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 16 

Abstract 17 

Mesoporous silica nanoparticles (MSNs) have received increasing interest due to 18 

their tunable particle size, large surface area, stable framework, and easy surface 19 

modification. They are increasingly being used in varying applications as delivery 20 

vehicles including bio-imaging, drug delivery, biosensors and tissue engineering etc. 21 

Precise structure control and the ability to modify surface properties of MSNs are 22 

important for their applications. This review summarises the different synthetic 23 

methods for the preparation of well-ordered MSNs with tunable pore volume as well 24 

as the approaches of drugs loading, especially highlighting the facile surface 25 
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functionalization for various purposes and versatile biomedical applications in 1 

oncology. Finally, the challenges of clinical transformation of MSNs-based 2 

nanomedicines are further discussed. 3 

Keywords: Mesoporous silica nanoparticles; synthesis method; surface 4 

functionalization; drug delivery; biomedical application. 5 

1. Introduction 6 

With the rapid development of nanotechnology, a broad range of nanomedicines 7 

have been developed for drug delivery, diagnosis, and imaging [1]. Compared with 8 

traditional drugs, nanomedicines exhibit many advantages such as improved 9 

pharmacokinetic profiles, increased bioavailability, elevated drug targeting 10 

distribution capability, and reduced toxicity [2]. A series of organic nano-carriers such 11 

as liposome, albumins, and polymer micelles have achieved successful clinical 12 

translation. On the contrary, most inorganic nanomedicines are still at the stage of 13 

preclinical research. Among these, mesoporous silicas nanoparticles (MSNs) have 14 

been considered to be an attractive and promising candidate due to their unique 15 

properties including facile synthesis and functionalization, tailorable mesoporous 16 

structure, high surface areas, large pore volumes, good physicochemical stability, and 17 

favorable biocompatibility [3].  18 

Silica has been classified as “Generally Recognized As Safe” (GRAS) by the FDA for 19 

over 50 years and used in tablet pharmaceutical preparations as an excipient [4]. In 20 

the past few decades, silica-based nanoparticles have attracted extensive research as 21 

the drug delivery carriers. And in 1983, amorphous silica was first proposed as a drug 22 

carrier [5]. In 1992, the first ordered mesoporous molecular sieves called MCM-41 was 23 

synthesized by Kresge [6]. This achievement has been regarded as a breakthrough in 24 

MSNs fabrication, and proposed the potential application of silica based nanocarrier. 25 

In 2001, the MCM-41 mesoporous silica nanoparticle was first developed as a drug 26 

delivery platform for encapsulation of anti-inflammatory drug ibuprofen, this work 27 

opened up the possibility to design silica-based nanoparticle for medical applications 28 
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[7]. In 2003, Lai et al. reported that cadmium sulfide-functionalized MCM-41 1 

mesoporous silica nanoparticles exhibited the controlled release profile of 2 

vancomycin and adenosine triphosphate, and profiled this drug delivery system (DDS) 3 

which possesses good biocompatibility and high delivery efficiency [8]. This 4 

achievement further motivated researchers to develop silica-based nanoparticles for 5 

biomedical applications. Since then, MSNs have become one of the significant 6 

research frontiers, and a series of MSNs based nanocarriers with different 7 

compositions, structure, and morphologies have been successfully designed and 8 

synthesized [9-11]. 9 

Nowadays, MSNs are widely used as nanocarriers for the treatment of complex 10 

diseases, however, the FDA approval and further clinical translation of MSNs remain 11 

great challenges. The unique properties of MSNs, including uniform particle size, 12 

controllable pore volume, and fine biocompatibility, promote its further biomedical 13 

application. The number of studies on MSNs has increased dramatically and their 14 

applications in drug, gene, and protein delivery are emphasized in numerous reviews 15 

[1, 12-14]. The recent advancements in MSNs towards diagnostic and theranostic 16 

applications for cancer are also summarized [15-17]. These reviews mainly provide a 17 

comprehensive background of MSNs in biomedical application. 18 

 In this review, the methods of synthesis, modulation of pore sizes, surface 19 

functionalization, drug loading of MSNs are highlighted and their applications in drug 20 

delivery are summarized. 21 

2. Synthesis of MSNs  22 

2.1 Synthesis approach of MSNs 23 

2.1.1 Sol-gel process  24 

The majority of MSNs are fabricated through the Stöber method, also known as sol-25 

gel process [18]. The synthesis can be accomplished in the basic, acidic, or neutral 26 

aqueous solution, with two critical steps: hydrolysis and condensation. In general, 27 
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pore templates (amphiphilic surfactants and biomacromolecules) could self-assemble 1 

into micelles at a concentration higher than the critical micelle concentration (CMC). 2 

Following this, the silica precursors condensate over the templates and form a silica 3 

wall around the surface of the micelles. In the final step, the template surfactant is 4 

completely removed either by the traditional extraction or calcination to generate 5 

pores as shown in Fig.1 [19]. 6 

Hydrolysis: ≡Si-OR + H2O ⇌≡Si-OH + ROH 7 

Condensation: ≡Si-OH + OH-Si≡ ⇌≡Si-O-Si≡ + H2O 8 

                            ≡Si-OH + RO-Si≡ ⇌≡Si-O-Si≡ + ROH 9 

2.1.2 Evaporation-induced self-assembly 10 

Firstly, soluble silica species and surfactant are dissolved in water/ethanol solvent 11 

at specific mole ratio to acquire a homogeneous solution, where the initial surfactant 12 

concentration is below than the CMC. Subsequently, progressive preferential 13 

evaporation of ethanol is performed which concentrates the non-volatile surfactant 14 

and silica species, resulting in the self-assembly of silica-surfactant micelles and their 15 

further organization into lyotropic liquid crystalline mesophases. After removing the 16 

surfactant, the highly ordered mesoporous films are obtained. It is worth noting that 17 

through variation of the initial alcohol/water/surfactant mole ratio, it is feasible to get 18 

different final meso-structures by following different trajectories in composition space. 19 

Another advantage of evaporation-induced self-assembly method is that it can be 20 

used to fabricate organic-inorganic hybrid composites [20]. 21 

2.1.3 Microwave assisted technique 22 

Microwave assisted technique is a low-cost approach for the synthesis of MSNs. By 23 

microwave heating the precursor gel to around 150 °C for one hour or less, a high-24 

quality hexagonal mesoporous material with good thermal stability can be obtained. 25 

The advantage of microwave synthesis is that the reaction vessel can be heated 26 

homogeneously to realize more uniform nucleation, and the crystallization time is 27 

shorter when compared with the sol-gel process [21]. 28 
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2.1.4 Ultrasonic synthesis 1 

In 2004, Run et al. reported an ultrasonic synthesis method, which is performed 2 

under acidic conditions by using a cationic surfactant and an organic silica source [22]. 3 

The acquired MSNs exhibit a well-ordered hexagonal meso-structures with surface 4 

area over 1100 m2/g, primary pore size in the range of 22-30 Å, and the pore volume 5 

around 1 cm3/g. In addition, one of the main advantages is the total synthesis time is 6 

reduced from days to minutes, which is much shorter than the conventional sol-gel 7 

process [22].  8 

The merits and shortcomings of these four synthetic methods of MSNs are 9 

summarized in Table 1. 10 

Table 1 The merits and shortcomings of these four synthetic methods of MSNs 11 

Synthetic strategy Merits Shortcomings Ref. 

