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Abstract

We consider a reaction-diffusion(-taxis) predator-prey system with group de-
fense in the prey. Taxis-driven instability can occur if the group defense influ-
ences the taxis rate (Wang et al., 2017). We elaborate that this mechanism is
indeed possible but biologically unlikely to be responsible for pattern forma-
tion in such a system. Conversely, we show that patterns in excitable media
such as spatiotemporal Sierpinski gasket patterns occur in the reaction-
diffusion model as well as in the reaction-diffusion-taxis model. If group
defense leads to a dome-shaped functional response, these patterns can have
a rescue effect on the predator population in an invasion scenario. Preytaxis
with prey repulsion at high prey densities can intensify this mechanism lead-
ing to taxis-induced persistence. In particular, taxis can increase parameter
regimes of successful invasions and decrease minimum introduction areas nec-
essary for a successful invasion. Last, we consider the mean period of the
irregular oscillations. As a result of the underlying mechanism of the pat-
terns, this period is two orders of magnitude smaller than the period in the
nonspatial system. Counter-intuitively, faster-moving predators lead to lower
oscillation periods and eventually to extinction of the predator population.
The study does not only provide valuable insights on theoretical spatially
explicit predator-prey models with group defense but also comparisons of
ecological data with model simulations.
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pattern formation, excitable medium

1. Introduction1

Systems of differential equations leading to oscillations are prevalent in2

a whole variety of ecological models and mathematical biology in general3

(Murray, 2002a). Relaxation oscillators are a particular type of oscilla-4

tor that exhibit two different time scales. Many activator-inhibitor models5

are of this type if the activator time-scale is much shorter (Meron, 2015).6

Characteristic for such relaxation oscillators is the so-called excitement cy-7

cle: resting
excitation−−−−−→
(slow)

excited
relaxation−−−−−→

(fast)
resting (Ermentrout and Rinzel, 1981).8

With changes in parameters, this limit cycle can vanish via a homoclinic9

bifurcation. The resulting system is then called excitable (Ermentrout and10

Rinzel, 1981). Excitable means that perturbations above a threshold (super-11

threshold perturbations) lead to an excitation cycle, i.e., a relatively long12

excursion of the trajectory in the phase space. In contrast, a sub-threshold13

perturbation leads to direct convergence to the linearly stable equilibrium14

without such excitation behavior. Here, the excitation threshold is the sta-15

ble manifold of the newly emerging saddle-node (Ermentrout and Rinzel,16

1981; Kazantsev et al., 2003; Sevcikova and Marek, 1991).17

Relaxation systems and systems with excitable kinetics are important for18

biological systems because they can lead to the formation of spatiotempo-19

ral patterns if the local kinetics are coupled with diffusive spread (Mendez20

et al., 2010). The spatially explicit dynamical system is then referred to as21

an excitable medium. It is well known that if the spatial domain is large22

enough, many patterns can emerge from a limit cycle in a nonspatial system23

also in systems without excitability (Conway et al., 1978). Examples for24

this are chaos in the wake of invasion (Sherratt et al., 1995), spiral waves25

(Keener and Tyson, 1986; Zaikin and Zhabotinsky, 1970), turbulence (Bär26

and Eiswirth, 1993), and target patterns (Stich and Mikhailov, 2006; Tyson27

and Fife, 1980). Experiments can reproduce such patterns (Irurzun et al.,28

2004; Lee et al., 1994; Marino and Balle, 2005). The triangle-shaped so-called29

Sierpinski gasket patterns give a particularly intriguing example (Hayase and30

Ohta, 2000; Kazantsev et al., 2003). Note that in this manuscript as31

well as in the literature cited, Sierpinski gasket patterns refer to32

a spatiotemporal phenomenon whereas the classical Sierpinski tri-33

angle is a purely spatial pattern. Even more intriguingly, these patterns34
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have indeed been observed in nature, for instance, on shell pigments (Lind-35

say, 1982; Meinhardt, 2009). They occur as a result of a combination of36

self-replicating pulses and different behavior occurring when pulses collide37

(Hayase, 1997). Self-replication denotes that a pulse splits into two pulses38

(Nishiura and Ueyama, 1999). If this pulse is traveling and the splitting pulse39

travels in the opposite direction, this phenomenon is denoted as backfiring40

(Mimura and Nagayama, 1997). Colliding pulses are only preserved under41

symmetric conditions (Hayase and Ohta, 2000). Such conditions are not42

possible with three existing pulses. In this case, annihilation occurs. Hence,43

every three pulse generations, the process repeats, and a pattern similar to44

Sierpinski gaskets emerges (Hayase and Ohta, 2000).45

From an ecological perspective, it is essential to note that due to these46

patterns, the excitable nature of systems allows for persistent coexistence in47

spatially explicit systems that would otherwise not be possible. For instance,48

it can determine whether a biological invasion may be successful with poten-49

tially significant impacts on the whole ecosystem. Hence, it is essential to50

investigate such models in detail to understand diverse phenomena.51

The dynamics in a classical pure reaction-diffusion system are well stud-52

ied. With a classical pure reaction-diffusion system, we refer to a system in53

which the matrix of diffusion coefficients is diagonal, and the diagonal entries54

are constants. Ecologically this means that only the gradient of a species de-55

termines the dispersal of the same species. This assumption is strong in56

ecological contexts, and relaxing this assumption can significantly alter the57

outcome of spatiotemporal models. Recently, Zemskov et al. (2017) showed58

that cross-diffusion in a Bonhoeffer-van der Pol model could lead to solitary59

pulses or wave trains. Solitary pulses correspond to single traveling pulses60

representing a homoclinic solution, whereas the term wave train describes a61

sequence of such pulses (Zemskov et al., 2017). Roussel and Wang (2004)62

have analyzed a Gray-Scott model with variable diffusion coefficients showing63

that the resulting inhomogeneity in diffusivities can suppress self-replicating64

behavior. Furthermore, including advection in a model with Dirichlet bound-65

ary conditions can lead to the existence of wave trains (Vidal-Henriquez et al.,66

