
Yang, W, Zhang, X, Ma, H and Zhang, G

 Geometrically-driven underground camera modeling and calibration with 
coplanarity constraints for Boom-type roadheader

http://researchonline.ljmu.ac.uk/id/eprint/13559/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Yang, W, Zhang, X, Ma, H and Zhang, G (2020) Geometrically-driven 
underground camera modeling and calibration with coplanarity constraints 
for Boom-type roadheader. IEEE Transactions on Industrial Electronics. 
ISSN 0278-0046 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

 

Abstract—The conventional calibration methods based 
on perspective camera model are not suitable for 
underground cameras with two-layer glasses, which are 
specially designed for explosion-proof and dust removal in 
coal mine. Underground camera modeling and calibration 
algorithms are urgently needed to improve the precision 
and reliability of underground visual measurement 
systems. This paper presents a novel geometrically-driven 
underground camera calibration algorithm for a boom-type 
roadheader. The underground camera model is established 
under coplanarity constraints, by considering explicitly the 
impact of refraction triggered by the two-layer glasses and 
deriving the geometrical relationship of equivalent 
collinearity equations. On this basis, we perform 
parameters calibration based on a geometrically-driven 
calibration model, which is a 2D-2D correspondences 
between the image points and object coordinates of the 
plannar target. A hybrid LM–PSO algorithm is further 
proposed in terms of the dynamic combination of the 
Levenberg–Marqurdt (LM) and Particle Swarm Optimization 
(PSO), which optimize the underground camera calibration 
results by minimizing the error of the nonlinear 
underground camera model. The experiment results 
demonstrate that the pose errors caused by the two-layer 
glass refraction are well corrected by the proposed method. 
The accuracy of the cutting-head pose estimation has 
increased by 55.73%, meeting the requirements of 
underground excavations. 

Index Terms—vision-based pose estimation, 
underground camera model, camera calibration, two-layer 
glasses, nonlinear optimization 

I. INTRODUCTION 

ISION-based pose estimation provides an efficient means 

to get the accurate equipment pose [1, 2, 3], which is also 

the core technology to realize automatic mining. The vision-

based pose estimation system is affected by the harsh 

environment in the coal mine, such as complex background, 

dust, water mist, stray lights and so on. Therefore, on account 

of explosion-proof and dust removal, an underground camera 

was specially designed with two-layer glasses, such a vision-

based underground imaging system extends a combination unit 

of both the camera and the two-layer glasses. Calibrating such 

a visual measurement system with two-layer glasses of 

unknown alignments remains a challenging problem. 

The underground imaging system observe a target object 

through multiple refractive planes is with a non-single viewpoint 

(non-SVP) [4].The camera calibration methods [5, 6, 7] based on 

the well-known perspective camera model [8] are not suitable for 

such a non-SVP imaging system. There is a growing attention on 

non-SVP systems in underwater environments recently [9, 10, 

11, 12]. In the early works of underwater computer vision, the 

refraction effect are approximated using focal length or lens 

distortions [13, 14, 15]. However, the approximation approaches 

usually result in errors in the calibration results due to the non-

linear refraction distortion are highly related to the scene 

geometry. Kwon and Casebolt [16] concluded that a physics-

based calibration approach is needed for 3D reconstruction. It is 

also demonstrated by Treibitz et al. [17] that a single viewpoint 

(SVP) model is invalid in underwater camera calibration. 

Physics-based models that account for the refraction effect has 

attracted researchers’ attention. Maas [18] considered a fast and 

versatile algorithm for the three flat refraction geometric 

modelling assuming that the image plane is parallel to the 

refractive interfaces, and the geometric effects are solved 

iteratively. Treibitz et al. [17] considered a parameterized model 

with the distance of the lens from the interface, they perform 

calibration using known target depth and the image plane must 

be parallel to the interface in their setup as well. Y. J. Chang et 

al. proposed a multi-view 3D underwater calibration method by 

modeling the refractive effect using the known scene depth. [19]. 

The major limitation for the techniques in [17, 18, 19] is that they 

either assume the image plane parallel to the interface in their 

setup or need the known target depth. Hence, these technique are 

not practical for the underground camera refraction calibration in 

coal mine since we cannot assume the image plane and interface 

to be parallel and also the target pose is unknown during 

tunneling. Some stereo underwater calibration methods do not 

need to know the target pose but require multi-view images. The 

underwater camera modelling and calibration methods in [20, 21] 

were developed for a camera with a single-layer waterproof 

housing device, the scale constraint in the fixed stereo rig makes 

it affordable to calibrate with unknown target pose. The method 

requires an approximation estimation of orientation parameters, 

and the calibration requires to be computed iteratively. [22] 