Sol-gel 
Reliable; 

Controllable particle size 
and structures 

Laborious, time consuming [18, 19] 

Evaporation-
induced self-

assembly 

Save time and energy; 
Allow foreign objects to be 
encapsulated conformally 

during synthesis. 

Less adjustable of pore size 
and pore structure 

[20, 23] 

Microwave assisted 
technique 

Save time; 
Higher reaction yields 

Less adjustable of pore size 
and pore structure; 

Complicated preparation 
[21, 24, 25] 

Ultrasonic synthesis Save time and energy 
Lower structural uniformity; 

Lower yield 
[22, 26] 

 12 

2.2 Particle size and pore volume  13 

2.2.1 Control of particle size 14 

The particle size is one of the key factors which impacts the pharmacokinetics of 15 

MSNs. Mou and co-workers proved the influence of particle size on the cellular uptake 16 

of MSNs by Hela cells, indicating that 50 nm particles showed maximum cellular 17 

uptake (50 nm > 30 nm > 110 nm > 280 nm > 170 nm) [27]. Another study carried out 18 

by He et al. investigated the biodistribution of MSNs with different particle sizes in 19 
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vivo. Although MSNs of various particles size were mainly restrained in liver and spleen, 1 

they still exhibited different distribution tendencies because of the delicate balance 2 

between uptake and excrete [28]. After intravenous injection, the distribution of 3 

relatively smaller particle sizes (80 and 120 nm) in liver and spleen exhibited a 4 

decreased tendency, which then conversely increased before finally decreasing. 5 

However, the larger size particles (200 and 360 nm) decreased continuously after 6 

injection [28]. The particle size also greatly influences drug loading and release profiles 7 

of MSNs. Monzano et al. proved that the smaller MSNs were better candidates with 8 

high loading capacity and controlled drug release profiles than the large ones for 9 

model drug Ibuprofen in the similar circumstance [29]. Also, particles of smaller size 10 

exhibit better colloidal stability and suspendability, which are highly expedient for 11 

biomedical applications [11]. 12 

In general, the particle size of MSNs can be modulated by tuning of the synthesis 13 

conditions, such as pH, surfactant concentration, silica source, and the addition of 14 

organics and organosilane [30]. Wu et al. systematically investigated the effects of the 15 

essential reaction conditions (e.g., amount of TEOS, pH, and reaction time) on the 16 

particle size of MSNs by experimentally controlling the variables, indicating that the 17 

pH was the most significant factor affecting the particle size [30]. In a separate study,  18 

pH has also been proved to be highly associated with the hydrolysis and condensation 19 

of the silica sources [31]. Lu et al. further reported that the hydrolysis rate of silica 20 

source linearly increased along with OH- concentration, but the condensation rate was 21 

not altered. The highest condensation rate could reach a maximum of around pH=8.4, 22 

and above this pH the condensation rate of silicates would conversely decrease due 23 

to the silicates being negatively charged as the OH- increases. In a basic solution, the 24 

primary silicate species can assemble with surfactants to form micelle-silicate 25 

assemblies and when condensation continues, the nuclei of new 2D hexagonal phase 26 

is formed. As the hydrolysis progress, more and more primary silicate species are 27 

condensed to the 2D nuclei, making it larger. Finally, as the primary silicate species are 28 

depleted, the synthesized MSNs can reach a defined size. At higher pH values, there 29 
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are fewer numbers of nuclei, and the hydrolysis rate of primary silicate species is faster, 1 

which leads to the larger size, and the particle size can increase from 30 to 280 nm 2 

when the pH reaches 12 [27]. 3 

Qiao et al. [32] also demonstrated that the particle size can be effectively controlled 4 

by using the additives agents to adjust the hydrolysis and condensation process of 5 

silica source, including alcohols, amine, inorganic bases, and inorganic salts. In fact, 6 

most additives agents are supplements for OH- directly or indirectly in the reaction 7 

mixture, and the OH- acts as the basic catalyst for the sol-gel process of silica. Other 8 

reactants and synthesis parameters equally influence the mean particle size of MSNs.  9 

Chiang et al. [31] investigated the influence of reaction time and TEOS amount on 10 

the particle size by the Taguchi method, which follows the basic principle of 11 

orthogonal arrays (OA) to evaluate the effects of certain synthetic factors, including 12 

pH value, the amount of TEOS, and reaction time with minimum of experiments. It 13 

was demonstrated that the particle size increased with the reaction time extension 14 

only when the total reaction time was less than 4 h. Otherwise, inordinately long 15 

reaction times in basic condition often accompanied with the corrosion of the MSNs 16 

silica framework, leading to a reduction in particle size. These results also showed that 17 

the greater amount of TEOS could increase the particle size of MSNs, however, the 18 

increase in particle size was not proportional to the increased amount of TEOS. 19 

Nevertheless, neither the longer reaction time nor the increased TEOS affects the 20 

morphology of the MSNs. The reaction temperature was also found to have a 21 

profound impact on the size, and as the reaction temperature increases from 30 to 22 

70°C, the particle size enlarges gradually [18]. This is probably due to the increased 23 

rate of the silica monomer polycondensation, resulting in a larger size and dense silica 24 

structure [18].  25 

It is well known that the nature of the templates also plays an important role for 26 

adjusting particle size [33]. Adding a block copolymer agent as co-template, the 27 

particle size could be controlled. Suzuki et al. [33] developed a co-surfactant method 28 
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to synthesize small sized well-ordered MSNs by using cetyl trimethyl ammonium 1 

chloride (CTAC) and a triblock copolymer (Pluronic F127) as cationic and nonionic 2 

surfactants. The results showed that the addition of Pluronic F127 could suppress the 3 

grain growth and stabilize the mesostructured silica. This method is used to prepare 4 

the ordered MSNs with a particle size of less than 50 nm (Fig. 2). 5 

2.2.2 Control of pore volume 6 

In order to broaden the application of MSNs, research has focused on the synthesis 7 

of mesoporous silica materials with specific properties such as large pore volume. 8 

Several studies have reported that an enhanced loading efficiency of drugs with large 9 

molecular weight can be achieved with an increase in pore volume [34, 35]. Currently, 10 

both the morphology and size of MSNs can be easily controlled through the regulation 11 

of synthesis condition [36]. However, the effective modulation of pore volume 12 

remains a great challenge, which limits the application for encapsulation of 13 

macromolecules including proteins, enzymes, antibodies, RNA, and DNA [37]. Since 14 

the first successful synthesis of mesoporous silica materials, the scientists have made 15 

great efforts to obtain MSNs with large pores. In 1998, Zhao et al. [38] prepared a well 16 

ordered hexagonal mesoporous silica structures with varying pore size from 46 to 300 17 

angstroms by using amphiphilic block copolymers as organic structure-directing 18 

agents. Recently, great success for fabricating large pore MSNs has been achieved by 19 

using suitable organic molecules as the auxiliary templating agents [29, 30]. A different 20 

synthetic strategy using amphiphilic copolymers with longer hydrophobic chains as 21 

pore templates has been developed to synthesize large pore MSNs [39]. With 22 

surfactant-micelle-templated synthetic strategy, the addition of swelling agent always 23 

leads to the structural disorder or heterogeneity of MSNs. Michal et al. [40] assumed 24 

that the swelling agent dissolved moderately in the micelle of a specific surfactant 25 

could produce a clear micelle template structure with the significantly enlarged pores. 26 