2017). In ecological contexts, already Shigesada et al. (1979) examined that67

movement responses to environmental potentials allow for spatial coexistence68

of competing populations due to spatial segregation. More recently, Potts69

and Petrovskii (2017) reported that incorporating taxis can also determine70

invasion success in a competitive system. A more common example of an71

ecological justification for the occurrence of a non-diagonal diffusion matrix72
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is given by preytaxis, i.e., the dependence of predator movement on the73

prey density gradient. Brindley et al. (2005) summarized impacts of pursuit-74

evasion dynamics, i.e., prey avoiding predators and predators attracted by75

prey, on biological invasions. Bate and Hilker (2019) investigated the impact76

of preytaxis on the speed of traveling waves. Furthermore, Lee et al. (2009)77

examined the impact of taxis on pattern formation. In particular, prey at-78

traction tends to suppress Turing pattern formation. However, Wang et al.79

(2017) stated that prey repulsion can destabilize the spatial homogeneity of80

the system. A similar result was already obtained by Jorné (1977) for a81

Lotka-Volterra system with cross-diffusion if the prey moves towards higher82

predator densities. Wang et al. (2017) justified prey repulsion by group de-83

fense in the prey. However, the theoretical justification lacks investigation84

of whether such a situation occurs in a reasonable range of parameters in85

an ecological system. Furthermore, in general, the impact of non-diagonal86

matrices of diffusion coefficients in ecological systems (cross-diffusion) is not87

well studied yet compared to the classic reaction-diffusion case.88

Here, we will consider an excitable predator-prey system with group de-89

fense in the prey. Following Wang et al. (2017), we will first discuss taxis-90

driven Turing instability, and with that, we will show that this is indeed91

possible for certain parameter combinations for our model. However, we will92

conclude that these parameter combinations do not make sense for a group93

defense predator-prey system. In Section 3.2, we will confirm that excitation94

patterns can emerge in this system. We will discuss in more detail how the95

spatial system influences the local period of oscillations. This is important96

as the period is a characteristic feature of oscillating systems and thus plays97

a role in comparison with experiments. Then, we show an example of how98

taxis can increase the parameter regime and the range of initial conditions99

allowing for such patterns. Finally, we will discuss the results.100

2. Model and methods101

We consider a spatially explicit predator-prey model

∂U

∂T
= FU(U, V ) +DU∆U, U(0, ~X) = U0( ~X) (1a)

∂V

∂T
= FV (U, V ) +∇ ·

2∑
i=1

Ji, V (0, ~X) = V0( ~X). (1b)
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Here, ~X is the position vector and ∆ =
∑n

j=1

∂2U

∂x2j
is the Laplace operator102

representing a randomly moving prey population. ∇Ji is the divergence of103

the flux. Throughout this study, we will distinguish two different cases. In104

the first case, we assume that i = 1 and J1 = −DV∇V , i.e., diffusive flux with105

a constant diffusion coefficient DV modeling movement of the predator pop-106

ulation as well. In the second case, we consider i = 2 with J2 = χ̃0χ̃(U)V∇U107

additionally to the diffusive flux J1. This represents preytaxis with taxis rate108

χ̃0χ̃(U). Here, the predator movement is (partially) determined by the prey109

density gradient.110

We assume a one-dimensional domain [0, L], i.e., j = 1 throughout most
of the study. Later on, we also use a square two-dimensional domain j = 2
for one simulation to visualize the patterns. To prevent boundary effects, we
assume periodic boundary conditions

U(0) = U(L), U ′(0) = U ′(L), (2a)

V (0) = V (L), V ′(0) = V ′(L). (2b)

As we consider a predator-prey model with group defense in the prey, we
use the kinetic equations developed in Köhnke et al. (2020)

FU(U, V ) = U(r − cU)− V βγU

γ + βU + γ(U/C)ν
(3a)

FV (U, V ) = eV
βγU

γ + βU + γ(U/C)ν
−mV (3b)

with ν ≥ 1 and C < rc−1. In a nutshell, the functional response has been111

derived by dividing the predator into handling and searching subpopulations112

of which only the searching subpopulation catches prey. These subpopula-113

tions are assumed to be in a quasi-steady state. The catch rate g(U), in this114

case, is prey dependent and takes the form115

g(U) =
U

1 +

(
U

C

)ν . (4)