presents a calibration model with explicit incorporation of 

refraction. However it requires a good initial estimation for the 

interface parameters. The calibration method in [23] for the 

underwater stereo camera system can obtain a good initial 

estimation by solving a set of linear equations and refining it by 

sparse bundle adjustment. The major limit of the above stereo 

calibration methods in [20, 21, 22, 23] is that the calibration 

require stereo correspondences, which is not feasible for the 

single image refraction calibration in the single underground 

camera setup system. Agrawal et al. [4] proposed a unified theory 

for flat refractive geometry, and a calibration method was 

developed on the basis of the axis estimation method. The 

calibration method in [4] is similar to [24] and was mapped to the 

classical essential matrix computation and 5-point algorithm 

[25]. It performs calibration by using a single image with no 

known target pose and without the assumption that the image 
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plane is parallel to the interface. However, the major limit of this 

method is that the coplanarity constraint in the model will be 

invalid when the rays have a small angle with axis. The angle will 

become very small when the center axis of the target nearly 

parallel to the optical axis of the camera during each cutting 

period, which make it unreliable for this method to be deployed 

for underground camera refraction calibration in coal mine.  

Hence, there are certain requirements that in most existing 

calibration methods that make them impractical for application in 

coal mine, the underground camera modeling and calibration 

methods are urgently needed. This paper proposes a 

geometrically-driven underground camera modeling and 

calibration method. The main contributions of this paper are 

summarized as follows: 1) An underground camera model was 

established under coplanarity constraints, which considered 

explicitly the refraction effect triggered by the two-layer glasses 

and gave the equivalent collinearity equations. 2) A 

geometrically-driven underground camera calibration model was 

proposed, which gives 2D-2D correspondences between the 

image points and object coordinates of the plannar target. 3) A 

hybrid LM–PSO algorithm is further proposed to optimize the 

initial underground camera calibration results by minimizing the 

error of the nonlinear underground camera model. 4) Experiment 

were designed to validate the proposed calibration algorithm. 

The rest of paper is organized as follows: Section II introduces 

the working principle of vision-based pose estimation system for 

Boom-type roadheader. Section III puts forward an underground 

camera model under coplanarity constraints. Section IV presents 

a geometrically-driven calibration algorithm for underground 

camera. Section V presents the experimental results. Finally, the 

full text is summarized and discussed in Section VI.  

II. VISION-BASED POSE ESTIMATION SYSTEM FOR BOOM-
TYPE ROADHEADER 

It is high dust and low illumination in underground roadway 

tunneling as shown in Fig.1a. In accordance with the planned 

trajectory, the Boom-type roadheader cuts the coal wall using 

cutting-head to form the new tunneling face as illustrated in 

Fig.1b. 16 infrared LEDs assembled in a target are adopted as 

feature markers to tackle the low illumination, dense-dust and 

complicated background. A vision-based method is used to 

measure the cutting-head pose, and the underground camera is 

mounted on the body of Boom-type roadheader, which collects 

the image of the infrared LEDs-based target mounted on the 

cutting arm. Fig.1c shows there are seven coordinate systems in 

the vision-based cutting-head pose estimation system, including 

the body coordinate system O0X0Y0Z0, the rotary joints 

coordinate system O1X1Y1Z1, the lift joints coordinate system 

O2X2Y2Z2, the expansion joints coordinate system O3X3Y3Z3, the 

cutting-head coordinate O4X4Y4Z4, the camera coordinate system 

OcXcYcZc, and the target coordinate system ObXbYbZb. Vision-

based cutting-head pose estimation can be performed with 

4 4
0 0 c b

c bM M M M                               (1) 

where M
c 

0  denotes the transformation matrix between the body  

and camera coordinate system, M
4 

b  shows the transformation 

matrix between the target and cutting-head coordinate system, 

M
b 

c  expresses the transformation matrix between the camera 

and target coordinate system, M
4 

0  denotes the transformation 

matrix between the body and cutting-head coordinate system. 

The rigid transformation matrix of M
c 

0and M
4 

b  need to be pre-

calibrated. While M
b 

c  can be acquired by the proposed 

geometrically-driven underground camera modeling and 

calibration algorithm, which is described in Section III, IV. 

    

Underground tunnel

Underground Camera

Infrared LEDs target
Cutting-head

Coal wall

Boom-type roadheader

Planned trajectory

 

(a)                                                   (b) 

 
(c) 

Fig. 1. Boom-type roadheader and its visual system. (a) Tunneling 
environment of Boom-type roadheader (b) Schematic of vision-based 
pose estimation. (c) The coordinate systems of Boom-type roadheader.  

The cutting-head pose estimation is based on the 

underground camera modeling and calibration. The geometric 

model of the underground camera considered explicitly the 

refraction effect of the two-layer glasses, and established 

modified collinearity equation. On this basis, we build a 2D-2D 

correspondences between the image points and the object 

coordinates of the target, and the pose estimation error caused 

by refraction effect can be compensated. The main modules of 

the proposed methods are described in Fig.2. 
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Fig. 2. Outline of the geometrically-driven pose estimation methods. 