Based on this assumption, 1, 3, 5-triisopropylbenzene (TMB), cyclohexane, xylene, 27 

ethylbenzene, and toluene have been identified as swelling agents for the synthesis 28 

of ultra-large pore spherical mesopores. Although the pore expanding method can 29 
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significantly increase the pore size of MSNs, it makes the excessively thin pore walls 1 

unstable [41]. Fan et al. found that addition of TMB during the synthesis of MSNs could 2 

significantly increase the pore size to about 30 nm, however, it could cause the pore 3 

walls unstable because of the excessively thin pore walls [42]. Further studies also 4 

exhibited the correlations between the wall thickness and pore size of MSNs, and the 5 

excessive pore expanding could lead to a thinner pore wall, causing the pore walls to 6 

be mechanically unstable [40, 43]. 7 

In recent years, dendritic mesoporous silica nanoparticles (DMSNs) with open 3D 8 

dendritic super structures and center-radial pore channels have attracted special 9 

attention because of their unique properties [44]. The DMSNs have been prepared in 10 

an aqueous solution using tetraethoxysilane (TEOS) and bis(triethoxysilyl)ethane 11 

(BTEE) as precursor and hexadecyl trimethyl ammonium bromide (CTAB)/ sodium 12 

salicylate (NaSal) as structure-directing agents. Systemic studies have revealed that 13 

the increased molar ratio of CTAB/NaSal from 0.75/1 to 1/1 could expand the pore 14 

size from 8.1 to 17.5 nm, which is mainly attributed to the enhanced micelle 15 

penetration capability of Sal-. Another critical factor, affecting the structural 16 

parameters of DMSNs, is the molar ratio of BTEE / TEOS, which decreases the pore 17 

size along with the increase of BTEE [45, 46]. Shi and co-workers recently reported the 18 

hollow silica nanoparticles (HMSNs), the pores of which can be modulated from 3.2 19 

nm to 10 nm through a surfactant-directing alkaline etching (SDAE) process. From a 20 

chemical point view, the sol-gel process is a reversible process, and the elaborative 21 

control over the reversible Si-O bond breakage and reformation process provides an 22 

opportunity for the preparation of desired nanostructured materials [47] and there 23 

are some extra pore expanding methods which are summarized in Table 2. 24 

2.3 Synthesis of biodegradable mesoporous silica nanoparticles  25 

For biomedical applications, the biodegradability and clearance of MSNs must be 26 

taken into serious consideration. It is believed that MSNs can degrade into silicic acid 27 

including monomeric silicic acid and polysilicic acids under physiological conditions 28 
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through successive hydration, hydrolysis, and ion-exchange steps. The biodegradable 1 

by-products can be excreted through the urine with good biocompatibility [10]. 2 

However, it has been widely recognized that the degradation process of MSN is 3 

relatively slow owing to its stable Si-O-Si frameworks, and this reluctant 4 

biodegradation of MSNs could lead to unwanted accumulation within the body, which 5 

could possibly cause severe tissue inflammation or other long-term safety risk [48]. 6 

Therefore, the improvements of MSNs with better biodegradability to promote their 7 

further clinical translation have aroused extensive interests [49]. 8 

Recently, several strategies have been proposed to improve the biodegradability of 9 

MSNs. For example, framework reconstruction of silica nanoparticles by metal ions-10 

doping can tune the degradation rate of MSNs. Yu et al. reported that the doping of 11 

Mg2+ into the framework of silica could change the degradability of the obtained 12 

HMSNs due to the much weaker Si-O-Mg network compared to the Si-O-Si network 13 

[48]. In brief, the addition of Mg salt into the reaction systems caused the introduction 14 

of Mg2+ into the silica network and substituted some Si within the Si-O-Si bonds to 15 

form Si-O-Mg bonds which were sensitive to mild acidic environment, including tumor 16 

tissue. The breaking up of Mg-O bonds can generate abundant defects within the 17 

framework and accelerate the framework biodegradation. At the same time, Mg2+ can 18 

easily be extracted from the framework of HMSNs because of the breaking up of Mg-19 

O bonds, and finally be excreted from the cells [48]. Other than the Mg element, the 20 

Ca, Mn, Zn, and Na elements have also been introduced into the framework of MSNs 21 

to obtain biodegradable MSNs, and the rapid degradation of hybrid MSNs is triggered 22 

by typical tumor microenvironment such as pH (for Ca and Mn), specific proteins (for 23 

Fe) or glutathione (for Mn). The biodegradation property of MSNs enables the 24 

controllable release of guest molecules, which benefits the in vivo applications [50].  25 

Another strategy to optimize the biodegradability of MSNs is to employ the disulfide 26 

cleavable or oxamide/ester cleavable silsesquioxanes to insert into the silica 27 

nanoparticle for controlled biodegradability by addition of glutamine or esterase [51].  28 

However, the disulfide or oxamide/ester doped MSNs have been found nonporous or 29 
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low porosity [4]. In order to improve the mesoporosity of the obtained MSNs, a 1 

mixture of bridged silsesquioxanes can be integrated into the framework of MSNs [52]. 2 

For instance, Chen et al. successful fabricated a redox-triggered degradable hollow 3 

MSN by using phenylene and bis (propyl) tetrasulfide-bridged organoalkoxysilanes, 4 

where the phenylene directed the formation of porosity, and the bis (propyl) 5 

tetrasulfide acted as a self-destruction trigger in reductive environment [53]. Croissant 6 

et al. reported an enzymatically degradable MSNs by using phenylene and oxamide-7 

bridged organoalkoxysilanes [43]. The phenylene directed the formation of 8 

mesoporosity and the oxamide in the framework endowed the MSNs with enzymic-9 

responsive biodegradability, which could be triggered in the presence of trypsin. This 10 

research provided an opportunity to deliver drug to organs containing specific 11 

proteins for targeted therapy [54]. The disulfide containing silsesquioxanes is the most 12 

frequently applied material for the preparation of degradable MSNs, however, 13 

developing other available silsesquioxanes with cleavable bounds is encouraged to 14 

focus on specific trigged degradable strategies [55].  15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

Table 2 Synthesis conditions and applications of different large pore MSNs  23 

Type of MSNs Pore expanding method 
Pore 

diameter 

Particle 

size 
Application Ref 
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MSNs 

Pore-swelling N, N-

dimethylhexadecylamine 

(DMHA) 

4.6 nm 150 nm 
Adsorption of 

cytochrome c 
[56] 

MSNs 
CTAB-templated, base-catalyzed 

condensation reaction 
5.4 nm 265 nm 

Loaded 

cytochrome 

c 

[57] 