The prey grows logistically with growth rate r and intraspecific competition116

coefficient c. The predator dies linearly, with the mortality m. The rather117

complicated functional response represents group defense in the prey. In118
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particular, β is the search rate of the predator, and γ is the handling rate,119

i.e., the handling time is H = γ−1. The parameters C and ν control the120

collective defense. ν controls the shape of the functional response. If ν = 1,121

the functional response is saturating, whereas it is non-monotonic (or dome-122

shaped) if ν > 1. Higher values of ν control how expressed the shape is. We123

will refer to it as the strength of the collective defense. C can be referred124

to as a critical defense value. It mainly affects the half-saturation density125

in the prey in case of saturation and the critical prey density at which the126

functional response has a maximum in case of a dome-shape. For a detailed127

explanation regarding the functional response and also the analysis of the128

nonspatial version of this model, we refer to Köhnke et al. (2020).129

For convenience, the model can be nondimensionalized (see Appendix Ap-
pendix A for a description of all parameters and variables including their
dimensions). Scaling the state variables u = Ucr−1, v = V βr−1, x =

X (DUr
−1)
− 1

2 , and t = rT , and introducing new parameters κ = Cc(r)−1,
α = βr(γc)−1, µ = mr−1 d = DVD

−1
U , χ0 = rχ̃0(cDU)−1 and ε = eβc−1

yields

∂u

∂t
= u

(
1− u− v

1 + αu+ (uκ−1)ν

)
+ ∆u, u(0, x) = u0(x), (5a)

∂v

∂t
= v

(
εu

1 + αu+ (uκ−1)ν
− µ

)
+ d∆v −∇ · (χ0χ(u)v∇u) , v(0, x) = v0(x).

(5b)

Throughout this study, only the defense parameters κ and ν as well as the130

ratio of diffusion coefficients d and the taxis rate χ0χ(u) have been varied.131

Table 1 lists the remaining parameters. They are based on a microtine rodent132

mustelid model from Hanski and Korpimäki (1995).

Table 1: The rescaled dimensionless parameters are shown with their value used through-
out this study.

Parameter Value

α 14.81

ε 5.06

µ 2.47 · 10−1

133
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For the numerical treatment, we used a Strang splitting scheme as de-134

scribed in Bate and Hilker (2019) with a forward-time central-space scheme135

for the diffusion term, a fourth-order Runge-Kutta scheme for the reaction136

term, and an upwind method as described in Saito (2007) for the taxis term.137

As initial conditions, we assume an invasion scenario. In particular, the
predator invades a prey population. For the one-dimensional domain, the
initial conditions are

v0(x) = (tanh (x− 50)− tanh (x− 150))
ṽ(κ)

2
(6a)

u0(x) = 1− (tanh (x− 50)− tanh (x− 150))
1− ũ(κ)

2
. (6b)

This is a continuous approximation of an invasion scenario in which the138

predator is introduced in the subinterval of the domain x ∈ [50, 150] with139

density ṽ(κ), whereas the prey is at its carrying capacity in the rest of the140

domain. The values ũ(κ) > 0 and ṽ(κ) > 0 are chosen such that they lie141

above the stable manifold of the nontrivial saddle point, see Figure 6 and142

corresponding text for further details.143

3. Results144

3.1. Taxis-driven instability145

We start by considering Turing instabilities. In particular, we consider
small heterogeneous perturbations δu(x, t) and δv(x, t) around the stationary
coexistence state

u(x, t) = us + δu(x, t), v(x, t) = vs + δv(x, t), (7a)

δu(x, t) = a1e
σt cos qx, δv(x, t) = a2e

σt cos qx, (7b)

see for instance Edelstein-Keshet (2005); Malchow et al. (2007). It is well146

known that independent of the form of the functional response developed147

above, diffusive instability leading to Turing patterns can never be possible as148

Tr(J) < 0 and a11D2+a22D1 > 0 is not possible if a22 = 0 (Edelstein-Keshet,149

2005; Fasani and Rinaldi, 2011). Note that pure preytaxis does also not150

have a destabilizing effect on a locally stable steady state (Lee et al., 2009).151

However, Wang et al. (2017) have shown that it may indeed be destabilizing152
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if the taxis-rate χ = χ(u) is not constant. In this case, neglecting nonlinear153

perturbation terms, we get154 (
δu(x, t)t
δv(x, t)t

)
=

(
m11 m12

m21 m22

)(
δu(x, t)
δv(x, t)

)
+

(
1 0

−χ0χ(us) d

)(
δu(x, t)xx
δv(x, t)xx

)
(8)

for the temporal evolution of the perturbations. Here mij represents the155

entries of the Jacobian of the nonspatial version of Equation (5) evaluated156

at the stationary solution (us, vs). Note that we assume, that χ(u) depends157

linearly on u and that we can thus neglect χ(δu(x, t))δv(x, t)xx. Inserting158

the perturbations, and neglecting the trivial case of a1 = a2 = 0 we get the159

characteristic equation160

σ2 − ψ1σ + ψ2 = 0 (9)

with

ψ1 = (m11 +m22 − (1 + d)k) , (10a)

ψ2 = H(q2) = dk2 − k(m22 + dm11 +m12vsχ0χ(us)) +m11m22 −m12m21,
(10b)

where k = q2. Equation (10a) is always negative in the spatial case if it161

is negative in the nonspatial case. Furthermore, as already stated in Wang162

et al. (2017), if χ0χ(u) > 0 ∀ u, taxis-driven instability is not possible as163

m12 < 0. However, taxis-driven instability can be possible if χ(us) < 0. A164

justification for χ(us) < 0 is group defense (Wang et al., 2017). In particular,165

the predator avoids areas in which the prey populations are at defending166

densities. Regarding the taxis rate, this means χ(u) > 0 ∀ u < uc and167

χ(u) < 0 ∀ u > uc. A simple representation may be a linearly decreasing168

taxis rate169

χ(u) = 1− u

uc
. (11)

