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ABSTRACT
We study the late-time evolution of the central regions of two Milky Way (MW)-like simulations of galaxies formed in a
cosmological context, one hosting a fast bar and the other a slow one. We find that bar length, Rb, measurements fluctuate
on a dynamical time-scale by up to 100 per cent, depending on the spiral structure strength and measurement threshold. The
bar amplitude oscillates by about 15 per cent, correlating with Rb. The Tremaine–Weinberg method estimates of the bars’
instantaneous pattern speeds show variations around the mean of up to ∼20 per cent, typically anticorrelating with the bar length
and strength. Through power spectrum analyses, we establish that these bar pulsations, with a period in the range ∼60–200 Myr,
result from its interaction with multiple spiral modes, which are coupled with the bar. Because of the presence of odd spiral
modes, the two bar halves typically do not connect at exactly the same time to a spiral arm, and their individual lengths can be
significantly offset. We estimated that in about 50 per cent of bar measurements in MW-mass external galaxies, the bar lengths of
SBab-type galaxies are overestimated by ∼15 per cent and those of SBbc types by ∼55 per cent. Consequently, bars longer than
their corotation radius reported in the literature, dubbed ‘ultrafast bars’, may simply correspond to the largest biases. Given that
the Scutum–Centaurus arm is likely connected to the near half of the MW bar, recent direct measurements may be overestimating
its length by 1–1.5 kpc, while its present pattern speed may be 5–10 km s−1 kpc−1 smaller than its time-averaged value.

Key words: Galaxy: bulge – Galaxy: fundamental parameters – Galaxy: kinematics and dynamics – galaxies: bar – galaxies:
evolution.

1 IN T RO D U C T I O N

Galactic bars reside in the centres of about two-third of nearby
spiral galaxies, as seen in the near-infrared (e.g. Eskridge et al.
2000). Bars are typically described by their length, strength, and
pattern speed. Their length can be estimated visually (e.g. Martin
1995), by structural decompositions of the galaxy surface brightness
(e.g. de Jong 1996; Prieto et al. 1997; Gadotti 2011), by locating
the maximum in the isophotal ellipticity (e.g. Wozniak et al. 1995;
Laine et al. 2002; Aguerri, Méndez-Abreu & Corsini 2009), by
variations of the isophotal position angle (e.g. Sheth et al. 2003), or
by variations of the Fourier modes phase angle of the galaxy light
distribution (e.g. Quillen, Frogel & Gonzalez 1994). Bar lengths
have been found to correlate with galaxy parameters, such as the
galaxy mass, galaxy colour, the disc scale length, and the bulge size
(e.g. Aguerri et al. 2005; Marinova & Jogee 2007; Gadotti 2011).
Early-type systems host significantly larger bars than late-type ones
(e.g. Elmegreen & Elmegreen 1985; Menéndez-Delmestre et al.
2007; Aguerri et al. 2009).

� E-mail: iminchev@aip.de (IM); tariq.hilmi@surrey.ac.uk (TH)

The bar angular velocity (or pattern speed, �b or �p) deter-
mines at what radii resonances occur in the disc, knowledge of
which is necessary to understand the bar’s impact on the disc
dynamics. While bar length and strength can be directly mea-
sured from the observations, estimating �b in principle requires
kinematic information. To get around this, indirect methods have
been developed, e.g. by identifying rings in the disc morphology
with the location of the Lindblad resonances or sign-reversal of
streaming motions across the corotation radius (CR; e.g. Buta 1986;
Jeong et al. 2007). A model-independent direct measurement of �b

using kinematics is the Tremaine–Weinberg method (Tremaine &
Weinberg 1984, hereafter TW). This has been applied extensively
to individual external galaxies (e.g. Merrifield & Kuijken 1995;
Aguerri, Debattista & Corsini 2003; Meidt, Rand & Merrifield
2009), SDSS-IV MaNGA IFU data (Bundy et al. 2015; Guo et al.
2019), the CALIFA survey (Sánchez et al. 2012; Aguerri et al.
2015), as well as to the Milky Way (hereafter MW; Debattista,
Gerhard & Sevenster 2002; Bovy et al. 2019; Sanders, Smith & Evans
2019).

Unlike in external galaxies, the MW bar is hard to observe directly
owing to our position in the disc plane; therefore, indirect approaches
have been used to determine its length, strength, orientation, and
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pattern speed (for a review, see Bland-Hawthorn & Gerhard 2016).
Until about five years ago, the bar half-length was thought to be
well constrained to Rb ∼ 3.5 kpc and its pattern speed to �b ∼
50–60 km s−1 kpc−1, based on matching longitude–velocity (�−V)
diagrams of H I and CO gas in the inner MW (Englmaier & Gerhard
1999), the position of the Lagrangian point L4 (Binney, Gerhard &
Spergel 1997), the position of the Hercules stream in the uv plane
(Dehnen 2000; Fux 2001; Antoja et al. 2012; Monari et al. 2017b),
the Oort constant C (Minchev, Nordhaus & Quillen 2007; Siebert
et al. 2011; Bovy 2015), and some low-velocity moving groups in
the uv plane (Minchev et al. 2010), although lower �b estimates
did exist (e.g. Weiner & Sellwood 1999; Rodriguez-Fernandez &
Combes 2008).

Starting with Wegg, Gerhard & Portail (2015), Sormani, Binney &
Magorrian (2015), Li et al. (2016), and Portail et al. (2017),
more recent works using different data sets and methods have
suggested a significantly longer bar than previously thought (∼5 kpc)
and a pattern speed much lower than previously accepted (35–45
km s−1 kpc−1; e.g. Hunt & Bovy 2018; Bovy et al. 2019; Clarke
et al. 2019; Monari et al. 2019; Sanders et al. 2019). In contrast,
Anders et al. (2019) found a bar-shaped feature inclined by ∼40◦

with respect to the solar azimuth and a length of ∼3.5 kpc in the
stellar density distribution of Gaia DR2 data (Gaia Collaboration
et al. 2018a) for stars brighter than G = 18, using distances derived
with the STARHORSE code (Santiago et al. 2016; Queiroz et al. 2018).
Some studies find consistency with both a slow and a fast bar (Hattori
et al. 2019; Trick et al. 2019).

To some degree, such disparity may result from the different
methods used to measure the bar length. There could be also
dynamical reasons for finding different bar lengths and pattern
speeds, as we will argue in this work. Quillen et al. (2011) noted that
in their N-body simulations, the bar length visibly fluctuates in R–φ

density maps, resulting from the interaction with the inner disc spiral
structure, as spirals connect and disconnect from the bar ends. Time-
dependent fluctuations in bar length, strength, and pattern speed were
found in double-barred N-body models by Wu, Pfenniger & Taam
(2018), interpreted as the interaction between the two bars moving
with different pattern speed.

This work studies two hydrodynamical simulations of MW-like
discs forming in the cosmological context, in an effort to quantify
variations in bar parameters on a dynamical time-scale. Implications
for the MW and external galaxies are discussed.

This paper is organized as follows. In Section 2, we describe
our two simulations, and in Section 3, our three methods of bar-
length measurement are introduced. In Section 4, we quantify the
time oscillations of the bars’ lengths, amplitudes, and pattern speeds.
Interpretation for these fluctuations is offered in Section 5, where we
perform power spectrum analyses relating bar oscillation frequencies
to the reconnection between bars and spiral modes of different
multiplicity. A comprehensive discussion is presented in Section 6,
where we relate to other numerical work and make predictions for
both observations of external galaxies and the MW. Finally, we
conclude with a summary in Section 7.

2 SI M U L AT I O N S

We consider the last 1.38 Gyr of evolution before redshift zero from
two simulations in the cosmological context with disc properties
close to those of the MW, e.g. both having central bars, velocity
dispersion radial profiles compatible with observations, and the
presence of spiral arms.

The first simulation was first presented by Buck et al. (2018) and
is out of a suite of high-resolution hydrodynamical simulations of
MW-sized galaxies from the NIHAO-UHD project (Buck et al. 2020,
galaxy g2.79e12, hereafter Model1). This galaxy was simulated
using a modified version of the smoothed particle hydrodynamics
(SPH) solver GASOLINE2 (Wadsley, Keller & Quinn 2017) and star
formation and feedback are modelled following the prescriptions in
Stinson et al. (2006) and Stinson et al. (2013). The total stellar mass of
Model1 is 1.59 × 1011 M�. The galaxy is resolved with ∼8.2 × 106

star, ∼2.2 × 106 gas, and ∼5.4 × 106 dark matter particles (table 1 in
Buck et al. 2019a), which corresponds to a baryonic mass resolution
of ∼3 × 104 M� per star particle (∼9 × 104 M� gas particle mass)
or 265-pc force softening. For more details on the simulation details
and galaxy properties, we refer the reader to Buck et al. (2019a).

Model1 was also used to study the chemical bimodality of disc
stars (Buck 2020) and its satellite galaxies closely follow the
observed satellite mass function (Buck et al. 2019a). To properly
study the time evolution of the disc’s central region, we require
closely spaced time outputs, here using snapshots every 6.9 Myr. This
ensures that the central barred region (where the period is ∼100 Myr)
would have over a decade of complete rotations.

The second model is from a suite of 33 simulations presented
by Martig et al. (2012, the g106 galaxy, hereafter Model2) and also
studied extensively in the past (e.g. Kraljic, Bournaud & Martig 2012;
Martig, Minchev & Flynn 2014a, b; Minchev, Chiappini & Martig
2013, 2014a; Minchev et al. 2014b, 2015; Carrillo et al. 2019). Time
outputs here are separated by 4.5 Myr. The simulation is run using a
re-simulation technique first introduced in Martig et al. (2009) and
the Particle Mesh code described by Bournaud & Combes (2002,
2003). The spatial resolution is 150 pc and the mass resolution is
3 × 105 M� for dark matter particles, 7.5 × 104 M� for star particles
present in the initial conditions, and 1.4 × 104 M� for gas particles
and star particles formed during the simulation. Model2 has a stellar
mass of ∼4.3 × 1010 M� (within the optical radius of 25 kpc) and a
dark matter mass of ∼3.4 × 1011 M�.

Originally, Model1 and Model2 have disc scale lengths of hd ≈
5.6 and ≈ 5.1 kpc and roughly flat rotation curves at Vc ≈ 340 and
≈210 km s−1, respectively. We rescaled both models’ positions and
velocities in order to match measurements for the MW: hd = 3.5 kpc
and Vc = 240 km s−1 (Bland-Hawthorn & Gerhard 2016), which
affects the mass, M, of each particle according to the relation GM
∼ V2R, where G is the gravitational constant. We chose an hd value
near the upper limit of the recommendation by Bland-Hawthorn &
Gerhard (2016) so that the bar lengths do not become too short.

2.1 Bars

After the rescaling, both Model1 and Model2 have very similar bar
lengths1 at the final time, Rb ≈ 3.05 and 3.2 kpc, respectively, but
arrive there by different paths. During the period studied, Model1’s
bar length decreases monotonically by about 10 per cent while that
of Model2 increases by the same amount (see dotted red lines in
Figs 3 and 4). As may be expected, the pattern speeds change in the
opposite directions with final values of ∼80 and ∼50 km s−1 kpc−1,
respectively. The bar lengths quoted above are the ‘true’ values, the
meaning of which will become clear in the next sections. Typically
bars are found to slow down and to grow in length with time (as in
Model2) due to losing angular momentum to the disc and dark mater
halo. The opposite behaviour of Model1’s bar is due to gas infall at

1Estimated from the Lcont method, described in Section 3.1.
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Fluctuations in bar parameters 935

Figure 1. Illustration of the three methods used to measure the bar length. For the top panels, we use a snapshot from Model1 at t = 12.91 Gyr, and for the bottom
panels, an output ∼35 Myr later. Left-hand panels: Lcont method. Face-on stellar density contours with the azimuthally averaged density subtracted. Vertical
dashed lines mark the contour levels crossing the y-axis where the overdensity of stars has dropped by 10–80 per cent from the maximum. The 50 per cent drop
is shown by the solid vertical lines. Middle panel: Lprof method. Bar length is measured by fitting ellipses and measuring when the difference between the density
along the semimajor and semiminor axis falls to below 30–40 per cent of the semimajor value. Right-hand panel: Lm = 2 method uses the ratio of the amplitude
of the m = 2 to 0 Fourier components of the stellar density, A2/A0, as a function of radius, R. The bar length is taken as the radius where this ratio falls below a
fraction of the maximum value. We here consider six thresholds from 30 to 80 per cent of the maximum value. The larger bar estimate in the bottom panels is
due to its being connected to spiral arms, as seen in the left-hand panels.

this particular time period, given that the simulation is unconstrained
and in the cosmological context.