LPMSN 
Pore-templating with Pluronic 

P104 
6.5 nm 

300×500 

nm 

Loaded 

Porcine liver 

esterase 

 [58] 

MSNs Pore-swelling Decane 8.0 nm 100 nm 
Immobilized 

lysozyme 
 [59] 

MSNs 
Pore-swelling trioctylphosphine 

oxide (TOPO) 
8 nm 180 nm 

Positron 

emission 

tomography 

 [60] 

LPMSN 

Postsynthetic etching of with 

aqueous 

NaBH4 

9.28 nm 232 nm 
Delivery of 

paclitaxel 
[61] 

MSNs 

pore-swelling 

Trioctylmethylammonium 

bromide (TOMAB) 

15.9 nm 
288.5 

nm 

Adsorption of 

nerve growth 

factor 

[62] 

MSNs CTAB/ PS-b-PAA co-templated 18.5 nm 150 nm 
Loaded 

ibuprofen, 
[63] 

DMSN 

Hexadecyltrimethylammonium/

p-toluenesulfonate co-

templated 

21 nm 120 nm 
Delivery of 

siRNA 
[64] 

DMSN CTAB/ NaSal co-templated 22.7 nm 200 nm 

Delivery of 

Ovalbumin 

and a toll-like 

receptor 9 

[65] 

MSNs 
Pore-swelling 1,3,5-

trimethylbenzene (TMB) 
23 nm 200 nm 

Delivery of 

siRNA 
[66] 

MSNs Pore-swelling ethyl acetate 30 nm 180 nm Delivery of IL4 [67] 

Ultra-LPMSN 

Post synthetic etching of MSNs 

with methanolic solution of 

calcium nitrate or magnesium 

nitrate 

47.5 nm 200 nm 

Adsorption of 

large proteins 

and 

antibodies 

[68] 

3. Surface functionalization 1 
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The surface functionalization of nanomaterials plays critical roles in their physical 1 

and chemical properties, as well as their applications [69]. Therefore, modification or 2 

functionalization of the particle surface is important in the fabrication of MSNs as drug 3 

delivery vehicles. The surface of MSNs with high amounts of silanol groups guarantee 4 

the easy multi-functionalization [70, 71] through several strategies to improve their 5 

biocompatibility, targeted activity, and control release of cargoes inside [72].   6 

3.1 Functionalization for improving biocompatibility 7 

The biocompatibility of nanoparticles is strongly influenced by surface properties, 8 

and surface modification plays a pivotal role in improving the biocompatibility of 9 

MSNs. The silanol groups exposed on the surface of MSNs can interact with biological 10 

molecules, resulting in their damage [73]. On the other hand, the non-functionalized 11 

MSNs will rapidly associate with serum proteins, and then be cleaned from circulation 12 

by phagocytic cells [19]. In order to improve the biocompatibility of MSNs and prolong 13 

their circulation time in vivo, the surface of MSNs can be coated with biocompatible 14 

organic substances. One of the most well-established surface modification 15 

approaches is PEGylation [74]. PEGylation of MSNs can significantly alleviate the 16 

hemolytic activity and cytotoxicity, and prevent MSNs from being captured by 17 

phagocytic cells [28].  Liposome is a biocompatible material that has been used in 18 

clinical studies, several research groups have demonstrated that coating lipid on the 19 

surface of MSNs can improve the biocompatibility and performance of MSNs in vivo 20 

[75, 76]. Brinker et al. reported the successful synthesis of lipid bilayer coated MSNs 21 

which can be used for drug delivery, combining the advantage of liposome and MSNs 22 

[77]. 23 

The colloidal stability of MSNs is one of the most important factors regarding their 24 

in vivo applications. Formulations with poor colloidal stability can result in 25 

administration issues and inappropriate dosage frequencies. In addition, 26 

nanoparticles with poor colloidal stability could cause undesirable aggregation once 27 

in the blood circulation and lead to severe thrombosis [11]. Unmodified MSNs are 28 
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easily aggregated in aqueous solutions because of hydrogen-bonding interaction 1 

between the surface silanol groups [78]. Coating MSNs with PEG or liposomes not only 2 

increases the biocompatibility of MSNs, but also enhances their colloidal stability. 3 

It has been known that the surface potential is another crucial parameter that 4 

influences the biocompatibility of nanoparticles [19, 79] and positively charged 5 

nanoparticles will induced more cytotoxicity than the neutral and negatively 6 

counterparts [19]. Due to the flexible processing of silica chemistry, the surface 7 

potential of MSNs can be precisely controlled by different functionalization via amino 8 

(-NH2), carboxyl (-COOH), phenyl (-Ph), and methyl phosphonate (-PO3−) groups [1, 80, 9 

81]. 10 

3.2 Functionalization for increasing targeted activity 11 

Tumor targeting is one of the biggest challenges of nano-based cancer targeted 12 

therapy. In general, active targeting can be achieved by integrating the specific 13 

targeting ligands on the surface of nanoparticles, including mannose, transferrin, folic 14 

acid, and RGD peptides [82]. These specific targeting moieties are capable of binding 15 

to the cancer cell surface receptors or ligands, and thus enhances the specific 16 

retention and uptake of nanoparticles by cancer cells [83-85] (Fig. 3A). Furthermore, 17 

this strategy of active targeting may play an important role in MSNs-based 18 

nanocarriers owning to the facile modified surface property of MSNs. 19 

Recently, antibody-conjugated MSNs have shown tremendous advantages in 20 

targeted therapy for tumor [86]. Gao and co-workers developed a safe and effective 21 

active targeting nano-system, in which they grafted the monoclonal antibody EpCAM 22 

onto the surface of MSNs. As expected, this antibody conjugated MSNs could 23 

efficiently target EpCAM, which is highly expressed colorectal cancer cells compared 24 

to nonconjugated MSNs [87]. The major challenges of using full-length monoclonal 25 

antibodies as targeting ligands are the recognition by immune system and rapid 26 

clearance from the blood circulation [88]. The single chain variable fragments (scFvs) 27 

are the smallest fragments of antibody that can also be attached to the surface of 28 

MSNs as the targeting motif [89]. Compared with the full-length monoclonal antibody, 29 
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scFvs exhibit similar advantages of high affinity, specificity, stability, deep tumor 1 

penetration, elevated antigen binding capability, and reduced immunogenicity [90].  2 

3.3 Functionalization for controlling drug delivery 3 

Modification of MSNs by different functional groups directly affects the drug release 4 

behavior by increasing drug diffusion resistance [91]. Therefore, surface modification 5 

of MSNs plays a pivotal role in the process of drug delivery and controlled release. 6 

Sustaining drug release using unmodified MSNs can also be achieved through the 7 

regulation of the pore structure, particle-size, and pore diameter. However, the 8 

inevitable premature drug release still remains a challenge [1]. A widely pursued 9 

strategy is to design a target-specific DDS in the process of eradicating cancer. To 10 

achieve this goal, a variety of gatekeepers have been introduced on the surface of 11 

