 

in the investigation. From the report, MAIB 20-2016, the submarine’s command 

team misidentified Karen as a merchant ship primarily because no trawl noise had 

been heard on the same bearing. In this case, the submarine’s command team did 

not take avoiding action to keep clear of Karen. It was associated with 

communication and cooperation with teammates or crew on the other ships.  

iii. Thirdly, the loss of spatial awareness was proposed in maritime accident reports. 

Psychological effects of the relative motion illusion, for example, the cognitive 

costs of transferring from a different frame of reference, cannot be ignored during 

the navigation. Apart from the situation awareness proposed in the accident reports 

(MAIB 23-2017, TSBM16P0362), several psychological factors of individuals 

emerge in the maritime accidents, according to the higher workload from electronic 

navigation devices and automation application in the ship. Moreover, MAIB began 

to investigate and study the human factors in accidents associated with the use of 

advanced electronic navigation aids and the implementation of mandated 

navigation standards (MAIB 23-2017 reports). At the same time, the errors owing 

to the management team and organisation factors were revealed. It affects the 

violation and decision-making associated with the external and internal 

environment.  

To meet the demand for human reliability in the engineering, it is essential to solve real 

problem based on theoretical principles by problem based learning (PBL) (Shekar, 2014). 

There are applications of PBL to engineering design courses (Hasna, 2008). Tse and Chan 

(2003) designed a group project for the class to designe a calculator using microcontroller, 

which provided students with cooperative learning atmosphere. Gavin (2011) applied 

PBL into civil engineering to develop problem-solving, innovation, group-working and 

presentation skills desired by graduate employers. In maritime sector, a framework was 

proposed using PBL for the final-year design project unit at Australian Maritime College, 

which facilitated the maritime design engineering undergraduates to learn human factors 

concepts and apply in design process (Abeysiriwardhane et al., 2016). Luis et al. (2013) 

used augmented reality for accessing to virtual materials including 3D models of objects 
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and devices used for measuring, manipulate or processing, and video contents explaining 

related information. It developed PBL program with mobile devices which offering a 

better and a more engaging experience for students in higher maritime education.  

2.4 Risk assessment in maritime systems and accidents 

Since the UK Maritime and Coastguard Agency (UK MCA) proposed the formal safety 

assessment (FSA) framework to the International Maritime Organization, maritime 

accident risk models have been fast developed because of the goal-setting risk regime. It 

takes into account ship conditions, organisational management, human operation, and 

hardware (Guedes Soares and Teixeira, 2001). To assess the risks in maritime systems, 

quantitative risk assessments have been conducted to analyse maritime accidents. Yip et 

al. (2015) applied the econometrics method to conclude that the number of passenger 

injuries is positively related to the number of crew injuries in ferry, ocean cruise and river 

cruise passenger vessel accidents. Talley and Ng (2016) proposed a logical approach to 

select quality-of-service measures for port cargo, vessel and vehicle services, which can 

be used as port performance indicators for evaluating the service performance of multi-

service ports. Ventikos and Psaraftis (2004) presented the relationship between an oil 

spill-assessing approach, namely the event-decision network (EDN) and the FSA to 

describe the spill-scenario analysis and to pinpoint its interconnections with the official 

instrument.  

Besides that, risk analysis of maritime accidents would benefit the decision-making 

systems onboard. Balmat et al. (2009) presented a fuzzy approach to automatically define 

an individual ship risk factor, which could be used in a decision-making system. Wu et al. 

(2018) integrated evidential reasoning and TOPSIS into group decision making for 

handling ships that are not under command. A fuzzy logic-based approach was proposed 

by Wu et al. (2019) for ship-bridge collision alert, considering ship particulars, bridge 

parameters and natural environment, which can be used for the improvement of the ship 
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handling in the bridge waterway area.  

Moreover, the causation analysis and modelling of maritime risks have been conducted 

(Wang et al., 2019, Wan et al., 2019). Kum and Sahin (2015) used Root Cause Analysis 

(RCA) to clarify the causes and applied Fuzzy Fault Tree Analysis (FFTA) for a 

recommendation to reduce the occurrence probabilities of maritime accidents. Also, 

Zhang et al. (2014a) estimated the navigational risk of the Yangtze River using the BN 

approach. Montewka et al. (2014) developed the risk framework using BN for the 

estimation of the risk model parameters.  

There are various risk methods developed for modelling in the maritime system, aiming 

at rational risk analyses. The interest in using BN as a tool in scientific risk analysis is 

continuously increasing, primarily related to its advantages in terms of learning and 

inference. According to the literature review by Weber et al. (2012), the number of 

academic papers on BN in risk analysis increased every year. Compared with other 

classical methods applied to dependability analysis, e.g. Markov Chains (MC) and Fault 

Trees (FT), BN sustains its advantages. Specifically, FT allows for calculating the 

probability by binary decision diagrams (BDD), which models the dependencies between 

events. However, it cannot represent the multiple state variables when multiple failures 

result in different consequences in a system. 

On the contrary, BN displays similar capabilities as the FT, but has additional ability to 

model a multi-state variable and several output variables. Khakzad et al. (2011) and 

Weber et al. (2012) presented a comparison of FT and BN approaches, while previous 

studies also explained how FT could be transformed into BN (Mahadevan et al., 2001, 

Bobbio et al., 2001, Trucco et al., 2008a), involving dynamic FT transformation (Montani 

et al., 2006). As far as MC is concerned, it analyses the exact probability of a failure event 

with the dependencies among variables and integrates the knowledge to represent multi-

state variables. However, system modelling tends to be sophisticated with increasing 

variables (Weber et al., 2012). In light of this characteristic, BN has required a relatively 
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low number of parameters and a small-size conditional probability table (CPT).  

BN is widely utilised in maritime risk analysis, e.g. ship navigational risk assessment, 

port safety assessment, Arctic water transportation, inland waterway transportation, and 

collision assessment (Zhang et al., 2016) (Yang et al., 2018) (Fu et al., 2016) (Baksh et 

al., 2018) (Hanninen and Kujala, 2012, Liu et al., 2016a). It is proved to be powerful to 

model maritime accidents since it enables quantitative analysis of HOFs (Akhtar and Utne, 

2014, Castaldo et al., 2016, Thieme and Utne, 2017). It explicitly reveals probabilistic 

dependencies between factors and their causal relationships. Moreover, the feature that 

BN can take advantage of experts’ knowledge makes it suitable for maritime risk 

modelling, in cases where failure data in the relevant investigations are incomplete. 

Therefore, experts’ knowledge continues to be an essential data source for shipping 

accident modelling (Fu et al., 2016, Zhang and Thai, 2016), although it is subjectivity 

associated. 

2.5 Human factors in maritime accidents  

Since the USCG reported in 1993 that human factors had primarily caused approximately 

80% of maritime accidents and near misses, there has been an overwhelming 

understanding that human factors play a significant role in a considerable number of 

incidents or catastrophes by triggering chain events. 

The preliminary findings of the literature review on human factors in maritime accidents 

are stated in Table 2.1, which demonstrate the strengths and weakness of several typical 

studies. For organisational factors, Lu and Tsai (2008) studied the influence of the safety 

culture on ship accidents, concluding that the job safety, management safety practices and 

safety training were among the top influencers. On the other hand, people surrendered the 

level of vessel safety standards to a profitable activity due to commercial pressures 

(Vinagre-Ríos and Iglesias-Baniela, 2013). It showed that increase and decrease in the 

level of ship-owners’ profits influenced the amount of risk tolerated in the ship operation. 
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From this point of view, human factors were also derived from the practices and operating 

policies established by shipping companies.  

Table 2.1 Strengths and weaknesses of the relevant research 

Researchers Journals  Strengths Weaknesses 

Lu and Tsai, 

2008 

Accident 

Analysis & 

Prevention 

Considered the organisational factors, 

and empirically evaluated the 

influence of safety climate on vessel 

accidents from a seafarer’s 

perspective 

Factors were limited, and it did 

not illustrate the interaction 

between organisational factors. 

Vinagre-

Ríos and 

Iglesias-

Baniela, 

2013 

The Journal of 

Navigation 

Mentioned the increasing incidence of 

human errors, and pointed out how 

commercial pressures of shipping 

market influence the risk behaviour of 

shipping business decision-makers. 

Did not interact with other risk 

factors 

Antão and 

Guedes 

Soares, 2008 

Reliability 

Engineering & 

System Safety 

Identified the difference in the pattern 

of human factors and other factors 

associated with high-speed crafts 

accidents, as compared with the more 

traditional ocean-going ships 

Human factors were limited to 

human tasks, including set 

speed, set heading, lookout 

planning, trip maintenance, 

engine, and others.  

Celik and 

Cebi, 2009 

Accident 

Analysis & 

Prevention 

Improved HFACS framework to 

identify the role of human factors in 

shipping accidents. Improvement of 

safety precautions in shipping 

companies 

Did not reflect the influences 

between different factors’ 

levels. 

Chen et al., 

2013 

Safety Science The use of HFACS-MA model with 

Why-Because Analysis can help 

ensure the relevant latent conditions 

and indicate the adverse influences 

between different factors’ levels. 

It needed a dedicated HOFs 

framework with particular 

items specified for marine 

accidents and the weights of 

the HOFs identified. 

Yang et al., 

2013,  

Ocean 

Engineering 

Proposed a modified CREAM to 

facilitate human reliability 

quantification in marine engineering; 

developed a quantitative human 

reliability analysis method using 

It required appropriate 

consideration of the influence 

of the common performance 

conditions with neutral effects 

in the establishment of belief 
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fuzzy Bayesian; realised real-time 

monitoring of marine engineers' 

failures under uncertainty 

fuzzy rule bases. 

Chauvin et 

al., 2013 

Accident 

Analysis & 

Prevention 

Used HFACS to identify contributory 

factors involved in 39 collisions; used 

Multiple Correspondence Analysis  

and hierarchical clustering to reveal 

three patterns of factors 

The small number of collisions 

studied but the high number of 

variables. 

Soner et al., 

2015 

Safety Science Used FCM with HFACS to propose a 

novel proactive modelling and add 

value to predicting the root causes 

revealed in various levels. 

Detailed predictions of 

suggested safety mechanisms 

will be studied in order to 

manage the operational level. 

Pristrom et 

al., 2016 

Reliability 

Engineering & 

System Safety 

Used data collected from the Global 

Integrated Shipping Information 

System (GISIS) together with expert 

judgement 

There was no detailed human 

factors data. 

Zhang et al., 

2016 

Safety Science A literature review on expert 

knowledge and BN modelling for 

shipping accidents in view of risk and 

uncertainty. 

New methods for experts’ 

knowledge elicitation should 

be developed to improve the 

model validity. 

Kim et al., 

2016 

Safety Science Conducted a STAMP-based accident 

analysis of the 2014 Sewol tragedy to 

uncover unsafe interactions among 

components leading to the hazards 

using system thinking. 

Limited extensive data from 

available resources for 

thorough analysis. 

  

Sotiralis et 

al., 2016 

Reliability 

Engineering & 

System Safety 

Proposed a collision risk model for the 

incorporation of human factors into 

quantitative risk analysis. 

Focused on calculation of the 

collision accident probability 

due to human error, with 

limited causal analysis. 

Sætrevik and 

Hystad, 2017 

Safety Science Demonstrated that inaccurate SA may 

be the proximal cause for operator 

error. 

It calls for measuring objective 

safety indicators, rather than 

the crew’s subjective risk 

assessment or self-report of 

incidents and actions. 
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Wang and 

Yang, 2018 

Reliability 

Engineering & 

System Safety 

Showed the key factors influencing 

waterway safety, including the type 

and location of the accident and 

conducted a novel scenario analysis to 

predict accident severity. 

The completeness of the data 

mined from the text case was 

arguable. It focused more on 

objective variables rather than 

human factors. 

Moreover, human factors have complex causal relations with each other. It was widely 

accepted that human factors were associated with a variety of unsafe actions, behaviours, 

omissions and hazardous conditions, and the human element was a critical factor in 

maritime accidents (Antão and Guedes Soares, 2008). Much attention has been paid to 

the risk analysis of accidents’ causes related to human factors. Celik and Cebi (2009) 

proposed a HFACS approach to identify human factors in shipping accidents, which 

revealed the hierarchy structure of human factors and the logic relations within the 

structure. Chen et al. (2013) modified the HFACS to make it more applicable to maritime 

accidents (i.e. HFACS-MA model), to comprehensively describe HOFs in the maritime 

sector. In addition, human performance defined by human reliability in accidents was 

analysed, and the human failure probabilities were estimated to assess the risk level of 

the shipping industry (Yang et al., 2013, Yoshimura et al., 2015, Yang and Wang, 2012). 

Soner et al. (2015) combined FCM with HFACS to generate a proactive model in fire 

prevention, which revealed that human factors were significant factors on board ships, 

leading to the failures of maritime operations with an enormous and long-term loss. In 

STAMP, accidents are conceived as resulting not from component failures, but from 

inadequate control of safety-related constraints on the design, development, and operation 

of the system. Kim et al. (2016) conducted a STAMP-based accident analysis of the 2014 

Sewol tragedy to uncover rationales behind the decision-makings and unsafe interactions 

among components leading to the hazards. Moreover, SA explained variation in unsafe 

actions and in subjective risk assessment (Sætrevik and Hystad, 2017). Variance in SA 

was in turn accounted for by captains’ leadership, and inaccurate SA may be the proximal 

cause for operator error. In addition, the model took into account the human performance 

in different operational conditions leading to the collision, which could be used for 
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calculation of human, economic and environmental risks (Sotiralis et al., 2016). 

To analyse human factors, the maritime accident database is used as one of the most 

valuable sources to obtain the primary data, including the global database like GISIS 

(Pristrom et al., 2016), and the historical accident data collected from local maritime 

administrations (Zhang et al., 2016). However, such databases contain less detailed 

information than the extractions from maritime accident reports. From this perspective, 

the investigation reports of maritime accidents provide the navigational circumstance, 

process of the failure chain, environmental information, direct or indirect causes of the 

accidents, and the actions taken during the accidents. Even the hidden potential hazards 

and causal relations between various factors are demonstrated in detail. However, few 

studies utilised accident reports to conduct accident and human factors analysis due to the 

time-consuming process of extracting the data from each report. Therefore, even studies 

utilising accident reports provided limited content of the data sources. For instance, 

Chauvin et al. (2013) underlined 39 vessels involved in 27 collisions derived from the 

accident reports, identifying the importance of Bridge Resource Management for 

situations of navigation in restricted waters. Chen et al. (2013) utilised the accident reports 

of selected cases from MAIB for accidents analysis providing a complement measure. 

Wang and Yang (2018) analysed all accident investigation reports by China's Maritime 

Safety Administration (MSA), to conclude the key risk factors influencing waterway 

accident severity. 

2.6 HOFs technologies and decision making theories 

Celik and Cebi (2009) proposed a HFACS approach to identify human factors and their 

hierarchy structure and the logic relations in shipping accidents. Chen et al. (2013) 

modified the HFACS to make it more applicable to comprehensively describe HOFs in 

the maritime sector. Soner et al. (2015) combined FCM with HFACS to show that human 

factors lead to the failures of maritime operations with an enormous and long-term loss. 
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The STAMP proposed by Leveson (2004) was used to conduct accident analysis by Kim 

et al. (2016). It was based on systems theory to uncovered rationales behind the decision-

makings and unsafe interactions among components leading to the hazards. 

As for one of the most common approaches used for human factors studies, BN has been 

widely applied to maritime risk analysis, including collision risk assessment (Hanninen 

and Kujala, 2012, Ma et al., 2016), human reliability analyses (Martins and Maturana, 

2013), and risk estimation (Montewka et al., 2014). Zhang et al. (2013) and Zhang et al. 

(2014a) estimated the navigational risk through FSA and BN to improve the navigational 

safety in the Yangtze River, and established the BN for the analysis and prediction of the 

congestion risk of inland waterways. Also, BN was constructed to represent the 

dependencies between the indicators and accident consequences (Zhang et al., 2016), 

revealing that the accident consequences were the most sensitive to the position where 

the accidents occurred.  

Related to BN’s learning and inference algorithms, Weber et al. (2012) pointed out that 

the number of publications on BN in risk analyses increased every year. However, the 

system modelling tends to be complicated with increasing variables, while leading to an 

apparent increase of parameters and related functions (Weber et al., 2012). Because BN 

can conduct bi-directional risk analysis, the transformation from the converging to 

diverging connections has no influence on the final BN results on risk analysis (Wang and 

Yang, 2018). That is to say, arrows’ directions can be changed appropriately to fit the 

demand of a small-size conditional probability table in BN. In this way, the BN approach 

makes it applicable to a sophisticated system.  

Moreover, BN is a competitive approach for maritime risk modelling owing to its abilities 

to utilise either expert knowledge or data-driven methods. Expert knowledge continues 

to be an essential data source for shipping accident modelling, when failure data in the 

relevant investigations are absent (Fu et al., 2016, Zhang and Thai, 2016). However, a 

data-driven BN was utilised to analyse RIFs and predict the probability of vessel detention, 
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in order to help rationalise inspection regulations for port state control practice (Yang et 

al., 2018). In light of this characteristic, BN is appropriate for modelling maritime 

accidents since it enables quantitative analyses of HOFs (Trucco et al., 2008a, Castaldo 

et al., 2016, Akhtar and Utne, 2014).  

As far as the maritime accident modelling is concerned, there are many approaches, e.g. 

Naïve Bayesian Networks (NBN), Augmented naive Bayesian Networks (ABN), and 

Tree Augmented Naive Bayes (TAN). Because the complexity of a data-driven BN 

structure super-exponentially increases with the growing number of variables in the 

network (Yang et al., 2018), NBNs are usually used in a simple network structure for the 

risk factors analyses of maritime accidents. To do so, there is a strong assumption in most 

NBN models that it has an independent node as the target node directly connected to all 

the other nodes without other links in the structure. NBN is a commonly used model 

aiming at improved classification (Friedman et al., 1997). On the other hand, in order to 

investigate the relations among risk factors considering more attributes in the network, 

NBN is not appropriate. Friedman et al. (1997) pointed out that TAN outperforms naive 

Bayes, at the same time, maintains the computational simplicity and robustness that 

characterise naive Bayes. Therefore, TAN is suitable for complex BN structure 

considering more human-related RIFs. 

In addition, research suggested that significant work remained to be done after having the 

causations identified. Yang et al. (2018) proposed a Bayesian Network-based approach to 

analyse risk factors influencing Port State Control inspections and predict the detention 

probabilities under different situations. The findings could support port authorities to 

rationalise their inspection regulations as well as the allocation of the resources. Moreover, 

human factors are significant issues among decision making in accident preventions 

accounting for multiple criteria (Othman et al., 2015). For instance, Antão and Guedes 

Soares (2019) suggested to proactively optimise accident prevention through the 

development of specific procedures for fishing vessels and training for recreation vessels’ 
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crews, and reactively reduce the consequences of occurrence through equipping more 

life-saving equipment to the areas more prone to specific accidents. However, it revealed 

limited information regarding the direct impact of a human error into an occurrence. 

Othman et al. (2015) introduced TOPSIS method to maritime accident investigation and 

found that Senior Deck Cadets (SDC) are the most affected by distractions during the 

ship's operation. From this point of view, it is worth developing a methodology to 

introduce human factors into effective decision making in accident prevention. 

Individually, the decision maker ranks alternatives after the qualitative or quantitative 

analysis of a set of criteria, and find the most desirable alternative based on the 

intersection of selected criteria (Yue, 2011). Besides, Multi Criteria Decision Making 

(MCDM) has been developed and applied to the maritime sector, especially for accident 

prevention. For instance, Hollnagel (2004) developed barrier functions and modelled 

barrier systems that will enable informed decisions for system changes for accident 

prevention rather than accident analysis. It was stated that accidents could be prevented 

through a combination of multiple criteria, including performance monitoring and barrier 

functions, rather than through the elimination of causes, which is a proactive approach. 

From this point of view, it provided insights for the recommendations in the cases of 

accidents and decision making of onboard operations for seafarers. 

The seafarer’s decision making is associated with watchkeeping duties. Watchkeeping 

concerns those cognitive control processes of decision-making and preparation for action, 

which are activated when another vessel has been located and the potential for a collision 

is apparent. Koechlin et al. (2003) described a hierarchical model of cognitive control, 

wherein selection of motor actions in response to task stimuli (sensory control) are 

informed by existing stimulus-response associations for the situational context 

(contextual control), which in turn, are determined by recall of previous experience 

(episodic control). This model hypothesised that sensory control was localized to motor 

cortex, whereas contextual and episodic levels of control were associated respectively 
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with bilateral activation of caudal (BA44/45) and rostral (BA46) regions of the lateral 

prefrontal cortex (LPC). This model was further developed by Koechlin and colleagues 

(Koechlin and Summerfield, 2007, Domenech and Koechlin, 2015) who proposed two 

methods of arbitration for executive control: (1) a peripheral system located in the 

premotor/caudal/orbitofrontal regions for action selection based on perceptual cues and 

reward values that are stable, and (2) a core system incorporating regions of the 

ventromedial, dorsomedial, lateral and polar PFC that adjust between the 

exploitation/adjustment of a previously learned behavioural set, and exploration/creation 

of new behavioural set in a variable environment. According to this model, the possibility 

of a desirable outcome via a specific behavioural task set is explored via the ventromedial 

region of the PFC. If there is a mismatch, the system reverts to the dorsomedial and lateral 

regions of the PFC to either create a new task-set or select an alternative task-set with a 

greater chance of a desirable output; for elaborated model and further explanation, see 

Koechlin (2016). 

2.7 Mental workload and functional Near-Infrared 

Spectroscopy in transportation fields 

Although the above human factors research indicates the patterns of risk factors 

influencing accidents, there is insufficient evidence to study individual factors which do 

not exist or about which only limited information is contained in accident reports or the 

literature, but are associated with the mental workload for seafarers. In order to find a 

way to obtain the evidence of the mental workload of seafarers to support the hypothesis 

of the study, a literature review has been conducted below.  

Accounting for multi tasks on duty for seafarers, understanding the cognitive demands 

and their relations to human performance during the navigation helps provide insights for 

better performance training for seafarers. Mental workload is one of the fundamental 

factors for individuals on board in some transportation fields. Moreover, it has been used 
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in a wide range of applications to evaluate task performance of operators or the practical 

aspect of system design (Ngodang et al., 2012, Dijksterhuis et al., 2011). Although mental 

workload related research has been conducted in road traffic accidents (Boyle et al., 2008, 

Rakauskas et al., 2008) and aviation transportation (Ayaz et al., 2012, Gateau et al., 2015), 

seafarers’ mental workload analysis in maritime transport is scanty (Lim et al., 2018, Fan 

et al., 2018). The mental workload has been described as being responsible for the 

majority of road traffic accidents (Dijksterhuis et al., 2011). Both high and low levels 

cause insufficient perception and attention, which in turn leads to driver errors. 

Mental workload is the amount of demands or resources requiring an operator to complete 

specific tasks. The more sophisticated the tasks, the more mental workloads are required 

to accomplish the tasks. Moreover, the mental workload is also linked to the experience 

of operators. Experienced drivers have acquired more effective automation through 

practice so that a lower level of mental workload was induced compared to novices 

(Patten et al., 2004). In the maritime sector, the majority of trainees had less workload 

when the experienced captain was present, and the latter had the highest workload levels 

while the former revealed low workload and stress because of the shared work and 

responsibility (Lim et al., 2018). Besides, neuroimaging techniques demonstrated 

increases in PFC activation with increases in mental workload (Ayaz et al., 2012). There 

is a threshold for workload, beyond which leads to worse performance and decreases in 

PFC activity (Molteni et al., 2008).  

Brain activity in the transport field has previously been measured using a range of 

techniques, including functional magnetic resonance imaging (fMRI), positron emission 

tomography (PET), and electroencephalogram (EEG). The above three techniques are 

extremely sensitive to motion artefacts, making them difficult to deal with natural 

cognitive tasks in realistic scenarios (Chiarelli et al., 2017). Typically, fMRI and PET 

have physical limitations for participants, requiring them to be in a supine position (Foy 

et al., 2016). However, along with the high sensitivity for muscle movement, the EEG 
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signal is weak during collection as it is affected by other noise. However, functional near-

infrared spectroscopy (fNIRS) is a portable technique for both simulated environment and 

real-world operation. It is more robust to motion artefacts and has a higher temporal 

resolution (Noah et al., 2015). Besides, the hardware cost of fNIRS is significantly lower 

than most functional brain imaging techniques, including fMRI, PET, and EEG (Chiarelli 

et al., 2017).  

fNIRS is an emerging non-invasive brain imaging modality for measuring and recording 

cortical haemodynamic activity (Fishburn et al., 2014). It does not need to confine the 

subject in a small space compared to fMRI, and is also able to generate montages covering 

the whole head or precisely the parts of the cortex that contain relevant activations. This 

functional neuroimaging technique can record changes in brain activation by measuring 

changes in the concentration of oxygenated and deoxygenated haemoglobin, which is 

based on the different absorption spectra of near-infrared light. It is a sensitive and 

consequent mature measurement technique for identifying different mental workloads.  

To quantify the mental workload, fNIRS is a common technique applied in real-world 

scenarios (Christian et al., 2013), as fNIRS is sensitive to the cognitive load and state and 

can be used as a viable alternative of fMRI (Fishburn et al., 2014). Brain changes 

discussed above may also be evident in changes in haemodynamic concentrations 

measured by fNIRS according to a study on the association between haemoglobin levels 

and white matter conducted by Rozanski et al. (2014). More specifically, the increases in 

prefrontal activation are associated with increases in development by using fNIRS 

(Schroeter et al., 2004, Franceschini et al., 2007), which also have been found using fMRI 

(Adleman et al., 2002). Brain activity has a linear relationship with the working memory 

load of the left and right prefrontal cortex (Fishburn et al., 2014). Statistically different 

levels of oxygenation change result from significant changes in task difficulty. However, 

smaller differences in task difficulty were not reliably differentiated in some cases (Ayaz 

et al., 2012). In this way, fNIRS can be used to design optode holders to analyse the region 
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of interest of the brain for the investigated tasks. 

2.8 Research gaps 

This chapter presents a comprehensive review of a broad range of literature and the 

available maritime accident database from the MAIB of UK and TSB of Canada 

organisations from 2012 to 2017. Because MAIB adapted European Marine Casualty 

Information Platform (EMCIP) in 2011, and since then the records on maritime accident 

reports have been in uniform style. The number of maritime accidents from two databases 

in five years is reasonable for academic research referring to literature review.  

It provides the comprehensive summaries of the research development of human errors, 

the realistic phenomena in accidents, common errors highlighted concerning human 

errors during the accidents, decision-making theories, and mental worload analysis, see 

Table 2.2.  

Table 2.2 Summarise the literature review 

Categorise Main contents 

Human reliability in maritime field 1.Human reliability analysis methods and models used in 

the maritime sector 

2.The investigation of human errors in maritime accident 

reports 

Risk assessment in maritime systems and 

accidents 

1.Maritime accident risk models have been fast developed 

2.Risk analysis of maritime accidents would benefit the 

decision-making systems onboard 

3.The causation analysis and modelling of maritime risks, 

including BN 

Human factors in maritime accidents 1.The strengths and weakness of several typical studies on 

human factors 

2.The maritime accident database used to obtain the 

primary data 

3.BN’s advantages as a competitive approach for human 

factors research 

Decision making in maritime accidents 1.The importance of introducing human factors into 

effective decision making in accident prevention 
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2.Individually, seafarer’s decision making is associated 

with watchkeeping duties 

Mental workload and fNIRS in 

transportation fields 

1.The reason why this work introduces mental workload 

into human factors study 

2.Definition of mental workload for seafarers 

3.fNIRS’s advantages and applications in transportation 

fields 

More importantly, the research on the common elements contributing to human errors in 

maritime accidents can be complicated and multi-dimensional effects given multi-

disciplines. Consequently, the studies carried out on this topic are relatively rare and can 

be developed. Based on the literature review, some research gaps are discussed as follows. 

i. Redefining the risk factors 

As stated in the maritime accident reports, there are several new factors related to human 

errors compared to the factors highlighted in the past, for example, ergonomic impact of 

ship design, unfamiliar with the automatic equipment on board, cognitive overload, lack 

of situation awareness due to the advanced devices, and over-reliance on AIS (Automatic 

identification system).  

With the development of automation in the shipping industry, fewer crew are on board. It 

is the advance in automation and reallocation of crew responsibility, as well as shore-

based equipment and onboard devices, that permitted reductions in crew size (Council, 

1990). To some extent, the automation could relieve the human errors in shipping by 

simplifying the operational procedures and raising the emergency alarm in time. However, 

it could aggravate a dangerous situation in the condition of situational awareness being 

lost or unfamiliarity with the automatic devices, even in the case of inability to terminate 

the specific automatic action of ships. Moreover, automation has a prospecting 

expectation of personal work and safety, which cannot merely replace human work 

thoroughly. Humans will still work on monitoring, remote control, and maintenance, 

especially on the high seas unmanned ships where it (automation) has to coexist with 

manned ship systems (Porathe et al., 2014). In this regard, automation in the vessel creates 
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new error pathways, primarily resulting from human errors-related factors, deficiencies 

in mission shifts, and postpones chances to correct errors in the system further into the 

future. It is noteworthy to redefine and explore the potential hazards and risks related to 

human errors to peruse safe navigation, especially associated with psychophysiological 

factors. 

ii. Incorporating quantitative methods into human errors assessment  

Integrating the primary data with the advanced quantitative BN analysis approach 

facilitates maritime accident analysis and prevention from an innovative perspective. 

Despite previous attempts at using BN to model objective data from accident reports 

(Wang and Yang, 2018), the relevant investigation relied on a small scale database 

constrained in a pre-defined water/region. It requires more experiments based on a wide 

range of maritime accident data to be conducted to generalise the finding on BN’s 

feasibility on RIF analyses and more importantly, to reveal the most critical RIF from a 

global perspective, particularly concerning different accident types. Previous studies 

relying mainly on the secondary database for RIFs identification were unable to present 

primary information from accident reports. However, the data acquisition through the 

investigation of accident reports brings new insights, which cannot be achieved from the 

existing databases. One of the research gaps of this study is to propose database for 

quantitative analysis and assessment, and to incorporate human factors derived from 

accident reports into accident analysis, combined with other external factors. 

On the other hand, compared with the studies on the probability and/or the frequency of 

maritime accidents, those addressing the relationship between risk factors and accident 

types are scanty in the literature. For example, the risk factors contributing to collision 

may be different from the risk factors contributing to sinking. It reveals another new 

feature that is the analysis of accident types in maritime transportation and a new 

understanding of differentiation among critical factors contributing to different types of 

accidents. Also, compared to the studies using expert judgements in BN construction, 
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data-driven BN in maritime risk analyses is scarce, requiring more experimental evidence 

to be collected before its wide practical applications. To fulfil this gap, the study conducts 

a data-driven BN to generate the structure of RIFs. Consequently, it will provide new 

insights into the differentiation among critical human factors contributing to each of the 

different types of accidents. 

iii. Achieving the control measures of human errors 

Literally the potential human errors during the manoeuvring procedures or navigation 

process could be mitigated at the beginning of ship design. In recent years, the innovation 

of ship development and the increasing complexity of updated manoeuvring-related 

procedures has caused more attention to be paid to the ergonomic issues of vessels, 

particularly within the bridge design. Specifically, visual blind sector ahead and motion 

illusion not only lead to inaccurate or non intuitive data and blurred information in regard 

to observing deviation, but also be vulnerable for the increasing workload and distraction 

of multi-tasks conducting which is a common phenomenon in sailing or navigation 

process. As illustrated in the MAIB 26-2013 and MAIB 03-2017, the bridge design led 

the officer on duty to sit down and then increased the potential for him to fall asleep and 

caused the pilot’s disorientation. It implies that ergonomic design should be considered 

into human factors research in maritime safety. 

