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ABSTRACT

We simulate stacked observations of nearby hot X-ray coronae associated with galaxies in the EAGLE

and Illustris-TNG hydrodynamic simulations. A forward modeling pipeline is developed to predict 4-

year eROSITA observations and stacked image analysis, including the effects of instrumental and

astrophysical backgrounds. We propose an experiment to stack z ≈ 0.01 galaxies separated by specific

star-formation rate (sSFR) to examine how the hot (T ≥ 106 K) circumgalactic medium (CGM)

differs for high- and low-sSFR galaxies. The simulations indicate that the hot CGM of low-mass

(M∗ ≈ 1010.5 M�), high-sSFR (defined as the top one-third ranked by sSFR) central galaxies will be

detectable to a galactocentric radius r ≈ 30 − 50 kpc. Both simulations predict lower luminosities at

fixed stellar mass for the low-sSFR galaxies (the lower third of sSFR) with Illustris-TNG predicting

3× brighter coronae around high-sSFR galaxies than EAGLE. Both simulations predict detectable

emission out to r ≈ 150 − 200 kpc for stacks centered on high-mass (M∗ ≈ 1011.0 M�) galaxies,

with EAGLE predicting brighter X-ray halos. The extended soft X-ray luminosity correlates strongly

and positively with the mass of circumgalactic gas within the virial radius (fCGM). Prior analyses of

both simulations have established that fCGM is reduced by expulsive feedback driven mainly by black

hole growth, which quenches galaxy growth by inhibiting replenishment of the ISM. Both simulations
predict that eROSITA stacks should not only conclusively detect and resolve the hot CGM around L∗

galaxies for the first time, but provide a powerful probe of how the baryon cycle operates, for which

there remains an absence of consensus between state-of-the-art simulations.

Keywords: Circumgalactic medium, Galactic winds, Galaxy formation, Hydrodynamical simulations,

Supermassive black holes, X-ray observatories

1. INTRODUCTION

Extended hot X-ray coronae have long been theorized

to supply the gas necessary for star-formation in disc

galaxies (Spitzer 1956; White & Rees 1978). White &

Frenk (1991) predicted emission levels that should have

Corresponding author: Benjamin Oppenheimer

benjamin.oppenheimer@colorado.edu

been readily detected by Chandra and XMM-Newton.

The initial surprise of weak or no detection of soft X-

ray emission from disc galaxies (e.g. Benson et al. 2000;

Li et al. 2006) has been interpreted as a signature of

superwind feedback removing gas from halos and leaving

behind substantially flattened central hot gas profiles

(Crain et al. 2010).

Pointed observations have revealed X-ray coronae as-

sociated with individual, isolated elliptical galaxies (e.g.
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Forman et al. 1985; O’Sullivan et al. 2001; Goulding

et al. 2016), whilst stacking ROSAT all-sky survey data

about the coordinates of mainly early-type galaxies has

revealed a strong correlation between the inferred CGM

mass fraction and galaxy mass (Anderson et al. 2015).

Detections associated with individual disc galaxies are

primarily limited to rare, massive cases (e.g. Bogdán

et al. 2013a,b; Li et al. 2017).

The eROSITA instrument on the Spectrum-Roentgen-

Gamma mission (Merloni et al. 2012) launched in July

2019 will map the entire sky at 30× greater sensitiv-

ity and higher spatial resolution than ROSAT, opening

new possibilities to not only detect, but also resolve, the

structure of emission from galaxies Milky Way-mass and

below. Tenuous, diffuse X-ray halos around L∗ galaxies

(M∗ & 1010 M�) are a ubiquitous prediction of realistic

cosmological hydrodynamical simulations, including the

EAGLE (Schaye et al. 2015; Crain et al. 2015; McAlpine

et al. 2016) and Illustris-TNG (Pillepich et al. 2018; Nel-

son et al. 2018a, hereafter TNG) simulations.

Both these simulations broadly reproduce fundamen-

tal galaxy properties, including stellar mass functions,

passive galaxy fractions, and morphological types in

∼ 1003 Mpc3 hydrodynamic volumes containing thou-

sands of L∗ galaxies. However, EAGLE and TNG apply

distinct prescriptions for stellar and super-massive black

hole (SMBH) feedback that result in markedly different

CGM masses at z = 0 (Davies et al. 2020, hereafter

D20). The feedback energy imparted over cosmic time is

often enough to unbind a significant fraction of the CGM

beyond the virial radius (Oppenheimer et al. 2020, D20).