MSNs for the preparation of controlled DDS. The gatekeepers are opened only upon 12 

exposure to specific internal or external stimuli to reduce the side effects caused by 13 

toxic substances such as chemotherapeutic drugs [92]. Generally, gatekeepers are 14 

comprised of organic molecules, supramolecular assemblies, or nanoparticles. 15 

Different stimuli-responsive strategies, including redox, enzymatic, temperature, pH, 16 

and photo irradiation, are applied as trigger signals to achieve controlled cargoes 17 

release (Fig. 3B) [93]. The controlled delivery of the drug via tumor microenvironment 18 

(pH-/Redox-/Protease) stimulus is one of the promising ways for cancer treatment. 19 

3.4 Cell membrane coated MSNs 20 

With the rapid development of nanoparticle synthesis and engineering technology, 21 

cell membrane-camouflaged nanoparticles have been highlighted in the past decades 22 

because of their improved physicochemical properties and biocompatibility [94]. Cell 23 

membrane-camouflaged MSNs are promising strategies to integrate the advantages of 24 

both synthetic and biological systems, which hold great potential to improve the 25 

therapeutic efficacy. To date, the cell membranes derived from red blood cells [95-97], 26 

platelet [98], stem cells [99], T cells [100], and macrophages [101] which are 27 

intrinsically biocompatible have been successfully applied in the preparation of cell 28 

membrane camouflaged MSNs (Fig. 3C). For example, platelets and immune cells 29 

membrane-wrapped nanoparticles exhibited reduced macrophage uptake and potent 30 
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active tumor-targeting ability inherited from the donor cells [98, 102]. This biomimetic 1 

strategy depicted great possibility to eradicate the residual tumor cells in the 2 

circulation for prevention of metastases [103]. 3 

Compare with normal cells, cancer cells have unique homotypic targeting ability, 4 

which allows tumor cell to bind to each other. The homologous targeting of cancer cell 5 

is attributed to the homophilic adhesion domains on the cancer cell membrane such 6 

as N-cadherin, epithelial cell adhesion molecule (EpCAM) or galectin-3 [104]. To exploit 7 

the natural homotypic adhesion properties of cancer cells, their membranes have 8 

been used to wrap nanoparticles which can naturally traffic to the primary tumor and 9 

realize the purpose of highly specific and effective cancer therapy with the ‘homotypic 10 

targeting’ effect [104]. For example, a doxorubicin and mefuparib hydrochloride 11 

loaded MSNs were first coated with a PEGylated liposome to generate the lipid bilayer-12 

coated MSNs, which were further wrapped with a layer of human breast 13 

adenocarcinoma cell membrane. The obtained nanoparticles showed an obvious yolk-14 

shell structure and could be transformed into an ellipsoidal shape to enhance the 15 

tumor penetration. In addition, the nanoparticles could effectively escape the host 16 

immune system and display homotypic targeting capacity to the primary tumor. The in 17 

vivo experiments exhibited enhanced anticancer efficiency compared with Doxil [105]. 18 

In order to evade the immune surveillance and enhance tumor targeting, Xie et al. 19 

designed the CMSN-GOx method, in which MSNs were loaded with glucose oxidase 20 

(GOx) and then encapsulated with cancer cell membranes. The obtained nanoparticles 21 

could readily avoid immune clearance and target tumor tissue. In vivo, CMSN-GOx 22 

complex can ablate tumors and induce dendritic cell maturity to stimulate an 23 

antitumor immune response to enhance the antitumor efficacy of anti-PD-1 24 

immunotherapy (Fig. 4) [106]. 25 

4. Cargo loading into MSNs 26 

4.1 Cargo loading methods 27 

The unique features of MSNs, including high drug loading capacity and sustained 28 

drug release profile, make them widely employed as multifunctional drug delivery 29 

carriers because of the large pore volume and high surface area. A variety of cargoes 30 
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such as small molecule drugs, proteins, contrast agents, and bio-sensing agents can be 1 

loaded into MSNs through three main methods: 1) cargoes loading during fabrication; 2 

2) cargoes loading by electrostatic interaction; 3) cargoes loading by chemical 3 

reactions. 4 

4.1.1 Cargo loading during fabrication 5 

MSNs can be fabricated by the reaction of organosilane reagents with TEOS in the 6 

presence of the drugs, which allows easy encapsulation of drugs into the silica matrix. 7 

For instance, methylene blue (MB), a photosensitizer, was mixed with silica matrix 8 

during the synthesis procedure of MB loaded MSNs [107]. Because of the negatively 9 

charged property of silica matrix, the positively charged drugs such as MB exhibited 10 

increased loading efficiency.   11 

4.1.2 Cargo loading by electrostatic interaction 12 

The most common approach for loading drugs into MSNs is adsorption method via 13 

mixing MSNs with drug solution [107]. However, this method may lead to too early 14 

release of the payload in vivo before reaching the target tissue thus limiting the 15 

therapeutic efficacy. To overcome this drawback, the surface of MSNs can be 16 

functionalized with various groups, including phosphate, carboxyl, amine, or sulfhydryl 17 

groups, to improve the electrostatic attraction between cargoes and MSNs. Xie et al. 18 

[108] prepared a carboxylic-group functionalized MSNs, achieving higher doxorubicin 19 

loading by regulating electrostatic interaction between MSNs and protonated drugs 20 

with the Improved DOX encapsulation efficiency of 21.6% and controllable drug 21 

release rates.  22 

4.1.3 Cargo loading by chemical reactions 23 

In addition, chemical reactions between therapeutic drugs and carriers can be 24 

applied in the loading of cargo into MSNs [82]. Yan et al. [109] successfully designed 25 

camptothecin (CPT) loaded MSNs via Thiol-Ene click chemistry. In this study, the 26 

antitumor prodrug dimethyl bifunctional silyl ether of CPT was successfully tethered 27 

onto the surface of thiol functionalized MSNs through a silyl ethers bonds, and the silyl 28 

ethers bonds showed an acid-responsive function (Fig. 5). The acid-cleavable silyl ether 29 
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bonds remained stable in normal plasma conditions (pH=7.4) and could be degraded 1 

at the acidic pH in tumor issues(pH=6.8). More interestingly, the release rate of CPT 2 

was controlled by changing the space volume of substituents on silicon atom. 3 

Trimethyl silyl ether and triethyl silyl ether were chosen as linkages and the synthesized 4 

carriers, named as MSN-Me-CPT and MSN-Et-CPT, were investigated for their drug 5 

release profiles. The results showed that both MSN-Me-CPT and MSN-Et-CPT displayed 6 

controllable drug release rate, and the cumulative release of CPT from MSN-Me-CPT 7 

and MSN-Et-CPT was calculated as 20% after 8 hours. The authors also reported that 8 

the release of CPT from MSN-Me-CPT was faster than that from MSN-Et-CPT due to 9 

the different steric bulk of the substituent on the silicon atom. In a separate study, 10 

aldehyde-functionalized MSNs could conjugated with DOX through covalent 11 

attachment, and the constructed DDS was sensitive to pH to realize DOX burst release, 12 

which provided a versatile and easily assemble approach for MSNs platforms [110]. 13 

4.2 Cargo loading efficiency 14 

The drug loading capacity is one of the key standards of nanoparticulate carriers for 15 

rapid or controlled delivery. MSNs are expected to be promising carriers with 16 

advantage of superb drug loading capacity and high chemical stability. The relatively 17 

simple synthesis process makes them widely used in the delivery of small molecules 18 

as well as macromolecules. Therefore, tremendous efforts have been devoted to 19 

improving the drug encapsulation efficiency of MSNs and broadening their application. 20 