Another clue to controlling the human factor risks will be in and after the process of the 

emergency. Understanding the human errors attributes benefits the intervention of people 

or automatic auxiliary system during the emergency process. It is imperative to take 

adequate measures to prevent further hazards from spreading and decrease costs for 

recovering. These issues as to how to reduce the risk level of human errors scenarios and 

the possible potential intervention remain unclear. 

iv. Neurophysiological methods for human factors research 

There is literature on the framework of human errors and human factors analyses, to 
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generate the risk assessment of human mistakes. Relevant studies (Xi et al., 2017, Akyuz 

and Celik, 2014, Chen et al., 2013) focus on the concepts of HOFs, HRA, and human 

errors, human failure etcetera. Most of such studies are unable to measure the specific 

factor changing, especially the quantitative data of psychological and physiological 

characteristics of the human responses. As the method of analysing the questionnaire or 

accident report is one of the subjective ways of data collection, novel quantitative 

methods tend to be further applied in the assessment of human errors. It is necessary for 

the proposed framework to incorporate the novel quantitative approach given multi-

discipline, for example, the cognitive load of seafarers from the psychophysiological 

domain, and the knowledge for feature extraction of human performance. Among them, 

activities of the subject's central nervous system or neurobehavioral parameters could be 

imperative to one of the novel quantitative methods. As is shown in an EEG-based 

CogniMeter system (Hou et al., 2015), emotion, mental workload, and stress using 

cognitive algorithms were detected. With the rising psychological concern, drivers’ 

workload, pressure, emotional stress and environmental stress, can also be monitored 

associated with advanced systems (Liu et al., 2016b, Fan et al., 2017). 

Physiological signals (Hou et al., 2015) are collected to quantify human factors using 

sensors like EEG, ECG, EMG, blood volume pulse, skin electrical response, and eye 

movement. However, the relationship between psychophysiological signals and human 

performance was not demonstrated. Although studies on angry driving in road 

transportation (Yan et al., 2015, Zhang et al., 2014b, Lafont et al., 2018) have been 

conducted to identify the emotional connection between drivers and behaviours, there is 

rare research on similar perspectives in the maritime field. 

Furthermore, research using fNIRS technique provides further support for the activation 

of the dorsolateral prefrontal cortex (DLPFC) as a reflection of mental workload. 

However, much of this research does not use naturalistic tasks in the maritime field, and 

none has focused on differences in DLPFC activity between experienced officers and 
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novice officers. In this regards, another research gap lies in considering more variables 

(e.g. experience, distraction) influencing the mental states of seafarers, and involves 

psychophysiological methods to design human error-oriented scenarios affecting 

seafarers’ performance and measure their mental state in association with these factors. 

Therefore, to fulfil this gap, this study investigates how the mental workload induced by 

scenarios in the ship bridge influences neurophysiological activation, which may generate 

insights for seafarers’ training and certification. 

The above demonstration presents research gaps in the current research field. Also, the 

identified research gaps indicate the valuable points of this work, which clarifies the 

research conducted in the following chapters. 

2.9 Concluding remarks 

The following are the most significant remarks comprised in the chapter, and emphasised 

in the form of bullet points for the reader’s ease: 

 The maritime system is a human-machine system, and most marine accidents are 

caused, at least in part, by human errors.  

 There are numerous reasons for an individual making errors. These may include 

communication failure, ineffective training, memory lapse, inattention, poorly 

designed equipment, exhaustion or fatigue, ignorance, noisy working conditions, 

other personal and environmental factors.  

 Automation in the vessel creates new error pathways, primarily resulting from human 

errors-related factors, deficiencies in mission shifts, and postpones chances to correct 

errors in the system further into the future. It is noteworthy to redefine and explore 

the potential hazards and risks related to human errors. 

 There are risk factors resulting in human errors in the maritime domain from 

maritime accident reports. The risk factors contributing to collision may be different 

from the risk factors contributing to sinking. A systematic procedure for searching 
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the maritime accident reports database, and selecting the reviewed reports has been 

applied. 

 Since the UK MCA proposed the FSA framework to the International Maritime 

Organization, maritime accident risk models have been fast developed because of the 

goal-setting risk regime. 

 Modelling of maritime accidents since it enables quantitative analysis of HOFs 

explicitly reveals probabilistic dependencies between factors and their causal 

relationships. 

 BN is appropriate for modelling maritime accidents since it enables quantitative 

analysis of HOFs. 

 Compared to the studies using expert judgements in BN construction, data-driven 

BN in maritime risk analysis is scarce, requiring more experimental evidence to be 

collected before its wide practical applications. 

 Physiological signals can be collected to quantify human factors using sensors like 

EEG, ECG, EMG, blood volume pulse, skin electrical response, and eye movement. 

 Mental workload is linked to the experience of operators. Experienced drivers have 

acquired more effective automation through practice so that a lower level of mental 

workload was induced compared to novices. 

 In the maritime sector, the majority of trainees had less workload when the 

experienced captain was present, and the latter had the highest workload levels while 

the former revealed low workload and stress because of the shared work and 

responsibility. 

 To quantify the mental workload, fNIRS is a common technique applied in real-world 

scenarios, as fNIRS is sensitive to the cognitive load and state.  

 Considering more variables (e.g. experience, distraction) influencing the mental 

states of seafarers, and involving psychophysiological methods to design human 

error-oriented scenarios affecting seafarers’ performance and measure their mental 

state may generate insights for seafarers’ training and certification. 
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Chapter 3 Research methodology and approaches adopted 

3.1 Introductory remarks 

This chapter discusses the research approaches, which have been implemented to reach 

the defined aims and objectives. One of the objectives is to provide a novel risk 

assessment method for defining, assessing, and analysing the risk factors in maritime 

accidents with human factors perspectives. Due to the insufficient specific data, the 

literature review and maritime accidents review are conducted to generate the raw 

database in risk identification and risk data collection. A systematic procedure for 

searching the maritime accident reports database, and selecting the reviewed reports has 

been applied. BN offers a methodological approach that learns the structure of modelling 

and describes the significant interdependencies between the RIFs. The application of the 

proposed modelling method enhances the practice of risk modelling, which can be used 

to address human factor risk effects and potential risk reduction outcomes in maritime 

accidents, see the left part of Figure 3.1.  

Another aim of this study is to investigate the mental workload and neurophysiological 

activation of seafarers during navigation duty. With this regard, it conducts an 

experimental study using the fNIRS technique. Much of the research does not use 

naturalistic tasks in the maritime field. Therefore this chapter proposes an approach to 

design the experiment, combined with functional connectivity analysis, to explore how 

the mental workload induced by scenarios in the bridge simulation influences 

neurophysiological activation. In order to illustrate the change of brain activity and its 

relations to human performance, relevant theories have been applied for the research, see 

the right part of Figure 3.1. 
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Figure 3.1 Detailed technical chapters of the work 

3.2 Identification of risk factors 

In order to review human factors in maritime transportation and common factors resulting 

in human errors, a systematic procedure for searching the maritime accident reports 

database, and selecting the reviewed reports has been applied. To begin with, it is 

necessary to conduct a systematic procedure to search the maritime accident reports and 

select the reviewed reports, referring to Macrae (2009), Chauvin et al. (2013), Uğurlu et 

al. (2015a), Wan et al. (2017). The procedure consists of three stages: (1) online database 

searching; (2) reports screening and selecting; (3) refining and analysis. In this process, 

there are 152 accident reports in MAIB and 61 accident reports in TSB from 2012 to 2017. 

In the screening process stage, the accident reports were filtered into human error-related 

accidents to ensure the representativeness and relevance of the reviewed accident reports. 

To begin with, some of the accident reports involving passengers disobeying rules or 
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drowning in the swimming pool on cruise ships, and extreme accidents which occurred 

in small fishing vessels, tugs etcetera were discarded, as their reduced manning 

requirements would easily lead to a distortion of results about the human element 

influence (Tzannatos, 2010). On the other hand, the accident reports on mechanical 

failures or severe weather without serious or obvious human errors were not to be 

screened, considering the relevance of human errors in maritime accidents. In this way, 

there are 109 accident reports extracted from 152 reports in MAIB and 52 accident reports 

obtained from 61 reports in TSB. It is noted that, on rare occasions, an accident report (4 

of 109 in MAIB) may contain two similar or related incidents or accidents from the 

database, where it is counted as one accident for analysis due to the characteristics 

similarity and information integrity. 

In the final stage, these reports had been further refined and analysed through review, 

especially the ‘safety issues’ and ‘common factors’ section in the accident reports. Some 

details of information associated with maritime accidents were involved in refining, such 

as accident report number, accident type, vessel type, a summary of accidents, date of 

occurrence. Specifically, ship operation and voyage segment of the accident were 

analysed from the MAIB database.  

This is a significant process for analysing the accident reports because human factors 

described in reports are not literally classified in the procedures of investigation, where 

more information on human errors is closely linked with near-misses or demonstrated in 

the way of “what if” sentences in reports. To summarise the human error-related factors 

among the accident reports, some descriptions including the behaviour of crews or 

seafarers and key chapters focused on direct or indirect factors of accidents were 

highlighted and extracted as the human error attributes in the study. Although some 

sentences reveal only potential hazards associated with human errors, the majority are 

stated in a causal relationship. Finally, these formulated the database of human error 

attributes in the study. The distribution of accident reports by source database, year of 
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occurrence, accident type, vessel type, ship operation, and voyage segment were 

generated. In addition, the analyses of human errors exist in accident reports and the 

common factors contributing to human errors are analysed in maritime accident reports. 

From the perspective of maritime accident human error related factors, such a thorough 

review will be valuable in the evaluation research of human error in maritime accidents 

and hence provide applicable insights in terms of reducing the risk of navigation or 

manoeuvring related to ships in the future.  

With respect to RIFs in maritime accidents, it is necessary to identify the critical factors 

from accident investigation reports. According to the filtered reports, risk factors are 

derived among them according to their appearance frequency in accident reports to 

eliminate the factors of trivial effect (i.e. appearing less than twice across all the  

searched reports). As a result, RIFs are identified for modelling in the next step. 

3.3 RIFs analysis – model structure learning 

BN is a probabilistic directed acyclic graphical (DAG) model (Pearl, 1988) for modelling 

RIFs in this study, which is composed of nodes with the links between them, representing 

variables and influences of one node on the other(s), respectively. The directional arc 

from node A to node B refers that variable A has a direct causal effect on B, representing 

conditional dependencies. In addition, the nodes that are not directly linked are 

conditionally independent of each other. A BN model usually consists of the following 

steps: data acquisition, BN structure learning, BN analysis, and sensitivity analysis and 

model validation (Zhang et al., 2013). 

3.3.1 Naïve Bayesian Network (NBN) 

Once RIFs are identified, a BN structure is to be generated by using the factors as the 

nodes. There are mainly two approaches to BN structure learning. One is based on expert 

knowledge, which is used to conduct qualitative analyses based on subjective causal 
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relationships. An alternative approach for BN structure learning is the data-driven 

approach to represent the interactive dependencies between variables. This study 

developed BN modelling by the latter data-driven method. 

As far as the data-driven approach is concerned, there are many approaches, e.g. NBN, 

ABN, and TAN. First of all, a simple network structure is used for the risk factors analyses 

of maritime accidents. Because the complexity of a data-driven BN structure super-

exponentially increases with the growing number of variables in the network (Yang et al., 

2018), NBNs are usually used. To do so, there is a strong assumption in most NBN models 

that it has an independent node as the target node directly connected to all the other nodes 

without other links in the structure. NBN is a commonly used model aiming at improved 

classification (Friedman et al., 1997).  

3.3.2 Tree Augmented Naive Bayes (TAN) 

On the other hand, a more complex structure is considered in another model, so as to 

investigate the interdependencies and relations among RIFs further. Besides, more human 

factors are considered for RIFs selection. Among many data-driven approaches, Friedman 

et al. (1997) pointed out that TAN outperforms naive Bayes, at the same time, maintains 

the computational simplicity and robustness that characterise naive Bayes.  

3.4 Quantitative methods on inter-relationships among RIFs 

In order to illustrate the inference process in the above models, as well as reveal inter-

relationships among RIFs, there are quantitative methods applied to the model, including 

mutual information, sensitivity analysis etcetera . 

3.4.1 Mutual information 

In the probabilistic theory, the mutual information is a measure of the mutual dependence 
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between two variables. It describes the amount of information obtained about one random 

variable, through the other random variables (Yang et al., 2018). Mutual information is 

also interpreted as entropy reduction, measuring the mutual dependence of different 

variables. Since the objective of this study is to identify the relationship between RIFs 

and ‘accident type’, ‘accident type’ is determined as the fixed variable in mutual 

information.  

The larger the value of mutual information, the stronger the relationship between 

individual RIF and ‘accident type’. In this way, calculating the mutual information is able 

to filter out the RIFs that are relatively less important in the model. Then the remaining 

RIFs are selected as significant variables with regards to a pre-defined accident type. 

3.4.2 Sensitivity analysis - True Risk Influence (TRI) of risk 

variables 

Based on the significant RIFs screened from mutual information calculation, there is 

another form of sensitivity analysis, e.g. scenario simulation, to determine the effects of 

different variables, particularly in a combined way. The traditional way is to set a scenario 

in which all the other nodes (apart from the investigated ones) are locked, and the target 

node is updated accordingly. It means, for example, 10% up and down for the node reveals 

the effects of the variable in the model. It is considered applicable for variables with two 

states, but not suitable for variables with more than two states. For example, when the 

state value of a bi-state variable is increased from 0% to 10%, the value of the other state 

will decrease from 100% to 90% accordingly. However, the integration of the other states 

of multi-state variables makes it difficult to appropriately decrease their values when a 

selected state increases its value by 10%. In this case, the traditional scenario simulation 

is inappropriate. 

In order to overcome the drawback of the traditional way, a new method proposed by 



 

49 

 

Alyami et al. (2019) is applied here. This method increases the probability of the state 

within the highest influencing on a type of accident to 100% to obtain the High Risk 

Inference (HRI) of this type of accident. Then it increases the probability of the state 

generating the lowest influence on the accident type to 100% to obtain the Low Risk 

Inference (LRI). In this way, calculating the average value of HRI and LRI concludes the 

True Risk Influence (TRI) of each variable in the case of a particular accident type. 

3.4.3 Model validation 

There are two axioms that have at least to be satisfied in the sensitivity analysis for the 

inference process (Yang et al., 2009, Zhang et al., 2013). The axioms are expressed as 

follows: 

Axiom 1: A slight increase/decrease in the prior probabilities of each test node should 

contribute to the corresponding increase/decrease in the posterior probability of the target 

node. 

Axiom 2: The total influence of the combination of the probability variations of x 

parameters (evidence) should be no smaller than the one from the set of y (y∈x) risk 

factors. 

3.4.4 Scenario analysis 

BN modelling can also explain the most probable scenario with reference to a particular 

accident type, which is helpful to demonstrate inter-relationships among RIFs in TAN 

model. Providing a plausible explanation for the observed findings is called the most 

probable explanation (MPE). It is a particular case of the maximum a-posteriori 

probability. In the case that results of regular belief updating are questionable, the MPE 

can be used to identify the states of RIFs to provide a scenario for which the beliefs are 

upheld. It finds a completely specified scenario easier to understand. Then the study gains 
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insights by putting the Bayes net in MPE mode, entering the evidence, and observing the 

most probable configuration for the maritime accident type. 

3.5 fNIRS technique for maritime transportation 

In order to explore the mental workload for seafarers in the experimental study, the 

Nirsport 88 (NIRx Medical Technologies LLC, USA) continuous wave (CW) fNIRS 

device was used to measure DLPFC activity of seafarers. This particular device records 

at a frequency of 8.9286Hz and performs dual-wavelength CW near-infrared (NIR) 

diffuse tomographic measurements. It consists of 8 sources and 8 detectors that emit near-

infrared light at 760nm and 850nm wavelengths, which are absorbed primarily by 

deoxygenated and oxygenated haemoglobin, respectively. These objective measurements 

help understand mental workload of seafarers and the situational awareness obtained 

during the watchkeeping.  

3.6 Subjective workload measurement 

Developed initially as a paper and pencil questionnaire by NASA Ames Research 

Center’s (ARC) Sandra Hart in the 1980s, NASA Task Load Index (TLX) has become the 

gold standard for measuring subjective workload across a wide range of applications 

(Hart, 2006). NASA TLX questionnaire is used to assess subjective levels of perceived 

workload. An extended NASA Task Load Index (TLX) questionnaire is supposed to be 

completed for the scenario developed in bridge simulation. This is a self-assessed 

measure based on six 10-point scales, with 1 being “Very Low” and 10 “Very High.” The 

scales are Mental Demand, Physical Demand, Temporal Demand, Performance, Effort, 

and Frustration. Additional information about education degree, STCW qualification, and 

practical maritime seafaring experience (month or year) are also supposed to be given by 

participants. On the other hand, the staff in the control room next to the simulator should 

record the target spotted time with corresponding distance (distance 1) and the course 
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changed time with corresponding distance (distance 2). The above information and 

questionnaires are used to analyse behavioural performance and task load. 

3.7 fNIRS experiment for seafarers in the bridge simulator 

The experiment uses a mixed design, where two groups of participants are allocated to 1) 

experienced group and 2) inexperienced group, depending on their STCW qualification 

and nautical experience. Specifically, the experienced group included a master mariner 

(MM), chief mate (CM), and officer of the watch (OOW), while the inexperienced group 

contained able seamen (AB) and cadets. Both groups undergo the scenario with the 

timeline of baseline, watchkeeping, and decision-making. However, it is presented in 1) 

non-distraction condition or 2) distraction condition. The non-distraction condition is 

shown in the workflow of Chapter 7. The distraction condition is demonstrated by setting 

the reporting points (Rn) at the same intervals while watch-keeping and decision-making. 

It distracts the participants' attention by requiring them to report the vessel's position 

every 10' of difference in longitude, as well as answering the questions from the staff in 

the control room, which is the same as the seafarers’ daily work.  

The participant wears the NIRx Sport apparatus, which is an fNIRS skullcap containing 

infrared sensors and detectors allowing the operator to see the blood volume, oxygenated 

and deoxygenated blood flow in the DLPFC indicating how the state of the seafarer 

changes during the navigation scenario and showing what the difference is between 

experienced and inexperienced. The scenario lasts on average no longer than 30 minutes. 

Then the NASA- TLX questionnaire is collected after each scenario. The following 

process demonstrates the trials in a ship bridge simulator: 

a) Taking blood pressure if necessary (hypertension self-reported by participants): this 

step is to exclude the participants suffering from high blood pressure since this may affect 

the results from fNIRS. 
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b) Read information sheet and give informed consent: this step is compulsory, and no 

participant will be allowed to take part in the study before having read the information 

provided, understood the conditions of the experiment and having signed the consent 

form. 

c) Training on the simulator: All the participants will be asked to take several minutes to 

attend the training session of the bridge simulator to familiarise them with the bridge and 

the mission. 

d) fNIRS placement: the equipment will be placed on participants’ heads to measure 

oxygenated and deoxygenated haemoglobin with seven sensors, and seven detectors 

relaying information on the blood volume and flow in the prefrontal cortex of the brain 

by the emission of infrared light during the experiment. 

e) Simulator trial: participants will be allocated to the experienced group (20) or 

inexperienced group (20). Moreover, each group will undergo the scenario in the bridge 

simulator, 10 participants of each group are in 1) non-distraction condition and 10 

participants are in 2) distraction condition. 

f) Questionnaire: after the scenario test, the participant is supposed to finish the 

questionnaire about the subjectively perceived workload. 

g) Debrief: review the performance. 

3.8 Functional connectivity and graph theory 

The functional connection between pairs of brain regions demonstrates the temporal 

correlation of regional haemodynamics. Thus symmetric correlation matrices are 

obtained from the partial correlation coefficients of all pairwise combinations of the 15 

channels, for each group or segment, shown in Figure 3.2. The rows and columns of the 

matrix represent the channels, while cells of the matrix reflect the correlation coefficient 
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of the corresponding channels. From these matrices, weak links are representing spurious 

connections, where they should be discarded by thresholding (Rubinov and Sporns, 2010). 

It is necessary to decide on a threshold level for the correlation scores to demonstrate 

where the strong connections are. In order to calculate various threshold levels, the 

percentile distribution of all correlation values is obtained. For example, a very liberal 

threshold (50th percentile), a more conservative threshold (75th percentile) and extremely 

conservative threshold (95th percentile) are selected. Obviously, there are many 

connections for the liberal threshold and very few for the threshold based on the 95th 

percentile. Only coefficients greater than or equal to the chosen threshold value are kept 

as connections assigned with a value of 1. Otherwise, the coefficient is replaced with a 0, 

thus creating a binary adjacency matrix (in Figure 3.3). In this way, it creates a cross-

correlation matrix to represent these data in a visualisation.  

 

Figure 3.2 Constructing a binary functional connection network from fNIRS-data. Partial correlation 

coefficients were calculated for all pairwise combinations of channels to obtain a symmetrical cross-

correlation matrix 

 

Figure 3.3 Constructing a binary functional connection network from fNIRS-data. Binary adjacency 

matrices were calculated by thresholding along with different threshold values 
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Figure 3.4 Constructing a binary functional connection network from fNIRS-data. Network metrics 

density and clustering coefficient were obtained on the functional connectivity networks (binary 

connection work) described by the adjacency matrices 

In order to reflect the characteristics of networks (Figure 3.8), there are two most 

commonly used parameters (Racz et al., 2017) to describe it: the connection density (D), 

and the local clustering coefficient (C). The connection density of a network is the fraction 

of the existing connections to all possible connections. The density is used to describe the 

overall ‘wiring cost’ of the given network (Racz et al., 2017). In addition, the clustering 

coefficient for an individual node, defines the fraction of its neighbours which are also 

neighbours of each other (Watts and Strogatz, 1998), i.e. reflecting the number of triangles 

around the given node (Rubinov and Sporns, 2010). 

To sum up, the above approaches aim at analysing the risk factors in maritime accidents 

with human factors perspectives and conducting experimental research on mental 

workload for seafarers. That is to say, a novel risk assessment method on human factors 

research has been proposed to generate a raw database for risk factors identification, learn 

the structure of the model, and describe the interdependencies among RIFs with human 

factors perspectives using methodologies in Section 3.2, 3.3, 3.4. By doing this, it 

generates insights for countermeasures for human errors in maritime accidents.  

On the other hand, an experimental study using the fNIRS technique has been conducted 

to complement the insufficient data in the former risk-based study and further explore the 
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mental workload for seafarers from subjective and microcosmic perspectives. It explores 

how the mental workload induced in the bridge simulation influences neurophysiological 

activation using neurophysiological methods. The descriptions on how these 

methodologies will be applied to bridge the gaps previously identified can be seen in 

Figure 3.5. 
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Figure 3.5 Methodology adopted in all technical chapters 

3.9 Concluding remarks 

The following are the most significant remarks comprised in the chapter, and emphasised 

in the form of bullet points for the reader’s ease: 

 The analysis of human errors exists in accident reports, and the common factors 

contributing to human errors are analysed in maritime accident reports. From the 

perspective of maritime accident human error related factors, such a thorough review 

will be valuable in the evaluation research of human error in maritime accidents and 
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hence provide applicable insights in terms of reducing the risk of navigation or 

manoeuvring related to ships. 

 BN is a probabilistic DAG model, which is composed of nodes with the links between 

them, representing variables and influences of one node on the other(s), respectively. 

A BN model usually consists of the following steps: data acquisition, BN structure 

learning, BN analysis, and sensitivity analysis and model validation. 

 There are mainly two approaches to BN structure learning. One is based on expert 

knowledge, which is used to conduct a qualitative analysis based on subjective causal 

relationships. An alternative approach for BN structure learning is the data-driven 

approach to represent the interactive dependencies between variables. This study 

developed BN modelling by the latter data-driven method. 

 Quantitative methods on inter-relationships among RIFs reflect in the sensitivity 

analyses of the BN model with regard to human factors in maritime accidents.  

 In order to measure the neurophysiological activation in the experimental study, the 

Nirsport 88 continuous wave fNIRS device is used to measure the DLPFC activity 

of seafarers.  

 Associated with the fNIRS technique, scenarios designed with bridge simulator and 

NASA-TLX questionnaires are utilised to conduct the experiment and subjectively 

quantify mental workload. 

 The functional connection between pairs of brain regions demonstrates the temporal 

correlation of regional haemodynamics, reflecting the activity of brain areas and 

specific patterns in various conditions. 
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Chapter 4 Identification of risk factors 

4.1 Introductory remarks 

In order to identify risk factors contributing to human errors in maritime accidents, this 

chapter describes the procedure of generating a source database for risk factors to fulfil 

further risk analyses. It aims at illustrating the features of maritime accidents, the 

description of human errors, and risk factors related to human errors from the accident 

reports investigated by maritime organisations. Accidents related to human errors in the 

process of navigation and sailing that happened in the six years from 2012 to 2017, 

integrated with literature, are analysed to identify risk factors in maritime accidents from 

different views. From this perspective, this chapter provides a general demonstration of 

maritime accidents and rational classification of related risk factors as procedure factors, 

individual factors, vessel factors, environmental factors, regulation and management 

factors. 

4.2 Data collection of maritime accidents 

4.2.1 Distribution by the source database 

Among the database composed of 161 accident reports (selected from Chapter 3), 109 

accident reports are from MAIB and 52 reports from the TSB. They are selected based on 

the methodology in Section 3.2. Besides MAIB and TSB, there is the fact that numerous 

maritime accident investigation organisations exist, e.g. United States National 

Transportation Safety Board (NTSB) and American Bureau of Shipping (ABS) in USA, 

Marine Department-Hong Kong (MARDEP) in China, Australian Transport Safety 

Bureau (ATSB) in Australia, Accident Investigation Board Norway (AIBN) in Norway 

etcetera. However, considering the flexibility of obtaining the data and representativeness 

of the maritime accident reports, the MAIB and TSB were selected as source database in 
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this study, as they are among the most representative from the literature (Chauvin et al., 

2013, Graziano et al., 2015, Kum and Sahin, 2015).  

MAIB examines and investigates all types of marine accidents happening to or on board 

UK ships worldwide, and all vessels in UK territorial waters (MAIB, 2015). And, TSB is 

an independent agency that investigates occurrences in several modes of transportation, 

including the marine section. The maritime accident reports databases from these two 

organisations are the two most frequently used databases in maritime accident analysis, 

referring to Chauvin et al. (2013) and Uğurlu et al. (2015b). The details of accident reports 

are in the below Table 4.1. 

Table 4.1 Code of maritime accidents reports 

No Code Source No Code Source 

1 26-2017 MAIB 83 2-2014 MAIB 

2 25-2017 MAIB 84 1-2014 MAIB 

3 24-2017 MAIB 85 SB3/2014 MAIB 

4 23-2017 MAIB 86 26-2013 MAIB 

5 22-2017 MAIB 87 24-2013 MAIB 

6 21-2017 MAIB 88 23-2013 MAIB 

7 20-2017 MAIB 89 22-2013 MAIB 

8 19-2017 MAIB 90 20-2013 MAIB 

9 17-2017 MAIB 91 18-2013 MAIB 

10 16-2017 MAIB 92 17-2013 MAIB 

11 14-2017 MAIB 93 14-2013 MAIB 

12 11-2017 MAIB 94 11-2013 MAIB 

13 10-2017 MAIB 95 10-2013 MAIB 

14 8-2017 MAIB 96 9-2013 MAIB 

15 7-2017 MAIB 97 8-2013 MAIB 

16 5-2017 MAIB 98 7-2013 MAIB 

17 4-2017 MAIB 99 6-2013 MAIB 

18 3-2017 MAIB 100 5-2013 MAIB 

19 1-2017 MAIB 101 4-2013 MAIB 

20 27-2016 MAIB 102 3-2013 MAIB 

21 26-2016 MAIB 103 1-2013 MAIB 

22 25-2016 MAIB 104 SB3/2013 MAIB 

23 24-2016 MAIB 105 27-2012 MAIB 
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24 20-2016 MAIB 106 26-2012 MAIB 

25 19-2016 MAIB 107 25-2012 MAIB 

26 18-2016 MAIB 108 24-2012 MAIB 

27 17-2016 MAIB 109 11-2012 MAIB 

28 16-2016 MAIB 1 m16p0362 TSB 

29 15-2016 MAIB 2 M16P0241 TSB 

30 14-2016 MAIB 3 M16P0162 TSB 

31 13-2016 MAIB 4 M16P0062 TSB 

32 12-2016 MAIB 5 M16C0036 TSB 

33 10-2016 MAIB 6 M16C0014 TSB 

34 8-2016 MAIB 7 M16C0005 TSB 

35 6-2016 MAIB 8 M16A0327 TSB 

36 4-2016 MAIB 9 M16A0141 TSB 

37 3-2016 MAIB 10 M16A0140 TSB 

38 2-2016 MAIB 11 M16A0115 TSB 

39 1-2016 MAIB 12 M15P0347 TSB 

40 28-2015 MAIB 13 M15P0286 TSB 

41 27-2015 MAIB 14 M15P0037 TSB 

42 26-2015 MAIB 15 M15P0035 TSB 

43 25-2015 MAIB 16 M15C0094 TSB 

44 24-2015 MAIB 17 M15C0045 TSB 

45 20-2015 MAIB 18 M15C0006 TSB 

46 18-2015 MAIB 19 M15A0189 TSB 

47 17-2015 MAIB 20 M15A0045 TSB 

48 16-2015 MAIB 21 M15A0009 TSB 

49 15-2015 MAIB 22 M14P0150 TSB 

50 14-2015 MAIB 23 M14P0121 TSB 

51 13-2015 MAIB 24 M14P0110 TSB 

52 12-2015 MAIB 25 M14P0023 TSB 

53 11-2015 MAIB 26 M14P0014 TSB 

54 10-2015 MAIB 27 M14C0219 TSB 

55 9-2015 MAIB 28 M14C0193 TSB 

56 7-2015 MAIB 29 M14C0156 TSB 

57 6-2015 MAIB 30 M14C0106 TSB 

58 5-2015 MAIB 31 M14C0045 TSB 

59 3-2015 MAIB 32 M14A0348 TSB 

60 1-2015 MAIB 33 M14A0289 TSB 

61 32-2014 MAIB 34 M14A0051 TSB 

62 31-2014 MAIB 35 M13W0057 TSB 

63 30-2014 MAIB 36 M13N0014 TSB 

64 29-2014 MAIB 37 M13N0001 TSB 



 

60 

 

65 28-2014 MAIB 38 M13M0287 TSB 

66 25-2014 MAIB 39 M13M0102 TSB 

67 24-2014 MAIB 40 M13L0185 TSB 

68 21-2014 MAIB 41 M13L0123 TSB 

69 19-2014 MAIB 42 M13L0067 TSB 

70 18-2014 MAIB 43 M13C0071 TSB 

71 17-2014 MAIB 44 M12W0207 TSB 

72 16-2014 MAIB 45 M12W0070 TSB 

73 15-2014 MAIB 46 M12N0017 TSB 

74 13-2014 MAIB 47 M12L0147 TSB 

75 12-2014 MAIB 48 M12L0098 TSB 

76 11-2014 MAIB 49 M12L0095 TSB 

77 10-2014 MAIB 50 M12H0012 TSB 

78 9-2014 MAIB 51 M12F0011 TSB 

79 8-2014 MAIB 52 M12C0058 TSB 

80 7-2014 MAIB    

81 6-2014 MAIB    

82 4-2014 MAIB    

4.2.2 Distribution by year of occurrence 

According to the database established, their distribution by year from January 2012 to 

December 2017 is represented in Figure 4.1. It is noted that the specific number of 

maritime accidents or near misses which happened during this period is much larger than 

the number of accident reports. In order to refine and analyse common factors 

contributing to human errors in maritime accidents, only the accidents described and 

investigated in the way of accident reports are considered. It is noted that four accidents 

reports from MAIB in the database contain eight accidents’ details, so that they are 

counted as 113 cases of MAIB instead of 109. The way of counting is according to the 

date of accidents’ occurrence rather than the date of reports published. Hence, the number 

of accident reports in 2017 is only one, due to the uncertainty for the period of the 

maritime accident investigation. 
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Figure 4.1 Distribution of reports by year of occurrence, by January 2018 

4.2.3 Distribution by accident type 

According to the database reviewed, their distribution by accident type is stated in Figure 

4.2. In both MAIB and TSB sources, grounding accidents are the most frequently 

occurring accidents in the maritime transportation, accounting for 21.10% of total 

accidents in MAIB, and 26.92% of them in TSB. The grounding accidents are usually 

linked with human fatigue and human errors (Akhtar and Utne, 2014, Uğurlu et al., 

2015b). Although the number of collision accidents ranks second among the accident type, 

it reveals the severe consequences once they have happened in maritime transportation 

according to the accident reports and literature (Rudan et al., 2012, Macrae, 2009, 

Sandhaland et al., 2015).  
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Figure 4.2 Distribution of reports by accident type 

4.2.4 Distribution by vessel type, ship operation, and voyage 

segment 

From the accident reports from MAIB, it is demonstrated that the accidents occurring on 

merchant vessels of 100 gross tons or over account for the majority of accidents, followed 

by fishing vessels (Figure 4.3). In addition, fishing and passenger vessels tend to be 

involved in maritime accidents according to the data from TSB. Most of the accidents 

happened when the ship was on passage rather than other ship operations, e.g. fishing, 

pilotage, at anchor. Due to the fact of the long period of voyage path compared to arrival 

or departure, the mid-water is regarded as the most likely accident area during the voyage 

segment. However, the arrival segment holds more hazards than the departure segment of 

the voyage. 
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(A) Vessel type from MAIB                     (B) Vessel type from TSB 

 

(C) Ship operation from MAIB                  (D) Voyage segment from MAIB 

Figure 4.3 Distribution by (A)(B) vessel type, (C) ship operation, and (D) voyage segment 

4.3 Common factors contributing to human errors 

According to the data collected from maritime accident, common risk factors are 

extracted from the primary reports. Some factors including communication and 

coordination, lookout, use of navigation equipment, supervision and supports, are related 

to the working procedure of people; some factors are individual factors, such as fatigue 

and situational awareness (SA), which are related to the individual themselves; vessel 

factors are the condition of vessels, devices onboard, the ergonomic impact of design; 
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environment factors are weather condition, sea condition, the density of fairway traffic, 

and the noisy acoustic environment; regulation and management factors are associated 

with code, endorsement, regulations, procedure, instruction, formally published guidance, 

operation manual, and requirement. 

