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Abstract: On a daily basis, urban residents are unconsciously exposed to hazardous noise 
levels. This has a detrimental effect on the ear-drum, with symptoms often not apparent till later 

in life. The impact of harmful noises levels has a damaging impact on wellbeing. It is estimated 

that 10 million people suffer from damaged hearing in the UK alone, with 6.4million of 
retirement age or above. With this number expected to increase significantly by 2031, the 

demand and cost for healthcare providers is expected to intensify. Tinnitus affects about 10 

percent of the UK population, with the condition ranging from mild to severe. The effects can 
have psychological impact on the patient. Often communication becomes difficult, and the 

sufferer may also be unable to use a hearing aid due to buzzing, ringing or monotonous sounds in 
the ear. Action on Hearing Loss states that sufferers of hearing related illnesses are more likely 

to withdraw from social activities. Tinnitus sufferers are known to avoid noisy environments and 

busy urban areas, as exposure to excessive noise levels exacerbates the symptoms. In this paper, 
an approach for evaluating and predicting urban noise levels is put forward. The system performs 

a data classification process to identify and predict harmful noise areas at diverse periods. The 

goal is to provide Tinnitus sufferers with a real-time tool, which can be used as a guide to find 
quieter routes to work; identify harmful areas to avoid or predict when noise levels on certain 

roads will be dangerous to the ear-drum. Our system also performs a visualisation function, 

which overlays real-time noise levels onto an interactive 3D map. 

Keywords: Hazardous Noise Levels, Data Classification, Tinnitus, Visualisation, Hearing 

Loss, Prediction, Real-Time 

 INTRODUCTION 1.

Hearing loss in the elderly has a significant cost impact on the UK’s National Health Service every 

year, where it is estimated that 10 million people suffer from damaged hearing [5]. This specifically 

covers 6.4 million who are retirement age or above and 3.7 million individuals of working age. It is 

estimated that by 2031 there will be 14.5 million people suffering from some form of hearing loss [5]. 

This will have a major cost bearing on the health service provision, more so than conditions such as 

diabetes or cataracts [5]. 

The current UK health and safety guideline state that, when exposed to a sound of 85 dB(A) or higher 

in the work place, the employee must wear some form of hearing protection. The European Control of 

Noise at Work Regulations, however, states that noise exposure of 80dB(A) or higher should be 

counteracted with protective gear. We use the European guidelines for our research. The impact of 

harmful noise levels on an individual’s hearing can differ. However, the more time spent exposed to a 

sound over 80db, the more damage is caused to the ear-drum. Tinnitus is a condition, for which, currently, 

there is no cure. The symptoms include buzzing, ringing or monotonous sounds in the ear, which are 

permanent and constant throughout the day and night. Action on Hearing Loss (formerly RNID) state that 

in 2011, 10% of adults in the UK had some form of Tinnitus. The condition is brought about by damage to 

 

 



 
 

the ear drum and often caused by expose to frequent loud noises on a daily basis. Sufferers of Tinnitus 

find that the symptoms are exacerbated by regular exposure to loud noises encountered during their daily 

activities. 

As our research shows, the level of noise in city centres and public places can have a significant impact 

on an individual’s hearing. In this paper, an approach for assessing and predicting noises levels at specific 

urban locations during the day is presented. The system performs a data classification process to identify 

and predict harmful noise areas at diverse periods. The approach also visualises the noise levels in public 

places, such as city centres. The analysis is achieved by using machine learning classifiers to detect, and 

subsequently predict, trends in high noise levels at specific times of the day. A visualisation of the results 

allows the user to view the best times to avoid certain areas of a city through an interactive tool. 

The rest of the paper is as follows. Section 2 presents a background and motivation behind the research. 

The dataset used in our research is detailed in Section 3 which includes an account of our system design 

and data classification techniques. Section 4 provides a discussion and account of the results. Section 5 

presents an overview of the visualisation process for a real-time graphical display of the harmful levels in 

a city. The paper is concluded in Section 6, which provides a discussion on the work presented and details 

how the work will be taken further in the future. 

 BACKGROUND 2.