Hollow mesoporous silica nanoparticles (HMSNs) were synthesized and developed for 21 

the biomedical application as drug-delivery nanoplatforms which possessed large 22 

hollow cavity exhibiting distinctive and promising drug carrying. Chen et al. [111] 23 

demonstrated that HMSNs generated by a modified hard-templating method could 24 

achieve a high drug loading capacity of 1129.2 mg/g, which was 3-15 times higher than 25 

regular MSNs. HMSNs functionalized with amino groups also showed enhanced 26 

cellular uptake and active tumor targeting capacity. In addition, the distinctive 27 

structure of HMSNs makes them possible for loading multiple drugs. Palanikumar et 28 

al. [112] have reported a HMSNs-based delivery platform for both hydrophobic and 29 
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hydrophilic drugs with a high loading efficiency using noncovalently bound PEG-PDS-1 

DPA copolymer as gatekeeper. At a neutral pH, the PEG-PDS-DPA polymer gatekeepers 2 

might form a dense layer on the surface of MSNs and blocked the pores to prevent 3 

drug leakage. Low pH=5.0-5.5 lead to the protonation of the polymer gatekeeper, 4 

followed by copolymer loose and cargo release from the surface of HMSNs. In the 5 

presence of intracellular GSH, the PEG-PDS-DPA gatekeeper that cross-linked by 6 

disulfide bonds will be degraded, causing the second cargo released from the inside 7 

pores. 8 

The structural properties of MSNs, especially the pore volume, also play a significant 9 

role in drug loading efficiency. The strong interactions between molecules may prevent 10 

the drugs incorporating into mesopores channels, but MSNs with high pore volume 11 

can avoid this influence. The loading efficiency of cargoes increase as the pores size 12 

increases. Hence, pore expansion is an effective strategy to incorporate large amounts 13 

of therapeutic agents into MSNs. A series of pore expanding agents such as DMHA 14 

(N,N-dimethylhexa-decylamine), trioctylamine (TOA), aqueous ammonia, 15 

alkanes/ethanol, and decane were employed in the fabrication procedure to obtain 16 

MSNs with larger pores [18]. For example, Kim et al. [34] have successfully synthesized 17 

monodispersed mesoporous silica nanoparticles (MMSN) with the pore size of 17.4 18 

nm, which presented superior loading capacity for plasmids compared with 19 

conventional MSNs with small pores (∼2 nm). The influence of pores arrangement in 20 

cargoes loading has been evaluated by some researchers as well. Heikkilä et al. [113] 21 

demonstrated that three materials with different pore systems (TUD-1, MCM-41, and 22 

SBA-15) displayed similar drug loading capacity for oral drug delivery using Ibuprofen 23 

as the model drug. The drug feeding ratio is also a critical factor that has a profound 24 

impact on drug encapsulation efficiency of MSNs. The improvement of drug feeding 25 

ratio would result in higher loading capacity. As reported by Palanikumar et al. [112], 26 

the Dox loading efficiency improved two folds when the DOX concentration increased 27 

from 2.5 mg/mL to 7.5 mg/mL.  28 

5. Biomedical application of MSNs  29 
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As a typical nanocarrier, MSNs possess tailorable mesoporous structure, easily 1 

functionalized surface as well as superior drug delivery manner. These properties 2 

endow them with unique advantages to encapsulate a variety of therapeutic agents 3 

and deliver these agents to the desired location to be widely used in various fields for 4 

different applications. This section will focus on the potential application of MSNs as 5 

nanocarrier for drug delivery.  6 

5.1 Deliver fragile molecules 7 

Some molecules, such as gene, peptide and protein, which achieve remarkable 8 

anticancer effects in vitro, however, the desired efficiency is not displayed in vivo due 9 

to their instability and easy degradation [114-117]. MSNs possess a strong inorganic 10 

oxide framework and the interior core, providing room to accommodate therapeutic 11 

molecular and protect them from harmful denaturing chemicals and conditions, which 12 

are extremely beneficial for delivery of fragile molecules.  13 

Gene therapy has gained wide attention in cancer therapy [118, 119]. The naked 14 

gene will be digested by the nucleases in the blood serum when injected into the body, 15 

which limits the effectiveness in vivo. As a versatile carrier, MSNs have been introduced 16 

in this field. Pan et al. [116] reported a DDS coloaded with Bcl-2 siRNA and DOX. The 17 

surface of the MSNs was modified with a zeolitic imidazole framework-8 (ZIF-8) film to 18 

convert the charge of MSNs from negative to positive. This modification obviously 19 

improved siRNA loading capacity ascribing to the enhanced electrostatic interactions 20 

between nanocarriers and RNAs. This nanoparticle presented significantly increased 21 

anticancer efficacy for MCF-7/ADR and SKOV-3/ADR in vivo, providing a promising 22 

approach to overcome multiple drug resistance. In another study, Xue et al [120]. used 23 

HMSNs as vehicles for the delivery of miR-375 and DOX. This strategy promoted the 24 

internalization of DOX and inhibited the cell viability of both HepG2/ADR cells and HCC 25 

cells. The enhanced antitumor activity was further confirmed on HCC tumor bearing 26 

mice. So, it has been fully proved that MSNs-based nanocarriers could be feasible for 27 

gene delivery. 28 

A large amount of pharmaceutical proteins has entered the preclinical or clinical 29 
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stage over the past decades. The complex structure of proteins confers them not only 1 

specific therapeutic effects but also pose a great challenge hampering their wide 2 

application. An alternative drug carrier needs to be developed to address the 3 

limitations of therapeutic proteins, such as short half-life, frangibility to physical and 4 

chemical stimulation, and poor bioavailability. MSNs are particularly useful in the 5 

delivery of proteins due to their unique structure. Cytochrome c is an apoptosis-6 

inducing, membrane impermeable protein. Slowing et al. [121] prepared an MCM-41 7 

type of MSNs with an average pore diameter (5.4 nm) to delivery cytochrome c, and 8 

demonstrated that it could be internalized by living HeLa cells. Moreover, cytochrome 9 

c remained active after its release from MSNs and induced apoptosis in Hela cells. 10 

5.2 Stimuli-responsive smart nanocarrier  11 

MSNs can be used in tissue targeted drug delivery due to the drug release at a 12 

specific time or location though integration of specific targeting ligands and stimuli-13 

responsive components into the MSNs-based nanocarrier. The stimuli can be of two 14 

types, that is, internal and external stimuli. The internal stimuli includes pH, redox 15 

potential, and enzymes, while the photo irradiation, temperature, and magnetic field 16 

are the external stimuli [93, 122, 123]. 17 

5.2.1 pH-response 18 

The pH of cancer tissue (<6.8) is lower than that in normal tissue (7.4) [117]. Thus, 19 

the difference in pH values could be useful in designing DDS using various materials. 20 