The notable differences in how energetic feedback oper-

ates as a function of galaxy type between EAGLE and

TNG should make divergent and testable predictions for

observations by X-ray telescopes with large collecting

areas (Davies et al. 2019; Truong et al. 2020).

Observational characterization of the CGM has to

date been driven primarily by UV absorption line obser-

vations of H i and metal ions in sightlines intersecting the

gaseous environments of galaxies (e.g. Tumlinson et al.

2011; Stocke et al. 2013; Liang & Chen 2014; Turner

et al. 2014). These UV species mainly trace T = 104−5.5

K gas (e.g. Ford et al. 2013; Rahmati et al. 2016), with

diffuse metals indicating the presence of heavy elements

transported from the ISM by superwind feedback (e.g.

Aguirre et al. 2001; Oppenheimer et al. 2016; Nelson

et al. 2018b). The total mass of the UV-traced CGM

appears to be greater than that of the central galaxy

(Werk et al. 2014; Prochaska et al. 2017), but simula-

tions predict hot (T ≥ 106 K) CGM masses that fur-

ther outweigh the T < 106 K CGM, even for L∗ disc

galaxies (Ford et al. 2014; Oppenheimer et al. 2018).

The hot CGM component therefore has the potential to

prove more constraining for the total gaseous content of

galactic halos. Additionally, the hot component almost

certainly contains the vast majority of the CGM energy,

which, if measured, would provide essential constraints

on the ultimate fate of momentum and entropy from

feedback.

The eROSITA mission will average a 2 ksec integra-

tion upon the release of its final all-sky survey (eRASS:8)

comprising 4 years of observations. This letter makes

eROSITA stacking predictions for nearby galaxies from

the EAGLE and TNG simulations. The 15” spatial res-

olution of eROSITA should allow interior X-ray profiles

to be resolved for nearby halos, which is why we propose

stacking galaxies at z ≈ 0.01.

In §2, we introduce the EAGLE and TNG simulations

and our forward modeling technique to predict results

from stacked eROSITA observations. We present the

main results in §3 and discuss their interpretation in §4.

We summarize in §5. We use a cosmology of ΩM =

0.307, ΩΛ = 0.693, H0 = 67.77 km s−1 Mpc−1, and

Ωb = 0.04825 for our mock observations.

2. METHODS

2.1. Simulations

The EAGLE Ref-L100N1504 simulation (Schaye et al.

2015) is a 1003 Mpc3 smoothed particle hydrodynam-

ics (SPH) run with a modified version of the Gadget-

3 code (Springel 2005) using a pressure-entropy imple-

mentation of SPH. It uses 15043 SPH and dark mat-

ter (DM) particles. The TNG-100 simulation (Pillepich

et al. 2018) uses the AREPO (Springel 2010) moving

mesh hydro solver in a volume of 1103 Mpc3 with 18203

DM particles and initial gas cells. Both simulations have

∼ 1 kpc gravitational softening lengths and gas and stel-

lar mass resolutions of ∼ 106 M�. The two models in-

corporate significantly different subgrid prescriptions for

stellar and AGN feedback, but in both cases the relevant

parameters were calibrated to ensure the reproduction

of key observables. For EAGLE, these were present-day

stellar masses (M∗), galaxy disc sizes, and SMBH masses

(MSMBH). For TNG, the cosmic star formation history,

galaxy star formation rates (SFR), and the gas fractions

of galaxy groups were also considered. We use the z = 0

snapshot that contains 2199 (3808) central galaxies with

M∗ > 1010 M� for EAGLE (TNG).

2.2. Simulation galaxy samples

To make observationally-reproducible samples, we se-

lect simulated central galaxies based on M∗ and sSFR

≡ SFR/M∗. We define two stellar mass bins called “low-

mass” and “high-mass.” We use the EAGLE simula-
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Table 1. Simulation galaxy counts in mock samples