In the UK, in 2010, £1.34 was spent on care for each individual affected by hearing damage. This is 

significantly lower than the nation spends on diabetes (£21.21) and sight loss (£14.21) wellbeing. In 

Australia, it is estimated that the disease burden on the economy associated with hearing loss was $11.3 

billion, during a study taken in 2005 [5]. The World Health Organisation anticipates that hearing loss will 

have an incremental drain on health care providers in the next 15 years. For example, it is projected that 

hearing damage will be the most common disease in the UK by 2031 [4]. There is a significant cost 

benefit to governments in the prevention of hearing damage. The aim of this project is to illustrate how 

noise levels in metropolitan areas impact hearing. A greater awareness of harmful sounds, and where and 

when they occur, may reduce the costs of health care and alleviate symptoms in conditions such as 

Tinnitus. By providing urban residents with detailed real-time noise maps, specific to their location, 

enables individuals to safeguard their hearing and be aware of the potential damage to the regular 

exposure to levels over 80dBs in their daily lives. 

 Hearing Loss and Noise Prediction 2.1

The most common cause of hearing damage is age related. However, the cause can be prolonged 

exposure to sounds which are over 80db(A). There are known to be four different levels of hearing loss: 

(1) Mild hearing loss, where individuals have difficulty hearing outside the mean range of 25 to 39 

decibels. 

(2) Moderate hearing loss relates to individuals who find it difficult to follow speech and hear 

between 40 and 69 decibels. 

(3) Severe hearing loss refers to individuals who require hearing aids and the use of sign language 

to communicate. 

(4) Profound deafness, refers to individuals who are able to only hear 95 decibels or higher. 

Hearing loss is a non-life-threatening condition and, for that reason, is often overlooked in a healthcare 

environment, particularly in developing markets [17]. This is enforced by the research put forward by 

Figueira et al., which details the creation of humanitarian apps, for audiometric hearing tests in affordable 

format [17]. The idea is to make hearing-loss healthcare more available in emerging markets by 

employing existing mobile technology. Their proposed App evaluates an individual’s hearing ability 



                                                                                                                                         

through their mobile device and, subsequently, detects if the user has hearing damage. The project, 

however, is reliant on the availability of smart phones and the results have not been compared with an 

audiometer to test the successfulness of the project. Research, such as this, paves the way for making 

hearing loss treatment more widely available, particularly in emerging markets, however it does little 

towards the prevention of hearing-loss.  

The system proposed in this paper consists of three topographies: intelligent noise evaluation; sound 

prediction and interactive visualisation. Noise visualisation is the ability to digitally record or assess sound 

and present a conception to a user. The conception of sounds provides an ideal way to communicate data 

which is invisible to the human eye and where the effects are not visible. The process can be made 

possible through use of an acoustic camera [19] to directly visualise sound in real-time. Alternatively, 

class 1 integrating sound level meters can monitor specific noise levels and construct datasets, which can 

be used for post-analysis. 

Noise level prediction focuses on intelligent forecasting down to the street level in an urban 

environment. No research has covered the use of intelligently predicting noise levels in urban areas or the 

generation of interactive noise maps as a guide to hearing-impairment sufferers. Current sound prediction 

models rely on forecasting through use of simple calculations to estimate future sound levels. This 

technique is employed when new transportation or development projects are planned. No systems present 

a real-time hour by hour visualisation to the street level. 

 Tinnitus 2.2

Tinnitus is a condition which results in the perception of monotonous sounds resonating in the ear. The 

resonances are the result of absence of corresponding external sounds. The condition is permanent and 

there is no cure and can be made worse by expose to frequent loud noises. For that reason, the condition 

requires management. The British Tinnitus Association estimated that around 10% of the UK population 

have some form of Tinnitus; with a further 1% having a condition which can affect their lifestyle [6]. It is 

a condition which is unseen and the level of suffering is only known by the patient as there are no visible 

symptoms. Having a strong form of Tinnitus is also linked to and can cause depression. Holmes et al 

stated that in 2009, the level of depression is higher amongst sufferers of Tinnitus than it is in the general 

population [7]. Tinnitus can have psychological effects on the patient. Often communication becomes 

difficult, and the effects may also mean that the individual is unable to use a hearing aid as the buzzing, 

ringing or monotonous sounds in the ear are enhanced. Action on Hearing Loss state that sufferers of 

hearing loss are more likely to withdraw from social activities.  