The right panel of Figure 1 shows a particular example of the emergence170

of spatiotemporal patterns due to preytaxis for such a given prey-dependent171

taxis rate. The left panel shows different combinations of κ and χ0. It172

visualizes that low values of uc and high values of χ0 are necessary for taxis-173

driven instability. The colored region in Figure 2 shows the maximum value174

of uc that can lead to taxis-driven instabilites — i.e., where negative values175

of Equation (10b) are possible — for different combinations of ν and κ.176

However, in the following, we elaborate on why a taxis-driven instabil-177

ity is possible but not biologically meaningful in a collective defense model,178
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Figure 1: Taxis-driven instability can occur if group defense leads to predator
repulsion. The right panel shows the emergence of taxis-driven instability for Equa-
tion (5) with parameters as stated in Table 1 and χ0 = 2. Note that only a part of the
domain is shown for visualization. The taxis rate is assumed to be χ(u) = 1− uu−1

c with
uc = κ = 0.25. The left panel shows H(q2) as given by Equation (10b) for different values
of uc and χ0.

as presented in this study. Recall that taxis-driven instability destabilizes179

a nonspatially stable stationary coexistence state. Such instability can only180

occur if χ(us) < 0 (necessary). However, for an individual predator, repul-181

sion from a high prey density does only make sense if g′(u) < 0 ∀ u > uc,182

i.e., if the catch rate is decreasing with higher prey densities. A necessary183

condition for the stability of the stationary coexistence state, however, is184

g′(us) > 0 corresponding to a positive determinant of the coexistence state185

(Köhnke et al., 2020). Hence, taxis-driven instability requiring χ(us) < 0 is186

ecologically only meaningful for parameter combinations in which it is likely187

that χ(us) ≥ 0, which is a contradiction.188

3.2. Patterns in excitable media189

Apart from taxis-driven patterns, oscillatory patterns can arise due to190

the Hopf instability (Bär, 2019). In this section, we aim to investigate the191

potential impact of taxis on the occurrence of such patterns. Figure 2 shows192

in which parameter region of ν and κ representing the strength of group193

defense and its critical values, such patterns can occur. In the colored re-194

gion, taxis-induced patterns can emerge as described in Section 3.1. In the195

nonspatial case, this region corresponds to stable stationary coexistence be-196
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Figure 2: Diffusion-induced oscillatory patterns can rescue the predator from
extinction. A two-dimensional bifurcation diagram of the critical defense value κ and
the strength of the group defense ν is shown. The green line, blue, and solid black lines
depict saddle-node, Hopf, and transcritical bifurcations, respectively. The black dashed
line corresponds to a transcritical bifurcation and a homoclinic bifurcation, which co-
occur. Below this curve, the predator goes extinct in the nonspatial case. In the spatial
system, the predator persists in parameter regions until the dotted line (the hatched
region) for some initial conditions. The color represents the maximum critical value uc in
Equation (11) that allows for taxis-induced pattern formation. The magenta dot represents
a Bogdanov-Takens bifurcation point. Parameters are d = 1, χ0 = 0 except for the case
of taxis-induced instability (colored region). Here, d = 1 and χ0 = 2. The remaining
parameters are as stated in Table 1. We used XPPAUT (Ermentrout, 2002) for the
computation of the nonspatial bifurcation curves and performed numerical simulations to
calculate the colored regions and the dotted line.

tween predator and prey. Above this line and above the dashed black line, a197

limit cycle exists. This limit cycle vanishes due to a homoclinic bifurcation198

that co-occurs with a transcritical bifurcation. In the spatial system, the199

limit cycle turns into spatiotemporal patterns that persist until the dotted200

line in the whole hatched region. Hence, the diffusion (without taxis, i.e.,201

χ0 = 0) rescues the predator from extinction in the parameter regime be-202

tween the dotted and the dashed lines. Note that on the left-hand side of203
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the Bogdanov-Takens bifurcation point, bistability between the limit cycle204

and the prey-only state and between the stationary coexistence state and205

the prey-only state can emerge. However, this corresponds to a very limited206

region for this parameter set and is thus not further considered here. The in-207

terested reader is referred to Köhnke et al. (2020). Here, we want to focus on208

the emergence of the spatiotemporal patterns. In particular, Figure 2 shows209

that the emergence of patterns critically depends on the critical defense value210

κ. In the following, we will recall mechanisms of diffusion induced patterns211

in relaxation and excitable systems.212

We start considering the emerging patterns for the case of a stable limit213

cycle. Figure 3 shows the spatiotemporal dynamics of Equation (5) without214

preytaxis. The predator population starts at a high density in the middle of215

the domain, whereas the prey is abundant all over the domain. The predator216

invasion takes place in the form of various traveling pulses leading to an217

intriguing triangle invasion shape. Such a triangle shape is often referred218

to as a Sierpinski gasket pattern (Hayase and Ohta, 2000; Kazantsev et al.,219

2003). It occurs due to self-replicating pulses and exists in diverse excitable220