4.3.1 Procedure factors 

Human errors may be caused by procedures during the sailing or manoeuvring, especially 

for improper planning and communication problems. Macrae (2009) maps the typical 

patterns of human and organisational causes in grounding and collision maritime 

accidents to point out that groundings are more likely caused by inadequate passage 

planning, problem locating vessels, or communication on the bridge. While collisions 

commonly resulted from the inadequate planning process. Chauvin et al. (2013) found 

that most collisions were due to decision errors by a modified HFACS model in collisions, 

and Bridge Resource Management deficiencies and Inter-ship communications problems 

are more likely occurring in restricted waters and including vessels that are carrying pilots. 

Research on the prevention of grounding accidents involving human errors was 

conducted using the Analytic Hierarchy Process (Uğurlu et al., 2015b). It suggested the 

most significant causes are, lack of communication and coordination in Bridge Resource 

Management, position-fixing application errors, lookout errors, interpretation errors, use 

of improper charts, inefficient use of bridge navigation equipment, and fatigue. A study 

using the FTA method (Uğurlu et al., 2015a) found that reasons leading to human-error-

originated initial events for collision accidents are, lack of education and experience, 

unfamiliarity with bridge and devices, lack of coordination in the bridge resources 

management, and inconvenient work hours. For grounding accidents, there is a lack of 

education and experience, errors in the passage plan and chart, failure to use the echo 

sounder, lack of communication, and inconvenient working hours. 

‘Careless talk costs lives’, a phrase from some British propaganda during WWII neatly 
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sums up the dangers of ineffective communications (Winbow, 2002). It illustrated the 

importance of effective communications between seafarers or between ship and shore, 

and the severe dangers if they go badly wrong. Meanwhile, it pointed out that ineffective 

or misunderstood communications often occur partly due to cultural differences but also 

due to language ‘barriers’ (TSB M14C0193). Research interviewing crew managers and 

seafarers in Greek shipping (Theotokas and Progoulaki, 2007), showed predominant 

problems like communication with multicultural crews, are rooted in cultural 

incompatibility and inadequate training, which inevitably affected the crew management 

and operation on board. It concluded that culture management could improve crew team 

coordination, communication, working environment and the overall performance of the 

team. Latterly, support of human operation, especially improving the ship’s navigation 

and aiding the master’s command, is proved to be necessary for shipping safety 

(Tzannatos, 2010). 

Apart from this, ineffective supervision and supports, and improper supervision of 

loading operation are frequent during the navigation. Lone watchkeeper or working 

isolated makes the procedures on board vulnerable to the hazards due to the workload 

pressure or onboard culture. From MAIB 17-2016 report, although required by the Arco 

Avon’s SMS, the third engineer did not inform the chief engineer or the bridge OOW of 

the leaking problem of fuel or his intention to fix it. The reason for him not doing so was 

probably influenced by the onboard culture of routinely working isolated and the absence 

of adequate and frequent communication. Also, Arco Avon’s chief engineer’s standing 

orders requiring the duty engineer to progress routine duties and conduct planned 

maintenance while on watch, effectively condoned working alone and disobeyed the 

guidance provided in section 15.9.1 of COSWP, and with the guidance provided in the 

Code of Safe Working Practices for Merchant Seafarers 2015 edition. It all contributes to 

the mistakes the third engineer made. Moreover, from the MAIB 8-2014 report, the master 

and chief officer kept lone watched on the bridge with the functional Bridge Navigational 

Watch & Alarm System (BNWAS) switched off. According to this accident, and several 
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similar others in the past, MAIB demonstrated that it was not safe for only two bridge 

watchkeepers to operate vessels because of the workloads placed on watchkeeping 

officers. 

From the maritime accident reports (MAIB 6-2014), the bridge team’s action was too late 

to be taken to prevent the collision with the method of recognising the high speed. Also, 

from the grounding accident (TSB M14P0014), upon initiating the turn, the vessel’s rate 

of speed limited the time available to respond to the surrounding developing situation, 

resulting in that the vessel was on a course for the silting of the channel. It is also evident 

that relying on a single navigational device produced the risk of undetected potential 

errors or inaccuracies. From the perspective of pilotage, there is a risk that pilots make 

decisions referring to imprecise information if they do not take advantage of the accurate 

navigational aids available. 

4.3.2 Individual factors 

The human error relates to individuals themselves or the crew in teamwork, especially 

fatigue-related problems. Faced with the unique environment, seafarers on board take the 

irregular sleep patterns within the existence of time-zone crossings, noise, heat, cold, 

vibration and motion of vessels. It means sleep under such conditions is often interrupted, 

and the risk of fatigue induced by inadequate sleep and rest is relatively high. Also, 

seafarers are involved in multi-tasks. These include navigation, cargo handling, 

watchkeeping, communication, emergency response, paper charts, maintenance, 

administration and human resources management that is interacted with other vessels and 

a shore-based centre.  

The research demonstrated three levels of reference to sleep - either being asleep without 

fatigue, conflicting pressures of work and sleep, and the nature of sleeping and work 

(Phillips, 2000). It revealed contributing factors of sleepiness among crucial crew 

members, and associated either being asleep, or being sleep deprived with accidents, but 
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not with fatigue all the time. Hetherington et al. (2006) found that fatigue is more 

significant in the near sea than in support shipping. Exposure factors predicting fatigue 

are the length of working hours, sleep problems, tour length (more extended tours equate 

to less fatigue), shift length, job demands, stress or pressure, and standing watch. For ship 

types, seafarers on ferries reported higher levels of fatigue than other ship types. Strauch 

(2015) proposed a systematic method to determine whether fatigue adversely affected 

mariner performance in an accident. Akyuz and Celik (2015) adopted Cognitive 

Reliability and Error Analysis Method (CREAM) to assess human reliability along with 

the cargo loading process, and Akhtar and Utne (2015) used it to study common patterns 

of interlinked fatigue factors. It illustrated that “inattention”, “inadequate procedures”, 

“observation missed”, and “communication failure” were related to fatigue factors that 

influenced the human cognitive processes in accidents. The bridge team should be trained 

to recognise fatigue and exercise caution related to the fatigue factors.  

Lack of SA is another focus of the individual factors contributing to human errors, which 

is also associated with being distracted, use of recreational drugs or alcohol. Prospect 

(MAIB 07-2014) grounded because the skipper was distracted due to a telephone 

conversation and his intention to check whether an email had been received during the 

departure, resulting in the loss of situation awareness. Also, from the MAIB 12-2016, the 

master, owing to lack of adequate assistance, was unable to maintain his situational 

awareness, resulting in a grounding accident. Due to the loss of situation awareness, the 

bridge team or masters have difficulties identifying the hazards around the ships, as well 

as dealing with the proper manoeuvring. Specifically, it will take a long time for the OOW 

to realise the vessel is in trouble even with the information shown in the navigational aids 

display, for example, the Electronic Chart Display and Information System (ECDIS) 

(MAIB 24-2014). As stated in MAIB 28-2015, the master and the third officer lost 

situation awareness before the collision, resulting in that the bridge team did not monitor 

another ship’s position and movement during the eight minutes from the pilot’s 

disembarkation. It reveals the significance of forming and maintaining the situation 
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awareness of the seafarers on board. Moreover, it is demonstrated that the master’s lack 

of situational awareness is contributed by stress, panic and poor communication regarding 

the status of the ship control (MAIB 20-2017). 

In the maritime sector, Lim et al. (2018) suggested the majority of trainees had less 

workload when the experienced master was present, and the latter had the highest 

workload levels while the former had low workload because of the shared work and 

responsibility. Mental workload is the number of demands requiring a person to complete 

specific tasks. The more sophisticated the tasks, the more mental workload is required to 

do the tasks. It has been used in a wide range of applications to evaluate task performance 

of operators or the practical aspect of system design (Ngodang et al., 2012, Dijksterhuis 

et al., 2011). Moreover, the mental workload is linked to the experience of operators. 

Experienced drivers have acquired more effective automation through practice, so that a 

lower level of mental workload was induced compared to novices (Patten et al., 2004).  

4.3.3 Vessel factors 

As the maritime accident reports present, vessel factors containing the condition of 

vessels, devices onboard, the ergonomic impact of design, updated information supports 

are concluded. Lema et al. (2014) used The K-means clustering method with 15 a priori 

defined clusters to indicate that human factors coexist with the condition of the ship and 

other external factors. From the perspective of the state of vessels, the increasing 

complexity of propulsion arrangements, modifications made to vessels, and the change 

of the size of ships are consistent with the development of ship automation. It is also 

related to the ergonomic impact of innovative bridge design, for example, visual blind 

sector ahead and motion illusion. From the MAIB 26-2013, the bridge design led the 

second officer on duty to sit down and then increased the potential for him to fall asleep. 

The same ergonomic problem exists in the collision accident reported in MAIB 03-2017 

in which the pilot’s actions resulted from a ‘relative motion illusion’. It was the off-axis 
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bridge windows and lack of visual references that led to the pilot’s disorientation.  

The devices and equipment on board not being fully utilised or operated correctly leads 

to the human errors directly or indirectly, for example, the BNWAS is switched off; alarm 

systems are not in the recommended position or not noticed. Moreover, the insufficient 

or lack of updated information aggravated the situation. Poor quality of equipment data 

and falsified records of data contribute to the failure of transforming data into effective 

information for decision making, as well as the difficulties for the accident/incident 

investigation. The automatic means or indicators for necessary observing, e.g. working 

signs or lights, are the critical way to decrease the workload or the possibility of overload 

among the seafarers. From the MAIB 27-2016, it is evident that in this collision case, 

radar, visual and Automatic Identification System (AIS) information could have been 

utilised more efficiently. Furthermore, using all the information available on the bridge 

makes a high standard of watchkeeping to obtain and maintain a good sense of the 

situation.  

4.3.4 Environmental factors 

Environmental factors, especially in port service, contribute to human errors. The weather 

condition, sea condition, the density of fairway traffic, and the noisy acoustic environment 

are all considered in the environmental factors. Hsu (2012) utilised a fuzzy AHP model 

to identify ports’ service attributes for ship navigation safety, and the Dissatisfaction 

attitude (DA) was used to determine the attributes priorities. It concluded that the traffic 

control of fairway is the most critical aspect to be improved according to human errors 

contributors. Moreover, the Master Pilot Exchange (MPX) that is a document of debatable 

value in pilotage waters is designed to reflect local navigational challenges and port 

requirements (Wild and Constable, 2013). However, investigation recommendations are 

not consistently reflected in MPX forms, and there is a gap between them and what should 

be recorded. Besides, port safety evaluation, a fuzzy analytical hierarchy process was 
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used to evaluate the importance of the factors, to rank the factors affecting navigation 

safety, and to rank the safety level of ports in Korea (Pak et al., 2015). The results showed 

that the element of weather was of higher importance than others.  

Lee and Kim (2013) used the AHP to analyse the relative importance of the risk factors 

for the maritime traffic environment. It showed that the relative importance of visibility 

restriction is the highest among risk factors, and the relative importance of the traffic 

condition is the most senior among risk categories. From the MAIB 20-2016, the 

submarine’s command team did not perceive any risk of collision or need for avoiding 

action. It is highly likely that the density of shipping traffic and the other factors 

contributed to cognitively overloaded crews. The reduced passing distances, the traffic 

density, bridges, moorings, tidal streams and the possibility of interaction on the vessel 

make the voyage a significant challenging area in which to navigate, as demonstrated in 

the report MAIB 13-2015. On the other hand, the repetitive nature of the route increases 

the individual errors like overconfidence on the duties or underestimation of the severity 

of the condition with a low state of alertness.  

The noisy and vibrating environment and sea condition containing a strong tidal stream, 

current, and waves, influence the performance or behaviours of crews in the process of 

operation. It contributes to the emotional response and psychological effects on the crews. 

From the MAIB 10-2014, the master did not take the tidal condition into account, and it 

was without a plan in conjunction with experienced staff, resulting in the collision due to 

lack of appreciation of the hazards from tidal effects on the tow when anchoring.  

4.3.5 Regulation and management factors 

Regulation and management factors reflect the organisational factors in the maritime 

system. It is regarded as the essential cause of human errors. Inappropriate or ambiguous 

code, endorsement, regulations, procedure, instruction, formally published guidance, 

operation manual, and requirement contribute to the complicated causal relationship with 
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human errors. Branch et al. (2004) illustrated that the hours of working and lookout 

requirement contained in the International Convention on Standards of Training, 

Certification and Watchkeeping for Seafarers, 1995 (STCW 95) and the principles of safe 

manning, endorsed by the experiences of the MAIB during accident investigation, have 

insufficient impact on those factors.  

In addition, a lack of safety culture and precautionary thought are critical factors for 

human errors. Lu and Tsai (2008) conducted the factor analysis revealed six safety climate 

dimensions, and used logistic regression analysis to evaluate the effects of the safety 

climate on vessel accidents. The results suggested that job safety has the most critical 

impact on vessel accidents, followed by management safety practices and safety training 

dimensions. 

Risk assessment in maritime and several management systems benefits the safe operation 

of ships and manoeuvring. A valid risk assessment conducted provides a good view of 

the potential hazards and risks existing in the activities on board, while improper risk 

assessment leads to less than adequate crew emergency preparedness, onboard 

management, safety management, and practical training. At the same time, it can identify 

the appropriate fitness requirements for pilots by their specific duties at their port of 

employment (MAIB 21-2017). The robust vessel’s risk assessments may make the 

onboard working environment safer. From the investigation of MAIB 24-2014, it is 

evident that the onboard management of Ovit was dysfunctional, as well as the safety 

culture developed on the bridge provided by the insufficient leadership of the master. 

Meanwhile, there are serious shortcomings highlighted in the reports that had not been 

realised from the vessel’s audits and inspections. By the way, the assessment of 

competence plays a role in crew management. It means judgement as to whether a seafarer 

is competent, or what a seafarer needs to know and what skills and knowledge he or she 

requires to learn, before that person is deemed to be competent. Many accidents occur 

due to a person performing incompetently at that time. 
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As the literature shows, people tend to exchange the level of safety standard of the vessel 

for a profitable and riskier activity, considering the commercial affairs of ships (Vinagre-

Ríos and Iglesias-Baniela, 2013). It highlights the existence of human errors derived from 

the practices and manning policies established by the managers of shipping companies. 

Namely, crews can choose the risky or dangerous way to complete the operation or 

manoeuvring process due to commercial pressure. As stated in MAIB 12-2015, it was 

proved that financial constraints, rather than lack of experience or the sense of safety, 

caused the skipper to work single-handed and induced him not to maintain the ship and 

its equipment on board safe. Under the pressure of finance, industry, and public, more 

attention and concentration is assigned to deal with the cost calculation behind every 

decision. It results in the potential risk of human errors causing maritime accidents. 

4.4 Identification of risk factors  

Furthermore, maritime accidents reports during 2012-2017 have been reviewed for the 

human error attributes. The accident database utilised is the MAIB in UK and the TSB in 

Canada. There are 109 accident reports extracted from 152 reports in MAIB and 52 

accident reports obtained from 61 reports in TSB.  

The procedure consists of three stages: (i) online database searching, (ii) reports screening 

and selecting, (iii) refining and analysis. Then, the maritime accident data is obtained 

according to the filtered accident reports. 

Concerning RIFs in maritime accidents, it is necessary to identify the critical factors from 

accident investigation reports. According to the filtered reports, the factors (i.e. 32 risk 

factors) contributing to accidents are classified and described in five categories, as seen 

in Table 4.2. However, risk factors are derived among them according to their appearance 

frequency in accident reports to eliminate the trivial effect of the factors appearing once 

or twice across all the searched reports.  
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According to the source or origin that human errors come from, the common factors 

contributing to human errors are classified and described in 5 categories with 32 attributes. 

The categories are based on the descriptions in Section 4.3, and consulted by the experts 

in maritime sector and human factors research filed, which are selected for better 

illustrating the 32 attributes. The specific common factors derived from the maritime 

accidents reports are stated.  

Table 4.2 Attributes of common factors contributing to human errors. 

Categories Attributes Source representatives 

Procedure 

poor communication and coordination with 

team 

MAIB23-2017, MAIB20-2017, 

MAIB24-2016 

TSBM16C0005, TSBM14P0014, 

TSBM13M0287 

ineffective supervision and support (lone 

watchkeeper or working isolated, improper 

supervision of loading operation) 

MAIB23-2017, MAIB12-2016, 

MAIB30-2014 

TSBM16P0062, TSBM14P0014, 

TSBM13L0067 

no detailed passage plan or revised passage 

plan was unsafe 

MAIB23-2017, MAIB22-2017, 

MAIB12-2016 

TSBM16P0362, TSBM14P0150, 

TSBM12L0147 

swift duty between pilots and seafarers or 

change of the steering mode 

MIAB15-2015 

TSBM16C0005 

over-reliance on devices (AIS, GPS…), or 

poor lookout 

MAIB9-2014, MAIB4-2014, MAIB26-

2013 

TSBM16P0362, TSBM15C0006, 

TSBM14P0150 

fast speed MAIB20-2017, MAIB14-2013 

no clear order (not accurately interpret and 

apply the requirements of a safe manning 

document) 

MAIB23-2017, MAIB22-2017, 

MAIB24-2016 

TSBM16C0005 

limited time to respond TSBM14C0045, TSBM16P0062 

Individual 

lack of situation awareness 

MAIB23-2017, MAIB20-

2017,MAIB11-2017 

TSBM16P0362, TSBM15C0006, 

TSBM12L0147 

fatigue/asleep/tiredness and desire to rest 
MAIB22-2017, MAIB8-2014, MAIB4-

2014 
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TSBM15C0006, TSBM12L0147 

emotion (low level of arousal, panic, anger, 

unhappiness) 

MAIB22-2017, MAIB20-2017, 

MAIB14-2016 

unfamiliar with/lack of equipment 

knowledge, inexperienced, ill-prepared 

MAIB20-2017, MAIB24-2016, 

MAIB14-2016 

TSBM16C0005, TSBM14P0014, 

TSBM14C0015 

complacent about the duties or 

underestimation of the severity of the 

condition (low state of alertness) 

MAIB22-2017, MAIB18-2015, 

MAIB12-2014 

TSBM13M0287, TSBM12C0058 

recreation drugs, alcohol MAIB25-2015, MAIB7-2014 

cognitively overload MAIB20-2016 

physical incapacitation 
MAIB9-2013 

TSBM12L0147 

distracted/insufficient attention 

MAIB11-2017, MAIB12-2016, 

MAIB30-2014 

TSBM16P0362, TSBM13L0067, 

TSBM12H0012 

stress MAIB20-2017 

Vessel 

the poor condition of the vessel, increasing 

complexity of propulsion arrangements, and 

modifications made to vessels, size 

MAIB23-2017, MAIB20-2017, 

MAIB19-2017 

devices and equipment on board not fully 

utilised or operated correctly (BNWAS 

switched off, alarm system not in the 

recommended position or not noticed) 

MAIB23-2017, MAIB22-2017, 

MAIB11-2017 

TSBM15C0006, TSBM14P0014, 

TSBM14C0106 

ergonomic impact of innovative bridge 

design (visual blind sector ahead, motion 

illusion) 

MAIB18-2015, MAIB26-2013, 

MAIB9-2013 

TSBM16P0362, TSBM16C0005, 

TSBM14C0045 

insufficient or lack of updated information 

(poor quality of equipment data, falsified 

records of information, relies on a single 

piece of navigational equipment); no 

automatic means or without indicators for 

necessary observing (working indicators, 

light) 

MAIB23-2017, MAIB22-2017, 

MAIB19-2017 

TSBM16P0362, TSBM16C0005, 

TSBM15C0006 

Environment 

weather condition: wind, visibility(dense 

fog) 

MAIB19-2017, MAIB8-2013 

sea condition: falling tide, current, waves 

MAIB22-2017, MAIB19-2017, 

MAIB24-2016 

TSBM16P0362 
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noisy and vibrating environment MAIB20-2016 

fairway traffic (traffic density, repetitive 

nature of the route) 

MAIB23-2017, MAIB18-2015 

TSBM15C0006 

Regulation 

and 

management 

inappropriate or ambiguous code, 

endorsement, regulations, procedure, 

instructions, formal published guidance; 

operation manual, requirement 

MAIB232017, MAIB14-2017, 

MAIB24-2014 

TSBM16P0062, TSBM16C0005, 

TSBM13M0287 

lack of risk assessment 

MAIB25-2015, MAIB24-2014, 

MAIB4-2014 

TSBM16P0062, TSBM13L0067, 

TSBM12C0058 

dysfunctional management system (shore 

management, maintenance management, 

bridge source management, onboard 

management, safety management systems, 

port service, qualification examination, 

inadequate training, practice, emergency 

drill) 

MAIB23-2017, MAIB22-2017, 

MAIB20-2017 

TSBM13M0287, TSBM13M0102, 

TSBM13L0067 

lack of safety culture, precautionary thought 

MAIB 25-2015, MAIB24-2014, 

MAIB4-2014 

TSBM12L0147 

no medical and fitness standards for crews 
MAIB17-2016 

TSBM12W0070 

commercial pressure, public pressure or 

industrial pressure (financial constraints) 

MAIB12-2015 

TSBM12N0017 

4.5 Concluding remarks 

The following are the most significant remarks comprised in the chapter, and emphasised 

in the form of bullet points for the reader’s ease: 

 To provide the comprehensive summaries of the research development of human 

errors, the realistic phenomena in accidents, and common errors highlighted 

concerning human errors during the accidents, common factors contributing to 

human errors are analysed on several given categories and concluded from the 

accident reports as well as literature. 

 Maritime accidents reports during 2012-2017 have been reviewed for the human 
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error attributes. The accident database utilised is from MAIB and TSB. There are 109 

accident reports extracted from 152 reports in MAIB and 52 accident reports obtained 

from 61 reports in TSB. 

 According to the source or origin that human errors come from, the common factors 

contributing to human errors are classified and described in 5 categories with 32 

attributes. 
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Chapter 5 Analysis of risk factors for maritime transport 

accidents 

5.1 Introductory remarks 

This chapter proposes a Bayesian Network-based risk analysis approach to analyse the 

risk factors influencing maritime transport accidents. Comparing with previous studies in 

the relevant literature, it reveals new features including new primary data directly derived 

from maritime accident records by two major databanks, MAIB and TSB from 2012 to 

2017; also, the quantification of the extent to which different combinations of the factors 

influence each accident type. The network modelling the interdependency among the risk 

factors is constructed by using NBN and validated by sensitivity analysis. The results 

reveal that the common risk factors among different types of accidents are ship operation, 

voyage segment, ship type, gross tonnage, hull type, and information. Scenario analyses 

are conducted to predict the occurrence likelihood of different types of accidents under 

various situations. The findings provide transport authorities and ship owners with useful 

insights for maritime accident prevention. 

5.2 Background information  

Waterborne transportation accounts for approximately 90% of the world’s trade by 

volume, representing one of the essential transportation modes in ensuring the prosperity 

of international trade and the global economy. Maritime accidents have revealed new 

features in the past few years. According to the ‘Safety and Shipping’ Annual Report of 

2017 (Specialty, 2018), published by Allianz Global Corporate & Specialty, more than a 

quarter of ship losses in 2016 occurred in the South China, Indochina, Indonesia and 

Philippines regions. Although the number of maritime casualties has declined over the 

years, there is increasing complexity of navigation risk exposure in the shipping industry 
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(e.g. high demand on human reliability in complicated operations introduced by advanced 

technologies). The questionnaire survey on maritime operations conducted by Safahani 

(2015) emphasised the non-technical skills: 75% stated that a team leader should discuss 

the work plan with his/her teammates; 90% thought that monitoring the task provided an 

essential contribution to effective team performance; almost everyone in the survey 

believed that communication was a significant factor, and that teams who do not 

communicate effectively would increase the possibility of making errors. Branch et al. 

(2004) disclosed that watchkeeper manning levels and a master’s ability to discharge his 

duties were significant factors influencing collisions and groundings.  

Studies on maritime accident analysis rely on the discretional context and experts’ 

knowledge to extract the causal relations among the process of accidents, as well as data-

driven methodologies. Specifically, causal relations were connected to one type of 

accidents through accident analysis methods, specifically for grounding or collision 

(Hanninen and Kujala, 2012, Macrae, 2009, Uğurlu et al., 2015a). Moreover, some studies 

focused on the probability or the frequency of maritime accidents. Fabiano et al. (2010) 

investigated the occupational accident frequency affected by the organisation, job 

experience, and productivity. Pristrom et al. (2016) estimated the likelihood of a ship 

being hijacked in the Western Indian or Eastern African region by using the GISIS 

database together with expert judgement. Other studies concentrated on the severity or 

the consequence of maritime accidents. Zhang et al. (2016) predicted the accident 

consequences in the Tianjin port by statistical analysis of historical accident data. Wang 

and Yang (2018) analysed the key risk factors influencing waterway accident severity by 

using Bayesian Networks (BN). In addition, some studies investigated the combination 

of the above two (i.e. likelihood and consequence) (Bouejla et al., 2014, Balmat et al., 

2011). However, few studies have been carried out to investigate the issues on how risk 

factors affect maritime accident types, leaving a research gap to fill for effective accident 

prevention. The key factors contributing to collisions are probably quite different from 

those resulting in groundings. Also, understanding differentiation among the key factors 
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contributing to different types of accidents will help generate useful insights for 

reasonable risk control measures. 

This chapter aims at investigating how different risk factors generate, in an individual or 

combined manner, an impact on different types of maritime accidents in terms of 

likelihood. Manual case by case analysis of recorded maritime accidents from MAIB and 

TSB that occurred from 2012 to 2017 is undertaken to develop a primary database to 

support this study. A BN-based approach is proposed to analyse accident types in 

maritime transport.  

5.3 Raw data collection and RIFs selection 

The accident reports are from MAIB in UK and TSB in Canada, as they are among the 

most representative from the literature (Chauvin et al., 2013, Graziano et al., 2015, Kum 

and Sahin, 2015). The raw data derived from the MAIB and TSB contains general 

information of the ship and the voyage, accident evolution process, and details related to 

the management and organisational factors. In the screening process stage, the accident 

reports were screened with a focus on error-related accidents to ensure their 

representativeness and relevance. In the final stage, these reports had been further refined 

and analysed, especially the ‘safety issues’ and ‘common factors’ section in the accident 

reports. Some details of information associated with the accident process were involved 

in the refining. According to such analysis, there are 109 accident reports extracted from 

152 reports in MAIB and 52 accident reports obtained from 61 reports in TSB, as shown 

in Chapter 4. 

In total, the 161 maritime accidents involving 208 vessels reported in MAIB and TSB 

between Jan. 2012 and Dec. 2017 were carefully reviewed and analysed manually. The 

search was conducted in Jan. 2018 and the general statistical analysis and findings are 

presented in Figure 5.1, Figure 5.2, and Figure 5.3, which provide the raw data for the 

subsequent in-depth analysis using NBN.  
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Figure 5.1 Accident distribution by accident types 

 

Figure 5.2 Accident distribution by ship operations from MAIB 
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Figure 5.3 Accident distribution by voyage segments from MAIB 

As is indicated in Figure 5.1, grounding, collision and contact/crush accounted for more 

significant percentages than other kinds of accidents while sinking and flooding 

accounted for lower percentages. Specifically, there were 23 grounding accidents from 

MAIB and 14 from TSB, while there were 3 sinking accidents from MAIB and 4 from 

TSB. And Figure 5.2 and Figure 5.3 show accident distributions by ship operation and 

voyage segment from MAIB. The number of accidents happening on passage was much 

higher than those others, followed by ‘fishing’ and ‘at anchor’. However, the number of 

accidents that happened in mid-water was much higher than others like ‘departure’ and 

‘in port’. 

These reports had been further refined and analysed. Furthermore, special attention is 

paid to the ‘safety issues’ and ‘common factors’ in the accident reports. Some details of 

information associated with the accident process were involved in the refining. According 

to such analysis, the common factors contributing to the accidents are generated. 

Concerning the accident type, a maritime accident can be classified into collision (S1), 

grounding (S2), flooding (S3), fire/explosion (S4), capsize (S5), contact/crush (S6), 
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sinking (S7), overboard (S8), and others (S9), which refer to the combined description 

and definition in MAIB and TSB. These 9 types of accidents consist of 9 states (S1~ S9) 

of the variable ‘accident type’ in the study. 

Furthermore, the accident-related RIFs are retrieved in Table 5.1. In the quantitative 

analysis of BN modelling, the accident type is defined as a dependent variable, variables 

in Table 5.1 are defined as independent variables.  

Table 5.1 The accident-related RIFs  

RIFs Notation Description 
Values of state 

in BN 

Ship type RST Passenger vessel, tug, barge, fishing vessel, container ship, 

bulk carrier, RORO, tanker or chemical ship, cargo ship, 

others. 