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

 

III. UNDERGROUND CAMERA MODELING 

A. Underground Camera structure 

The underground camera is a specially designed hollow 

cylindrical structure with two-layer glasses for explosion- proof 

and dust removal as shown in Fig.3.  

          

Explosion-proof 

apparatus
 inner glass

 outer glass

DC motor

Dust removerCamera
 

Fig. 3.  Underground camera and its internal structure. 

The inner-layer explosion-proof glass was mounted on the 

inner flange plate. The outer-layer glass was mounted on the 

outer flange as the hub part of the big gear, which was coaxial 

to the hollow cylindrical structure. A DC motor was mounted 

in the front of the cylindrical structure, and the output shaft of 

the motor passes through the inner flange and connects to a 

pinion. The big gear engages with the pinion and drive the 

outer-layer glass to rotate. Hence, the fan-shaped dust remover 

mechanism can clear away the water mist and dust using the 

stationary brush. 

B. Modeling 

The imaging system of underground camera extends a 

combination unit which consists of the camera and the two-

layer glasses, and collinearity does not prevail in this non-single 

viewpoint system. Hence, an underground camera model based 

on the equivalent collinearity equation in the virtual imaging 

system is proposed. The virtual imaging system is illustrated in 

Fig. 4a and 4b, which take c’ as the virtual perspective center, 

the outer-layer glass interface as the virtual image plane, and F-

ΔF as the virtual focal length along the virtual axis m. The 

virtual axis m is the normal to the two-layer glasses and passing 

through the camera perspective center. 

The underground camera model is described with the 

following parameters: β, the incidence angle; α, the refraction 

angle; f, the actual focal length from the actual perspective 

center c to the image plane; F, the distance from the actual 

perspective center c to the outer-layer glass interface; ΔF, the 

offset from actual perspective center c to virtual perspective 

center c’; d, the camera incoming ray offset on the two-layer 

glasses interface; h1, the thickness of the outer-layer glass; h2, 

the thickness of the inner-layer glass; nair, the refractive index 

of air; nglass, the refractive index of glass.  
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Fig. 4. (a) The entire light-path lies on the same plane of π. (b) The 

incoming ray in turn refracted at the two-layer glasses interface, and 
then pass through the camera perspective center. (c) The diagram of 
the mounting angle offset in the underground camera imaging system. 
The normal of l to the inner glass is parallel to the normal of m to the 
outer glass. 

The two-layer glasses on the underground camera can be 

guaranteed to be parallel with relatively high precision by 

machining and assembly precision. However, the camera 

optical axis is not guaranteed to be orthogonal to the double 

layers of glass in general situation, i.e., there is a mounting 

angle offset between the camera image plane and the glass 

interface plane. The transformation relation between the camera 

coordinate system and the virtual imaging system is illustrated 

in Fig. 4c. The camera coordinate system is represented by 

cxcyczc and the virtual imaging system is represented by 

c’xhyhzh. The angle between the camera's optical axis zc and the 

virtual axis m is defined as θ, and the projection vector of the 

virtual axis m on the image plane xc-yc
  with respect to the 

camera's x-axis is defined as δ. The rotation matrix M
h 

c  between 

the camera coordinate system and the virtual imaging system 

can be expressed as 

   

   

2

2

sin 1 cos cos sin cos 1 cos sin cos

sin cos 1 cos cos 1 cos cos sin sin

sin cos sin sin cos

h
c

       

       

    

     
 
      
 
 

M     

(2) 

The third row of M
h 

c  denotes the virtual axis vector m in the 

camera coordinate system, 

[sin cos ,sin sin ,cos ]    m                         (3) 

The incidence angle β can be obtained from the image 

coordinate u and the vector m using the following equation 

 T

cos 
m u

u
                                   (4) 

The refraction angle α is calculated by sin / sin ,    

where   denotes the relative refractive index of the air and 

glass.  

The incoming ray offset d is calculated by 

   1 2tan tan tan tand h h                      (5) 

where h1 represents the thickness of the outer-layer glass, and 

h2 represents the thickness of the inner-layer glass. 

The offset ΔF from actual perspective center c to virtual 

perspective center c’ can be expressed as 

 1 2
2 2

sin
/ tan tan

1 sin

F d h h
 

 
 

 
       

           (6) 
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Assuming Pc=[Xc, Yc, Zc]
T is a 3D spatial point in the camera 

coordinate system. By combing with (2), the Pc in the virtual 

imaging system can be expressed as 

[ ], ,h h T
h c c c h h hX Y Z  P M P T                    (7) 

where  T0,0,h
c F T is the translation vector h

cT between the 

camera coordinate system and the virtual imaging system. 