EAGLE Low-Mass, M∗ = High-Mass, M∗ =

1010.20−10.70 M� 1010.70−11.20 M�

# High-sSFR 357 144

sSFR Threshold ≥ 10−10.26 yr−1 ≥ 10−10.51 yr−1

M200 Range1 1011.92−12.30 M� 1012.37−12.87 M�

# Low-sSFR 356 143

sSFR Threshold < 10−10.67 yr−1 < 10−11.54 yr−1

M200 Range 1011.97−12.45 M� 1012.50−13.01 M�

Illustris-TNG Low-Mass, M∗ = High-Mass, M∗ =

1010.38−10.82 M� 1010.82−11.39 M�

# High-sSFR 482 200

sSFR Threshold ≥ 10−10.21 yr−1 ≥ 10−11.14 yr−1

M200 Range 1011.91−12.19 M� 1012.31−12.98 M�

# Low-sSFR 481 199

sSFR Threshold < 10−12.38 yr−1 < 10−12.60 yr−1

M200 Range 1011.99−12.43 M� 1012.41−12.97 M�

1 1σ range for M200 values in sample.

tion to define the mass ranges, such that the low-mass

(high-mass) bin spans centrals from M∗ = 1010.2−10.7

(1010.7−11.2) M�. Stellar mass limits can be converted

to volume densities by rank-ordering central M∗ and

selecting the volume density for galaxies greater than

a given M∗ (e.g. M∗ > 1010.2 M� in EAGLE corre-

sponds to 1.60 × 10−3 Mpc−3). Hence, the low-mass

(high-mass) limits correspond to volume densities of

1.60 × 10−3 − 5.13 × 10−4 (5.13 × 10−4 − 5.6 × 10−5)

Mpc−3. To select TNG galaxies with the same vol-

ume density, we need to use appreciably higher mass

limits, because TNG has 0.1 − 0.2 dex higher average

stellar masses than EAGLE at M∗ = 1010.4−11.4 M�.

The TNG low- and high-mass bins are 1010.38−10.82 and

1010.82−11.39 M�. By normalizing to volume density in

two simulations that use nearly identical cosmologies,

the halo masses are similar across the two simulations

for each bin (Table 1).

We create samples divided into bins of sSFR and de-

fine high and low-sSFR as the upper and lower thirds of

the sSFR distribution. The resulting sSFR thresholds

for each M∗ bin are listed in Table 1. The main motiva-

tion for these samples is that D20 showed that, for both

EAGLE and TNG, sSFR is highly correlated with the

gas content of the CGM, defined as

fCGM ≡
Mgas(R < R200)

M200(R < R200)
× ΩM

Ωb
, (1)

where R200 and M200 are respectively the radius and

mass of the sphere, centered on a galaxy, with mean

enclosed density of 200ρcrit, and ρcrit is the critical den-

sity for closure. A key objective of this stacking exercise

will be to assess whether the diffuse X-ray luminosity of

galaxies (at fixed M∗) indeed correlates with fCGM.

TNG has 35% more volume than EAGLE, and there-

fore a larger sample size for fixed M∗. TNG has a

wider range of sSFR values resulting in a larger gap in

sSFR thresholds. Our aim is to design an experiment

where observers can create samples of galaxies ranked by

sSFR, without reliance on matching absolute values. For

brevity, the intermediate sSFR bin is not discussed. We

exclude halos with M200 > 1013.3 M�, which only affects

high-mass samples, because our mocks indicate these X-

ray halos are individually detectable by eROSITA.

We stack 100 (50) low-mass (high-mass) galaxies at

a time, observed at z = 0.01. Based on volume densi-

ties for both sSFR bins, we expect 230 (95) low-mass

(high-mass) galaxies per bin to be located at an average

distance of z = 0.01 for the entire sky with galactic lat-

itude | b |> 15◦. We make conservatively small samples

given that ground-based surveys and/or data releases

may access less than half of the sky. Our goal is to

create the nearest sample, limited by the volume of the

local Universe, that can be used to stack and spatially

resolve extended emission. Galaxies in the real Universe

will reside at a variety of distances, but our z = 0.01

stacks are representative of local galaxies where contam-

ination from galactic sources (X-ray binaries, hot ISM)

should be mostly limited to the inner r = 1′ (12 kpc at

z = 0.01). We tested stacking thousands of z = 0.03

galaxies, finding similar results but with a reduced abil-

ity to resolve the emission structure for r . 30 kpc.