1, 2, 3, 4, 5, 6, 7, 

8, 9, 10 

Hull type RHT Steel, wood, aluminium, others 1, 2, 4, 5 

Ship age (years) RSA (0 5], [6 10], [11 15], [16 20], >20, NA 1, 2, 3, 4, 5, 6 

Length (metres) RL ≤100, >100, NA 1, 2, 3 

Gross tonnage (GT) RGT ≤300, 300 to 10000, >10000, NA 1, 2, 3, 4 

Ship operation RSO Towing, Loading/unloading, Pilotage, Manoeuvring, Fishing, 

At anchor, On passage, others 

1, 2, 3, 4, 5, 6, 7, 

8 

Voyage segment RVS In port, Departure, Arrival, Mid-water, Transit, others 1, 2, 3, 4, 5, 6 

Weather condition RWC Good or poor considering rain, wind, fog, visibility 1, 2 

Sea condition RSC Good or poor considering falling/rising tide, current, waves 1, 2 

Time of day RTD 07:00 to 19:00, other 1, 2 

Fairway traffic RFT Good or poor considering complex geographic environment, 

dense traffic, or repetitive nature of the route contributing to 

ignorance 

1, 2 

Ship speed*  RSS Normal, Fast  1, 2 

Vessel condition Rvc Good condition of vessels, or the condition of vessel has 

nothing to do with the accidents; 

Poor condition of vessels, or increasing complexity of 

propulsion arrangements, or modification made to vessels and 

size contributes to the accidents 

1, 2 

Equipment/device RE Devices and equipment on board operate correctly; 

Devices and equipment not fully utilised or operated correctly 

(e.g., BNWAS switched off, alarm system not in the 

recommended position or not noticed) 

1, 2 

Ergonomic design RED Ergonomic friendly or ergonomic aspects have nothing to do 

with accidents; 
1, 2 
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ergonomic impact of innovative bridge design (e.g., visual 

blind sector ahead, motion illusion) 

Information  RI Effective and updated information provided; 

Insufficient or lack of updated information (e.g., poor quality 

of equipment data, falsified records of information, relies on a 

single piece of navigational equipment, without working 

indicators or light for necessary observing) 

1, 2 

*The ship speed is grouped into normal and fast states based on the description in the 

MAIB accident reports. 

A majority of definitions of variables’ states are derived from accident reports. To quantify 

such states, the majority of variables are defined and quantified based on Chapter 4. 

However, variables, e.g. accident type, ship type, hull type, ship operation, and voyage 

segment, are divided into different states according to the classification of MAIB or TSB 

investigation. The ‘vessel condition’ is quantified into two states based on whether it is 

blamed for the faults in accidents, as described in the reports. The grading of ‘ship speed’ 

is based on the description in the MAIB accident reports, rather than the grading method 

by Wang and Yang (2018). The main reason is that accurate speeds of vessels involved in 

accidents are not clearly indicated in the source database. 

5.4 Bayesian networks model for maritime accidents 

In the study, the only child node of BN is ‘accident type’, i.e. the class variable (S). The 

parent node set R = {RST,  RHT,  RSA, RL,  RGT, RSO,  RVS, RWC,  RSC, RTD, RFT,

RSS,  Rvc, RE, RED, RI} is the set of risk variables (Rk) including the RIFs (in a matching 

order), for example, ship type, hull type, ship age, length, gross tonnage, ship operation, 

voyage segment, weather condition, sea condition, time of day, fairway traffic, ship speed, 

vessel condition, equipment, ergonomic design, and information. Then, the structure 

learning is simplified to demonstrate the relationship between S and Rk.  

As demonstrated in Figure 5.4, the NBN structure is one in which ‘accident type’ is the 
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only child of each RIF. The ‘Accident type’ is assigned to S, representing 9 different 

accident types, and has 16 influencing parent nodes. Each node is assigned with multiple 

states. Then the number of conditional probability distributions 

P(S|RST, RHT, RSA, ⋯ , RI)  is more than 2E+09 for any observation set R =

{RST, RHT, RSA, ⋯ , RI} , That is to say, the size of the conditional probability table 

increases exponentially, resulting in the complex computation in this converging BN. 

Information

Accident type

Ship type Hull type Ship age

……

 

Figure 5.4 ‘Accident type’ as a child node               

Information

Accident type

Ship type Hull type Ship age

……

 

Figure 5.5 ‘Accident type’ as a parent node 

To simplify the BN structure, a modified diverging NBN structure in which ‘Accident 

type’ has no parents but is the only parent of other RIFs is presented, as shown in Figure 

5.5, by referring to Wang and Yang (2018). In this way, this NBN structure includes the 

prior distribution P(S) and the conditional probability table with relatively small number 

of conditional probability distributions P(Rk|S). Compared to the structure in Figure 5.4, 

this structure significantly reduces the computation and number of conditional probability 

distributions. Hence, it is adopted to express the relationship between risk variables in the 

NBN structure. Because BN can conduct bi-directional risk analyses, the transformation 

from the converging to diverging connections will be well reflected by the adapted CPT 

and hence has no influence on the final BN results on risk analyses (e.g. Wang and Yang 
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(2018)). 

Although the assumption that the variables are completely independent is not always valid 

in reality, modified diverging NBN simplifies the structure by reducing the number of 

conditional probability distributions. Moreover, such an assumption does not significantly 

affect the posterior probabilities calculated, which does not affect the scenario analysis in 

the study (Wang and Yang, 2018), given the fact that the statistical analysis of all the 

accidents did not indicate strong correlation among the RIFs. Therefore, assuming that all 

the variables, i.e. the child nodes, are independent of each other, the NBN is constructed. 

Based on the NBN model, the parameter learning of CPTs from the cases is conducted by 

the software ‘Netica’ using the counting-learning algorithm. They are calculated by the 

manual collected database from accident reports. Once the CPTs are constructed and 

obtained in Table 5.2, the posterior probabilities of each variable can be calculated.  

Table 5.2 Conditional probability tables (CPT) for RIFs 

Ship type 

Accident 

type 
1 2 3 4 5 6 7 8 9 10 

1 7.5472  11.3207  3.7736  13.2076  5.6604  9.4340  5.6604  7.5472  15.0943  20.7547  

2 18.1818  7.2727  7.2727  10.9091  9.0909  9.0909  3.6364  7.2727  21.8182  5.4546  

3 5.8824  5.8824  5.8824  23.5294  5.8824  11.7647  11.7647  11.7647  11.7647  5.8824  

4 9.5238  9.5238  4.7619  23.8095  4.7619  4.7619  9.5238  4.7619  19.0476  9.5238  

5 6.0606  18.1818  9.0909  30.3030  6.0606  6.0606  3.0303  6.0606  3.0303  12.1212  

6 12.5000  6.2500  3.1250  12.5000  3.1250  12.5000  12.5000  12.5000  12.5000  12.5000  

7 11.1111  11.1111  16.6667  22.2222  5.5556  5.5556  5.5556  5.5556  5.5556  11.1111  

8 10.3448  6.8966  3.4483  41.3793  6.8966  3.4483  3.4483  3.4483  10.3448  10.3448  

9 17.5000  12.5000  10.0000  12.5000  2.5000  12.5000  2.5000  2.5000  15.0000  12.5000  

 

Equipment_ device 

Accident type 1 2 

1 64.4445  35.5556  

2 48.9362  51.0638  

3 66.6667  33.3333  
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4 69.2308  30.7692  

5 60.0000  40.0000  

6 62.5000  37.5000  

7 30.0000  70.0000  

8 80.9524  19.0476  

9 65.6250  34.3750  

 

Ergonomic design 

Accident type 1 2 

1 71.1111  28.8889  

2 85.1064  14.8936  

3 88.8889  11.1111  

4 92.3077  7.6923  

5 96.0000  4.0000  

6 75.0000  25.0000  

7 90.0000  10.0000  

8 95.2381  4.7619  

9 96.8750  3.1250  

 

Fairway traffic 

Accident type 1 2 

1 66.6667  33.3333  

2 74.4681  25.5319  

3 66.6667  33.3333  

4 92.3077  7.6923  

5 92.0000  8.0000  

6 79.1667  20.8333  

7 90.0000  10.0000  

8 95.2381  4.7619  

9 90.6250  9.3750  

 

Gross tonnage 

Accident type 1 2 3 4 

1 36.1702  23.4043  29.7872  10.6383  

2 18.3674  48.9796  28.5714  4.0816  

3 36.3636  18.1818  36.3636  9.0909  

4 46.6667  26.6667  20.0000  6.6667  

5 62.9630  18.5185  7.4074  11.1111  



 

87 

 

6 19.2308  38.4615  38.4615  3.8462  

7 75.0000  8.3333  8.3333  8.3333  

8 52.1739  26.0870  13.0435  8.6957  

9 38.2353  29.4118  20.5882  11.7647  

 

Hull type 

Accident type 1 2 4 5 

1 72.3404  10.6383  8.5106  8.5106  

2 81.6327  6.1225  4.0816  8.1633  

3 45.4545  27.2727  9.0909  18.1818  

4 53.3333  33.3333  6.6667  6.6667  

5 59.2593  7.4074  11.1111  22.2222  

6 76.9231  7.6923  7.6923  7.6923  

7 41.6667  25.0000  8.3333  25.0000  

8 52.1739  4.3478  4.3478  39.1304  

9 67.6471  2.9412  5.8824  23.5294  

 

Information 

Accident type 1 2 

1 64.4445  35.5556  

2 31.9149  68.0851  

3 33.3333  66.6667  

4 69.2308  30.7692  

5 68.0000  32.0000  

6 25.0000  75.0000  

7 60.0000  40.0000  

8 71.4286  28.5714  

9 68.7500  31.2500  

 

Length 

Accident type 1 2 3 

1 58.6957  34.7826  6.5217  

2 60.4167  37.5000  2.0833  

3 50.0000  40.0000  10.0000  

4 71.4286  21.4286  7.1429  

5 84.6154  7.6923  7.6923  

6 52.0000  44.0000  4.0000  

7 81.8182  9.0909  9.0909  
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8 77.2727  18.1818  4.5455  

9 63.6364  30.3030  6.0606  

 

Sea condition 

Accident type 1 2 

1 55.5556  44.4444  

2 31.9149  68.0851  

3 66.6667  33.3333  

4 61.5385  38.4615  

5 24.0000  76.0000  

6 54.1667  45.8333  

7 40.0000  60.0000  

8 47.6191  52.3810  

9 59.3750  40.6250  

 

Ship age 

Accident type 1 2 3 4 5 6 

1 18.3674  16.3265  8.1633  8.1633  26.5306  22.4490  

2 13.7255  13.7255  11.7647  11.7647  45.0980  3.9216  

3 15.3846  7.6923  23.0769  7.6923  38.4615  7.6923  

4 11.7647  11.7647  17.6471  5.8824  35.2941  17.6471  

5 17.2414  10.3448  10.3448  13.7931  34.4828  13.7931  

6 21.4286  10.7143  10.7143  14.2857  21.4286  21.4286  

7 7.1429  14.2857  21.4286  7.1429  35.7143  14.2857  

8 12.0000  12.0000  12.0000  16.0000  24.0000  24.0000  

9 13.8889  19.4444  5.5556  11.1111  36.1111  13.8889  

 

Ship operation 

Accident type 1 2 3 4 5 6 7 8 

1 1.9608  1.9608  1.9608  5.8824  5.8824  1.9608  78.4314  1.9608  

2 18.8679  1.8868  18.8679  11.3207  1.8868  5.6604  39.6226  1.8868  

3 6.6667  6.6667  13.3333  6.6667  20.0000  6.6667  33.3333  6.6667  

4 5.2632  10.5263  5.2632  5.2632  5.2632  10.5263  52.6316  5.2632  

5 29.0323  3.2258  3.2258  16.1290  22.5806  3.2258  16.1290  6.4516  

6 10.0000  6.6667  13.3333  16.6667  6.6667  6.6667  33.3333  6.6667  

7 18.7500  6.2500  6.2500  6.2500  6.2500  12.5000  37.5000  6.2500  

8 7.4074  7.4074  7.4074  11.1111  37.0370  3.7037  22.2222  3.7037  

9 18.4210  21.0526  7.8947  13.1579  10.5263  7.8947  18.4210  2.6316  
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Ship speed 

Accident type 1 2 

1 80.0000  20.0000  

2 89.3617  10.6383  

3 88.8889  11.1111  

4 92.3077  7.6923  

5 92.0000  8.0000  

6 70.8333  29.1667  

7 90.0000  10.0000  

8 95.2381  4.7619  

9 93.7500  6.2500  

 

Time of day 

Accident type 1 2 

1 42.2222  57.7778  

2 51.0638  48.9362  

3 55.5556  44.4444  

4 53.8462  46.1538  

5 60.0000  40.0000  

6 58.3333  41.6667  

7 70.0000  30.0000  

8 52.3810  47.6191  

9 65.6250  34.3750  

 

Vessel condition 

Accident type 1 2 

1 84.4445  15.5556  

2 68.0851  31.9149  

3 77.7778  22.2222  

4 53.8462  46.1538  

5 60.0000  40.0000  

6 79.1667  20.8333  

7 20.0000  80.0000  

8 80.9524  19.0476  

9 62.5000  37.5000  

 

Voyage segment 
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Accident type 1 2 3 4 5 6 

1 2.0408  12.2449  2.0408  51.0204  30.6123  2.0408  

2 1.9608  15.6863  29.4118  39.2157  11.7647  1.9608  

3 7.6923  7.6923  7.6923  46.1538  23.0769  7.6923  

4 5.8824  5.8824  17.6471  52.9412  11.7647  5.8824  

5 13.7931  17.2414  3.4483  44.8276  17.2414  3.4483  

6 7.1429  10.7143  42.8571  10.7143  14.2857  14.2857  

7 7.1429  7.1429  21.4286  28.5714  28.5714  7.1429  

8 8.0000  4.0000  8.0000  60.0000  8.0000  12.0000  

9 19.4444  5.5556  22.2222  36.1111  13.8889  2.7778  

 

Weather condition 

Accident type 1 2 

1 66.6667  33.3333  

2 46.8085  53.1915  

3 44.4444  55.5556  

4 61.5385  38.4615  

5 60.0000  40.0000  

6 62.5000  37.5000  

7 60.0000  40.0000  

8 66.6667  33.3333  

9 65.6250  34.3750  

 

The statistical analysis of the probability of variables reveals interesting initial findings 

in terms of safety caution and accident prevention as follows. 
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Figure 5.6 Results of NBN 

Figure 5.6 presents the results of NBN involving all the retained 16 RIFs. Among the 

accidents, grounding and collision are the two most frequently occurring types of 

accidents: accounting for 20.3% and 21.2%, respectively. A majority of vessel lengths 

(i.e., 65%) are less than 100m. Vessels with gross tonnages less than 300 account for 37.5% 

of shipments involved in accidents. In addition, 67.5% of vessels are made of steel. 

In light of environmental factors, 40% of vessels in the accidents are involved in the ship 

operation of ‘on passage’, 41.3% are involved in the voyage segment of ‘mid-water’. 

Besides this, only 19.1% of ships involved in accidents are in poor fairway traffic in the 

process of accidents, 45.7% are at night time. Severe weather condition accounts for 40.2% 

of accidents, while tough sea condition accounts for 53.2%. 

With regard to ship factors, fishing vessels constitute the most substantial proportion (i.e. 
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18.4%) of shipments in accidents. Ships older than 20 years are presented in 33.2% of 

accidents. Also, 46% of vessels convey insufficient information, 14.2% have ergonomic 

design problems, 38.9% are faced with invalid equipment or devices on board, and 30.4% 

experience the condition of modification or increasing size.  

5.5 Sensitivity analyses and model validation  

5.5.1 Mutual information analysis 

Table 5.3 demonstrates the mutual information shared between ‘accident type’ and RIFs. 

When ‘accident type’ is the parent node, “ship operation” with the corresponding mutual 

information value of 0.28294, has the most potent effect on the accident type. To select 

important variables, a threshold of the mutual information value is set as 0.09, which is 

the average mutual information value. The variables with I(S,Rk) larger than 0.09, i.e. 

‘ship operation’, ‘voyage segment’, ‘ship type’, ‘gross tonnage’, ‘hull type’, and 

‘information’, illustrate essential impacts on ‘accident type’. Thus, these variables are to 

be computed for the factor analysis in the next step. In addition, variables that have less 

impact on ‘accident type’ mainly include ‘ship age’, ‘vessel condition’, ‘ergonomic 

design’, ‘length’, ‘fairway traffic’, ‘sea condition’, ‘equipment or device’, ‘ship speed’, 

‘time of day’, and ‘weather condition’. 

Table 5.3 Mutual information shared with ‘accident type’ 

Node Mutual Info. Percentage Variance of Beliefs 

Accident_type 2.95073 100 0.7352824 

Ship_operation     0.28294 9.59 0.0156048 

Voyage_segment   0.21515 7.29 0.0076025 

Ship_type 0.13632 4.62 0.0048136 

Gross_tonnage    0.12415 4.21 0.0037518 

Hull_type 0.10076 3.41 0.0024178 

Information   0.09665 3.28 0.0032523 

Ship_age  0.07052 2.39 0.0019386 

Vessel_condition    0.06771 2.29 0.0010538 
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Ergonomic_design 0.05944 2.01 0.0030873 

Length   0.05745 1.95 0.0009204 

Fairway_traffic      0.05660 1.92 0.0022666 

Sea_condition 0.05270 1.79 0.001587 

Equipment_device 0.03650 1.24 0.0008695 

Ship_speed 0.03372 1.14 0.0012873 

Time_of_day    0.01941 0.658 0.000732 

Weather_condition 0.01907 0.646 0.0009535 

5.5.2 Sensitivity analysis 

In order to overcome the drawback of the traditional way, a new method proposed by 

Alyami et al. (2019) is applied here. This method increases the probability of the state 

within the highest influencing on a type of accident (e.g. collision) to 100% to obtain the 

High Risk Inference (HRI) of collision. Then it increases the probability of the state 

generating the lowest influence on the collision to 100% to obtain the Low Risk Inference 

(LRI) of collision. In this way, calculating the average value of HRI and LRI concludes 

the True Risk Influence (TRI) of each variable in the case of a particular accident type. It 

is described as: 

2

HRI LRI
TRI


                                                          

where HRI refers to ‘High Risk Inference’ which is calculated for a variable influencing 

‘collision’, LRI is ‘Low Risk Inference’ calculated for a variable influencing ‘collision’, 

and TRI refers to ‘True Risk Influence’ for a variable influencing ‘collision’. To obtain 

the variable influence on ‘accident type’, a similar analysis procedure is applied to other 

accident types, ‘grounding’ and ‘flooding’ etcetera. Then TRIs for a variable influencing 

all accident types are obtained. After applying this method for each variable, the TRIs for 

all variables for all accident types are available. Therefore, the sensitivity analysis 

illustrates the ranking of variables’ influences on accident types according to the value of 

TRI. The higher a TRI is, the higher its corresponding RIF’s effect on ‘accident type’. 
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In terms of sensitivity analysis, Table 5.4 demonstrates the TRI value of ‘ship operation’ 

against collision, where S1 refers to collision. Table 5.5 indicates the values of all RIFs 

for all accidents, where S1~ S9 are defined in Section 5.3. 

Table 5.4 TRI of a risk variable (ship operation) for collision 

Ship_operation 

1 2 3 4 5 6 7 8 S1* HRI LRI TRI 

/ / / / / / / / 20.30 19.50 17.31 18.41 

100% 0 0 0 0 0 0 0 2.99    

0 100% 0 0 0 0 0 0 5.99    

0 0 100% 0 0 0 0 0 4.41    

0 0 0 100% 0 0 0 0 11.00    

0 0 0 0 100% 0 0 0 10.80    

0 0 0 0 0 100% 0 0 7.26    

0 0 0 0 0 0 100% 0 39.80    

0 0 0 0 0 0 0 100% 10.70       

*S1 - Collison 

Table 5.5 TRI of risk variables for all accident types 

Node 
TRI 

S1 S2 S3 S4 S5 S6 S7 S8 S9 Average 

Ship_operation     18.41  20.33  2.37  4.21  10.07  6.24  3.56  12.94  19.36  10.83  

Voyage_segment   16.44  14.94  1.96  2.06  9.07  13.38  2.03  9.06  14.82  9.30  

Ship_type 11.70  11.82  3.09  3.35  8.72  9.63  4.44  8.61  8.23  7.73  

Gross_tonnage    5.35  11.90  1.70  1.19  7.59  6.01  3.58  3.89  4.10  5.03  

Hull_type 7.00  7.30  3.91  8.23  4.67  3.47  4.02  9.41  8.51  6.28  

Information   4.25  9.40  1.53  1.70  3.11  6.20  0.51  3.24  4.25  3.80  

Specifically, in Table 5.4, the first row denotes the base-case scenario where the value of 

S1 is ‘20.3’, and the following rows represent the different scenarios with each state of 

the variable reaching 100%, for example, the second row increases the probability of the 

state 1 of ship operation to 100% to obtain the value of S1 (2.99). The same process is 

applied to all states of ship operation. According to column ‘S1’, ‘39.8’ is the largest, 

which means the state 7 of ship operation is the state within the highest influencing on S1 

(collision), and the difference between ‘39.8’ and ‘20.3’ (base-case scenario) is the HRI, 

i.e. ‘19.5’. However, ‘2.99’ is the smallest value, which means the state1 of ship operation 
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is the state within the lowest influencing on S1 (collision), so the LRI is obtained as 

‘17.31’. Then the TRI is calculated by averaging them. In this way, TRIs of each RIF of 

each accident type are obtained in Table 5.5. 

To obtain the impact levels of such RIFs in accident types, TRIs are compared and ranked. 

Generally, the most important variables lists for ‘accident types’ are as follows: 

Ship operation > Voyage segment > Ship type > Hull type > Gross tonnage > 

Information 

In detail, the most important variables lists for different accident types are demonstrated 

in Table 5.6. 

Table 5.6 The most important variables  

Accident type 
Ship 

operation     

Voyage 

segment   
Ship type Hull type 

Gross 

tonnage    
Information   

S1 Collision 1 2 3 4 5 6 

S2 Grounding 1 2 4 6 3 5 

S3 Flooding 3 4 2 1 5 6 

S4 Fire/explosion 2 4 3 1 6 5 

S5 Capsize 1 2 3 5 4 6 

S6 Contact/crush 3 1 2 6 5 4 

S7 Sinking 4 5 1 2 3 6 

S8 Overboard 1 3 4 2 6 5 

S9 Others 1 2 4 3 6 5 

5.5.3 Model validation 

To validate the model, another sensitivity analysis is conducted by investigating the 

results of the model given RIFs. It is also used to test the combined effect of multiple 

RIFs to the accident types. There are two axioms that have at least to be satisfied for the 

inference process (Yang et al., 2009, Zhang et al., 2013), referring to Chapter 3. 

Accounting for different states of the parent nodes, this study calculates the changed value 
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of each state. The ‘information’ is selected as the first node, the state generating the 

highest changed value of state 1 in ‘accident type’ is increased by 10%, while the state 

generating the lowest changed value of state 1 in ‘accident type’ is decreased by 10%. 

This procedure is written as ‘~10%’ in Table 5.7. Then, the same approach is applied to 

the next RIF, and the cumulative changed value is obtained and updated. The updating 

procedure would continue until all the RIF nodes are involved. Similarly, the same 

updating procedure is applied into the state 2, 3… 9 in ‘accident type’ respectively, until 

all states of accident type are included, as seen in Table 5.7. 

Table 5.7 Accident rate of minor change in variables 

Node Accident rate of minor change 

Information / ~10% ~10% ~10% ~10% ~10% ~10% 

Hull type / / ~10% ~10% ~10% ~10% ~10% 

Gross tonnage / / / ~10% ~10% ~10% ~10% 

Ship type / / / / ~10% ~10% ~10% 

Voyage segment / / / / / ~10% ~10% 

Ship operation / / / / / / ~10% 

S1 20.30 20.70 21.00 21.20 21.40 22.00 23.40 

S2 21.20 22.20 22.60 23.40 23.60 24.20 24.60 

S3 3.69 3.85 4.04 4.14 4.18 4.23 4.27 

S4 5.53 5.71 5.90 5.96 6.01 6.08 6.17 

S5 11.10 11.40 11.50 11.90 12.10 12.30 12.50 

S6 10.60 11.30 11.40 11.70 11.80 12.20 12.30 

S7 4.15 4.20 4.51 4.77 4.85 4.91 4.99 

S8 9.22 9.57 9.84 10.10 10.40 10.50 11.00 

S9 14.30 14.7 15.00 15.10 15.20 15.40 15.80 

The first column of the data in Table 5.7 shows the original values of 9 states of accident 

types in NBN, and the rest of the columns state the updated, changed values of results. 

However, each state of ‘accident type’ is calculated separately, i.e. each row is computed 

through the change of states of RIFs in each accident type. Specifically, for the first 

row, ’20.30’ is the original value of accident type S1 (grounding). Moreover, ‘20.70’ is 

calculated by the way that the state of ‘Information’ generating the highest changed value 

of S1 is increased by 10% while the state generating the lowest changed value of S1 is 

decreased by 10%. A further step is conducted based on ‘20.70’ to obtain ’21.00’ in the 
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table, which means the state of ‘Hull type’ generating the highest changed value of S1 is 

increased by 10% while the state generating the lowest changed value of S1 is decreased 

by 10%. Then ‘Gross tonnage’, ‘Ship type’, ‘Voyage segment’, ‘Ship operation’ apply 

this method sequentially. Furthermore, the same updating procedure is applied into the 

S3, S4, …, S9, respectively, until accident types are included. Besides that, the updated 

values of the target node demonstrate this model is in line with Axiom 1. Moreover, 

Axiom 2 is examined by comparing the initial target value with the updated one under all 

states. From Table 5.7, the updated values of the target node are gradually increasing or 

decreasing, along with the continuous updating of RIFs. 

5.6 Implication: scenario analyses 

The study enables the understanding of differentiation among critical factors contributing 

to different types of accidents. BN modelling is applicable to analyse the occurrence 

likelihood of each accident type in different scenarios involving vessel condition and 

environmental factors. To do this, two scenarios are proposed for useful research 

implications and managerial contributions. 

5.6.1 Scenario 1: environmental factor 

In the first scenario, maritime accidents under specific shipping environmental factors are 

estimated. Shipping environmental factors contain ship operation, voyage segment, 

weather condition, sea condition, time of day, fairway traffic in this scenario. For different 

assigned states of these factors, maritime accidents reveal different types.  

When the nodes are assigned with the specific states in Figure 5.7, the effects of the 

shipping environment are revealed. The probability of collision is the highest among the 

‘accident type’, accounting for 85.1%, followed by grounding only accounting for 4.52%. 

Such probability indicates the considerable increase in the risk of collision compared to 

the other types of accidents.  
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Figure 5.7 Posterior probability analysis in Scenario 1 - collision 
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Figure 5.8 Posterior probability analysis in Scenario 1 - grounding 
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vessel factors, maritime accident types have shown different likelihoods. 

Assuming that variables are assigned with the specific states in Figure 5.9, the effects of 

vessel factors on accident types are illustrated. The probability of collision is the highest 

among ‘accident type’, accounting for 82.1%. This probability indicates the considerable 

increase in the risk of collision compared to the initial states in Figure 5.6 due to the 

combined effect of the involved RIFs.  

 

Figure 5.9 Posterior probability analysis in scenario 2 - collision    
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Figure 5.10 Posterior probability analysis in scenario 2 - grounding 
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5.7 Discussion 

Compared to previous studies focusing on causal factors related to the severity and the 

probability of maritime accidents, this study uses an NBN approach to investigate how 

different risk factors pose an impact on different types of maritime accidents. To identify 

RIFs, maritime accident reports from MAIB and TSB within a five-year period are 

extracted and reviewed to develop a primary database on maritime accidents. Then the 

risk-based NBN model is constructed to analyse RIFs in maritime accidents. At last, the 

sensitivity analysis is conducted, as well as scenario analysis to indicate research 

contributions. In general, the results from the NBN model present the distinctions among 

the key factors contributing to different types of accidents, which helps generate insights 

for accident prevention. 

In summary, the findings of this study can be summarised as follows: 

(1) According to the calculations of the mutual information, crucial RIFs are ranked under 

different accident types. The results reveal that critical RIFs for maritime accident types 

are ‘Ship operation’, ‘Voyage segment’, ‘Ship type’, ‘Gross tonnage’, ‘Hull type’, 

‘Information’. 

(2) There is the highest probability of overboard occurring on fishing vessels. When the 

ship operation is ‘towing’, the accident type has a high likelihood of being ‘capsize’; 

‘manoeuvring’ and ‘on passage’ operation contribute to the higher probability of 

grounding; ‘pilotage’ is closely related to ‘contact/crush’. 

(3) When ships are in ‘mid-water’ and ‘transit’ voyage segments, there is a higher 

probability of being in a collision. Grounding is more likely to happen in ‘departure’ and 

‘arrival’ segments. 

(4) The situation of poor information on board exposes a higher risk of grounding.  
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Among them, the scenario analysis reveals that environmental factors and vessel factors 

of maritime accidents generate a significant impact on accident types.  

With respect to the environmental factors, the probability of collision is the highest among 

the ‘accident type’ when a ship is in the following states: ‘voyage segment – transit’; ‘ship 

operation - on passage’; ‘before 7:00 am or after 7:00 pm’; ‘good weather and sea 

condition’; ‘not considering the fairway traffic appropriately’. The probability of 

grounding is the highest when a ship is in the following states: ‘voyage segment – 

departure’; ‘ship operation – pilotage’; ‘between 7:00 am and 7:00 pm’; ‘severe weather 

and sea condition’; ‘not considering the fairway traffic appropriately’.  

Concerning the vessel factors, the probability of grounding is the highest among ‘accident 

type’ if a ship is in the following states: ‘older than 20 years’, ‘effective and updated 

information provided’, ‘ergonomic problem’, ‘equipment operates correctly’, ‘good 

condition of vessel’, ‘fast ship speed’. The probability of grounding is the highest among 

‘accident type’ if a fishing ship is in the following states: ‘older than 20 years’, ‘lack of 

updated information’, ‘ergonomic design friendly’, ‘equipment not fully utilised’, 

‘modification made to vessels and size’, ‘normal ship speed’. Therefore, such conclusions 

can effectively assist maritime authorities in developing countermeasures for accident 

prevention.  

There are also limitations in this study. The small number of flooding data makes the 

results not significant and robust. Although BN can conduct bi-directional risk analysis, 

the transformation from the converging to diverging connections does not intuitively 

represent the accident development. Moreover, more human factors, underlining 

communication, situation awareness, fatigue, etcetera, will be processed to conduct 

further research to illustrate the influence of human errors on maritime accidents. 
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5.8 Concluding remarks 

The following are the most significant remarks comprised in the chapter, and emphasised 

in the form of bullet points for the reader’s ease: 

 New primary data is analysed directly from maritime accident records. 

 Analysis of risk factors for rational prevention. 

 Evaluation of RIFs contributes to different types of maritime accidents. 

 The findings help assist maritime authorities in developing countermeasures for 

accident prevention. 
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Chapter 6 Incorporation of human factors into maritime 

accident analysis 

6.1 Introductory remarks 

Based on the results of the NBN model in Chapter 5, more human factors need to be 

included, as well as the inter-relations among different risk factors. With this perspective, 

another data-driven Bayesian Network is used to investigate the effect of human factors 

on marine safety in maritime accident analyses. Its novelties consist of 1) incorporation 

of human factors into causational analysis concerning different maritime accident types, 

and 2) modelling by a historical accident data-driven approach, to generate new insights 

on critical human factors contributing to different types of accidents. The modelling of 

the interdependency among the risk influencing factors is structured by TAN and 

validated by sensitivity analyses. The findings reveal that the critical risk factors for all 

accident types are ship age, ship operation, voyage segment, information, and vessel 

condition. More importantly, the findings also present the differentiation among the vital 

human factors against different types of accidents. Most probable explanation (MPE) is 

used to provide a specific scenario in which the beliefs are upheld, observing the most 

probable configuration. The work pioneers the analyses of various impacts of human 

factors on different maritime accident types. It helps provide specific recommendations 

for the prevention of a particular type of accidents involving human errors. 