Meng and co-workers prepared a β-cyclodextrin capped MSNs DDS [122]. In which, 21 

the aromatic amines stalks were attached covalently to the nanopore opening, and β-22 

cyclodextrin were introduced to encircle the stalks for blocking the nanopore openings 23 

and trap the included cargo molecules. The noncovalent bonding interaction between 24 

β-cyclodextrin and stalks would be weakened under endosomal acidic conditions due 25 

to the protonation of the aromatic amines, leading to β-cyclodextrin cap release and 26 

drug diffusion from the nanopore [122]. Wang et al. [123] built a controlled drug 27 

delivery nanoplatform to co-deliver microRNA-31 (miR-31) and DOX, which was loaded 28 

into the pore via disulfide bond, subsequently miR-31 and branched 29 

polyethyleneimine (PEI) were sequentially coated on MSNs surface through layer-by-30 
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layer method. Finally, hyaluronic acid (HA) was grafted on PEI through covalent bond. 1 

In acidic and redox environment of tumors, the constructed nanocarrier can realize 2 

release of miR-31 and DOX sequentially. This combination can exert synergistic effects 3 

and increase anticancer efficacy (Fig. 6). 4 

5.2.2 Redox-response 5 

Like the pH responsive DDS, the redox actuation takes advantage of intracellular 6 

conditions due to the different glutathione (GSH) expression levels between cancer 7 

cells and normal cells. Previous studies have shown that the concentration of GSH in 8 

extracellular space (2 μM) is much lower than that in cytosol (10 mM). Furthermore, 9 

the expression level of GSH in tumor cells was several times higher than that in the 10 

normal cells [124]. Kim et al. reported the GSH stimulus-responsive MSNs, in which β-11 

cyclodextrin was covalently attached to the particle surface via disulfide bonds. In vitro 12 

study revealed that the addition of GSH could remove the gatekeeper through the 13 

cleavage of the disulfide stalk moiety and then release the guest anticancer drug in the 14 

pore [125]. 15 

5.2.3 Enzymes-response 16 

It is commonly accepted that matrix metalloproteinases (MMPs) are overexpressed 17 

in tumor microenvironment, and are involved in the process of tumor invasion and 18 

metastasis [126]. Based on this phenomenon, Zhang et al. designed a targeted and 19 

MMP-actuatable DDS [127]. MSNs was firstly coated with β-cyclodextrin through a 20 

tumor environment-triggered cleavable disulfide bond followed by decoration with a 21 

peptide sequence containing RGD motif and MMPs’ substrate peptide PLGVR through 22 

hosting guest interaction [127]. Then, a biocompatible and degradable poly (aspartic 23 

acid) (PASP) was covalently coupled with azide moiety in PLGVR via click chemistry to 24 

form a protection layer, which could prevent the nanoparticles from being up taken by 25 

normal cells [127]. This would guarantee the MMPs caused hydrolysis of PLGVR when 26 

the nanoparticles arrived at the MMP-rich tumor cells, accelerating the internalization 27 

due to the exposed targeting RGD motif (Fig. 7). Subsequently, the high level of GSH in 28 

cytosol removes the gatekeeper of β-cyclodextrin leading to the cleavage of the 29 

disulfide linkers and drug release intracellularly [127]. 30 
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5.2.4 Other stimuli-response 1 

Apart from the pH/redox/enzymes -responsive drug release strategies based on the 2 

inherent characteristic of tumor, the external stimulus responsive release has also 3 

become a promising strategy, which takes full advantages of ‘specific or specified’ 4 

location, intensity and exposure of external stimulus. Poly-N-isoproplyacrylamide 5 

(PNiPAM) is one of the most investigated temperature-sensitive polymers, which can 6 

undergo a hydrophilic-hydrophobic transition at the lower critical solution 7 

temperature (LCST) at approximately 32°C [117]. Shi and co-workers developed a 8 

thermo-switchable polymer-masked mesoporous silica drug-nanocarrier by modifying 9 

PNiPAM on the surface of MSNs. When temperature was below LCST, the polymer 10 

chain tightly wrapped around the surface of the particle and blocked the pore to 11 

prevent drug leakages. Once the temperature rises above LCST, the polymer chains 12 

become hydrophobic and shrunk within the mesopores, which leads to the opening of 13 

the pore outlets [128]. Kim and co-workers prepared o-nitrobenzyl ester 14 

functionalized MSNs with light responsive behavior. The photocleavable linker and the 15 

β-cyclodextrin were introduced onto the surface of MSNs by click chemistry. Upon UV 16 

irradiation, the photolysis of o-nitrobenzyl ester lead to the removal of β-cyclodextrin 17 

nanocaps resulting in the release of guest molecules [129]. 18 

5.3 Sequential delivery 19 

MSNs possess a large specific surface area and pore volume; MSNs can be assigned 20 

to sequentially delivery different kind of cargos with huge discrepancy. Several large 21 

therapeutic biomolecules, including proteins and RNA, can be anchored to the surface 22 

of MSNs via electrostatic interactions, while small molecules drugs loading inside the 23 

pores [130, 131]. In this type of smart nanocarrier, the biological molecules and small 24 

molecules are spatially separated from each other on the surface and in the inner 25 

mesopores of MSNs, respectively, allowing sequential and time-interleaving drug 26 

release, which is critical in maximizing their synergistic effects [118, 132, 133]. 27 

Sun et al. developed a core-shell hierarchical mesostructured silica nanoparticle (H-28 

MSNs), in which there are large and small mesopores present separately in the shell 29 
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and core, respectively. The fabricated H-MSNs can effectively protect the siRNA from 1 

nuclease degradation and promote cellular uptake in tumor. During the therapeutic 2 

process, H-MSNs could sequentially release the siRNA and DOX payloads in the 3 

reductive tumor microenvironment. The siRNA in the shell of MSNs was initially 4 

released to suppress the P-gp expression for pre-inhibition of multiply drug resistance, 5 

and then the DOX in the core was subsequently released to kill cancer cells [134]. 6 

Therefore, by virtue of the unique core-shell hierarchical structure, HMSNs realized a 7 

sequential release of therapeutic agents loaded in different space for further 8 

synergetic efficacy. In another work, mitochondria-targeted and intramitochondrial 9 

microenvironment-responsive prodrug, FeCO-TPP, was wrapped in hyaluronic acid 10 

coated MSNs. This smart MSNs can control the release of CO in a step-by-step 11 

disassembly way in tumor sites (Fig. 8) [132].  12 

5.4 Diagnostic and theranostic  13 

 Early diagnosis to gain physiological information about healthy and pathological 14 

tissues is important for the treatment of various disease. During the past decades, a 15 

variety of imaging techniques have been successfully exploited for early detection, 16 

diagnosis, and personalized treatment of disease. Magnetic Resonance Imaging (MRI) 17 

is one of the most representative in vivo imaging technologies due to its intrinsic merits 18 

of high spatial and temporal resolution. A series of MRI contrast agents have been 19 

successfully used in clinic. Recently, nanoparticle-based MRI contrast agents have been 20 

developed to further enhance the detection sensitivity with the accumulation of a 21 

large number of paramagnetic complexes in a single nanocarrier [135, 136]. MSNs 22 

based nanocarriers offer a promising option for delivery of MRI contrast agents owing 23 

to the high surface area/pore volume [136]. Several paramagnetic complexes have 24 

been incorporated into MSNs to produce stable MRI contrast agents with enhanced 25 

signal [135-138]. For example, Taylor and co-workers applied Gd-Si-DTTA complex for 26 

grafting traditional MSNs via a covalent complexation inside the mesopores to obtain 27 

a MSN-based MRI contrast agent (MSN-Gd) [138]. The DBA/1J mouse in vivo imaging 28 

also demonstrated the enhanced signal of MSN-Gd in aorta and liver, functioning as a 29 

promising intravascular and liver MRI contrast agent. 30 

Photoacoustic (PA) imaging is a burgeoning imaging modality combining the 31 
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properties of light and sound, which provides deep tissue penetration and refined 1 

spatial resolution for diagnosis [139]. Indocyanine green (ICG) is one of the common 2 