2.3. Forward Modeling Pipeline

We use the pyXSIM package1 (ZuHone & Hallman

2016) to create a SIMPUT2 file of mock photons ema-

nating from hot, diffuse plasma out to 3R200 for each

halo. An example EAGLE halo is shown in the left four

panels of Fig. 1. For each fluid element with T > 105.3 K

and hydrogen number density nH < 0.22 cm−3 within

this region, pyXSIM randomly generates photons us-

ing a Monte-Carlo sampling of X-ray spectra from the

Astrophysical Plasma Emission Code (APEC; Smith

et al. 2001). APEC spectra assume collisional ionization

equilibrium given the density, temperature, and metal-

licity (including 9 individually-tracked abundances) of

1 http://hea-www.cfa.harvard.edu/∼jzuhone/pyxsim/
2 http://hea-www.harvard.edu/heasarc/formats/simput-1.1.0.pdf

http://hea-www.cfa.harvard.edu/~jzuhone/pyxsim/
http://hea-www.harvard.edu/heasarc/formats/simput-1.1.0.pdf
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Figure 1. Left 4 panels: An EAGLE M200 = 1012.58 M� halo hosting M∗ = 1010.73 M� star-forming, late-type galaxy. The
density (upper left) and soft (0.5-2.0 keV) X-ray emissivity (upper right) are shown in 400 × 400 kpc snapshot images. A mock
z = 0.01 eROSITA count map is generated (lower left) and point source-like objects are masked, including CXB sources, the
prominent satellite in the upper right, and emission on top of the galaxy, leaving behind an extended halo (lower right). This
halo is brighter than typical, LX,>10kpc = 1041erg s−1, and most halos do not show individually detectable emission. Right 4
panels: Mock eROSITA stacks of high-sSFR galaxies, including stacks of 100 low-mass galaxies (left panels) and 50 high-mass
galaxies (right panels) for EAGLE (upper panels) and TNG (lower panels). These panels also span 400 × 400 kpc.

each fluid element. We do not simulate X-rays from the

ISM.

In addition to the source photons, we include simu-

lated Galactic foreground emission and a Cosmic X-ray

background (CXB) randomly-generated using the SOXS

package3. Galactic absorption assuming a column of

NHI = 2 × 1020cm−2 is applied to the source and CXB

photons.

The SIXTE simulation software (Dauser et al. 2019)

uses SIMPUT file inputs to create eROSITA 2 ksec ob-

servations centered at the position of the galaxy. The

erosim tool generates event files for the seven eROSITA

cameras and combines them into one image, as shown

in Fig. 1 (lower left panel) with energy clipped to show

only soft X-ray counts (0.5−2.0 keV). The image, which

includes the instrumental background and point spread

function, is dominated by CXB photons.

3 http://hea-www.cfa.harvard.edu/∼jzuhone/soxs/; background
described in http://hea-www.cfa.harvard.edu/∼jzuhone/soxs/
users guide/background.html

The CIAO (Fruscione et al. 2006) wavdetect routine

detects concentrated sources, including CXB sources,

bright satellites, and point source-like emission at the

position of the galaxy, which we then mask. Given that

we do not include galactic ISM nor expected contribu-

tions from X-ray binaries, which should dominate at the
position of the stellar component, we focus on emission

outside a projected radius r > 10 kpc at z = 0.01. In-

dividual masked images with 9.6′′ pixels are added to-

gether in our mock stacks, as are the individual exposure

maps that include the wavdetect-generated masks. We

make an off-source stack using the same procedure per-

formed without galaxy halo emission. Both stacks are

divided by their respective summed exposure maps to

obtain cts s−1 arcmin−2, and the off-source stack is sub-

tracted from the on-source stack. Four reduced z = 0.01

stacks of high-sSFR galaxies, low-mass and high-mass

samples for EAGLE and TNG, are shown in Fig. 1

(right panels).

3. RESULTS

Figure 2 shows radial soft X-ray (0.5−2.0 keV) surface

brightness profiles (SX) for the four samples of low-mass

http://hea-www.cfa.harvard.edu/~jzuhone/soxs/
http://hea-www.cfa.harvard.edu/~jzuhone/soxs/users_guide/background.html
http://hea-www.cfa.harvard.edu/~jzuhone/soxs/users_guide/background.html
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Figure 2. Simulated eROSITA 4-year of mean soft X-ray surface brightness profiles around low-mass (left) and high-mass
(right) halos in EAGLE and TNG. Colored lines indicate one mock survey of 100 low-mass and 50 high-mass z = 0.01 galaxy
stacks with Poisson error bars, which should be reproducible with half the all-sky survey. Shading indicates 1σ spreads from 20
mock surveys. Average LX,>10kpc/erg s−1 values calculated from the stacks are listed in the legend. Both simulations predict
brighter X-ray halos around higher sSFR galaxies. TNG predicts a greater dichotomy at low mass, and EAGLE predicts brighter
halos overall at high mass. eROSITA should enable detection of star-forming galaxy halos out to 30 − 50 kpc around low-mass
galaxies and of all halos out to 150 − 200 kpc around high-mass galaxies. The total astrophysical and instrumental background
is indicated by the gray dashed lines. We plot example error bars in gray indicating 3% of the background level in the left panel
to demonstrate the effect of possible systematic errors.