Having the same length but very different pattern speeds places the
bar resonances at very different radii for each simulation. This makes
Model1 comparable to the fastest bars found in observations, given
by the ratio of the bar’s CR radius to its length, R ≡ RCR/Rb ≈
3.1/3.05 ≈ 1.02; conversely, Model2 hosts a significantly slower
bar, with R = 5.6/3.2 ≈ 1.75 (e.g. see table 1 by Rautiainen, Salo &
Laurikainen 2008), using final time values.

2.2 Spiral structure

The spirals of Model1 are more tightly wound and multiarmed (see
fig. 1 in Buck et al. 2018), while for Model2, they are more open
and dominated by two or four arms (see the top right-hand panel
of fig. 1 in Martig et al. 2014a or fig. 1 in Minchev et al. 2013),
which signifies that they are stronger. Indeed, we measured spiral
structure overdensity for Model1 typically ∼5–10 per cent higher
than the background, compared to ∼15–25 per cent for Model2 (see
rightmost panels of Figs 1 and 2). These values are on the lower
end of the 15–60 per cent spiral-arm overdensity estimated by Rix &
Zaritsky (1995) for 18 face-on spiral galaxies.

Recent estimates of the MW spiral-arm overdensity include
∼14 per cent from modelling the radial velocity field of RAVE

data (Siebert et al. 2012), ∼26 per cent needed to account for the
migration rate of supersolar metallicity open clusters near the Sun
(Quillen et al. 2018a), and ∼20 per cent obtained from matching the
radial velocity field of stars on the upper red giant branch from a
compilation of data (Eilers et al. 2020). These are somewhat larger
than the spiral strength of our Model1 and quite consistent with our
Model2.

3 MEASUREMENTS O F BAR LENGTH

Here we employ three methods to determine the bar length2 of
Model1, two of which have been widely used in the literature (e.g.
Athanassoula & Misiriotis 2002; Wegg et al. 2015; Wu et al. 2018)
and a new approach introduced below. We use a cut off |z| < 1 kpc,
where z is the distance from the disc mid-plane, but the results do
not vary wildly for other reasonable values.

3.1 Drop in background-subtracted densities: Lcont

Since galactic bars feature very high stellar densities relative to the
rest of the disc, the surface density along the bar major axis will start

2Hereafter we use ‘bar length’ to mean the length of its semimajor axis, as
frequently done in the literature.
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936 T. Hilmi et al.

Figure 2. As Fig. 1, but for Model2. We have chosen three snapshots to highlight some typical cases. Top panels: At t = 13.49 Myr, the bar is relatively
well separated from spiral arms, as seen in the background-subtracted density, and the Lcont measured length lies in the range ∼2.8–3.5 kpc, depending on the
threshold used. This range changes to ∼4–4.2 kpc for Lprof and ∼1.6–3.2 kpc for Lm = 2, i.e. the three methods are much less consistent than for Model1. We
tend to trust the Lcont method more than the other two, since we can clearly see the bar morphology and orientation with the spiral structure for each bar half.
Middle panels: At a time output ∼270 Myr later, the bar is measured to be 25–50 per cent longer, with artefacts due to connected spiral arms clearly seen in
the left-hand panel, but not in in the total density contours in the middle panel or the azimuthally averaged A2/A0 variation with radius in the right-hand panel.
Bottom panels: At a time output ∼170 Myr earlier than in the top panels, the bar is overestimated by almost a factor of 2 by Lcont and by ∼38 per cent by Lprof.
This problem is evident from the overdensity discontinuity in the right bar half of the Lcont measurement, but is not clear from the other two methods. In both the
second and third rows, the bar is connected to the spiral structure. As for Model1, we take the Lcont measurement with threshold of 50 per cent to be the ‘true’
bar length at t = 13.49 Gyr and R ≈ 3.1 kpc.

to drop approaching the bar ends, as can be seen in the left-hand
panels of Fig. 1, which show the background-subtracted surface
density plots for two time outputs from Model1 35 Myr apart. The
density will then either fall off until it matches that of the disc (the
case for the top panel) or it would be elevated if a spiral structure is
present nearby (as in the bottom panel).

Our new method of measuring the bar length is somewhat similar to
tracing the drop of the A2/A0 Fourier component (see Section 3.3), but
uses instead a drop in the background-subtracted density, considering
the range between 10 and 80 per cent above the radial mean. This
range, covered in steps of 10 per cent, is shown by the vertical dashed
lines, indicating the corresponding contour levels.

An important feature of the method is that it allows one to estimate
each side of the bar separately. From the left-hand panels of Fig. 1,
it is already obvious that only in a time range of 35 Myr the bar can
change length by about 10–20 per cent, which varies depending on
the choice of threshold.

3.2 Drop in disc ellipticities: Lprof

The density profiles along the bar major and minor axes gradually
become similar as radius increases. Athanassoula & Misiriotis (2002)
proposed to fit ellipses to the central density region while gradually
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Fluctuations in bar parameters 937

CR

Figure 3. Variations with time of the Lcont bar length measurement for Model1 (see Fig. 1). Light smoothing is applied. Different curves show different threshold
values in density between 20 and 80 per cent, as indicated on the top. Smooth variations with a period Tlong ≈ 125 Myr are seen for the smaller threshold values;
however, additional peaks appear for the largest three thresholds with Tshort ≈ Tlong/2. The green circle marks the time output used in the top panels of Fig. 1,
which corresponds to a local minimum. Upon inspection of all measurement methods in Fig. 1, we choose the Lcont threshold of 50 per cent to refer to as the
‘true’ bar length at this time (Rb ≈ 3.25 kpc). To get the true bar length as a function of time, we interpolate over the minimum values for the same threshold
(red dashed line), corresponding to when the bar and spirals are not connected. The bar is clearly seen to get shorter with time, starting with Rb ≈ 3.35 kpc
and ending up with Rb ≈ 3.05 kpc in the period of time we consider. The decrease in bar length with time is accompanied by an increase in pattern speed (see
Fig. 10), such that the CR radius follows closely the bar’s length. To see this, we overlaid the evolution of the mean CR radius (solid black curve marked by
‘CR’), estimated form the m = 2 Fourier component in power spectrograms (see Section 5.1).

increasing radius until reaching a point where the density along the
semiminor and semimajor axes are the same within 5 per cent.

This method is adapted here, though with the threshold modified
to use a range of ellipticities between 30 and 40 per cent in steps of
2.5 per cent of the difference between the bar major and minor axes.
This range covers the value used by Wegg et al. (2015, 30 per cent) to
estimate the length of the MW bar in their N-body model, which was
significantly higher than the 5 per cent of Athanassoula & Misiriotis
(2002). We also agree with a larger threshold, as we found that
a smaller one often produced abnormally large values or failed
altogether.

We show the results of this bar length measurement in the middle
panels in Fig. 1 over the stellar density contours. As in the left-hand
panels, the Lprof method measures a longer bar for the bottom panels’
time output by about a similar amount.

3.3 Fourier analysis of the central disc: Lm = 2

An estimate of bar length can also be obtained by taking the Fourier
transform over all disc azimuths. This can find the numbers, strengths,
and multiplicities of non-axisymmetric modes (Masset & Tagger
1997; Meidt et al. 2008; Quillen et al. 2011). For each disc component
being analysed, the following coefficients of the Fourier series are
first determined:

am(R) = 1

π

∫ 2π

0
ρ(R, θ ) cos(mθ ) dθ

bm(R) = 1

π

∫ 2π

0
ρ(R, θ) sin(mθ ) dθ.

(1)

Here, m is the azimuthal wavenumber and ρ(R, θ ) is the mass
density at a specific spatial bin. We estimate Am with respect
to the axisymmetric component A0, as

√
a2

m + b2
m/A0 (see, e.g.

Athanassoula & Misiriotis 2002).

Any galactic bar, which would have rotational symmetry of the
order of 2 will, therefore, be highlighted in the m = 2 Fourier
component, along with any two-armed spiral structure. This allows
the bar strength to be seen as a function of radius in the rightmost
panels in Fig. 1, using 300-pc radial and 10◦ azimuthal bins. The bar
length is estimated from the radius at which A2/A0 drops below some
percentage of the maximum strength in the range 30–80 per cent, in
steps of 10 per cent. Measuring bar lengths of individual sides could
then be done by reflecting one half of the disc on to the other side
prior to performing the analyses. As in the previous two methods, it
is clear from right-hand panels of Fig. 1 that the bar length measured
at the second time output is longer by 10–20 per cent, depending on
the threshold used.

For our choice of thresholds, the three methods agree quite well in
the ranges of bar length they measure for Model1; however, this is not
going to be the case for Model2. As will become clear from Fig. 3,
the top panels of Fig. 1 show a time when the bar length is at a local
minimum. We can argue that this then represents the ‘true’ bar length,
while the larger bar measurement in the bottom panels of Fig. 1 is
caused by connecting spiral arms (this is much more obvious for
Model2; see Section 3.4). We, therefore, take the ‘true’ bar length
at t = 12.91 Gyr to be Lcont with threshold of 50 per cent, which
corresponds to Rb ≈ 3.25 kpc. Note that this changes monotonically
with time owing to the bar’s secular evolution, as seen in Fig. 3.

3.4 Model2 bar length measurements

In Fig. 2, we present the three bar length measurements applied
to Model2, as done for Model1 in Fig. 1. We have chosen three
snapshots to highlight some typical cases, since this galaxy shows
more complex variations than Model1. In the top panels, Lcont shows
that the bar is relatively well separated from spiral arms and the
measured length is 2.8–3.5 kpc, depending on the drop. The left
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938 T. Hilmi et al.

CR

Figure 4. As Fig. 3, but for Model2. The Lcont bar length measurement varies more erratically with time compared to Model1, as already expected from Fig. 2.
The period is also less regular than for Model1 and we find a longer period overall, due to the slower bar here. The green circle marks the time output used in the top
panels of Fig. 2, which corresponds to a local minimum. As for Model1, we use Lcont with a threshold of 50 per cent to get the ‘true’ bar length at this time, finding
Rb ≈ 3.1 kpc. The red dashed line results from interpolating over such minima, which then gives the secular evolution of the true bar length. Opposite to Model1,
the bar size increases with time from Rb ≈ 2.9 to ≈3.2 kpc in the period of time we consider. The time evolution of the CR radius is shown by the solid black
line, found to be at a much larger radius than the bar length, compared to Model1. This is because of the lower bar pattern speed for Model2 (see Figs 10 and 12).

bar half is about 10 per cent longer owing to a connected spiral, as
evident from the disturbed highest density contour.

The Lprof measurement is systematically larger, around 4 kpc. Con-
versely, Lm = 2 varies between about 1.6 and 3.2 kpc. Note the strong
disagreement among the different bar estimates compared to Model1,
although the same thresholds were used for each model. We conclude
that the ‘true’ bar length is given by the bar side along the positive x-
axis of Lcont, as the disturbance seen in the left half must be caused by
a spiral arm. As for Model1, we take the ‘true’ bar length at this time
to be the Lcont value with threshold of 50 per cent, which corresponds
to Rb ≈ 3.1 kpc. We note that this varies monotonically with time
due to the bar’s secular evolution, which can be seen in Fig. 4.

The second row of Fig. 2 shows a case ∼270 Myr later, where the
bar is measured to be 25–50 per cent longer by all three methods.
Finally, the third row shows a time output ∼170 Myr earlier than
in the top row, where the bar is found to be larger by almost a
factor of 2 with the Lcont and by ∼38 per cent with Lprof methods.
For Lm = 2, the m = 2 amplitude does not drop below 50 per cent
for the radial range of 6 kpc shown in the plot. This means that this
method would measure a length >6 kpc for larger drops in A2/A0,
which would clearly be incorrect. Comparing A2/A0 between the two
models reveals also that Model2 has a significantly stronger spiral
arm overdensity.