A specific goal, of the research put forward in this paper, is to aid with the prevention of Tinnitus and 

reduce its symptoms. This is achieved by providing an approach for sufferers to avoid exposure to 

excessive noise levels during the day. Frequent and prolonged encounters of loud noises in the daytime 

can trigger the ringing and buzzing sounds which are associated with Tinnitus and often last well into the 

evening and night. 

 Noise Visualisation 2.3

Data is not fixed and is a changing entity [1]. This is particularly true for sound data, which is dynamic 

and has a varied level of granularity. Creating sound visualisations for the hearing impaired is developing 

research area [8]. As technology advances, access to smart equipment has been made easier [9]. For 

example, Brophy et al., focus on the visualisation of loud sounds [9] in real-time to aid the hearing 

impaired visualise the environment around them. Their approach provides greater interactivity for an 

individual with a hearing impairment and the surroundings. The project works by capturing the 

environment using a camera when a loud sound is detected. The image is then displayed to the individual 

with the hearing impairment via the use of virtual reality glasses. Using visualisation techniques can help 



 
 

project unseen environmental characteristics in real-time. This is of particular benefit to sufferers of 

Tinnitus, and the reducing of hearing damage caused by urban noise. By providing a visual guide about 

noise levels down to individual street level, areas can be avoided if necessary.  

In this paper, we present an approach and tool for the analysis, prediction and visualisation of noise 

data in public places. Specifically, the focus on the sound data sets from Leicester city centre in the UK. 

The dataset is provided by WYG Environmental. 

 Noise Assessment of an Urban Area 2.4

The approach put forward involves interacting with data to find hidden information and view if trends in 

noise patterns develop over time. The environmental noise monitoring was undertaken using Rion NL-52 

class 1 integrating sound level meters to establish baseline ambient, background and specific source noise 

levels. Measurements were taken in accordance with BS 7445-1:2003 The Description and Measurement 

of Environmental Noise: Guide to Quantities and Procedures. The measurement equipment was checked 

against the appropriate calibrator at the beginning and end of the measurements, and no drift was observed. 

The following statistical parameters were recorded at a variety of logging periods, including: LAeq, LAmax, 

LAmin, LA10, LA90 and linear Leq values. All the values are sound pressure levels in dB (re: 2 x 10-5 Pa). 

Sound levels can be measured in frequency bands to provide detailed information about the spectral 

content of the noise. These measurements are usually undertaken in octave or third octave frequency 

bands. If these values are summed logarithmically, a single figure value can be calculated. This describes 

the total amount of acoustic energy measured but does not take any account of the ear’s ability to hear 

certain frequencies more readily than others. 

Instead, the dB(A) figure is used. This is found to relate better to the loudness of the sound heard. The 

dBA figure is obtained by subtracting an appropriate correction, which represents the variation in the ear’s 

ability to hear different frequencies, from the individual octave or third octave band values, before 

summing them logarithmically. As a result, the dB(A) value provides a depiction of how loud a sound is in 

reality. The ‘A’ is used to state average, whereas ‘C’ would be the peak noise, i.e. dB(C). Consequently, 

the dataset includes 10 features, each is accounted below: 

 LAeq: Sounds vary and fluctuate with time. Instead of having an instantaneous value to describe 

the noise event, an average of the total acoustic energy experienced over its duration provides a 

more accurate account. The LAeq, 07:00 – 23:00 for example, describes the equivalent 

continuous noise level over the 12 hour period between 7 am and 11 pm. LAeq is calculated 

using the formula: 

𝐿𝐴𝑒𝑞 = 𝑆𝐸𝐿 −  10𝐿𝑜𝑔(𝑡) + 10𝐿𝑜𝑔(𝑛) 

T is Time and n is the amount of events within a given time. SEL is the sound level over one second. 

This would typically have the same energy content as the whole event. 

 LAmin: The quietest instantaneous noise level recorded, specifically the quietest 125 milliseconds 

measured during any given period of time, is given the LAmin annotation. 

 LAmax: The LAmax is the loudest instantaneous noise level. Again, this is usually the loudest 125 

milliseconds measured during a given time block. 