6.2 Background information 

Most shipping accidents (e.g. collisions, groundings, crash, fire and explosions) are 

characterised with a feature of low probability-high consequence. Catastrophic maritime 

accidents may cause a huge loss of human lives, damage to the society and environment 

(Zhang and Thai, 2016). To mitigate the risk and improve the safety of marine 
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transportation, the IMO introduced FSA methodology for its applications to the rule-

making process (IMO, 2002, IMO, 2013). Although modern ships are highly equipped 

with advanced technologies (e.g. navigation technology, onboard information, bridge 

resource management systems), human factors present a significant contribution to 

accidents. There is no consensus on the statistical analysis of the causations leading to 

maritime accidents, due to the different perspectives on the analysis and use of various 

investigation approaches. According to the literature, the organisation, working condition, 

and navigational environment are the major driving forces to maritime accidents (García-

Herrero et al., 2012). However, human errors, technical failures, and mechanical failures 

are traditionally highlighted as the main root causes of accidents (Celik and Cebi, 2009). 

It is widely accepted that the human element, accounting for 75%-96% of maritime 

casualties, plays an essential role in accidents involving modern ships (Trucco et al., 

2008b, Fan et al., 2018, Tzannatos, 2010). Human factors are often viewed as causes 

behind anything that goes improperly at sea.  

Human factors are usually adopted as a concept that considers other relevant factors, 

including workplace conditions, physical and natural environment, procedures, 

technology, training, organisation, management, as well as seafarers (i.e. fatigue, task 

load, mental state, etcetera) (Psarros, 2015). Several researchers have studied the 

contribution of human and organisational factors to ship accidents (Chauvin et al., 2013, 

Chen et al., 2013, Xi et al., 2017). The majority of accidents occurred due to one of or a 

combination of the following causes: poor crew competence, fatigue, lack of 

communication, lack of proper maintenance, lack of application of safety culture and 

protocols or other procedures, inadequate training, poor situation assessment, and stress 

(Vinagre-Ríos and Iglesias-Baniela, 2013, Fan et al., 2018). Generally, seafarers often 

face more accidents than the crews working onshore, as reported by Roberts and Hansen 

(2002). Also, there is a consideration that a system for the training and assessment of the 

non-technical skills (NTS) needs to be established in the maritime industry (Saeed et al., 

2016). Thus, the effective control of these causes will help reduce the risk and improve 
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safety. 

Risk analyses are an effective way of devising mitigation measures that prevent accidents. 

Among the studies on the risk analyses for maritime transportation, historical data 

analyses have been widely used. A number of papers have used historical accident data 

for such purposes (Zhang et al., 2013, Zhang et al., 2016). Ronza et al. (2003) investigated 

828 accidents in port areas using event trees to predict the frequency of accidents. Kujala 

et al. (2009) included detailed accident statistics over a ten-year period in a collision 

model, to analyse the safety in the Gulf of Finland. Jin and Thunberg (2005) proposed the 

logic regression model based on accident data from 1981-2000 to analyse fishing vessel 

accidents. Quantitative risk and reliability analyses techniques have been widely used to 

reduce the probability of failure in offshore sectors, including Hazard and Operability 

Studies (HAZOP), Failure Mode and Effects Analysis (FMEA), Fault Tree Analysis 

(FTA), Event Tree Analysis (ETA) and BN. (Yeo et al., 2016, Zhang and Thai, 2016). BN 

became popular for maritime risk modelling during the period of 2004–2013. Experts’ 

knowledge was also found to play an essential role in Bayesian Network structures, 

regarding the definition of the relative probabilities due to insufficient historical data 

(Hänninen and Kujala, 2014, Zhang and Thai, 2016). 

This chapter investigates how human factors, combined with other factors, affect 

maritime transportation using risk analysis. Allowing for the drawbacks arising from 

traditional studies, this study proposes a novel risk assessment of the human factors 

contributing to maritime accidents. Since 75-96% of maritime accidents involve human 

elements, to which extent a maritime accident is defined to be a human-related maritime 

accident. This study aims at investigating how different risk factors generate, in an 

individual or combined manner, an impact on different types of human-related maritime 

accidents. Based on recorded maritime accident reports from MAIB and TSB between 

2012 and 2017, a primary database is developed. Owing to the use of accident data, the 

TAN model is developed to construct BN and train the data, so as to propose a data-driven 



 

108 

 

BN-based approach for accident analyses. 

6.3 RIFs identification 

To analyse the maritime accident types under various RIFs, identifying and selecting the 

RIFs from the accident reports is necessary. The data was obtained from case-by-case 

analyses of recorded maritime accidents from MAIB and TSB that occurred from 2012 

to 2017. These reports are among the most representative from the literature (Chauvin et 

al., 2013, Graziano et al., 2015, Kum and Sahin, 2015). 

To generate the RIFs, the procedure consists of four stages: (1) online database searching, 

(2) reports screening and selecting, (3) refining and analysis, (4) RIFs selecting, as 

demonstrated in Chapter 3. Through online database searching, the maritime accident 

reports from MAIB and TSB between Jan. 2012 to Dec. 2017 were obtained. In order to 

ensure the human element relevance, these accident reports are screened with a focus on 

human factors-related accidents. Therefore, the study generates the database with 161 

reports involving 208 vessels. Then, the reports are further refined and analysed, 32 risk 

factors contributing to human errors are identified and described in Chapter 4, shown in 

Table 6.1. Then factors with high occurrence frequencies are selected as common factors, 

and the others are excluded due to low frequencies and hard measurement.  

Table 6.1 The risk factors contributing to human errors in maritime accidents 

Number Risk factors Frequency 

24 Sea condition: falling tide, current, waves 53.37% 

22 Insufficient or lack of updated information (poor quality of equipment data, 

falsified records of information, relies on a single piece of navigational 

equipment); no automatic means or without indicators for necessary observing 

(working indicators, light) 

45.67% 

29 Dysfunctional management system (shore management, maintenance 

management, bridge source management, on board management, safety 

management systems, port service, qualification examination, inadequate 

training, practice, emergency drill) 

40.87% 

23 Weather condition: wind, visibility (dense fog) 39.42% 
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20 Devices and equipment on board not fully utilised or operated correctly 

(BNWAS switched off, alarm system not in the recommended position or not 

noticed) 

37.98% 

7 No clear order (not accurately interpret and apply the requirements of a safe 

manning document) 
37.50% 

2 Ineffective supervision and support (lone watchkeeper or working isolated, 

improper supervision of loading operation) 
32.69% 

12 Unfamiliar with/lack of equipment knowledge, inexperienced, ill-prepared 32.69% 

1 Poor communication and coordination 30.77% 

19 Poor condition of the vessel, increasing complexity of propulsion arrangements, 

and modifications made to vessels, size 
28.85% 

28 Lack of risk assessment 26.92% 

30 Lack of safety culture, precautionary thought 24.52% 

13 Complacent about the duties or underestimation of the severity of the condition 

(low state of alertness) 
21.63% 

27 Inappropriate or ambiguous code, endorsement, regulations, procedure, 

instructions, formal published guidance; operation manual, requirement 
19.71% 

17 Distracted/insufficient attention 16.35% 

26 Fairway traffic (traffic density, repetitive nature of the route) 16.35% 

5 Over-reliance on devices (AIS, GPS…), or poor lookout 15.38% 

9 Lack of situation awareness 14.42% 

3 No detailed passage plan or revised passage plan was unsafe 13.46% 

10 Fatigue/asleep/tiredness and desire to rest 13.46% 

8 Limited time to respond 12.50% 

21 Ergonomic impact of innovative bridge design (visual blind sector ahead, 

motion illusion) 
11.06% 

6 Fast speed 9.62% 

14 Recreational drugs, alcohol 6.73% 

15 Cognitively overload 4.81% 

32 Commercial pressure, public pressure or industrial pressure (financial 

constraints) 
4.33% 

31 No medical and fitness standards for crews 2.40% 

11 Emotion (low level of arousal, panic, anger, unhappiness) 1.92% 

4 Swift duty between pilots and seafarers or change of the steering mode 1.44% 

16 Physical incapacitation 0.96% 

25 Noisy and vibrating environment 0.96% 

18 Stress 0.48% 

However, human factors in maritime accidents are usually combined with other external 

factors, such as sea condition, weather condition, fairway traffic, and vessel condition, to 

affect the safety procedure in navigation. From this perspective, it is beneficial to combine 

human factors with other such factors to investigate their combined effect on maritime 
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safety. The average frequency of all common factors was calculated as the threshold of 

RIFs selection. Therefore, the top 14 common factors whose frequencies were higher than 

the average value, 19.35%, were extracted as RIFs in the study. Besides, combined with 

the factors identified from Chapter 5, encompass a total of 25 RIFs, seen in Table 6.2. 

Table 6.2 25 RIFs defined in maritime accidents  

No RIFs Notation Description 
Corresponding 

values 

1 Ship type RST 

Passenger vessel, tug, barge, fishing vessel, 

container ship, bulk carrier, RORO, tanker or 

chemical ship, cargo ship, others. 

1, 2, 3, 4, 5, 6, 7, 

8, 9, 10 

2 Hull type RHT Steel, wood, aluminium, others 1, 2, 4, 5 

3 Ship age (years) RSA (0 5], [6 10], [11 15], [16 20], >20, NA 1, 2, 3, 4, 5, 6 

4 Length (m) RL ≤100, >100, NA 1, 2, 3 

5 
Gross tonnage 

(GT) 
RGT ≤300, 300 to 10000, >10000, NA 1, 2, 3, 4 

6 Ship operation RSO 
Towing, Loading/unloading, Pilotage, Manoeuvring, 

Fishing, At anchor, On passage, others 

1, 2, 3, 4, 5, 6, 7, 

8 

7 Voyage segment RVS 
In port, Departure, Arrival, Mid-water, Transit, 

others 
1, 2, 3, 4, 5, 6 

8 Ship speed RSS Normal, fast  1, 2 

9 Vessel condition Rvc 

The condition of vessel has nothing to do with the 

accidents; 

Increasing complexity of propulsion arrangements, 

modification made to vessels, size contributes to the 

accidents 

1, 2 

10 
Equipment 

/device 
RE 

Devices and equipment onboard operate correctly; 

Devices and equipment not fully utilised or operated 

correctly (e.g., BNWAS switched off, alarm system 

not in the recommended position or not noticed) 

1, 2 

11 
Ergonomic 

design 
RED 

Ergonomic friendly or ergonomic aspects have 

nothing to do with accidents; 

Ergonomic impact of innovative bridge design (e.g., 

visual blind sector ahead, motion illusion) 

1, 2 

12 Information RI 

Effective and updated information provided; 

Insufficient or lack of updated information (e.g., 

poor quality of equipment data, falsified records of 

information, relies on a single piece of navigational 

equipment, without working indicators or light for 

necessary observing) 

1, 2 
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13 
Weather 

condition 
RWC Good/poor considering rain, wind, fog, visibility 1, 2 

14 Sea condition RSC 
Good/poor considering falling/rising tide, current, 

waves 
1, 2 

15 Time of day RTD 07:00 to 19:00, other 1, 2 

16 Fairway traffic RFT 

Good or poor considering complex geographic 

environment, dense traffic, or repetitive nature of the 

route contributing to ignorance 

1, 2 

17 Communication A1 Good or poor communication and coordination  1, 2 

18 Supervision A2 

Effective or ineffective supervision and supports  

(lone watchkeeper or working isolated, improper 

supervision of loading operation) 

1, 2 

19 Clear order A6 

Good or unclear order from documents 

(not accurately interpret and apply the requirements 

of a safe manning document) 

1, 2 

20 Experienced A11 

Familiar or unfamiliar with/lack of equipment 

knowledge, experienced or inexperienced, good or 

ill-prepared; 

1, 2 

21 Complacent A12 

Properly understand or complacent about the 

duties/underestimation of the severity of the 

condition (low state of alertness) 

1, 2 

22 Regulation A18 

Good or inappropriate/ambiguous code, 

endorsement, regulations, procedure, instructions, 

formal published guidance; operation manual, 

requirement 

1, 2 

23 Risk assessment A19 Good or lack of risk assessment 1, 2 

24 Management A20 

Good or dysfunctional management system  

(including shore management, maintenance 

management, bridge source management, onboard 

management, safety management systems, port 

service, qualification examination, inadequate 

training, practice, emergency drill) 

1, 2 

25 Safety culture A21 Good or lack of safety culture, precautionary thought 1, 2 

Most of the definitions of variables’ states can be seen in accident investigation reports. 

For example, ‘accident type’, ‘ship type’, ‘hull type’, ‘ship operation’, and ‘voyage 

segment’, are classified into different states according to the classification of MAIB or 

TSB. Some variables are degraded according to the literature, like ‘ship age’, ‘length’, 

and ‘gross tonnage’. Also, ‘vessel condition’, ‘communication’, ‘supervision’, etcetera, 

are graded based on whether they are blamed for the faults in accidents, as described in 

the reports. 
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In the quantitative analysis of BN modelling, the accident type is defined as a dependent 

variable, as presented in Table 6.3. 

Table 6.3 Accident type 

No. Accident type 

S1 Collision 

S2 Grounding 

S3 Flooding 

S4 Fire/explosion 

S5 Capsize 

S6 Contact/crush 

S7 Sinking 

S8 Overboard 

S9 Others 

6.4 TAN Modelling for maritime accidents 

A Bayesian network encodes a joint probability distribution over a set of random variables 

U, which is an annotated directed acyclic graph (DAG). Let  1 n, ,U A A C  where n 

stands for the number of RIFs, the variables 1, nA A  are the RIFs and C is the class 

variable (accident types). Consider a graph structure where the class variable is the root, 

that is, C   ( C  denotes the set of parents of C in U), and each RIF has the 

class variable as its unique parent, i.e. iA C  for 1 ≤ i ≤ n. A BN defines a unique 

joint probability distribution over U given by 

1 n 1
( , , ) ( ) ( | )

n

ii
P A A C P C P A C


                                        

The DAG on  1, nA A  is a tree if iA  contains only one parent for all Ai, except for 

one variable without parents (referred to as the root). There is a function π which can 

define a tree over 1, nA A  if there is exactly one i such that i （） 0  (i.e. the root of 
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the tree), and there is no sequence 1, ki i  such that 
1jij i （ ）  for i ≤ j< k and 

1ki i （ ）  (i.e., no cycles). Such a function defines a tree network where 

 ( ),i iA C A  if 0i （） , and iA C  if 0i （） .  

Learning a TAN structure is an optimisation problem. Solving this problem follows the 

general procedure proposed by Chow and Liu (1968), who used conditional mutual 

information between attributes. The function can be defined as  

i

, ,

( , | )
( , | ) ( , , ) log

( | ) ( | )
ii ji i

ii ji i

P j ii ji i

a a c ii i ji i

P a a c
I A A C P a a c

P a c P a c
                       

where IP represents the conditional mutual information, aii is the ith state of RIF Ai, aji is 

the ith state of RIF Aj, ci is the ith state of ‘accident type’. The optimisation problem, i.e. 

learning a TAN structure, is to find a tree defining function π over 1, nA A such that the 

log likelihood is maximised.  

This function measures the information that Ai provides about Aj when the value of C is 

known. The procedure of TAN modelling consists of five steps: 

(a) Compute ( , | )P i jI A A C  between each RIF given ‘accident type’, i j . ‘Accident 

type’ is the class variable. 

(b) Build an undirected graph in which the vertices are the RIFs 1, nA A . Annotate the 

weight of an edge linking RIF Ai to RIF Aj by ( , | )P i jI A A C . 

(c) Build a maximum weighted spanning tree, i.e. the tree that has a maximum sum of

( , | )P i jI A A C . 

(d) Transform the undirected tree to a directed tree, i.e. choose a root variable from the 
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RIFs according to (c) and setting the direction of all edges linking RIFs to be outward 

from it. 

(e) Construct a TAN structure by adding a vertex labelled by ‘accident type’ and adding 

an arc from ‘accident type’ to each RIFs. 

To generate the BN model, 25 RIFs are involved in demonstrating their relationships with 

the dependent variable (i.e. accident type). The Netica software package (Norsys, 

http://www.norsys.com) is applied to assist the calculation. It has a ‘learning network’ 

function that develops the TAN network. The structure of the BN is presented in Figure 

6.1.  

 

Figure 6.1 Proposed BN for analysis of accident types’ probability 

Based on the TAN model, the parameter learning of CPTs from the cases is conducted by 

Netica Software. Once the CPTs are constructed and obtained, the posterior probabilities 

Ship_type

1
2
3
4
5
6
7
8
9
10

10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0

5.5 ± 2.9

A18

1
2

50.0
50.0

1.5 ± 0.5

A2

1
2

50.0
50.0

1.5 ± 0.5

Equipment/device

1
2

50.0
50.0

1.5 ± 0.5

A6

1
2

50.0
50.0

1.5 ± 0.5

Hull_type

1
2
4
5

25.0
25.0
25.0
25.0

3 ± 1.6

Accident_type

1
2
3
4
5
6
7
8
9

11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1

5 ± 2.6

A11

1
2

50.0
50.0

1.5 ± 0.5

A12

1
2

50.0
50.0

1.5 ± 0.5

Voyage_segment

1
2
3
4
5
6

16.7
16.7
16.7
16.7
16.7
16.7

3.5 ± 1.7

Ship_speed

1
2

50.0
50.0

1.5 ± 0.5

Ergonomic_design

1
2

50.0
50.0

1.5 ± 0.5

Gross_tonnage

1
2
3
4

25.0
25.0
25.0
25.0

2.5 ± 1.1

Information

1
2

50.0
50.0

1.5 ± 0.5

A20

1
2

50.0
50.0

1.5 ± 0.5

A21

1
2

50.0
50.0

1.5 ± 0.5

Sea_condition

1
2

50.0
50.0

1.5 ± 0.5

Weather_condition

1
2

50.0
50.0

1.5 ± 0.5

A19

1
2

50.0
50.0

1.5 ± 0.5

A1

1
2

50.0
50.0

1.5 ± 0.5

Time_of_day

1
2

50.0
50.0

1.5 ± 0.5

Fairway_traffic

1
2

50.0
50.0

1.5 ± 0.5

Ship_operation

1
2
3
4
5
6
7
8

12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5

4.5 ± 2.3

Ship_age

1
2
3
4
5
6

16.7
16.7
16.7
16.7
16.7
16.7

3.5 ± 1.7

Length

1
2
3

33.3
33.3
33.3

2 ± 0.82

Vessel_condition

1
2

50.0
50.0

1.5 ± 0.5

http://www.norsys.com/


 

115 

 

of each variable can be calculated. The statistical analysis of the probability of variables, 

reveals interesting initial findings of useful insights regarding safety caution and accident 

prevention as follows. 

 

Figure 6.2 Results of TAN 

Figure 6.2 presents the results of TAN involving all the retained 25 RIFs. Among the 

accidents, grounding and collision are among the most frequent accident types, 

accounting for 20.3% and 21.2%, respectively. 

6.5 Sensitivity analysis 

6.5.1 Mutual information 

The mutual information between ‘accident type’ and RIFs is demonstrated in Table 6.4. 
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From this point of view, the variables with higher I(S,Rk) reflects essential impacts on 

‘accident type’. When ‘accident type’ is the parent node, ‘ship age’ with the corresponding 

mutual information value of 0.05422, has the most significant effect on the accident type. 

Meanwhile, variables ‘ship age’, ‘ship operation’, ‘voyage segment’, and ‘information’, 

are selected to be calculated for the factor analysis in the next step.  

Table 6.4 Mutual information shared with ‘Accident type’ 

Node    

 Variance 

Reduction    

 Percentage 

(%)    

Mutual  

Info 

 Percentage 

(%)    

Variance of 

Belief 

Ship_age    0.02399 0.284 0.05422 1.84 0.0015433 

Ship_operation    0.3115 3.69 0.05132 1.74 0.0030026 

Voyage_segment    0.11 1.3 0.03595 1.22 0.0013546 

Vessel_condition    0.07391 0.874 0.03171 1.07 0.0006767 

Information          0.06113 0.723 0.03042 1.03 0.0010573 

Ship_type         0.03119 0.369 0.02891 0.98 0.0011112 

A21        0.01585 0.188 0.02871 0.973 0.000501 

Hull_type     0.1171 1.39 0.02838 0.962 0.0008351 

Gross_tonnage     0.0414 0.49 0.02482 0.841 0.0010064 

A18           0.01091 0.129 0.02306 0.782 0.0005812 

Length        0.02874 0.34 0.02151 0.729 0.0003882 

Ergonomic_design       0.07421 0.878 0.0194 0.657 0.0006816 

Sea_condition   0.0168 0.199 0.01774 0.601 0.0006831 

A19       0.06751 0.799 0.01466 0.497 0.0004953 

A11 0.000957 0.0113 0.01271 0.431 0.0003126 

Ship_speed      0.006733 0.0797 0.01172 0.397 0.0003134 

Weather_condition   0.004131 0.0489 0.00889 0.301 0.0004858 

A20                   0.02553 0.302 0.00851 0.288 0.0001854 

A6               0.01196 0.142 0.00707 0.24 0.0002377 

Fairway_traffic    0.03498 0.414 0.00704 0.238 0.0001619 

Time_of_day      0.04428 0.524 0.00671 0.227 0.0002614 

A12            0.003327 0.0394 0.006 0.203 0.000211 

A1 5.57E-05 0.000659 0.00547 0.185 0.0000786 

Equipment/device 0.003186 0.0377 0.00541 0.183 0.0001612 

A2            0.01893 0.224 0.00399 0.135 0.0001467 

6.5.2 Sensitivity analysis 

With regard to the most important variables influencing each of the investigated accident 
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types, the next step is to figure out how these variables (the states of variables) affect the 

target accident type. To do so, the calculation of a joint probability of each variable and 

‘accident type’ is presented in Table 6.5. 

Table 6.5 The joint probability of the TAN model 

Ship age   

S1 S2 S3 S4 S5 S6 S7 S8 S9 

1 23.6 19.8 3.69 3.88 12 13.9 2.56 7.7 12.9 

2 22.4 21.1 2.2 4.99 8.81 8.73 3.8 8.21 19.7 

3 14.8 23.5 7.24 8.87 8.93 11.2 7.74 8.92 8.82 

4 15.8 22.5 2.69 3.72 13.7 12.6 3.33 12.9 12.8 

5 16.8 27.7 4.27 5.58 11.7 7.02 4.11 7.15 15.7 

6 29.3 6.95 2.07 6.52 10.6 14.3 4.13 13.2 13 

Ship operation  

S1 S2 S3 S4 S5 S6 S7 S8 S9 

1 12.8 25.3 3.3 4.74 15.2 9.75 4.48 7.9 16.5 

2 15.9 16.3 4.1 6.5 10.3 11.1 4.57 9.81 21.4 

3 14.4 28.4 4.08 5.32 9.28 11.9 4.14 8.9 13.6 

4 16.5 21.6 3.51 5.05 12.5 12.2 3.92 9.36 15.4 

5 16.9 14.2 4.45 5.12 15.4 9.69 3.98 15.9 14.3 

6 16.6 20 4.26 6.75 10.7 11.6 5.26 9.27 15.7 

7 35.7 22.8 2.64 5.19 6.51 8.71 3.14 6.08 9.23 

8 17.5 18 4.51 6.48 12.7 12.2 5.03 9.82 13.7 

Voyage segment  

S1 S2 S3 S4 S5 S6 S7 S8 S9 

1 15.3 15.6 4.24 6.03 13.5 11 4.72 9.95 19.6 

2 20.3 23.5 3.73 5.31 12.6 10.6 4.16 7.96 11.8 

3 11.5 28.5 3.2 5.44 7.72 15.9 4.29 7.54 15.9 

4 25.4 22.1 3.17 5.34 11.3 5.86 2.99 10.6 13.3 

5 27.5 17.7 3.89 5.02 10.9 9.84 4.67 7.51 13 

6 16.5 16.9 4.6 6.53 11.1 14.2 5.12 11.8 13.3 

Vessel condition  

S1 S2 S3 S4 S5 S6 S7 S8 S9 

1 24.3 21.191 3.63 4.46 9.56 11.5 2.22 10.1 13.1 

2 12.8 21.212 3.8 7.53 13.9 8.99 7.76 7.52 16.5 

Information  

S1 S2 S3 S4 S5 S6 S7 S8 S9 

1 21.8 15.8 3.33 6.17 13.2 7.28 4.28 10.6 17.6 

2 18.7 26.8 4.06 4.86 8.86 14.1 4.01 7.82 10.8 
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According to Table 6.5, the state of each variable that poses the highest influence on an 

accident type is shown (in bold value), as well as the state of each variable that poses the 

lowest influence on an accident type (in bold value). For example, when a ship is in the 

state of ‘on passage’, there is the highest probability for the accident to be ‘collision’ 

(35.7%); when ‘ship operation’ is the state of ‘towing’, there is the lowest probability to 

be ‘collision’ (12.8%). However, when a ship is in ‘pilotage’, there is the highest 

probability to be ‘grounding’ (28.4%); in ‘fishing’ operation, there is the lowest 

probability to be ‘grounding’ (14.2%). For the voyage segment, when in the state of 

‘transit’, a ship has the highest probability to be in ‘collision’ (27.5%); when in ‘arrival’ 

segment, it has the lowest probability to be in ‘collision’ (11.5%), but has the highest 

probability to be in ‘grounding’ (28.5%). As far as the ship age is concerned, a ship with 

age from 11 to 15 years has the lowest probability to be involved in ‘collision’(14.8%), 

whereas a more than 20-year-old ship has the highest probability to be involved in 

‘grounding’(27.7%). Although with good vessel condition and the condition of good 

information, the ship associates with ‘collision’, whereas the situation of poor information 

on-board ship exposes the highest risk of ‘grounding’. 

In this way, it demonstrates the influence of the certain state of a single variable on an 

accident type. Moreover, it illustrates how different states of a single variable contribute 

to the probability of a particular accident type. 

In terms of TRI sensitivity analysis, Table 6.6 demonstrates the TRI value of ‘ship age’ 

against collision. Table 6.7 indicates the values of all RIFs for all accidents. Moreover, 

by comparing the updated value of the target node, it is claimed that the model is in line 

with Axiom 1.  

Table 6.6 TRI of a risk variable (ship operation) for collision 

Ship age          

1 2 3 4 5 6 Collision HRI LRI TRI 

/ / / / / / 20.3 9.0 5.5 7.25 
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100% 0 0 0 0 0 23.6  
 

 
0 100% 0 0 0 0 22.4  

 
 

0 0 100% 0 0 0 14.8    
0 0 0 100% 0 0 15.8    
0 0 0 0 100% 0 16.8    
0 0 0 0 0 100% 29.3    

 

Table 6.7 TRI of risk variables for all accident types 

Node 

TRI 

S1 S2 S3 S4 S5 S6 S7 S8 S9 Average 

Ship age    7.25 10.38 2.59 2.58 2.45 3.64 2.59 3.03 5.44 4.44 

Ship operation    11.45 7.10 0.94 0.88 4.45 1.75 1.06 4.91 6.09 4.29 

Voyage segment    8.00 6.45 0.72 0.76 2.89 5.02 1.07 2.15 3.30 3.37 

Vessel condition    5.75 0.01 0.09 1.54 2.17 1.26 2.77 1.29 1.70 1.84 

Information          1.55 5.50 0.37 0.66 2.17 3.41 0.14 1.39 3.40 2.06 

 

Specifically, in Table 6.6, the first row denotes the base-case scenario, and the following 

rows represent the different scenarios when each state of the variable reaches 100%. To 

obtain impact levels of such RIFs in accident types, TRIs are compared and ranked. 

Generally, based on Table 6.7, the most important variables for ‘accident types’ are as 

follows: 

Ship age > Ship operation > Voyage segment > Information> Vessel condition 

Ship age is ranked as the most important variable, and vessel condition is ranked as the 

fifth important variable for ‘accident types’. Compared to the results in Chapter 5, it 

shows that the majority of the results remain the same. However, the ship age and vessel 

condition reveal more contribution to the accident types when more human factors are 

considered within their interactions in the model. Both of them are vessel factors, which 

implies that vessel factors attribute more interactions considering human factors. 
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In detail, the most important variables list for different accident types is demonstrated in 

Table 6.8. 

Table 6.8 The most important variables  

Accident type Ship age Ship operation 
Voyage 

segment 

Vessel 

condition  
Information 

S1 Collision 3 1 2 4 5 

S2 Grounding 1 2 3 5 4 

S3 Flooding 1 2 3 5 4 

S4 Fire/explosion 1 3 4 2 5 

S5 Capsize 3 1 2 4 4 

S6 Contact/crush 2 4 1 5 3 

S7 Sinking 2 4 3 1 5 

S8 Overboard 2 1 3 5 4 

S9 Others 2 1 3 5 4 

From this point of view, different accident types are correlated to different variable 

priorities. For example, ‘vessel condition’ is the most important RIF for ‘sinking’, but the 

least important RIF for ‘contact/crush’. And ‘ship operation’ contributes more to the 

accidents like ‘collision’, ‘capsize’, and ‘overboard’, than the accidents like ‘sinking’ and 

‘contact/crush’.  

6.5.3 Model validation 

To validate the model, it is examined by testing the combined effect of multiple RIFs to 

the accident types. Accounting for different states of the parent nodes, this study 

calculates the changed value of each state. The ‘information’ is selected as the first node, 

the state generating the highest changed value of state 1 (i.e. collision) in ‘accident type’ 

is increased by 10%, while the state generating the lowest changed value of state 1 in 

‘accident type’ is decreased by 10%. This procedure is written as ‘~10%’ in Table 6.9. 

Then, the same approach is applied to the next RIF, and the integrated changed value is 

obtained and updated. The updating procedure would continue until all RIF nodes are 
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included. Similarly, the same updating procedure is applied into the state 2, 3… 9 in 

‘accident type’ respectively, until all states are included. 

The first column of the data in Table 6.9 shows the original values in TAN, and other 

columns state the updated, changed values of results. However, each state of ‘accident 

type’ is calculated separately from each other, i.e. each row is computed through the 

change of states of RIFs in each accident type. From Table 6.9, the updated values of the 

target node are gradually increasing or decreasing along with the continuously changing 

RIFs, so that Axiom 2 is examined. 

Table 6.9 Accident rate of minor change in variables 

Information / ~10% ~10% ~10% ~10% ~10% 

Vessel condition / / ~10% ~10% ~10% ~10% 

Voyage segment / / / ~10% ~10% ~10% 

Ship operation / / / / ~10% ~10% 

Ship age / / / / / ~10% 

S1 20.3 20.4 21.2 21.5 22 22.2 

S2 21.2 21.761 21.765 22 22.2 22.6 

S3 3.69 3.72 3.74 3.76 3.79 3.8 

S4 5.53 5.6 5.8 5.82 5.85 5.91 

S5 11.1 11.3 11.6 11.7 11.8 11.9 

S6 10.6 10.9 11.1 11.371 11.426 11.6 

S7 4.15 4.16 4.52 4.57 4.61 4.68 

S8 9.22 9.36 9.53 9.61 9.79 9.91 

S9 14.3 14.6 14.86 14.945 15.1 15.3 

6.6 Implications  

The study enables the understanding of differences among critical factors, contributing to 

different types of accidents by incorporating human factors into the analysis. BN 

modelling can also explain the most probable scenario with reference to a particular 

accident type. 

To enable the MPE function, each variable will have a belief-bar at the 100% level, and 
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usually, some bars in RIFs are at lower levels, as seen in Figure 6.3. It reveals the most 

probable configuration by assuming the state with the bar at the 100% level for each 

variable. The shorter bars indicate the relatively low probabilities of the other states, given 

that the other variables are in the most probable configuration. In addition, they are scaled 

by the same factor used to bring the longest bar to 100%.  

 

Figure 6.3 Most Probable Explanation for the BN model 

From Figure 6.3, ‘overboard’ is the most probable accident type, as its high occurrence 

frequency indicates, and other RIFs reveal the corresponding most probable states. That 

is to say, a ‘fishing vessel’ tends to be ‘overboard’ within these conditions: 
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1) Ship age ‘more than 20’, ship length ‘100m or less’, gross tonnage ‘300GT or less’, in 

‘finishing’ operation and ‘mid-water’ voyage segment with ‘normal’ speed, in ‘good 

condition’, with friendly ergonomic design and correctly operating device, and with 

effective navigational information;  

2) Bad sea condition, during the time from 7:00 to 19:00; 

3) Dysfunctional management system, lack of safety culture. 