From the Lcont plot in the bottom panels of Fig. 2, it is obvious
that the spiral arm orientation is such that it adds to the bar length;
however, in the case of Lprof even a visual inspection would not catch
this problem, since the density variations along the bar major axis
are not seen in the total density, shown as the contours in the middle
panels. Athanassoula & Misiriotis (2002) warned about using the
latter method blindly, as in certain cases, there may not be a steep
drop. Here, however, we do see a steep drop for the Lprof method (in
the middle panels, the five thresholds are on top of each other), yet
from the Lcont measurement, we clearly see that the Model2 bar is
not longer than ∼3 kpc. We attribute this discrepancy to the stronger
spiral arms in this hydrodynamical simulation as opposed to the

dissipationless N-body runs by Athanassoula & Misiriotis (2002)
and other works.

Looking only at the Lprof measurement (middle panels of Fig. 2),
one could conclude that the bar is much larger in the bottom panel;
however, both the Lcont and Lm = 2 plots argue against this. It is clear
from the Lcont plot that the extension of the bar, especially of its right-
hand side, comes from the strong spiral arms attached to it. Using
only the Lprof method can, therefore, lead to erroneous results, as a
randomly selected time output may correspond to a time when the
bar and spiral structure are connected. Note that when spiral arms
are stronger (as in our Model2), Lprof tends to overestimate the bar
size even when the bar is as best as possible separated from spiral
arms, as in the top panels of Fig. 2. This conclusion is in agreement
with the results of Petersen, Weinberg & Katz (2019), who showed
that the bar length measured from the extent of the x1 orbits (true
length) is at or below the minimum of their ellipse-fit-derived length
(similar to our Lprof) in their N-body simulations (see their fig. 10).

4 TI ME O SCI LLATI ONS OF BA R PARAME TERS

4.1 Mean bar length

In Fig. 3, we plot the bar length time evolution, Rb(t), for Model1,
using the Lcont method described in Section 3. Variations with a well-
defined period are seen over these last 1.38 Gyr of quiescent disc
evolution, which is also true for the other two methods (see Figs A1
and A2). The amplitude is typically 0.3 kpc (or ∼10 per cent),
decreasing (increasing) for thresholds that measure a shorter (longer)
bar for all three methods. Note however that, as discussed below,
the deviations from the ‘true’ bar length are double of that, or
∼20 per cent, since the ‘true’ bar length is given by the minimum of
the time variations.

We see in Fig. 3 that the time variations for smaller density drops
have a period of Tlong ≈ 125 Myr (grey short dashed curves), from
counting 11 peaks in the period of 1.38 Gyr. As the drop increases
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Fluctuations in bar parameters 939

CR

Figure 5. Time variations in individual bar-half lengths for Model1, using the Lcont method. Lcont − and Lcont + correspond to the left and right bar halves,
respectively, as seen in Fig. 1. A density threshold of 50 per cent is used. The mean bar half-length variation with time is shown by the black curve. Significantly
larger fluctuations are found for the individual halves. Individual bar halves peak in length at different times, alternating between smaller and larger maxima.
We relate this to the spiral structure’s departure from bisymmetry, i.e. the bar ends do not connect to a spiral arm at the same time. The mean CR radius is shown
by the black line, marked by ‘CR’, while the red-dashed line indicates the ‘true’ bar length.

to 50–40 per cent and beyond, a doubling in the frequency is seen
resulting in a period of Tshort ∼ Tlong/2. The more frequent oscillations
appear as we enter the disc and encounter different spiral modes of
various multiplicity (as will be detailed in Section 5.1). These are
not seen from the Lprof measurement in Fig. A1, except possibly for
the 30 per cent threshold, which may be because fitting an ellipse
averages strongly over the density variation. The Lm = 2 method
(Fig. A2), on the other hand, matches quite well the Lcont variations
with time, including the transition from the lower to higher frequency
with increasing density drop, for the most part.

To get the ‘true’ bar length as a function of time, we interpolate over
the minimum values measured by the Lcont method (corresponding to
when the bar and spirals are not connected). The small green circle
in Fig. 3 marks the time output used in the top panels of Fig. 1, which
corresponds to a local minimum. Upon inspection of all measurement
methods in Fig. 1, we choose the Lcont threshold of 50 per cent to refer
to as the ‘true’ bar length at this time (Rb ≈ 3.25 kpc). The red dashed
line shows the approximate position of the minima for this threshold
at different times, which we argued in Section 3.4 correspond to the
true bar length. The bar is seen to decrease with time from Rb ≈
3.35 kpc to ≈ 3.05 kpc in the period of time we consider (red dashed
line in Fig. 3). The monotonic change is accompanied by an increase
in pattern speed (see Fig. 10), such that the bar CR radius follows
closely its length. To see this, we overlaid the evolution of the mean
CR radius (solid black curve marked by ‘CR’), estimated form the
m = 2 Fourier component in power spectrograms (see Section 5.1).

In the case of Model2, the measured bar extent (Figs 4 and A3)
appears to vary much more with time than for Model1, although
the true bar length is shorter for most of the time – compare dotted
red lines in Figs 3 and 4. The Lcont bar length measurement shown
in Fig. 4 varies more erratically with time compared to Model1, as
already expected from Fig. 2. The period is also less regular than
for Model1 and longer overall because of the slower bar. The small
green circle marks the time output used in the top panels of Fig. 2,
which correspond to a local minimum. As for Model1, we use Lcont

with a threshold of 50 per cent to get the ‘true’ bar length at this time,
finding Rb ≈ 3.1 kpc. The red dashed line results from interpolating

over such minima, which then gives the secular evolution of the true
bar length. Opposite to Model1, this bar grows larger with time from
Rb ≈ 2.9 to 3.2 kpc in the period of time we consider. The time
evolution of the CR radius is shown by the solid black line and is
found to be at a much larger radius than the bar length because of the
bar’s low pattern speed, compared to Model1 (see Figs 10 and 12).

The amplitude of oscillations in Fig. 4 is up to 1.5 kpc, which
corresponds to ∼100 per cent overestimation, since the bar’s true
length is given by the minima. Fig. A3 shows that Lprof overestimates
the bar length for all thresholds, while we found that the different
methods agreed well for Model1. Unlike in Model1, using larger
thresholds does not result in significantly shorter bar estimates,
especially near the minima, which are ∼1 kpc above the true bar
length determined in Fig. 4. We attribute this discrepancy to the
stronger spiral structure of Model2.

4.2 Individual bar halves

Since we would like to link our results to the MW bar, for which our
current knowledge is limited to its near end, we also examined each
bar half separately. This could be achieved naturally from the Lcont

method. For the other two methods, we reflected the disc density
containing the bar side under consideration along the bar minor axis
(i.e. in the case of Lprof, across the line x = 0 in the middle panels
of Fig. 1), after which we applied the method as before. To make
sure we did not measure different lengths for different bar halves
just because our disc was not centred correctly, we did a number of
tests. The disc was centred by subtracting the centroid of a cylinder
of radius rc and height zc. We experimented with rc and zc values
ranging from 2 to 6 kpc and from 0.1 to 1 kpc, respectively, finding
that our results were minimally affected.

Figs 5, A4, and A5 show the time variations in individual bar halves
(blue dashed and red dotted curves) for Model1 for each of the three
measurement methods. For all three methods, individual bar halves
have larger length fluctuations (sometimes by a factor of 2) than the
mean bar length variations shown by the black curves. The length
can be seen to vary by ∼1 kpc for Model1. As expected, a peak in
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940 T. Hilmi et al.

Figure 6. Model2 bar half-length variation with time for the mean and individual ends, using the Lprof method. The blue dashed and red dotted lines show
the left and right halves, respectively, for a bar fixed along the x-axis as in Fig. 2. Note that the true bar length is ∼3–3.2 kpc (see Fig. 4); thus, it lies outside
the range of this figure. A variation of more than 40 per cent is seen for this method and threshold; however, the overestimate from the true bar length is
∼90 per cent, considering Rb ≈ 5.7 kpc found around 13 Gyr. We argue that these results from the bar-spiral structure overlap at the bar ends. The mean bar
CR radius estimated from the m = 2 Fourier component of power spectrograms (see Section 5.1) is shown by the black line, marked with ‘CR’. Note that the
bar’s instantaneous pattern speed fluctuates between ∼40 and ∼65 km s−1 kpc−1 (see Fig. 10), resulting in CR radius fluctuations in the range ∼3.8 < RCR <

6.4 kpc. It is remarkable that even this very slow bar can appear ‘ultrafast’ for a small fraction of the time.

the length of one side of the bar does not necessarily correspond to a
peak in the other – these are often completely offset, i.e. a maximum
length measured for one side corresponds to a minimum for the other
(e.g. at t ≈ 12.78 Gyr in Fig. 5). It should be noted that the mean bar
half-length is not the mean of the individual sides estimated here,
except for the Lcont method. The other two methods measure the total
bar length as described in Sections 3.2 and 3.3 and then divide in half.

Fig. 6 shows the variation of individual bar halves for Model2.
Here we used the Lprof method, since Lcont shows abrupt changed on
a short time-scale (as seen in Fig. 4). Similarly to Model1, there is
no apparent correlation between the two half-length fluctuations (see
A4) and often a peak in the length of one bar-half corresponds to a
minimum for the other. Larger maxima and minima are reached than
those seen in the mean bar length measurement, but not to the extent
found for Model1.

4.3 Bar amplitude

To find out if the bar length fluctuations are accompanied by
variations in the bar strength, in Fig. 7, we show the Model1 bar
amplitude at five different distances from the disc centre along the
bar major axis, divided by the maximum, ηR/ηmax, as indicated, where
η ≡ A2/A0 and ηmax is the maximum as a function of radius. As in
Fig. 1, these are estimated from the the m = 2 Fourier mode, A2/A0,
where A0 is the axisymmetric component.

Very similar time variations appear for all radii, with typical
amplitude changes in ηR/ηmax of ∼0.2, except for the innermost
radius considered. The thick solid grey curve in Fig. 7 represents the
mean bar half-length variations (black curve from Fig. 5), which can
be seen to agree very well with the amplitude fluctuations, including
the short and long periods.

The fluctuations seen in the bar amplitude at fixed radii (Fig. 7)
are more similar to the bar length time variations than the ηmax,
which can vary with radius (see Fig. A6). This can generally be seen

for Model2 as well in Fig. 8. One key difference between the two
simulations is the fact that for Model1 all radii peak at nearly the
same time, while in Model2, they are delayed with the lowest radius
of 3 kpc always peaking last. Such a pattern suggests a spiral arm
contribution. Indeed, we established in Section 3.4 that the Model2
bar true length is about 3 kpc; therefore, the region examined in
Fig. 8 lies at or outside the true bar, yet in the regime where our three
measurement methods detect a bar. The solid grey curve in Fig. 7
shows the bar length time variations, seen to follow the overall trend
in ηR/ηmax, in best agreement with the two outermost radii.

4.4 Bar pattern speed

We estimated the instantaneous bar pattern speed using the modified
TW method by Sanders et al. (2019), who applied it to both MW
data and N-body simulations. The top left-hand panel of Fig. 9 shows
the configuration we used to measure �p, over the stellar density of
Model1. As done by Sanders et al. (2019), we assumed a bar angle
of 33◦, a Galactic latitude range |b| < 5◦, and a solar Galactocentric
distance of R0 = 8.12 kpc. The rotation is clockwise. Estimates
are done in bins of Galactic longitude dl = 2◦ in the radial range
indicated by the two arches centred on the Sun (at distances of 4.12
and 8.12 kpc), which is sitting at (x, y) = (8.12, 0). The straight black
line over the bar has a half-length of 3.2 kpc, which corresponds to
l ∼ 17◦ for our bar angle. The bar angle is kept the same at each
time output. The white circles show the bar time-median CR, 4:1
OLR, and 2:1 OLR at RCR = 3.25, R4: 1OLR = 4.2, and R2: 1OLR =
5.3 kpc, respectively. The bar CR radius coincides with the 2:1 ILR
of a two-armed, the 4:1 ILR of a four-armed spiral, and the 3:1 ILR
of a three-armed spiral, estimated from power spectrograms (see
Section 5.1.1 and Fig. 11).