systems (Hayase and Ohta, 2000). In particular, it emerges as preservation221

occurs for completely symmetric pulse collisions only, whereas non-symmetric222

pulse collisions lead to annihilation (Hayase and Ohta, 2000). However, note223

that such a triangle pattern can also be explained only focussing on the224

excitability of the system.225

The slow-fast dynamics of the relaxation system govern the system dy-226

namics. Here, the local dynamics between the carrying capacity and ap-227

proximately the maximum of the limit cycle with respect to the predator228

correspond to the exciting (slow) process. In contrast, the local dynamics229

between the maximum and the origin correspond to the relaxation (fast)230

process in the relaxation system. Figure 4 shows the phase plane, including231

a vector field, and the limit cycle (black dashed lines) in panel a) for the232

nonspatial model. The magenta regions denote regions in the phase plane in233

which the trajectory of a point in space stays for relatively long times. In234

particular, the spatial trajectory roughly follows the limit cycle with a ten-235

dency to lower predator values due to the diffusive losses. The values were236

obtained numerically via a simulation of the one-dimensional system. They237

correspond to a particular point in space.238

In the spatially explicit system, the diffusion acts as a perturbation from239

neighboring regions in space. This diffusive force is large compared to the low240

magnitude of the local rate of change close to the carrying capacity. Heuris-241
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Figure 3: Diffusion can lead to intriguing excitability patterns such as Sierpinski
gasket patterns. The spatiotemporal dynamics of Equation (5) with j = 1 is shown.
The defense parameters are ν = 3 and κ = 0.67. The diffusivities of the populations
are equal, i.e., d = 1, while we do not consider preytaxis, i.e., χ0 = 0. The remaining
parameters are as stated in Table 1.

tically speaking, the diffusive force of patches with initially high predator242

densities pushes the adjacent patches without predator to higher densities.243

Concurrently, the predator density of the patches with initially high predator244

densities shrinks due to the local dynamics and the diffusive losses. As this245

process repeats itself, it leads to propagating pulses in both directions, and a246

triangle shape emerges. If such pulses meet, the neighboring area is already247

excited, and hence, the pulse cannot propagate any further (Meinhardt and248

Klingler, 1987). The larger triangles emerge if neighboring areas in the ex-249

cited state become larger due to several pulses meeting at the same time. In250

this case, the excitation wave can only propagate outwards. This excitation251

wave represents the initial wave (Meinhardt and Klingler, 1987). Note that252

the local dynamics must be slow enough to observe a rather distinct triangle253

pattern.254

In our case, the Sierpinski gasket pattern is distorted due to two different255

reasons. First, the initially large predator patch leads to two initial pulses256
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Figure 4: Phase plane analysis, including spatial trajectories indicates that the
slow-fast dynamics of the system drive the emerging patterns. In both panels,
red lines correspond to the prey, whereas blue lines correspond to the predator (nullclines
in panel a) and solutions at one spatial point in b)). Panel a) shows a phase portrait with
a vector field for the nonspatial model. The dashed line shows the limit cycle. Magenta
regions correspond to regions in which the spatial system at one particular point in space
stays for relatively long times. Panel b) shows the time series corresponding to the magenta
regions. The magenta regions and the time series were calculated for a particular point in
space. The parameters are as stated in Figure 3.

at the border of the initially occupied patches. When the invasion waves257

resulting from these separate pulses meet, the clear Sierpinski gasket pattern258

gets destroyed. Second, the large triangles with very low predator densities259

get blurry probably as a result of the local dynamics which are not negligibly260

small on this time scale anymore. As a result of these perturbations, locally,261

these oscillations appear irregular, as shown in panel b) of Figure 4.262

Figure 5 shows an example of these spatiotemporal patterns for a param-263

eter combination that leads to extinction of the predator in the nonspatial264

model in two dimensions. In this case, the relaxation system has become265

excitable as the stable limit cycle has been destroyed via a homoclinic bi-266

furcation. The predator spreads via pulsating circles visible at t = 250 and267

t = 500. This propagation directly translates to a spatiotemporal pattern268
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Figure 5: Nonsymmetrical initial conditions can lead to irregular spatiotempo-
ral patterns. The spatial configuration for prey (upper row) and predator (lower row) is
shown. Lighter colors correspond to higher densities. Parameters are such that the carry-
ing capacity is the only stable stationary solution in the nonspatial model. In particular,
d = 1, κ = 0.57, χ0 = 0, and ν = 3. The remaining parameters are as stated in Table 1.

similar to the one in Figure 3, although it is less regular due to the different269

initial conditions. Conversely to the classical excitation pulse (Müller, 2019),270

the propagation of the excitation happens not only in one direction, but the271

area behind the excited state becomes excitable quickly again. This so-called272

wave splitting occurs if the diffusion is sufficiently strong to excite the wake273

of the wave (Petrov et al., 1994). Experiments have reproduced such a phe-274

nomenon (Manz and Steinbock, 2006). In the present system, it is primarily275

due to the fast dynamics behind the upper cluster in Figure 4. In the final276

configuration, it is apparent that the prey is abundant at high densities over277

parts of the domain, whereas the predator is mainly abundant at distinct278

lines. Furthermore, some parts exist in which neither prey nor predator is279

abundant. This is consistent with the magenta regions in Figure 4. The sys-280

tem stays in the neighborhood of the two (semi-)trivial equilibria due to the281

slow local dynamics, but also at coexistence regions close to the maximum282

of the nontrivial prey nullcline.283

It is known that traveling pulses in excitable systems exhibit a strong284

dependence on initial conditions (Murray, 2002b). In particular, the stable285

manifold of the saddle gives the excitation threshold (Ermentrout and Rinzel,286

1981; Kazantsev et al., 2003; Sevcikova and Marek, 1991). The right panel of287

Figure 6 shows the dependence of pattern formation on the initial conditions288
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in the present system. This dependence is particularly relevant in an invasion289