With regard to this explanation, it emphasises the critical causal relation between the 

dysfunctional management system and overboard. The management system refers to 

shore management, maintenance management, bridge source management, onboard 

management, port service, inadequate training, emergency drill, etcetera, which is a 

complex system as a significant variable influencing human factors for overboard. 

Besides, the lack of safety culture explains some dangerous behaviours of passengers or 

crew, so as to cause overboard. 

Similarly, when ‘accident type’ is selected as state 1 (collision), the MPE is displayed in 

Figure 6.4. 
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Figure 6.4 Most Probable Explanation for ‘collision’ 

From Figure 6.4, there are multiple 100% bars for ‘hull type’. Typically, when two or 

more states of the same variable have bars that are at the 100% level, it indicates that there 

is more than one configuration with the highest probability (i.e. the configurations have 

equal probability). Then one of the states is to be entered with an artificial finding that 

the variable is in that state, to see how it changes the multiple 100% bars of other variables. 

When accident type is selected in Figure 6.4, there is a high probability for the ‘fishing 

vessel’ to collide under these circumstances: 

1) Ship age ‘more than 20’, ship length ‘100m or less’, gross tonnage ‘300GT or less’, 
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vessel condition’, with friendly ergonomic design and correctly operating device, and 

adequate navigational information; 

2) During the time before 7:00 or after 19:00; 

3) Ineffective supervision or support of operation. 

Under this circumstance, ineffective supervision or support of operation is strongly 

related to the collision. Branch et al. (2004) reported that at least three of the fifteen ships 

which failed to keep a proper lookout at night for collision had lone watchkeepers on the 

bridge. Working isolated or improper supervision increases the risk of human errors in 

navigation compared to operating under supervision.  

By trying each of the possibilities, all the configurations that are at the highest probability 

level are revealed. Table 6.10 illustrates the MPE for all accident types. Although there 

are influences between different RIFs, poor vessel condition such as increasing 

complexity of propulsion arrangements or modification made to vessels size has a strong 

relation to sinking. Insufficient or lack of updated information, such as falsified records 

of information, relies on a single piece of navigational equipment, or without working 

indicators for necessary observing, contributes to grounding, contact, and other incidents. 

Ergonomic impact of innovative bridge design (e.g., visual blind sector ahead, motion 

illusion) is strongly related to fire and sinking. Also, it emphasises several human factor 

related variables under different accident types. For example, there is a high probability 

for a collision to happen under the case of lone watchkeeper or working isolated. 

Grounding usually happens under the circumstance with inadequate risk assessment, 

dysfunctional management system, unclear order from documents, and ineffective 

supervision. The most probable explanation given human factors for flooding is the lack 

of safety culture and precautionary thought. Human factors for capsize are related to lack 

of risk assessment, unclear order, and ineffective supervision. The situation with poor 

safety culture, dysfunctional management, and unclear order is strongly associated with 
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sinking. 

Table 6.10 Most Probable Explanation for all accident types 

Variable S1 S2 S3 S4 S5 S6 S7 S8 S9 

Ship age    5 5 5 5 1 6 5 5 2 

Ship operation    7 1 5 7 1 7 1 5 2 

Voyage segment    4 2 4 4 5 3 5 4 1 

Vessel condition    1 1 1 1 1 1 2 1 1 

Information          1 2 1 1 1 2 1 1 2 

Ship type         4 3 4 4 2 7 2 4 9 

A21        1 1 2 1 1 1 2 2 1 

Hull type     2 1 2 2 1 1 1 5 1 

Gross tonnage     1 2 1 1 1 3 1 1 2 

A18           1 1 1 1 1 1 1 1 1 

Length        1 1 1 1 1 2 1 1 1 

Ergonomic design       1 1 1 2 1 1 2 1 1 

Sea condition   1 2 1 2 2 1 2 2 1 

A19       1 2 1 1 2 1 1 1 2 

Ship speed      1 1 1 1 1 2 1 1 1 

Weather condition   1 2 2 2 1 1 1 1 1 

A20                   1 2 1 2 1 1 2 2 1 

A6               1 2 1 2 2 2 2 1 2 

Fairway traffic    1 1 1 1 1 1 1 1 1 

Time of day      2 1 1 1 1 2 1 1 1 

A12            1 1 1 1 1 1 1 1 1 

A2            2 2 1 1 2 1 1 1 1 

6.7 Discussion 

Compared to previous studies focusing on causal factors related to the severity and the 

probability of maritime accidents, this study uses a data-driven TAN approach, to 

investigate how different risk factors generate an impact on different types of maritime 

accidents with a focus on human factors. To identify RIFs, maritime accident reports from 

MAIB and TSB within a five-year period of 2012-2017, are extracted and reviewed to 

develop a primary database on maritime accidents. Then the risk-based TAN model is 

constructed to analyse RIFs incorporating human factors in maritime accidents. Lastly, 

the sensitivity analysis is conducted, as well as scenario analysis and MPE to indicate 
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research contributions. 

According to the calculations of the mutual information, crucial RIFs are ranked under 

different accident types. The results reveal that critical RIFs for maritime accident types 

are ‘ship age’, ‘ship operation’, ‘voyage segment’, ‘information’, and ‘vessel condition’. 

Meanwhile, it is evident that: 

(1) The management system, including shore management, maintenance management, 

bridge source management, onboard management, port service, inadequate training, 

emergency drill etcetera, is a significant variable influencing human factors for overboard. 

Besides, the lack of safety culture explains dangerous behaviours on board, so as to cause 

overboard. 

(2) Ineffective supervision is strongly related to the collision. Working isolated or 

improper supervision increases the risk of human errors in navigation compared to 

operating under supervision. 

(3) Collision tends to happen under the case of lone watchkeeper or working isolated. 

Grounding is a probability under the circumstance with inadequate risk assessment, 

dysfunctional management system, unclear order from documents, and ineffective 

supervision. The most probable explanation given human factors for flooding is the lack 

of safety culture and precautionary thought. Human factors for capsize are related to lack 

of risk assessment, unclear order, and ineffective supervision. The situation with poor 

safety culture, dysfunctional management, and unclear order is strongly associated with 

sinking. 

The scenario analysis provides a plausible explanation for the observed findings, 

revealing the most probable scenario under specific accident type. Therefore, it can help 

identify the potential hazards and effectively assist maritime authorities in developing 

countermeasures for accident prevention. 
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Generally, results from the TAN model present differentiation among the vital human 

factors contributing to different types of accidents, which helps provide the clue for 

accident investigation and generates insights for accident prevention. The stakeholders, 

such as ship owners and maritime authorities, will benefit from the findings and obtain 

the clue for accident investigation and prevention. However, there is a drawback in the 

MPE method for implications. Generally, its results can change with the introduction of 

irrelevant variables, and be deceptive in situations where even the most probable 

explanation is improbable. In addition, there is insufficient evidence to study individual 

factors which do not exist or contain limited information in the raw database, but are 

associated with the mental workload for seafarers. Further work should be conducted to 

propose a way to quantify or measure the mental workload of seafarers to support the 

human factors study. 

6.8 Concluding remarks 

The following are the most significant remarks comprised in the chapter, and emphasised 

in the form of bullet points for the reader’s ease: 

 Incorporate human factors into causational analysis of maritime accident types. 

 Develop a historical accident data-driven approach to train prior probabilities in the 

risk-based BN. 

 Conduct an empirical study to provide insights for the prevention of a particular type 

of accidents involving human errors. 
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Chapter 7 Mental workload analyses for seafarers in the 

ship bridge 

7.1 Introductory remarks 

From the above human factors research derived from accident reports and works of 

literature, there is still a gap for individual factors which contain limited information in 

the raw database, but are associated with the mental workload for seafarers. This research 

has to find a way to obtain the evidence towards the mental workload of seafarers to 

support the hypothesis of the study. This chapter investigates how mental workload 

influences neurophysiological activation and decision making of experienced and 

inexperienced deck officers concerning collision avoidance. This last was done with 

simulated watch-keeping tasks in a maritime bridge simulator, and using fNIRS 

technology to measure neurophysiological activation. It demonstrates that the developed 

scenario distracted the ship officers by reporting vessel position at specific points, which 

is the common task requiring temporal mental workload in the real world. The results 

show that experienced participants were considered to believe they have better 

performance than inexperienced people. It also illustrates better performance for 

experienced seafarers because they made decisions earlier, which leads to collision 

avoidance successfully. Participants under distraction were considered to require more 

temporal demand than without distraction. In terms of fNIRS data, it shows significant 

differences in the right DLPFC of the brain. Greater oxygenation is found during decision 

time for participants with distraction. Higher oxygenation is observed for experienced 

participants at the end of watchkeeping. 

7.2 Background information 

Human factors are often viewed as sophisticated causes behind anything that goes 
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improperly at sea. Out of nearly 62% of pollution and maritime accidents (Er and Celik, 

2005), human factors were comprised of 30% deck officer error, 7% shore-based 

personnel error, 2% engine officer error, 8% pilot error. Compared to the offshore crews, 

ship officers are faced with higher risks during ship navigation. 

The deck officer is required to obtain plenty of skills, especially non-technical skills, 

including defining problems, managing workload, maintaining the standards of the 

watch-keeping, implementing the best solution, responding to the changes of the 

information, anticipating future events, sending information clearly and concisely, 

maintaining concentration, coping with stressors, etcetera (O'Connor and Long, 2011). 

Therefore, they are supposed to deal with multi-tasks during navigation. Among them, 

watchkeeping is one of the significant duties along the voyage and needs to be done with 

other missions simultaneously, especially for Officers of Watch (OOWs). During this duty, 

OOWs keep a proper lookout to know what is happening near the ship and obtain the 

information from various sensors to be aware of the situation in which they are immersed.  

MAIB stated that of the 1,647 collisions, groundings, contacts and near collisions that 

were reported to MAIB between 1994 and 2003, two-thirds of vessels involved in 

collisions were not keeping a proper lookout (Branch et al., 2004). Watchkeepers have to 

deal with various issues including observing and recording the vessel position at intervals, 

paying attention to the radio or alarm, checking onboard equipment or devices, while they 

do watchkeeping. The workload of deck officers varies along with time and combined 

tasks. Thus, the effective evaluation of the deck officer’s workload during watchkeeping 

will help understand the risk to which seafarers are exposed and improve navigation safety. 

Mental workload is the amount of demands or resources requiring an operator to complete 

specific tasks. Furthermore, the more sophisticated the tasks, the more mental workload 

is required to accomplish the tasks. It has been used in a wide range of applications to 

evaluate the task performance of operators or the practical aspect of system design 

(Ngodang et al., 2012, Dijksterhuis et al., 2011). Although mental workload related 
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research has been conducted in road traffic accidents (Boyle et al., 2008, Rakauskas et al., 

2008) and aviation transportation (Ayaz et al., 2012, Gateau et al., 2015), seafarers’ mental 

workload analysis in maritime transport is scanty (Lim et al., 2018, Fan et al., 2018).  

Moreover, mental workload has been described as being responsible for the majority of 

road traffic accidents (Dijksterhuis et al., 2011). Both high and low levels cause 

insufficient perception and attention, which in turn leads to driver errors. However, in the 

maritime sector, Lim et al. (2018) suggested the majority of trainees had less workload 

when the experienced captain was present, and the latter had the highest workload levels 

while the former revealed low workload and stress because of the shared work and 

responsibility.  

Mental workload is also linked to the experience of operators. Experienced drivers have 

acquired more effective automation through practice, so that a lower level of mental 

workload was induced compared to novices (Patten et al., 2004). Besides, neuroimaging 

techniques demonstrated increases in PFC activation with increases in mental workload 

(Ayaz et al., 2012). There is a threshold for workload, beyond which it leads to worse 

performance and decreases in PFC activity (Molteni et al., 2008).  

For ship officers, the ship bridge simulator is widely used for crew training and further 

understanding of human factors in these dedicated systems. The IMO utilised the 

simulation for crews’ training based on the simulation training requirements (A-I/6: 

Training and Assessment) in the Standards of Training, Certification and Watchkeeping 

Convention (STCW 78-95). The awareness of the significance of human factors among 

navigation and maritime safety was aroused, and this stimulated studies on human 

performance in the ship bridge, which is commonly conducted in the bridge simulator. 

However human performance in the ship bridge is related to many elements, such as task 

demands, prior experience, personality, voyage segment, workload, etcetera (Ngodang et 

al., 2012); therefore, an acceptable measurement is required for credible evaluation.  
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To measure the mental workload of seafarers, especially ship officers, brain activity needs 

to be recorded. Brain activity in the transport field has previously been measured using a 

range of techniques, including fMRI, PET, and EEG. The above three techniques are 

extremely sensitive to motion artefacts, making them difficult to deal with natural 

cognitive tasks in realistic scenarios (Chiarelli et al., 2017). Typically, fMRI and PET 

have physical limitation for participants, requiring them to be in a supine position (Foy et 

al., 2016). EEG has the advantage of greater time resolution. The functional near-infrared 

spectroscopy (fNIRS) is a portable technique for both simulated environment and real-

world operation. Along with the high sensitivity for muscle movement, both EEG and 

fNIRS are susceptible to head movement. However, the use of short-leads for fNIRS can 

isolate effects of blood flow in the scalp. The advantage of fNIRS over EEG is greater 

spatial resolution of the signals and less crosstalk between sites. It is more robust to 

motion artefacts and has a higher temporal resolution (Noah et al., 2015).  

Besides, the hardware cost of fNIRS is significantly lower than most functional brain 

imaging techniques, including fMRI, PET, and EEG (Chiarelli et al., 2017). fNIRS is an 

emerging non-invasive brain imaging modality for measuring and recording cortical 

haemodynamic activity (Fishburn et al., 2014). It will not confine the subject in a small 

space compared to fMRI, and is also able to generate montages covering the whole head 

or precisely the parts of the cortex that contain relevant activations. This functional 

neuroimaging technique can record changes in brain activation by measuring changes in 

the concentration of oxygenated and deoxygenated haemoglobin, which is based on the 

different absorption spectra of near-infrared light. It is a sensitive and consequently 

mature measurement technique for exploring different mental workloads.  

The current research investigates how mental workload influences neurophysiological 

activation and decision-making of experienced and inexperienced deck officers 

concerning collision avoidance. This last was done with simulated watchkeeping tasks in 

a maritime bridge simulator and using fNIRS to measure neurophysiological activation. 
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However, much of similar research does not use naturalistic tasks in the maritime field, 

and none has focused on differences in DLPFC activity between experienced officers and 

novice officers. Therefore, this study investigates how the mental workload induced by 

scenarios in the ship bridge influences neurophysiological activation and whether there is 

a difference between experienced and inexperienced seafarers, which may generate 

insights for seafarers’ training and certification. 

7.3 Materials and methods 

7.3.1 Participants 

A total of 41 participants were recruited from the Nautical Institute London Branch and 

Liverpool John Moores University. Inclusion of participant recruitment is limited to 

adults (>18 years old), without head injury conditions or suffering from high blood 

pressure since this may affect the results from fNIRS. In the study, any person suffering 

from anxiety condition or receiving medication for anxiety condition is excluded. 

Participants were divided into two groups based on their navigation experience. Twenty 

experienced seafarers whose average age is 44.60 (SD = 15.47) include master mariner 

(MM), chief mate (CM), and officer of the watch (OOW). Twenty-one inexperienced 

seafarers whose average age is 24.76 (SD = 5.25) are AB and cadets. Raw NASA-TLX 

data of 41 participants were kept for behaviour performance analysis. However, there was 

a severe ‘detector saturation’ of data collection for one inexperienced participant. This 

raw fNIRS data was deleted for not being recorded correctly. Therefore 20 pieces of data 

for experienced seafarers who had 213.4 months (SD=188.8) experience at sea, and 20 

for inexperienced seafarers who had 27.2 months (SD=30.5) experience at sea, were 

obtained for further analysis, see Table 7.1. Exclusion criteria included: history of head 

injury, high blood pressure, anxiety or currently taking medication for anxiety.  

Table 7.1 Background data on experienced and inexperienced groups 
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Group Average age (year) STCW qualification Experience at sea (month) 

Experienced 44.60 (SD = 15.47) MM,CM,OOW 213.4 (SD=188.8) 

Inexperienced 24.76 (SD = 5.25) AB, Cadets 27.2 (SD=30.5) 

The experimental procedure is in accordance with the principles set out in the Declaration 

of Helsinki and was reviewed and approved by the ethics committee at Liverpool John 

Moores University. The experimental protocol for the study was approved by the 

institutional ethics committee prior to data collection. All participants received a full 

explanation of the purpose, procedures, risks, and benefits of the experiment. They were 

provided written informed consent for participation and well trained for the study. More 

details are demonstrated in Appendix B. 

7.3.2 Bridge simulator and scenarios 

The experiment took place in a ship bridge simulator (Transas) fitted with instrument 

panels located at Liverpool John Moores University. An illustration of the participant 

view of the facility is provided in Figure 7.1A. The Transas simulator is configurable for 

specific ship types using ship-modelling software which manages the simulation 

environment, allowing for positioned interactive tides, currents, geographically-variable 

wind, and sea, and changing conditions such as light, visibility, fog and rain. The bridge 

simulator can deliver a 360° field-of-view but the display was constrained to a 180° field-

of-view for the purpose of the current study for two reasons: (1) the scenario involved 

watchkeeping in the forward view only, and (2) it tried to avoid significant movement of 

the head and upper body to minimize artifacts in the fNIRS data.  

The task scenario was designed to occur along a North/South axis to better accommodate 

a realistic reporting system that kept the participant occupied in a time framework. All 

participants were required to keep watch over 180° field-of-view of the open sea. This 
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watchkeeping period was terminated when participants spotted a ‘target’ vessel that 

appeared randomly at one of 10 locations in the field of view, see Figure 7.1B. The target 

vessel was the only other craft on the ocean in the whole of the task simulation. 
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Figure 7.1 (A) View of the participant in the ship bridge simulator, (B) The position of the target vessel 

appeared from 10 different directions in the exercise 

Referring to the implications of specific scenarios in Chapter 6, collisions tend to happen 
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under the case of lone watchkeeper or working isolated. Hence the exercise for this 

chapter was conducted for lone watchkeeper under the collision avoidance scenario. 

Participants were required to press the button of the buzzer when they spotted the target 

vessel. And its approximate location was recorded by the staff in the control room. On 

average, this duration of this watchkeeping phase of the task was 19min:42sec. The 

distance in nautical miles between the target vessel and the participants’ ship when the 

former was spotted was captured as a dependent variable. The target vessel approached 

the participants’ ship on a course that would lead to a collision if the participant failed to 

make an evasive manoeuvre. Once participants had spotted the target vessel, the scenario 

enters a decision-making phase that was terminated when the participants made the 

evasive manoeuvre; the experiment also ended at this point. On average, all participants 

made an evasive manoeuvre at 24min: 26sec; the distance in nautical miles between target 

vessel and participants’ ship when the manoeuvre was made was recorded as a dependent 

variable. 

To generate different task demands, the navigation scenarios in the study were formed 

into two mental workload levels based on the experts’ opinions, who are an experienced 

captain and chief mate.  

In addition to the scenario described in the previous section, half of the participants (10 

experienced and 10 inexperienced) were required to perform an additional reporting task 

as a distractor. This task was based on existing maritime reporting procedures and 

participants were required to make a verbal report of the position of their vessel, then 

followed by replying questions from the control room, i.e. vessel’s flag, type of vessel, 

speed, IMO number. Participants in the distraction group were required to make this 

verbal report whenever the position of their vessel had changed by 10 degrees of longitude, 

i.e. approx. every 2 minutes. 
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7.3.3 fNIRS montage and data collection 

In this study, the montage (Figure 7.2, Figure 7.3) was designed using NIRSite software. 

To measure the haemodynamic activity of DLPFC which is associated with brain 

functions of working memories and decision-making, 7 sources and 7 detectors were 

utilised to design the montage, resulting in a total of 15 channels of HbO and HbR. In the 

montage, the specific brain area has been divided into three sub-areas: left dorsolateral 

prefrontal cortex, left DLPFC (channel 1-5); central dorsolateral prefrontal cortex, central 

DLPFC (channel 6-10); right dorsolateral prefrontal cortex, right DLPFC (channel 11-

15). 

 

Figure 7.2 fNIRS probe placement - 2D montage, where red point refers to ‘Source’, blue point refers to 

‘Detector’, and red lines refer to channels in the montage 
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Figure 7.3 fNIRS probe placement - 3D montage, where red point refers to ‘Source’, blue point refers to 

‘Detector’, and red lines refer to channels in the montage 

The software used for recording the fNIRS data is the NIRStar, and nirsLAB software 

was used for the pre-processing of fNIRS data. The fNIRS device was placed on the desk 

behind the participant in the bridge simulator. Care was taken to avoid hair from the 

eyebrows or side of the head interfering with detectors and sources. 

7.3.4 Questionnaires 

At the beginning of the experiment, participants were required to complete a brief form 

prior to the experiment recruitment. This form was used to record the participant’s age, 

gender, nationality, and seafarer experience. The experience was measured by the 

qualification license they obtained.  

To conduct the questionnaires, an extended NASA Task Load Index (TLX) questionnaire 

(see Appendix A) was completed after the scenario. The participant was supposed to 

finish the questionnaire about the subjectively perceived workload, rating 1-10 in each 
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questions referring to six different scales, followed by adding their other information and 

experience. The questionnaires were completed based on their feelings of the whole test. 

Once the participant carefully filled the form, it was returned to the researcher for further 

analysis.  

The questionnaire is a self-assessed measure based on six 10-point scales, with 1 being 

“Very Low” and 10 “Very High.” The scales are Mental Demand, Physical Demand, 

Temporal Demand, Performance, Effort, and Frustration. They also gave additional 

information about education degree, STCW qualification, and practical maritime 

seafaring experience (month or year). On the other hand, the staff in the control room next 

to the simulator recorded the target spotted time with corresponding distance (distance 1), 

and the course changed time with corresponding distance (distance 2). The above 

information and questionnaires were used to analyse behavioural performance and task 

load. 

7.3.5 Experiment procedure 

The experiment used a mixed design, where two groups of participants were allocated to 

1) experienced group and 2) inexperienced group, depending on their STCW qualification 

and nautical experience. Specifically, the experienced group included master mariner 

(MM), chief mate (CM), and officer of the watch (OOW), while the inexperienced group 

contained AB and cadets. Both groups underwent the scenario with the timeline of 

baseline, watchkeeping, and decision-making. However, it was presented in 1) non-

distraction condition or 2) distraction condition. The non-distraction condition was shown 

in the above workflow. The distraction condition was demonstrated by setting the 

reporting points (Rn) at the same intervals while watch-keeping and decision-making. It 

distracted the participants' attention by requiring them to report the vessel's position every 

10' of difference in longitude, as well as answering the questions from the staff in the 

control room, which is as same as seafarers’ daily work. The procedure for the non-
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distraction group and distraction group is stated in Figure 7.4.  

Baseline

5 min 
Watchkeeping

Decision 

making

Spot the ship Alter the course  

(A) 

Decision 

making
Baseline

5 min 

Watchkeeping

Spot the ship Alter the course

...R1 R2 R3 ... Rn

 

(B) 

Figure 7.4 The fNIRS data collection procedure for (A) non-distraction group and (B) distraction group, 

where R1 is reporting point 1, n represents reporting times 

The participant wore the NIRx Sport apparatus, which is an fNIRS skull - cap containing 

infrared sensors and detectors allowing the operator to see the blood volume, oxygenated 

and deoxygenated blood flow in the DLPFC indicating how the state of seafarers changes 

during the navigation scenario and showing what is the difference between experienced 

and inexperienced. The scenario lasted on average no longer than 30 minutes. Then the 

NASA- TLX questionnaire was collected after each scenario. 

7.3.6 Performance evaluation 

Subjective data from questionnaires were analysed for performance evaluation. The 

analysis is to determine whether distraction influenced the time when participants spotted 

the ship and altered the course, and whether there was difference between experienced 

and inexperienced deck officers. 2 (distraction) × 2 (experience) analysis of variances 

(ANOVAs) were conducted for the time and distance when participants spotted the vessel, 

and the time and distance when they changed the course. Also, ANOVA was conducted 
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to observe whether the position of the target vessel influenced the performance of deck 

officers. 

7.3.7 fNIRS data pre-processing 

Raw fNIRS data (15 channels × 2 wavelengths) was pre-processed using nirsLAB 

software. The Interpolate function was used to fill the data in each channel where there 

was detector saturation. However, for those channels which lost too much data, this 

function was not applicable. Then the data quality function was applied to check and 

identify any ‘poor quality’ channels in which the signal was too weak. After removing 

discontinuities (STD threshold is 5) and spike artefacts (artefacts replaced by nearest 

signals), a low-pass filter was applied in order to reduce high-frequency instrument noise 

and physiological noise such as fast cardiac oscillations (e.g. heartbeat 1~1.5Hz) with the 

frequency of 0.04Hz. The pre-processed data was imported for haemodynamic states 

calculation using the modified Beer-Lambert law (Sassaroli and Fantini, 2004). It reveals 

changes in oxygenated haemoglobin (HbO), deoxygenated haemoglobin (HbR) and total 

haemoglobin (Hb). It should be noted that HbO and HbR tend to be most highly correlated 

with other neuroimaging measures such as the fMRI measured blood oxygenation level 

dependent (BOLD) response (Huppert et al., 2006, Schroeter et al., 2006, Foy et al., 2016), 

and strong correlations with HbO and Hb have also been found (Strangman et al., 2002). 

All fNIRS results were reported in micromoles (μM). The focus of this study highlights 

HbO. 

7.3.8 Data analysis 

For fNIRS data analysis, there was a transformation on the data called Correlation-Based 

Signal Improvement (CBSI) that forces HbO and HbR to be negatively correlated and 

controls for head movement, which was developed by Cui et al. (2010). As HbR is 

transformed into the inverse of HbO after this point, only HbO data were used in the 
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subsequent analyses. 

The analysis was conducted to investigate how distraction influenced neurophysiological 

activation and decision-making of experienced and inexperienced seafarers with respect 

to collision avoidance. Moreover, it determined whether there were differences between 

left, central, and right DLPFC activity. However, the HbO in the baseline period of the 

experiment procedure revealed that the majority of participants had active brain activities, 

which was opposite to the expectation of the experiment design. Because the heavy fog 

over the sea introduced uncertainty for professional seafarers who were more conscious 

of the navigational environment, reflecting active mental states of seafarers. Therefore, 

the baseline data was ignored and deleted. In order to create ANOVA models for statistical 

testing, the 15 channels of HbO were divided into three regions of interest: left DLPFC 

(channel 1-5); central DLPFC (channel 6-10); right DLPFC (channel 11-15) (Figure 7.2). 

In addition, the period of watchkeeping during the task scenario was divided into four 

periods of equal duration for each participant (w1, w2, w3, w4) and the decision-making 

phase of the task was divided into two periods of equal duration (d1,d2), seen in Figure 

7.5.  

Baseline Watchkeeping Decision

w1 w2 w3 w4 d1 d2

 

Figure 7.5 Averaged fNIRS data in the procedure 

7.4 Results 

The results section is divided into two sections: subjective mental workload and 

behavioural data, and the average level of HbO at specific sites. Data are subjected to 

statistical analyses via ANOVA and MANOVA models. Outliers are defined as any data 

point that lay more than 3 standard deviations from the mean for that ‘cell’ in either a 
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positive or negative direction. For those models with a repeated-measures component, 

sphericity is tested using Mauchly’s Test and the Greenhouse-Geisser adjustment is 

performed. The average levels of HbO are obtained in MATLAB software, and the 

analysis is conducted in SPSS software. 

7.4.1 Subjective mental workload and behavioural data 

Raw TLX data scores from 1 to 10 were used for analysis, as they are more sensitive than 

other methods of data treatment such as scale weighting (C. Hendy et al., 1993). Between 

distraction and non-distraction groups, one-way ANOVAs showed a main effect of 

distraction for Temporal Demand (‘How much time pressure?’) (F(1, 39) = 4.229, p 

= .046; Figure 7.6A). Participants under distraction (M = 5.05, SD = 2.139) were 

considered to require more temporal demand than participants without distraction (M = 

3.76, SD = 1.868). There was no disadvantage on any performance indicators for 

distracted participants. However, performance (‘How successful were you at meeting the 

goals of the task?’) showed a significant main effect of experience (F(1, 39) = 11.0342, p 

= .002; Figure 7.6B). Experienced participants (M = 9.05, SD = .945) were considered to 

have better performance than inexperienced people (M = 7.86, SD = 1.315). And 

experienced participants were more confident/did not work as hard (effort). Between 

experienced and inexperienced groups, one-way ANOVAs showed there was not 

significant effect for Distance 1 (F(1, 39) = .438, p = .512). No advantage for spotting 

ship for the experienced participant.  
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(A) 

 

(B) 

Figure 7.6 NASA-TLX scores (A) Temporal demand - ‘How much time pressure did you feel due to the 

pace at which task elements occurred?’ - scores in NASA-TLX (B) Performance - ‘How successful do 

you think you were in completing the goals of the task?’ - scores and Effort - ‘How hard did you have to 

work (mentally and physically) to accomplish your level of performance?’ - scores in NASA-TLX  

There was no statistically significant interaction effect between experience and distraction 

on the combined dependent variables (p > .05). From MANOVAs results, the estimated 

marginal means for the dependent variables ‘Distance 1 – distance when target spotted’ 

and ‘Distance 2 – distance when manoeuvre executed’ were shown in Figure 7.7A and 

Figure 7.7B. It showed a main effect of experience for Distance2 (F(1,39) = 4.762, p 
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= .036, ηp
2 = .114). The distance of two ships when experienced participants changed the 

course (Distance 2) (M = 2.755, SD = .298) was farther than the distance when 

inexperienced participants did (M = 1.847, SD = .291), shown in Figure 7.7C. It 

demonstrated that experienced participants executed manoeuvres at a higher distance. 
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(C) 

Figure 7.7 (A) Distance 1 – distance when target spotted, (B) Distance 2 – distance when manoeuvre 

executed, (C) Distance when manoeuvre executed (Distance 2) for experienced and inexperienced groups 

Exercises in the experiment were selected randomly from 10 samples which were in the 

same scenario but from 10 different directions, seen in Figure 7.1. One-way ANOVAs 

were also conducted to analyse whether there was a significant difference in the exercise 

for the subjective mental workload. It showed there was not significant effect of exercise 

direction for Distance 1 (F(9, 31) = 1.057, p = .420), Distance 2 (F(9, 31) = .681, p = .720), 

Mental Demand (F(9, 31) = .590, p = .795), Physical Demand (F(9, 31) = .827, p = .596), 

Temporal Demand (F(9, 31) = 1.423, p = .221), Performance (F(9, 31) = 2.086, p = .062), 

Effort (F(9, 31) = .604, p = .784), or Frustration (F(9, 31) = .887, p = .548). It revealed 

that the experimental design of randomly selecting directions that the ship appears from, 

did not affect the mental workload or behavioural performance. 

7.4.2 Average level of HbO at specific sites 

There were in total 40 participants’ fNIRS data which was valid for the analysis.  

The fNIRS data were divided into three Regions Of Interest (ROI) corresponding to the 

left-lateral, medial and right-lateral areas of the DLPFC. After signal processing, 
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oxygenated haemoglobin (HbO) data were averaged for each period of the task, i.e. four 

periods of watchkeeping and the two periods of decision making. HbO data for each ROI 

were subjected to a 2 (experienced/inexperienced) x 2 (distraction/no-distraction) x 6 

(task period) ANOVA.   

Analyses of left-lateral and medial ROI failed to reveal any statistically significant main 

effects or interactions. However, analysis of HbO data from the right-lateral ROI revealed 

a significant main effect for Task Period [F(5,30) = 3.76, p=.02, ηp
2=0.4], as well as 

significant interactions between Distraction x Task Period [F(5,30) = 3.99, p<.01, 

ηp
2=0.43] and Experience x Task Period [F(5,30) = 2.30, p=.05, ηp

2=0.27]. Post-hoc 

testing indicated that average HbO at the right-lateral ROI was significantly lower during 

W3 and W4 than all other periods (p<.05); this effect is illustrated in Figure 7.8. 