(left panel) and high-mass (right panel) galaxies. Purple

(orange) lines show EAGLE (TNG) simulations for high-

sSFR (solid) and low-sSFR (dotted) samples. There are

100 low-mass and 50 high-mass galaxies in each mock

survey, shown along with Poisson error bars. Shaded re-

gions correspond to 1σ spreads of 20 mock surveys. We
calculate and list the average extended soft X-ray lumi-

nosity, LX,>10kpc, by integrating SX between 10 and 200

kpc, and converting to erg s−1 using eROSITA’s area re-

sponse function with an average collecting area of 2100

cm2 and a mean photon energy of 0.8 keV that we obtain

from our SIMPUT files.

Most z = 0.01 low-mass stacks appear to be detectable

out to 50 kpc at a level of 10−4 cts s−1 arcmin−2. TNG

predicts high-sSFR galaxies to be brighter in the inner

50 kpc and have 15× higher luminosities than low-sSFR

galaxies. EAGLE predicts a similar trend, but a much

smaller difference of 2.5×. The coronae of low-mass,

high-sSFR galaxies are 3× brighter in TNG than in EA-

GLE. All high-mass stacks appear to be detectable out

to r & 200 kpc with EAGLE predicting more luminous

X-ray halos. Both simulations predict stronger interior

(r < 30 kpc) emission around high-sSFR galaxies, but

EAGLE predicts very similar profiles at r > 50 kpc

in contrast to TNG, which predicts stronger emission

around high-sSFR galaxies everywhere.

The detection of extended hot halos relies on sta-

ble subtraction of the background, which has a level of

2.5−3.0×10−3 cts s−1 arcmin−2 and is indicated by the

gray dashed line. Our pipeline suggests that it should

be possible to detect count rates at up to 30× below

the background, which agrees well with the predicted

background calculated in the eROSITA Science Booklet

(Merloni et al. 2012). The error bars in Fig. 2 indi-

cate only Poisson errors from the source and background

stacks added in quadrature. The shaded regions repre-

sent an estimate of cosmic variance when stacking the

galaxies contained within the simulation volumes, which

can exceed Poisson errors, especially for low-mass, low-

sSFR stacks.

Systematic errors that are not included in our pipeline

may make it more difficult to detect source counts as

low as 3% of the background level. We demonstrate

the size of systematic errors using three stand-alone er-

ror bars in the left panel if we assume systematic er-

rors of 3% the background, which is a precedent ex-



6 Oppenheimer et al.

pected from previous Chandra and XMM-Newton data

processing. This would raise the detectability threshold

to ∼ 2× 10−4 cts s−1 arcmin−2, reducing the maximum

radius out to where we can detect low-mass (high-mass),

high-sSFR stacked emission to ∼ 30 (∼ 150) kpc.

Smaller stacks including fewer galaxies should be able

to test these models. We predict stacking only 30 low-

mass galaxies will distinguish TNG high- and low-sSFR

stacks, as well as EAGLE and TNG high-sSFR stacks

from each other. This also means that our proposed

experiment could bear similar results with less total in-

tegration time using 100 low-mass galaxies, perhaps as

soon as the eRASS:2 (1-year) data release.

We also perform a test where we take the median

stacked SX instead of the mean, finding the same re-

sults, including integrated LX,>10kpc values, within 0.2

dex. This indicates extended emission is smooth, be-

cause discrete sources would create a patchy distribution

and much lower medians relative to means.