scenario. The initial conditions need to start above the stable manifold.
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Figure 6: The dependence of the rescue effect on the stable manifold leads to
a strong dependence on initial conditions for invasion scenarios. The left panel
shows phase portraits for different values of ν. In particular, it is shown how the nontrivial
nullclines and the stable manifold of the saddle (right coexistence solution) change with
respect to ν. The extinction time, i.e., the time until the carrying capacity is reached, is
color-coded. In the white area, the predator does not go extinct in the spatiotemporal
model. The magenta line shows a trajectory at one particular point in space. Colors are
as in Figure 4. The parameters are as in Figure 5.

290

Starting above the stable manifold allows the system to converge to the291

capacity via the unstable manifold of the saddle which has a form similar to292

the limit cycle. Hence, the system passes through high predator densities,293

and the mechanism takes place as described before. Thus, in an invasion294

scenario, the predator needs to be introduced at sufficiently high densities to295

ensure its survival.296

However, this is necessary but not sufficient because if the initial predator297

population densities are too high, the predator goes extinct. Starting at very298

high predator densities, the local dynamics becomes too fast (cf. vector field299

in Figure 4), and the system would converge to the prey carrying capacity300
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(and thus below the excitation threshold) too quickly.301

Keeping in mind that the stable manifold is a separatrix, we look at the302

phase space configuration for the lowest value of κ for which patterns emerge303

for a given ν (cf. dotted line in Figure 2). The left panel of Figure 6 visualizes304

the results. This value seems to be predominantly driven by the right preda-305

tor nullcline, as this is the same (accounting for numerical uncertainties) for306

all values of ν. If the right nullcline is shifted further to the left with lower307

values of C, numerical simulations indicate that the threshold is too high for308

excitability via the diffusive force. In other words, the diffusion cannot push309

the spatial areas that are close to the carrying capacity in the phase portrait310

over the stable manifold of the saddle-node. Note that this does not depend311

on the magnitude of the diffusion coefficient but on the predator density in312

the wake of the invasion wave and the spatial extent of the wake. If the313

spatial extent and/or the density is too small/low, the predator goes extinct314

before it can excite the neighboring areas. Numerical simulations with other315

parameter combinations, in particular different diffusion coefficients, suggest316

that this is indeed the underlying mechanism.317

It is known, that the spatiotemporal dynamics in excitable systems can318

lead to spatially triangular, but temporally irregular patterns (Kazantsev319

et al., 2003). Although it is also known that the local oscillation period is320

shorter in a perturbed excitable system, the exact impact is not well inves-321

tigated (Crucifix, 2012). In the nonspatial system, the period of the322

limit cycle diverges approaching the homoclinic bifurcation (see323

red line in Figure 7). In the spatial system the mean period also increases324

with decreasing κ, cf. blue dots in the left panel of Figure 7. We calculated325

the mean period as the mean of periods over all spatial grid cells. In turn,326

we calculated the mean of each spatial grid cell as the mean periods over327

a time interval t ∈ [1000, 10000] to neglect transient behavior. The spatial328

period is two orders of magnitude smaller than in the nonspatial case. For329

comparisons of model simulations with ecological time series, the period is an330

important indicator. As ecological systems are naturally spatially explicit,331

it is essential to know that diffusion in relaxation systems can reduce the332

period significantly. The reason is that the diffusion shortens the excitation333

time, which is mainly contributing the most to the length of the period. Fur-334

thermore, interestingly, the period has a local maximum at the homoclinic335

bifurcation (κ ' 0.6) as the dynamics shortly before the homoclinic orbit336

becomes very slow. However, this effect is not very prominent.337

As the mechanism given suggests that the period is short, particularly338
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Figure 7: Diffusion shortens the oscillation period by two orders of magnitude.
The period of the oscillations is shown for the nonspatial model (red) and the spatial model
(blue). In the nonspatial model, the period diverges when it approaches the homoclinic
bifurcation. Conversely, the period increases beyond this bifurcation point in the spatial
model. The right panel shows that this is rather independent of the value of d as the order
of magnitude is the same. However, the ratio of diffusivities also influences the period (see
text for further details). Parameters are as in Figure 5 for the spatial model and as in
Figure 4 in the nonspatial model. For the right panel, κ = 0.59 is assumed.

due to the movement of the predator populations, we also show the impact339

of different ratios of predator/prey diffusivities. In the right panel of Fig-340

ure 7, it is shown that the period increases with higher values of d. This341

is counter-intuitive at first glance as one could assume that higher predator342

dispersal enhances the rescuing effect and decreases the period. However,343

as already mentioned, the rescue effect depends strongly on the extent of344

the predator patches. With higher diffusivity, approximately the same pop-345

ulation spreads over a larger area. Hence, for an individual cell, the rescue346

effect is smaller, and the period becomes longer. As the patch sizes with high347

predator densities do not change with respect to d, this effect is saturating.348

If d becomes larger, the rescue effect becomes even impossible.349

Ecologically, this is counter-intuitive as higher movement abilities are350
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usually assumed to correspond to higher invasion abilities. Hence, we showed351

that for relaxation systems, this could indeed be the other way round.352

3.3. Preytaxis in excitable media353

Recall that the lowest κ allowing for spatiotemporal patterns is deter-354

mined by the stable manifold of the saddle-node. With this, we can now355

investigate the impact of taxis. In particular, we consider two different cases356

apart from the diffusion-only case, which are sketched in Figure 8.