 LE: The LE feature provides an assessment of impact sounds and blast noises, used for actions 

such as train passes. So that for a given number of passes an overall average can be calculated. It 

consists of the sound exposure level. The value represents the energy rate for the measurement 

range that is replaced by the energy value for one second. In other words, it is essentially a one 

second equivalent of the overall measurement. 



                                                                                                                                         

 Ly: Ly is the peak ‘C’ weighted sound pressure level used for occupational noise assessments to 

determine requirements for hearing protection. 

 LN1-5: LN1 to LN5 consist of the percentile levels (5th, 10th, 50th, 90th and 95th). The most 

common ones to use are 10th and 90th, referred to as LA10 and LA90. 

A sample of this data captured is displayed in Table 1. The table shows a section of the data recorded 

for 5 of the features. The total dataset used for this research involves 2386 records or data with 10 features. 

Table I. Sample Dataset (dB) 

Record Start Time Leq LE Lmax Ly LN1 

1 11:31:19 69.0 93.8 79.8 101.8 77.1 

2 11:36:19 69.9 94.7 92.0 111.3 78.6 

3 11:41:19 69.3 94.1 84.3 100.1 82.3 

4 11:46:19 69.9 94.7 82.2 99.3 78.0 

5 11:51:19 68.8 93.6 81.4 103.9 77.8 

6 11:56:19 67.7 92.5 83.6 102.2 76.3 

7 12:01:19 80.0 104.8 102.1 110.8 93.1 

8 12:06:19 71.3 96.1 85.2 100.8 82.6 

9 12:11:19 70.8 95.6 82.6 100.0 80.0 

10 12:16:19 67.5 92.3 83.6 95.8 74.4 

 APPROACH 3.

Tinnitus sufferers often avoid going into public places as they fear their symptoms will be exacerbated by 

exposure to loud noises throughout the day [7]. The tool presented in this paper helps patients identify 

times of the day when it may be preferable to go outside. More specifically, it details areas they should 

avoid in order to ensure the symptoms are not triggered or made worse [8]. We also predict that the tool 

will be cost beneficial to governments. The aim is to help with the action on hearing loss by making 

people more aware of the damage which can be caused, unawares, in busy urban areas. The approach 

conducts the following steps. 

(1) City noise collection as defined in section 2.4. 

(2) Noise data classification and noise level prediction: The focus is on the identification of trends 

in data and a detection of when the most harmful levels occur so that the information can be 

overlaid on a map. First a visualisation of the entire data set is presented using a scatter graph 

format. The idea is to display trends in data in occur and that noise levels have characteristics at 

different times of day. Secondly a classification process forms a predictive model to identify the 

noise models anticipated at specific times of the day.  

(3) Sound visualisation: The third stage involves the development of a visualisation tool which 

provides an interactive guide to Tinnitus sufferers. The tool details which areas of a city should 

be avoided and suggest what times of day they should best go out in public. This involves two 

stages: 

a. Develop map interface of city or urban environment. 

b. Overlay results in real-time in an understandable and interactive format. 

 Data Examination 3.1

In this section a visualisation of the noise collection, which took place in Leicester city centre (UK) on 

21/08/2013 to 29/08/2013, is presented. The visualisations show a scatter plot of the decibel levels 

throughout the 2386 rows of raw data. The idea is to demonstrate that visual trends in the data occur at 



 
 

regular intervals. Figure 1 displays an overview of the maximum noises levels recorded at five minute 

intervals over a period of 9 days. 

  

Fig. 1. Lmax Noise Levels Fig. 2. Lmin Noise Levels 

Noise levels are displayed along the x-axis while the reading labels are displayed along the y-axis. The 

numbers 0 to 2500 refer to each of the noise levels samples starting at 11:31:19 on Day 1 and ending at 

18:16:19 on Day 9. The graph shows a clear repetitive trend in the data. Each-day has a similar spike in 

noise levels. This is caused by rush hour traffic at regular intervals. Similarly, in figure 2, a trend in the 

min noise levels over the 9 days is visible. There are identifiable times of day, which are regularly louder 

than other times of day. However, the main cluster on noise is around the 55dB to 60dB level. 