The eRASS:8 scanning pattern will provide deeper

coverage at the ecliptic poles with 550 deg2 scanned at

> 10 ksec; therefore we offer predictions for the distribu-

tions of individual halo emission that eROSITA should

be able to probe in these deeper regions. We rank order

halos by extended emission outside r = 10 kpc (50” at

z = 0.01) in each low-mass sample, and plot the cumu-

lative photon contribution in Figure 3. The brightest

low-mass stack, TNG high-sSFR galaxies, is also the

most uniformly distributed, but nonetheless both simu-

lations predict that low-sSFR galaxies are much more

dominated by outliers than their high-sSFR counter-

parts. We quantify the inequality of SX using the Gini

statistic

GSX
=

n∑
i=1

n∑
j=1

| LX,>10kpc,i − LX,>10kpc,j |

2n2L̄X,>10kpc
, (2)

where L̄X,>10kpc is the mean extended luminosity of

n galaxies. We report GSX
, which is twice the geo-

metric area between the locus of equality (solid black

line) and each colored curve in Fig. 3. For EAGLE

(TNG), high-sSFR galaxies GSX
= 0.66 (0.51), and

for low-sSFR galaxies GSX
= 0.83 (0.83). Open sym-

bols show the fraction of galaxies that have CGM lu-

minosities smaller than the corresponding value indi-

cated in the legend. For example, open squares show

that 58% (64%) of extended emission comes from the

13% (26%) of brightest high-sSFR low-mass halos with

LX,>10kpc ≥ 1040.0erg s−1 in EAGLE (TNG). Low-

sSFR halos have more diversity in M200, which results

in the brightest halos dominating the low-mass stacks.

High-mass galaxies have GSX
= 0.60− 0.73.

Figure 3. Low-mass z = 0.01 galaxy samples are rank-
ordered by soft X-ray photon counts outside r = 10 kpc to
demonstrate the relative share of extended emission arising
from different galaxies within each stack. The black line
demonstrates a completely equal distribution. High-sSFR
X-ray halos are distributed more uniformly than low-sSFR
halos. Symbols indicate the fraction of galaxies with ex-
tended luminosities fainter than the values listed in the leg-
end. Deep eROSITA observations of individual halos will be
able to complement stacking observations by constraining
the upper portions of these curves.

We also experiment using fixed stellar mass bins, be-

cause X-ray emission correlates with sSFR and the in-

tegrated star formation is of course encoded in M∗. Un-

surprisingly, EAGLE (TNG) luminosities increase (de-

crease) by 0.1−0.2 dex, owing to EAGLE stellar masses

increasing relative to TNG compared to the normalized

volume density samples. Halo masses are higher for EA-

GLE than TNG when using fixed M∗ bins, while they

are mainly overlapping for the normalized volume den-

sity samples (see Table 1 for M200 mass ranges).

4. DISCUSSION

Other publications have compared these simulations

to existing X-ray observations of similar systems. Davies

et al. (2019, their Appendix A) show EAGLE LX val-

ues are in the range of individually observed objects at

M200 . 1013 M�, but the extended emission around

more massive halos in EAGLE (mostly excluded in our

samples) is too bright (see also Schaye et al. 2015).

Truong et al. (2020) showed TNG predicts ∼ 10×
greater emission from galaxies at fixed mass with blue

colors than red colors, which is consistent with our low-
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mass sSFR-divided samples; however, their approach is

quite different to ours, as they concentrate on emission

within the half-light radius of the galaxy and exclude

the faint X-ray halos that are our focus. The Truong

et al. (2020) low-mass star-forming central luminosities

appear to be brighter than the late-types observed by

Li & Wang (2013), but it remains to be seen how much

of a discrepancy this is and how the extended emission

compares.

Existing deep imaging of a handful of individual X-ray

halos is capable of probing the SX values of our stacks,

as in the cases of massive spirals (NGC 1961, (Ander-

son et al. 2016); NGC 6753, (Bogdán et al. 2017) and

the sample of Li et al. (2017)). The emission at r ≈ 50

kpc from these halos is several times less than that of

the high-mass high-sSFR stacks from both simulations.

These galaxies were targeted based on being X-ray-

bright and massive late-types. If they are representative

of the galaxies in our eROSITA simulated stacks, the

observations suggest that both EAGLE and TNG over-

predict extended emission from high-mass star-forming

galaxies in general. The hot gas fractions of galaxy

groups in EAGLE are known to be too high (Schaye

et al. 2015), and it is plausible that the expulsion of gas

from galaxy-scale halos is also too weak. We also find

that the metallicity of the central hot CGM of EAGLE

galaxies is generally higher than the ∼ 0.1 Z� derived

for NGC 1961 and NGC 6753. However, there is the pos-

sibility that these selected galaxies are not wholly rep-

resentative of the local volume-selected sample (without

regard to galaxy type) presented above. Hence, in the

absence of extensive additional XMM-Newton or Chan-

dra observations, only the proposed eROSITA dataset

can provide definitive constraints. If eROSITA observes

fainter stacked emission than either EAGLE or TNG,

then future simulations of the galaxy population will

need to ensure that in addition to reproducing key stel-

lar properties of galaxies, the implementation and cali-

bration of their feedback implementations satisfies these

complementary constraints.