The top right-hand panel of Fig. 9 shows the estimated �p

variation with Galactic longitude, l, covering the near bar half. The
colour-coded curves correspond to different times, as indicated in
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Fluctuations in bar parameters 941

Figure 7. Bar amplitude for Model1 at five different distances from the disc centre along the bar major axis, divided by the maximum, ηR/ηmax, as indicated.
Very similar time variations appear for all radii, with typical amplitude changes in ηR/ηmax of ∼0.2, except for the innermost radial bin. The thick solid grey
curve indicates the mean bar half-length variations (black curve from Fig. 5), showing a very good agreement with the amplitude fluctuations. Note that as the
bar decreases in length, so does its amplitude.

Figure 8. As Fig. 7, but for Model2. The solid grey thick curve indicates the mean bar half-length variations (black curve from Fig. 6), showing an overall good
agreement with the amplitude fluctuations. Since the true bar length is ∼3 kpc, the outermost three radial bins for which ηR was estimated correspond to the
spiral arms, as evident from the systematic time offset among different curves.

the colourbar. The strong divergence at 18◦ � l � 28◦ is caused
by the bar to spiral transition, happening between the bar CR
and 4:1 OLR. To make sense of the pattern speed estimates at
different longitudes (and thus, different distances from the Galactic
Centre), we selected a bar-dominated and a spiral-dominated regions
safely away from the transition region, as indicated by the double
arrows in the top right-hand panel of Fig. 9. In the bottom left-
hand panel, we plot �p(t) for the ‘spiral region’ (dotted blue curve)
and ‘bar region’ (solid black curve) obtained by averaging over the
longitude ranges indicated in the upper right-hand panel. A very
good anticorrelation is seen, which is remarkable as these regions
are separated by ∼16◦ in l (>1.5 kpc along the bar major axis).
This is indicative of a bar-spiral mode coupling (Tagger et al.
1987; Minchev & Famaey 2010; Quillen et al. 2011; Petersen et al.
2019)

In the bottom right-hand panel of Fig. 9, we juxtaposed �p(t) in the
‘bar region’ with the measured bar length for the positive longitude
half (blue dashed curve in Fig. A4). The �p(t) period in both bar and
spiral regions is very well defined at ∼80 Myr, which lies between
the Tlong ≈ 125 Myr and Tshort ≈ Tlong/2 periods of the measured
bar length variation in Fig. 3. We relate these frequencies to the
coupling between the bar and spiral modes of different multiplicity
using power spectrum analyses in Section 5.1.1.

Fig. 10 is the same as Fig. 9 but for Model2. In the top left-hand
panel, the black line has a half-length of 3.1 kpc, indicating the time-
median bar length. The white circles show the bar’s time-median CR
and 4:1 ILR at RCR = 5.25 and RILR = 3.2 kpc, respectively. The
orange, green, and red circles indicate the positions of the 2:1 ILR of
a two-armed, the 3:1 ILR of a three-armed, and the 4:1 ILR of a four-
armed spiral mode, respectively, estimated from power spectrograms
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942 T. Hilmi et al.

Figure 9. Tremaine–Weinberg method applied to Model1 as in the MW, assuming a bar angle of 33◦. Top left-hand panel: face-on view of the disc stellar
density at the final time. Estimates are done in bins of Galactic longitude, dl = 2◦, in the indicated radial range (black arches) and |b| < 5◦. The Sun is at (x, y) =
(8.12, 0) and the black line over the bar has a half-length of 3.2 kpc, which corresponds to the time-median Rb value extracted from Fig. 3. The white circles
show the bar’s time-median CR, 4:1 OLR, and 2:1 OLR at RCR = 3.25, R4: 1OLR = 4.2, and R2: 1OLR = 5.3 kpc, respectively. The bar’s CR radius coincides with
the 2:1 ILR of the two-armed, the 4:1 ILR of a four-armed, and a 3:1 ILR of a three-armed spiral, as estimated from Fig. 11 (see Section 5.1.4). Top right-hand
panel: estimated �p variation with l for the near bar half; colour-coded curves correspond to different times, as seen in the colourbar. The bar ends just inside
∼20◦ for our bar angle. The strong divergence at 18 � l � 28 is caused by the bar to spiral transition, which happens between the bar’s CR and 4:1 OLR. Bottom
left-hand panel: �p(t) in the ‘spiral region’ (dotted blue curve) and ‘bar region’ (solid black curve) obtained by averaging over the longitude ranges indicated
in the upper-right-hand panel. The remarkable anticorrelation seen is indicative of bar-spiral mode coupling. Bottom right-hand panel: �p(t) in the ‘bar region’
juxtaposed with the Lprof measurement of the corresponding bar half. The �p(t) period for both bar and spiral regions is very well defined at ∼80 Myr, which
lies between the Tlong ≈ 125 Myr and Tshort ≈ Tlong/2 periods of the measured bar length variation in Fig. 3.

(see Fig. 12). A ring in the stellar density is seen just outside the bar
4:1 ILR.

As for Model1, a strong divergence in �p is seen in the transition
between the bar and spiral regions (top right-hand panel of Fig. 10),
but with a wider range, 17 � l � 33, because of the stronger
spiral arms. The decline of �p at l < 6◦ is possibly related to the
perpendicular x2 orbits starting to dominate over the bar-supporting
x1 orbits. The blue dashed curve shows t = 13.57 Gyr, when �p

is relatively constant out to l = 45◦. This also corresponds to a
maximum in the measured bar length (rightmost blue dashed vertical
in bottom right-hand panel).

The bottom left-hand panel of Fig. 10 shows �p(t) in the ‘spiral
region’ (dotted blue curve) and ‘bar region’ (solid black curve)
obtained by averaging over the longitude ranges in the upper-right-
hand panel. A very good mirror symmetry across the line �b ≈ 45
is seen for most peaks, which again we point out as remarkable (as
in Model1), since these regions are separated by ∼24◦ (∼2.7 kpc
along the bar major axis). The fractional amplitude of oscillations is
significantly larger than for Model1.

In the bottom right-hand panel of Fig. 10, we compare �p(t) in the
‘bar region’ to the measured bar length for the positive longitude bar
half (dotted grey curve, as in Fig. 6). A relatively good anticorrelation
can be seen also here (except around 12.6 and 13.3 Gyr), with longer
bar measurement corresponding to slower �p. The blue dashed ver-
tical lines indicate possible configurations for the MW, where the bar
appears long (∼5.3–5.7 kpc) and slow (�p ∼ 40 km s−1 kpc−1). Note,
however, that the average bar pattern speed is ∼50 km s−1 kpc−1 with
variations around the mean of ∼20 per cent, and the true bar length
is ∼3.1 kpc.

The variations of about 20 km s−1 kpc−1 seen in the bar region,
or �p ≈ 50 ± 10 km s−1 kpc−1, correspond to a fluctuation around
the mean of ∼20 per cent. In addition to four major peaks, one can
also see smaller variations of the order of 60 Myr, many of which are
also seen in the measured Rb(t) (see the bottom right-hand panel of
Fig. 10). We relate these periods of �p(t) and Rb(t) to the interaction
between the bar and spiral modes, using power spectrum analyses in
Section 5.1.3.

More discussion on Fig. 10 is presented in Section 5 and relation
to the MW bar is made in Section 6.4.
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Fluctuations in bar parameters 943

Figure 10. As Fig. 9, but for Model2. The black line has a half-length of 3.1 kpc, indicating the time-median bar length. The white circles show the bar’s
time-median CR and 4:1 ILR at RCR = 5.25 and R4: 1ILR = 3.2 kpc, respectively. The orange, green, and red circles show the positions of the 2:1 ILR of a
two-armed, the 3:1 ILR of a three-armed, and the 4:1 ILR of a four-armed spiral mode, estimated from power spectrograms (see Section 5.1.4). A ring in the
stellar density is seen just outside the bar 4:1 ILR. Top right-hand panel: estimated �p variation with l for the near bar half; colour-coded curves correspond
to different times, as seen in the colourbar. The bar ends just inside ∼20◦. As for Model1, a strong divergence in �p is seen in the transition between bar and
spiral regions, with a wider range this time, 17 � l � 33, due to the stronger spirals. The decline of �p at l < 6◦ is possibly related to the perpendicular x2

orbits starting to dominate over the bar-supporting x1 orbits. The blue dashed curve shows a case (t = 13.57 Gyr), when �p is relatively constant out to l = 45◦;
this also corresponds to a maximum in the measured bar length (rightmost blue dashed vertical in the bottom right-hand panel). Bottom left-hand panel: �p(t)
in the ‘spiral region’ (dotted blue curve) and ‘bar region’ (solid black curve) obtained by averaging over the longitude ranges in the upper-right-hand panel. A
very good anticorrelation is seen, although not as perfect as for Model1; however, the amplitudes are significantly larger. Bottom right-hand panel: �p(t) in the
‘bar region’ is compared with the measured bar length for the positive longitude half (dotted grey curve, as in Fig. 6). A relatively good anticorrelation can be
seen also here (except around 12.6 and 13.3 Gyr), with longer bar measurement corresponding to slower �p. The blue dashed vertical lines indicate possible
configurations for the MW, where the bar appears long (∼5.3–5.7 kpc) and slow (�p ∼ 40 km s−1 kpc−1). Note, however, that the average bar pattern speed is
∼50 km s−1 kpc−1 with variations around the mean of ∼20 per cent, and the true bar length is ∼3.1 kpc.

5 EV I D E N C E F O R BA R – S P I R A L A R M
INTER AC TION

Since bars typically rotate faster than the spiral structure, there will
be times when the two components overlap spatially. As discussed by
Comparetta & Quillen (2012), this can be thought of as a constructive
interference between two or more waves. Quillen et al. (2011) noted
that in R–φ density plots, the bar seemed to increase in length when
connected to the spiral. It is important to consider that spiral structure
is never perfectly symmetric in unconstrained simulations, meaning
that even two- or four-armed spirals will not necessarily connect
to the two bar ends at the same time. This is because the density
that the bar sees is a combination of the different modes present
in the system, which may include m = 1 and 3 components, as
frequently seen in simulations (e.g. Quillen et al. 2011; Minchev
et al. 2012). This can explain why the bar does not grow in
length simultaneously on both sides, which is what we found in
Section 4.2.

It was already evident from Figs 9 and 10 that the bar and
spiral are a coupled system for both models, as we showed that
their instantaneous pattern speeds fluctuate in time with near-perfect
anticorrelation. We explore below a different method of estimating
the pattern speeds and search for spiral modes that can explain the
fluctuation frequency of our measured bar lengths.

5.1 Power spectrum analyses

We constructed power spectrograms using a Fourier transform over
a given time window, as described by, e.g. Tagger et al. (1987),
Masset & Tagger (1997), and Quillen et al. (2011).

5.1.1 Model1

In Fig. 11, we plot power spectrograms of the m = 1, 2, 3, and 4
Fourier components for Model1 at t = 13 Gyr using a time window
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944 T. Hilmi et al.