PA imaging agents approved by FDA for human application. However, the in vivo 3 

application is restricted by limited photostability and fast clearance under 4 

physiological conditions [140]. MSNs possess a rigid nanostructure, which can protect 5 

ICG from photolytic and/or thermal degradation [140]. Additionally, a high payload of 6 

ICG incorporated within a single MSNs can enhance the optical absorption to improve 7 

the quality of imaging [139]. Ferrauto et al. [141] developed an ICG encapsulated and 8 

PEGlylated MSNs based PA imaging probe to increase both the stability and 9 

photoacoustic effect of ICG. The resulted ICG-MSN probe showed better 10 

biocompatibility and enhanced photostability in vivo imaging. Remarkably, the 11 

photoacoustic imaging efficiency of ICG-MSN was four times higher than that of free 12 

ICG. 13 

The smart integration of different functional moieties into one system has become 14 

the requirement of times. Over the past decades, tremendous efforts have been 15 

devoted to designing a multifunctional nanoparticles (NPs) that combine drug 16 

molecules and diagnostic agents in the same platform. MSNs possess unique three 17 

well-defined domains (the silica framework, the internal pore walls, and the outer 18 

surface) that could be independently exploited or functionalized [135]. Luminescent 19 

materials and magnetic materials such as NaYF4:Yb3+/Er3+, Au, Fe3O4, organic dye 20 

fluorescein isothiocyanates can be included in the MSNs framework or covalently 21 

conjugated to the MSNs surface while the therapy agents can be loaded inside MSNs 22 

pores [135, 142]. This type of multifunctional nanocarrier allows the collection of 23 

diagnostic information and provides therapeutic results simultaneously (Fig. 9) [143]. 24 

Ferrauto et al. [144] prepared a MSN-based theranostic nanosystem, in which the 25 

anticancer drug mitoxantrone was loaded into MSNs pores, while ICG attaching to the 26 

surface of the amino functionalized MSNs. This innovative theranostic nanosystem 27 

showed 1.75 times enhanced photoacoustic efficiency with respect to free ICG. In 28 

particular, the drug delivery and release behavior of this theranostic nanoprobes could 29 

be directly monitored by using photoacoustic imaging. 30 

MSNs are the promising platform for diagnostic and theranostic use due to their 31 
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unique structure. However, it should be noted that there is still much work to improve 1 

the bio-imaging and theranostic capabilities of MSNs. Nanoparticle with small particle 2 

size (<50 nm) as well as high colloidal stability are known to show higher imaging 3 

efficiency due to their sufficiently long circulation time in the blood. However, the size 4 

of multifunctional MSNs is usually large than 100 nm. In addition, when compared to 5 

other inorganic nanoparticles (e.g., iron oxide, gold, and cerium oxide NPs), the blood 6 

circulation time of MSNs is very limited [136]. Therefore, more work needs to be 7 

undertaken to develop smaller MSNs with enhanced colloidal stability and blood 8 

retention for diagnostic and theranostic application. 9 

6. Envisioning clinical translation 10 

Silica-based nanoparticles hold great promise to be develop as drug carrier arming 11 

toward clinical application due to that silica has been used as a food additive in various 12 

commercial products [19]. Recently, several silica-based nanoparticles have received 13 

the FDA approved for clinical trials [11, 145]. For instance, the dye-doped fluorescent 14 

silica C-dot have been approved for clinical stage I for molecular imaging of cancer [11]. 15 

In another case, silica-based nanomaterials (NANOM-FIM) is entering clinical trials, 16 

and being used in cardiac TE with good biocompatibility and high efficiency as 17 

therapeutic biomolecules [145]. The trials’ outcomes have displayed lower risk of 18 

cardiovascular death in humans with the NPs-treated group and no apparent toxicity 19 

has been observed [146]. In addition, the plasmonic photothermal therapy of 20 

atherosclerosis with NANOM-FIM has shown high safety , decreased rate of mortality 21 

and major adverse cardiovascular events when compared with the clinically used stent 22 

XIENCE V [147]. Currently, there is still no reported clinical or in clinical trial application 23 

of MSNs, however, the promising results of regular silica-based nanoparticles give us 24 

the confidence about future of MSNs, especially in cancer therapy.  25 

7. Conclusions and Outlook  26 

Nanotechnology has made considerable strides over the past decades and provided 27 

an opportunity for the development of innovative and multifunctional nanocarriers. 28 

MSNs have gained wide attention owing to their unparalleled advantages for the 29 

diagnosis and treatment of diseases. As a promising nanocarrier, MSNs possess large 30 
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and tunable pore size for cargoes loading, easily functional surface for target delivery, 1 

and stable property for its safe use. In addition, MSNs with versatile modification can 2 

overcome the limitations of regular therapeutics such as low internalization and 3 

undesired side effects.  4 

Although substantial amount of work has been carried out to design and develop 5 

advanced nano-DDS based on MSN, some obstacles remain ahead of the translation 6 

into clinic. The bio-safety evaluation is the very first issue to be considered for the 7 

therapeutic and diagnostic applications of MSNs [10]. The validity of treatment effect 8 

within the scope of bio-safety still lacks adequate evidence due to the difference 9 

between small-animal models and human. In order to deal with the complicated 10 

environment and biological process in the body, the physical and chemical properties 11 

of MSNs as well as their in vivo biodistribution and metabolic behaviors must be clearly 12 

defined. In most cases, the biodegradation of MSNs is a gradual process, and the 13 

continuous administration for required drug concentration may lead to the 14 

accumulation of NPs in the body and result in undesired long-term side. Therefore, the 15 

focus on bio-safety of MSNs should be shifted from acute toxicity to chronic influence 16 

because of the uncertainty of degradation.  17 

From the perspective of production, it is hard to fabricate MSNs with uniform 18 

characteristics and reliable quality in the large scale due to technical restrictions [18]. 19 

Several groups have successfully synthesized monodisperse nonaggregate MSNs at the 20 

kilogram scale (0.1-0.5 kg) [148, 149]. However, the transformation of MSNs towards 21 

industrial production is still a long way off.  22 

Taken together, MSNs hold great promise for the future of drug delivery 23 

nanocarriers. However, there is still a long way to go for the development of simple, 24 

stable, cost-effective, and scalable methods to synthesize MSNs with satisfactory 25 

therapeutic efficiency as well as improved biocompatibility. 26 
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