χ(u) = 0 χ(u) = 1 χ(u) = 1− uu−1
c

predator
v

pre
y u

Figure 8: The influence of taxis depends on the form of the taxis rate. The sketch
of the impact of three different forms of the taxis rate χ(u) are shown. The left panel shows
the case with only diffusive flux denoted by thin arrows. The middle panel shows a case
with preytaxis and diffusion and the right panel shows a case with Equation (11) as taxis
rate and diffusion.

357

The left panel shows a pure diffusion case with χ0 = 0. The thin ar-358

rows denote the direction of the diffusive flux down the predator gradient.359

Considering preytaxis, in a typical situation, this flux is even enhanced, see360

the middle patch of Figure 8. The diffusive flux denoted by the thin arrows361

stays as before, but the tactic flux indicated by the thick arrows enhances the362

overall flux. A typical situation means that the sign of the gradient of the363

predator density is opposite to the sign of the gradient of the prey density.364

If pure diffusion does not allow for pattern formation, the additional tactic365

flux does not change that. The reason is that the predator density in the366

wake will spread over a larger area, making it impossible to push neighboring367

spatial areas over the excitation threshold. The right panel refers to a tac-368

tic flux representing predator movement response to group defense. At low369

prey densities, the predator moves up the prey density gradient. However,370

at high prey densities, the predator tries to avoid the prey and moves down371

the prey gradient. Here, taxis-driven pattern formation can occur. Figure 9372
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shows such a situation in which, in the absence of taxis, the predator would373

go extinct. The magenta regions denote regions in which the prey is below
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Figure 9: Taxis can lead to a successful predator invasion. Snapshots at different
time steps for the same spatial region are shown. The taxis rate is given by Equation (11)
with χ0 = 7, uc = κ, and d = 0.4. The remaining parameters are as in Figure 5.

374

the critical density and thus, the predator would move the prey gradient up-375

wards. The prey repulsion happens mainly in regions in which the predator376

is only at low densities. This increases the predator density at the peak of377

the leading edge, cf. upper left panel. Due to that, the predator is still at378

high densities when the prey converges to its carrying capacity in the neigh-379

boring areas again, cf. upper right panel. From this state, the predator can380

perturb the adjacent regions to excite the system again, cf. lower left panel.381

From here, the excitation cycle can start again, cf. lower right panel. With-382

out taxis, the predator would have spread faster to the regions of high prey383

densities in the upper panels. Due to that, the predator densities would have384

been too low to excite the adjacent regions again.385

This taxis-driven pattern formation can have two different effects. First,386

it can increase the values of κ allowing for pattern formation. However,387
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this depends on the magnitude of the taxis and the critical value uc. In388

particular, if the value is too high, the effect would be too low. Conversely,389

if the value is too low, the predator would just tend to aggregate. Second, it390

allows for smaller initial predator patches that lead to a successful invasion391

visualized by Figure 10. In particular, with a high taxis rate, the minimum
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Figure 10: Critical introduction areas necessary for successful spread can be-
come smaller with higher taxis rates. The initially occupied area necessary for
a successful predator establishment is shown depending on the magnitude of the taxis.
Taxis rate is given by Equation (11) with varying χ0, uc = κ, and d = 0.4. The remaining
parameters are as in Figure 5.

392

introduction area necessary for a successful invasion is more than five times393

lower. The reason for this relation is also the ’effective use’ of the predator394

peaks, as described above. However, the impact seems to be saturating with395

high taxis rates. This may be due to the fact that with high χ0, the prey396

attraction coupled with the diffusive motion is already too high even though397

they only occur at densities below uc. Due to this, specific neighboring398

areas cannot become excited, and the predator goes extinct quickly. On399

the other hand, the saturating effect can also simply be reducible to the400
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fact that negative areas are not possible. Hence, the minimum introduction401

areas must converge to values greater than or equal to zero for high taxis402

rates. Independent of the exact mechanism, this is an important finding from403

an invasion perspective because particularly the initial phases introduction,404

reproduction, and survival are critical states in determining invasion success405

(Blackburn et al., 2011).406

4. Discussion and Conclusion407

In this study, we extended the predator-prey model incorporating group408

defense proposed in Köhnke et al. (2020) by spatial spread. Wang et al.409

(2017) have shown that taxis-driven instability can occur in such a system410

if group defense is present. Although we find the same conditions for taxis-411

driven instability and provide numerical examples for it, we challenge the hy-412

pothesis that such patterns can occur in group defense predator-prey models.413

In particular, we have shown that for the model considered in this study, such414

a phenomenon can only occur if the predator movement is not ecologically415

optimal.416

In contrast, we have shown that excitability patterns may indeed emerge417

if the homogeneous system has a limit cycle. As the amplitude of the limit418

cycle can be very high corresponding to temporary low population densi-419

ties, such spatial patterns can be interpreted as a rescue effect (Brown and420

Kodric-Brown, 1977) as they may increase the resilience of the system against421

environmental perturbations. However, note that spatially synchronized ex-422

ternal forcings, such as the weather, can synchronize the oscillations again if423