Similarly, assume that u =[x, y, f]T is the image coordinate of 

Pc in the camera coordinate system. An auxiliary coordinate 

system of   h h hcx y z is set up as shown in Fig. 4c, which take the 

actual perspective center c as the origin, the axis hx , hy , hz  are 

parallel to the axis hx , hy , hz in the virtual imaging system of 

c’xhyhzh, respectively. The image point u in the auxiliary 

coordinate system can be expressed as 

,  ,  [ ]h T
h c h h hx y f  u M u                           (8) 

According to the geometrical relation that the 3D-vector hu  

is parallel to the 3D-vector Ph, and they can form the same plane 

when hu  and Ph intersect with the virtual axis m, respectively. 

Therefore, the modified collinearity equation in the virtual 

imaging system can be defined as 

h
h h

h

X
x f

Z
 , h

h h
h

Y
y f

Z
                           (9) 

The collinearity equation forms the geometric model of 

underground camera based on equivalent focal length in the 

virtual imaging system, which considered explicitly the impact 

of refraction triggered by the two-layer glasses and preserve the 

collinearity relation. Notice that the additional parameters θ, δ, 

h1, h2 and μ are introduced in the underground camera model. 

IV. GEOMETRICALLY-DRIVEN UNDERGROUND CAMERA 

CALIBRATION  

A. Axis Estimation with Coplanarity Constraints 

As illustrated in Fig. 4a, P=[Xw, Yw, Zw]T is a 3D spatial point 

in the object coordinate system, the direction vectors of each 

segment of the light-path are v0, v1, v2, v3, v4, respectively. 

According to Snell’s law, the incident ray, the refracted ray and 

the normal lie on the same plane. Considering the two-layer 

glasses are parallel, the entire light-path is coplanar and lies on 

the refraction plane π when the light rays pass through the two-

layer glasses. The virtual axis m and the entire light-path are on 

the same plane of π, and the last refracted ray v0 intersect with 

the axis m. Let R and T be the rotation and translation matrix 

between the object and camera coordinates system, Pc=RP+T 

is the 3D point in the camera coordinate system and it is also lie 

on π. According to [4], the coplanarity constraint for each 3D 

point can be defined as 

   0 0
T

 m vRP T                             (10) 

where (m×v0) is the normal of the plane π.  

The coplanarity constraint can be further expanded as the 

following linear equation system 

      

      

 0 0

0 0

1 1 1
:

0

T T T

T T T
N N N

 
   

   
   

  

B

P v v
E

s

P v v

           (11) 

where N ( N>=11) points are taken to form a N×12 matrix of B. 

v0(i) represent the direction vector of the last refracted ray 

corresponding to each 3D point P(i). E(:) denotes the column 

vectors of the matrix E. E=[m]×R, [m]× denotes the 3×3 skew-

symmetric matrix of the vector m; s=m×T , × denotes the cross-

product.   represents the kronecker product.  

Therefore, E and s can be obtained by the right null singular 

vector of B. In addition, 11-point linear algorithm or 8-point 

algorithm can also be used to obtain E and s [4, 8, 18]. Since 

mTE= mT[m]×R =0, the axis m can be calculated as the left null 

singular vector of E. 

B. Calibration of Underground Camera Parameters  

The calibration process is divided into two steps. First, 

without the two-layer glasses, the camera’s standard intrinsic 

parameters are acquired can be obtained by the calibration 

technique proposed by Zhang [6] or Steger [7], including the 

principal point (u0, v0) and focal length f, and the radial and 

tangential distortion parameters k1, k2, p1, and p2. Then, with the 

two-layer glasses, the proposed geometrically-driven 

calibration algorithm is performed, which involves the 

additional underground camera intrinsic parameters of θ, δ, h1, 

h2, μ and extrinsic parameters of R and T.  

The parameters h1, h2 and μ are assumed to be the known 

constants here. On the basis of the results of axis estimation in 

Section IV.A and the definition of virtual axis m in (3), let 

m=[m1,m2,m3], the parameters of θ and δ can be solved with the 

following equation 

  3arccos( )m  , 2 1arctan( / )m m                  (12) 

 In accordance with the modified collinearity equation (9), the 

relationship between a 3D spatial point in the object coordinate 

system and its image projection can be expressed by the 

following matrix equation. 

11 12 13 1

21 22 23 2

31 32 33 3

0

0
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w

wh h
c c

w

X
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Y
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Z
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M M        (13) 
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R T , 
11 12 13

21 22 23

31 32 33

h
c

M M M

M M M

M M M

 
 
 
  

M  

where, s is an arbitrary scale factor. The perspective center 

offset ΔF can be obtained by (6). The rotation matrix between 

the camera coordinate system and virtual imaging system h
cM  

can be acquired by (2) with the θ and δ. 