4.1. X-ray emission traces CGM baryon content

While soft X-ray emission around L∗ galaxies is

strongly biased to the densest gas and is dominated

by metal-line emission (Crain et al. 2013), Davies et al.

(2019) showed that LX is highly correlated with the to-

tal CGM gas content in EAGLE. We show the extended

X-ray luminosity as a function of fCGM in Fig. 4. Medi-

ans and 1σ spreads are indicated along the top (fCGM)

and to the right (LX,>10kpc).

We propose that extended emission in eROSITA

stacks provides an effective proxy for CGM baryon con-

tent. The low-mass TNG bin has the largest difference

between high and low-sSFR fCGM values (0.54 vs. 0.12;

D20), which primarily drives the remarkable prediction

from TNG that high-sSFR galaxies should have 15×
greater coronal X-ray luminosity than low-sSFR galax-

ies of the same M∗. The difference in LX,>10kpc is only

a factor of 2.5 for EAGLE, which reflects the narrower

range of fCGM (medians of 0.29 vs. 0.16 for these sam-

ples).

Typical halo masses in the low-mass stacks are M200 ≈
1012.0−12.3 M� with low-sSFR galaxies having a median

halo mass 0.15 dex higher than high-sSFR galaxies in

both simulations. LX,>10kpc at fixed fCGM is higher

for more massive halos, where M200 is denoted by the

symbol size in Fig. 4. The high-mass stacks exhibit

the same overall behavior, but with galaxies occupying

more massive halos (M200 ≈ 1012.4−13.0 M�). There

is also less difference between the high and low-sSFR

subsamples and less scatter.

We perform linear regressions to produce least squares

fits to LX,>10kpc using fCGM and M200 in logarithmic

space, and plot the results in inset panels of Fig. 4 with

the best-fitting linear combinations to predict simulated

LX,>10kpc values listed below the x-axis. The power law

exponents for fCGM range between 1.55−2.01, which are

greater than that for M200 that range between 1.20 −
1.63. This demonstrates that extended X-ray emission

is well-described as a strong function of both variables

with fCGM having a somewhat greater effect on average.

4.2. SMBH feedback can unbind gaseous halos

D20 showed that the central SMBH injects enough

feedback energy over its integrated lifetime to unbind

a significant fraction of the CGM gas in both simula-

tions. In the EAGLE low-mass bin, low-sSFR galax-

ies have substantially higher SMBH masses (median

MSMBH = 107.6 M�) than their high-sSFR counterparts

(MSMBH = 106.8 M�), which was shown by Davies et al.

(2019) to be the signpost of AGN feedback expelling

CGM gas and curtailing z = 0 star formation. Oppen-

heimer et al. (2020) showed that the expulsion of CGM

is a direct result of AGN feedback occurring primarily at

z > 1 in EAGLE, which results in lower fCGM values for

z = 0 low-sSFR, redder galaxies. EAGLE uses a ther-

mal AGN feedback model (Booth & Schaye 2009) that

applies a single accreted rest mass-to-energy efficiency.

TNG also shows a strong anti-correlation between

MSMBH and fCGM, which also arises from the regulation

of star formation via the SMBH expulsion of CGM gas

(Terrazas et al. 2019, D20). However, the corresponding

median BH masses for the high and low-sSFR low-mass

TNG samples are MSMBH = 108.1 and 108.3 M� re-



8 Oppenheimer et al.

Figure 4. Extended (r > 10 kpc) X-ray emission as a function of CGM mass fraction (fCGM) divided into high and low-sSFR
galaxies for low-mass (left panels) and high-mass (right panels) EAGLE (upper panels) and TNG (lower panels) halos. Median
and 1σ spreads are indicated by large points with error bars. High-sSFR galaxies reside in halos with higher gas fractions than
low-sSFR galaxies, with this trend being most pronounced for low-mass TNG galaxies. Extended X-ray luminosity is strongly
correlated with fCGM and is also dependent on M200 as indicated by symbol size. fCGM equals unity for a halo that retains the
cosmic proportion of baryons entirely in the CGM (see Eq. 1). Inset panels show two-parameter linear regressions indicating
the combinations of log[fCGM] and log[M200/M�] that best reproduce log[LX,>10kpc] (equations below inset x-axes, black lines
represent fits).