The approach of this work lies in being able to predict nose levels and present the results in an 

interactive map. Increases in noise levels during rush hours are predictable, but the exact noise levels and 

the impacts on Tinnitus sufferers are unknown. Often subtle changes in noise levels can have a negative 

impact on the sufferer. This work also aims to present an approach for recognising the unexpected noise 

levels and identify if harmful noise levels occur outside of rush hour periods.  

 Case Study 3.2

Breaking down the graph into individual days we see identifiable trends in noise data. Figure 3 displays a 

scatter plot of the maximum noise level readings taken at a sampling rate of 5 minute intervals over 24 

hours. 

  

Fig. 3. Lmax 24 Noise Levels over 24 Hours Fig. 4. Lmin Noise Levels over 24 Hours 



                                                                                                                                         

Whereas, figure 4 displays a scatter plot of the minimum noise level readings taken, again at a sampling 

rate of 5 minute intervals over 24 hours. 

A linear trend line is included in both Figures 3 and 4 to show the linear division of the data samples 

recorded during the 24 hour time blocks. 

Figures 5 and 6 display the Max and Min noise levels over day 2. A similarity in the pattern of noise 

behaviour can be seen at comparable times of day. 

  

Fig. 5. Lmax Noise Levels Day 2 Fig. 6. Lmin Noise Levels Day 2 

However, it can be a challenge to identify these patterns by eye when the data set is considerably large 

and containing data from different areas of the city. For the reason the use of data classification techniques 

is adopted to identify the trends in noise levels. The results are used for the visualisation process. The 

results are used to show a projection of noise levels at specific times of day and allocate a warning level so 

that the users will know when to avoid the area and how great the risk is to their hearing. 

 DATA CLASSIFICATION 4.

The methodology involves employing a selection of supervised learning to predict trends in the noise 

levels. Specifically, the classifiers used include: Uncorrelated Normal Density based Classifier (UDC), 

Quadratic Discriminant Classifier (QDC), Linear Discriminant Classifier (LDC), Decision Tree (TREEC), 

and Parzen Classifier (PARZENC). 

Linear Discriminant Classifier (LDC), is a technique which works by sorting or dividing data into 

groups based on characteristics to create a classification [11]. A discriminant function is obtained by 

monotonic transformation of posterior probabilities [12]. In other words, it performs an ordered 

transformation of unknown quantities, which are separated by a linear vector. Quadratic Discriminant 

Classifier (QDC) works in a similar way to LDC by dividing the data into groups based on given 

characteristics. However, by using QDC the data is divided using a quadratic surface rather than a one-

dimensional one. QDC makes no assumptions that covariance are alike. In other words, it assumes that the 

changing of two random variables will not be the same [13]. 

Uncorrelated Normal Density based Classifier (UDC) also operates comparably to the QDC classifier 

but computation of a quadratic classifier, between the classes in the dataset, is done by assuming normal 

densities with uncorrelated features. Quadratic Bayes takes decisions by assuming different normal 

distribution of data [14]. LDC, QDC and UDC are density based classifiers. Decision Tree (TREEC) is a 

classifier which uses decision rules to divide the classes of data [12]. It operates by using criterion 



 
 

functions (the sum of squared errors), stopping rules (criteria for appropriate number of splits in a decision 

tree) or pruning techniques (the removal of unwanted tree sections). 

Using decision tree is a particularly ideal choice of classifier because it is well-known as one of the 

most effective supervised classification techniques [13]. Parzen Classifier (PARZENC) functions by 

including aspects of the training data when the classifier is built up. It is a non-linear classifier and it has 

the benefit that its parameters can be user supplied or optimised [12, 14]. 