Since Zw is equal to 0 when the calibration is carried out with 

the single planar target, (13) can be simplified with  

11 12 1

21 22 2

31 32 3

0

0

1

w
h h
c c w

x r r t X

s y r r t Y

f r r t F

       
        
       
             

M M           (14) 

Let X = [r11, r12, r21, r22, r31, r32, t1, t2, t3]
T, (14) can be 

rewritten as the following equation system 

11 12 13 14 15 16 17 18 19

21 22 23 24 25 26 27 28 29

h

h

A A A A A A A A A x F

A A A A A A A A A y F

   
      

X  

 (15) 

where, 
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A11= 31 11h w h wx M X f M X , A12= 31 11h w h wx M Y f M Y , 

A13= 32 12h w h wx M X f M X , A14= 32 12h w h wx M Y f M Y ,  

A15= 33 13h w h wx M X f M X , A16= 33 13h w h wx M Y f M Y  

A17= 31 11h hx M f M , A18= 32 12h hx M f M ,  

A19= 33 13h hx M f M  

A21= 31 21h w h wy M X f M X , A22= 31 21h w h wy M Y f M Y , 

 A23= 32 22h w h wy M X f M X , A24= 32 22h w h wy M Y f M Y ,  

A25= 33 23h w h wy M X f M X , A26= 33 23h w h wy M Y f M Y  

A27= 31 21h hy M f M , A28= 32 22h hy M f M , 

A29= 33 23h hy M f M  

Stacking equations for 2N correspondences when N points 

are taken to (15), it can be written in matrix equation as LX = 

b. The extrinsic parameters of R and T can be recovered by 

 
1

T T ,


X L L L b  

3 1 2 r r r  

where L is a 2N×9 matrix, and ri denotes the ith column of the 

rotation matrix R=[r1,r2,r3]. 

In accordance with the geometrically-driven extrinsic 

parameters calibration equation (15), a 2D-2D correspondences 

between the image points and object coordinates of the plannar 

target are established. The underground camera parameters are 

obtained in the case that the camera is internally calibrated and 

with known refractive index as well as the thickness of glasses. 

Notice that we do not assume that image plane is parallel to the 

apparatus interface and we do not request explicit knowledge of 

object point coordinates. 

C. Nonlinear Optimization of Underground Camera 
Parameters 

The underground camera modeling and calibration algorithm 

in Section III and IV.B can used to obtain a good initial solution 

of underground camera parameters. In this section, a hybrid 

LM–PSO algorithm is proposed to further perform nonlinear 

optimization of the initial underground camera calibration 

results because of the easy and quick convergence the LM 

[25,26,27]and the global optimization ability of the PSO 

[28,29]. Given there are n points on the image plane, the hybrid 

LM-PSO algorithm can be performed with 

Find: X = [θ, δ, α, β, γ, tx, ty, tz] 

Min:    
2

1 2

1

H , , , , , , , ,
n

i i i i

i

f h h   


 X U U R T P  

Among which, Ui=((ui-u0)dx, (vi-v0)dy) is the measured value of 

image coordinates,  1 2, , , , ,δ, , ,i i if h h  U R T P  is the projection 

point of 3D point Pi in image plane according to (14), H(X) is 

the object function that needs to be minimized, which is a 

nonlinear minimization problem. X is the optimal solution once 

H(X) find minimum error. The image pixel deviation between 

the measured and projected values can be expressed with the 

following equations 
     0 1 2, , , , , , , ,ix i x x i i iF u u d f h h     X U R T P  

     0 1 2, , , , , , , ,iy i y y i i iF v v d f h h     X U R T P  

where  1 2, , , , , , , ,x i i if h h   U R T P is the x-axis projection of 

image plane,  1 2, , , , , , , ,y i i if h h   U R T P is the y-axis projection 

of image plane. The focal length f , principle points (u0, v0) , and 

pixel size (dx, dy) are standard camera intrinsic parameters, the 

thickness of the outer glass h1, the thickness of the inner glass 

h2, and the relative refractive index μ are the additional 

underground camera intrinsic parameters. Ri(α, β, γ) and Ti(tx, 

ty, tz) are the rotation and translation matrix, respectively. (α, β, 

γ) are the Euler angles of the rotation matrix Ri.  

According the initial solution X
0 

l  of underground camera 

parameters, the constraint conditions of the population 

particle’s position Xl and velocity Vl were respectively set as 

   0 01 1l l l l lh h   X X X  

   0 0
min max1 , 1l l l l l lh h  X X X X  

          001 / 2 1 / 2l l l l lh h   X V X  

          0 0
min max1 / 2, 1 / 2l l l l l lh h  V X V X        (16) 

where the dimension of particle is 8, X1=θ, X2=δ, X3=α, X4=β, 

X5=γ, X6= tx, X7= ty, X8=tz. hl is the step length of Xl. l=1,…,8. 