 

Figure 7.8 Mean HbO and standard error during all Task Periods for Right-Lateral ROI (N=38), i.e. 2 

participants were omitted as outliers from this model. 

A number of post-hoc t-tests were conducted to analyse the two interaction effects. It was 

found that average HbO was significantly higher for participants who performed the 

distraction task during the two periods of decision-making that occurred once the ship 
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had been spotted: D1 [t(36)=2.17, p=.04], D2 [t(36)=2.69, p=.02]. This effect is illustrated 

in Figure 7.9. 

 

Figure 7.9 Average HbO/standard error in the Right-Lateral ROI for Task Period x Distraction Interaction 

(N=38) 

The interaction effect between Experience x Task Period was also explored using t-tests.  

These tests revealed that average HbO was higher for experienced participants at the 

right-lateral ROI, but only during the fourth period of watchkeeping (W4) when the ship 

was spotted [t(36)=2.78, p<.01]. This interaction is illustrated in Figure 7.10. 
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Figure 7.10 Average HbO/standard error in the Right-Lateral ROI for Task Period x Experience 

Interaction (N=38). Note: ** = significant difference at p<.01 

7.5 Discussion 

This research aimed to investigate how mental workload influences neurophysiological 

activation and decision-making of experienced and inexperienced seafarers with respect 

to collision avoidance, both of which have been linked to human performance during 

navigation and also changes in DLPFC activity. 

With respect to the behavioural data, experienced participants were considered to believe 

they have better performance than inexperienced people do. Due to sufficient training and 

outstanding experience, experienced seafarers who have a higher level of STCW 

qualifications also believed they had better performance. In addition, experienced 

seafarers tended to change the course earlier than inexperienced participants did when 

they faced the collision condition. It also illustrates better performance for experienced 

seafarers because they made decisions prior to an event, which leads to successful 

collision avoidance. Meanwhile, participants under distraction were considered to require 

more temporal demand than participants without distraction. It demonstrated that the 
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developed scenario distracted the ship officers by reporting vessel position at certain 

points, which is the common task requiring temporal mental workload in the real world.  

Generally, research has demonstrated a correlation between brain activity and 

performance of a task (Ullman et al., 2014). Right-lateral ROI showed increased 

oxygenation during the decision phase of the task, due to a more significant mental 

workload/decision-making – there was some evidence that decreased oxygenation during 

w3 and w4 was due to boredom. Greater oxygenation was found during decision time for 

participants with distraction, because of higher workload when simultaneously 

performing a distraction task and making the decision to change course. Higher 

oxygenation was observed for experienced participants at the end of watchkeeping, due 

to more considerable attention being focused on the duty – which may have contributed 

to superior performance. 

From the perspective of designed scenarios in the bridge simulator, actually, zero 

visibility was proved to be invalid for the baseline design, as experienced seafarers tend 

to be more cautious about the environment with uncertainty, which is opposed to the 

expectation that they will be relaxed. Because seafarers were not told whether the ship 

appeared in the baseline phase or not. The heavy fog over the sea introduced uncertainty 

for professional seafarers who were more conscious of the navigational environment, 

reflecting active mental states of seafarers. Therefore, the baseline data which did not  

meet expectations was deleted in this study.  

The current study was not without a number of significant limitations. The task simulation 

used during the experiment was highly simplistic and designed to facilitate collection of 

neurophysiological data. It could be argued that the ecological validity of the simulation 

was compromised by our desire to reduce artefacts in the fNIRS data. For example, the 

task simulation failed to accommodate any aspect of team work, which is the more 

common operational situation on the bridge of a large ship; in addition, watchkeeping 

duty is often part of a multitasking activity that includes monitoring weather conditions 
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and running communications tasks. These characteristics of high workload multi-tasks 

are typically found in the real world, which is also the environments that demonstrate the 

highest accident rates (Foy et al., 2016). In addition, the decision not to utilize the 360° 

field-of-view capability in the bridge simulator (once again in order to minimize the 

influence of physical artifacts in the fNIRS signal) was problematic, as it enormously 

simplified and artificially constrained the challenge of the vigilance task in a maritime 

environment. Our decision to seat participants at the helm of the vessel was also 

uncharacteristic of the bridge environment and participants were seated to minimize those 

systemic influences on the fNIRS signal that were likely to occur if the participants were 

standing and ambulatory. 

Moreover, complicated or combined tasks such as introducing weather forecast or 

communication while watchkeeping could be used to manipulate mental workload in a 

naturalistic navigation task.  

In conclusion, the results of this study support fNIRS as a valuable neuroimaging 

technique which can be used in realistic situations such as ship navigation and could be 

implemented in the assessment and prediction of ship officer overload and subsequent 

manoeuvre (Franceschini et al., 2007). This research achieves its aim of investigating 

deck officers’ mental workload during watchkeeping and decision – making.  

7.6 Ethics statement 

This study was carried out in accordance with the recommendations of Liverpool John 

Moores University with written informed consent from all subjects. All subjects gave 

written informed consent in accordance with the Declaration of Helsinki. The protocol 

was approved by Liverpool John Moores University. See appendix A, B. 
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7.7 Concluding remarks 

The following are the most significant remarks comprised in the chapter, and emphasised 

in the form of bullet points for the reader’s ease: 

 It was done with simulated watch-keeping tasks in the maritime bridge simulator, and 

using fNIRS technology to measure neurophysiological activation.  

 The results show that experienced participants were considered to believe they have 

better performance than inexperienced people do. It also illustrates better 

performance for experienced seafarers because they made decisions earlier, which 

leads to successful collision avoidance.  

 Participants under distraction were considered to require more temporal demand than 

those without distraction.  

 In terms of fNIRS data, it shows significant differences in the right DLPFC of the 

brain. Greater oxygenation was found during decision time for participants with 

distraction. Higher oxygenation was observed for experienced participants at the end 

of watchkeeping. 
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Chapter 8 Functional connectivity analyses for seafarers 

using bridge simulation 

8.1 Introductory remarks 

This chapter was done further with simulated watchkeeping tasks in the maritime bridge 

simulator and fNIRS technology to measure neurophysiological activation. Besides the 

mental workload and fNIRS data analysis in Chapter 7, this chapter conducts the 

functional connectivity analyses for seafarers with bridge simulation. The results show 

that reduced connection density and a higher level of local clustering across a frontal 

montage of 15 channels was associated with action selection in comparison to the earlier 

watchkeeping period of vigilant attention. Activity in the right DLPFC and the level of 

local clustering decline across the watchkeeping period for participants. The study also 

demonstrates a significant association between connection density and behavioural 

responses to a safety-critical scenario. 

8.2 Background information 

Brain changes may indicate evident changes in haemodynamic concentration measured 

by fNIRS according to a study on the association between haemoglobin levels and white 

matter conducted by Rozanski et al. (2014). More specifically, the increases in prefrontal 

activation are associated with increases in development by using fNIRS (Schroeter et al., 

2004, Franceschini et al., 2007), which also have been found using fMRI (Adleman et al., 

2002).  

Brain activity has a linear relationship with the working memory load of the left and right 

prefrontal cortex (Fishburn et al., 2014). Statistically different levels of oxygenation 

change result from substantial changes in task difficulty. However, smaller differences in 
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task difficulty were not reliably differentiated in some cases (Ayaz et al., 2012). In this 

way, fNIRS can be used to design optode holders to analyse the region of interest (ROI) 

for the investigated tasks. 

The current research investigates how functional connectivity changes when measuring 

the mental workload of seafarers by fNIRS, which explains neurophysiological activation 

and decision-making of experienced and inexperienced deck officers. This last was done 

further with simulated watch-keeping tasks described in Chapter 7.  

8.3 Materials and methods 

8.3.1 Participants 

A total of 41 participants were recruited from the Nautical Institute London Branch and 

Liverpool John Moores University, as demonstrated in Chapter 7. And 40 sets of data 

were used for the analysis in this chapter. 

8.3.2 fNIRS data  

Raw fNIRS data were collected and pre-processed from Chapter 7. The first step of the 

data analysis was obtained from Section 7.3.7, followed by network analysis. 

8.3.3 Functional connectivity 

In order to find out how brain connectivity changes during the periods, a functional 

connection network was generated. Network analysis was performed on HbO after CBSI 

treatment of the signals in Chapter 7. The functional connection between pairs of brain 

regions demonstrated the temporal correlation of regional haemodynamics. Concerning 

functional connection, symmetric correlation matrices were obtained from the partial 

correlation coefficients of all pairwise combinations of the 15 channels, for each group or 
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task period, shown in Figure 8.1A. The rows and columns of the matrix represented the 

channels, while cells of the matrix reflected the correlation coefficient of the 

corresponding channels, explaining the connectivity between channels.  

Among these matrices, there were cells with weak links representing spurious 

connections between pairs of brain regions, where they should be discarded by 

thresholding (Rubinov and Sporns, 2010). On the other hand, cells with strong links 

represent significant connections and reveal reliable information on the patterns of brain 

activities, where they should be kept for next-step analysis. Therefore, it was necessary 

to decide on a threshold level for the correlation scores to demonstrate where the strong 

connections are. Moreover, it should be a consistent procedure for threshold calculation 

for each participant across all task periods. 

In order to obtain the reasonable standard for threshold calculation, various threshold 

levels were calculated to compare with each other, and then the percentile distribution of 

all correlation values was obtained. Specifically, a very liberal threshold (10th percentile), 

a more conservative threshold (50th percentile) and extremely conservative threshold (90th 

percentile) were selected. The percentiles determined the absolute threshold values for 

each participant across all task periods. There were many connections for the liberal 

threshold based on the 10th percentile and very few for the threshold based on the 90th 

percentile.  

 

(A) 
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(B) P=10th ,50th ,90th percentiles  

 

(C) 

Figure 8.1 Constructing a binary functional connection network from fNIRS-data, (A) Partial correlation 

coefficients were calculated for all pairwise combinations of channels to obtain a symmetrical cross-

correlation matrix, (B) Binary adjacency matrices were calculated by thresholding along with different 

threshold values, (C) Functional connection networks were described by the adjacency matrices 

It is noticed that all negative correlation values should be eliminated before conducting 

thresholding, as its influence on the functional connectivity was not considered (Rubinov 

and Sporns, 2010). Only coefficients greater than or equal to the chosen threshold value 

were kept as connections assigned with a value of 1. Otherwise, the coefficient was 

replaced with 0, which creates a binary adjacency matrix (in Figure 8.1B). Furthermore, 

it created a cross-correlation matrix to represent these data in a visualisation. In this way, 

the functional connectivity network was developed by adjacency matrices, seen in Figure 

8.1C, which explained the activities of the specific area of the brain by various parameters 

(Racz et al., 2017).  
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Unlike those authors, the analysis of functional connectivity in this study was based upon 

a matrix of partial correlations, i.e. the association between two channels of HbO while 

controlling for the effect of all remaining 13 channels. A matrix of partial r values was 

calculated for all 15 channels of HbO for each of the six periods (watch1, watch2, watch3, 

watch4, decision1, decision2) for each participant.   

A process of thresholding was applied in order to construct a binary functional connection 

network based on these matrices of partial correlations. The first step of this analysis was 

to remove any partial correlation coefficients that fell below zero so only positive 

associations were considered as part of the thresholding process. A criterion level of 0.28 

was selected in order to remove weak or spurious levels of correlation, this value 

represents the critical value for a one-tailed test of Pearson’s coefficient at p<.05 for N=40. 

This process of thresholding converted the original matrices of partial correlations into 

binary adjacency matrices that were suitable for graph-theoretic analyses. 

8.3.4 Graph theory 

In order to reflect the characteristics of the above networks, there are two most commonly 

used parameters (Racz et al., 2017) to describe it in graph theory: the connection density 

(D), and the clustering coefficient (C). This study used these two parameters to describe 

the functional connectivity for brains. 

The connection density of a network is the fraction of the existing connections to all 

possible connections, which is used to describe the overall ‘wiring cost’ of the given 

network (Racz et al., 2017), calculated as 

D =
1

2n(n − 1)
∑ ∑ aij

j∈ni∈n

 

where n is the number of channels in the network, and aij equals 1 if there is a connection 
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between channel i and j, 0 otherwise.  

In addition, the local clustering coefficient for an individual node is a parameter to define 

the fraction of its neighbours which are also neighbours of each other (Watts and Strogatz, 

1998), i.e. reflecting the number of triangles around the given node (Rubinov and Sporns, 

2010). Therefore, the local clustering coefficient is calculated as 

C =
1

n
∑

1

ki(ki − 1)
∑ aijaihajh

j,h∈ni∈n

 

Where ki is the degree of channel i, C is how the neighbouring channels in the network 

form connected groups.  

The above functions for the graph theory metrics were obtained from the Brain 

Connectivity Toolbox (Rubinov and Sporns, 2010). Statistics were performed with IBM 

SPSS statistics 26 with differences considered significant in the case of p<0.05. Measures 

of D and C were calculated per participant for each period of the task and subjected to 

statistical testing. 

8.4 Results 

Activation of the PFC is assessed using a 15-channel fNIRS montage. Partial correlations 

of each channel across all periods are calculated, followed by the selection of the 

threshold. Then 2 (Experienced/Inexperienced) x 2 (Distraction/No Distraction) x 6 (Task 

Period) ANOVA is performed on density and clustering. Outliers are defined as any data 

point that lay more than 3 standard deviations from the mean for that ‘cell’ in either a 

positive or negative direction. 

8.4.1 Brain connectivity in networks 

Based on the theory of network analysis, the symmetric correlation matrices are obtained 
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from the partial correlation coefficients of all pairwise combinations of the 15 channels, 

which illustrates the information transaction between each channel of the montage 

designed in Chapter 7.  

In order to visualise connections between each pair of channels, partial correlation 

coefficients are given to generate the heatmap of each task period from w1 to d2. Then 

the percentile distribution of all correlation values is given. It is demonstrated for the 

selection of rational thresholding value, which will describe the patterns of brain 

connectivity. Similarly as reported in relevant studies (Friston et al., 1993), an inverse 

relationship is observed between the parameters and the threshold, i.e. an increase in the 

threshold decreases the number of existing channels in the network. By looking through 

matrices from various threshold values, the pattern is observed that the matrices with 

thresholds 50th and 90th percentiles reveal relatively fewer white squares, which is lack of 

enough links and information for functional connectivity analysis. Therefore, the 

threshold below 50th percentile is considered to be explored further to reveal the 

differences between groups. 

Combined with the graph theory in Section 8.3.4, the calculation of density and clustering 

parameters narrows down the range of threshold selection. It is found that the clustering 

coefficients in the network become smaller and smaller when the white squares in 

matrices decrease. It is clear that at 40th percentile, most of the clustering scores are zero, 

so either 20th or 30th percentile is used in this study. Finally, 20th percentile is selected to 

reveal brain connectivity in networks.  

Based on the procedures of calculating absolute threshold for each participant, the same 

method is applied for each group. Calculations are conducted to demonstrate and compare 

brain connectivity between distraction and non-distraction groups, or between 

experienced and inexperienced groups.  

Observed from Figure 8.2, the distraction group shows more white squares overall 
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compared to a non-distraction group, implying that more activation across the network is 

found for the distraction group overall. Each task period reflects the same phenomenon 

as well. Specifically, w1 shows an apparently higher density of white squares for the 

distraction group, which means the reporting mission on board led to activation across 

the network at the beginning of watchkeeping. Similarly, task periods d1 and d2 are 

observed to show the difference between the two groups. Participants of the distraction 

group have to simultaneously decide whether and when to alter the course while reporting 

the vessel’s position, and while answering the navigational questions to the VTS, which 

brings more activation across the prefrontal cortex than the non-distraction condition.  
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Figure 8.2 Cross-correlation matrix of distraction and non-distraction groups (w1, w2, w3, w4, d1, d2 for 

the task periods; ND for non-distraction, D for distraction) 

As shown in Figure 8.3, the experienced group shows relatively equal white squares in 

overall. However, for each task period, they are slightly different. The numbers of white 

squares reveal a slight difference in w4 task period. It demonstrates more activations in 

the network for the experienced group than the inexperienced one at the end of the 

watchkeeping period, which illustrates that inexperienced participants are subject to  

boredom after a relatively long-time watchkeeping, so as to cause low cognitive demands. 

Moreover, task period d2 implies decision-making action. The inexperienced group 

shows more connections than experienced people, which means it costs more activations 

across the prefrontal cortex for them to decide whether or when to alter the course. 
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Figure 8.3 Cross-correlation matrix of experienced and inexperienced groups (w1, w2, w3, w4, d1, d2 for 

the task periods; IE for inexperienced, E for experienced) 

8.4.2 Functional connectivity analyses 

From the above observations in the squares, it is not statistical to describe the patterns of 

brain connectivity. In order to illustrate features of the connection network in more detail, 

calculations of network parameters per each participant across all task periods are 

conducted in MATLAB software and analysed in SPSS.  

However, when partial correlations are calculated based on different thresholds, which 

provides a unique score of correlation between 2 variables while adjusting for all other 

correlations, the network is insensitive for the high thresholds. A criterion level of 0.28 

was selected in order to remove weak or spurious levels of correlation, this value 

represents the critical value for a one-tailed test of Pearson’s coefficient at p<.05 for N=40.  

A 2 (high/low experience) x 2 (distraction/no distraction) x 6 (task period) ANOVA was 

conducted on the measure of connection density (D). This model revealed a significant 

main effect for task period [F(5, 28) = 15.88, p < .01, ηp
2=0.33], but no significant effects 

for either experience level [F(1, 32) = 0.97, p = .33] or distraction [F(1, 32) = 0.82, p 

= .37]. Post-hoc Bonferroni tests revealed a significant decline of D during both decision-

making periods of the task compared to the four watch-keeping periods [p<.01]. 

Descriptive statistics for connection density over the six periods of the task are provided 

in Figure 8.4. There was only one significant interaction effect in the ANOVA model, 

which indicated an effect between Distraction and Task Period [F(5, 28) = 3.15, p = .03, 

ηp
2=0.09]. This effect is illustrated in Figure 8.5. Post-hoc t-tests revealed a significant 
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increase of D during the fourth period of watchkeeping (w4) for those participants in the 

no-distraction group compared to the distraction group [t(34)=2.97, p<.01]. In addition, 

the significant trend over the six periods of the task differed for the distraction group in 

comparison to the main effect observed in Figure 8.4, i.e. there was no significant 

difference between w4 and either of the two decision periods (Figure 8.5). 

 

Figure 8.4 Average levels of D (Connection Density) with standard error across all fNIRS channels for six 

periods of the task (N=36) 



 

165 

 

 

Figure 8.5 Interaction between distraction group x task periods for mean D (connection density) across all 

fNIRS channels for six periods of the task (N=36). Note: ** = significant difference at p<.01 

The same 2 x 2 x 6 ANOVA was conducted on the mean clustering coefficient. There 

were no significant main effects for either Experience or Distraction, but a significant 

effect was found with respect to Task Period [F(5,28) = 2.60, p = .05, ηp
2=0.32 ]. Post-

hoc Bonferroni tests revealed that: (i) C was significantly higher during decision1 

compared to watchkeeping periods w3 and w4 (p<.01), (ii) C was significantly higher 

during decision2 compared to w4 (p<.01), and (iii) C was significantly lower during w4 

compared to w1 (p=.05). Descriptive statistics for C are presented in Figure 8.6. 
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Figure 8.6 Average levels of C (clustering) across all fNIRS channels for six periods of the task (N=36) 

It also produced one significant interaction between Distraction and Task Period [F(5, 28) 

= 2.79, p = .04, ηp
2=0.34]. Post-hoc t-tests revealed that the clustering coefficient was 

significantly lower at w4 compared to w1 [t(17)=-2.21, p=.04] and d2 [t(17)=-1.98, p=.05] 

for the no-distraction group only. This interaction is illustrated in Figure 8.7. 
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Figure 8.7 Interaction between distraction group x task periods for mean C (clustering) across all fNIRS 

channels for six periods of the task (N=36) 

In order to understand the patterns of functional connectivity observed in the graph 

theoretic analyses, data from the binary adjacent matrices were combined into a 

visualisation based on the arc diagram (Figure 8.8). The purpose of this visualisation was 

to indicate the relative frequency of individual connections across the participant group 

as a whole; specificially, it is to identify which connections and patterns of connections 

were most prominent across the six periods of the task. In these figures, the colour code 

represent the number of participants for whom a particular connection passed the 

threshold of partial r=0.28. A red connection denotes a connection that was observed in 

22 of our participants or more, the orange lines indicate the presence of a connection for 

17 to 21 of our participants, the green for 13-16 participants and the blue for less than 12 

participants. Hence, colours do not correspond to the strength of each connection but 

rather the relative frequency of that connection within our participant group. 

When describing the observed patterns within each period of the task, it focuses on those 

connections that were most prominent for the group, i.e. red and orange lines. The first 

period of watchkeeping (w1) indicates a high frequency of local clustering (i.e. red/orange 

lines between adjacent sites) with a smaller proportion of bilateral connections. This 

pattern of local clustering persisted into the second period (w2) but the relative frequency 

of bilateral connections was observed to increase. During w3, the number of adjacent and 

bilateral connections was observed to decline, particularly with respect to the former. The 

fourth spell of watchkeeping (w4) represented the period when participants spotted 

another vessel in the distance; this episode was characterized by an increased frequency 

of bilateral connections. During the first period of the decision-making phase of the task 

(d1), a general decrease of frequent connections is observed; there is local clustering at 

the lateral areas of the frontal cortex on both left (F5/F7-AF7/F5, F6/F8-AF8/F8) and in 

the fronto-central as well as a small number of bilateral connections (AF7/AF3-AF4/AF8). 

The final part of the task (d2) represents the period immediately prior to the participants’ 
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performance of an evasive manoeuvre. During this period, the most frequent connections 

within the group were clustered around the fronto-central region (Fz, F1, F2, F3, F4) with 

a small number of bilateral connections at the left/right edges of the montage, e.g. AF7, 

F7, AF8, F8. 

(a) Watch 1 

 

(b) Watch 2 
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(c) Watch 3 

 

(d) Watch 4 
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(e) Decision 1 

 

(f) Decision 2 
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Figure 8.8 Data visualisation showing relative frequency of significant connections observed in the 

adjacency matrices across all six task periods (N=36). Labels correspond to 10-20 locations of the fNIRS 

channels. Colour key indicates the number of participants who exhibited a significant partial correlation 

coefficient for this connection, i.e. red = 22 participants or more, orange = 17-21 participants etc 

8.4.3 Relationship between functional connectivity and 

behaviours 

A regression analysis was conducted to explore whether behavioural data could be 

predicted on the basis of functional connectivity metrics, e.g. density, clustering.  

Behavioural data were obtained from two period of the task: w4 (i.e. distance at which 

target vessel was spotted) and d2 (i.e. distance from the target vessel when course was 

changed). Two linear regression models were created, one for w4 and another for d2, each 

using distance as a dependent variable with density (D) and clustering (C) as independent 

variables.  
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The regression analysis conducted on data from w4 revealed a R2 of 0.29 (Adj R2 = 0.25), 

which was a significant model [F(2,34)=6.79, p<.01]. Detailed inspection of the model 

(Table 8.1) revealed that increased density and clustering were both associated with the 

target vessel being spotted at greater distance from participant’s ship. From the model, it 

appeared that density was the stronger predictor of distance relative to clustering (Table 

8.1). The same model was applied to equivalent data from d2; this model also reached 

statistical significance [F(2,34)=8.07,p<.01] with a R2 value of 0.33 (Adj R2 = 0.29). The 

model revealed an inverse relationship between density and distance to the target vessel 

(Table 8.1). 

Table 8.1 Results of the linear regression models with distance to Target Vessel as the dependent variable 

 Watch 4 (w4) model Decision 2 (d2) model 

t Std. ß partial r Sig t Std. ß partial r Sig 

Density 3.56 0.54 0.53 <.01 -3.47 -0.50 -0.52 <.01 

Clustering 1.94 0.30 0.32 .06 1.37 0.20 0.23 0.18 

8.5 Discussion 

This chapter was done with simulated watchkeeping tasks in a maritime bridge simulator 

and fNIRS technology to measure neurophysiological activation. Besides the mental 

workload analyses in Chapter 7, this chapter further conducts the functional connectivity 

analysis for seafarers using bridge simulation.  

Density falls at d1 (task period 5) when participants are preparing to make the manoeuvre. 

As the density is the ratio of actual connections to possible connections, hence the 

network seems to focus communication between a smaller group of nodes during d1 than 

it did during w1-w4. This explains that the network becomes more efficient during 
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decision-making. There is an interaction between distraction and task period. It indicates 

increase of density during the fourth period of watchkeeping (w4) for those participants 

in the no-distraction group compared to the distraction group.  

For local clustering, there is a decrease of clustering (which refers to connections between 

neighbouring nodes) during w4 compared to w1, which may indicate boredom. This is 

followed by a sudden increase from w4 to d1 when cognitive decision making begins. 

There is also an interaction between distraction and period. It indicates that the pattern 

described before only occurs for non-distracted participants; distracted participants do not 

show a decline of clustering from w1 to w4, possibly because they are alerted by the 

distraction task. They also do not show a substantial increase at d1, possibly because they 

are distracted from decision-making by the other task. 

With respect to the patterns of functional connectivity observed in Figures 8.4 and 8.6, 

the main distinction between w4 and d1 was an observable decrease in the overall 

frequency of connections, i.e. fewer orange and red connections appear in d1 and d2 

compared to w1-4 (Figure 8.8). This decline was particularly pronounced for bilateral 

connections as participants transitioned from w4 to d1 (Figure 8.8). Close inspection of 

Figure 8.8 indicated that the process of action selection in d1 and d2 was associated with 

a small number of frequent localized connections at left lateral channels, e.g. F5/F7-

AF7/F5 (BA46, BA47), right lateral channels, e.g. AF8/F6-AF4/AF8 (BA46, BA45), and 

fronto-central channels, e.g. Fz/F1-Fz/AFz (BA8, BA9). In addition, a small number of 

bilateral connections were frequently present during d1 and d2, e.g. AF7/AF3-AF4/AF8 

(BA9-BA9), F5/F7-F6/F8 (BA46-BA46). This pattern of bilateral activation at BA46 has 

been associated with Episodic control over action selection. The pattern of persistent 

connectivity and increased activity in the DLPFC may represent a trade-off between 

exploitation of previous experience and exploration of the immediate context as 

participants assessed the approach of a target vessel and formulated an evasive manoeuvre. 

The purpose of the regression analyses was to explore a relationship between measures 
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of functional connectivity and behavioural outcomes measured during the task simulation. 

Two linear regression models were constructed to predict distance from the target vessel 

when it was (1) spotted and (2) when participants performed an evasive manoeuvre (Table 

8.1). Both models were statistically significant as functional connectivity metrics 

accounted for approximately a third of variance observed in the performance data, a figure 

that was substantially higher than anticipated. The w4 model revealed that density and 

local clustering were both positively associated with distance to target vessel when 

spotted; however, this relationship was strongest for connection density (Table 8.1). By 

contrast, there was an inverse relationship between connection density and the safety 

margin in the d2 model (Table 8.1), i.e. reduced density was associated with greater 

distance to target vessel when the evasive manoeuvre was performed. The clustering 

coefficient measure did not make a significant relationship to the d2 model. Both models 

reinforce the trends that were observed in Figure 8.4 of increased connection density 

during vigilance and a significant decline of density during the process of action selection. 

The regression models confirm an association between measures of functional 

connectivity in the PFC and performance outcomes in an applied, safety-critical scenario. 

To conclude, the current study measured neurovascular activation and functional 

connectivity in the context of ship bridge operations. Increased activation of the right 

DLPFC, reduced connection density and a higher level of local clustering across a frontal 

montage of 15 channels was associated with action selection in comparison to the earlier 

watchkeeping period of vigilant attention. Activity in the right DLPFC and the level of 

local clustering declined across the watchkeeping period for participants. It also 

demonstrated a significant association between metrics of frontal connectivity (i.e. 

connection density) and behavioural responses to a safety-critical scenario. 

8.6 Ethics statement 

This study was carried out in accordance with the recommendations of Liverpool John 
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Moores University with written informed consent from all subjects. All subjects gave 

written informed consent in accordance with the Declaration of Helsinki. The protocol 

was approved by Liverpool John Moores University. See appendix A, B. 

8.7 Concluding remarks 

The following are the most significant remarks comprised in the chapter, and emphasised 

in the form of bullet points for the reader’s ease: 

 Density falls at d1 (task period 5) when participants are preparing to make the 

manoeuvre. It indicates increase of density during the fourth period of watchkeeping 

(w4) for those participants in the no-distraction group  

 There is a decrease of clustering during w4 compared to w1, followed by a sudden 

increase from w4 to d1 when cognitive decision making begins. It indicates that the 

pattern only occurs for non-distracted participants. 

 The main distinction between w4 and d1 was an observable decrease in the overall 

frequency of connections. This decline was particularly pronounced for bilateral 

connections as participants transitioned from w4 to d1.  

 The pattern of persistent connectivity and increased activity in the DLPFC may 

represent a trade-off between exploitation of previous experience and exploration of 

the immediate context as participants assessed the approach of a target vessel and 

formulated an evasive manoeuvre. 

 Two regression models confirm an association between measures of functional 

connectivity in the PFC and performance outcomes in an applied, safety-critical 

scenario. 
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Chapter 9 Discussion and conclusion 

9.1 Contributions to the field 

The human reliability methodology has been developed as a quantification tool for human 

factors in maritime transportation accidents while neurophysiological methodology has 

been put forward as an experimental indicator for seafarers on board. Moreover, it has 

been documented that the abovementioned methodology maintains a systematic 

framework, which continues to develop and improve by wide application in the maritime 

field. Moreover, the methodology derived from the road traffic and aviation fields, 

although it has not been used in maritime scenarios, is evident to be one of the promising 

directions of multi-discipline research related to human factors.  

Human factors in maritime safety comprise several aspects such as procedure factors, 

individual factors, vessel factors, environmental factors, and regulation and management 

factors, which are common factors contributing to human errors in maritime accidents. 

Compared to previous studies in the relevant literature, it reveals new primary data 

directly derived from maritime accident records in two major databanks MAIB and TSB, 

and quantification of the extent to which different combinations of the factors influence 

each accident type.  

The network modelling the interdependency among the risk factors is constructed by 

using NBN, which demonstrates general risk factors in maritime accidents. Scenario 

analyses are conducted to predict the occurrence likelihood of different types of accidents 

under various situations, which provides transport authorities and ship owners with useful 

insights for maritime accident prevention. Its novelties consist of manual collection and 

analysis of the primary data representing frequencies of risk factors directly derived from 

maritime accident reports, causational risk analyses with respect to different maritime 

accident types, and modelling by a historical accident data-driven approach, to generate 
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new insights on critical factors contributing to different types of accidents.  

The modelling of the interdependency among the risk influencing factors is structured by 

TAN, and validated by sensitivity analyses. The findings reveal that the critical risk 

factors for all accident types are ship age, ship operation, voyage segment, information, 

and vessel condition. More importantly, the findings also present the differentiation 

among the vital human factors against different types of accidents. It also provides a 

specific scenario in which the beliefs are upheld, observing the most probable 

configuration. The work pioneers the analyses of various impacts of human factors on 

different maritime accident types, which helps provide specific recommendations for the 

prevention of a particular type of accidents involving human errors. 