 Data Processing 4.1

The entire dataset consists of 2385 data recordings sampled at 5 minute intervals over an eight and a half 

day period. 
Table 2. Total Sample Dataset (dB) 

Recording time Number of Hours Number of days Number of Recording 

Total recordings 204.5 8.52 2385 

The raw dataset was divided into different hours of the day. In the analysis, rush hours are compared 

against off peak travel times to show how different noise levels can be identified. 3 days are randomly 

selected from the dataset for the comparison. The dataset was then divided into on-peak and off-peak 

hours. Table 3 details the number of total on-peak and off peak recordings over the three random days 

selected for a case study. 
Table 3. On-Peak/Off-Peak Recordings 

Recording time Number of Hours Number of days Number of Recording 

On-Peak 27 1.125 324 

Off-Peak 45 1.875 540 

Totals 72 3 864 

The data set for on-peak and off-peak is unbalanced, as the number of on-peak hours in the day is lower 

than off-peak. In this research, off-peak is defined as between 10 pm – 6am and 9 am to 4 pm. On-Peak is 

defined as between 6 am 9 am and 4 pm to 7 pm. Using this model, a balanced dataset for the 

classification process is developed. Table 4 displays the number of samples used for the classification 

process. 
Table 4. Noise Samples for Classification 

Recording Time Total Hours Time of recording Number of Recordings 

On-Peak 9 3:00 – 5:59 108 

Off-Peak 9 6:00 – 8:59 108 

Total 18 ------- 216 

 Data Analysis 4.2

Similarly to figures 1 to 6, Figure 7 displays a scatter plot of the off-peak and on-peak noise levels in 

Leicester city centre for two features selected from the dataset. 

 
Fig. 7. Scatter Plot of the Off-Peak and On-Peak 



                                                                                                                                         

Off-peak is represented by blue crosses, while On-Peak is displayed as red dots. There is a clear visible 

difference in behaviour when comparing usage levels. The visualisation relates to two features, Lmax and 

Lmin noise levels. The values along the x-axis (feature 1) denote the maximum noise level for the On-Peak 

usage. The values along the y-axis refer to the maximum noise levels for Off-Peak. Both features cover a 

three day period. 

Visualisation techniques may not always provide a straightforward approach to distinguishing between 

types of behaviour. The difference in noise levels between on-peak and off-peak hours may not always be 

easy to identify. Often the changes in behaviour may be subtle and a challenge to detect. The 

visualisations displays that there is cross-over between 65dB and 80dB, for example. However small the 

differences, the effects are felt by tinnitus sufferers [17]. 

For that reason, the approach put forward in this paper involves a machine learning classification 

technique to detect subtle trends in data and predict when noise patterns occur. A mathematical 

comparison enables detection and predicative model for identifying trends in noise levels in real-time. The 

results of the classification techniques used are displayed in Table 5. Each of the experiments were 

conducted 30 times in order to account for errors. This also enables consistency in the results [15, 16]. 

Table 5. Classification Results 

Classifiers AUC (%) Sensitivity Specificity Error 

PolyC 94.44 0.9074 0.9259 0.0556 

UDC 92.59 0.9259 0.9259 0.0741 

KNNC 92.59 0.9259 0.9259 0.0741 

ParzenC 92.59 0.9259 0.9259 0.0741 

NaivebC 91.67 0.9074 0.9259 0.0833 

LDC 90.74 0.9259 0.8889 0.0926 

SVC 90.74 0.9074 0.9074 0.0926 

TreeC 90.74 0.8704 0.9444 0.0926 

QDC 89.81 0.9259 0.8704 0.1019 

Overall, the classifiers were able to identify the difference between on-peak and off-peak hours which a 

high success rate. The results are provided by a confusion matrix evaluation. Table 6 displays a sample 

confusion matrix provided by the Naivebc classification results. 

Table 6. Naivebc Confusion Matrix 

True Labels 
Estimated Labels 

1 2 Totals 

1 49 5 54 

2 9 45 54 

Totals 58 50 108 

The confusion matrix determines the distribution of errors across all classes. The estimate of the 

classifier is calculated as the trace of the matrix divided by the total number of entries. Additionally, a 

confusion matrix provides the point where miss-classification occurs. In other words, it shows true 

positive (TP), false positive (FP), true negative (TN) and false negative (FN) values. Diagonal elements 

show the performance of the classifier, while off diagonal presents errors. In this case the matrix shows 

that the classifier detects 49 of 54 off-peak sounds accurately. 45 of 54 on-peak sounds are correct. 



 
 

Figures 8 to 10 display a histogram distribution of the classification performance results. As figure 8 

displays, there is a divide in the classifiers’ performance, however, most are able to perform consistently, 

with four able to achieve between 92% and 94.44%. 