Firstly, PSO is called to generate the V
0 

jl  and X
1 

jl  

  0
max min min,1jl l l lrand N  V V V V  

1 0 0
jl jl jl X X V , 0 0

jl lX X                    (17) 

where, N is the population size of PSO, N=20, j=1,…,N. 

rand(N, 1) is a random number between [0, 1]. 

Let the position of pth generation be represented by X
p 

jl = (X
p 

j1

, X
p 

j2,…, X
p 

j8)
T, its speed is represented as V

p 

jl  = (V
p 

j1, V
p 

j2, …, V
p 

j8

)T. The renewal equations of speed and position are expressed 

as 

     1
1 2,1 ,

p p p p
jl jl jl jlw c rand N pbest c rand N l gbest

    V V X X

1 1p p p
jl jl jl
 
 X X V                         (18) 

where w is the inertia weight, c1 and c2 are the learning factor,  

here c1=c2=1.5. pbest and gbest are respectively the position of 

the personal best particle and the global best particle. pbest and 

gbest can be obtained by the comparison with fitness value of 

each particle, the fitness can be calculated with the objective 

function  H
p
jX . The inertia weight dynamically changed with 

 max max min max/w w w w p G               (19) 

where, the minimum inertia weight wmin=0.4, maximum inertia 

weight wmax=0.9, p represents the number of iterations. 

Then, the LM algorithm was called with four pairs of (ui, vi) 

and Pi, (i=1,…,4) to optimize each global best particle that are 

generated by PSO process with the following equations 
1, , ,ˆk p k p k p

ij ij ij


 X X δ  

 
1

, ,Tk p k pT
k k k kij ij


 δ A A I A F                  (20) 

where, X
k,p  

ij  is the jth particle that has been iterated to kth by LM 

and pth by PSO. 
,ˆ k p

ijδ is the vector deviation, I is an eight order 

unit matrix. λk is the weight coefficient. 
,

ij

k p
F represents  ,

j

k p
iF X

. Ak is the first-order partial derivative matrix of ,k p

ij
U  with 

respect to the parameter variables θ, δ, α, β, γ, tx, ty and tz. 
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In addition, boundary conditions are adopted to limit the 

position or velocity of the particle within the feasible search 

space. Once iteration accuracy meet the required accuracy ε0, 

H(X
k,p  

j ) ≤ε0, that is the global minima has been found in the 

LM-PSO process, the hybrid LM-PSO algorithm will stop, and 

generate the globally optimal solution X. Otherwise, the 

particle swarm will be updated again by PSO and optimized by 

LM algorithm until the iteration accuracy meet the 

requirements. The final results X will be the optimized 

underground camera parameters. The pose estimation accuracy 

can be improved by about 6% through non-linear optimization. 

The total computation time for each calibration is about 0.67s 

in Microsoft Visual C++ 2010 when using Intel(R) CoreTM i5-

6200U Processor, and the non-linear optimization time 

accounts for about 33% of the total time. The non-linear 

optimization will mainly be used for the underground camera 

parameters offline calibration, and it will be ignored during the 

tunneling process. 

V. EXPERIMENTAL RESULTS  

Underground camera calibration and cutting-head pose 

estimation platform was setup for Boom-type roadheader as 

shown in Fig.5. The system mainly includes the Boom-type 

roadheader EBZ160, infrared LEDs SE3470, Vicon Tracker 

motion capture system, camera MV_EM130M (Microvision), 

underground explosion-proof apparatus, 250mm×250mm 

infrared LED target, checkerboard AFT-MCT-OV430, 

translation stage, PC computer and so on. The image resolution 

of the camera is 1280×960 pixels. The calibration platform 

shown in Fig. 5b,c were with a combination unit of the two-

layer glasses and camera, which used to make a comparison and 

analysis between the non-glass configuration and the two-layer 

glasses configuration. The refractive index of the explosion-

proof glass is 1.539, the thickness of the inner glass and outer 

glass are respectively 10.01mm and 10.02mm.  

 Underground 

camera 

Checkerboard 

target

Combination 

unit

 

Combination

 unit

Infrared target

  

 Vicon 

cameras

Infrared 

target

 Vicon

 Tracker

Underground 

camera 

Active 

wandCutting-

head 

  
 (a)                                       (b)                                           (c)                                        (d)                                        (e)   

Fig. 5. Underground camera calibration and cutting-head pose estimation system (a) Underground camera. (b) Camera calibration with the 
checkerboard. (c) Camera calibration with the infrared LEDs target. (d) Cutting-head pose estimation with underground camera. (e) Cutting-head 
with marker balls of Vicon Tracker system. 

The experiment with checkerboard as shown in Fig. 5b was 

carried out to validate the effectiveness of the proposed 

algorithm in a controlled indoor environment with a good 

visibility condition. The distance between the checkerboard and 

the camera is about 900 mm. The experiment with infrared 

LEDs target as shown in Fig. 5c was carried out to validate the 

feasibility of the proposed algorithm in the simulated low 

illumination underground environment in laboratory. The 

distance between the target and the camera is about 1500 mm. 