spectively. This smaller MSMBH spread belies the much

larger difference in fCGM, and arises because the kinetic

mode AGN feedback, which operates when the central

BH reaches a mass of MSMBH ≈ 108 M�, is far more ef-

ficient at ejecting halo gas than the TNG thermal mode

(Weinberger et al. 2017). The small scatter and high

values in TNG MSMBH at M200 . 1012 M� appear dif-

ficult to reconcile with observations (e.g. Li et al. 2019)

4.3. Is the CGM dominated by cool or hot baryons?

COS-Halos UV detections of the inner, cool CGM in-

dicate that metal-enriched gas at T ≈ 1 − 2 × 104 K

traces an average nH ≈ 10−3.1 cm−3 at r = 20− 50 kpc

from M∗ = 1010.2−11.2 M� galaxies (Prochaska et al.

2017). Assuming pressure equilibrium with a T & 106

K halo, the hot gas density at the same radii would be

nH . 10−5 cm−3 (Werk et al. 2014). These hot halo den-

sities are at least 1 dex lower than is predicted by both

EAGLE and TNG at r < 50 kpc, and would produce a

hot CGM of much lower luminosity. Combined with the

Prochaska et al. (2017) calculation that most baryons in

L∗ halos are accounted for in the cool CGM, we must

consider the possibility that the X-ray CGM could be

dimmer than these simulations predict. Therefore, our
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proposed eROSITA stacking experiment provides a cru-

cial constraint on the physical nature of the hot halo,

which must dominate the CGM volume according to the

low filling factor of cool absorbers (Stocke et al. 2013)

but not necessarily the mass. The over-predictions of

existing X-ray emission measurements discussed above

may point to greater cool baryon fractions than in either

simulation.

5. SUMMARY

We develop a forward modeling pipeline that produces

mock eROSITA stacked observations of X-ray emission

from halos (r > 10 kpc, nH < 0.22 cm−3) around central

galaxies using the EAGLE and Illustris-TNG cosmolog-

ical hydrodynamical simulations. Both simulations pre-

dict that the eROSITA 4-year all-sky survey, eRASS:8,

will result in the robust detection of extended, soft X-

ray emission from the hot CGM in stacking analyses.

Our main results are as follows:

1. X-ray halos hosting high-sSFR galaxies with M∗ ≈
1010.2−10.8 M� should be detectable out to 30−50

kpc and be brighter than for low-sSFR galaxies at

fixed M∗. Emission around more massive galaxies,

M∗ ≈ 1010.7−11.3 M�, should be detectable out to

150− 200 kpc.

2. TNG predicts a greater dichotomy between high-

and low-sSFR X-ray halos at low mass than EA-

GLE. This is driven by a greater proportion of

baryons being retained by star-forming TNG ha-

los. EAGLE predicts brighter low-sSFR halos

than TNG, driven by greater baryon fractions

in low-sSFR EAGLE halos. TNG predicts 3×
brighter high-sSFR halos than EAGLE.

3. Stacked X-ray luminosities are dominated by the

brightest halos, more so for low-sSFR than high-

sSFR galaxies at low mass. Deeper eROSITA sur-

veying at the ecliptic poles should allow individual

detections of the brightest halos and constrain the

distribution of X-ray halo luminosities contribut-

ing to stacks.

4. X-ray halos are sensitive probes of the baryon cy-

cle that fuels star-formation and is disrupted by

feedback, especially from SMBHs. X-ray surface

brightness distributions should indicate whether

the current generation of simulations ejects a suffi-

cient fraction of the CGM, and even help to differ-

entiate between the markedly different implemen-

tations of SMBH feedback employed by EAGLE

and TNG.

Stacking eROSITA observations will probe galaxies at

a variety of distances, and better signal-to-noise will be

achieved by stacks of > 104 galaxies out to z ≈ 0.05.

Additionally, using spectral signatures (eROSITA has

better than 0.1 keV resolution) to separate diffuse gas

emission from background contaminants, and measure

temperature and metallicity should be possible. There-

fore, our proposed experiment presented here may rep-

resent the lowest hanging fruit for CGM science that

eROSITA can achieve.
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