   

Fig. 8. AUC Histogram Fig. 9. Sensitivity Histogram Fig. 10. Specificity Histogram 

The results obtained support the findings that our methodology can be used to accurately classify and 

predict noise levels. In this case, off-peak and on-peak noise is identified accurately.  

 Discussion 4.3

In this section, a discussion on the classification results is presented. A visualisation of the High range 

(between 92.59 and 94.44%); the medium range (90.74% to 91.67%) and the low level range (89%) is 

presented. Figure 11 displays a visualisation of the results for the UDC classification (high level).  

   

Fig. 11. UDC Visualisation Fig. 12. UDC Sphere Plot Fig. 13. Naivebc Banana Set Plot 

As in figure 7, off-peak is represented by blue crosses, while on-peak is displayed as red dots. The data 

is in the form of a banana set and separated into groups by likelihood contours. The data inside the 

contours is most likely to belong to the group. Figure 12, again shows the UDC classification, in this case 

in the form of a spherical set plot. The graph shows how the classifier is able to accurately group 92.59% 

of the data accurately, and separates the on-peak from the off-peak noise. Both graphs display how the 

classifier is able to sort the data mathematically. 

Figure 13 displays a visualisation of the naivebc classifier (mid-level). Contour-lines, formed by the 

naivebc process, encase groups of data, which are assed to belong to either the on-peak or off-peak 

grouping. As before, off-peak is represented by blue crosses, while on-peak is displayed as red dots and 

the scatter plot is in the form of a banana set. The graph displays a visualisation of the AUC of the 

classifier’s performance. 91.67% of the data is grouped accurately, however misclassification can be 

identified by the red dots and blue crosses which are grouped incorrectly. 

Figures 14 and 15 present a visualisation of the QDC classification process (low range). The linear and 

spherical line, generated by the QDC analysis, displays the division between the two sets of data. 



                                                                                                                                         

  

Fig. 14. QDC Spherical Plot Fig. 15. QDC Linear Plot 

As both graphs display, misclassification occurs and blue (off-peak) data can be seen outside of the 

spherical plot or on the incorrect side of the linear line (figure 15). 

 DATA VISUALISATION 5.

The classification process offers the approach for noise level analysis. The visualisation employs the use 

of a game engine to visualise the results. By means of this technique, an interface, which can present a 

directional sound map for the target user, is devised. The results are fed into the visualisation software, 

which provides the user with an account of areas of a city to avoid at certain times of day. Figure 16 

displays a map interface which is part of Project Vision Support (PVS) [10]. PVS is framework test bed 

used for the visualisation of real world environments by parsing data obtained from OpenStreetMap.com 

to procedurally generate virtual, navigable environments [10]. 

  

Fig. 16. Map Interface Fig. 17. Map Interface Leicester City Centre (UK) 

The image shows a map with spheres relating to sound levels. Each of the spheres relates to one of the 

features from our dataset. The size of the sphere is denoted by the levels of sound types in the area 

visualised.  Figure 17 displays a map interface of Leicester city centre (UK). The conception functions by 

incorporating real-world map data incorporating map, which is converted in the data manager. Features, 

initially sent to a temporary data store are used to create feature vectors and train classifiers for the sound 

prediction. The results are then projected into the map.  

The system provides a predictive function to allow users to view expected noise levels in the area they 

wish to travel to. 



 
 

 CONCLUSION AND FUTURE WORK 6.

This paper covers a classification technique for distinguishing between on-peak and off-peak hours. 

However, the techniques employed are a demonstration of how noise levels can be classified in real-time 

to present an analysis of where and when is the best time to travel or enter a certain area of the city. 

Tinnitus sufferers can simply choose to avoid leaving the house in peak times. However, our work 

provides a method for sufferers to be able to leave the house whenever they want by being able to identify 

in real-time when to avoid specific areas. In the future, we will extend this research to perform an 

evaluation of other areas such as motorways and different cities around the UK. We will use the data to 

both present visualisations of the noise patterns in cities and to show how noise pollution levels vary 

across different environments. We will incorporate further datasets such as holiday periods and weather 

patterns to create a more holistic noise level model. The future aim of the work will be to conduct a user 

case study assess the effectiveness of the app. 
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