Figure 11. Power spectrograms of the m = 1, 2, 3, and 4 Fourier components
for Model1 at t = 13 Gyr using a time window of 350 Myr. The resonance
loci are overlaid for the CR (solid black curve), 4:1 LR (dashed), and 2:1 LR
(dot–dashed), computed as �, � ± κ/4, and � ± κ/2, respectively. Contours
in the top two panels are saturated at 0.60 (arbitrary scale in colourbar) in
order to show the spiral structure better. The bar can be seen as the fast red
feature in the m = 2 spectra. Most of the modes in the spectrograms can be
related to each other as it is expected for a coupled system. For example, the
m = 2 spiral can result from the coupling of the m = 3 and 1 modes, seen in
the range 5 < R < 10 kpc, as ωm2 = ωm3 − ωm1 ≈ 0.08 − 0.03 = 0.05 Myr−1.
The reconnection period between the bar and the four-armed spiral at ω ≈
0.22 is Trec = 2π /ωrec = 2π /(4|0.22/4 − 0.16/2|) ≈ 63 Myr and, similarly,
for the m = 2 spiral with ω ≈ 0.05 and the three-armed mode with ω ≈ 0.14.
The interaction between the bar and these spiral modes (with m = 2, 3, and
4) thus explains the high-frequency fluctuations (Tshort ≈ 60 Myr) seen in
the wavelength of the low-threshold bar measurements in Fig. 3. The longer
Rb(t) period (Tlong ≈ 125 Myr) can be related to the m = 1 mode with ω ≈
0.03, which has Trec ≈ 2π /(2|0.16/2 − 0.03/1|) ≈ 63 Myr, but it meets the
same bar half every ∼126 Myr.

of 350 Myr. The resonance loci are overlaid for the CR (solid black
curve), 4:1 LR (dashed), and 2:1 LR (dot–dashed), computed as �,
� ± κ/4, and � ± κ/2, respectively. Contours in the top two panels
are saturated at 0.60 (arbitrary scale in colourbar) in order to display
the spiral structure better.

The bar is seen as the red feature in the m = 2 spectrum (top
panel) with ωb ≈ 0.16 Myr−1. Two slower moving modes (two-
armed spirals) are found at ω ≈ 0.05 Myr−1 – a clump centred near
its 2:1 ILR at ∼3.5 kpc and the other extending to its CR radius
near 10 kpc. Four-armed spirals can be identified in the m = 4
spectra in the second panel, with the bar’s first harmonic seen at ω ≈
0.32 Myr−1. Clearly defined extended features of relatively constant
ω are found also for the m = 1 and 3 modes. The rounder clumps

Table 1. Fourier modes with corresponding frequencies and pattern speeds
for Model1 and Model2, approximated from the spectrograms shown in
Figs 11 and 12.

m ω (Myr−1) � (km s−1 kpc−1)

Model1 1 0.03 29.3
2 0.16 (bar) 78.2

0.05 24.4
3 0.08 26.1
4 0.32 78.2

0.11 26.9
0.22 53.8

Model2 1 0.08 78.2
2 0.10 (bar) 48.9

0.04 19.6
0.07 34.2

3 0.165 53.8
0.09 29.3

4 0.14 34.2

of multiplicities 1, 2, and 3 in the inner disc are quite mobile in the
vertical direction, when inspecting spectrograms centred on different
median times (while the rest are quite stable and long-lived). This is
also evident from their vertical extent in this time-averaged plot. An
m = 2 clump seen to shift between the bar and the extended two-
armed spiral as they overlapped was previously reported by Minchev
et al. (2012), which is much like what we see in this simulation.

Most of the features found in the spectrograms can be related
to each other as it is expected for a coupled system (Tagger et al.
1987; Sygnet et al. 1988; Quillen et al. 2011; Minchev et al. 2012).
A mode with an azimuthal wavenumber m1 and frequency ω1 can
couple to another wave with m2 and ω2 to produce a third one at a
beat frequency, ωbeat, with the following selection rules:

m = m1 ± m2 (2)

and

ω = ω1 ± ω2. (3)

For example, the low-frequency extended m = 2 spiral can result
from the coupling of the m = 3 and 1 modes seen in the range 5 < R
< 10 kpc, as ωm2 ≈ 0.08 − 0.03 = 0.05 Myr−1 and m = 3 − 1 = 2.
Adding these wavenumbers gives us an m = 4 mode with ωm4 ≈
0.11 Myr−1, which is indeed seen in the m = 4 spectra. Moreover,
the bar appears coupled with the two-armed and the faster four-armed
waves, since ωm4 −ωm2 ≈ 0.22 − 0.05 = 0.17 Myr−1. The modes and
their frequencies used in the following discussion are listed in Table 1.

Which of these modes can explain the measured bar length
fluctuations in Fig. 3? We can answer this by considering how often
the bar encounters different spiral modes.

5.1.2 The reconnection frequency, ωrec

We define here the reconnection frequency, ωrec, between the bar and
a spiral mode, which tell us how often either bar side is being passed
by any spiral arm. For a spiral with m = 2, this is ωrec = 2|�b −
�s| = |ωb − ωs|. For an m = 4 mode, ωrec = 4|�b − �s| = 4|ωb/2
− ωs/4|. For two modes of the same multiplicity, therefore, ωrec =
ωbeat, where ωbeat is defined as in, e.g. Tagger et al. (1987), but this is
not the case when the wavenumbers are different. For bisymmetric
modes, ωrec gives also the frequency of how often the same bar half
is encountered by any spiral arm, which is a quantity we are more
interested here.
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Fluctuations in bar parameters 945

Considering non-bisymmetric modes, for m = 3, we can write
ωrec = 6|�b − �s|, and for m = 1, we have ωrec = 2|�b − �s|.
Unlike for even modes, the same bar half is encountered by any
spiral arm at the frequency ωrec/mb.

From the above discussion, we can write more generally ωrec =
LCM(mb, ms)|�b − �s|, where LCM(mb, ms) is the least common
multiple of the bar and spiral wavenumbers. For non-bisymmetric
modes, we need to divide by the bar wavenumber to find out how
often a given bar half is passed by any spiral arm.

The reconnection period between the bar and the four-armed spiral
at ω ≈ 0.22 Myr−1 is Trec = 2π /ωrec = 2π /(4|0.22/4 − 0.16/2|) ≈
63 Myr. Similarly, for the m = 2 spiral with ω ≈ 0.05 Myr−1, we
get ∼57 Myr, which is consistent with the m = 4 mode within our
rough estimate of the frequencies. The three-armed mode just outside
the bar with ω ≈ 0.14 Myr−1 has Trec ≈ 2π /(6|0.16/2 − 0.14/3|) ≈
32 Myr, but it meets the same bar half every ∼64 Myr. The interaction
between the bar and these spiral modes (with m = 2, 3, and 4) thus
explains the high-frequency fluctuations (Tshort ≈ 60 Myr) seen in
the wavelength of the low-threshold bar measurements in Fig. 3.

We can also explain the longer Rb(t) period (Tlong ≈ 125 Myr) by
considering the m = 1 mode with ω ≈ 0.03 Myr−1, which has Trec

≈ 2π /(2|0.16/2 − 0.03/1|) ≈ 63 Myr, but it meets the same bar half
every ∼126 Myr.

The above modes with m = 1, 2, 3, and 4, including the bar, must
be all coupled since they all have Trec ≈ 60 Myr. It appears that
the shorter and longer time-scales of the bar length fluctuations are
related as Tshort = Tlong/2, resulting from the effect of the slow m =
1 mode.

As noted in the discussion of Fig. 5, individual bar halves peak
in length at different times, alternating between smaller and larger
maxima. This suggests the work of m = 1 and/or 3 modes, which
would naturally connect to each bar side at different times. This
departure from bisymmetry can now be explained by the above found
m = 1 mode that we associated with Tlong.

The bar pattern speed resulting from the m = 2 spectrogram is
�b = ω/m = (0.16/2) × 977.915 ≈ 78.2 km s−1 kpc−1, where the
last factor fixes the units. We derive a remarkably similar value of
∼78.5 km s−1 kpc−1 from the TW method applied to the ‘bar region’
(bottom left-hand panel of Fig. 9), after averaging over the 350-Myr
time window used for the spectrograms and centred on 13 Gyr.

We can also look in Fig. 11 for the spiral whose time-fluctuating
pattern speed was measured by the TW method in Fig. 9. There
are two constraints there: (1) We need a mode that has a mean
�p ≈ 40–45 km s−1 kpc−1 and (2) we need the same mode to
have a reconnection frequency with the bar of ∼0.08 Myr−1, in
order to explain the ∼80-Myr period of �p(t) in the ‘spiral region’
of Fig. 9.

These conditions are satisfied for an m = 2 mode with ωm2 ∼
0.08 Myr−1 or an m = 4 with ωm4 ∼ 0.24 Myr−1, both of which
give �p = ω/m ≈ 39 km s−1 kpc−1. Note that these frequencies
lie between the bar and the m = 2 and 4 clumps centred near R =
3.5 kpc. It may be possible that transient recurring waves shifting
back and forth between the bar and slower spirals would result in
the strong �p fluctuations. Indeed, these two clumps must oscillate
in the ranges 0.05 < ωm2 < 0.12 and 0.2 < ωm4 < 0.26 Myr−1, i.e.
25 < �p < 60 km s−1 kpc−1, which is very much in agreement with
the fluctuations in the ‘spiral region’ of Fig. 9. For this estimate, we
considered the bar’s lower boundary to be at ω ≈ 0.12 Myr−1, which
makes sense since bar minima correspond to spiral maxima in �p.
This can be thought of as the bar speeding up to connect to a spiral
arm and slowing down as it disconnects from it (and similarly but
opposite for the spiral arm).

Figure 12. As Fig. 11, but for Model2. As already seen in the TW-method
estimates, this bar is about 50 per cent slower than Model1’s bar. Contours in
the top two panels are saturated at 1.0 (arbitrary scale in colourbar) in order to
show the spiral structure better. The reconnection period between the bar and
the slower two-armed spiral is Trec = 2π /(2|ωb/2 − ωm2/2|) = 2π /|0.1–0.04|
≈ 105 Myr. The same reconnection periods with the bar are found for both
the m = 4 spiral with ω ≈ 0.14 and the m = 3 mode with ω ≈ 0.09 Myr−1,
which can explain the ∼100-Myr fluctuations of the Rb(t) measurements. As
in Model1, m = 2, 3, and 4 modes conspire to interact with the bar on the
same time-scale, here ∼105 Myr, suggesting that we have a strongly coupled
system. The longer period of 200 Myr in both Rb(t) and �p(t) can be related
to the faster m = 2 spiral, which has a reconnection period with the bar of
Trec ≈ 210 Myr. Even longer reconnection periods result from the m = 1
mode near R = 4 kpc and the fast feature in m = 3 with ω ≈ 0.165 Myr−1,
which can be linked to the longer time-scale seen in the second half of the
time period of Model2 and the wave packet of about 200–400 Myr found in
the TW-method-estimated �p(t) in Fig. 10.

5.1.3 Model2

In Fig. 12, we show power spectrograms of Model2 for a time window
of 700 Myr, also centred on 13 Gyr. Unlike for Model1 and what
is typically seen in other simulations, here we find that the first
m = 2 mode outside the bar is slower (ω ≈ 0.04 Myr−1) than the
second one (ω ≈ 0.07 Myr−1), which is probably related to the bar
being slow. These two-armed waves are likely coupled to the bar
since the sum of their frequencies is ∼0.11 Myr−1, which is close
to the bar’s ω ≈ 0.1 Myr−1. The slow m = 2 and the faster m = 4
modes also present evidence for coupling with the bar since ωm4 −
ωm2 ≈ 0.14 − 0.04 = 0.10 Myr−1. A summary of Model2’s modes,
frequencies, and pattern speeds is given in Table 1.

As discussed about Model1, clumps near the bar end tend to move
vertically with time, as the bar and spirals reconnect, e.g. the m = 2
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946 T. Hilmi et al.

and 4 features at R ≈ 3.5 kpc. These fluctuations of ω just outside
the bar are likely causing the TW-method �p variations with time in
Fig. 10.

The reconnection period between the bar and the slower two-armed
spiral is Trec = 2π /(2|ωb/2 − ωm2/2|) = 2π /|0.1–0.04| ≈ 105 Myr.
Exactly the same reconnection periods with the bar are found for
both the m = 4 spiral with ω ≈ 0.14 Myr−1 and the strong m =
3 mode with ω ≈ 0.09 Myr−1. As for Model1, for the three-armed
wave, we used Trec/2, which gives the frequency of any arm passing
the same bar side, which is what is needed here. It is remarkable that,
as in Model1, m = 2, 3, and 4 modes conspire to interact with the
bar on the same time-scale of ∼105 Myr, assuring us that we have
a strongly coupled system. This reconnection period is very close
to the ∼100-Myr fluctuations of the Rb(t) measurements, estimated
from the eight peaks in Lprof in the first ∼800 Myr (roughly, the time
window used for spectrograms) shown in Fig. A3; we considered
one bar half to account for deviations from bisymmetry.