they are large enough (Liebhold et al., 2004). Furthermore, it is well known424

that coupled oscillators in experiments can synchronize their phase, a phe-425

nomenon known as phase locking (Marek and Stuchl, 1975; Murray, 2002a).426

The spatiotemporal patterns also sustain beyond the homoclinic bifurca-427

tion that is destroying the limit cycle in the nonspatial system. This phe-428

nomenon is well known for relaxation oscillators that become excitable media429

after the vanishing of the limit cycle. We have proposed evidence showing430

that the underlying mechanism for the patterns is indeed given by the diffu-431

sive force coupled with the slow and fast dynamics in the nonspatial system432

(Müller, 2019). In this case, the limit cycle vanishes via a homoclinic bi-433

furcation. With bifurcation analysis, we have shown that this effect only434

occurs for ν > 1 corresponding to a dome-shaped functional response. This435

is a phenomenon that is not possible in the system with a simple saturating436
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functional response as it relies on the existence of two nontrivial stationary437

solutions. Hence, this can be interpreted as a defense-induced phenomenon.438

However, note that also a saturating functional response can represent group439

defense if a critical prey density does not exist, see Köhnke et al. (2020) for440

further details.441

Furthermore, we refer to the spatiotemporal patterns as invasion pat-442

terns as they strongly depend on initial conditions that may correspond to443

an invasion scenario. This is also a known feature of such excitable systems444

(Murray, 2002b). In our case, the predator as the invader needs to be absent445

in some regions but present in the other regions at sufficiently high densities.446

In particular, we have shown the importance of the stable manifold of the447

saddle-node for the existence of such patterns. First, the initial conditions448

must lie over the stable manifold, and second, the stable manifold needs449

to be sufficiently low such that the diffusion can push the system beyond450

it. Furthermore, if the predator is above the excitation threshold all over451

the domain, the diffusive rescue effect cannot take place even if one applies452

small perturbations to the initial conditions. Already Ermentrout and Rinzel453

(1981) report the criticality of the stable manifold of the saddle as a pertur-454

bation threshold. However, the specific region allowing for spatial patterns455

also depends on the vector field of the local system. In particular, we have456

shown that initial conditions that are too high lead to the extinction of the457

predator.458

Moreover, we considered the mean period of the rather irregular spa-459

tial oscillations at each point in space. Counter-intuitively, higher predator460

motility increases the mean period and can eventually suppress the rescue ef-461

fect. Generally, the period is two orders of magnitude lower than the regular462

oscillations in the nonspatial system. This is due to the diffusive pertur-463

bations decreasing the time the system spends in the destabilizing region464

of the phase plane close to the prey carrying capacity. Note that including465

environmental noise in models with relaxation dynamics has the same effect466

based on the same mechanism (Crucifix, 2012). As most natural systems467

may indeed include space, movement, and environmental perturbations, this468

makes a comparison of ecological time series with model simulations challeng-469

ing. This is because ecological time series are often measured at a particular470

point in space, and the period is a crucial feature of such a time series. Thus,471

if the considered system shows slow-fast dynamics, a spatial component is472

necessary for a reliable comparison.473

Numerical simulations indicate that the minimum critical defense value474
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allowing for such spatiotemporal patterns is driven by the configuration of475

the nullclines and the stable manifold of the saddle that is destroying the476

limit cycle. Keeping this mechanism in mind, we investigated the effect of477

preytaxis. In particular, we have shown that preytaxis representing avoid-478

ance of large prey groups can extend the parameter regime corresponding to479

a rescue effect even further. In terms of a biological invasion of the predator,480

the initial (introduced) predator patch size leading to a successful establish-481

ment of the predator can be significantly smaller than without preytaxis.482

Note that for the simulations performed in this study, the excitability483

patterns remained non-stationary in space and time for all the simulation484

time. However, Petrov et al. (1994) reported that steady wave interaction485

could lead to wave locking and accompanying stationary patterns in the486

long run. Even with extensive simulations, we did not find such a scenario.487

However, this would depend on a combination of simulation time and the488

size of the domain and may still exist for some combinations.489

Finally, we want to emphasize that the main aim of this study was to490

identify possible impacts of taxis on the occurrence of spatiotemporal pat-491

terns in a group defense predator-prey model. Although we question that492

Turing patterns are driven by taxis in a group defense setting, excitability493

patterns can at least partly occur due to taxis. Hence, like various other stud-494

ies in the field of population dynamics (e.g., Bate and Hilker, 2019; Potts and495

Petrovskii, 2017; Shigesada et al., 1979), this suggests that the impact of not496

only self-diffusive movement should get broader attention in future research.497

Appendix A. Dimensions498

Table A.2 summarizes the meaning of the parameters and state variables499

including their dimensions.500
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Table A.2: The dimensions of the parameters and state variables as used in Equation (1)
as well as their biological meaning are shown with T, N, and L representing dimensions of
time, population size, and length respectively. Here, we assume one spatial dimension.

Meaning Dimension

U prey N

V predator N

T time T

X space L

r prey growth rate T−1

c prey competition coefficient (TN)−1

β search rate of the predator (TN)−1

γ handling rate T−1

C critical defense value N

ν strength of collective defense -

e conversion efficiency -

m predator mortality T−1

DU prey diffusion coefficient L2T−1

DV predator diffusion coefficient L2T−1

χ̃0 prey taxis coefficient L2(NT)−1
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