The advantages of the above research are revealed. However, there is a gap for reflecting 

mental workload associated with tasks on board. The fNIRS experimental study 

investigates the role of the prefrontal cortex in watchkeeping and decision-making mental 

workload analysis of deck officers on a ship bridge using fNIRS, which fills the blank 

space of application of the fNIRS technique in maritime transportation. Behavioural data 

indicated that experienced deck officers made the decision to successfully change course 

(to avoid collision) at a greater distance from the potential hazard compared to 

inexperienced officers. It illustrates that participants under distraction were considered to 

require more temporal demand than participants without distraction. Also, it demonstrates 

that the developed scenarios distracted the ship officers by reporting vessel position at 

certain points, which is the common task requiring temporal mental workload in the real 

world. In this way, it helps the maritime organisations to understand the workload faced 

by seafarers of different qualification levels, as well as better guidelines to improve 

seafarers’ certificate training.  

Moreover, in terms of fNIRS data, the right ROI showed increased oxygenation during 

the decision phase of the task, due to greater mental workload/decision-making. There is 

some evidence for decreased oxygenation during the late phase of watchkeeping due to 
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boredom. Greater oxygenation is found during decision time for participants with 

distraction, because of higher workload when simultaneously performing the distraction 

task and making the decision to change course. Higher oxygenation at right DLPFC is 

observed for experienced participants, but only when the ship was spotted due to 

considerably more attention being focused on the decision - which may have contributed 

to superior performance. Concerning this, it benefits maritime authorities to conduct 

scientific training so as to lead to the superior performance of seafarers.  

With respect to functional connectivity, reduced connection density and a higher level of 

local clustering across a frontal montage of 15 channels was associated with action 

selection in comparison to the earlier watchkeeping period of vigilant attention. Density 

and local clustering were both positively associated with distance to target vessel when 

spotted; however, this relationship was strongest for connection density. By contrast, 

reduced density was associated with greater distance to target vessel when the evasive 

manoeuvre was performed. The regression models confirm an association between 

measures of functional connectivity in the PFC and performance outcomes in an applied, 

safety-critical scenario. 

From the perspective of scenarios designed in the bridge simulator, complicated or 

combined tasks such as introducing weather forecast or communication during watch-

keeping could be used to manipulate mental workload in a naturalistic navigation task. 

There is a diverse database for the scenarios to be manipulated. It provides a clue to 

allocate a sufficient or adequate group to deal with different situations. Also, the 

development of the ergonomic design of the ship bridge would help the designer construct 

a better workplace for seafarers, so as to generate the workload appropriate to them. 

It is also relevant to note that fNIRS utilises changes of haemoglobin concentrations to 

illustrate neurophysiological activations to describe the mental workload of seafarers, as 

directly as the NASA-TLX questionnaire does. Underlining the already emphasised 

advantages of being able to generate values of the haemodynamic response, the 
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implementation of fNIRS could be considered as a potential aid for mental workload and 

performance predictors. The fNIRS technique could serve to monitor and report human 

performance with a widely accepted methodology during the maritime transportation, 

capable of consistent application across not only shipping divisions, but additionally 

across industry sectors as a standard performance metric. 

9.2 Research objectives achieved 

The primary purposes of this research are to investigate how human factors combined 

with common risk factors affect the safety of maritime transportation, and how individual 

physiological factor - mental workload - influences neurophysiological activation, and 

decision making of experienced and inexperienced seafarers.  

In order to achieve the research aims, the objectives addressed are fulfilled as follows. 

 To obtain the primary data representing frequencies of risk factors directly derived 

from maritime accident reports. 

Manual case by case analysis of recorded maritime accidents from MAIB and TSB 

that occurred from 2012 to 2017 is undertaken to develop a primary database to 

support this study. Accidents related to human errors in the process of navigation and 

sailing, integrated with literature, are analysed to identify risk factors in maritime 

accidents from different views. It provides a general demonstration of maritime 

accidents and rational classification of related risk factors as procedure factors, 

individual factors, vessel factors, environmental factors, regulation and management 

factors. 

 To analyse the risk factors in maritime accidents. 

This work proposes a Bayesian Network-based risk analysis approach to analyse the 

risk factors influencing maritime transport accidents. It reveals new features 
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including new primary data derived from maritime accident records; also, the 

quantification of the extent to which different combinations of the factors influence 

each accident type. The network modelling the interdependency among the risk 

factors is constructed by using NBN and validated by sensitivity analysis. Scenario 

analyses are conducted to predict the occurrence likelihood of different types of 

accidents under various situations.  

 To incorporate human factors into causational analyses to maritime accident types. 

In order to include more human factors into the model, another data-driven Bayesian 

Network is used to investigate the effect of human factors on marine safety in 

maritime accident analyses. It incorporate human factors into causational analysis 

concerning different maritime accident types and generates new insights on critical 

human factors contributing to different types of accidents. The modelling of the 

interdependency among the risk influencing factors is structured by TAN and 

validated by sensitivity analysis. More importantly, the findings present the 

differentiation among the vital human factors against different types of accidents. 

MPE is used to provide a specific scenario in which the beliefs are upheld, observing 

the most probable configuration. 

 To develop a historical accident data-driven approach to train prior probabilities in 

the risk-based BN. 

After manual collection of the raw data derived from maritime accident reports, the 

network modelling the interdependency among the risk factors is constructed by data-

driven approaches, NBN and TAN, respectively. Both of them train prior 

probabilities in the risk-based BN and are validated by sensitivity analysis. 

 To conduct an empirical study to provide insights for the prevention of a particular 

type of accidents involving human errors.  
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Sensitivity analysis helps provide patterns of influencing risk factors. And an 

empirical study is conducted by scenario analysis and MPE to predict the occurrence 

likelihood of different types of accidents under various situations, or a specific 

scenario in which the beliefs are upheld observing the most probable configuration. 

In this way, it provides insights for the accident prevention involving human errors. 

 To design and conduct the experimental study aiming to study the mental workload 

of seafarers and the behavioural performance using fNIRS technology. 

It is done with simulated watchkeeping tasks in the maritime bridge simulator, and 

using fNIRS technology to measure neurophysiological activation. The developed 

scenarios distract the ship officers by reporting vessel position and answering 

questions at specific points, which is the common task requiring temporal mental 

workload in the real world. The results show that experienced participants were 

considered to believe they have better performance than inexperienced people. It also 

illustrates better performance for experienced seafarers because they made decisions 

earlier, which leads to successful collision avoidance. Participants under distraction 

were considered to require more temporal demand than those without distraction. In 

terms of fNIRS data, it shows significant differences in the right DLPFC of the brain.  

 To explore the patterns of functional connectivity in the dorsolateral prefrontal cortex 

(DLPFC) of experienced and inexperienced seafarers. 

It is done further with functional connectivity analyses for seafarers with bridge 

simulation. The current study measures neurovascular activation and functional 

connectivity in the context of ship bridge operations. Increased activation of the right 

DLPFC, reduced connection density and a higher level of local clustering across a 

frontal montage of 15 channels is associated with action selection in comparison to 

the earlier watchkeeping period of vigilant attention. Activity in the right DLPFC and 

the level of local clustering decline across the watchkeeping period for participants. 
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There is a significant association between metrics of frontal connectivity (i.e. 

connection density) and behavioural responses to a safety-critical scenario. 

9.3 Recommendations for future research 

9.3.1 Inclusion of a wide range of human factors  

The TAN modelling chapters brought forward some issues that are worthy of note for 

further lines of investigation. For example, the TAN model accounts for the limited 

number of risk factors according to the frequencies of factors, especially for individual 

factors. It is rational but could be considered further, as some factors have relatively low 

frequencies of being blamed but actually take primary responsibility. That is to say, even 

factors with low frequencies are significant factors for the maritime accidents. This 

research only accounts for the frequency rather than severity. It would be interesting to 

gather more data concerning the severity of maritime accidents, as well as related risk 

factors, to conduct the analyses for the risk of certain accident types.  

Moreover, future work could encompass more maritime accident reports with the original 

description of the process of accidents to enrich the data source to this research. It will 

illustrate the features of modern maritime accidents, and fulfil the database of human 

factors which could be further served by other researchers and transport authorities for 

better improvement of management.  

Also, while out of the scope of the work herein, it would be interesting to integrate the 

human reliability research with an experimental neurophysiological study. For example, 

the findings of the fNIRS experimental study illustrate some patterns of human 

performance with perspectives of mental workload. However, some clues can also be 

found in BN modelling obtained from the maritime accident reports. There is a possibility 

to integrate them from both subjective and objective views. This type of retrofit could 

entail a comprehensive benefit with the inclusion of data gathering of individual factors, 
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which was previously not demonstrated in the maritime accident reports. It will introduce 

a novel way of human factors’ study in the maritime field. 

9.3.2 Insights for human factors in ship autonomy  

There are plenty of projects or research related to ship autonomy from various countries, 

e.g. MUNIN project in EU (Man et al., 2014), AAWA project in Finland (Wahlstrom et 

al., 2015), small military boats unmanned solutions in U.S. Navy, Supporting Voice 

Communication in the UK (Brodje et al., 2015). Another future work could be surrounded 

by human factors with ship autonomy. 

The first impression of human factors in USV could be based on autopilot and shore-

based pilot. It could be demonstrated that the idea of unmanned ship operation derives 

from shore-based pilotage. Shore-based pilotage is defined by the European Maritime 

Pilots Association (EMPA), and the International Maritime Pilot’s Association (IMPA) as 

‘an act of pilotage carried out in a designated area by a pilot licensed for that area from a 

position other than aboard the vessel concerned, to conduct the safe navigation of that 

vessel’. Since COST301 (1987–91), there has been considerable interest in remote 

pilotage in the EU, and this has benefited and promoted the TAIE project (1991–4). 

TAIE’s objectives include determining the suitability of VTS for remote pilotage. In 

addition, pilotage organisations were pressured to provide remote pilotage to a port or 

face elimination of these pilotage services in Germany and the Netherlands (Hadley, 

1999). The most prominent concern of remote pilotage is the importance the pilots 

attribute to establishing good contact with the regular crew of the ship (Bruno and 

Lutzhoft, 2009). The costs and benefits of remote pilotage (Hadley, 1999) are: (i) Well 

planned and smoothly implemented vessel movements in all weathers; (ii) Perceived 

efficiency in a competing port; (iii) Savings to ship owners, charterers and receivers from 

reduced time wastage; (iv) Enhanced safety of navigation, reducing risks.  

As the idea of remote pilotage passed by, the concept of autonomous control of ships 
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emerges. E-Navigation Test Bed of ACCessibility for Shipping, Efficiency Advantages 

and Sustainability (ACCSEAS) in EU implement and demonstrate e-Navigation systems 

to alleviate North Sea Region navigation risks (Bransby et al., 2012). Also, ‘route 

suggestions’ has also been developed for shore stations, such as VTS, to transmit route 

segments from several areas of responsibility to individual vessels (Brodje et al., 2015). 

It served as a graphical means of supporting service within voice communication between 

navigator and VTS Operator. With the research trends on unmanned surface vehicles, 

unmanned ships projects become an essential aspect for four reasons. These are working 

environment and larbour shortage aboard, reducing cost on waterborne transportation, 

reducing emissions of vessels, and increasing safety in shipping (Porathe et al., 2014).  

It seems that the human factor emerging in unmanned ships is quite different from in 

traditional ships. The EU project Maritime Unmanned Ship through Intelligence in 

Networks (MUNIN) provides the context to conduct the human factors research by the 

interview of experienced participants (Man et al., 2014). However, the unmanned ship 

does not indicate there is no crew manoeuvring the ship. Contrary to its name, it is 

impossible that nobody is responsible for the ships. Humans will still work on monitoring, 

remote control, and maintenance, especially on the high seas unmanned ships where it 

has to coexist with manned ship systems (Porathe et al., 2014).  

Several generations of vessels have been launched since World War II. These advances in 

automation and reallocation of crew responsibility, as well as shore-based equipment and 

onboard devices, have permitted reductions in crew size (Council, 1990). In the late 1980s, 

European and Japanese governments supported even greater automation, centralizing 

navigation, engine control, communications, and administrative functions on the bridge 

to build the ‘ship operation centre’, as well as throughout the vessel. From this perspective, 

the fast pace of innovation and development in shipping is continuing worldwide. 

Unmanned ships allow fewer crew on board. Meanwhile, several parts of the crews or 

part of the crew responsibility are going to be allocated ashore. It should be noted that 
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semi-autonomy is highly typical of unmanned vehicles, and in the past, this has been 

favoured over full autonomy due to the diverse shifts of missions (Campbell et al., 2012).  

Obviously, it is demonstrated that the human is still one of the most important 

contributions to shipping. In addition, the feasibility of unmanned, autonomous merchant 

vessels is investigated by the EU project MUNIN (Porathe et al., 2014). In the study, the 

ships are manned while departing and entering port and unmanned during the voyage. 

When on ocean-passage, it is controlled by an automatic system within on-board sensors 

allowing the ship to make collision avoidance manoeuvres according to international 

regulation. It is also continuously monitored by a remote shore centre able to take remote 

control should the automatic systems break.  

It can be seen that if decisions from the operator on board, where stress, mental workload 

and fatigue play a vital role, are moved to a less dominant work environment, some safety 

benefits might be achieved.  

The unmanned ship does not mean the resolution of all the problems from human errors; 

on the contrary, it brings more challenges related to human factors in the Shore Control 

Centre (SCC) (Man et al., 2014). People need to be able to take full control over the ship 

at any time or several ships simultaneously. Without ship sense or situation awareness 

from the feeling of the ship’s movement and navigation environment, operators do not 

find it easy to manoeuvre ships remotely. There will be no physical connection between 

the people and the vessel environment. Specifically, the visual and vestibular sense of the 

environment, a tactile sense in ship handling for bridge officers, will be missing.  

With this background, human factors ashore may encounter different issues compared to 

human factors on board. Firstly, there will be no physical connection between the human 

and the ship, and no directly perceived information from the ship’s environment. Secondly, 

the traditional methods used to prioritise information for humans do not generate 

sufficient situation awareness. Otherwise, they will become blind to the environment. 
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Thirdly, situation awareness is an accumulated factor continually developing with a high 

risk of information overloading. Maintaining situation awareness becomes more 

challenging than creating situation awareness to keep track of the dynamic situation.  

Although unmanned commercial shipping does not exist yet, it is worth considering these 

prominent issues (Wahlstrom et al., 2015). Without the bridge and the systems supporting 

the crew, the ships could be lighter and carry more cargo – this would increase revenues 

and fuel efficiency. The most well known problem of automation is to retain adequate 

situation awareness through remote sensing (Porathe et al., 2014). Man invited ten master 

mariner program students with experience at sea to participate in the focus group 

interview (Man et al., 2014), discussing the different actions taken on board and ashore. 

The results highlight ship sense and situation awareness existed ashore. In addition, 

compensating and mimicking ship sense by the simulator as the human-machine interface 

is the purpose of obtaining situation awareness.  

The most considerable issues also include information overload, boredom, mishaps 

during changeovers and handoffs, lack of feel of the vessel, constant reorientation to new 

tasks, delays in control and monitoring, and the need for human understanding in local 

knowledge and object differentiation (e.g., in differentiating between help-seekers and 

pirates) (Wahlstrom et al., 2015). It is shown that positive aspects include lack of 

seasickness and physical damage to the crew in harsh weather conditions. This implies 

that the unmanned ships should be designed with agile command and control, considering 

human-machine interaction and to communicate with the manned vessels and the 

authorities proactively. 

With greater emphasis being placed on the use of automatic devices and displays, it 

requires training of simulators to use a two-dimensional screen instead of using their 

standard three-dimensional view. This is likely to add to the cost of unmanned ship’s 

training service. However, it should be stated that, with technological development, an 

operator may be working hard just to remain familiar with equipment rather than making 
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himself an expert in use. Hansen integrated a system within a 40-foot laboratory boat, 

advanced onboard control, sensing, data fusion, physical plant and payload monitoring 

and management to replace traditional human crew functions (Hansen et al., 2006). It 

discussed a path proposed during Intelligent Autonomy (IA) NIST workshops to specify 

a quantifiable measure of full USV autonomy equipped with skills. Moreover, the USV 

Skill Set Architecture (SSA) is proposed. 

Man redefined the crew structure in the SCC, operator, supervisor, captain, engineer; 5 

scenarios in the two-day period were conducted (Man et al., 2015) to explain the situation 

awareness in unmanned ships. It was demonstrated that the onboard thresholds of the 

alarms are not necessarily suitable for the situation of remote monitoring. The alarm shall 

be related to the “tendency” of the event to facilitate the operator’s SA efficiently. More 

types of information (e.g. visual/audio) should be available in the SCC to actively support 

people for decision-making. From this point of view, the design of the SCC shall not be 

a mimic of the bridge design. Redefining the human factors and human errors contributing 

to maritime accidents is necessary, especially for situation awareness. Porathe et al. (2014) 

stated that human errors will continue to be the biggest challenge and must be addressed 

carefully and meticulously. 

9.4 Concluding remarks 

The work presented herein has initially documented a literature review underlining 

human reliability and risk assessment in the maritime system, specifically emphasising 

human factors in maritime accidents through accident investigation reports. Additionally, 

the application of functional Near-Infrared Spectroscopy was demonstrated to imply how 

it can be utilised for the maritime transportation field.   

More importantly, research challenges on the evaluation of common factors contributing 

to human errors in the maritime industry, and how to control measures of human errors 

to reduce the risk in maritime transport remain to be solved. Therefore, human factors 
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research is expected to be extended and explored by redefining risk factors, incorporating 

quantitative methods into human errors assessment and integrating neurophysiological 

methods, in order to improve the safety level of maritime transportation and mitigate the 

risk for seafarers on board.  

Human reliability methods are applied for the identification of risk factors contributing 

to human errors in maritime accidents. Combined with Bayesian networks, contributory 

factors and the inter-relations among them can be modelled to illustrate causations and 

quantitative analyses among risk factors. Moreover, the application of the fNIRS 

technique and NASA-TLX derived from the neuroscience field is the supplement of 

multi-discipline knowledge. It explores the role of the prefrontal cortex in watchkeeping 

and decision-making mental workload analysis of deck officers on a ship bridge, and 

proposes an effective experimental method to understand the functional connectivity of 

brains, as well as the differences of decision-making by experienced and inexperienced 

officers.  

The above modelling and experimental study are intended to recommend the possible 

countermeasures for mitigating human errors to reduce the risks of accidents, and 

demonstrate the patterns of seafarers’ decision-making which is beneficial for better 

performance of seafarers and provides new insights for the training of ship officers and 

seafarers’ certification.  

Finally, the inclusion of a broader range of human factors in maritime transportation and 

the experimental neurophysiological methods would be future explored for the potential 

human reliability research. Moreover, the remote human-centred design of novel vessels 

and the development of unmanned ships navigating with traditional ships introduces new 

scenarios for the human factors’ research in the maritime field, which shows promise by 

associating neurophysiological experiment in the maritime section. 
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Appendices 

Appendix A NASA-TLX Questionnaire 

NASA-TLX 

Number:          Age:         Gender:            Experience/qualification: 

Please rate the MENTAL DEMAND of the task:  How much mental and perceptual activity was 

required 

Low         High 

1  2 3 4 5 6 7 8 9 10   

Enter a number between 1 and 10 here for MENTAL DEMAND         

Please rate the PHYSICAL DEMAND of the task:  How much physical activity was required?  

Low         High 

1  2 3 4 5 6 7 8 9 10 

Enter a number between 1 and 10 here for PHYSICAL DEMAND        

Please rate the TEMPORAL DEMAND of the task:  How much time pressure did you feel due to 

the pace at which task elements occurred?         

Low         High 

1  2 3 4 5 6 7 8 9 10 

Enter a number between 1 and 10 here for TEMPORAL DEMAND        
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Please rate your own PERFORMANCE:  How successful do you think you were in completing the 

goals of the task?           

Low         High 

1  2 3 4 5 6 7 8 9 10 

Enter a number between 1 and 10 here for PERFORMANCE         

Please rate your EFFORT:  How hard did you have to work (mentally and physically) to 

accomplish your level of performance?           

Low         High 

1  2 3 4 5 6 7 8 9 10 

Enter a number between 1 and 10 here for EFFORT           

Please rate your FRUSTRATION:  How discouraged, irritated, stressed and annoyed did you feel 

during the task?           

Low         High 

1  2 3 4 5 6 7 8 9 10 

Enter a number between 1 and 10 here for FRUSTRATION      

I have read the information sheet provided and I am happy to participate. I understand 

that by completing and returning this questionnaire I am consenting to be part of the research 

study and for my data to be used as described. 
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Appendix B Participant Information 

Sheet  

LIVERPOOL JOHN MOORES UNIVERSITY 

Participant Information Sheet 

LJMU’s Research Ethics Committee Approval Reference:  

YOU WILL BE GIVEN A COPY OF THIS INFORMATION SHEET  

Title of Study: Human error assessment for seafarers in ship bridge: an experimental 

study 

School/Faculty: School of Maritime and Mechanical Engineering 

Name and Contact Details and status of the Principal Investigator:  

Shiqi Fan, S.Fan@2017.ljmu.ac.uk, PhD student 

Name and Contact Details of the Investigators:  

Dr Eduardo Blanco Davis, E.E.BlancoDavis@ljmu.ac.uk 

Prof Stephen Fairclough, S.Fairclough@ljmu.ac.uk  

 

You are being invited to take part in a research study. Before you decide it is important 

for you to understand why the study us being done and what participation will involve.  

Please take time to read the following information carefully and discuss it with others if 

you wish. Ask us if there is anything that is not clear or if you would like more information. 

Take time to decide whether or not you wish to take part. Thank you for reading this. 

1. What is the purpose of the study? 

The purpose of this study is to evaluate the root causes that contribute to human error 

within the bridge room of a vessel. Statistics indicates that 75% -96% of water traffic 

accidents are caused by the human and organisational factors. This study will give us in 

depth knowledge of the risks associated with the bridge room of a vessel and in turn 

allow us to implement further risk control options or training for seafarers. 

2. Why have I been invited to participate?  

You have been invited because you are aged 18 years old or older. In addition, you are 

qualified experienced or novice seafarers, or have education experience in navigation 

technology. 

The exclusion / inclusion criteria are head injury conditions or suffering with high blood 

pressure, since this may affect the results from experiment equipment - fNIRS. Blood 

pressure data will be collected prior to testing. Any person suffering from anxiety 

condition and/or receiving medication for anxiety condition is excluded neither. 

mailto:S.Fan@2017.ljmu.ac.uk
mailto:E.E.BlancoDavis@ljmu.ac.uk
mailto:S.Fairclough@ljmu.ac.uk
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3. Do I have to take part?  

No. It is up to you to decide whether or not to take part.  If you do decide to take part 

you will be given this information sheet to keep and be asked to sign a consent form.  

You can discontinue the study for any reason without any explanation 

and  without  it  affecting  your  rights/any  future treatment/service you receive. And the data 

will not be withdrawn as it will be unidentifiable. 

4. What will happen to me if I take part?  

We will talk you through the study procedures and give you the chance to ask any 

questions. The experiment will take place at bridge simulator in ground floor at James 

Parsons Building, Byrom Street, L3 3AF, Liverpool. Participants will undergo the following 

process in ship bridge simulator. 

Firstly, we will ask you to take a blood pressure test to confirm that you do not have high 

blood pressure which is not suitable for the experiment. However we are not qualified 

to make judgements on participants’ health, you would be advised to visit your GP for 

your blood pressure. After reading this information and giving your written consent you 

will be asked to partake in some basic training in the bridge simulator. This will involve 

familiarising you with the simulator software, how certain selected systems work and 

how you can change systems to solve problems. The training exercise will last average 

30 minutes for subjects. Participants will be allocated into experienced group and 

inexperienced group, depending on whether you complete a number of hours in the 

bridge simulator as part of your existing training, e.g. a specific course NAEST in LJMU. 

Once training is completed you will be placed with a skull cap containing 8 sensors and 

8 detectors required to measure the blood flow in your pre-frontal cortex via the use of 

infra-red light, seen as below.  

 

Then you will be asked to complete a task in bridge simulator. Your task will be a Collision 

Regulation exercise set in open water, and you need to alter the course under the Rules 

to avoid a collision with other ships, as you are in real life. The tasks on average will take 

around 20 minutes. After tasks, the participant is supposed to finish the questionnaire 

about the subjective workload. 
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5. Will I be recorded and how will the recorded media be used? 

No, your action will not be recorded. Age, gender, maritime experience/qualification of 

you made during this study will be used only for data analysis and result illustration.  No 

other use will be made of them without your written permission, and no one outside 

the project will be allowed access to the original data.  

6. What are the possible disadvantages and risks of taking part? 

There are no anticipated risks involved with this study. You may feel a slight discomfort 

from wearing the head cap for the duration of the test and in the rare case that the 

discomfort gets too much then you can stop the task as anytime and re-adjust the head 

cap or discontinue the study. You will be asked if you are experiencing any nausea during 

the training session and will be withdrawn if nausea is an issue for you in the simulator. 

Some of the tasks, with them being time dependant may cause varying degrees of stress 

and mental fatigue. 

7. What are the possible benefits of taking part? 

The benefits of taking part are useful learning experience for bridge simulator. Whilst 

will be £10 voucher to you for taking part in the study, it is hoped that this work will 

enhance your professional. 

8. What will happen to the data provided and how will my taking part in this project 

be kept confidential? 

The information you provide as part of the study is the research study data.  Any 

research study data from which you can be identified (e.g. audio and/or video 

recordings), is known as personal data.  

Personal data does not include data that cannot be identified to an individual (e.g. data 

collected anonymously or where identifiers have been removed). 

If necessary, personal data will be stored confidentially for 5 years after the study has 

finished. Personal data will be accessible to the research team. Personal identifiable 

data/information/tissue will not be transferred outside of the European Economic Area. 

You will not be identifiable in any ensuing reports or publications. Anonymous 

information which is not identifiable will be stored in locked cabinets and only the 

researcher and supervisor will have access to the data. fNIRS devices will be only 

accessible to the researchers, and the data/information be deleted from the device once 

transferred to storage. 
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Anonymised data might be used for additional or subsequent research studies and we 

might share anonymised data with other investigators (e.g. in online databases).  All 

personal information that could identify you will be removed or changed before 

information is shared with other researchers or results are made public. The data 

provided will not be withdrawn as it will be unidentifiable. 

9. What will happen to the results of the research project? 

The investigator intends to complete a dissertation to satisfy their degree programme, 

publish the results in a PhD thesis, journal articles, or conference papers.  

10. Who is organising and funding/commissioning the study? 

This study is organised by Liverpool John Moores University and has no conflict of 

interest. 

11. Who has reviewed this study? 

This study has been reviewed by, and received ethics clearance through, the Liverpool 

John Moores University Research Ethics Committee (Reference number: 18/ERI/021). 

12. What if something goes wrong? 

If you have a concern about any aspect of this study, please contact the relevant 

investigator who will do their best to answer your query. The researcher should 

acknowledge your concern within 10 working days and give you an indication of how 

they intend to deal with it. If you wish to make a complaint, please contact the chair of 

the Liverpool John Moores University Research Ethics Committee 

(researchethics@ljmu.ac.uk) and your communication will be re-directed to an 

independent person as appropriate. 

13. Data Protection Notice 

The data controller for this study will be Liverpool John Moores University (LJMU). The 

LJMU Data Protection Office provides oversight of LJMU activities involving the 

processing of personal data, and can be contacted at secretariat@ljmu.ac.uk. This means 

that we are responsible for looking after your information and using it properly. LJMU’s 

Data Protection Officer can also be contacted at secretariat@ljmu.ac.uk. The University 

will process your personal data for the purpose of research.  Research is a task that we 

perform in the public interest. 

Your rights to access, change or move your information are limited, as we need to 

manage your information in specific ways in order for the research to be reliable and 

mailto:researchethics@ljmu.ac.uk
mailto:secretariat@ljmu.ac.uk
mailto:secretariat@ljmu.ac.uk
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accurate. If you withdraw from the study, we will keep the information about you that 

we have already obtained.  

You can find out more about how we use your information by contacting 

secretariat@ljmu.ac.uk. 

If you are concerned about how your personal data is being processed, please contact 

LJMU in the first instance at secretariat@ljmu.ac.uk. If you remain unsatisfied, you may 

wish to contact the Information Commissioner’s Office (ICO). Contact details, and details 

of data subject rights, are available on the ICO website at: https://ico.org.uk/for-

organisations/data-protection-reform/overview-of-the-gdpr/individuals-rights/  

16.   Contact for further information 

Shiqi Fan, 1st Floor research suite, GERI building, S.Fan@2017.ljmu.ac.uk 

Thank you for reading this information sheet and for considering to take part in this 

study.  

Note: A copy of the participant information sheet should be retained by the participant 

with a copy of the signed consent form. 

------------------------------------------------------------------------------------------------------------------- 

  

mailto:secretariat@ljmu.ac.uk
mailto:secretariat@ljmu.ac.uk
https://ico.org.uk/for-organisations/data-protection-reform/overview-of-the-gdpr/individuals-rights/
https://ico.org.uk/for-organisations/data-protection-reform/overview-of-the-gdpr/individuals-rights/
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Appendix C Contributions to journals 

 The work in Chapter 4 has contributed to the following papers: 

1. Fan, S., Yang, Z., Blanco-Davis, E., Zhang, J., & Yan, X. (2020). Analysis of 

maritime transport accidents using Bayesian networks. Proceedings of the Institution of 

Mechanical Engineers, Part O: Journal of Risk and Reliability, 234(3), 439-454. 

2. Fan, S., Blanco-Davis, E., Yang, Z., Zhang, J., & Yan, X.(2020). Incorporation of 

human factors into maritime accident analysis using a data-driven Bayesian network. 

Reliability Engineering & System Safety, accepted. 

3. Fan, S., Zhang, J., Blanco-Davis, E., Yang, Z., & Yan, X. (2020). Maritime accident 

prevention strategy formulation from a human factor perspective using Bayesian 

Networks and TOPSIS. Ocean Engineering, accepted. 

4. Fan, S., Zhang, J., Blanco-Davis, E., Yang, Z., Wang, J., & Yan, X. (2018). Study on 

seafarers’ emotion identification during watch-keeping using bridge simulation. In Safety 

and Reliability-Safe Societies in a Changing World-Proceedings of the 28th International 

European Safety and Reliability Conference, ESREL 2018 (pp. 347-354). Taylor & 

Francis. 

5. Fan S., Yan X., Zhang J., Wang J.(2017). A Review on Human Factors in Maritime 

Transportation Using Seafarers’ Physiological Data. Proceedings of the 4th International 

Conference on Transportation Information and Safety (ICTIS). August 8 - August 10, 

2017, Banff, Alberta, Canada. 

 The work in Chapter 5 has contributed to the following papers: 

1. Fan, S., Yang, Z., Blanco-Davis, E., Zhang, J., & Yan, X. (2020). Analysis of 

maritime transport accidents using Bayesian networks. Proceedings of the Institution 
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of Mechanical Engineers, Part O: Journal of Risk and Reliability, 234(3), 439-454. 

2. Fan, S., Blanco-Davis, E., Yang, Z., Zhang, J., & Yan, X.(2020). Incorporation of 

human factors into maritime accident analysis using a data-driven Bayesian network. 

Reliability Engineering & System Safety, accepted. 

 The work in Chapter 6 has contributed to the following papers: 

1. Fan, S., Blanco-Davis, E., Yang, Z., Zhang, J., & Yan, X.(2020). Incorporation of 

human factors into maritime accident analysis using a data-driven Bayesian network. 

Reliability Engineering & System Safety, accepted. 

2. Fan, S., Zhang, J., Blanco-Davis, E., Yang, Z., & Yan, X. (2020). Maritime accident 

prevention strategy formulation from a human factor perspective using Bayesian 

Networks and TOPSIS. Ocean Engineering, accepted. 

 The work in Chapter 7 and Chapter 8 has contributed to the following paper: 

Fan, S., Blanco-Davis, E., Zhang, J., Bury A., Warren J., Yang Z., Yan, X., Wang J., 

Fairclough, S.. The Role of the Prefrontal Cortex & Functional Connectivity in 

Watchkeeping and Collision Avoidance during Maritime Operations: An fNIRS study. 

Brain and Behavior, under peer review. 

 

 