The faster m = 2 spiral has a reconnection period with the bar
of Trec ≈ 210 Myr. Exactly the same number arises from the m =
1 mode, if we use ω ≈ 0.08 Myr−1, which is the value that the
vertically extended red clump is centred on. We can add a range here
by considering the boundaries of this clump, obtaining 140 < Trec

< 420 Myr. The fast feature in m = 3 with ω ≈ 0.165 Myr−1 can
produce an even longer reconnection period of 315 < Trec < 630 Myr.
The latter range results from the unknown precise frequency (we
considered 0.16 < ω < 0.17 Myr−1) as the result is very sensitive
to the small denominator in the expression Trec = 2π /(3|ωb/2 −
ωm3/3|). The longer periods of these m = 1, 2, and 3 modes may
be responsible for the longer time-scale seen in the second half of
the Model2 time period and the wave packet of about 200–400 Myr
found in the TW-method-estimated �p(t) (major peaks at ∼12.45,
12.65, 13.0, 13.3, and 3.65 Gyr in the black solid curve in bottom
panels of Fig. 10).

Trec ≈ 105 Myr found above between the bar and the m = 2, 3,
and 4 modes is also very close to the short period in �p(t) in the
TW-method estimates in the bar and spiral regions of Fig. 10.

It is clear that a Fourier analyses of the measured bar length and
instantaneous pattern speed will extract the individual frequencies
contributing to the effect; however, we leave that to future papers.

5.1.4 Resonances

For each model, we estimated the positions of the bar’s and spiral
waves’ main resonances in the bar vicinity from the power spectro-
grams presented in Figs 11 and 12. These values were already used
in the top left-hand panels of Figs 9 and 10, to indicate the radii at
which resonances occur in the discs.

For Model1, the bar’s time-median CR, 4:1 OLR, and 2:1 OLR are
approximately located at RCR = 3.25, R4: 1OLR = 4.2, and R2: 1OLR =
5.3 kpc, respectively, as estimated from the points at which the
resonance loci cross the maximum power of the corresponding
feature in the m = 2 spectrogram of Fig. 11. We can also see that the
bar CR radius coincides with the 2:1 ILR of a two-armed, the 4:1 ILR
of a four-armed, and a 3:1 ILR of a three-armed spiral mode, all of
which are the first-order resonances of the corresponding multiplicity
wave. These resonances are plotted as white circles on top of the face-
on density contours of Model1 in the top left-hand panel of Fig. 9.

Similarly, for Model2, we estimate from Fig. 12 that for the bar,
RCR = 5.25 and R4: 1ILR = 3.2 kpc, respectively. Additionally, we also
identify the 2:1 ILR of a two-armed, the 3:1 ILR of a three-armed,
and the 4:1 ILR of a four-armed spiral modes, located near R = 3.2,
4.0, and 4.8 kpc, respectively. These resonances are plotted as circles

on top of the face-on density contours of Model2 in the top left-hand
panel of Fig. 10.

For both simulations, the regions just outside the bar ends are
densely populated with resonances of different patterns and these
are exactly the ‘overlap regions’ where our TW-method pattern
speed estimate produces non-sensible results. Indeed, such overlap of
resonances can cause non-linear dynamical effects in the region, such
as a strong angular momentum exchange (Minchev & Famaey 2010;
Brunetti, Chiappini & Pfenniger 2011), and suggests a coupling
between the bar and all participating spiral modes (Tagger et al.
1987; Sygnet et al. 1988; Masset & Tagger 1997).

5.2 Phase-space structure near the bar ends

We can also trace the transition from bar to spiral by studying the
velocity space structure near the bar ends. Because stars on bar orbits
will have different velocities than those affected by a spiral arm, we
should see the two types as individual clumps in phase space.

Fig. 13 shows density plots of radial versus tangential velocity,
VR−Vφ (known as the uv plane in the solar vicinity), for two time
outputs (different columns) from Model1, and five disc radii along
the bar major axis, from 3 to 5.5 kpc. The local rotation curve is
subtracted; therefore, Vφ = 0 km s−1 corresponds to a tangential
velocity equal to the circular velocity of the galaxy at the centre
of the bin. Both snapshots correspond to times when the bar length
peaks in Fig. 3.

The smallest radius neighbourhoods (bottom panels of Fig. 13)
show one major clump, which can be associated with the x1 bar
orbits, as this region is inside the bar, but not too deep to sample
the orthogonal x2 orbits (see, e.g. Contopoulos & Papayannopoulos
1980). As we move to R = 3.75 kpc, another clump appears for both
time outputs, likely due to the spiral structure. More clumps appear
at larger radii, changing positions with radius, which could be related
to different spiral modes.

The single clump seen only in the bottom two panels of Fig. 13
corroborates our conclusion that the true bar length is given by
the minimum values measured in Fig. 3. The longer bar length
measurement at these particular times, however, indicates that the
spiral structure extends it morphologically to R ≈ 4.2 kpc (see
Fig. 3). This test can be used to probe the length of the MW bar
as more accurate distances and velocities become available in the
near future.

6 D ISCUSSION

All three methods used in this work tend to overestimate the bar
length, which we interpreted to be due to interaction with the spiral
structure. In simulations, for most time outputs, visual inspection
of the Lcont method can reveal artefacts caused by the bar–spiral
arm connection (see Fig. 2); this method has the advantage that
each bar half can be examined independently. Such discontinuities
will not be seen in the Lm = 2 estimate since the disc is azimuthally
averaged. Identifying an artificially large bar measurement with the
Lprof method appeared to be the hardest.

Interestingly, we found that the Lprof method overestimated the
Model2 bar for all thresholds (see Fig. A3). Even the minimum
measurements for the highest threshold overestimate the time-
median length by ∼1 kpc (or ∼33 per cent). On the other hand,
for Model1, Lprof produces similar results to the other two methods.

Unlike Lprof, the Lcont method produces similar results for both
models, which is the reason we used the minima in the same threshold
to estimate the true bar lengths (see Section 3; Figs 1 and 2).
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Fluctuations in bar parameters 947

Figure 13. Velocity space along one side of the Model1 bar major axis,
for two time outputs (different columns) and six disc neighborhoods along
the bar major axis in the range 2.5–5.5 kpc (median values indicated in the
lower-left-hand corners). The local value of the rotation curve is subtracted
at each radius. Each neighborhood is 0.5 kpc in radius and 7.◦5 in galactic
azimuth. The total number of stars in each spatial bin is shown in the upper
left-hand corners. Both snapshots correspond to times when the bar length
peaks in Fig. 3 (blue dashed curve). The bottom two panels are inside the bar;
thus, a single clump resulting from the x1 orbits is present. The splitting of
the central clump at larger radii (R = 3.75 kpc and above) indicates that the
spiral structure extends the bar morphologically to the measured ∼4.0 and
∼4.2 kpc, although its true length is ∼3.25 kpc.

6.1 Intrinsic versus apparent bar parameter fluctuations

How much of the time fluctuations in bar parameters are simply
caused by the constructive interference resulting from the overlap-
ping spiral modes with the bar end, and how much of that is intrinsic?

As seen from Figs 11 and 12, for both of our simulations multiple
resonances coexist near the bars ends. Such resonance overlap is
often seen in N-body simulations and is known to give rise to global
non-linear effects (e.g. Sygnet et al. 1988; Masset & Tagger 1997;
Quillen 2003; Minchev & Famaey 2010). If our two models represent
coupled systems, as we argued in Section 5.1, then it may be expected
that intrinsic pulsations in bar parameters may occur, due to the non-
linear coupling with spiral modes. In such a case, we expect to
find fluctuations well inside the bar ‘true’ length (see Section 4.1).
Indeed, in the bar length estimates for Model1, we found that even
for thresholds significantly underestimating the bar length, e.g. the
Lprof and Lm = 2 methods shown in Figs A1 and A2, respectively,
fluctuations in Rb(t) were still seen. These are always with the longer
period, Tlong ≈ 125 Myr, which we explained with the reconnection
frequency between the bar and an m = 1 mode (see Section 5.1.1).

These fluctuations in the Model1 bar length are also accompanied
by variations in bar amplitude at small radii, as evident from ηR = 3 kpc

in Fig. 7, as well as variations in �p well inside the bar (see the bottom
left-hand panel of Fig. 9). All of the above can be seen as evidence of
intrinsic variations in these bar parameters, which likely result from
the non-linear coupling between the bar and spiral modes. Similar
reasoning can be applied to Model2.

On the other hand, there is no doubt that the bar can appear longer
when connected to a spiral arm (see, e.g. Fig. 2). If the system is cou-
pled, as it is expected, then the intrinsic bar pulsations will coincide
with the spiral overlaps, thus the effects will add up. This is likely
what we see in Fig. 3, where the Lcont estimate is shown for different
thresholds. High thresholds (e.g. 80 per cent) that result in shorter
length estimates give the true bar fluctuations, since they fall inside
the visually determined bar length. Low thresholds (e.g. 20 per cent),
on the other hand, sample the spiral contribution to the bar length.

We can separate the pattern speed fluctuations in intrinsic and
apparent as well. We found time variations in �p(t) with an amplitude
of the order of 5–10 (Model1) or 20 per cent (Model2) by applying
the TW method well inside bar region, thus avoiding the overlap
with spirals (Fig. 9). In addition to these intrinsic variations, biases
in �p can arise from a measurement in the bar-spiral overlap
region. Wu et al. (2018) used three different methods to measure the
instantaneous �p in their simulations, finding a monotonous decrease
with radius from ∼28 to ∼12 km s−1 kpc−1 (their fig. 3), as the bar
(∼7 kpc long) transitioned to the spiral. The only explanation for
this smooth transition must be that the pattern speed measurement
is applied to stars belonging to both the bar and spiral structure.
Such worries were already expressed by Rautiainen et al. (2008),
who warned that some slow bar observations could be caused by
this problem. We point out that this is not what we found with our
TW-method estimates, since in the bar to spiral transition region, our
estimates diverged strongly.

6.2 Relation to other theoretical studies

Most previous works on bars have considered simulations without
a gaseous component, where the disc heats quickly rendering spiral
structure very weak. Moreover, the high-frequency oscillations with
periods as small as 60 Myr we find here can easily be undetected,
unless a series of time outputs were analysed. In contrast to most
previous works concerned with bar morphology and evolution, the
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simulations we used here were hydrodynamical in the cosmological
context, even though quiescent in the last stages of evolution that we
considered.

Previous evidence for bar parameter fluctuations on a dynamical
time-scale can be, nevertheless, found in the literature. In their 2D
N-body simulations, Rautiainen & Salo (2000) noticed that ‘certain
relative orientation of bar and spiral modes with different pattern
speeds can give a temporary illusion of a considerably longer bar
component than the actual one’. Quillen et al. (2011) also reported
increase in bar length when connect to spiral arms in their N-body
simulations. Martinez-Valpuesta & Gerhard (2011) showed that in
their N-body simulation, the bar can appear longer by developing
a leading end through the interaction with the adjacent spiral arm.
Bar length fluctuations can be seen in figs 11 and 12 by Michel-
Dansac & Wozniak (2006). Bar amplitude variation with time can
be seen in fig. 2 by Minchev et al. (2012) for simulation gSb,
with a period of ∼200 Myr, although the origin of those was not
discussed. Similarly, bar amplitude and pattern speed fluctuations
with time can be found in figs 7 and 9 of Herpich et al. (2017),
although not acknowledged in this paper. Pattern speed fluctuations
on a dynamical time-scale can also be seen in fig. 7 of Sanders
et al. (2019), inferred from the moments of inertia of consecutive
snapshots in their N-body simulation. Interestingly, the TW method
applied to the same simulation appeared to capture these variations.