The checkerboard images and infrared target images from 

different orientations were collected with and without the two-

layer glasses as shown in Fig. 6a,b and Fig.7a,b. The intrinsic 

camera parameters were calibrated by Zhang’s [6]. Intrinsic 

camera parameters were as follows: fx=1386 pixel, fy=1387 

pixel, u0=651.60 pixel, v0=476.70 pixel, k1=-0.107, k2=0.147, 

p1=-0.001, p2=0.000. The lens distortion of the images collected 

in two-layer glasses configuration were first to be corrected 

with the above parameters. Then, the additional underground 

camera intrinsic parameters and the extrinsic parameters were 

estimated based on the proposed calibration algorithm. 

Meantime, we computed the reprojection image points with the 

calibration results according to the proposed underground 

camera model. The proposed algorithm were made a fully 

comparison with Agrawal’s[4]. 

    

    
(a)                                       (b)                                         (c)                                         (d)                                            (e) 

Fig. 6.  From left to right were the checkerboard images and corresponding results. (a) Images of the checkerboard target in non-glass configuration, 
together with the extracted corner (indicated by cross). (b) Images of the checkerboard target in two-layer glasses configuration, together with the 
extracted corner (indicated by cross) (c) The contour map of the actual image distortion distribution, which describes the image deviation of the 
extracted corners from Fig.6a to Fig.6b. (d) The contour map of reprojection image distortion distribution by Agrawal’s, which describes the image 
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deviation from the extracted corners in Fig.6a to the reprojection image points by Agrawal’s (e) The contour map of reprojection image distortion 
distribution by ours, which describes the image deviation from the extracted corners in Fig.6a to the reprojection image points by ours. 

 

   
                    (a)                                          (b)                                         (c)                                         (d)                                           (e) 
Fig. 7.  From left to right were the infrared target images and corresponding results.(a)Images of the infrared target in non-glass configuration, 
together with the extracted spot center (indicated by cross).(b)Images of the infrared target in two-layer glasses configuration, together with the 
extracted spot center (indicated by cross).(c)The contour map of actual image distortion distribution, which describes the image deviation of the 
extracted spot center from Fig.7a to Fig.7b (d)The contour map of reprojection image distortion distribution by Agrawal’s, which describes the image 
deviation from the extracted spot center in Fig.7a to the reprojection image points by Agrawal’s. (e)The contour map of reprojection image distortion 
distribution by ours, which describes the image deviation from the extracted spot center in Fig.7a to the reprojection image points by ours. 

The results shows that the reprojection image distortion 

distribution in Fig.6d,e and Fig.7d,e were both consistent with 

the actual image distortion distribution in Fig.6c and Fig.7c, 

respectively, and the root-mean-square (RMS) errors indicates 

that reprojection image distortion distribution by ours were 

closer to the actual distortion distribution in comparison with 

Agrawal’s[4]. Fig.8a,b,c gives the actual and rectified image 

residuals distribution.  

 

       

  
 

      
(a)                                          (b)                                         (c)                                         (d)                                           (e) 
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Fig. 8. The calibration comparison results of detected feature points. From top to bottom were corresponding to the checkerboard images in two 
orientations and infrared target images in two orientations. (a) The actual image residuals. (b) The rectified image residuals by Agrawal’s. (c) The 
rectified image residuals by proposed algorithm. (d) The comparison of the actual and rectified residuals. (e) The comparison of reprojection errors.  

  
TABLE I 

CALIBRATION RESULTS OF CHECKERBOARD FROM TWO ORIENTATIONS 

  X/(mm) Y/(mm) Z/(mm) ω/(°) φ/(°) κ/(°) 

1 

GT 150.290 86.686 904.661 6.187 1.107 179.964 

Zhang’s 149.780 86.833 897.642 6.188 1.107 179.963 

Agrawal 149.972 86.805 901.688 6.187 1.106 179.964 

Proposed 150.153 86.969 904.682 6.188 1.107 179.964 

    

2 

GT 189.617 90.545 890.053 13.648 -8.587 178.393 

Zhang’s 189.079 90.205 883.026 13.649 -8.588 178.392 

Agrawal 189.404 90.208 886.379 13.648 -8.589 178.393 

Proposed 189.211 90.444 890.082 13.649 -8.587 178.392 

 

TABLE II 
CALIBRATION RESULTS OF INFRARED TARGET FROM TWO ORIENTATIONS 

  X/(mm) Y/(mm) Z/(mm) ω/(°) φ/(°) κ/(°) 