Wu et al. (2018) studied variations in bar length, strength, and
pattern speed in a simulation of a double-barred galactic disc,
attributing the majority of effects to the inner bar. They concluded
that the primary bar was longest when disconnected from the spiral
structure. Although they used dissipationless N-body simulations in
which the spiral structure must be weak after the first couple of Gyr,
this is still the opposite to what we find with our weak spiral structure
Model1. Pattern speed and amplitude fluctuations of the secondary
bar in double-barred N-body galactic discs was also reported by
Debattista & Shen (2007).

Wu et al. (2018) noted that in the region between the inner and outer
bars, there was a disagreement among their three �p determination
methods, which they attributed to the absence of a well-defined steady
pattern. They measured negative pattern speeds reaching values of
up to �p ∼ −200 km s−1 kpc−1 (their fig. 3). We can, therefore,
expect that the strong scatter in our �p estimates in the transitional
region between the bar and spiral structure (top right-hand panels of
Figs 9 and 10) results from the same effect.

The simultaneous work of Petersen et al. (2019) studied the
time evolution of bars in N-body simulations, also finding rapid
fluctuations in bar length and pattern speed. As for our Model2, they
also found strong overestimation of bar length by the ellipse fitting
method (our Lprof).

6.3 Implications to studies of external galaxies

Our Model1 can be associated with an SBab galaxy type, owing to
its more tightly wound and multiarmed spirals (see fig. 1 in Buck
et al. 2018), while Model2 is more similar to an SBbc type, with its
stronger, more open, and dominated by m = 2 and 4 spiral arms (see
the top right-hand panel of fig. 1 in Martig et al. 2014a or fig. 1 in
Minchev et al. 2013).

Unlike in simulations, it is not as straightforward to correct for
artificially long bar measurements in observations (e.g. CALIFA,
MANGA, S4G), where we always see a single snapshot, which may
or may not correspond to the bar and spirals being connected.

One of the most common bar length determinations is ellipse
fitting to the isophotes of the galaxy (e.g. Wozniak & Pierce 1991;

Laine et al. 2002; Erwin & Sparke 2003; Sheth et al. 2003). This is
similar to our Lprof method, although we apply it to the stellar density
in the simulations, which we showed can overestimate the length by
up to 30 per cent in our Model1 (see Fig. A4) and up to 100 per cent
in our Model2 (see Fig. 6).

Because spirals appear connected to the bars in most observations
(and thus, most of the time, as also seen in simulations; e.g.
Sellwood & Sparke 1988), it is not easy to establish how much the
contribution to the bar length is. The bar would appear the longest
when several modes overlap near its end, which is not necessarily
obvious in the mass distribution. Fourier image decomposition
may be possible to assess this (see, e.g. Elmegreen, Elmegreen &
Montenegro 1992; Rix & Rieke 1993; Henry, Quillen & Gutermuth
2003).

The presence of strong spiral structure in the inner disc should be
seen as a warning that the bar’s length may be overestimated. Dı́az-
Garcı́a et al. (2019) found a correlation between strong bars and
strong spiral arms (and to some degree with the bar length), using
391 nearby galaxies from the S4G survey. Although we agree with
their conclusion that this may result naturally if the disc is unstable
to perturbations in general, our results here indicate that we should
still expect overestimation caused by overlapping bar and spirals.

Another implication of our results is to the fast and slow bar
classification, which involves a measure of the pattern speed (as
inferred from, e.g. a ring assumed to lie at the CR or a change of sign
in the streaming motions of the gas; Font et al. 2017) and the bar
length. The usual convention is that a slow bar is one that has a ratio
R ≡ RCR/Rb > 1.4 and a fast bar is one with 1.0 < R < 1.4 (e.g.
Athanassoula 1992). It should be kept in mind that a source of error
in the ratio R can already result from the bar length and CR radius
determination: Michel-Dansac & Wozniak (2006) have shown that
R could increase from 1 to 1.4 just by a change of method.

Because our two bars have almost the same lengths but very
different pattern speeds, the bar resonances lie at very different radii
for each simulation (see Figs 9 and 10). Model1 is comparable to the
fastest bars found in observations, given by the ratio of the bar’s CR
radius to its length, R ≡ RCR/Rb ≈ 3.1/3.05 ≈ 1.02, while Model2
is significantly slower with R = 5.6/3.2 ≈ 1.75, using the true Rb

values at the final time. These agree very well with the results of
Rautiainen et al. (2008), who modelled 38 barred galaxies using
optical data from the Ohio State University Bright Spiral Galaxy
Survey, finding that R increases from 1.15 ± 0.25 in types SB0/a-
SBab (as Model1) to 1.82 ± 0.63 in SBbc-SBc (as Model2).

The above agreement between observations and our models in
the value of R may appear puzzling since we used the true Rb and
RCR, which is usually not what is measured. Unlike other studies,
however, Rautiainen et al. (2008) determined the bar lengths and
pattern speeds by producing a dynamical model for each galaxy and
matching the overall disc morphology. This is likely avoiding biases
in both Rb and �p. We note also that if both Rb and �p are biased,
but in opposite directions, as we showed is often the case, the ratio
R will remain relatively constant, although we usually find that �p

does not slow down as much as to account fully for the increase in
Rb. Since variations in Rb are much larger for our Model2 (and thus
possibly for the SBbc-SBc sample of Rautiainen et al. 2008), this
may explain the larger spread in R = 1.82 ± 0.63.

6.3.1 Ultrafast bars

Aguerri et al. (2015) reported three CALIFA galaxies (NGC 5205,
NGC 5406, and NGC 6497) to host ‘ultrafast’ bars (see also Buta &
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Zhang 2009; Guo et al. 2019), i.e. R < 1, which is in disagreement
with theoretical studies, showing that the bar’s x1 orbits become
unstable beyond CR (e.g. Contopoulos 1980). The authors considered
the possibility that the bar lengths were overestimated but concluded
the opposite after a careful visual examination of the images.

In light of our findings, however, where we claim that visual
inspection often cannot help, it may be that the relative orientation
between the bar and spiral modes in these galaxies is such that it
gives the maximum bias to the bar length (i.e. maxima in Figs 3 and
4). Note that this will also correspond to maxima in the strength (see
Figs 7 and 8).

It can be seen from Fig. 3 that the Model1 CR radius (red dotted
line) lies most of the time below the measured Lcont length, for the
thresholds shown, i.e. the bar appears ultrafast if biases in Rb are
considered, but not in �p. For the Lprof and Lm = 2 estimates, this
happens only for the three thresholds that give the highest bar length
estimates in Figs A1 and A2, respectively. Considering that Aguerri
et al. (2015) used the TW method to estimate �p, a bar appearing
longer would generally correspond to a lower pattern speed, thus
often cancelling out the effect when the ratio R is considered. As
mentioned above, however, we usually find that �p does not decrease
as much as to account fully for the increase in Rb. Therefore, for
intrinsically fast bars, there will be configurations that make such
galaxies appear to host ultrafast bars.

6.3.2 Fraction of overestimated bars in observations of external
galaxies

We can try to estimate how often bars will be significantly overesti-
mated in external galaxies. Using the Lprof method from Figs A1 and
A3, we can estimate that ∼50 per cent of the time we would measure
a length of ∼3.7 kpc for Model1 and ∼4.7 kpc for Model2. Using the
time-median true bar lengths ∼3.2 and ∼3.0 kpc, this corresponds
to ∼15 and ∼55 per cent increase in bar length for Model1 and
Model2, respectively.

Assuming the local Universe is ergodic, we expect that the time
variations we see in our simulations will correspond to the occurrence
in observations. Our results then suggest that in about 50 per cent of
bar measurements of MW-mass external galaxies, the bar lengths of
SBab-type galaxies (as Model1) are overestimated by ∼15 per cent
and those of SBbc types (as Model2) by ∼55 per cent.

Of course the above estimate will depend on the type of bar
measurement and threshold used and can be further refined for
individual surveys. In general, we expect that for discs with relatively
strong spiral arms, Lprof will always (and for any threshold) measure
a bar ∼30 to ∼100 per cent longer. The latter comes from the
minimum and maximum Lprof values in Fig. A1.

6.4 Implications for the MW bar

The MW has been considered to be an SBbc-type galaxy in the
Hubble classification for a long time (e.g. Kormendy & Bender 2019),
which is similar to our Model2, in that the spiral arms are dominated
by the two- and four-armed structure and consistent in strength with
expectations for the MW (Siebert et al. 2012; Quillen et al. 2018a;
Eilers et al. 2020, see Section 2.2). Recent work using Gaia DR2,
however, suggests that Galactic arms may be multiple and tightly
wound (e.g. Quillen et al. 2018b; D’Onghia & Aguerri 2020), which
is more like our Model1 (i.e. similar to SBab type).

At the present time, mostly data covering the near MW bar half
are available. Even with the best distances available, e.g. VISTA

Variables in the Via Lactea (VVV) survey or APOGEE red clump
giants, small variations in the density along the bar major axis due to a
connected spiral will likely be washed out. In view of our findings, the
direct measurements of a long bar from photometric (VVV, 2MASS,
UKIDDS, GLIMPSE) data (Wegg et al. 2015) may in fact be caused
by a connected spiral arm and the true bar length may be as small
as 3.5–4 kpc (a bit longer than that of Model2). Indeed, Rezaei Kh.
et al. (2018) presented an extinction map using red clump and giant
stars from the APOGEE DR14, showing the location of the Scutum–
Centaurus spiral arm is likely connected to the bar’s near side (see
their fig. 4).

Sanders et al. (2019) recently used the TW method adapted
to 3D Gaia DR2 data to estimate a MW bar pattern speed of
41 ± 3 km s−1 kpc−1, which is in good agreement with Portail
et al. (2017) and Clarke et al. (2019). Applying the same method to
our simulations, we showed in Figs 9 and 10 that this instantaneous
pattern speed measurement can fluctuate around the mean by ∼10
and ∼20 per cent for our fast (Model1) and slow (Model2) bars,
respectively. A near perfect anticorrelation between the bars’ and
spirals’ pattern speeds was found for both of our models, which
could be explained by the bar speeding up to connect to a spiral arm
and slowing down to disconnects from it (and similarly but opposite
for the spirals).

If the MW bar is currently near a maximum due to its being
connected to a spiral arm (Rezaei et al. 2018), then Sanders et al. may
have measured an instantaneous �p value lower than the mean by
up to ∼20 per cent, considering our slow-bar model. This revision,
resulting in �p ≈ 50 km s−1 kpc−1, will already be able to explain
the difference (within the error) between the direct measurement
by Sanders et al. (2019) and the more traditional estimate of
53 ± 1.5 km s−1 kpc−1 by Minchev et al. (2007), based on local
kinematics. This difference can result because the TW measurement
gives the instantaneous pattern speed, while the velocity field near the
Sun (Oort constant C variation with velocity dispersion and Galactic
azimuth) most likely reflects the time-averaged �b.

Bovy et al. (2019) also estimated the MW bar pattern speed using
yet another modification of the TW method, finding similar values to
those of Sanders et al. (2019) and Portail et al. (2017). The authors
also tested their method on N-body models from Kawata et al. (2017)
and Hunt, Kawata & Martel (2013) (Target II and Target IV models),
finding good agreement with the ‘true’ pattern speeds. It is not clear,
however, if the time outputs used from those simulations had well-
defined spiral structure, which we expect would influence the bar
pattern speed measurement. While Kawata et al. (2017) did not
specify the strength of their spirals, Hunt et al. (2013) reported ‘faint
spiral structure’ for their Target II model. If the spiral structure was
unimportant in the above simulations, then it is not surprising that
Bovy et al. (2019) found agreement between the true and TW method
measured �p. An inspection of figs 2 and 3 by Bovy et al. (2019),
which show comparison between data and model radial velocity
field in the bar region, reveals a more radially concentrated butterfly
pattern for the data, which argues that the model bar is longer (and
thus slower).

Our application of the TW method, as in Sanders et al. (2019),
showed that in the bar to spiral transition, the different overlapping
pattern speeds create a strong divergence in the estimate for both of
our models and both bar ends. For an ∼3.1-kpc bar oriented at 33◦,
this is expected to occur in the range 20◦ < l < 30◦ (top right-hand
panel of Fig. 10). Sanders et al. (2019), however, only considered the
Galactic longitude range −10◦ < l < 10◦, which lies well inside the
bar.
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TW-method pattern speed estimates spanning a larger l range may
be able to detect the discontinuity in the bar to spiral transition, thus
informing us on the bar length, as well as the inner spiral structure
pattern speed.

Conversely, the bar-spiral orientation may be such that there is
no discontinuity in �p(l) for the following reason. The remarkable
anticorrelation between �p in the ‘bar region’ and in the ‘spiral
region’ (see the bottom left-hand panel of Fig. 10) can be interpreted
to first order as the bar’s acceleration and spiral deceleration as
the two approach each other, and the opposite as they are about to
separate. If the bar and dominating inner spiral pattern have relatively
similar velocities, as is the case for our slow-bar Model2, there will
be times when the bar and spiral will have very similar �p. These
times can be seen in the bottom left-hand panel of Fig. 10, when
the �p in the ‘bar region’ and ‘spiral region’ overlap. It can be seen
in the right-hand panel that for most of those cases the bar happens
to be near a maximum, e.g. the three blue dashed verticals. The
blue dashed curve in the top right-hand panel of Fig. 10 shows a
configuration, when the variation in �p with longitude, l, is smooth
across the transition region, emulating a long bar. This can then
explain the results of Bovy et al. (2019), who estimated a relatively
constant �p out to about R = 5 kpc (or about l = 31◦ for a bar at their
assumed φb = 25◦). On the other hand, the drop of �p inside R =
4 kpc in their fig. 4 can be caused by the ill-defined pattern speed in
the transition region between a bar ending inside 4 kpc and the spiral
structure just outside it. Chiba, Friske & Schönrich (2019) recently
described evidence for a slowing down in the MW bar. We would
like to emphasize that this is different from the dynamical time-scale
effects arising from the bar–spiral interaction described in this work.

Further work is needed to see what will be the effect of bar
parameter fluctuations on the phase-space structure in small disc
neighborhoods (i.e. the uv plane). Due to the large number of
particles required, typically such studies are done with test-particle
integrations (Dehnen 2000; Minchev et al. 2010; Fragkoudi et al.
2019) or analytically (Monari et al. 2017a, 2019), in which case the
bar is in a steady state. What creates the structure in the uv plane are
the locations of resonances in the disc, which are set by the pattern
speed. If the fluctuations are on a dynamical scale slower than a
rotation at the solar radius (e.g. as in Model1), it will be, most likely,
the time-averaged pattern speed that is important.

7 C O N C L U S I O N S

In this work, we studied how the central bars evolve in the latest
evolutionary stages of two simulations in the cosmological context,
consistent with key properties of the central MW disc region: one
described by Buck et al. (2018, 2019a,b) (Model1) and the other
by Martig et al. (2009, 2012) (Model2). We applied three different
methods of bar length measurements, two well known (Lprof and
Lm = 2; Athanassoula & Misiriotis 2002; Wegg et al. 2015; Wu et al.
2018) and one we developed here (Lcont), which looked at a drop in
the background-subtracted density. The bar strength was measured
as a function of time using either the maximum of the Fourier m = 2
component, ηmax(t) ≡ max(A2/A0) (which may vary with radius) or
the ηR(t) value at a fixed radius, examining different radii. In both
cases, we found agreement with the time variation of the bar length,
with longer bar estimates corresponding to larger amplitudes. The
bar pattern speeds were estimated using the modified TW method
by Sanders et al. (2019), as recently done for the MW, finding time
fluctuations, which, for the most part, anticorrelated with the bar
length and strength. Our main findings can be summarized as follows:

(i) For our Model1, which hosts multiarmed weaker spiral struc-
ture, the bar total length Rb, strength, ηmax, and pattern speed, �p, vary
periodically with time by ∼20, ∼15, and ∼10 per cent, respectively,
due to the interaction with the slower moving spiral modes in the
bar vicinity. For our Model2 with stronger spiral arms, Rb can be
overestimated by up to 100 per cent and �p varies around the mean
by ∼20 per cent. These fluctuations are of the order of the bar and
spiral arm reconnection frequency, with maxima every ∼60 Myr for
Model1 (fast bar) and ∼100–200 Myr for Model2 (slow bar). We
believe this is a general phenomenon, which should be found in any
dynamically self-consistent barred disc model.

(ii) We found that the bar appears longer and stronger when
connected to the spiral structure (see Figs 7 and 8). This is caused
by two distinct effects that appear to complement each other: (1)
intrinsic bar pulsations resulting from the bar–spiral coupling, and
(2) the constructive interference from overlapping bar and spiral
modes (see Section 6.1).

(iii) Because the two sides of the bar typically do not connect at
exactly the same time to a given spiral mode, their individual lengths
can oscillate by twice as much as the mean bar length (or 40 per cent
for Model1, but less for Model2). If the side of the Galactic bar
facing us has recently connected to a spiral arm, it could result in
an apparent bar length longer by 1–1.5 kpc. This is a configuration
suggested by the work of Rezaei et al. (2018), who found that the
Scutum–Centaurus arm is likely adjacent to the bar end in extinction
maps using APOGEE DR14.

(iv) If the near side of the Galactic bar is currently at a maximum,
then the far bar half could be significantly shorter. Ongoing and
future Galactic surveys, such as APOGEE (Majewski et al. 2017)
and 4MOST (de Jong et al. 2012), will be able to test this.

(v) Using the modified TW method by Sanders et al. (2019), we
found that the bar pattern speed fluctuates around the mean by
∼10 and ∼20 per cent for our Model1 and Model2, respectively.
The latter is enough to account for the difference between �b =
41.3 ± 3 km s−1 kpc−1 measured by Sanders et al. (2019) in the
MW (and very similar values by Portail et al. 2017; Bovy et al. 2019;
Clarke et al. 2019) and the faster estimate of 53 ± 1.5 km s−1 kpc−1

by Minchev et al. (2007), constrained by the Oort constant C
variation with velocity dispersion and Galactic azimuth at the solar
radius (see Section 6.4). This difference could result because the
TW measurement gives the instantaneous pattern speed, while the
velocity field near the Sun most likely reflects the time-averaged �b.

(vi) Through power spectrum analyses, we establish that these bar
pulsations, with a period in the range ∼60–200 Myr, are caused by
its interaction with multiple spiral modes, which are coupled with
the bar. These non-axisymmetric mass fluctuations and pattern speed
variations introduce a strongly time-dependent potential in the bar
vicinity and can be linked to the diffusion of stellar orbits across
the bar CR noted in a number of previous works (e.g. Minchev &
Famaey 2010; Brunetti et al. 2011; Minchev et al. 2011; Di Matteo
et al. 2013).

(vii) We attempted to separate the effects that cause fluctuations in
bar parameters into intrinsic and apparent (Section 6.1). We argued
that the former can result from the non-linear coupling between the
bar and multiple modes in the disc, while the latter can arise from
the overlapping between the bar and spiral densities as a function of
time. If the systems are coupled, both intrinsic and apparent effects
should be synchronized, which makes it hard to distinguish then
from each other. We concluded that the variations in the TW-method-
derived pattern speed are intrinsic, resulting from the bar to spiral
reconnection.
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(viii) We estimated that in about 50 per cent of bar measurements
in MW-mass external galaxies, the bar lengths of SBab-type galaxies
(as Model1) are overestimated by ∼15 per cent and those of SBbc
types (as Model2) by ∼55 per cent, depending on the relative
orientation between the bar and spiral modes, and the strength of
the latter (see Section 6.3). Consequently, bars longer than their CR
radius reported in the literature, known as ‘ultrafast bars’ (Buta &
Zhang 2009; Aguerri et al. 2015), may simply correspond to the
largest biases. Although �p typically decreases as the bar grows in
size, it may not be sufficient to keep the R parameter constant.

(ix) We found a splitting of structure in the VR–Vφ plane along the
bar major axis of our models when the bar’s length was at a maximum.
This is another way to confirm that the outer bar morphology results
from the overlapping spiral structure. Future Galactic surveys can
look for such clumps in velocity space in the vicinity of the near bar
end of the MW.

We would like to stress here the necessity of using Galactic
models that capture the short-scale dynamical evolution expected
in the cosmological context. Considering the perturbative effect of
the Sagittarius dwarf galaxy (Sgr) on the MW disc is also very
important, as shown by a number of works studying Gaia DR2 data
(e.g. Antoja et al. 2018; Gaia Collaboration 2018b; Laporte et al.
2018, 2019; Ramos, Antoja & Figueras 2018; Bland-Hawthorn et al.
2019), confirming predictions by Minchev et al. (2009), Quillen
et al. (2009), and Gómez et al. (2012) that the disc was ‘ringing’
while phase-wrapping due to a recent minor merger event. Indeed,
using Gaia DR2 data with distances derived with the STARHORSE

code (Santiago et al. 2016; Queiroz et al. 2018; Anders et al. 2019),
Carrillo et al. (2019) showed a reversal in the velocity field near the
bar end, which was unlike the expectation from a steady-state bar.
The authors found a good match to a simulation by Laporte et al.
(2018), which considered the interaction of a Sagittarius-like dSph
with the MW, and argued that the bar has been recently strongly
perturbed and is currently evolving.

Future work should consider how bar parameter measurements
depend on spiral structure parameters, such as modes of different
multiplicities, self-sustained or externally induced. Signatures that
can give away the true bar length need to be searched for, for appli-
cations to both external galaxies, where the disc global morphology is
well seen, and to the MW, where we can study millions of individual
stars and detailed chemical abundance information is available. More
work is also needed to distinguish between intrinsic bar parameter
fluctuations, possibly driven by non-linear mode coupling as we
suggested here (see Section 6.1) and apparent variations caused by
the constructive interference between bar and spiral modes.
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Buck T., Macciò A. V., Dutton A. A., Obreja A., Frings J., 2019a, MNRAS,

483, 1314
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Figure A1. As Fig. 3, but using the Lprof bar length measurement method applied to Model1, as outlined in Section 3.2 and shown in the middle panel in Fig. 1.
The black solid and red dashed lines indicate the variation of the CR radius and the ‘true’ bar length. The shorter overall bar length resulting from this method,
compared to Lcont, is because we do not consider thresholds smaller than 30 per cent (note that Athanassoula & Misiriotis 2002 suggested to use 5 per cent).
Interestingly, the same range of thresholds always overestimates the bar of Model2 between 30 and 100 per cent.

Figure A2. As Figs 3 and A1, but measured from the drop in strength of the m = 2 Fourier component, Lm = 2, applied to Model1. This method is outlined in
Section 3.3 and shown in the right-hand panel in Fig. 1. The black solid and red dashed lines indicate the variation of the CR radius and the ‘true’ bar length.
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CR

Figure A3. As Fig. A1, but for Model2. The Lprof bar length measurement here is much less sensitive to the threshold used, compared to Model1. The true
bar length determined by inspecting Fig. 2 is ∼30 per cent below the minimum of the highest threshold, thus outside the figure range. At the maximum values
measured, the overestimating of the bar length is ∼100 per cent. The black solid line indicates the variation of the CR radius. The grey arrowheads show the
main peak positions over a period of 800 Myr used in Section 5.1.3.

Figure A4. Model1 bar length variation with time for individual bar ends, using the Lprof method. The black solid and red dashed lines indicate the variation
of the CR radius and the ‘true’ bar length. An increase by ∼40 per cent is seen in the red dotted curve in the period 13.41 < t < 13.45 Gyr.
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Figure A5. Model1 bar length variation with time for individual bar ends, using the Lm = 2 method. The black solid and red dashed lines indicate the variation
of the CR radius and the ‘true’ bar length.

Figure A6. Time evolution of the maximum bar amplitude, ηmax, of Model1, estimated from the maximum of the m = 2 Fourier component, A2/A0, where
A0 is the axisymmetric component (see red triangles in the rightmost panel of Fig. 1). The black solid curve shows the total component, while the red dotted
and blue dashed curves correspond to the individual bar sides, estimated by reflecting one half of the galaxy across the line x = 0 prior to taking the Fourier
component. Note that the radius at which ηmax occurs can vary; nevertheless, the period is similar to that of the bar length variation with time.
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