1 

GT  70.297 -51.766 1683.500 -18.737 -3.012 -0.800 

Zhang’s 70.115 -51.391 1676.538 -18.739 -3.014 -0.801 

Agrawal 70.313 -51.473 1679.889 -18.738 -3.013 -0.800 

Proposed 70.496 -51.685 1683.553 -18.738 -3.012 -0.801 

2 

GT 74.189 -100.555 1502.470 20.489 -1.375 -0.761 

Zhang’s 74.012 -100.184 1495.448 20.489 -1.374 -0.760 

Agrawal 74.319 -100.481 1498.779 20.450 -1.375 -0.760 

Proposed 74.368 -100.713 1502.466 20.488 -1.376 -0.761 

Fig. 8d shows that the RMS of the actual image residuals 

were 1.429, 1.334, 0.499, and 0.633 pixels, respectively; the 

RMS of the rectified image residuals by ours were 0.477, 0.621, 

0.176 and 0.221 pixels; the RMS of the rectified image 

residuals by Agrawal’s were 0.680, 0.797, 0.298 and 0.420 

pixels. The results demonstrated that the proposed algorithm 

can achieve better rectified effect in comparison with 

Agrawal’s. Fig. 8e further shows that the reprojection error 

using ours were less than Agrawal’s, it verified that proposed 

model can better represent the two-layer glasses refraction than 

Agrawal’s. To assess the pose calibration accuracy by the 

proposed calibration algorithm, the calibration results were 

given comparison with Zhang’s, Agrawal’s and the ground-

truth (GT). The collected checkerboard images and infrared 

target images in non-glass configuration were used to obtain the 

actual values. The results in Table I and Table II showed that 

Zhang’s algorithm based on perspective camera model led to 

larger pose estimation error, while the proposed algorithm and 

Agrawal’s were both effective, and the calibration results by 

proposed algorithm was closer to GT than Agrawal’s. . 

To verify the validity of the underground camera calibration 

algorithm, the proposed pose estimation system and the Vicon 

tracker were both used to obtain the trajectory of cutting-head 

synchronously. The platform is shown in Fig. 5d,e. Control the 

cutting-head to move in S-shaped motion path. Fig.10 and Fig.9 

shows the comparison trajectory of the cutting-head with and 

without refraction compensation, respectively. It can be seen 

from Fig. 10 that the trajectory measured by the proposed 

method exhibits high consistent with the true trajectory. Fig. 11 

shows the comparison trajectory of the cutting-head projected 

in the X-axis, Y-axis and Z-axis, respectively. The maximum 

position estimation error without refraction compensation was 

56.61 mm, while the maximum position estimation error with 

refraction compensation by the proposed calibration method 

was decreased to 25.06 mm, which is close to the true value that 

obtained by the Vicon tracker. The results indicates that the 

pose estimation accuracy increases by 55.73%, The pose 

estimation meets the measurement accuracy requirement of 

Boom-type roadheader according to the underground tunneling 

safety rule that the maximum permissible error is within 50mm. 

 

 
(a)                                                       (b) 

  
(c)                                                 (d)  

Fig.9. The comparison trajectory of the cutting-head without refraction 
compensation. (a) The comparison trajectory without refraction 
compensation. (b) The projection of the comparison trajectory on the XY 
plane. (c) The projection of the comparison trajectory on the XZ plane. 
(d) The projection of the comparison trajectory on the YZ plane. 

 
(a)                                                       (b) 

   
(c)                                                       (d) 

Fig.10. The comparison trajectory of the cutting-head with refraction 
compensation. (a)The comparison trajectory with refraction 
compensation. (b)The projection of the comparison trajectory on the XY 
plane. (c) The projection of the comparison trajectory on the XZ plane. 
(d) The projection of the comparison trajectory on the YZ plane. 
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(a) 

 
(b) 

 
(c) 

Fig.11. The comparison trajectory of the cutting-head. (a)The projection 
of the comparison trajectory in X-axis. (b)The projection of the 
comparison trajectory in Y-axis. (c)The projection of the comparison 
trajectory in Z-axis. 

VI. CONCLUSION AND FUTURE WORK 

This paper proposed a geometrically-driven underground 

camera modeling and calibration method for Boom-type 

roadheader. An underground camera model was established 

under coplanarity constraints, which not only accounts for the 

refraction effect of the two-layer glasses but also preserve the 

collinearity relation. On this basis, the geometrically-driven 

calibration of underground camera was explored, the relative 

orientation between the camera and target was accurately 

described through refraction compensation. The hybrid LM-

PSO algorithm was proposed to further optimize the calibration 

results. Experimental results confirmed that the image points 

distortion can be well rectified by the proposed calibration 

algorithm. Moreover, the infrared-LEDs target makes it 

affordable for underground camera calibration in coal mine. 

The accuracy of the geometrically-driven cutting-head pose 

estimation system was within 25.06 mm, which increased by 

55.73% in comparison with the conventional methods. Future 

work will focus on the validation of the proposed method in real 

coal mining application.  
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